
PHYSICAL REVIEW D, VOLUME 64, 084021
Gravitational self-force by mode sum regularization
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We propose a practical scheme for calculating the local gravitational self-force experienced by a test mass
particle moving in a black hole spacetime. The method—equally effective for either weak or strong field
orbits—employs themode-sum regularization schemepreviously developed for a scalar toy model. The start-
ing point for the calculation, in this approach, is the formal expression for the regularized self-force derived by
Mino et al. @Phys. Rev. D55, 3457~1997!# „and, independently, by Quinn and Wald@Phys. Rev. D56, 3381
~1997!#…, which involves a worldline integral over the tail part of the retarded Green’s function. This force is
decomposed into multipole~tensor harmonic! modes, whose sum is subjected to a carefully designed regular-
ization procedure. This procedure involves an analytical derivation of certain ‘‘regularization parameters’’ by
means of a local analysis of the Green’s function. This paper contains the following main parts:~1! The
introduction of the mode sum scheme as applied to the gravitational case.~2! Two simple cases studied: the test
case of a static particle in flat spacetime, and the case of a particle at a turning point of a radial geodesic in
Schwarzschild spacetime. In both cases we derive all necessary regularization parameters.~3! An analytical
foundation is set for applying the scheme in more general cases.~In this paper, the mode sum scheme is
formulated within the harmonic gauge. The implementation of the scheme in other gauges shall be discussed
in a separate, forthcoming paper.!
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I. INTRODUCTION

A pointlike object of massm ~hereafter a ‘‘particle’’! is
known to move along a geodesic of the background spa
time in the limit wherem→0. If the mass of the particle is
finite, the motion would no longer be geodesic: interaction
the particle with its own gravitational field will then give ris
to the exertion of a ‘‘self-force,’’ pushing the particle awa
from geodesic motion.~The nonconservative part of thi
force is customarily referred to as ‘‘radiation reaction.’’! The
problem of calculating the gravitational self-force is a lo
standing one. This problem is usually tackled in the cont
of perturbation theory, by treatingm as a small paramete
and looking for theO(m) correction to the geodesic equatio
of motion on a fixed background. The prototype problem
calculating the electromagnetic self-force on an accelera
~classical! electron in flat space—was considered by Dirac
his famous 1938 paper@1#. Already in this flat space problem
one encounters the fundamental issue ofregularization,
namely, how to correctly handle the divergence of the el
tromagnetic field~and self-force! at the particle’s location.
Dirac’s regularization yielded what is now referred to as
‘‘Abraham-Lorentz-Dirac’’~ALD ! force ~proportional to the
time derivative of the electron’s acceleration!. The interpre-
tation of the ALD equation of motion and its solutions h
been subject to much further study@2#. A formal framework
for a calculation of the electromagnetic self-force incurved
spacetime was first developed by DeWitt and Brehme
1960 @3#. Here, in addition to readdressing the question
regularization, one must also deal with thenonlocalnature of
the self-force effect: In curved spacetime, waves emitted
the particle at a given instant may backscatter off the spa
time curvature, and interact back with the particle later on
0556-2821/2001/64~8!/084021~16!/$20.00 64 0840
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motion. Consequently, the momentary self-force acting
the particle appears to depend on the particle’s entire
history.

The continuous effort for a theoretical characterization
gravitational wave forms from strongly gravitating astr
physical systems led, in recent years, to a rise of interes
the problem of calculating self-forces in curved spacetim
The most prominent consequence of this has been the
development of formal tools for calculating thegravitational
self-force ~see below!. Knowing the self-force is necessar
for describing the strong field orbital evolution in variou
astrophysical scenarios, in particular—the capture of a sm
compact object by a supermassive black hole@an event ex-
pected to serve as a main source of gravitational waves
the future space-based Laser Interferometer Space Ant
~LISA! @4##. In some occasions, the~time-averaged! orbital
evolution, and the consequent gravitational wave forms, m
be determined by calculating energy-momentum fluxes at
finity ~and through the event horizon! and using balance con
siderations@5#. This method can be applied successfully
models where the central massive object is spherically s
metric~e.g., a Schwarzschild black hole!, or even in the more
realistic case of a Kerr background—but then, only for eq
torial orbits. In more general cases~a nonequatorial orbit
around a Kerr black hole!, a full specification of the orbital
evolution requires knowledge of the temporal rate of chan
of the Carter ‘‘constant of motion,’’ which, to the best of ou
knowledge, cannot be achieved by standard balance con
erations. In addition, balance considerations involve aver
ing over orbital periods, and can only account for situatio
where the orbital evolution is adiabatic. This method is ina
equate in other, nonadiabatic scenarios, as the final plung
the particle into a black hole. In general, therefore, it see
©2001 The American Physical Society21-1
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LEOR BARACK PHYSICAL REVIEW D 64 084021
that one cannot avoid tackling the problem of calculating
local, momentary self-force.

In 1997, two groups—Mino, Sasaki, and Tanaka~MST!
@6# and Quinn and Wald~QW! @7#—have worked out~inde-
pendently! a formal framework for local gravitational self
force calculations in curved spacetime. Their combined w
presents three different derivations of the self-force,
yielding the same formal expression~though in a different
level of rigorousness!. In the first approach, MST@6# directly
generalized the above mentioned analysis of DeWitt
Brehme to the gravitational case: First the gravitational p
turbation induced by the mass particle was evaluated nea
worldline using Hadamard’s expansion of the retard
Green’s function@8#. Then the equation of motion was de
duced by imposing local energy-momentum conservation
a thin worldtube surrounding the particle’s worldline. Th
second approach, still by MST@6#, employed the technique
of matched asymptotic expansion, which is based on consid
ering two asymptotic zones outside the particle: an ‘‘int
nal’’ zone, where the geometry is taken to be that o
Schwarzschild black hole with a tidal perturbation associa
with the background curvature; and an ‘‘external’’ zon
where geometry is that of a perturbation on a fixed ba
ground. The equation of motion is then obtained by requir
a consistency of the metric in the matching region of the t
zones. The third approach for deriving the gravitational s
force was presented by QW@7#, and is based on what the
called the comparison axiom. According to this axiom, the
correct self-force can be deduced by appropriately com
ing the perturbation on the given curved spacetime with t
on flat spacetime. This procedure results in the elimination
the divergent piece of the force, and, presumably, in an
traction of its correct finite part.~QW also applied their ap
proach for calculating the electromagnetic@7# and scalar@9#
self-forces.!

As already mentioned, all three derivations of the gra
tational self-force yield the same result, which we no
briefly describe. In curved spacetime, the two-point retar
Green’s function associated with a certain wave equa
~i.e., the gravitational perturbation equation in a given gau!
is composed of two parts: an ‘‘instantaneous’’ part, whi
describes the propagation of influence along the light co
and the so-called ‘‘tail’’ part, describing the nonlocal effe
of waves propagatinginsidethe light cone. The gravitationa
self-force is derived from the gravitational perturbation p
duced by the particle, which, it turn, can be expressed a
worldline integral over the Green’s function. MST and Q
~MSTQW! found that the gravitational self-force~in
vacuum, and with no external forces! is due only to thetail
part of the Green’s function associated with the perturbat
equation in the harmonic gauge. That is, the ‘‘instantaneo
part of this Green’s function yields no contribution to th
self-force.@The formal expression for the gravitational se
force as derived by MSTQW is given in Eq.~4! below.#

Here we may point out two aspects in which the gravi
tional self-force differs from its electromagnetic~and scalar!
counterparts. First, the gravitational self-force contains
local term analogous to the electromagnetic~or scalar! ALD
force ~which is proportional to the time derivative of th
08402
e

k
ll

d
r-
he
d

n

-
a
d
,
-
g
o
f-

r-
t
f

x-

-

d
n

e;

-
a

n
’’

-

o

particle’s acceleration!, as there is no acceleration associat
with the purely gravitational field. A more fundamental di
ference concerns the very nature of the gravitational s
force as a gauge-dependent entity: When the metric is s
jected to a gauge transformation~i.e., an infinitesimal
coordinate transformation!, additional terms emerge in th
particle’s equation of motion, which correspond to a chan
in the effective self-force.~If fact, in the perturbative contex
the self-force is a ‘‘pure gauge’’ entity, in the sense that it c
be locally eliminated by a suitable choice of the gauge.! To
provide any meaningful gauge-invariant physical inform
tion, the self-force must therefore be supplemented by
metric perturbation to which it corresponds~which, of
course, contains all information about the gauge!. In this
regard, an essential point is that MSTQW’s prescription
formulated within the framework of the harmonic gauge.A
priori , it is only in this gauge—the harmonic gauge—that t
force is guaranteed to be well defined and finite. The anal
presented in the current paper remains within the framew
of the harmonic gauge~namely, we shall discuss the ‘‘har
monic gauge self-force’’!. A systematic study of how the
self-force behaves under a change of gauge shall be
sented in a forthcoming paper@10#.

The formal expression obtained by MST and QW for t
gravitational self-force was sometimes considered impra
cal for actual calculations, as it was unclear how one sho
evaluate the nonlocal tail term in general cases. Also, to
ply this expression, one encounters the problem of calcu
ing the metric perturbation~and Green’s function! in the har-
monic gauge, for which perturbation formalism has not be
fully developed as for other customarily used gauges~e.g.,
the Regge-Wheeler or radiative gauges!. The first actual cal-
culation of the gravitational self-force based entirely on t
prescription of MST and QW was recently presented
Pfenning and Poisson@11#, who considered the motion of
mass particle~as well as scalar and electrically charged p
ticles! moving in a weakly curved region of spacetime.
our present manuscript, the attempt is made to prese
practical method for direct implementation of the MST a
QW prescriptionin strong gravitational field.

It should be commented that other approaches to
gravitational self-force, not directly relying on the MST an
QW analyses, were also taken recently by a number of
thors. Lousto@12# proposed a scheme based on the ze
function regularization technique, to allow self-force calc
lation in strong field ~Lousto’s scheme is similar to th
method presented in this paper, in that both methods em
a multipole mode decomposition of the gravitational pert
bation!. Another method for extracting the finite part of th
self-force was proposed by Detweiler@14#. Most recently,
Nakano and Sasaki@13# carried out a weak-field calculatio
of the self-force in a Schwarzschild background by evalu
ing the tail part of a Green’s function. It was assumed, ho
ever, that the correct force could be derived from a Gree
function associated with a certain Klein-Gordon type wa
operator, instead of the harmonic gauge-related Gre
function as required in the MST and QW regularizati
schemes. It is unclear as of yet whether or not the ab
1-2
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GRAVITATIONAL SELF-FORCE BY MODE SUM . . . PHYSICAL REVIEW D64 084021
regularization schemes produce, in general, the results
would have been obtained by a strict application of MST a
QW regularizations.

