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New approach to the classification and solving of Einstein-Maxwell-dilaton gravity
and its application for a particular set of exactly solvable models
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We prove the full separability of the static dyonic Einstein-Maxwell-dilaton system for three basic geom-
etries that in turn yields the simple procedure of getting what we call the classes of integrability. It reveals the
sector structure of EMD theory — in particular, it demonstrates that each graviton-dilaton scale relation
determines a unique coupling-potential pair. Illustrating these concepts, we study the so-called linear class,
which has a number of remarkable features: it comprises numerous EMD models including string-inspired,
Liouville, trigonometric, polynomial, etc., and the majority of them remain nontrivial even if both charges are
zeros; in addition to the usual electric-magnetic duality it obeys a certain duality between Maxwell-dilaton
coupling and the dilaton potential. We single out some models inside this class and obtain the families of exact
dyonic solutions. In a certain limit they can be interpreted as the Reissner–Nordstro¨m–de Sitter~with ‘‘renor-
malized’’ dyonic charge! plus small logarithmic corrections. The latter change the global structure of the
nonperturbed solution by shifting and splitting of horizons, breaking down extremality and ‘‘dressing’’ the
naked singularity. Finally, a certain cosmological-type model brings some insight concerning the appearance of
a cosmological electrostatic field in the low-energy limit of string theory.

DOI: 10.1103/PhysRevD.64.084026 PACS number~s!: 04.20.Jb, 04.40.Nr, 04.65.1e
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I. INTRODUCTION

The Einstein-Maxwell-dilaton~EMD! system described
by the action

2kD
2 S5E dDxA2g Z@R1B~]f!21JF21L#, ~1!

with Z, B, J, and L being functions off, Fmn5¹mAn

2¹nAm , is nowadays the most important field-theoretic
model; e.g., it appears in the low-energy limit of strin
theory. In general, the arena of such systems is the mi
world where averaged charges cannot be made negligibl
the neutral caseJ[0 this system is primarily used in cos
mology @1# beginning from the~Jordan-Thirry-!Brans-Dicke
models or when studying the fundamental aspects of b
hole physics. Theorists are highly interested in its exact
lutions because no satisfactory perturbation theory has b
constructed and numerical solutions can be regarded on
additional arguments, whereas if one knows an exact s
tion then further studies are straightforward.

To settle all the conventions let us first write the equatio
of motions following from the action above:

Gmn2gmnF S B

2
2

Z,ff

Z D ~]f!21
JF21L

2
2

Z,f

Z
hfG

1S B2
Z,ff

Z D ]mf ]nf12JFmaFn
a

5
Z,f

Z
¹m¹nf,

2ZBhf1~ZB! ,f~]f!22Z,fR2~ZJ! ,fF25~ZL! ,f ,

ZJ ¹mFmn1~ZJ! ,f]mfFmn50, ~2!
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whereG is the Einstein tensor and the subscript ‘‘f ’’ stands
for the derivative with respect to dilaton field. Then, to sim
plify further considerations, without loss of generality w
can assumeZ(f)51 ~that can be always achieved by virtu
of the metric conformal rescaling ifD.2) and B(f)5
2b/2, b is a constant — we wish to keep it unfixed as
regulator of the dilaton’s rescaling which may involve th
imaginary unit. Further, we are interested in fou
dimensional~4D! static solutions hence we will work with
the metric ansatz

ds252eU(r )dt21e2U(r )dr21eA(r )dV (k)
2 , ~3!

dV (k)
2 [H du21sin2 udw2, k51,

du21u2dw2, k50,

du21sinh2 udw2, k521,
~4!

thus k enumerates these three geometries — spherical,
and hyperbolic — we will work with all of them simulta
neously and uniformly. Similarly, the electromagnetic pote
tial 1-form is assumed as

A5H v~r !dt2P cosudw, k51 ,

v~r !dt2
1

2
Pu2dw, k50 ,

v~r !dt2P coshudw, k521 ,

~5!

with constantP being the magnetic charge. With all this i
hand, the field equations take the form~we adopt curvature
conventions from Ref.@2#!

A91A8~A81U8!2Ĵ e22A2U5Le2U12ke2A2U, ~6!

bf91bf8~A81U8!1Ĵ ,f e22A2U1L ,f e2U50, ~7!
©2001 The American Physical Society26-1
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2A91A821bf8250, ~8!

J v85Qe2A, ~9!

whereĴ[2(Q2 J211P2J), 8[] r , integration constantQ
stands for electric charge up to a coefficient.

