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We propose a practical scheme for calculating the local gravitational self-force experienced by a test mass
particle moving in a black hole spacetime. The method—equally effective for either weak or strong field
orbits—employs thenode-sum regularization schermpeeviously developed for a scalar toy model. The start-
ing point for the calculation, in this approach, is the formal expression for the regularized self-force derived by
Mino et al. [Phys. Rev. Db65, 3457(1997] (and, independently, by Quinn and Walhys. Rev. D66, 3381
(1997]), which involves a worldline integral over the tail part of the retarded Green'’s function. This force is
decomposed into multipoléensor harmonicmodes, whose sum is subjected to a carefully designed regular-
ization procedure. This procedure involves an analytical derivation of certain “regularization parameters” by
means of a local analysis of the Green’s function. This paper contains the following main (farf$ie
introduction of the mode sum scheme as applied to the gravitational(2a3&o simple cases studied: the test
case of a static particle in flat spacetime, and the case of a particle at a turning point of a radial geodesic in
Schwarzschild spacetime. In both cases we derive all necessary regularization pardB)efersanalytical
foundation is set for applying the scheme in more general cébeshis paper, the mode sum scheme is
formulated within the harmonic gauge. The implementation of the scheme in other gauges shall be discussed
in a separate, forthcoming paper.
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I. INTRODUCTION motion. Consequently, the momentary self-force acting on
the particle appears to depend on the particle’s entire past
A pointlike object of massn (hereafter a “particle} is  history.

known to move along a geodesic of the background space- The continuous effort for a theoretical characterization of
time in the limit wherem— 0. If the mass of the particle is gravitational wave forms from strongly gravitating astro-
finite, the motion would no longer be geodesic: interaction ofphysical systems led, in recent years, to a rise of interest in
the particle with its own gravitational field will then give rise the problem of calculating self-forces in curved spacetime.
to the exertion of a “self-force,” pushing the particle away The most prominent consequence of this has been the first
from geodesic motion(The nonconservative part of this development of formal tools for calculating thjeavitational
force is customarily referred to as “radiation reactionThe  self-force (see below. Knowing the self-force is necessary
problem of calculating the gravitational self-force is a longfor describing the strong field orbital evolution in various
standing one. This problem is usually tackled in the contexastrophysical scenarios, in particular—the capture of a small
of perturbation theory, by treatingn as a small parameter, compact object by a supermassive black Hale event ex-
and looking for theD(m) correction to the geodesic equation pected to serve as a main source of gravitational waves for
of motion on a fixed background. The prototype problem—the future space-based Laser Interferometer Space Antenna
calculating the electromagnetic self-force on an acceleratingLISA) [4]]. In some occasions, thgime-averagedorbital
(classical electron in flat space—was considered by Dirac inevolution, and the consequent gravitational wave forms, may
his famous 1938 papét]. Already in this flat space problem be determined by calculating energy-momentum fluxes at in-
one encounters the fundamental issue re§ularization  finity (and through the event horizpand using balance con-
namely, how to correctly handle the divergence of the elecsiderationg5]. This method can be applied successfully in
tromagnetic field(and self-force at the particle’s location. models where the central massive object is spherically sym-
Dirac’s regularization yielded what is now referred to as themetric(e.g., a Schwarzschild black hol@r even in the more
“Abraham-Lorentz-Dirac”(ALD) force (proportional to the realistic case of a Kerr background—but then, only for equa-
time derivative of the electron’s acceleratjoifhe interpre- torial orbits. In more general casé€a nonequatorial orbit
tation of the ALD equation of motion and its solutions hasaround a Kerr black hojea full specification of the orbital
been subject to much further stufl®]. A formal framework evolution requires knowledge of the temporal rate of change
for a calculation of the electromagnetic self-forcecirved  of the Carter “constant of motion,” which, to the best of our
spacetime was first developed by DeWitt and Brehme irknowledge, cannot be achieved by standard balance consid-
1960[3]. Here, in addition to readdressing the question oferations. In addition, balance considerations involve averag-
regularization, one must also deal with tienlocalnature of  ing over orbital periods, and can only account for situations
the self-force effect: In curved spacetime, waves emitted byvhere the orbital evolution is adiabatic. This method is inad-
the particle at a given instant may backscatter off the spacesquate in other, nonadiabatic scenarios, as the final plunge of
time curvature, and interact back with the particle later on itghe particle into a black hole. In general, therefore, it seems
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that one cannot avoid tackling the problem of calculating theparticle’s acceleration as there is no acceleration associated
local, momentary self-force. with the purely gravitational field. A more fundamental dif-
In 1997, two groups—Mino, Sasaki, and Tanak4ST)  ference concerns the very nature of the gravitational self-
[6] and Quinn and WaldQW) [7]—have worked outinde-  force as a gauge-dependent entity: When the metric is sub-
pendently a formal framework for local gravitational self- jected to a gauge transformatioti.e., an infinitesimal
force calculations in curved spacetime. Their combined worlcoordinate transformationadditional terms emerge in the
presents three different derivations of the self-force, allparticle’s equation of motion, which correspond to a change
yielding the same formal expressigthough in a different in the effective self-force(lf fact, in the perturbative context
level of rigorousnessIn the first approach, MS[6] directly  the self-force is a “pure gauge” entity, in the sense that it can
generalized the above mentioned analysis of DeWitt andbe locally eliminated by a suitable choice of the gaude.
Brehme to the gravitational case: First the gravitational perprovide any meaningful gauge-invariant physical informa-
turbation induced by the mass particle was evaluated near th@n, the self-force must therefore be supplemented by the
worldline using Hadamard's expansion of the retardedmetric perturbation to which it correspondsvhich, of
Green's function8]. Then the equation of motion was de- course, contains all information about the gauge this
duced by imposing local energy-momentum conservation ORegard, an essential point is that MSTQW’s prescription is

