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New approach to the classification and solving of Einstein-Maxwell-dilaton gravity
and its application for a particular set of exactly solvable models
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We prove the full separability of the static dyonic Einstein-Maxwell-dilaton system for three basic geom-
etries that in turn yields the simple procedure of getting what we call the classes of integrability. It reveals the
sector structure of EMD theory — in particular, it demonstrates that each graviton-dilaton scale relation
determines a unique coupling-potential pair. lllustrating these concepts, we study the so-called linear class,
which has a number of remarkable features: it comprises humerous EMD models including string-inspired,
Liouville, trigonometric, polynomial, etc., and the majority of them remain nontrivial even if both charges are
zeros; in addition to the usual electric-magnetic duality it obeys a certain duality between Maxwell-dilaton
coupling and the dilaton potential. We single out some models inside this class and obtain the families of exact
dyonic solutions. In a certain limit they can be interpreted as the Reissner—NardsteoSitter(with “renor-
malized” dyonic chargg plus small logarithmic corrections. The latter change the global structure of the
nonperturbed solution by shifting and splitting of horizons, breaking down extremality and “dressing” the
naked singularity. Finally, a certain cosmological-type model brings some insight concerning the appearance of
a cosmological electrostatic field in the low-energy limit of string theory.
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[. INTRODUCTION whereG is the Einstein tensor and the subscrigt™stands
for the derivative with respect to dilaton field. Then, to sim-
The Einstein-Maxwell-dilatonEMD) system described plify further considerations, without loss of generality we
by the action can assumé&(¢) =1 (that can be always achieved by virtue
of the metric conformal rescaling iD>2) and B(¢)=
2a D 2, =2 —BI2, B is a constant — we wish to keep it unfixed as a
2kDS_f d x\/—_gZ[R+ B(og)"+EF"+AL (1) regulator of the dilaton’s rescaling which may involve the
imaginary unit. Further, we are interested in four-
with Z, B, E, and A being functions of¢, F,,=V, A,  dimensional(4D) static solutions hence we will work with
—-V,A,, is nowadays the most important field-theoreticalthe metric ansatz
model; e.g., it appears in the low-energy limit of string

theory. In general, the arena of such systems is the micro- ds’=—e"Odt*+e VOdr?+eANdOg, , 3)
world where averaged charges cannot be made negligible. In

the neutral cas& =0 this system is primarily used in cos- de*+sir* ode?, k=1,

mology[1] beginning frpm thgJordan-Thirry}Brans-Dicke 402 .= d6?+ 62d 2, k=0, 4
models or when studying the fundamental aspects of black (0~ 9 2 _ 4
hole physics. Theorists are highly interested in its exact so- d6*+sint? 6de?, k=-1,

lutions because no satisfactory perturbation theory has been
constructed and numerical solutions can be regarded only asus k enumerates these three geometries — spherical, flat,
additional arguments, whereas if one knows an exact soluand hyperbolic — we will work with all of them simulta-
tion then further studies are straightforward. neously and uniformly. Similarly, the electromagnetic poten-
To settle all the conventions let us first write the equationgial 1-form is assumed as
of motions following from the action above:
w(r)dt—Pcosfde, k=1,

G,LLV_ g,uv

B Zgy , EF?+A Z, 1
5 7 |0+ —————"0¢ A= w(ndt->Pe’de, k=0, ®)

N o(r)dt—Pcoshfde, k=-1,

g 0 +2EF F,°
Z 07,u¢ &v(ﬁ =1 pat v
with constantP being the magnetic charge. With all this in

hand, the field equations take the fofme adopt curvature

b
=7VMVV¢, conventions from Ref.2])
ZZBD¢+(ZB)’¢(0¢)2_Z'¢R_(ZE)’¢F2:(ZA),¢1 AH+A/(A,+U,)_E e_ZA_U:Ae_U+2ke_A_U, (6)
ZE VHF ,,+(ZE) 40" ¢F ,,=0, ) Be"+ B (A +UN+E e AVt A e V=0, (7)
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2A//+A12+B¢72:0, (8)
€)

whereE=2(Q2E 1+ P2E), '=4,, integration constar®
stands for electric charge up to a coefficient.