As we already mentioned, the calculation scheme to
presented in this manuscript is based on MST and Q
formal expression for the gravitational self-force. It emplo
a technique—the mode-sum regularization scheme—
previously introduced@15,16# and tested@17–21# for the sca-
lar self-force. In general, the application of this scheme c
sists of two essentially independent parts: in the first p
one expands the perturbation field of the particle into mu
pole modes~tensor harmonic modes in the gravitational ca
for example!, and derives the ‘‘bare’’ self-forcel modes as-
sociated with thel modes of the metric perturbation. Th
l-mode perturbation is finite and continuous even at the p
ticle’s location, and the correspondingl-mode self-force
maintains a finite value as well~although it usually suffers a
discontinuity across the worldline!. However, the sum ove
the bare force’sl modes turn out to be divergent. In th
second part of the mode-sum scheme, certain regulariza
parameters are calculated analytically, by a local analysi
the Green’s function at largel and small spacetime separ
tions. These parameters are then used to regularize the d
gent sum over bare force’sl modes. This calculation schem
completely relies on MST and QW’s results, and contains
further assumptions as to the appropriate regularization~al-
though it does contain certain assumptions concerning
mathematical behavior of various quantities involved in
analysis!.

Previously, the above mode-sum scheme was fu
implemented in several test cases: A scalar charge
static outside a Schwarzschild black hole@17#; A scalar
charge in a circular orbit@18# or one in radial motion@16,19#
in Schwarzschild spacetime; and the motion of scalar or e
tric charges on the background of a massive shell@20#. Re-
cently, Burko and Liu first applied the mode-sum scheme
a static scalar charge in Kerr spacetime@21# ~however, an
analytical foundation for the scheme has not yet been es
lished in the Kerr case!. So far, the mode-sum regularizatio
scheme has not been applied for calculating the gravitatio
self-force.

The arrangement of this paper is as follows. We start
Sec. II, by summarizing and discussing MST and QW’s
sult for the regularized gravitational self-force, which is t
basis for our calculation scheme. Specializing to
Schwarzschild geometry, in Sec. III we expand the~har-
monic gauge! Green’s function in tensor harmonics, and o
tain a set of equations for its various multipole modes~i.e., a
set which does not couple differentl andm modes, although
it does couple different tensor harmonic components!. In
Sec. IV we then introduce our mode-sum scheme as app
to the gravitational self-force problem. To demonstrate
applicability of this scheme, in Sec. V we implement it
two simple cases by explicitly calculating all necessary re
larization parameters. Section VI contains a summary of
results and a discussion concerning the application of
scheme to other, more general cases.
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II. WORLDLINE INTEGRAL FORMULATION
OF THE GRAVITATIONAL SELF-FORCE

We consider a pointlike particle of massm moving in the
exterior of a black hole with massM@m.1 Let the metric
gmn describe the black hole background geometry, which
assume to be a solution of the vacuum Einstein equa
~later we specialize our discussion to the Schwarzsc
spacetimes!. Also letza(t) represent the particle’s trajectory
andua(t)[dza/dt stand for its 4-velocity. The particle pro
duces a small perturbationhab!gab to the background ge
ometry. The Einstein field equation for the metricgab
1hab , linearized inhab , takes the form

hh̄ab~x!22Rm
ab

nh̄mn~x!5216pmE
2`

`

~2g!21/2

3d4@x2z~t!#ua~t!ub~t!dt,

~1!

where we have introduced the ‘‘trace-reversed’’ metric p
turbation

h̄ab5hab2
1

2
gabh ~2!

~with h[gmnhmn!, and where we have set the harmon
gauge conditionh̄ ;n

mn 50. In the perturbation equation~1!,
h stands for the covariant D’Alembertian operator,Rabgd is
the Riemann tensor in the background geometry,2 g stands
for the determinant of the metricgab , and d is the Dirac
delta function. The particle does not move along a geode
of gab , as it interacts with its own fieldhab . Phrased dif-
ferently, to the perturbationhab there corresponds a sel
forceFa, in terms of which the particle’s equation of motio
is given by

maa~t!5Fa~t!, ~3!

where aa[u;b
a ub is the particle’s 4-acceleration, with

semicolon denoting covariant differentiation with respect
the backgroundmetric gab .

Obviously, the perturbationhab diverges on the worldline
itself, and the ‘‘bare’’ self-force associated with this pertu
bation ~as defined below! diverges as well. To obtain the
physical equation of motion, one must appropriately regu
ize the self-force. The analyses by MST and QW@6,7# pro-
vide a formal expression for the regularized self-force,
order O(m2), in terms of a worldline integral over deriva
tives of a retarded Green’s function. It is found that, in
vacuum background,Fa is solely due to the tail part of the
Green’s function:

1The extent to which the concept of a pointlike particle mak
sense in the context of the self-force problem is discussed in
@7#.

2Here we use the convention of Ref.@22# for the Riemann tensor
Note the different convention used by Minoet al. in Ref. @6#.
1-3
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LEOR BARACK PHYSICAL REVIEW D 64 084021
Fa~t!5m2kabgdE
2`

t2

Ḡbgb8g8;d@zm~t!;zm~t8!#

3ub8~t8!ug8~t8!dt8. ~4!

Here the ‘‘kinematic’’ tensorkabgd is given by

kabgd5
1

2
gadubug2gabugud2

1

2
uaubugud1

1

4
uagbgud

1
1

4
gadgbg ~5!

~understood to be evaluated at the particle’s location!, so
designed to assure that the self-force has no component
gent to the worldline~i.e., Faua50). This guarantees tha
the massm maintains a constant value along the worldlin
The quantityḠbgb8g8 is the two-point retarded Green’s func
tion associated with the wave operator given in the left-ha
side of Eq.~1!. It satisfies3

hḠaba8b8~x;x8!22Rm
ab

n~x!Ḡmna8b8~x;x8!

5216p~2g!21/2ḡa8(a~x,x8!ḡb)b8~x,x8!d4~x2x8!

[Zaba8b8 , ~6!

with the supplementary causality conditionḠmna8b8(x;x8)
50 wheneverx lies outside the future light cone ofx8. In
this equation, the D’Alembertian operator is taken with
spect tox, parenthesized indices indicate symmetrizati
and ḡaa8 is the bivector of geodesic parallel displaceme
defined in Ref.@3#. In what follows we shall need only th
value of this bi-vector in the ‘‘coincidence’’ limit:
limx→x8ḡaa85gaa8 . Note that the bitensorḠmna8b8(x;x8)
has, in general, 100 independent components~compared with
16 components in the electromagnetic case, and only on
the scalar case!. We also mention that the trace-reversed m
ric perturbation itself is constructed from the Green’s fun
tion according to

h̄ab~x!5mE
2`

`

Ḡaba8b8@xm;zm~t!#ua8~t!ub8~t!dt. ~7!

To avoid confusion, it is worth commenting here abo
the different notation previously used by different authors
writing Eq. ~4!: The trace-reversed Green’s function, deno

3Note that although the wave operator defining the Green’s fu

tion Ḡaba8b8 indeed originates from the perturbation equation in
harmonic gauge, the Green’s function itself doesnot satisfy the
harmonic gauge condition, as one can directly verify.~To see this,
note that the delta function source does not satisfy the conserv
law—a vanishing covariant divergence—as does the source fo
metric perturbation itself. Consequently, the harmonic gauge co
tion is not consistent with the Green’s function equation as it is w
the perturbation equation.! Note that Eq.~2.12! in Ref. @6# is there-
fore erroneous.
08402
n-

.

d

-
,
t

in
t-
-

t

d

here byḠaba8b8 , was denotedGmnab
ret by MST @6#, Gaba8b8

2

by QW @7,23#, andGaba8b8 by Pfenning and Poisson@11#.
Note that Pfenning and Poisson used a different normal
tion for the Green’s function~it contains an extra factor 4
with respect to either Refs.@6,7# and the normalization use
here!. Also, note that in Ref.@6# the self-force is expressed i
terms of only the tail part of the Green’s function, denot
therein byvaba8b8 , with no contribution from its instanta
neous part. This expression, however, is actually identica
the above Eq.~4!, as the worldline integral involved is cutof
at t2.

The Green’s functionḠmna8b8 plays a central role in our
analyses. It is important to notice that, based on MST a
QW analyses, Eq.~4! is guaranteed to yield the correc
‘‘physical’’ force, only when using the Green’s function de
fined through Eq.~6!. The expression given in Eq.~4! may
fail to represent the physical self-force, and may even yi
an indefinite result, if a different Green’s function is used

For future use, it is useful to write the Green’s functio
equation~6! in the ~noncovariant! form

hsḠaba8b81A ab
mnḠmna8b85Zaba8b8 . ~8!

Here hs stands for the D’Alambertian operator acting on
scalar function,

hs[]a]a2gabGab
l ]l ~9!

~whereGab
l are the connection coefficients!, and theA ab

mn ’s
are certain differential operators, of the first order at mo
which describe how the various components of the Gree
function couple to each other. In a given coordinate syst
we have

A ab
mnḠmn52gmn@22G (m(a

l Ḡlb),n)1~Rl
m(bn

2Gmn,(b
l 12G (b(m

r Gn)r
l !Ḡa)l1Gn(a

l Gb)m
r #

22Rm
ab

nḠmn , ~10!

where the source-point indicesa8b8 have been suppresse
for brevity. In the Appendix we give explicitly the operato
A ab

mn for the Schwarzschild background case~in Schwarzs-
child coordinates!.