a thin worldtube surrounding the particle’s worldline. The t5rmulated within the framework of the harmonic gaude.
second approach, still by MS[B], employed the technique o/ it is only in this gauge—the harmonic gauge—that the

of matched asymptotic expansjamhich is based on consid- force is guaranteed to be well defined and finite. The analysis

ﬁ;pgzg’\r’% a\?v{]rgféot'ﬁezggifngﬁgs'?se ttzgllferﬁ)zigci)ee: ?r?at'rgf;presented in the current paper remains within the framework

Schwarzschild black hole with a tidal perturbation associate(?rf Ot:ii hzrrc;m;elg?iggcég’??esly,StV;?an?llsttichuz? thh:W T?g
with the background curvature; and an “external” zone, gaug ) y y

where geometry is that of a perturbation on a fixed back_self-forc_e behaves qnder a change of gauge shall be pre-
ground. The equation of motion is then obtained by requiring"€"ted in a forthcoming papgt0l.
a consistency of the metric in the matching region of the two 1 1€ formal expression obtained by MST and QW for the
zones. The third approach for deriving the gravitational selfgravitational self-force was sometimes considered impracti-
force was presented by QW], and is based on what they cal for actual calculations, as it was unclear how one should
called the comparison axiomAccording to this axiom, the evaluate the nonlocal tail term in general cases. Also, to ap-
correct self-force can be deduced by appropriate|y CompaIP'y this expression, one encounters the problem of calculat-
ing the perturbation on the given curved spacetime with thatng the metric perturbatiotand Green’s functionin the har-
on flat spacetime. This procedure results in the elimination ofmonic gauge, for which perturbation formalism has not been
the divergent piece of the force, and, presumably, in an exfully developed as for other customarily used gaufes.,
traction of its correct finite parfQW also applied their ap- the Regge-Wheeler or radiative gaugé&he first actual cal-
proach for calculating the electromagndtid and scalaf9]  culation of the gravitational self-force based entirely on the
self-forces) prescription of MST and QW was recently presented by
As already mentioned, all three derivations of the gravi-Pfenning and Poissdil], who considered the motion of a
tational self-force yield the same result, which we nowmass particldas well as scalar and electrically charged par-
briefly describe. In curved spacetime, the two-point retardedicles) moving in a weakly curved region of spacetime. In
Green’s function associated with a certain wave equatiomur present manuscript, the attempt is made to present a
(i.e., the gravitational perturbation equation in a given gaugepractical method for direct implementation of the MST and
is composed of two parts: an “instantaneous” part, whichQW prescriptionin strong gravitational field
describes the propagation of influence along the light cone; It should be commented that other approaches to the
and the so-called “tail” part, describing the nonlocal effect gravitational self-force, not directly relying on the MST and
of waves propagatinmsidethe light cone. The gravitational QW analyses, were also taken recently by a number of au-
self-force is derived from the gravitational perturbation pro-thors. Lousto[12] proposed a scheme based on the zeta-
duced by the particle, which, it turn, can be expressed as function regularization technique, to allow self-force calcu-
worldline integral over the Green'’s function. MST and QW lation in strong field(Lousto’s scheme is similar to the
(MSTQW) found that the gravitational self-forcgin method presented in this paper, in that both methods employ