Il. SEPARABILITY AND SECTOR STRUCTURE
OF EMD THEORY

PHYSICAL REVIEW D64 084026

This equation is a third-order with respectAcand alinear
second-order ordinary differential equati0@DE) with re-

spect toA and=. Therefore, with each it is associated the
appropriate class of integrability determined by the equation
above, which determines a self-consist&wA pair. Thus,

we came to the system of autonomous equations consecu-
tively yielding A,¢,U. Regrettably, the class equation is a
nonlinear ODE so the direct task is still hard to accomplish
without supplementary symmetries or assumptions. From the
physical viewpoint, the class equation is highly important by

In the theory of systems of differential equations the fulljiself. To see that, first note that the dependeAce) is

separability is a maximal achievement because then one h%%casionally more universal than, e.g() or A(U): being
the system of mutually noninvolved equations that is conveyg|ated to the radius of gcompact product spaceA deter-

nient for further studies toward the full integrability, if pos-
sible, and is crucial for physical understanding. To demon

strate the full separability of the static EMD system, first one

should switch the independent variable frono ¢ (due to
the dilaton being an invertible function af). Then by
straightforward linear rearrangement of E(®.and(7), with

the use of rest ones, it can be shown that the essential syste

(6)—(8) is equivalent to the following one:

A

2e = ~
2k(p—1)+T(A+e‘pAE)+eU+2Y b

2
PA%,

Uy
’A,cb
(10

eA

(11)

dé

Ay

+Yo, (12

, Y(¢)E—§f

where U(r)=U(¢(r)), A(r)=A(¢(r)), andp=D—2=2
(though, this system is valid for EMD in arbitrafyp >2
provided P=0 atD+#4). If A ,#const thenU is algebra-
ically given by Eq.(11) so one can easily exclude it from Eq.
(10) to receive the core equation of the EMD theory — the
class equation

mines, in fact, the geometrical scale of gravity. Therefore,

he functionA symbolizes the relation between the gravita-
tional and dilatonic scales, and the class equation claims that
with each such relation is associated a unidgie\ pair.
Thus, classes of integrability can shed light upon the funda-
nr1nental nature of the latter which is precisely known neither
in string theory nor in cosmology. Moreover, dealing with
low-energy string theory, one can use the formalism to ac-
complish the inverse task: deduce the fornEofwhich is so

far known only perturbativelyby implying physical assump-
tions for theA term. However, all this is possible only if the
dependenceéA(¢) is known explicitly. Therefore, the pri-

mary aim now is to study the physically relevaits and
properties of the models they yield.

t

Ill. AN EXAMPLE: LINEAR CLASS

By virtue of Eq.(13), each functiorA(¢) uniquely deter-
mines one or another classectoj of EMD gravity. In turn,
each class comprises of the plethora of models with specific
E andA. For instance, the class that predominates in super-
gravity and superstring theori¢2—4] is given by

A=d;¢—Ind,+dzIn(eds?—1), (14)
where the constantd; are all fixed except, which is re-
lated to the mass-charge paramétgr Further, in this hier-

archy there exists a one exceptional classAf ¢ thenU
disappears in Eq11), so the latter turns to the linear first-
order ODE with respect t. and E, whereas Eq(13) be-
comes meaningless. This class approximates supergravity
classegwhene’s? is much larger or much smaller than one

in addition it is of interest by itself, so worthy of study in

H -1 ¢ AS i
Mol B P p-1)+ S (AtePA)=0, detall
Ay, \pA, 2 p
(13 A. Overview of models and solutions
where We begin with
=————|kp(p—1)+e | A+ 5A 4A _ Zinr, 4 '
P(LA 4) 4 2p ¢ A=d;p—Ind,, #=4 AT
~[ A ~ )(I‘/\/,E, d]_:i\/E,
te A2y P2 %
T 2T (15)
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with d; and y being arbitrary constantsl,=e%%0. Here the for the sake of uniformity we will not make redefinitions of
first equation is imposed whereas the expressiondf(r) newborn arbitrary constanta,, d;, d,, etc. Incidentally,
comes after integration of Eq.12), assuming the %~ note thatA is essentially exponential hence it can be either
branch for definiteness. As fat andw then their problem is  large or incredibly small value — the former takes place in
trivial [6]. Equation (11) becomes the integrability class microworld whereas the latter does in cosmology. Further,
equation that determines the admissiBleand A:: when obtainindJ we reveal a number of additional subcases
generalizing Ref[11].