III. TENSOR HARMONIC EXPANSION
AND REDUCED EQUATIONS

Accepting Eq.~4! as the basic expression for the gravit
tional self-force in curved spacetime, the main concern
mains how to implement this expression in actual calcu
tions. One may start by considering limiting cases, as
weak field or slow motion scenarios, in which Eq.~4! could
be applied in a direct manner. This, indeed, was done
cently by Pfenning and Poisson in Ref.@11#. However, in
considering realistic black hole spacetimes, one ultimat
wishes to apply Eq.~4! for strong field self-force calcula
tions. Here the introduction of a mode-sum scheme se
inevitable. A mode-sum decomposition approach is nec
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GRAVITATIONAL SELF-FORCE BY MODE SUM . . . PHYSICAL REVIEW D64 084021
sary for a dimensional reduction of the problem~in the usual
manner!, but it is especially beneficial in the context of th
self-force problem, because of the following reaso
Whereas the metric perturbation diverges on the worldli
its individual modes, as well as the corresponding forc
modes, maintain a finite value even at the location of
particle. Thus, in exploring the behavior of the individu
self-force modes, one avoids dealing with divergent qua
ties. Still, introducing a mode-sum scheme for calculat
the self-force is not a straightforward task: the self-for
modes each carries a mixed imprint of both the tail and
stantaneous parts of the worldline integral, which results
that the sum over modes usually turns out to diverge. A ca
fully designed scheme for regularization of the mode sum
thus necessary. The introduction of such a scheme is
main target of this paper.

We first consider the multipole-mode decomposing of
Green’s function. As in the rest of this paper, we focus on
spherically symmetric Schwarzschild black hole backgrou
with a line element given by

ds252 f ~r !dt21 f 21~r !dr21r 2~du21sin2udw2!,
~11!

where f (r )[122M /r and M is the black hole’s mass
Throughout this paper we use Schwarzschild coordina
t,r ,u, and w, relativistic units~with G5c51), and metric
signature2111.

Any ~sufficiently regular! symmetric covariant tensor o
rank two,Tab , can be expanded on a 2-sphere in the fo

Tab5(
l 50

`

(
m52 l

l

(
i 51

10

T( i ) lm~r ,t !Yab
( i ) lm , ~12!

whereT( i ) lm are scalar coefficients andYab
( i ) lm are the Regge-

Wheeler-Zerilli tensor harmonics@24–27#. In Schwarzschild
coordinatest,r ,u, andw, the set of tensor harmonicsYab

( i ) lm is
given by4

Yab
(1)lm5S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

D Ylm, ~13a!

Yab
(2)lm5 i /A2S 0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

D Ylm, ~13b!

4Here we adopt the orthogonal set introduced by Zerilli@26#,
though we use a different notation for the basis tensors: The s
bols Yab

(1)lm . . . Yab
(10)lm are used here instead of Zerilli’salm

(0) , alm
(1) ,

alm , blm
(0) , blm , glm , f lm , clm

(0) , clm , anddlm , respectively. Note the
sign error in Eq.~A2j! of Ref. @26#.
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Yab
(3)lm5S 0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

D Ylm, ~13c!

Yab
(4)lm5

ir

A2l ~ l 11! S 0 0 ]u ]w

0 0 0 0

]u 0 0 0

]w 0 0 0

D Ylm, ~13d!

Yab
(5)lm5

r

A2l ~ l 11! S 0 0 0 0

0 0 ]u ]w

0 ]u 0 0

0 ]w 0 0

D Ylm, ~13e!

Yab
(6)lm5r 2/A2S 0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 s2

D Ylm, ~13f!

Yab
(7)lm5

r 2

2Al l ~ l 11! S 0 0 0 0

0 0 0 0

0 0 D2 D1

0 0 D1 2s2D2

D Ylm,

~13g!

Yab
(8)lm5

r

A2l ~ l 11! S 0 0 s21]w 2s]u

0 0 0

s21]w 0 0 0

2s]u 0 0 0

D Ylm,

~14a!

Yab
(9)lm5

ir

A2l ~ l 11! S 0 0 0 0

0 0 s21]w 2s]u

0 s21]w 0 0

0 2s]u 0 0

D Ylm,

~14b!

Yab
(10)lm5

2 ir 2

2Al l ~ l 11! S 0 0 0 0

0 0 0 0

0 0 2s21D1 sD2

0 0 sD2 sD1

D Ylm,

~14c!

where Ylm(u,w) are the scalar spherical harmonics,s
[sinu andl[( l 21)(l 12)/2, and the operatorsD1 andD2
are given by

D1[2~]u2cotu!]w , D2[]uu2cotu ]u2s22]ww .
~15!

-
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The ten5 tensor harmonics of Eqs.~13! and~14! constitute an
orthogonal set

E dVhamhbn@Ymn
( i ) lm#* Yab

( j ) l 8m85k( i )d i j d l l 8dmm8

~ for i , j 51, . . . ,10!, ~16!

where ham[diag@21,1,r 22,(rs)22#, an asterisk denote
complex conjugation, and the integration is carried ove
2-sphere~no summation overi is implied on the right-hand
side!. The coefficientk( i ) takes the value21 for i 52, 4, and
8, and11 otherwise. The seven harmonicsYab

(1)lm . . . Yab
(7)lm

constitute a basis for all symmetric covariant tensors ofeven
parity, while the remaining three harmonic
Yab

(8)lm . . . Yab
(10)lm span allodd parity tensors. Recall that th

odd and even parity parts of a tensor~e.g., a metric pertur-
bation! are uncoupled, and can be treated separately@24#.
Using the orthogonality relation@Eq. ~16!#, one easily con-
structs the scalar coefficients of Eq.~12! through

T( i ) lm~r ,t !5k( i )E dVhamhbn@Ymn
( i ) lm#* Tab . ~17!

Now, the Green’s functionḠaba8b8(x,x8) is a bitensor. It
transforms like a tensor at the evaluation pointx ~when the
coordinate transformation is carried out holdingx8 fixed!,
and it also transforms as a tensor at the source poinx8
~when the transformation is performed with fixedx). Re-
garding the Green’s function, for a while, as a tensor at
evaluation pointx, we may expand it in tensor spherical ha
monics at that point, as in Eq.~12!. We write

Ḡaba8b8~x,x8!5~rr 8!21 (
l ,m,i

Ḡa8b8
( i ) lm

~r ,t;x8!Yab
( i ) lm

[(
l

Ḡaba8b8
l , ~18!

whereḠa8b8
( i ) lm are the multipole expansion coefficients~inde-

pendent ofu andw), the quantityḠaba8b8
l is the one result-

ing from formally summing overi and m, and the radial
factor (rr 8)21 is introduced for later convenience. We fu
ther need to expand the~bitensorial! source term of the
Green’s function equation~6! in tensor spherical harmonics
This expansion takes the form

Zaba8b85~rr 8!21 (
l ,m,i

Za8b8
( i ) lm

~r ,t;x8!Yab
( i ) lm , ~19!

5Note that forl 50 andl 51 there are actually fewer independe
tensor harmonics: There are only four independent harmonicsl
50 ~the harmonicsi 51,2,3, and 6), and eight independent ha
monics for each of the threel 51 modes~the harmonicsi 57 and
10 vanish identically atl 51 for any value of the azimuthal numbe
m).
08402
a

e

where, using Eq.~17! with Eq. ~6!, the coefficientsZa8b8
( i ) lm are

found to be given by

Za8b8
( i ) lm

5216pk( i )d~ t2t8!d~r 2r 8!

3gr8(a8~x8!gb8)s8~x8!hr8m8~x8!hs8n8~x8!

3@Ym8n8
( i ) lm

~V8!#* ~20!

~with V8 standing foru8,w8). Note here that the coefficient
Za8b8

( i ) lm depend on the evaluation pointx only through the
delta functions.6

Equation~8! is now separable into multipole modesl and
m by means of expansions~18! and ~19!: By substituting
these expansions in Eq.~8! one obtains a set of equation
which indeed couple between the ten functionsḠa8b8

( i 51 . . . 10)lm

~for given l ,m), but not between the different multipolesl
and m. To write the equations for the various multipo
modes of the Green’s function, it is convenient to introdu
the Eddington-Finkelstein null coordinates

v[t1r * , u[t2r * @where dr* /dr5 f 21~r !#,
~21!

and the time-radial operator

Ds
l[]uv1Vs

l ~r !, ~22!

where

Vs
l ~r !5

f

4 S f 8

r
1

l ~ l 11!

r 2 D , ~23!

with f [ f (r ) and f 8[d f(r )/dr. The operatorDs
l is the fa-

miliar wave operator associated with thel mode of a mass-
less scalar field in Schwarzschild spacetime„note the relation
r hs@f(r ,t)Ylm(V)/r #524 f 21(r )Ds

l f(r ,t)Ylm(V), where
f(r ,t) is any function…. The equations for the various mode
Ḡa8b8

( i ) lm then take the form

Ds
l Ḡa8b8

( i ) lm
1I ( j )

( i ) l Ḡa8b8
( j ) lm

5Sa8b8
( i ) lm

~sum over j !, ~24!

where the source term is given by

t

6In fact, the naive construction of the coefficientsZa8b8
( i ) lm yields an

expression involving the bi-vectorḡab @as in Eq.~6!#. Form ~20! is
then obtained by noticing that the coefficientsZa8b8

( i ) lm transform like
scalars at the evaluation pointx. This allows us to prime all tenso
rial indices of the various factors involved in Eq.~20! ~i.e., take
these factors to transform like tensors with respect to the so
point x8), without affecting the value ofZa8b8

( i ) lm . The presence of the
delta functions then further allows us to take all tensorial factors
Eq. ~20! to be functions of only the source point coordinatesx8.
1-6
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Sa8b8
( i ) lm

52@ f ~r !/4#Za8b8
( i ) lm

58k( i )pd~v2v8!d~u2u8!

3gr8(a8~x8!gb8)s8~x8!hr8m8~x8!hs8n8~x8!

3@Ym8n8
( i ) lm

~V8!#* , ~25!

and whereI ( j )
( i ) l are differential operators that couple betwe

different i values. These coupling terms read~suppressing the
indicesa8b8 and lm for brevity!

I ( j )
(1)Ḡ( j )5

1

2
f f 8Ḡ,r

(1)2
1

8
~ f 8214 f f 8/r !Ḡ(1)1

1

8
~ f 2f 82

22 f 3f 9!Ḡ(3)2
1

4
A2 f f 8~ iḠ ,t

(2)1r 21f Ḡ(6)!,

~26a!