vacuum, and with no external forgeis due only to theail a multipole mode decomposition of the gravitational pertur-
part of the Green'’s function associated with the perturbatiorbation. Another method for extracting the finite part of the
equation in the harmonic gauge. That is, the “instantaneousself-force was proposed by Detweilgt4]. Most recently,
part of this Green’s function yields no contribution to the Nakano and SasakiL3] carried out a weak-field calculation
self-force.[The formal expression for the gravitational self- of the self-force in a Schwarzschild background by evaluat-
force as derived by MSTQW is given in E(f) below] ing the tail part of a Green'’s function. It was assumed, how-
Here we may point out two aspects in which the gravita-ever, that the correct force could be derived from a Green'’s
tional self-force differs from its electromagnetignd scalgr  function associated with a certain Klein-Gordon type wave
counterparts. First, the gravitational self-force contains nmperator, instead of the harmonic gauge-related Green’s
local term analogous to the electromagnétic scalay ALD function as required in the MST and QW regularization
force (which is proportional to the time derivative of the schemes. It is unclear as of yet whether or not the above
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regularization schemes produce, in general, the results that Il. WORLDLINE INTEGRAL FORMULATION
would have been obtained by a strict application of MST and OF THE GRAVITATIONAL SELF-FORCE

QW regularizations. We consider a pointlike particle of massmoving in the

As we already mentioned, the calculation scheme to b%xterior of a black hole with massi>m.. Let the metric
presented in this manuscript is based on MST and QW%W describe the black hole background geometry, which we
formal expression for the gravitational sglf—fprce. It employS;ssume to be a solution of the vacuum Einstein equation
a  technique—the mode-sum regularization ~scheme (jater we specialize our discussion to the Schwarzschild
previously introducedl5,16 and tested17—-21 for the sca-  spacetimeks Also letz*(7) represent the particle’s trajectory,
lar self-force. In general, the application of this scheme congndy<(7)=dz*/d stand for its 4-velocity. The particle pro-
sists of two essentia”y independent parts: in the first partduces a small perturbatidﬂhﬁggaﬁ to the background ge-

one expands the perturbation field of the particle into multi-ometry. The Einstein field equation for the metrig; 5
pole modegtensor harmonic modes in the gravitational case + h.g, linearized inh,, takes the form

for example, and derives the “bare” self-force modes as-

sociated with thd modes of the metric perturbation. The

[-mode perturbation is finite and continuous even at the par-

ticle’s location, and the correspondingmode self-force

maintains a finite value as weflthough it usually suffers a X ' [x—2z(7)]ua(T)ug(n)dr,

discontinuity across the worldlineHowever, the sum over 1)

the bare force’d modes turn out to be divergent. In the

second part of the mode-sum scheme, certain regularizatiomhere we have introduced the “trace-reversed” metric per-

parameters are calculated analytically, by a local analysis aurbation

the Green’s function at largeand small spacetime separa-

tions. These parameters are then used to regularize the diver- -

gent sum over bare forcelsamodes. This calculation scheme hap=Nap— Egaﬁh

completely relies on MST and QW's results, and contains no

further assumptions as to the appropriate regularizaéadn  (with h=g*”h,,), and where we have set the harmonic

though it does contain certain assumptions concerning thgauge conditiorh””. ,=0. In the perturbation equatiofl),