dio H 2 2 2 H
e’ d d ~ dy- —3d7#0, B+d5#0, B+2b;d;—d5#0. ThenA is
A+SA 2 (2 SE =0k g 0 A-3E0, B diF 0 B2 20id dis 0. Thend |
d, B g1 B given by Eq.(17) whereas the complete solution is
In addition to the usual electric-magnefig < 1/=, Q« P} (B+d?)? crl-2dd(a+d}) 2kd§d2rzﬁ’(ﬁ+di)
duality this linear ODE is invariant under the duality trans- eY= 5 5 — >
formations between Maxwell-dilaton coupling and dilaton 2d] p+di Be—dy

potential, and between physical and tachyonic sectors of the

theory {A—ZE, d,~1/d,,d;<—d,, B<—B}. Here we -
will not address the separate good issue — does this duality B—3d]  (B+byd;—2d3)(B+2byd;—d))
play any special physical role. In addition, analyzing the ) 5
D-dimensional analogue of E¢16) one should emphasize 4Q?d3d3r2(~bady - dp/(B+dy)

that despite it does not undergo sufficient changes, the - _ —od?\( PN
abovementioned duality appears to be broked at4; it is 31(A~ by~ 2d1) (A~ 2bydy —dy)

curious that the electric-magnetic duality is also broken if )

D#4. Qdy(B+d7) B 2

Thus, the expressiord5) and(16) (with Ref.[6] kept in @@= (B—2b,d,—d?) ri-2dburd)/(Brdy (1)
mind) yield a complete general-in-class solution. Now, to ! o
demonstrate how large this sector is, let us consider its most ) ]
key or important specimens. and__A and ¢ gre given pgeusely by Eq15). ,

(a) Exponential (string-inspired) coupling= =a,e°1?. (i) p—3d1=0, B+di#0, B*2b;d;—d7#0. Choose
The physically interesting cases are as folldvst not lim-  the positive root then\ is given by Eq.(17) at d;= /3
ited to). If one assumes in actiofl) that (D=4): g  and the solution is
=16/(D—2), a;=—k3/2, b;=—4g,/(D—2) theng,=1

2 2
azrzdf/(wdi) 4P2a,d2d2r 26+ bidy— D)/ (B )

corresponds to field theory limit of superstring modwmlore 8,3 d2Q?r 1/2(1~\373by)
precisely, compactified effective theory iD=4), g, eV=2\r c+azInr—kdyr— >
=1+ (D—2)/n corresponds to the toroid@" reduction of ay(VB~/3by)

(D + n)-spacetime t(D-spaqetimeg2= Oisa u_sual Einstein- 8,8a1d§P2r1/2(1+ Eﬁbl)] Jr

Maxwell system. The previously done work is: Gibbons and — . ef=—

Maeda[8] received solutions foA =0 and arbitraryD and (VB+/3by)? d

0., see also Refd4,9], several solutions for potentials of

special type were obtained in Ref&,10,11. Also a lot of 2JBd,Qla

qualitative and numerical work has been d¢ag—14. To e2t=1rB - ,= 2 < 71 12(1-3Tby) - (19)
summarize the present knowledge about exact static spheri- \/E— \/§b1

cally symmetric solutions, we first note that most of these

have been obtained in the case of a vanishing potential, andther subcases when expressioh8) but not(17) become

second, with the exception of Ref&,11] the cases of dyonic = singular can be treated similarly using RE] and Eq.(15).

solutions and of solutions with nontrivial dilaton potentials Their common feature is the appearance of logarithra'in

have not been treated. Integrating Efj6) one reveals the (2) B—d3=0, B+b,d;—2d?#0. We choose the root

following cases. , _ d,= /B then following Eq.(16) the dilaton potential is given
(1) B—d3#0, B=b,d;—2d7#0. Then the dilaton po- by

tential is given by

A=(a,—2k\Bd,p)e™P¢
~ s 2k3d, i (ay \/E 2p)e
Azage T TR a,P2(JB+by)
p—di +2d2e B¢ 1—'Bleb1¢

—-b

_ 2a,d3P?*(B+bydy) o(Br- 200 VB=by
B+Db,d;—2d? L Q(/B—by) e‘bl"’] 20)
ay(\VB+by) ’
3 2d2Q?(B—b,dy) o (01200 an 1(VB+Dy
a; (B—byd;—2d)) ’ and the only solutiorfno subcaséss
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4d3
by

a,P?