I ( j )
(2)Ḡ( j )5

1

4
~ f 822 f f 912 f 2/r 2!Ḡ(2)1

1

4
A2 i f f 8~ f 22Ḡ,t

(1)

1Ḡ,t
(3)!2

1

2
Al ~ l 11! r 22f Ḡ(4), ~26b!

I ( j )
(3)Ḡ( j )52

1

2
f f 8Ḡ,r

(3)1
1

8
~8 f 2/r 22 f 8214 f f 8/r !Ḡ(3)

1
1

8
~ f 22f 8222 f 21f 9!Ḡ(1)2

1

4
A2 i f 21f 8Ḡ,t

(2)

2
1

2
A2 r 22fAl ~ l 11! Ḡ(5)

1
1

4
A2 ~ f 8/r 22 f /r 2!Ḡ(6), ~26c!

I ( j )
(4)Ḡ( j )5

1

4
f f 8~Ḡ,r

(4)22r 21Ḡ(4)1 iḠ ,t
(5)!

2
1

2
Al ~ l 11! ~ f 2/r 2!Ḡ(2), ~26d!

I ( j )
(5)Ḡ( j )52

1

4
f f 8Ḡ,r

(5)2
1

4
f ~ f 8/r 24 f /r 2!Ḡ(5)

2
1

2
~ f 2/r 2!A2l ~ l 11! Ḡ(3)2

1

4
f 21f 8iḠ ,t

(4)

1
1

2
~ f /r 2!@Al ~ l 11! Ḡ(6)2A2l Ḡ(7)#, ~26e!

I ( j )
(6)Ḡ( j )5

1

2
~ f /r 2!~122r f 8!Ḡ(6)2

A2

4
~ f 8/r !Ḡ(1)

2
A2

4
f 2~2 f /r 22 f 8/r !Ḡ(3)1

1

2
Al ~ l 11!

3~ f 2/r 2!Ḡ(5), ~26f!
08402
I ( j )
(7)Ḡ( j )52

1

2
~ f /r 2!Ḡ(7)2

1

2
~ f 2/r 2!A2l Ḡ(5),

~26g!

I ( j )
(8)Ḡ( j )5

1

4
f f 8~Ḡ,r

(8)22r 21Ḡ(8)2 iḠ ,t
(9)! ~26h!

I ( j )
(9)Ḡ( j )52

1

4
f f 8Ḡ,r

(9)2
1

4
f ~ f 8/r 24 f /r 2!Ḡ(9)

1
1

4
f 21f 8iḠ ,t

(8)2
1

2
~ f /r 2!A2l Ḡ(10), ~26i!

I ( j )
(10)Ḡ( j )52

1

2
~ f /r 2!Ḡ(10)2

1

2
~ f 2/r 2!A2l Ḡ(9). ~26j!

The separated equations~24! have the convenient propert
that no coupling between the various modes occur in
main parts of the equations~i.e., the parts containing secon
derivatives!. Coupling between differenti modes comes into
action only through theI ( j )

( i ) terms, which contain one or no
derivatives. Note that the even parity modes (i 51 . . . 7) do
not couple at all to the odd parity modes (i 58 . . . 10). The
two mode types form a disjoint set of equations, as o
would expect.

IV. MODE SUM REGULARIZATION

Without loss of generality, let us take the point along t
particle’s trajectory where we wish to calculate the self-for
to be att50. Based on Eq.~4!, we may express the self
force as

Fa5Fa
(bare)2Fa

(inst) , ~27!

where

Fa
(bare)5m2ka

bgdE
2`

01

Ḡbgb8g8;d@zm~t50!;zm~t8!#

3ub8~t8!ug8~t8!dt8

5mka
bgdh̄bg;d ~28!

is the ‘‘bare’’ force associated with the metric perturbati
h̄ab @the second equality here stems from Eq.~7!#, and

Fa
(inst)5 lim

e→01

dFa
(e)[ lim

e→01
Fm2ka

bgdE
2e

01

Ḡbgb8g8;d

3@zm~t50!;zm~t8!#ub8~t8!ug8~t8!dt8G ~29!

is the ‘‘instantaneous’’ part of the force. The quantitiesFa
(bare)

andFa
(inst)—both involving integration through the particle

location—are singular and so poorly defined as they sta
For definiteness, we may redefine the integrands appearin
Eqs.~28! and~29! as vector fields in the neighborhood of th
evaluation point, and later be interested in their behavior
1-7



’s
is

t u
s

th

s

th

n
io
-

d

e
h
in
e

er

l-

m

y
ied

-

f

m

he
m
es-

a

the
-
c-
d

e

s
-

ate

elf-
vi-
ion

x-

me

tion
e-
the

s a

tio

LEOR BARACK PHYSICAL REVIEW D 64 084021
the worldline. Note, however, that the differenceFa
(bare)

2Fa
(inst) does yield a definite finite value at the particle

location: According to the analyses by MST and QW, th
value represents the physical self-forceFa .

To introduce our mode-sum regularization scheme, le
denote byFa

l (bare) anddFa
(e) l , respectively, the contribution

to Fa
(bare) anddFa

(e) coming from thel mode of the Green’s
function @these two quantities are obtained by replacing
Green’s functionḠbgb8g8 in Eqs. ~28! and ~29! with its
l-modeḠbgb8g8

l defined in Eq.~18!#. We may then expres
the self-force as a sum overl modes, in the form7

Fa5 lim
e→01

(
l 50

`

~Fa
l (bare)2dFa

(e) l !. ~30!

An essential feature of our scheme arises from the fact
the l mode of the metric perturbationhab is everywhere fi-
nite and continuous; it remains finite and continuous eve
the location of the particle, where the overall perturbat
diverges. Consequently, thel modes of the bare and instan
taneous forcesFa

l (bare) anddFa
(e) l turn out to attain finite val-

ues. This behavior has been analyzed and demonstrate
the analogous scalar self-force problem@15,16#, and is
equally valid in the gravitational case as well~we demon-
strate this in Sec. V!. As in the scalar self-force model, th
two quantitiesFa

l (bare) and dFa
(e) l are discontinuous throug

the particle’s location@regarding the integrands appearing
Eqs.~28! and~29! as vector fields in the neighborhood of th
particle#. That is, each of these two quantities attains diff
ent ~finite! values if calculated by taking the limitr→(zr)1

or else the limitr→(zr)2. @Later we assign toFa
l (bare) and

dFa
(e) l the labels1 or 2 to indicate weather they were ca

culated from r→(zr)1 or rather from r→(zr)2, respec-
tively.# Note, however, that the differenceFa

l (bare)2dFa
(e) l @as

well as the sum over modes in Eq.~30!, producing the regu-
larized forceFa# does not depend on the direction fro
which the limit is taken.

Although each of the bare modesFa
l (bare) yields a finite

contribution to the self-force, the infinite sum overFa
l (bare)

diverges, in general. This is easily demonstrated alread
the simple case of a static mass in flat space, a case stud
Sec. V~also see Ref.@16# for a discussion of this point in the
analogous scalar case!. To carry out the regularization pro
cedure, one seeks an (e-independent! function Ha

l 6 , such
that the series( l(Fa

l (bare)62Ha
l 6) would converge. Once

such a function is found, Eq.~30! can be written as

Fa5(
l 50

`

~Fa
l (bare)62Ha

l 6!2Da
6 , ~31!

where

7It is assumed here that the differentiation and the integra

involved in constructingFa
(bare) anddFa

(e) out of Ḡbgb8g8 can both
be performed term by term with respect to the sum overl.
08402
s

e

at

at
n

in

-

in
in

Da
6[ lim

e→01
(
l 50

`

~dFa
(e) l 62Ha

l 6!. ~32!

The parameterDa
6 is well defined, since, by construction o

Ha
l 6 , the differencedFa

(e) l 62Ha
l 6 yields a convergent sum

over l @note that the two quantitiesFa
l (bare)6 anddFa

(e) l 6 must
bare the same singular behavior at largel, as their difference
yields a convergent sum overl—see Eq.~30!#. Also note
here that the limite→0 and the sum overl shouldnot be
interchanged; otherwise, the crucial contribution fro
dFa

(e) l 6 would be lost.
Equation ~31! constitutes the basic expression for t

gravitational self-force in the framework of the mode su
regularization approach. The implementation of this expr
sion for calculating the self-force at a certain point along
given trajectory involves two~essentially independent! parts:
In the first part, one should first calculate~numerically, in
general! the l modes of the bare metric perturbation~in the
harmonic gauge!, and then use these modes to construct
bare force modesFa

l (bare). In the second part of the calcula
tion procedure one should obtain the ‘‘regularization fun
tion’’ Ha

l . In principle, this function should be constructe
by exploring the asymptotic behavior of the bare modesFa

l

as l→`. It is more convenient, however, to read this largl
asymptotic behavior from the quantitydFa

(e) l , which is
strictly local ~recall thatFa

l (bare) and dFa
(e) l bare the same

singular behavior at largel ). To this end, one merely need
the asymptotic behavior ofdFa

(e) l in the immediate neighbor
hood of e50. This allows one to deriveHa

l ~and later also
Da) using local analytical methods, as we shall demonstr
in Sec. V.

In general, the~one-sided values of the! bare modes
Fa

l (bare) anddFa
(e) l are found to diverge at largel as} l . This

was demonstrated for various trajectories in the scalar s
force problem, and will be demonstrated below in the gra
tational case as well. To construct the regularization funct
Ha

l so as to regularize the mode sum in Eq.~31!, one should
therefore derive the three leading-order terms in the 1/l ex-
pansion ofdFa

(e) l . It appears more convenient to use an e
pansion in powers of the new variable

L[ l 11/2. ~33!

Denoting the coefficients of the leading-order terms byAa ,
Ba , andCa , we shall have, in general,

Ha
l 5AaL1Ba1Ca /L. ~34!

The implementation of the mode sum regularization sche
therefore amounts to~i! calculating the bare modesFa

l (bare)

~this is usually done numerically!; ~ii ! deriving the four
‘‘regularization parameters’’Aa , Ba , Ca , andDa ~by local
analytical methods!; and~iii ! summing overl using Eq.~31!
to obtain the regularized forceFa .