II. SEPARABILITY AND SECTOR STRUCTURE
OF EMD THEORY

In the theory of systems of differential equations the f
separability is a maximal achievement because then one
the system of mutually noninvolved equations that is con
nient for further studies toward the full integrability, if pos
sible, and is crucial for physical understanding. To dem
strate the full separability of the static EMD system, first o
should switch the independent variable fromr to f ~due to
the dilaton being an invertible function ofr ). Then by
straightforward linear rearrangement of Eqs.~6! and~7!, with
the use of rest ones, it can be shown that the essential sy
~6!–~8! is equivalent to the following one:

2k~p21!1
2eÃ

p
~L1e2pÃĴ!1eŨ12YS b

pÃ,f
2

2
Ũ ,f

Ã,f

2
p21

2 D 50, ~10!

2k~p21!1
2eÃ

p S L1
p

2b
L ,fÃ,fD1eŨ12YS 1

Ã,f
D

,f

1
2e2(p21)Ã

p S Ĵ1
p

2b
Ĵ ,fÃ,fD50, ~11!

f856
eY2Ã/2

Ã,f

, Y~f![2
b

pE df

Ã,f

1Y0 , ~12!

where U(r )[Ũ(f(r )), A(r )[Ã(f(r )), and p[D2252
~though, this system is valid for EMD in arbitraryD.2
providedP[0 at DÞ4). If Ã,fÞconst thenŨ is algebra-
ically given by Eq.~11! so one can easily exclude it from Eq
~10! to receive the core equation of the EMD theory — t
class equation

H ,f

Ã,f

1S b

pÃ,f
2

1
p21

2 D H1k~p21!1
eÃ

p
~L1e2pÃĴ!50,

~13!

where

H[
1

p~1/Ã,f! ,f
Fkp~p21!1eÃS L1

p

2b
L ,fÃ,fD

1e2(p21)ÃS Ĵ1
p

2b
Ĵ ,fÃ,fD G .
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This equation is a third-order with respect toÃ and alinear
second-order ordinary differential equation~ODE! with re-

spect toL andĴ. Therefore, with eachÃ it is associated the
appropriate class of integrability determined by the equat
above, which determines a self-consistentJ-L pair. Thus,
we came to the system of autonomous equations cons
tively yielding A,f,U. Regrettably, the class equation is
nonlinear ODE so the direct task is still hard to accompl
without supplementary symmetries or assumptions. From
physical viewpoint, the class equation is highly important
itself. To see that, first note that the dependenceA(f) is
occasionally more universal than, e.g.,U(f) or A(U): being
related to the radius of a~compact! product space,A deter-
mines, in fact, the geometrical scale of gravity. Therefo
the functionÃ symbolizes the relation between the gravit
tional and dilatonic scales, and the class equation claims
with each such relation is associated a uniqueJ-L pair.
Thus, classes of integrability can shed light upon the fun
mental nature of the latter which is precisely known neith
in string theory nor in cosmology. Moreover, dealing wi
low-energy string theory, one can use the formalism to
complish the inverse task: deduce the form ofJ ~which is so
far known only perturbatively! by implying physical assump
tions for theL term. However, all this is possible only if th
dependenceA(f) is known explicitly. Therefore, the pri-
mary aim now is to study the physically relevantÃ’s and
properties of the models they yield.

III. AN EXAMPLE: LINEAR CLASS

By virtue of Eq.~13!, each functionA(f) uniquely deter-
mines one or another class~sector! of EMD gravity. In turn,
each class comprises of the plethora of models with spe
J andL. For instance, the class that predominates in sup
gravity and superstring theories@2–4# is given by

Ã5d1f2 ln d21d3 ln~ed4f21!, ~14!

where the constantsdi are all fixed exceptd2 which is re-
lated to the mass-charge parameter@5#. Further, in this hier-
archy there exists a one exceptional class: ifÃ;f then Ũ
disappears in Eq.~11!, so the latter turns to the linear firs
order ODE with respect toL and J, whereas Eq.~13! be-
comes meaningless. This class approximates supergra
classes~whened4f is much larger or much smaller than one!,
in addition it is of interest by itself, so worthy of study i
detail.

A. Overview of models and solutions

We begin with

Ã5d1f2 ln d2 , f5H 2d1

b1d1
2

ln r , d1
21bÞ0,

xr /Ab, d15 iAb,

~15!
6-2
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NEW APPROACH TO THE CLASSIFICATION AND . . . PHYSICAL REVIEW D64 084026
with di andx being arbitrary constants,d2[ed1f0. Here the
first equation is imposed whereas the expression forf(r )
comes after integration of Eq.~12!, assuming the ‘‘1 ’’
branch for definiteness. As forU andv then their problem is
trivial @6#. Equation ~11! becomes the integrability clas
equation that determines the admissibleJ andL:

ed1f

d2
S L1

d1

b
L ,fD1

d2

ed1f S Ĵ1
d1

b
Ĵ ,fD522k. ~16!

In addition to the usual electric-magnetic$J↔1/J, Q↔P%
duality this linear ODE is invariant under the duality tran
formations between Maxwell-dilaton coupling and dilat
potential, and between physical and tachyonic sectors of

theory $L↔Ĵ, d2↔1/d2 , d1↔2d1 , b↔2b%. Here we
will not address the separate good issue — does this du
play any special physical role. In addition, analyzing t
D-dimensional analogue of Eq.~16! one should emphasiz
that despite it does not undergo sufficient changes,
abovementioned duality appears to be broken atDÞ4; it is
curious that the electric-magnetic duality is also broken
DÞ4.