JB—b;

eV=c—2kd,r(Inr—2)+ pb1/VB

2
/a 3
‘—ngi (0P| vayr, e=rid,,
1

_ \/EdZQr,bl/\;ﬁ.

ePl=r, w—wo=
aib;

(21
(3) B—d3#0, B+b,d;—2d7=0, B—b,d,—2d2+#0. To
avoid wearisome square-root branches let us impoge

=2d,— B/d;, and work withd, bearing in mind its relation
to the given parametds;. We have

2kBd
A= (az_4aldld§p2¢)e*(ﬁ/d1)¢_ izze*dlaﬂ

B—di
2d3Q*(B—d)

o el(p-addidil
a(B—2dj)

(22

whereas the solutiofat 3,8—5df¢ 0) is expressed as

kd,r 28/(B+ )

frzdi/(mdf) 4 Crl—zdf/(mdf) _
B—d3

e’=(B+d})

_dzw;)qwediwwbl
a;(38—5d7)(B—2d?)

2
w= d2Q(A+d) r (38-5dD)/(+d])
a,(36-5d})

with A and ¢ given by Eq.(15), where we have denoted

B+d:
d2(B—3d3)

a, a,d3P?

2 (p+d)(B-3d)

X[B2—2Bd3(2 Inr+3)+df(12Inr—7)]|.

The subcase B—5d2=0, ie. {by,d;}={=*B/15,
+/3B/5}, can be treated similarlynothing special with it
except thatw turns out to be a linear function of .

(4) B—d2#0, B+byd;—2d3#0, B—b,d;—2d5=0.

PHYSICAL REVIEW D64 084026

(b) Gravity coupled to neutral scalar fiel®& =0. Histori-
cally the neutral scalar field is the oldest systémassless
neutral scalar field was considered by Fisher in 1p1%,
see also Ref{16]). Integration of Eq.(16) at Q=P=0 re-
veals the following three cases:

(1) B—dfaﬁo. It is the(generalized Liouville model

2kAd,
B—d}

qualitatively studied in Ref.7], and from Eq.(15) and Ref.
[6] we have the two following subcases.

(i) B—3d?+0. HereA is as above whereas the solution is
given precisely by Eq(18) at Q=P=0.

(i) ,8—3d§=0. Choosing for definiteness the rodg
=+/B/3 we have

A=aye P e %1, (23

A=e" ¥Fé(a,—3kd, 2P, (24)

so this is special case=P=0 of the solution(19).

(2 B+ di=0. The A in this case is a special case of Eq.
(23) but we want to treat it separately because this is the only
way to combine exponents into trigonometric functions. Us-
ing Eq. (15) and[6] we obtain

kd,
el VB’

kdor +¢c  a,e'X’
-2 _ T2 (25)

2 !

U

A=a,e Pr— —
i ye'x’ 2x
wherec is another arbitrary constant aridand ¢ are given
by Eqg.(15). The complete story is that &t 0 this solution
contains the simplest trigopnometric potentials. If we assume
a,= —kd,, then we come to the cosine-Einstein model and

similarly for sine-Einstein &,=kd,, d,= id_z):

A=—2kd,cog\B¢), A=—2kd,sin(VB¢), (26)

and for sinh and cosh just by Wick rotation. The solutions of
such models on flat or fixed background geomesine-
Gordon, etg. have been got long ago but to our knowledge
so far nobody has managed to obtain any self-gravitating
solution despite tremendous efforts were made in view of
evident importance of the subject.

(3) B—d?=0. Choosing for definiteness a positive root
we obtain the Liouville model coupled to a linear term

A=e"P?(a,—2k\Bd, ), (27)

its solution is given by Eq.21) at zero charges, and with this
model the neutral case is exhausted.