The scheme described here is based on the prescrip
~4!, which is formulated within the harmonic gauge. It ther
fore requires that the bare force modes be obtained from
metric perturbation in the harmonic gauge. This pose

n

1-8
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problem from a practical point of view, as a separable f
malism for the metric perturbation in the harmonic gauge
not been well developed as it has for other gauges@especially
the Regge-Wheeler~RW! gauge#.8 We shall deal with this
gauge problem in a forthcoming paper@10#, where an at-
tempt will be made to rephrase the scheme in terms of o
gauges, such as the RW gauge.

Before proceeding to discuss some simple application
the method proposed here, we should comment on a ce
technical subtlety which we avoided so far in our discussi
As we thoroughly discuss in Ref.@16# ~in the context of the
scalar self-force problem!, the Green’s function does not ad
mit a convergent multipole expansion, as a result of its be
singular along the light cone of the source point. As a c
sequence, the modesFa

l (bare) ~and dFa
(e) l) contain certain

terms which oscillate rapidly at largel, rendering the sums
over l in Eqs. ~30!, ~31!, and ~32! nonconvergent. In Ref
@16# we justified throwing away these divergent oscillato
terms. To formalize the omission of these terms, we the
introduced a new summation and limit operations~the ‘‘tilde
summation’’ and ‘‘tilde limit’’! which eliminate any oscilla-
tory divergent terms while preserving the monotonic beh
ior. The same problem—with the same solution—persists
our current gravitational case. However, to avoid complex
in our current presentation, we shall not attempt to indic
explicitly where a tilde operation is to be applied@as in to
above Eqs.~30!, ~31!, and~32!#. In the analysis to follow, a
tilde summation or a tilde limit will be implicitly used whe
appropriate.

V. SIMPLE APPLICATIONS

We now demonstrate the applicability of the above cal
lation scheme in two simple test cases. First we consider
trivial case of a static point mass in flat spacetime. T
would provide a simple test case~where the result is obvi-
ous: a vanishing self-force! against which we may check th
validity of our scheme. We then move on to the Schwar
child spacetime, and consider a freely falling particle on
radial geodesic. In both cases we construct all four neces
regularization parameters. For simplicity, when consider
the second case we shall focus on calculating the force
presumed turning point of the geodesic~i.e., wheredzr /dt
50), for which case the calculation becomes considera
more simple~see below!. We emphasize that our calculatio
and results apply equally well for either weak or stro
fields. The application of the scheme in more realistic ca
~ones of greater astrophysical relevance! will be presented
elsewhere@29#.

A. Static particle in flat space

We consider a static particle of massm in Minkowski
spacetime. The particle is located atr 5r 0, in a certain

8This problem becomes more acute when dealing with Kerr sp
time, for which a separation formalism for the metric perturbat
has been developed so far only in the radiation gauge@28#.
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spherical coordinate systemt,r ,u,w. ~Here we adopt spheri
cal coordinates in order to make the calculation more clos
related to the Schwarzschild case discussed below.! The
4-velocity of this static particle isua(t)5d t

a at all t, and

thus only the Green’s function componentsḠbgt8t8 take part
in constructing the force through Eq.~4!. Considering the
system of equations~8! for the ten functionsḠbgt8t8 , one
finds that the sourceZabt8t8 is nonvanishing only forab
5tt. @To see this note in Eq.~20! that for a8b85t8t8 the
only contribution comes ati 51. Then the only contribution
to Yab

(1)lm in Eq. ~19! is atab5tt.# Since all interaction terms

A ab
tt Ḡttt8t8 appearing in Eqs.~8! vanish in Minkowski space-

time @see Eqs.~A1!–~A10!, with f 850#, we find that only
the sourced componentGttt8t8 takes a nonzero value, whil
all other componentsḠbgt8t8 ~which satisfy homogeneou
equations! vanish. Thus, fora8b85t8t8, the system of equa
tions ~8! reduces to a single equation for the quant
Ḡttt8t8[Ḡ:

hsḠ5Zttt8t85216p~2g!21/2d4~x2x8!. ~35!

Note that in the simple case considered here—a static
ticle in flat spacetime—onlyone Green’s function compo-
nent out of 100 actually takes part in the computation of
self-force.

The self-force can now be constructed from Eq.~4! by

settingua5d t
a andua85d t8

a8 , and recalling that all compo
nentGbgt8t8 but Gttt8t8 vanish. We find~evaluating the force
at t50 without loss of generality!

Fa5
1

4
m2E

2`

02

Ḡ,a@zm~t50!;zm~t8!#dt8 for a5r ,u,w,

~36!

as well asFt50. @For a5t, the integrand in Eq.~4! in iden-
tically zero. This is a trivial result for a static particle, as t
force is known to satisfy the normalization conditionFaua

50.#
The Green’s function equation~35! is exactly the same a

the Green’s function equation for a scalar field@compare
with Eq. ~4! in Ref. @16##, apart from a relative numerica
factor of 4 on the right-hand side~the source in the gravita
tional case is greater by 4 than the source in the scalar ca!.
In addition, the construction of the self-force from th
Green’s function through Eq.~36! is exactly the same as th
construction of the tail part of the force in the scalar ca
@compare with Eqs.~12! and~13! of Ref. @16##, apart from a
relative factor of 1/4 on the right-hand side, which compe
sates for the extra factor of 4 in the Green’s function eq
tion. We may conclude, in particular, that the bare modes
the self-force acting on our static particle of massm are
equal to the bare modes of the scalar self-force acting o
static particle of scalar chargeq5m. It is then possible to
simply use the results already obtained in the scalar case
the regularization parameters we obtain~taking the
Minkowski limit of the results described in Refs.@15,16# and
replacingq→m)

e-
1-9
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Aa
657

m2

r 0
2

da
r , Ba52

m2

2r 0
2
da

r , Ca5Da50. ~37!

As the average of the two sided values ofAa vanishes, from
Eq. ~31! we finally obtain

Fa5(
l 50

`

~ F̄a
l (bare)2Ba!, ~38!

whereF̄ l (bare)[@Fl (bare)11Fl (bare)2#/2.
Now, in our current trivial case, the averaged bare-fo

modes appearing in Eq.~38! are easily calculated@16#: Solv-
ing first for the metric perturbation modes,9 one finds that all
components of the trace-reversed modesh̄ab

l vanish, except

h̄tt
l , which is given byh̄tt

l 5mr2 l 21r 0
l ~for r .r 0) and h̄tt

l

5mrlr 0
2 l 21 ~for r ,r 0). Then, using the second equality

Eq. ~28!, one obtains Fr
l 152( l 11)m2r 0

22 and Fr
l 2

5 lm2r 0
22 , yielding F̄r

l 52m2/(2r 0
2) ~with all other compo-

nents vanishing!. Thus the averaged bare modes of the fo
are found to bel independent, each identically equal to t
regularization parameterBa . Consequently, one finds tha
each of the terms in the sum overl in Eq. ~38! vanishes
independently, with an obvious~and expected! vanishing of
the overall self force.

B. Radial geodesic motion in Schwarzschild, at a turning point

Let us now consider a particle moving in a radial geode
in Schwarzschild spacetime. For this orbit we have, ide
cally, uu5uw50, and therefore only the Green’s functio
componentsḠabt8t8 , Ḡabt8r 85Ḡabr 8t8 , andḠabr 8r 8 would
take part in constructing the force through Eq.~4!. Now, for
any given combination ofa8b8, Eq. ~8! constitutes a set o
ten coupled equations for the ten independent quant
Ḡaba8b8 . Considering the three sets of equations~8! with
a8b85t8t8, t8r 8, andr 8r 8, we find that the sourceZaba8b8
is nonvanishing only forab5a8b8 ~e.g., in the set of equa
tions for Ḡabt8t8 , only the equation forḠttt8t8 is sourced!.
Similarly, Eq. ~24! forms, for any specific value ofa8b8, a
set of ten equations for the ten tensor-harmonic mo
Ḡa8b8

( i 51 . . . 10)lm . The sourceSa8b8
( i ) lm for these equations is non

vanishing only ati 51 for a8b85t8t8, at i 52 for a8b8
5t8r 8, r 8t8, or at i 53 for a8b85r 8r 8. Clearly, the three
odd-parity modesi 58, 9, and 10, which are not sourced a
also do not couple to any of the even parity modesi 51, 2,
and 3, would all vanish~this is expected, of course, by virtu
of our physical setup, which only includes an even-par
source!. However, the four even-parity modesi 54, 5, 6, and
7, although not sourced in Eqs.~24!, do couple to the mode
i 51, 2, and 3, and will therefore not vanish, in general.

9Interestingly, in our case—a static particle in flat spacetime—
metric perturbation in the harmonic gauge exactly coincides w
the one in the RW gauge.
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In conclusion of the above discussion, we find that in t
scenario considered here—a particle moving radially o
spherically symmetric background—one has to deal w
three sets of seven coupled equations for a total of 21 n
trivial independent componentsḠa8b8

( i ) lm : One of these sets
~corresponding toa8b85t8t8) contains a source term onl
at i 51; the other set~corresponding toa8b85t8r 8 or r 8t8)
is sourced only ati 52, and the third~for a8b85r 8r 8) only
at i 53. To write these three sets of equations in a sim
form, it is convenient to redefine our spherical coordina
system, such that the radial trajectory would be direc
along the polar axis. In this spherical system, the Gree
function ~now sourced only atu850) would contain only
axially symmetric,m50 modes. We then also introduce th
new variablesG̃a8b8

( i ) l , defined~for a8b85t8t8,t8r 8,r 8t8, or
r 8r 8) through

Ḡa8b8
( i ) l [8pgr8(a8~x8!gb8)s8~x8!hr8m8hs8n8a( i )Yl~u8!G̃m8n8

( i ) l

~no summation overi !, ~39!

where Yl(u)[Yl ,m50 and a( i )51 for all i, except a(2)

5 i /A2. Then each of the above three sets of equations~for
a8b85t8t8, t8r 8, or r 8r 8) takes the form

Ds
l G̃a8b8

( i ) l
1Ĩ( j )

( i ) l G̃a8b8
( j ) l

5qa8b8
( i ) d~u2u8!d~v2v8!, ~40!

where

qa8b8
( i )

55
da8

t8 db8
t8 , i 51

2d (a8
t8 db8)

r 8 , i 52

da8
r 8 db8

r 8 , i 53

0, i 54, . . . ,7,

~41!

and Ĩ( j )
( i ) l5I ( j )

( i ) l for all i , j , except Ĩ( j 52)
( iÞ2)l5a(2)I (2)

( i ) l and

Ĩ( j Þ2)
( i 52)l5I ( j )

(2)l /a(2). Finally, to express thel-mode Green’s

function Ḡaba8b8
l in terms of the new variablesG̃a8b8

( i ) l , we

substitute forḠa8b8
( i ) l in Eq. ~18!, and consider only Green’s

function components withab5tt,tr ,rr ~we shall need
only these three components in our followin
analysis!. Recalling Yl(u)5@(2l 11)/(4p)#1/2Pl(cosu)
5@L/(2p)#1/2Pl(cosu) ~wherePl is the Legendre polynomial!
and Pl(cosu8)51 for u850, for the three relevant compo
nents of thel-mode Green’s function, evaluated at the po
axis (u50), we then obtain

Ḡtta8b8
l

54~rr 8!21f 2~r 8!LG̃a8b8
(1)l ,

Ḡtra8b8
l

522~rr 8!21LG̃a8b8
(2)l ,

Ḡrr a8b8
l

54~rr 8!21f 22~r 8!LG̃a8b8
(3)l . ~42!