Thus, the expressions~15! and~16! ~with Ref. @6# kept in
mind! yield a complete general-in-class solution. Now,
demonstrate how large this sector is, let us consider its m
key or important specimens.

~a! Exponential (string-inspired) coupling: J5a1eb1f.
The physically interesting cases are as follows~but not lim-
ited to!. If one assumes in action~1! that (D54): b
516/(D22), a152kD

2 /2, b1524g2 /(D22) then g251
corresponds to field theory limit of superstring model~more
precisely, compactified effective theory ifD54), g2

5A11(D22)/n corresponds to the toroidalTn reduction of
(D1n)-spacetime toD-spacetime,g250 is a usual Einstein-
Maxwell system. The previously done work is: Gibbons a
Maeda@8# received solutions forL50 and arbitraryD and
g2, see also Refs.@4,9#, several solutions for potentials o
special type were obtained in Refs.@2,10,11#. Also a lot of
qualitative and numerical work has been done@12–14#. To
summarize the present knowledge about exact static sp
cally symmetric solutions, we first note that most of the
have been obtained in the case of a vanishing potential,
second, with the exception of Refs.@2,11# the cases of dyonic
solutions and of solutions with nontrivial dilaton potentia
have not been treated. Integrating Eq.~16! one reveals the
following cases.

~1! b2d1
2Þ0, b6b1d122d1

2Þ0. Then the dilaton po-
tential is given by

L5a2e2(b/d1)f2
2kbd2

b2d1
2

e2d1f

2
2a1d2

2P2~b1b1d1!

b1b1d122d1
2

e(b122d1)f

2
2d2

2Q2~b2b1d1!

a1 ~b2b1d122d1
2!

e2(b112d1)f, ~17!
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for the sake of uniformity we will not make redefinitions o
newborn arbitrary constantsa2 , d1 , d2, etc. Incidentally,
note thatL is essentially exponential hence it can be eith
large or incredibly small value — the former takes place
microworld whereas the latter does in cosmology. Furth
when obtainingU we reveal a number of additional subcas
generalizing Ref.@11#.

~i! b23d1
2Þ0, b1d1

2Þ0, b62b1d12d1
2Þ0. ThenL is

given by Eq.~17! whereas the complete solution is

eU5
~b1d1

2!2

2d1
2 F cr122d1

2/(b1d1
2)

b1d1
2

2
2kd1

2d2r 2b/(b1d1
2)

b22d1
4

2
a2r 2d1

2/(b1d1
2)

b23d1
2

2
4P2a1d1

2d2
2r 2(b1b1d12d1

2)/(b1d1
2)

~b1b1d122d1
2!~b12b1d12d1

2!

2
4Q2d1

2d2
2r 2(b2b1d12d1

2)/(b1d1
2)

a1~b2b1d122d1
2!~b22b1d12d1

2!
G ,

v2v05
Qd2~b1d1

2!

a1~b22b1d12d1
2!

r 122d1(b11d1)/~b1d1
2
!, ~18!

andA andf are given precisely by Eq.~15!.
~ii ! b23d1

250, b1d1
2Þ0, b62b1d12d1

2Þ0. Choose
the positive root thenL is given by Eq.~17! at d15Ab/3
and the solution is

eU52Ar F c1a2 ln r 2kd2r 2
8b d2

2Q2r 1/2(12A3/bb1)

a1~Ab2A3b1!2

2
8ba1d2

2P2r 1/2(11A3/bb1)

~Ab1A3b1!2 G , eA5
Ar

d2
,

e2f5r A3/b, v2v05
2Ab d2 Q/a1

Ab2A3 b1

r 1/2(12A3/bb1). ~19!

Other subcases when expressions~18! but not ~17! become
singular can be treated similarly using Ref.@6# and Eq.~15!.
Their common feature is the appearance of logarithm ineU.

~2! b2d1
250, b6b1d122d1

2Þ0. We choose the roo
d15Ab then following Eq.~16! the dilaton potential is given
by

L5~a222kAbd2f!e2Abf

12d2
2e22AbfFa1P2~Ab1b1!

Ab2b1

eb1f

1
Q2~Ab2b1!

a1~Ab1b1!
e2b1fG , ~20!

and the only solution~no subcases! is
6-3
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eU5c22kd2r ~ ln r 22!1
4bd2

2

b1
F a1P2

Ab2b1

r b1 /Ab

2
Q2/a1

Ab1b1

r 2b1 /AbG1a2r , eA5r /d2,

eAbf5r , v2v05
Abd2Q

a1b1
r 2b1 /Ab. ~21!