This case is in some sense a counterpart of the previous one (c) Cosmological constant potentiah = A,. The impor-
(a3 but the roles ofQ and P are interchanged. It can be tance of EMD gravity with cosmological constaht, is ob-
treated absolutely similarly as well as other cases when eXious — for instance, it is related to the well-known “cos-

pressiong8—d? and 8+ b,d, —2d? are equal zero pairwise mological constant problem” and in use in string theory and

(the case when they are zeros all together is incons)stant
all these cased resemble the potential froifa3), i.e., hap-

supergravity related models. In addition, as a special case it
comprises the massless dilaton, which comes from the tree

pen to be the combinations of exponents of dilaton coupledevel approximation of string theory without central charges,
to linear functions of dilaton. Instead of handling them it is and recently is the most explored cas&ifis a single expo-

better to outline some other interestigiyA pairs that be-
long to the class.

nent(minimal string-induced couplingas mentioned above
(see more about the massless dilaton bglo8ome non-
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minimal dilaton couplinggthat can appear from, e.g., string
threshold correctionswere approximately studied in Ref.
[17]. What about='s for our class? We have from E(L6)

2Kz
da(B+d?)

BAg

=4 e (Bld)G_
! d3(B+2d?)

edl¢_ eZd1¢

(28)

where 8+ d2+#0. We mentioned above that the linear class

approximates the supergravity one, therefore, by last equa-

tion we have outlined the exact form of the Maxwell-dilaton
coupling (up to integration constantsvithout the use of di-
rect methodge.g., string perturbation thegrjput rather by

requiring the self-consistency of supergravity low-energy

limit (recall the proven uniqueness-inside clas&ofvhenA

is imposed. Of course, thereby we have imposed the form of
dilaton potential but this is just a physical approximation.
The metric(3) at 8+2d3+#0 andB+3d5+#0 is

PHYSICAL REVIEW [®4 084026

4d,QP2r2@i-AB+dDf-1gy

o f

wheref=a;—2k Br2/d,(8+ di). The purely electric solu-
tion is given by the appropriate expressionsAgt=0 from
the paragraplic) above.

(2) B—di=0. If one assumesl;=* B then the first
from Eq. (31) generates several trigonometric Maxwell-
dilaton couplings if one adjus@&; (d,), Q andP. Its solu-

VB is (f=ay/r —kr/d,):

(32
1+\1- (4P Qr2A/B+aD-1)2

tion for d,;=

4d,QP2dr/r
f=\f2—(4PQ)?’

and A, ¢ are exactly as in Eq(21). Note that in single-
charged cases the square root«ndisappears so the latter
can be resolved in ordinary functions.

(e) A=a,sinl?¢. This potential is also of interest for
string theory though as a trial one. Its qualitative study was

eY=c—d3f, w=J (33

2\, 2
eU:kderB/(ﬁHdi)_,_(ﬁ_,_di) Ao(BHdyr done in Ref.[14]. First consider the branchd;=*i/3.
(B+2d?)(B+3d3) Choosing the plus root we have two subcaghsre f
" , =2i coshg+ /B sinh):
_2pd; r(ﬁ—di)/(mdi)_al_dzr—2d§/<5+di) (29) .
42 242 ' o afe? B 2ik B
1 - E=— +eVPdla; + b, (34)
d3(B+4) dz
and Eq.(15) holds, as usual. Further, if we consider purely
electric case then the coupling is simf=2Q% =, a;= &2 _axt 4kd, a2, 4
—2Q?, and a d> 2d3 P
(35)

Qd,  KBr  BAo(B+d3)r(Fraadised)

[ Q(B+d?)  2d,Q(B+2d%)(B+3d?)
(30)

The cases when only magnetic or both charges, as well as t
complex cases whef+2d3 and/or 8+ 3d? are zeros, can
be done by analogy.

(d) Massless dilatonA =0. As was mentioned above re-
cently this is the most explored casegfis a single exponent

Further, at arbitrargl; # =i /3, Eq.(16) produces so ugly;:
that there is no sense to present it here. Instead we tried to
find some simple case more or less resembling the string

imodel of Ref.[14] E~e 2% B=4. For instance, if we as-

sume the purely magnetic case and impdse /3, =4
we obtain the model which approximates the string one at
largeP or d,:

Adg — 3p2¢ ¢
(nonstandard dilaton couplings were approximately studied E:ale,2¢+aze (4—3e"%) — ke? . e2=r,
in Ref.[17]). We have from Eq(16) the two cases 48d§P2 2d,P?
ar 2d3P%a
ale—(ﬁ/dl)fb_ZkB/dzzedlaS, d?+B#0, eY=c+kd,r+ é(r2—4r+6)— Shs (36)
. B+di
== . ikyB . 3D andAis exactly as in Eq(21).
2eVh? a1+d—2 , d;=iVB. (f) Quadratic potential A = a,¢?. This classical potential

We will consider the following subcases.