@At this stage we may already evaluate the Green’s func
at the polar axis~where the particle is located!, as the fol-
lowing construction of ther component of the force does no

e
h
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involve differentiation of the Green’s function with respect
eitheru or w—see Eq.~43! below.#

To implement our mode sum prescription, we would no
like to derive the regularization parametersAa , Ba , Ca ,
and Da . This task turns out to be considerably simp
~though not trivial! when the self-force is evaluated at a pr
sumed turning point of the radial geodesic. As a first no
trivial demonstration of applying our mode-sum regulariz
tion scheme, hereafter we focus on this special case. Tha
we assume that the geodesic particle is momentarily at
~i.e.,ur50! at r 5r 0, and calculate the local self-force at th
point. For simplicity, in our calculation we shall consid
only ther component of the force.10 Extension of this calcu-
lation to an arbitrary point of a radial geodesic is straightf
ward though rather laborious, and will be treated elsewh
@29#. On the technical side, the calculation of the regulari
tion parameters very much resembles the calculation in
scalar case, which we described in much detail in Ref.@16#.
For this reason, here we avoid many of the technicali
involved in deriving the parameters, and refer the reade
Ref. @16# for more details. In what follows we only give
very general description of how the analysis proceeds in
current gravitational case.

As explained in Sec. IV, the mode-sum scheme’s regu
ization parameters can be derived by exploring the beha
of the quantitydFa

(e) l @see Eq.~29!# at smalle, using a per-
turbation analysis of the Green’s functionl modes at large-l
and small spacetime deviations. In our current problem o
radially moving particle at a turning point, the radial comp
nent dFr

(e) l is constructed from the various components
the l-mode Green’s function by

dFr
(e) l5

1

4
m2f 21E

2e

01

@Ḡtta8b8,r
l

1 f 8 f 21Ḡtta8b8
l

24Ḡrta8b8,t
l

1 f 2Ḡrr a8b8,r
l

13 f f 8Ḡrr a8b8
l

#ua8~t8!ub8~t8!dt8

~43!

~with f and f 8[d f /dr understood to be evaluated atr 0),
which is obtained from Eq.~29! by settingur5uu5uw50
andut5 f 21/2.

To analyze the largel behavior of thel modesḠaba8b8
l

appearing in Eq.~43!, we first introduce the ‘‘neutralized’
spacetime deviation variables11

D r[ f 0L~r * 2r * 0!,

10The angular componentsFu andFw are expected to vanish du
to the symmetry of our physical setup, although here we shall
attempt to verify that our scheme indeed leads to this obvious re
At a turning point we also haveFt50, stemming, in a trivial man-
ner, from the orthogonality relationFaua50.

11The variablesD r , D r 8 , D t , andz are ‘‘neutral’’ in the sense tha
they each consist of a small,O(e) spacetime deviation, multiplied
by the large quantityL. The motivation for introducing this kind o
variables stems from the detailed discussion in Ref.@16#.
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D r 8[ f 0L~r
*
8 2r * 0!,

D t[ f 0L~ t2t0!,

D t8[ f 0L~ t02t8!,

z[ f 0L@~u2u8!~v2v8!#1/2,
~44!

where (r ,t) is an off-worldline point in the neighborhood o
r 0 , (r 8,t8) is a worldline point in the past neighborhood
r 0, andf 0[ f 1/2(r 0)/r 0. We then consider thel-mode Green’s
function as being dependent only onL and the above ‘‘neu-
tral’’ variables, and formally expand the quantitiesG̃a8b8

( i ) l in
powers of 1/L, while holding the ‘‘neutral’’ variables fixed:

G̃a8b8
( i ) l

5 (
k50

`

L2kG̃a8b8[k]
( i )

~D r ,D r 8 ,D t ,z!. ~45!

To derive all necessary regularization parameters~including
Da), it is sufficient to obtain an expression for the thr
leading-order terms in the 1/L expansion of the integrand in
Eq. ~43!. Higher order terms in this expansion do not affe
the values of the regularization parameters@16#. By analyz-
ing the Green’s function equations~40!, we now show that
the contribution todFr

(e) l comes at relevant order only from

the three componentsḠttt8t8
l , Ḡtrt 8t8

l , andḠtrt 8r 8
l . In particu-

lar, it is shown that the terms of Eq.~43! involving Ḡrr a8b8
l

contribute~for any a8b8) only at irrelevant high order.
We start by substituting expansion~45! into the set of

Green’s function equations~40!, and pointing out a few use
ful ‘‘rules of thumb:’’12 ~i! When the operatorDs

l acts on a

mode G̃a8b8
( i ) l it ‘‘lowers’’ its order by 2; namely, if G̃a8b8

( i ) l

}O(Ln) ~for somen), thenDs
l G̃a8b8

( i ) l }O(Ln12). ~ii ! A t de-

rivative always acts to lower the order ofG̃a8b8
( i ) l by one: if

G̃a8b8
( i ) l }O(Ln), thenG̃a8b8,t

( i ) l }O(Ln11). ~iii ! An r derivative
may lower the order by one at most when acting on a fu
tion of both z and D r , but does not affect the order whe
acting on a function ofz alone.13 ~iv! The source terms
}d(u2u8)d(v2v8) appearing in Eqs.~40! are of orderL2.
~v! An immediate consequence of all above rules is n

ot
lt.

12In the following discussion we use a terminology according

which the ‘‘order’’ of a modeG̃a8b8
( i ) l is determined by its expansio

through Eq.~45!, where the ‘‘neutral’’ variables are held fixed. Tha

is, the ‘‘order’’ of G̃a8b8
( i ) l is L2k0, wherek0 is the smallest indexk

for which G̃a8b8[k]
( i ) is nonvanishing.

13This behavior~iii ! is special to a turning point. To see this no
that atr 5r 0 we havedz/dr5( f 0 / f )LD r 8 /z. ExpandingD r 8 andz
in powers oft aboutt(r 0)50 and defining the ‘‘neutral’’ proper

time t̄ as in Eq.~50! below, we find, atṙ 50, D r 8>
1
2 f 0

21r̈ t̄2/L and

z> t̄ ~to leading order in 1/L). Consequently, iff̂ (z) is some func-

tion of a certain order in 1/L, then the r derivative d f̂(z)/dr

5@d f̂(z)/dz#(dz/dr)5
1
2 f 21@d f̂(z)/dz# r̈ t̄ remains of the same or

der.
1-11
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apparent from examining Eqs.~40!: For any giveni, a k

50 contribution to a modeG̃a8b8
( i ) l can only come from the

source term~when nonvanishing!, whereas the coupling
termsĨ( j )

( i ) l G̃a8b8
( j ) l contribute only at higher (k.0) order.

First consider Eqs.~40! for a8b85t8t8. In this case, the
only sourced equation is the one forG̃t8t8

(1)l . After substituting
expansion~45!, we find by the above rule~v! that at thek

50 order this equation takes the simple formDs
l G̃t8t8[0]

(1)l

5d(u2u8)d(v2v8), with no contribution from the cou-
pling termsI ( j )

(1)l G̃t8t8
( j ) l at this order. The solution to this equa

tion is of order L0 @see Eq. ~49a! below#; thus G̃t8t8
(1)l

}O(L0). Now, the modeG̃t8t8
(2)l is coupled toG̃t8t8

(1)l through

the Ḡ,t
(1) term in Eq.~26b!. By the above rules~i! and~ii ! we

thus findG̃t8t8
(2)l}O(L21). On the other hand, the modeG̃t8t8

(3)l

is excited only atk52, through coupling withG̃t8t8
(1)l and

G̃t8t8,t
(2)l —see Eq. ~26c!. We find further that G̃t8t8

(4,5)l

}O(L23), G̃t8t8
(6)l}O(L22), and G̃t8t8

(7)l}O(L24). It can be
easily checked now that, up toO(L22), the first two equa-
tions of the set of equations~24!—the ones withi 51 and
2—form a closed set of equations, with coupling to oth
modes affecting only at higher orders:

DsG̃t8t8
(1)l

1 1
2 f f 8G̃t8t8,r

(1)l
2 1

8 ~ f 8214 f f 8/r !G̃t8t8
(1)l

1 1
4 f f 8G̃t8t8,t

(2)l

5d~v2v8!d~u2u8!,

DsG̃t8t8
(2)l

1 1
2 f 21f 8G̃t8t8,t

(1)l
50. ~46!

Using Eq.~42! we may now evaluate the order ofl modes
Ḡabt8t8

l , and proceed to evaluate the order of the five in
grand terms involved in constructingdFr

(e) l through Eq.~43!.

Using rules~ii ! and ~iii ! and recallingut8}O(L0), we find
that the first integrand term in Eq.~43! is of orderL2, the
second and third terms are of orderL1, and the last two terms
~the ones involvingḠrrt 8t8

l ) are only of orderL21. Since
only integrand terms up toO(L0) are necessary for calcula
ing the regularization parameters, we conclude that the c
ponentḠrrt 8t8

l would be of no relevance for this calculatio
Up to the necessary order, the set of Green’s function eq
tions ~40! therefore reduces, in the casea8b85t8t8, to a
closed-form set forG̃t8t8

(1)l andG̃t8t8
(2)l , given by Eq.~46!.