~3! b2d1
2Þ0, b1b1d122d1

250, b2b1d122d1
2Þ0. To

avoid wearisome square-root branches let us imposeb1
52d12b/d1 , and work withd1 bearing in mind its relation
to the given parameterb1. We have

L5~a224a1d1d2
2P2f!e2(b/d1)f2

2kbd2

b2d1
2

e2d1f

2
2d2

2Q2~b2d1
2!

a1~b22d1
2!

e@(b24d1
2)/d1]f, ~22!

whereas the solution~at 3b25d1
2Þ0) is expressed as

eU5~b1d1
2!F f r 2d1

2/(b1d1
2)1cr122d1

2/(b1d1
2)2

kd2r 2b/(b1d1
2)

b2d1
2

2
d2

2~b1d1
2!Q2r (4b26d1

2)/(b1d1
2)

a1~3b25d1
2!~b22d1

2!
G ,

v5
d2Q~b1d1

2!

a1~3b25d1
2!

r (3b25d1
2)/(b1d1

2),

with A andf given by Eq.~15!, where we have denoted

f [2
b1d1

2

d1
2~b23d1

2!
Fa2

2
1

a1d2
2P2

~b1d1
2!~b23d1

2!

3@b222bd1
2~2 ln r 13!1d1

4~12 lnr 27!#G .

The subcase 3b25d1
250, i.e., $b1 , d1%5$6Ab/15,

6A3b/5%, can be treated similarly~nothing special with it
except thatv turns out to be a linear function of lnr).

~4! b2d1
2Þ0, b1b1d122d1

2Þ0, b2b1d122d1
250.

This case is in some sense a counterpart of the previous
~a3! but the roles ofQ and P are interchanged. It can b
treated absolutely similarly as well as other cases when
pressionsb2d1

2 andb6b1d122d1
2 are equal zero pairwise

~the case when they are zeros all together is inconsistent!. In
all these casesL resemble the potential from~a3!, i.e., hap-
pen to be the combinations of exponents of dilaton coup
to linear functions of dilaton. Instead of handling them it
better to outline some other interestingJ-L pairs that be-
long to the class.
08402
ne
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~b! Gravity coupled to neutral scalar field: J[0. Histori-
cally the neutral scalar field is the oldest system~massless
neutral scalar field was considered by Fisher in 1948@15#,
see also Ref.@16#!. Integration of Eq.~16! at Q5P50 re-
veals the following three cases:

~1! b2d1
2Þ0. It is the~generalized! Liouville model

L5a2e2bf/d12
2kbd2

b2d1
2

e2d1f, ~23!

qualitatively studied in Ref.@7#, and from Eq.~15! and Ref.
@6# we have the two following subcases.

~i! b23d1
2Þ0. HereL is as above whereas the solution

given precisely by Eq.~18! at Q5P50.
~ii ! b23d1

250. Choosing for definiteness the rootd1

5Ab/3 we have

L5e2A3bf~a223kd2 e2Ab/3f!, ~24!

so this is special caseQ5P50 of the solution~19!.
~2! b1d1

250. TheL in this case is a special case of E
~23! but we want to treat it separately because this is the o
way to combine exponents into trigonometric functions. U
ing Eq. ~15! and @6# we obtain

L5a2 eiAbf2
kd2

eiAbf
, eU5

kd2r 1c

ixeixr
2

a2eixr

2x2
, ~25!

wherec is another arbitrary constant andA andf are given
by Eq. ~15!. The complete story is that atkÞ0 this solution
contains the simplest trigonometric potentials. If we assu
a252kd2 , then we come to the cosine-Einstein model a
similarly for sine-Einstein (a25kd2 , d25 i d̄2):

L522kd2 cos~Abf!, L522kd̄2 sin~Abf!, ~26!

and for sinh and cosh just by Wick rotation. The solutions
such models on flat or fixed background geometry~sine-
Gordon, etc.! have been got long ago but to our knowled
so far nobody has managed to obtain any self-gravita
solution despite tremendous efforts were made in view
evident importance of the subject.

~3! b2d1
250. Choosing for definiteness a positive ro

we obtain the Liouville model coupled to a linear term

L5e2Abf~a222kAb d2 f!, ~27!

its solution is given by Eq.~21! at zero charges, and with thi
model the neutral case is exhausted.

~c! Cosmological constant potential: L5L0. The impor-
tance of EMD gravity with cosmological constantL0 is ob-
vious — for instance, it is related to the well-known ‘‘cos
mological constant problem’’ and in use in string theory a
supergravity related models. In addition, as a special cas
comprises the massless dilaton, which comes from the
level approximation of string theory without central charge
and recently is the most explored case ifJ is a single expo-
nent~minimal string-induced coupling!, as mentioned above
~see more about the massless dilaton below!. Some non-
6-4



g
f.

s
u
n

g

o
n

ly

s

-
t
ie

.

ll-

r

r
as

d to
ring
-

at

l
ef.

ring
at

ity
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minimal dilaton couplings~that can appear from, e.g., strin
threshold corrections! were approximately studied in Re
@17#. What aboutJ ’s for our class? We have from Eq.~16!

Ĵ5a1e2(b/d1)f2
2kb

d2~b1d1
2!

ed1f2
bL0

d2
2~b12d1

2!
e2d1f,

~28!

whereb1d1
2Þ0. We mentioned above that the linear cla

approximates the supergravity one, therefore, by last eq
tion we have outlined the exact form of the Maxwell-dilato
coupling ~up to integration constants! without the use of di-
rect methods~e.g., string perturbation theory! but rather by
requiring the self-consistency of supergravity low-ener
limit ~recall the proven uniqueness-inside class ofJ whenL
is imposed!. Of course, thereby we have imposed the form
dilaton potential but this is just a physical approximatio
The metric~3! at b12d1

2Þ0 andb13d1
2Þ0 is

eU5kd2r 2b/(b1d1
2)1~b1d1

2!F L0~b1d1
2!r 2

~b12d1
2!~b13d1

2!