mathematical behavior of various quantities involved in the] stands for the covariant D’Alembertian operatfs, s is

analysis. the Riemann tensor in the background geomemystands
Previously, the above mode-sum scheme was fullyfor the determinant of the metrig,z, and § is the Dirac

implemented in several test cases: A scalar charge heldelta function. The particle does not move along a geodesic

static outside a Schwarzschild black hdle7]; A scalar of g,z, as it interacts with its own fielth, ;. Phrased dif-

charge in a circular orb[t18] or one in radial motioi16,19  ferently, to the perturbatiom,; there corresponds a self-

in Schwarzschild spacetime; and the motion of scalar or eledorce F, in terms of which the particle’s equation of motion

tric charges on the background of a massive sfgll. Re-  is given by

cently, Burko and Liu first applied the mode-sum scheme for

a static scalar charge in Kerr spacetifi@] (however, an ma“(r)=F(7), ©)

analytical foundation for the scheme has not yet been estab- o B . ) )

lished in the Kerr cage So far, the mode-sum regularization Where a“=uzu” is the particle’s 4-acceleration, with a

scheme has not been applied for calculating the gravitation emicolon denoting- covariant differentiation with respect to
self-force the backgroundmetricg,s .

The arrangement of this paper is as follows. We start, in Obviously, the perturbatioh,; diverges on the warldline

Sec. II, by summarizing and discussing MST and QW's re.ltself, and the “bare” self-force associated with this pertur-

sult for the regularized gravitational self-force, which is thebation (as defined belopvdiverges as well. To obtain the

basis for ougr] calculaﬁon scheme Specia,lizing to thephysical equation of motion, one must appropriately regular-
: . ’ th If-f . Th I by MST and Q&7 -

Schwarzschild geometry, in Sec. Ill we expand ftmer- 2e the sel1orce. Ne anayses by an | pro

. G s f o h ) d ob vide a formal expression for the regularized self-force, to
monic gauge Green's function in tensor harmonics, and ob- o 4ar 0(m?), in terms of a worldline integral over deriva-

tain a set of equations for its various multipole modes, & tjyes of a retarded Green's function. It is found that, in a

set which does not couple differenandm modes, although \5cuum backgroundE® is solely due to the tail part of the
it does couple different tensor harmonic components  Green’s function:

Sec. IV we then introduce our mode-sum scheme as applied

to the gravitational self-force problem. To demonstrate the———

applicability of this scheme, in Sec. V we implement it in  IThe extent to which the concept of a pointlike particle makes
two simple cases by explicitly calculating all necessary regusense in the context of the self-force problem is discussed in Ref.
larization parameters. Section VI contains a summary of ouf7].

results and a discussion concerning the application of our?Here we use the convention of RE22] for the Riemann tensor.
scheme to other, more general cases. Note the different convention used by Mimd al. in Ref.[6].

o

Ohap(X)— 2R 570, (x) = — 167Tmf (—g)~ 12

— o0

@
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here byG g5, Was denote®;,, ; by MST[6], G, .y
by QW [7,23], and Gz, 5 by Pfenning and Poissdi1].
Note that Pfenning and Poisson used a different normaliza-

Fe(r)=meke/? f " Gpypryid 27247

Xuf' (7 )u (r)d7'. (4)  tion for the Green’s functioriit contains an extra factor 4

o . wyd i i with respect to either Ref§6,7] and the normalization used

Here the “kinematic” tensok“””” is given by here. Also, note that in Ref.6] the self-force is expressed in
terms of only the tail part of the Green’s function, denoted

kaﬂvézggaﬁuﬂuy_gaﬁuyus_ %u“ur”'uyu% %u“gﬁyu's therein byv 4./, With no contribution from its instanta-

neous part. This expression, however, is actually identical to
1 the above Eq(4), as the worldline integral involved is cutoff
+_ga5gﬁ7 (5) at 7.
4 The Green's functior ,,, 5 plays a central role in our
analyses. It is important to notice that, based on MST and