Next consider the set of equations~40! for a8b85t8r 8.
Here only the i 52 component is sourced, and we fin
G̃t8r 8

(2)l }O(L0). The modesi 51 and 3 are sourced byG̃t8r 8,t
(2)l ,

leading to G̃t8r 8
(1,3)l}O(L21). One similarly finds that the

modei 54 is of orderL21, the modei 55 is of orderL22,
and the modesi 56 and 7 are only of orderL23. Again, we
use Eq.~42! to evaluate the order of each of the five int
grand terms appearing in Eq.~43!, this time for a8b8

5t8r 8. We now recall, however, thatur 8 vanishes atr 0, and
is therefore of orderur 8} r̈ /L. It is then easily shown that th
only relevant integrand term isḠtrr 8t8,t

l ut8ur 8}O(L1), while
each of the four other terms contribute to the integral in E
08402
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~43! only at orderL22, which is irrelevant for calculating the
regularization parameters. Moreover, one finds that at

relevant order, the modeG̃t8r 8
(2)l satisfies a single closed-form

equation

DsG̃t8r 8
(2)l

5d~v2v8!d~u2u8!. ~47!

~This equation happens to coincide with the scalar Gree
function equation.!

Finally, let us consider Eqs.~40! for a8b85r 8r 8. The

only sourced mode is nowG̃r 8r 8
(3)l , which is therefore of order

L0. However, recalling that at a turning point we ha

(ur 8)2}O(L22), we find that the contribution from this
mode to the integral in Eq.~43! is only at orderL22, and that

the contribution fromG̃r 8r 8
(1)l andG̃r 8r 8

(2)l is at still higher order.
Therefore, no relevant contributions todFr

(e) l arise for
a8b85r 8r 8.

In conclusion, when restricting our analysis to the case
a turning point, the problem of calculating the self-force v
our mode-sum scheme simplifies considerably: Instead of
three sets of seven equations each for the 21 compon
required for an arbitrary point of a radial geodesic, one n
has to deal with only the three equations~46! and ~47! ~of
which two are coupled and one is closed! for the three com-

ponentsG̃t8t8
(1)l , G̃t8t8

(2)l , andG̃t8r 8
(2)l .

Equations~46! and ~47! are solvable in a perturbativ
manner, using the technique described in detail in Sec. V
Ref. @16#. To apply this technique, one first writes

G̃a8b8
( i ) l

5Ĝa8b8
( i ) l Q~u2u8!Q~v2v8! ~ i 51,2,3!, ~48!

whereQ is the standard step function, acting to confine t
support of the Green’s function to within the future lig
cone of the source pointx8. Substituting this expression int
Eqs. ~46! and ~47!, one then finds that the new quantitie

Ĝa8b8
( i ) l ~treated as functions ofv,u with a fixed source point

v8,u8) must satisfy the homogeneous part of these equat
anywhere atv.v8 andu.u8. One also finds that the valu

of Ĝa8b8
( i ) l along the null raysv5v8 and u5u8 is uniquely

determined from Eqs.~46! and~47!. @Obtaining these ‘‘initial

values’’ for the quantitiesĜa8b8
( i ) l involves the solution of a se

of ordinary differential equations alongv5v8 and u5u8
@29#. In the scalar case, the Green’s function was found
this way, to admit a constant value~of unity! along these
initial rays @16#. In the gravitational case, the ‘‘initial data
are a bit more complicated, and will be given elsewhe
@29#.# Thus, in effect, the above procedure converts the or
nal set of Green’s function equations into a characteri
initial-data problem for the quantitiesĜa8b8

( i ) l , with a unique
solution. This unique solution reads, to the relevant orde
1-12
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Ĝt8t8
(1)l

5J0~z!1@ f 2~D r2D r 8!J0~z!2 f 1~D r

1D r 8!zJ1~z!#L211$@~D r2D r 8!@~ f 2
21 f 4!D r

1 f 4D r 8#1 f 2
2D t

2/4#J0~z!1@ f 1
2~D r1D r 8!

2

2 f 3#z2J2~z!/21 f 1
2z3J3~z!/61@2 f 1f 2~D r

22D r 8
2

!

2 f 3~D r 8
2

1D rD r 81D r 8
2

!1 f 5#zJ1~z!%L221O~L23!,

~49a!

Ĝt8t8
(2)l

52 f 21f 2~D t1D t8!J0~z!L211@ f 6zJ1~z!

1 f 7J0~z!#D r 8D tL
221O~L23!, ~49b!

Ĝt8r 8
(2)l

5J0~z!2 f 1zJ1~z!~D r1D r 8!L
211O~L22!, ~49c!

where Jn(z) are the Bessel functions of the first kind,
order n, and the f n’s are radial factors given byf 1
5 1

4 f 21/2(r f 822 f ), f 25r f 8 f 21/2, f 35r 2@ f 21( f 8)21 f 9#/12
1( f 2r f 8)/2, f 45r 2f 9/2, f 55 f 41 f 2

2/21r f 8/211/8, f 6

5 f 21f 2(2 f 1/22 f 2)/8, and f 75r 2@ f 21f 922 f 22( f 8)2#/4 ~all
evaluated atr 5r 0).

The analysis now proceeds as follows:~i! We substitute
solutions ~49! in Eq. ~42! to obtain the relevantl modes
Gaba8b8

l , and then substitute thesel modes into Eq.~43!. ~ii !
To be able to carry out the integration in Eq.~43!, we next
expand allx8-dependent quantities now appearing in the
tegrand in powers oft about the evaluation pointt(r 0)50.
~This procedure is described in detail, as applied to
analogous scalar case, in Sec. VI of Ref.@16#.! ~iii ! We in-
troduce the ‘‘neutral’’ proper time variable14

t̄52~L/r 0!t, ~50!

and write the integrand as an expansion in powers of 1L,
with t̄ held fixed.

Following these manipulations, Eq.~43! takes the form

dFr
(e) l 65m2E

0

Le/r 0
@LHr

(0)6~ t̄ !1Hr
(1)~ t̄ !1Hr

(2)~ t̄ !/L

1O~L22!#dt̄, ~51!

whereHr
( i ) are certain functions of onlyt̄ andr 0 ~but do not

depend onl otherwise!. These functions all have the form o
a sum over a few terms}t̄kJn( t̄), wherek,nPN @see, in the
analogous scalar case, Eqs.~88!–~93! of Ref. @16##. The
function Hr

(0) has two different values, denoted in Eq.~51!
by Hr

(0)1 and Hr
(0)2 , according to whether the derivative

involved in constructingHr
(0) are taken fromr→r 0

1 or r
→r 0

2 , respectively. This kind of discontinuity, which show
up only at the leading order in the 1/L expansion, results

14Note the different notation used in Ref.@16#, where the ‘‘neu-

tral’’ proper time variablet̄ has been denoted byl.
08402
-

e

from differentiating theQ(u2u8)Q(v2v8) factor appear-
ing in Eq. ~48!: the contribution coming from the light con
@through thed(u2u8) or d(v2v8) factors# depends, in its
overall sign, upon the direction through which this derivati
is taken. This effect is further discussed and illustrated
Sec. IV C of Ref.@16# ~see especially Fig. 1 therein!.

In terms of the functionsHr
( i ) , the regularization param

eters are constructed by@16#

Ar
65m2E

0

`

Hr
(0)6~ t̄ !dt̄, Br5m2E

0

`

Hr
(1)~ t̄ !dt̄,

Cr5m2E
0

`

Hr
(2)~ t̄ !dt̄ ~52!

and

Dr52m2 lim
e→0

(
l 50

` E
Le/r 0

`

@LHr
(0)61Hr

(1)1Hr
(2)/L#dt̄.

~53!

@Both functionsHr
(0)1 andHr

(0)2 can be shown@16# to yield
the same contribution to the integral in Eq.~53!, which is
why no6 sign has been assigned to the parameterDr .# The
evaluation of the integrals overt̄ @and of the sum overl in
Eq. ~53!# is done in a manner completely analogous to
scalar case, as described in Sec. VII of Ref.@16#. Here we
merely give the results of this calculation: The paramet
Ar

6 , Br , Cr , andDr are found in our case—a mass partic
at a turning point of a radial geodesic—to be given by

Ar
657

m2

r 0
2 S 12

2M

r 0
D 21/2

, Br52
m2

2r 0
2

, Cr5Dr50.

~54!

We comment that the vanishing of the parameterCr is nec-
essary to assure consistency of our entire scheme: otherw
the parameterDr would have been indefinite~this point is
explained in Sec. VII D of Ref.@16#!.15

The values derived here for the regularization parame
find support from a recent numerical analysis carried out
Lousto @12#, who numerically calculated the bare modes
the force,Fa

l (bare), for a radially moving particle in Schwarzs
child spacetime~as part of the implementation of a differen
regularization scheme!, and found that these modes inde
show a large-l behavior of the form indicated in Eq.~34!
above. Furthermore, the analytical expressions derived
for the coefficientsAr

6 , Br , and Cr show a perfect agree
ment with the numerically derived coefficients@29#. In addi-
tion, our result of a vanishing parameterDa confirms, in the
cases studied here, Lousto’s result based on his prop
zeta-function regularization.~Although Lousto’s numerical

15Interestingly, the parameter values@Eq. ~54!# coincide with the
values obtained for thescalar self-force acting on a particle o
scalar chargeq5m, at a turning point of a radial geodesic i
Schwarzschild spacetime—see Ref.@16#.
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calculations were carried out in a different gauge—in the R
gauge rather than in the harmonic gauge—this should
alter the values of the regularization parameters, as we
plain in Ref.@10#.! Finally, we mention that the expression
derived here forAr

6 and Br also agree with the analyti
values obtained recently using a different formalism,
which the self-force was derived from the so-called Moncr
wave formc @29#.16

In conclusion of this section, we have found that ther
component of the regularized self-force at a turning point
a radial geodesic in Schwarzschild spacetime is given
above Eq.~38!, where the parameterBr is given in Eq.~54!,
and whereF̄r

l (bare) are the~sided average! l modes of the bare
force. These bare modes are derived@through the second
equality of Eq.~28!# from the metric perturbationin the har-
monic gauge. For practical use, it would be desirable to e
press our result in a more useful gauge~e.g., in the RW
gauge!. This shall be done in a forthcoming paper@10#, as
part of a more general discussion of the gauge issue in
context of the gravitational self-force problem.