2
2md2

3/2

d1
2

r (b2d1
2)/(b1d1

2)2
a1d2

2

2d1
2

r 22d1
2/(b1d1

2)G , ~29!

and Eq.~15! holds, as usual. Further, if we consider pure

electric case then the coupling is simplyJ52Q2/Ĵ, a15
22Q2, and

v5
Qd2

r
2

kbr

Q~b1d1
2!

2
bL0~b1d1

2!r (b13d1
2)/(b1d1

2)

2d2Q~b12d1
2!~b13d1

2!
.

~30!

The cases when only magnetic or both charges, as well a
complex cases whenb12d1

2 and/orb13d1
2 are zeros, can

be done by analogy.
~d! Massless dilaton: L50. As was mentioned above re

cently this is the most explored case ifJ is a single exponen
~nonstandard dilaton couplings were approximately stud
in Ref. @17#!. We have from Eq.~16! the two cases

Ĵ55 a1e2(b/d1)f2
2kb/d2

b1d1
2

ed1f, d1
21bÞ0,

2 eiAbfS a11
ikAb

d2
f D , d15 iAb.

~31!

We will consider the following subcases.

~1! b6d1
2Þ0. Then Ĵ is given by the first from Eqs

~31!, A andf are given precisely by Eq.~15!, and

eU5r 2 b/(b1d1
2)d2 F k1

b1d1
2

2d1
2 S c

r
2

a1d2

r 2 D G ,
08402
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v52E 4d2QP2r 2(d1
2
2b)/(b1d1

2) f 21dr

11A12~4 P Qr2b/(b1d1
2) f 21!2

, ~32!

where f [a122 k br 2/d2(b1d1
2). The purely electric solu-

tion is given by the appropriate expressions atL050 from
the paragraph~c! above.

~2! b2d1
250. If one assumesd156Ab then the first

from Eq. ~31! generates several trigonometric Maxwe
dilaton couplings if one adjustsa1 (d2), Q andP. Its solu-
tion for d15Ab is ( f [a1 /r 2kr/d2):

eU5c2d2
2f , v5E 4d2QP2dr/r

f 6Af 22~4PQ!2
, ~33!

and A,f are exactly as in Eq.~21!. Note that in single-
charged cases the square root inv disappears so the latte
can be resolved in ordinary functions.

~e! L5a2 sinh2f. This potential is also of interest fo
string theory though as a trial one. Its qualitative study w
done in Ref. @14#. First consider the branchd156 iAb.
Choosing the plus root we have two subcases~here f
[2i coshf1Ab sinhf):

Ĵ5
a2f 2e2iAbf

d2
2~b14!

1eiAbfS a11
2ikAb

d2
f D , ~34!

Ĵ5e22fFa12
a214kd2

d2
2

f2
a2

2d2
2

e22fG , b524.

~35!

Further, at arbitraryd1Þ6 iAb, Eq.~16! produces so uglyĴ
that there is no sense to present it here. Instead we trie
find some simple case more or less resembling the st
model of Ref.@14# J;e22f, b54. For instance, if we as
sume the purely magnetic case and imposed15Ab, b54
we obtain the model which approximates the string one
largeP or d2 :

J5a1e22f1
a2e4f~423e2f!

48d2
2P2

2
ke2f

2d2P2
, e2f5r ,

eU5c1kd2r 1
a2r

24
~r 224r 16!2

2d2
2P2a1

r
, ~36!

andA is exactly as in Eq.~21!.
~f! Quadratic potential: L5a2f2. This classical potentia

~whose study in gravity can be traced back as far as R
@15#! nowadays has been revived as a test one in st
theory @13,14#, but all the studies so far were conducted
numerical or qualitative level only. For the sake of brev
we consider only the caseb1d1

2Þ0 then Eq.~16! yields

Ĵ5
a1

e(b/d1)f
1

~f2f1!~f2f2!

a3d2
2/a2

e2d1f2
2kb/d2

b1d1
2

ed1f,

~37!
6-5
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where a[b12d1
2Þ0, f65(2d1

2/ab)(6Ab1d1
22d1).

Again, the solution is unnecessarily bulky so it is better
assumed15Ab, b51 ~we still have rescaling freedom du
to a2), then we obtain

eU5c1kd2r 1
a2r 2

54
@1916 ln r ~3 ln r 25!#2

a1d2
2

r
,

with A andf being given by Eq.~21!, andv is as in Eq.~33!
if f [a1 /r 2kr/d22(a2/27d2

2)r 2(9 ln2 r112 lnr24).