(1) B=d?#0. ThenE is given by the first from Egs.
(31), A and ¢ are given precisely by Eq15), and

eV=r2 ,3/(3+d§)d2 [ K+

(whose study in gravity can be traced back as far as Ref.
[15]) nowadays has been revived as a test one in string
theory[13,14)], but all the studies so far were conducted at

numerical or qualitative level only. For the sake of brevity

we consider only the cagé+d5+0 then Eq.(16) yields

a

— b ) (p—b_ 2kpld
e ($=9 I B=6) gy 2Bl

a’dd/a, B+d?

Lo}
— =
.

(37)
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where a=pg+2di#0, ¢.=(2d{/aB)(= B+ dllz—dl). byd2W Q{1—2by[ 1+ In(vdyr)]/dy}
Again, the solution is unnecessarily bulky so it is better to A=Ay+ 2ap @7 ; .
assumed; =B, B=1 (we still have rescaling freedom due d.e 42
to a,), then we obtain (42)
2 The first four terms in Eq(41) is the Reissner-Nordstno-

0 ar? a,d;
e =c+ kd2r+ﬁ[19+6 Inr (3Inr—=5)]— —

de Sitter with the only difference that the effective dyonic
r )

charge is the standard odeplus a small correction. The last
term, proportional td®, is something new — its influence
will be studied below. From now we will work with the
spherical cas&=1, in addition we will neglect\ ; for sim-
plicity. Then the information about the global structure can
be read off from the intersection of two curves described by
{he algebraic equation

with A and ¢ being given by Eq(21), andw is as in Eq(33)
if f=a,/r—kr/d,—(a,/27d3)r?(9 In*r+12Inr—4).

B. Physical properties of solutions

After we have enumerated the exact solutions for mos
interesting cases it is time to proceed to studies of the physi- 2 e _ _
cal relevance of some above-mentioned families of solutions. r°=2pr+A=(r=2,)(r=6-)=01In(r/z), (43

However, the methods used below can be extrapolated on &Where 5. = — ; ; ;

. L =u(1xJ1—-A/4?). It is useful to keep in mind
the models that belong to the linear-class sector of EMDthat® is small (O[d; ]) that simplifies subject matter.
gravity. It is important to note that the common feature of the Caseu?>A. If ®1_o (i.e., d, =) this case corresponds

. - L., U=

linear-class solutions s that they always have at least ong . " ic0o Nordstno black hole. Otherwise. to deter-
physically interpretable limit — all the solutions converge tomine horizons we have to solve the.transcende,ntal(Eﬁ).

the Reissner-Nordsim (~de Sittef when the parametat, with real §'s. Fortunately, it can be done analytically with the

approaches.mﬁmty. Therefore, their p_hyS|caI mte_rpretgtlonuse of®’s smallness. Solving it, we obtain that we still have
can be easily deduced from the series expansions in tl“\e
i

d,-parametric space. The examples of such a procedure w ['o horizons but their radii acquire a correction:

be given below.
(a) Exponential (string-inspired) couplingZ =a,e"1?.

We will study the caséa 1 i) because this is the largest fam-

ily of solutions:d, is not fixed. Moreover, we will be con-

centrated on the properties of this solution at large values
|d4|. In view of future considerations, we redefine the con-

stants
C:_4Md3/2, al:_l, aZZAo, (38)
and switch to the distant observer’s frame of reference

AN =gy 120 B+ d) 2, d;ﬁwi)/witat. (39)

In these new coordinates, assuming thad,|
>max1,8,|b,}, we obtain that to the orde®[1/d,] the
metric (18) takes the habitual form

ds?=—eV+dt?+e V-dr2+r2dQf,, (40)
where
2u Agr? A—0OIn(r/
eU+=eU*=k—T'LL+ 0 (t77) (41)

6 2
and the following notations:
2 S -1 -1 —-1/2

W= Q2_ sz 22:Q2+ P2,

are used. Also, th@[dl’l]—asymptotical dilaton potential
(17) andw (18) are

0 In(5. /)

=0+ —5—"—,
TR 206 w)

c)z?nd the corresponding Hawking temperatures are

5+_,U/ Q)

The=— -
" Ams

(6+=2u)IN(S+ 17)
278 L

Or— M

(44)

an absolute value is implied.