(understood to be evaluated at the particle’s locafio W | Eq(d) | d old th
designed to assure that the self-force has no component taf})- ?”a,}/ses- q(4) is guaranteed to yie X the correct,
hysical” force, only when using the Green'’s function de-

gent to the worldline(i.e., F“u,=0). This guarantees that P . - .
the massm maintains a constant value along the worldline.f'ned through Eq(6). The expression given in E¢4) may

. . . fail to represent the physical self-force, and may even yield
The quantityGz,4, is the two-point retarded Green’s func- P phy y y

) : : . . ém indefinite result, if a different Green’s function is used.
tion associated with the wave operator given in the left-han For future use. it is useful to write the Green’s function
side of Eq.(1). It satisfies ’

equation(6) in the (noncovariant form

DGO‘BO":B,(X;X,)_ZR#CVBV(X)GMVQIBI(X;X,) Dsaaﬁa’ﬂ"f'A’Z,ga/.LVa’ﬁ’:Zaﬂa’ﬂ' . (8)
_ _ —-1/25 N~ ’ !
=~ 167(=9) "G (@(X X )Gy (XX (X=X Here (g stands for the D’Alambertian operator acting on a

=Zoga'p (6) scalar function,

Og= 9,9 —g*PT'} 0, 9

with the supplementary causality condititﬁ_hwa,ﬁ,(x;x’)
=0 whenevelx lies outside the future light cone of . In N . . s
this equation, the D'Alembertian operator is taken with re-(WhereI's, are the connection coefficiepieand theA's

spect tox, parenthesized indices indicate symmetrization2'€ certain differential operators, of the first order at most,
— . . . which describe how the various components of the Green'’s
and g, is the bivector of geodesic parallel displacemen

t . h .
’ . function couple to each other. In a given coordinate system
defined in Ref[3]. In what follows we shall need only the unet up g ! y

value of this bi-vector in the “coincidence” limit: we have

Iimxﬂ_xrgm;gaa,. Note that the bitensoGMm,ﬁ,(x;x’_) AFG ,=2g"— 2T} EAB) V)+(Rx (8v

has, in general, 100 independent componé&umpared with apTm (e ’ a

16 components in the electromagnetic case, and only one in -, 20 (5 Fﬁ) )ga)ﬁl“ﬁ(al”‘/}) ]
the scalar cageWe also mention that the trace-reversed met- S a

ric perturbation itself is constructed from the Green’s func- —2R*,5"'G,,,, (10

tion according to
where the source-point indices' 8’ have been suppressed
— B ® = ) o ' for brevity. In the Appendix we give explicitly the operators
h“ﬁ(x)_mJ',mG“B“’ﬁ’[XM’Z#(T)]U (MU (ndr. (7) At for the Schwarzschild background ca@e Schwarzs-
child coordinates
To avoid confusion, it is worth commenting here about
the different notation previously used by different authors in . TENSOR HARMONIC EXPANSION
writing Eq. (4): The trace-reversed Green’s function, denoted AND REDUCED EQUATIONS

Accepting Eq.(4) as the basic expression for the gravita-
tional self-force in curved spacetime, the main concern re-
mains how to implement this expression in actual calcula-

harmonic gauge, the Green's function itself doest satisfy the ~1ONS. One may start by considering limiting cases, as the
harmonic gauge condition, as one can directly verip see this, Weak field or slow motion scenarios, in which Eé¢) could

note that the delta function source does not satisfy the conservatidd® applied in a direct manner. This, indeed, was done re-
law—a vanishing covariant divergence—as does the source for the€ntly by Pfenning and Poisson in Réi1]. However, in
metric perturbation itself. Consequently, the harmonic gauge condiconsidering realistic black hole spacetimes, one ultimately
tion is not consistent with the Green'’s function equation as it is withwishes to apply Eq(4) for strong field self-force calcula-
the perturbation equationNote that Eq(2.12) in Ref.[6] is there-  tions. Here the introduction of a mode-sum scheme seems
fore erroneous. inevitable. A mode-sum decomposition approach is neces-