B. Physical properties of solutions

After we have enumerated the exact solutions for m
interesting cases it is time to proceed to studies of the ph
cal relevance of some above-mentioned families of solutio
However, the methods used below can be extrapolated o
the models that belong to the linear-class sector of EM
gravity. It is important to note that the common feature of t
linear-class solutions is that they always have at least
physically interpretable limit — all the solutions converge
the Reissner-Nordstro¨m ~–de Sitter! when the parameterd1
approaches infinity. Therefore, their physical interpretat
can be easily deduced from the series expansions in
d1-parametric space. The examples of such a procedure
be given below.

~a! Exponential (string-inspired) coupling: J5a1eb1f.
We will study the case~a 1 i! because this is the largest fam
ily of solutions: d1 is not fixed. Moreover, we will be con
centrated on the properties of this solution at large value
ud1u. In view of future considerations, we redefine the co
stants

c524md2
3/2, a1521, a25L0 , ~38!

and switch to the distant observer’s frame of reference

eA(r )5d2
21r 2d1

2/(b1d1
2)→r 2, d

2
(b1d1

2)/2d1
2

t→t. ~39!

In these new coordinates, assuming thatud1u
@max$1,ubu,ub1u%, we obtain that to the orderO@1/d1# the
metric ~18! takes the habitual form

ds252eU1dt21e2U2dr21r 2dV (k)
2 , ~40!

where

eU15eU25k2
2m

r
1

L0r 2

6
1

D2Q ln~r /h!

r 2
, ~41!

and the following notations:

D5Z22
5

2
b1d1

21W, Q52b1d1
21W, h5d2

21/2,

W5Q22P2, Z25Q21P2,

are used. Also, theO@d1
21#-asymptotical dilaton potentia

~17! andv ~18! are
08402
t
i-
s.
all

e
e

n
he
ill

of
-

L5L01
b1d2

2W

d1e2d1f
, v5

Q$122b1@11 ln~Ad2r !#/d1%

r
.

~42!

The first four terms in Eq.~41! is the Reissner-Nordstro¨m–
de Sitter with the only difference that the effective dyon
charge is the standard oneZ plus a small correction. The las
term, proportional toQ, is something new — its influence
will be studied below. From now we will work with the
spherical casek51, in addition we will neglectL0 for sim-
plicity. Then the information about the global structure c
be read off from the intersection of two curves described
the algebraic equation

r 222mr 1D[~r 2d1!~r 2d2!5Q ln~r /h!, ~43!

whered65m(16A12D/m2). It is useful to keep in mind
that Q is small (O@d1

21#) that simplifies subject matter.
Casem2.D. If Q50 ~i.e., d15`) this case correspond

to the Reissner-Nordstro¨m black hole. Otherwise, to deter
mine horizons we have to solve the transcendental Eq.~43!
with reald ’s. Fortunately, it can be done analytically with th
use ofQ ’s smallness. Solving it, we obtain that we still hav
two horizons but their radii acquire a correction:

r H65d61
Q ln~d6 /h!

2~d62m!
,

and the corresponding Hawking temperatures are

TH65
d62m

2pd6
2

2
Q

4pd6
3 S 11

~d622m!ln~d6 /h!

d62m D ,

~44!

an absolute value is implied.
Casem25D. Without the Q perturbation we have ex

treme Reissner-Nordstro¨m black hole. It turns out that the
series expansion used in the previous case fails so we ha
invent another one. The nonperturbed horizon appearsx
5m. We are interested in small deviations from the nonp
turbed case so it is natural to expand Eq.~43! with respect to
r up to the second order near this point. We obtain that
~43! becomes the quadratic equation (11Q/2m2)r 222m(1
1Q/m2)r 1m25Q@ ln(m/h)23

2#, from which one concludes
that extremality is broken: the extreme horizon is shifted a
split into two ones, with the radii

r H65m1
Q

2m
6AQ ln~m/h!.

Here, the term proportional toQ shifts the horizon outward
or inward ~depending on the sign ofb1W/d1) whereas the
term proportional toAQ describes the split. It is curious tha
in the particular caseh5m the extremality is again restore
up toO@d1

22#. The corresponding Hawking temperatures a

TH65
AQ ln~m/h!

2pm2 S 17
2

m
AQ ln~m/h! D . ~45!
6-6
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Casem2,D. If Q50 then the solution describes the n
ked Reissner-Nordstro¨m singularity. There is a strong hop
that theQ-perturbation ‘‘dresses’’ the singularity, i.e., creat
a horizon around it. To prove it, one has to reveal the con
tions at which the parabola and logarithmic curve~43! have
the intersection point~s! even if the former does not cross a
x axis. The intuitive solution for this is to require the min
mum point of the parabola to be as close as possible to tx
axis, hence, to the logarithmic curve, because the latte
small. The distance from the minimum point of the parab
to thex axis equals toD2m2, soD must be equal tom2 plus
a small positive correction, say

D5m21uconstd1
21u. ~46!

Again, we expand Eq.~43! near the minimum point of pa
rabola and obtain the quadratic equation, (11Q/2m2)x2

22m(11Q/m2)x1D5Q@ ln(m/h)23
2#. If it has complex

roots then the singularity is naked otherwise it is hidd
under at least one horizon. One can check that this equa
in general case does not have real roots. However, if

D5m22
2Qm2 ln~m/h!