Caseu?=A. Without the ® perturbation we have ex-
treme Reissner-Nordstmo black hole. It turns out that the
series expansion used in the previous case fails so we have to
invent another one. The nonperturbed horizon appeaxs at
= . We are interested in small deviations from the nonper-
turbed case so it is natural to expand EB) with respect to
r up to the second order near this point. We obtain that Eq.
(43) becomes the quadratic equation{®/2u?)r?—2u(1
+0/u?)r+ p?=0[In(u/7)—2], from which one concludes
that extremality is broken: the extreme horizon is shifted and
split into two ones, with the radii

(¢
ry==u+=—=vV0 In(ul/7n).

2u

Here, the term proportional t® shifts the horizon outward
or inward (depending on the sign df;W/d;) whereas the
term proportional to/® describes the split. It is curious that
in the particular casey= u the extremality is again restored
up to O[dl_z]. The corresponding Hawking temperatures are

NCXE 2
M 15 VO (7).

Tye= (45)

27
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Caseu?<A. If ®=0 then the solution describes the na- where f . =2k, f_=A,r?/3. The asymptotic form of this
ked Reissner-Nordstno singularity. There is a strong hope metric at larger differs from de Sitter, however, this devia-
that the® -perturbation “dresses” the singularity, i.e., createstion is physically negligible due to infinitesimality dﬁz, SO
a horizon around it. To prove it, one has to reveal the condithe initial (exac) solution is still of physical interest. The
tions at which the parabola and logarithmic cufd®) have  other neutral scalar field cases do not seem to have any
the intersection poili$) even if the former does not cross an physically interpretable asymptotics.

x axis. The intuitive solution for this is to require the mini-  (c) Cosmological constant potentialh =A,. We will
mum point of the parabola to be as close as possible t& thestudy the electrical case, i.e., the model with Maxwell-
axis, hence,. to the Iogarlthm|c. curve, bepause the latter Silaton couplingE =2Q?%/E whereZ is as in Eq.(28). The
small. The distance from the minimum point of the parabolafamily of solutions is given by Eqs(29), (30), and (15).

to thex axis equals ta — u?, s0A must be equal ta.? plus Again, we are interested in analysis of the solutions at large
a small positive correction, say nonfixed values ofl,, i.e., when|d,|>max1,|B|}. Switch-

ing to the infinite-observer frame of referen@), one can
deduce that the metric converge to Reissner-Nordstro
de Sitter so fast that the first nonzero correction is of order
O[dl_z] not O[dl_l]. To this order, the metric, field strength
and Maxwell-dilaton coupling become, respectively,

A= p?+|constd; Y. (46)

Again, we expand Eqg43) near the minimum point of pa-
rabola and obtain the quadratic equation,+(@/2u?)x?
—2u(1+0/u?)x+A=0[In(u/7m)—2]. If it has complex

roots then the singularity is naked otherwise it is hidden 2
under at least one horizon. One can check that this equation eUr:k_z_’LL+Q_2 +ﬂr2 w (49)
in general case does not have real roots. However, if r r 6 d;
20 u2In(ul ) 0 Q [ B kp
A=py2——— =24 | o'=——|1-—In(r/n)|———, 50
i.e., of the form(46), providedbld[1WIn(M/77) iSs nonposi- . B kB $
tive, then the imaginary part vanishes, so one does have the E=-1- d_1¢+ dfszze e (52)

purely real double root. It means that we have found an
example when a singularity is dressed by the single horizonynere fo=k—pulr+(Ao/6)r2, f_=pulr—Q>3r2, 5 is as
Its radius and Hawking temperature are above. The new feature is that the electrostatic field strength
(50) gets the additional constant term that describes the cos-
6 O In(u/n) mological electrostatic background field. The magnitude of
fw=pro Twe P this field turns to be rather smalt;d; 2, that makes it non-
observable on local scales. The direction of the field depends

the latter being of orde@[dl_l], rather tharO[dl_”z] asin ©ON geometry viak. Thus, recalling remarks after E(R8),
previous case. this brings some evidence that the theories with the