3Note that although the wave operator defining the Green’s func
tion G 4. g indeed originates from the perturbation equation in the
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sary for a dimensional reduction of the probl@mthe usual

manney, but it is especially beneficial in the context of the

self-force problem, because of the following reason: /(3)im_
Whereas the metric perturbation diverges on the worldline, ap

its individual modes as well as the corresponding force

modes, maintain a finite value even at the location of the

particle. Thus, in exploring the behavior of the individual 0
self-force modes, one avoids dealing with divergent quanti-

ties. Still, introducing a mode-sum scheme for calculating ,aym_ ir 0
the self-force is not a straightforward task: the self-force "«8 \/m dy
modes each carries a mixed imprint of both the tail and in-
stantaneous parts of the worldline integral, which results in 4
that the sum over modes usually turns out to diverge. A care-
fully designed scheme for regularization of the mode sum is

thus necessary. The introduction of such a scheme is the — r
Y =

main target of this paper. af T B At
We first consider the multipole-mode decomposing of the 21(1+1)

Green'’s function. As in the rest of this paper, we focus on the d, 0 0
spherically symmetric Schwarzschild black hole background,
with a line element given by

y'm (130

o O O O
o O ~» O
o O O O©O
S O O o

J
5

B
S

ym (130

o O o o
o O O
o O o

o
o
o

y'm (130

o O o o
B
<
B

d=—f(r)d2+fL(r)dr2+r2(d 6%+ sirfd¢?), YOIm=r2/\2 y'm, (13f)

(11)

o O O ©
o O O ©
o B, O O

where f(r)=1-2M/r and M is the black hole’s mass.

Throughout this paper we use Schwarzschild coordinates 0 0 O 0
t,r,0, and ¢, relativistic units(with G=c=1), and metric - r2 00 0 0
signature— + + +. JBm:— yim
Any (sufficiently regular symmetric covariant tensor of 2yM(1+1)} 0 0 Do Dy
rank two,T,z, can be expanded on a 2-sphere in the form 0 0 D, —sD,
(139
0 | 10
Tap=2 2 2 TOM(r,nyiym, (12 0 0 sl —sd
=0 m=-1i=1
r 0 0 0
' ‘ Yg%lm: . Ylm,
whereT®'™ are scalar coefficients and}™ are the Regge- vaI(+1)| s d, 0 0 0
Wheeler-Zerilli tensor harmonid24-27. In Schwarzschild —-sdy, O 0 0
coordinates,r, ¢, ande, the set of tensor harmonid§;™ is (143
given by
0 0 0 0
. -1 _
1 0 0 O (9,6))|m: ir 0 0 S Sdg yim
@ -1 !
yim_ 0 0 0 O yim (133 V2l(l+1)| 0 s 74, 0 0
ap 0 0 0O ' 0 —sd, 0 0
0000 (14D
0 0 0 0
0100 —ir? 0 O 0 0
1 0 0 0 El]g)lm:— 1 Im,
Y@Im_i; 2 ym (13b 2UM(1+1)| 0 0 —s7°D; sD,
p 0 00O
0 O sD, sD;
0 0 0 O (140

where Y'M(9,¢) are the scalar spherical harmonics,
“Here we adopt the orthogonal set introduced by Zefiig], =sinfand\=(l—-1)(1+2)/2, and the operatoi3; andD,
though we use a different notation for the basis tensors: The symare given by
bols Y(U'™ ... Y(P'™ are used here instead of Zerillieg)), a7,
am, B\, by Gims fim» 69, ¢m, andd,y, , respectively. Note the D,=2(ds—cotd)d,, Dy=dsp—cotddy—s 2d,,.
sign error in Eq(A2j) of Ref.[26]. (15
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The ter tensor harmonics of Eqé13) and(14) constitute an where, using Eq(17) with Eq. (6), the coefficientszg?'g) are

orthogonal set found to be given by
fdQnaﬂnﬁV[ngm]*ygg’m’:k(i)gij5“,5mm, Z0)00 = — 16k s(t—t")o(r—r')
(for i,j=1,...,10, (16) Xgp,(a,(xf)gﬁ,)g,(x/)np 2 (X" (x")
XY (20

where »®*=diad — 1,15 ~2,(rs) 2], an asterisk denotes

complex conjugation, and the integration is carried over a ] o

2-sphere(no summation over is implied on the right-hand (W.'tlh 1" standing for6’,¢"). Note here that the coefficients

side). The coefficienk(® takes the value-1 fori=2, 4, and ZS?; depend on the evaluation pointonly through the