Q24m2
5m21

Q

2
ln~m/h!,

i.e., of the form~46!, providedb1d1
21W ln(m/h) is nonposi-

tive, then the imaginary part vanishes, so one does have
purely real double root. It means that we have found
example when a singularity is dressed by the single horiz
Its radius and Hawking temperature are

r H5m1
Q

2m
, TH5

Q ln~m/h!

4pm3
,

the latter being of orderO@d1
21#, rather thanO@d1

21/2# as in
previous case.

~b! Gravity coupled to neutral scalar field: J[0. We will
study the physical interpretation of the neutral case with n
fixed d1, i.e., ~b 1 i!. Actually, the latter is nothing but the
case~a 1 i! at Q5P50 but the asymptotic analysis of th
neutral solutions is slightly different. The reason is that
neutral solutions at largeud1u@max$1, ubu% converge to
Schwarzschild–de Sitter even faster, so that the first non
correction is of orderO@d1

22# instead of previousO@d1
21#.

Keeping in mind the redefinitions~38!, to this order the di-
laton potential becomes

L5L0S 12
b

d1
f D1

2kbd2

d1
e2d1f, ~47!

the metric is again of the form~40! but noweU1ÞeU2:

eU65k2

2mF16
b ln~r /h!

d1
2 G

r
1

L0r 2

6
6

b f 6 ln~r /h!

d1
2

,

~48!
08402
i-

is
a

n
on

he
n
n.

-

e

ro

where f 1[2k, f 2[L0r 2/3. The asymptotic form of this
metric at larger differs from de Sitter, however, this devia
tion is physically negligible due to infinitesimality ofd1

22, so
the initial ~exact! solution is still of physical interest. The
other neutral scalar field cases do not seem to have
physically interpretable asymptotics.

~c! Cosmological constant potential: L5L0. We will
study the electrical case, i.e., the model with Maxwe

dilaton couplingJ52Q2/Ĵ whereĴ is as in Eq.~28!. The
family of solutions is given by Eqs.~29!, ~30!, and ~15!.
Again, we are interested in analysis of the solutions at la
nonfixed values ofd1, i.e., whenud1u@max$1, ubu%. Switch-
ing to the infinite-observer frame of reference~40!, one can
deduce that the metric converge to Reissner-Nordstro¨m–
de Sitter so fast that the first nonzero correction is of or
O@d1

22# not O@d1
21#. To this order, the metric, field strengt

and Maxwell-dilaton coupling become, respectively,

eU65k2
2m

r
1

Q2

r 2
1

L0

6
r 21

2b f 6 ln~r /h!

d1
2

, ~49!

v852
Q

r 2 F12
b

d1
ln~r /h!G2

kb

d1
2Q

, ~50!

J5212
b

d1
f1

kb

d1
2d2Q2

ed1f, ~51!

where f 15k2m/r 1(L0/6)r 2, f 25m/r 2Q2/r 2, h is as
above. The new feature is that the electrostatic field stren
~50! gets the additional constant term that describes the
mological electrostatic background field. The magnitude
this field turns to be rather small,;d1

22, that makes it non-
observable on local scales. The direction of the field depe
on geometry viak. Thus, recalling remarks after Eq.~28!,
this brings some evidence that the theories with
Maxwell-dilaton coupling of kind ‘‘exponent1 something’’
@for instance, the low-energy string theory with the nonmi
mal coupling caused by threshold corrections that resem
Eq. ~51! @17## and with nonvanishing dilaton potential~for
instance, the certain supergravities and the low-energy st
theory with loop corrections! might generate the cosmolog
cal electrostatic field. Of course, this field is static only
static observer’s frame of reference.

IV. CONCLUSION

Let us summarize the goals achieved in the paper. F
we have proven the full separability of the static EMD gra
ity of general type for three basic geometries. In turn,
revealed the hidden sector structure of the theory. It appe
that the theory has infinite number of sectors, and solut
from one sector cannot be linked with that from another s
tor by means of perturbative series in parametric space.

Then we concentrated on the concrete class with simp
dilaton-graviton scale relationÃ;f ~15!, which has a num-
ber of remarkable features: it always has at least one phys
limit ~Reissner-Nordstro¨m–de Sitter!; in addition to the usual
6-7
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electric-magnetic duality it obeys a certain duality betwe
Maxwell-dilaton coupling and dilaton potential; it compris
numerous EMD models including string-inspired, Liouvill
trigonometric, polynomial, etc., and major of them rema
non-trivial even if both charges are zeros. We singled
some models inside this class and obtained the familie
exact dyonic solutions. Within certain range of values of
parameterd1 some of them can be interpreted as t
Reissner-Nordstro¨m–de Sitter~with ‘‘renormalized’’ dyonic
charge! plus small logarithmic corrections. The latter chan
the global structure of the nonperturbed solution by shift
and splitting of horizons, breaking down extremality, a
‘‘dressing’’ the naked singularity. Also, the model~c! with
cosmological constant and its solutions bring some evide
concerning the appearance of cosmological electrostatic
from the low-energy limit of string theory.