(b) Gravity coupled to neutral scalar fielE=0. We will ~ Maxwell-dilaton coupling of kind *exponent- something”

study the physical interpretation of the neutral case with non['cor instan_ce, the low-energy string theory w ith the nonmini-
fixed dy, i.e., (b 1. Actually, the latter is nothing but the mal coupling caused by threshold corrections that resemble

case(ali at Q=P=0 but the asymptotic analysis of the _Eq. (51) [17]] and with nonvanishing dilaton potentiéir

neutral solutions is slightly different. The reason is that the'Stance, the certain supergravities and the low-energy string

neutral solutions at largéd,|>max1,|8|} converge to theory with loop correctionsmight generate the cosmologi-

Schwarzschild—de Sitter even faster, so that the first nonzer%al electrostatic field. Of course, this field is static only in

correction is of ordeO[d; %] instead of previous[d; *]. static observer's frame of reference.
Keeping in mind the redefinition&8), to this order the di-

laton potential becomes IV. CONCLUSION
Let us summarize the goals achieved in the paper. First,
Aca1- ﬁ¢) +2kﬁd2 o (47 We have proven the full separability of the static EMD grav-
0 d d; ' ity of general type for three basic geometries. In turn, it

revealed the hidden sector structure of the theory. It appeared
the metric is again of the forrtd0) but noweV+=eY-: that the theory has infinite number of sectors, and solution
from one sector cannot be linked with that from another sec-

BIn(r/n) tor by means of perturbative series in parametric space.
p| lEz——"m— 5 Then we concentrated on the concrete class with simplest

eV —K— dy +A°r i'gfi In(r /=) dilaton-graviton scale relatioA~ ¢ (15), which has a num-
r 6 df ’ ber of remarkable features: it always has at least one physical

(48 limit (Reissner-Nordstra—de Sittey; in addition to the usual
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electric-magnetic duality it obeys a certain duality betweerstring theory(even without central chargethe loop correc-
Maxwell-dilaton coupling and dilaton potential; it comprises tions do induce the nontrivial dilaton potential. In addition,
numerous EMD models including string-inspired, Liouville, one should not forget that the threshold corrections in low-
trigonometric, polynomial, etc., and major of them remainenergy string theory affect a form of Maxwell-dilaton cou-
non-trivial even if both charges are zeros. We singled oupling. In turn, the nonminimal terms in the coupling also
some models inside this class and obtained the families ahay drastically change properties of solutions, as can be seen
exact dyonic solutions. Within certain range of values of thefrom the caséc). Unfortunately, the forms of both Maxwell-
parameterd; some of them can be interpreted as thedilaton coupling and dilaton potential are not reliably known
Reissner-Nordstrm—de Sitter(with “renormalized” dyonic  at this time.
charge plus small logarithmic corrections. The latter change Of course, we have studied just a few models belonging
the global structure of the nonperturbed solution by shiftingto only one particular class. Oth& or A that might appear
and splitting of horizons, breaking down extremality, andfrom a concrete problem can be paired up within toisany
“dressing” the naked singularity. Also, the modéd) with anothey class in a similar manner. Despite this pairing is
cosmological constant and its solutions bring some evidenceomewhere artificial procedure the generated exact solutions
concerning the appearance of cosmological electrostatic fieldre better than numerical studies from scraiespecially if
from the low-energy limit of string theory. one recalls the abovementioned existence of nonperturbative
In addition, it is worthwhile to mention that the presentedsectorg, besides exact solutions can verify or falsify qualita-
string-induced models and solutiof® can be regarded as tive approaches and results. If one wishes to go beyond the
some kind of the indirect counterexample to the conjecturdinear class then one should start with the general class equa-
made by Garfinkle, Horowitz, and Stromind&HS) [4] that  tion (13).
the Reissner-Nordstno is not even an approximate solution
of string thepry. That gonjecture was basgd on the mpdel ACKNOWLEDGMENTS
with the minimal coupling and vanishing dilaton potential.
However, the RN limit does appear if one considers certain | am grateful to Edward Te@ational University of Sin-
nontrivial dilaton potentials, similar to those above. There-gapore for suggesting the theme and fruitful remarks. Also,
fore, it seems that situations crucially depend on concreté acknowledge the correspondence by David Wiltsliiai-
forms of the coupling and potential. In fact, in low-energy versity of Adelaidé that helped to improve the paper.
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