VI. SUMMARY AND DISCUSSION

In this paper we have generalized the scheme of mo
sum regularization, previously applied only in the sca
case, to the problem of calculating the gravitational se
force on a mass particle. The proposed scheme offers a p
tical way for implementing the formal prescription deve
oped by MST and QW, even in strong-field calculations.

Within the mode-sum scheme, the basic formula for c
structing the ~harmonic-gauge related! gravitational self-
force is given by

Fa
H5(

l 50

`

~@Fa
l (bare)#H2AaL2Ba2Ca /L !2Da , ~55!

whereL[ l 11/2 and the labelH indicates a quantity assoc
ated with the metric perturbation in the harmonic gauge.
apply this formula in actual calculations~i.e., for a certain
orbit on a specific background!, one needs to be provide
with ~i! the bare force modes@Fa

l (bare)#H and~ii ! the values of
the four regularization parametersAa , Ba , Ca , andDa . To
obtain the bare modes@Fa

l (bare)#H, one first calculates the
multipole modes of the metric perturbation in the harmo
gauge, and then uses the relation

@Fa
l (bare)#H5mka

bgd@ h̄bg
l # ;d

H , ~56!

wherekabgd is the tensor given in Eq.~5!, and@ h̄bg
l #H is the

l mode of the trace-reversed metric perturbation~in the har-
monic gauge!. Whereas this part of the analysis—the deriv

16So far, agreement has been achieved for both one-sided v
of Ar andBr , as well as for theaveragevalue ofCr . Currently, we
obtain, using Moncrief’s formalism, that although the averagedCr

vanishes~as in our present analysis!, the one-sided values ofCr fail
to vanish. It is most likely that this preliminary result is erroneo
This point awaits further examination.
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tion of the bare modes—typically involves a numeric
analysis, the derivation of the regularization parameters m
be carried out analytically, by means of local analysis of
Green’s function. This kind of local analysis was describ
and demonstrated in Sec. V, where we constructed all ne
sary regularization parameters for two simple cases.

The first case examined in Sec. V was the trivial test c
of a static particle in flat spacetime. Here the mode-s
scheme easily reproduced the obvious result of a vanish
self-force. We then calculated the regularization parame
for the case of a mass particle at a turning point of a rad
geodesic in Schwarzschild spacetime. The values of th
parameters were given in Eq.~54!. These values find suppor
from a recent numerical analysis by Lousto@12,29#.

Our calculation scheme—like the formal prescription
MST and QW on which it relies—is formulated within th
harmonic gauge. In an accompanying paper@10# we explore
the gauge dependence of the gravitational self-force, and
formulate our scheme in terms of other gauges—ones m
commonly adopted in perturbation analysis~such as the RW
gauge!. We then conclude that an expression of the form
Eq. ~55! is applicable for calculating the self-force in an
specific gaugeG ~as long as the the self-force attains a de
nite finite value in that gauge!, by just replacing the har-
monic gauge modes@Fa

l (bare)#H on the right-hand side of Eq
~55! with the G gauge modes@Fa

l (bare)#G—the ones derived
from the G gauge metric perturbation using Eq.~56!, with
H→G. The analysis of Ref.@10# further tells us that the
regularization parameters in Eqs.~55! should not carry any
gauge label: these parameters are ‘‘gauge invariant,’’ in
sense that they are always to be derived from the Gre
function associated with the harmonic-gauge wave oper
@the one defined through Eq.~6!#, irrespective of the gauge in
which the bare modes are calculated. In particular, we fi
that the values specified in Eq.~54! are valid under any
gauge.

Further applications of the proposed calculation scheme

The analysis of Sec. III provides formal tools for calc
lating the gravitational self-force in any orbit on a Schwarz
child background. For any such orbit, the regularization
rameters may be derived by local analysis of the Gree
function modes, based on the separated system of equa
~24! @supplemented by Eqs.~26!#—as demonstrated in Sec
V. It should be noted, however, that in more general ca
than the simple ones considered here, the derivation of
regularization parameters shall require much more techn
effort: Here we only had to deal with one equation for o
Green’s function component~in the case of a static particl
in flat spacetime!, or with three coupled equations for thre
components~in the case of a particle at a turning point of
radial geodesic!. We shall have to face three sets of
coupled equations each for a total of 21 components alre
for an arbitrary point of a radial geodesic. In general cas
one would have to deal with up to 58 equations~seven sets
of seven coupled equations each for even perturba
modes, and three sets of three equations each for odd pe
bation modes!.
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To fully implement the regularization scheme and der
the self-force, one also needs to calculate the bare mode
the force. This was already done by Lousto@12#, using Mon-
crief’s formalism @30#, for radial geodesic motion in
Schwarzschild spacetime. In his analysis, Lousto num
cally calculated the~one-sided averaged! values ofAa , Ba ,
andCa , and presumed a null value forDa based on a pro-
posed zeta-function regularization scheme. To provide a
theoretical basis for Lousto’s results in the radial motion c
~and verify its consistency with MSTQW regularization! we
intend to calculate analytically, using our mode-sum sche
all four parametersAa , Ba , Ca , and Da for an arbitrary
point of a radial geodesic@29#. Then, the next natural ste
would be to consider more general, nonradial orbits. T
would require a considerable amount of both analytical w
~deriving the regularization parameters! and numerical work
~calculating the bare modes of the force by solving the m
ric perturbation equations!.

We finally comment on the applicability of our mode-su
regularization scheme to orbits in Kerr spacetime. Althou
the theoretical basis for applying our scheme for nonsph
cally symmetric backgrounds has not been developed
~even in the scalar case!, we believe that a properly genera
ized version of this scheme could, eventually, cope with
Kerr case as well. Such a generalization could still be ba
on MST and QW’s formal prescription@see Eq.~4!#, which
applies for any vacuum spacetime. The main obstacle in
designing our scheme for the Kerr case would be, of cou
the nonseparability of the metric perturbation and Gree
function into multipole modes in the time domain~such a
separation has been a necessary step when executing
scheme in spherically symmetric cases!. This difficulty
would make both the analytical and numerical parts of
mode-sum scheme more challenging: The bare modes o
force would usually have to be calculated in the frequen
domain~using the Teukolsky-Chrzanowski formalism@28#!,
and then appropriately summed over Fourier frequencies
to the analytical part of the scheme, it seems to us that, w
the use of an appropriate local perturbation analysis, eno
information for constructing the regularization paramet
could be extracted from the time-domain Green’s funct
equations, even without fully separating these equations
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APPENDIX: COUPLING OF GREEN’S FUNCTION’S
COMPONENTS „SCHWARZSCHILD SPACETIME …

In this appendix we explicitly give the coupling term
appearing in the Green’s function equation~8!, for the
08402
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Schwarzschild spacetime case~and using Schwarzschild co
ordinates!. In the following expressionsf [122M /r and a
prime denotesd/dr:

A tt
mnḠmn5@ f 21~ f 8!2/222 f 8] r #Ḡtt12 f 8] tḠtr1@ f 2f 9

2 f ~ f 8!2/2#Ḡrr 1r 23f f 8~Ḡuu1sin22uḠww!,

~A1!

A tr
mnḠmn5@ f 92 f 21~ f 8!222r 22f #Ḡtr1 f 22f 8] tḠtt

1 f 8] tḠrr 22r 23~]u1cotu!Ḡtu

22r 23sin22u ]wḠtw , ~A2!

A rr
mnḠmn5@2 f 8] r24 f /r 21 f 21~ f 8!2/2#Ḡrr 12 f 22f 8] tḠtr

1@ f 22f 92 f 23~ f 8!2/2#Ḡtt24r 23~]u1cotu!Ḡru

24r 23sin22u]wḠrw1~2r 242r 23f 21f 8!~Ḡuu

1sin22uḠww!, ~A3!

A tu
mnḠmn5@ f 8/r 2~ f 812 f /r !] r2r 22sin22u#Ḡtu1 f 8] tḠru

12~ f /r !]uḠtr22r 22sin22u cotu]wḠtw , ~A4!

A ru
mnḠmn5@~ f 822 f /r !] r24 f /r 22r 22sin22u#Ḡru

12~ f /r !]uḠrr 1 f 22f 8] tḠtu22r 23~]u

1cotu!Ḡuu12r 23sin22u cotuḠww

22r 22sin22u cotu]wḠrw22r 23sin22u]wḠuw ,

~A5!

A uu
mnḠmn5@24~ f /r !] r12~ f /r 2!22r 22sin22u#Ḡuu

1r f 21f 8Ḡtt1~2 f 22r f f 8!Ḡrr 14~ f /r !]uḠru

12~r 22cot2u1 f 8/r !sin22uḠww

24r 22sin22u cotu]wḠuw , ~A6!

A ww
mnḠmn5@24~ f /r !] r24r 22cotu ]u12~ f /r 2!

12r 22cot2u#Ḡww1r f 21f 8sin2uḠtt1~2 f 2

2r f f 8!sin2uḠrr 14~ f /r !sinu cosuḠru

14~ f /r !]wḠrw1@2r 22cos2u

12~ f 8/r !sin2u#Ḡuu14r 22cotu]wḠuw ,

~A7!

A tw
mnḠmn5@2~ f 812 f /r !] r22r 22cotu]u12 f 8/r #Ḡtw

12r 22cotu]wḠtu12~ f /r !]wḠtr1 f 8] tḠrw ,

~A8!
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A rw
mnḠmn5@~ f 822 f /r !] r24 f /r 222r 22cotu]u#Ḡrw

12~ f /r !]wḠrr 1 f 22f 8] tḠtw

22r 23sin22u]wḠww12r 22cotu]wḠru

22r 23~]u1cotu!Ḡuw , ~A9!
ee

l

08402
A uw
mnḠmn5@24~ f /r !] r22r 22cotu]u23r 22cot2u22 f 8/r

1~2 f 21!/r 2#Ḡuw12~ f /r !]wḠru

12~ f /r !~]u22 cotu!Ḡrw12r 22cotu]wḠuu

22r 22sin22u cotu]wḠww . ~A10!
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