8, and+ 1 otherwise. The seven harmoni¢§)'™ ... Y{)'™  delta functions.

constitute a basis for all symmetric covariant tensorevan Equation(8) is now separable into multipole modeand

parity, ~while the remaining three  harmonics M by means of expansiond8) and (19): By substituting

Y&BB)'”‘ N _Y%))Im span allodd parity tensors. Recall that the these expansions in E@8) one obtains a set of equations

odd and even parity parts of a tengerg., a metric pertur- which indeed couple between the ten functi@fagﬁl, - 10)m

bation are uncoupled, and can be treated separdi@dy. (for givenl,m), but not between the different multipolés

Using the orthogonality relatiofEq. (16)], one easily con- and m. To write the equations for the various multipole

structs the scalar coefficients of Hd2) through modes of the Green’s function, it is convenient to introduce

the Eddington-Finkelstein null coordinates
(i)Im — () ap, Brry(i)Imyx
T =k J Ay Y Tag. - (17) v=t+r*, u=t—r* [wheredr*/dr=f"%(r)],
(21)
Now, the Green’s functiol® .z, s/ (X,X") is @ bitensor. It

transforms like a tensor at the evaluation poirftvhen the  and the time-radial operator

coordinate transformation is carried out holdirg fixed),

and it also transforms_ as a tensor at tht_a source point DISEO7UU+Vls(f), (22)

(when the transformation is performed with fixed. Re-

garding the Green’s function, for a while, as a tensor at the

evaluation poink, we may expand it in tensor spherical har- Where

monics at that point, as in E¢12). We write

f(f’ I(1+1) 03

V's(r)=z T+ r2

Gaparpr (XX )=(rr") 71> E(;?'E(r,t;x’)Y%m
I,m,i
— with f=f(r) and f’'=df(r)/dr. The operatorD's is the fa-
EEl Gaﬂa’ﬂ’ ' (18) miliar wave operator associated with thenode of a mass-
less scalar field in Schwarzschild spacetinete the relation
rOd o(r,)Y'™Q)/r]=—4f"1(r)DLep(r, 1) Y'™(Q), where

—(i)Im . . - i
whereG are the multipole expansion coefficieriinde ¢(r,t) is any function. The equations for the various modes

a’B’

pendent of¢ and ¢), the quantityaaﬁa,ﬂ, is the one result- G' then take the form

ing from formally summing oveli and m, and the radial il

factor (rr') ! is introduced for later convenience. We fur- ol ) ol o

ther need to expand théitensorial source term of the D'SES?B“?+IEB'52?BT=S§?E (sumoverj), (24
Green'’s function equatiof®) in tensor spherical harmonics.

This expansion takes the form where the source term is given by

_ -1 (i)Im vy (D)Im
Zaparpr=(Ir") ,%i Za’ﬁ’(r’t’x )Y“B ’ (19 8In fact, the naive construction of the coefficiem%?'g,‘ yields an
expression involving the bi-vect@wﬂ [as in Eq.(6)]. Form(20) is
then obtained by noticing that the coefficieﬁl%?'g? transform like

SNote that forl =0 andl=1 there are actually fewer independent scalars at the evaluation poixt This allows us to prime all tenso-
tensor harmonics: There are only four independent harmonits atrial indices of the various factors involved in E(O) (i.e., take
=0 (the harmonicd =1,2,3, and 6), and eight independent har- these factors to transform like tensors with respect to the source
monics for each of the thrde=1 modes(the harmonics=7 and  pointx’), without affecting the value czf;"g‘ . The presence of the
10 vanish identically at=1 for any value of the azimuthal number delta functions then further allows us to take all tensorial factors in

m). Eq. (20) to be functions of only the source point coordinaxés
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SO =—[f(14128) 5 =8kOms(v—v’)(u—u’)

X Gpra (X )Ggnor (X ) 7 (X ) 7" 7 (X")
X[YSQNT*, (25)
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and Wherdg))' are differential operators that couple between

differenti values. These coupling terms re@dppressing the
indicesa’ B’ andIm for brevity)