In addition, it is worthwhile to mention that the present
string-induced models and solutions~a! can be regarded a
some kind of the indirect counterexample to the conject
made by Garfinkle, Horowitz, and Strominger~GHS! @4# that
the Reissner-Nordstro¨m is not even an approximate solutio
of string theory. That conjecture was based on the mo
with the minimal coupling and vanishing dilaton potentia
However, the RN limit does appear if one considers cert
nontrivial dilaton potentials, similar to those above. The
fore, it seems that situations crucially depend on conc
forms of the coupling and potential. In fact, in low-ener
ro

cl.
u
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tly

be
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string theory~even without central charges! the loop correc-
tions do induce the nontrivial dilaton potential. In additio
one should not forget that the threshold corrections in lo
energy string theory affect a form of Maxwell-dilaton co
pling. In turn, the nonminimal terms in the coupling als
may drastically change properties of solutions, as can be s
from the case~c!. Unfortunately, the forms of both Maxwell
dilaton coupling and dilaton potential are not reliably know
at this time.

Of course, we have studied just a few models belong
to only one particular class. OtherJ or L that might appear
from a concrete problem can be paired up within this~or any
another! class in a similar manner. Despite this pairing
somewhere artificial procedure the generated exact solut
are better than numerical studies from scratch~especially if
one recalls the abovementioned existence of nonperturba
sectors!, besides exact solutions can verify or falsify qualit
tive approaches and results. If one wishes to go beyond
linear class then one should start with the general class e
tion ~13!.
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~1995!; H. Lü, C. N. Pope, E. Sezgin, and K. S. Stelle, Nu
Phys.B456, 669~1995!; K. S. Stelle, hep-th/9803116; B. Zho
and C. Zhu, Commun. Theor. Phys.32, 173 ~1999!.

@4# D. Garfinkle, G. T. Horowitz, and A. Strominger, Phys. Rev.
43, 3140~1991!. Their solutions were received independen
in Ref. @8#.

@5# E. Teo and K. G. Zloshchastiev~in preparation!.
@6# Once we explicitly knowJ(f), L(f), A(f), andf(r ), the

function U(r ) can be easily found from Eq.~6! when substi-
tuting them as functions of radius — then this equation
comes a first-order linear ODE with respect toeU and hence it
is always resolvable in quadratures.

@7# D. L. Wiltshire, Phys. Rev. D44, 1100~1991!; S. Mignemi and
D. L. Wiltshire, ibid. 46, 1475~1992!.

@8# G. W. Gibbons and K. Maeda, Nucl. Phys.B298, 741 ~1988!.
@9# P. Dobiasch and D. Maison, Gen. Relativ. Gravit.14, 231

~1982!; G. W. Gibbons, Nucl. Phys.B207, 337 ~1982!; B45,
3888~E! ~1992!; G. W. Gibbons and D. L. Wiltshire, Ann
Phys.~N.Y.! 167, 201 ~1986!; 176, 393~E! ~1987!.

@10# D. J. Gross and M. J. Perry, Nucl. Phys.B226, 29 ~1983!; N.
,

-

Marcus, Gen. Relativ. Gravit.22, 873 ~1990!; J. H. Horne and
G. T. Horowitz, Phys. Rev. D48, R5457~1993!; S. B. Gid-
dings, J. Polchinski, and A. Strominger,ibid. 48, 5784~1993!;
A. G. Agnese and M. La Camera,ibid. 49, 2126~1994!; K. A.
Bronnikov, Gravitation Cosmol.1, 67 ~1995!; S. Yazadjiev, Int.
J. Mod. Phys. D8, 635 ~1999!; T. Dereli and Y. N. Obukhov,
Phys. Rev. D61, 084015~2000!.

@11# K. C. Chan, J. H. Horne, and R. B. Mann, Nucl. Phys.B447,
441 ~1995!; R. Cai and Y. Zhang, Phys. Rev. D54, 4891
~1996!; R. Cai, J. Ji, and K. Soh,ibid. 57, 6547~1998!.

@12# S. J. Poletti and D. L. Wiltshire, Phys. Rev. D50, 7260~1994!;
S. J. Poletti, J. Twamley, and D. L. Wiltshire,ibid. 51, 5720
~1995!; Class. Quantum Grav.12, 1753 ~1995!; 12, 2355
~1995!; D. L. Wiltshire, J. Aust. Math. Soc. B, Appl. Math.41,
198 ~1999!.

@13# J. H. Horne and G. T. Horowitz, Nucl. Phys.B399, 169~1993!.
@14# R. Gregory and J. A. Harvey, Phys. Rev. D47, 2411~1993!.
@15# I. Z. Fisher, Zh. Eksp. Teor. Fiz.18, 636 ~1948!.
@16# A. I. Janis, E. T. Newman, and J. Winicour, Phys. Rev. Le

20, 878 ~1968!; O. Bergman and R. Leipnik, Phys. Rev.107,
1157 ~1957!; H. A. Buchdahl,ibid. 111, 1417~1959!.
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