1 .1 1
IE}))G(J)ziff’G’(rl)—g(f’2+4ff’/r)G(1)+g(fzf’z

_ 1 — =
—2PER- LB (G GO,

(268

_ .1 1 _
Igf;G(J):Z(f'2—ff"+2f2/r2)e<2>+ Z\/fiff "(f 26

— 1 —
+G) = VI+1) r2fGH, (26b)

S R _
Igf}G(D:—Eff'G§,3>+§(8f2/r2—f’2+4ff'/r)e<3>
1 1 _—
+g(f 222171 GW— 2 2if 'GP

1 _
-5 2r2f\1I(1+1) G®

1 _
+Z\/§(f’/r—2f/r2)G(6), (260
@=L eer S _ o 154) 4 50)
1 _
- E\/ (1+1) (f?Ir5) G, (260

. | _
(5) _ _ TfereB)_ = P 2 5
Z(yGW == 711G 2 H('/r—4f/r?)GE)
1 27,2 \/7_(3) 1 —1f7;i~(4)
=5 (Fr2)y21(1+1) G— 217G
1 _ _
+E(f/rz)[\/I(IJrl)G(6)—\/2)\G(7)], (260

G2 N
G- (1121 201G Y2 (g1 6w
2 Z

V2

—. 1
— TfZ(Zf/rz—f’/r)G(3)+ E‘/ (1+1)

X(f2r2)G®), (26f)

.1 1 _
zg))GU):—E(f/rz)em—E(lerz)\/sz@,
(269
1 o
zgf‘;GU):fo'(G§?>—2r—1G<8>—iG§3>) (26h)
S A _
(9) _ _ 519 _ = My 2 9
TG0 = 2 (/G — 2 f(f'Ir—aflr )G
1 —1g7:~(8) 1 2 (10 h
+ 21 G =S () yan 6o, (26)
1 .1 _
IGyGW = — S (fIr3)GUI— S (f2/r?) 20 GO (26)

The separated equatioit®4) have the convenient property
that no coupling between the various modes occur in the
main parts of the equatiorise., the parts containing second
derivativeg. Coupling between differentmodes comes into
action only through the ) terms, which contain one or no
derivatives. Note that the even parity modes{ ...7) do

not couple at all to the odd parity modeis<8 . . . 10). The
two mode types form a disjoint set of equations, as one
would expect.

IV. MODE SUM REGULARIZATION

Without loss of generality, let us take the point along the
particle’s trajectory where we wish to calculate the self-force
to be at7=0. Based on Eq(4), we may express the self-
force as

Fa: ngbam)_ anst), (27)

where
F(bare): 2K Bvs 0" = S e () - (!
a m-K, B GBVB,')”;KS[Z (’T 0),2 (T )]

XUB’(T')UY,(T')dT’
=mk,#"%hg,. 5 (28)
is the “bare” force associated with the metric perturbation

h,z [the second equality here stems from EgJ], and

FIn9= im sF(9= lim

e—0"

2 5[0 =
m?k, J Cpypry o
— €

e—0"

X[z#(7=0);z4()Juf (7 )u (r)dr' | (29)

is the “instantaneous” part of the force. The quantitie§®
andF"Y_hoth involving integration through the particle’s
location—are singular and so poorly defined as they stand.
For definiteness, we may redefine the integrands appearing in
Egs.(28) and(29) as vector fields in the neighborhood of the
evaluation point, and later be interested in their behavior on
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the worldline. Note, however, that the differené€?® N e
—FnsY goesyield a definite finite value at the particle’s D, = lim IZO (OF,"~—Hg). (32)
location: According to the analyses by MST and QW, this e=0"

Val_llfs iﬁfggiigti;?em%rgj)ésgl?rlnsre;g{ﬁaﬁr?z .ation scheme. let u%’|he parameteD , is well defined, since, by construction of
| ' I+ i (= _ =
. L , the differencesF H ields a convergent sum
denote byF!(®¥®) and 5F()' | respectively, the contributions ¢ @ a ¥ J

. overl [note that the two quantities (?2®* and 5F(9'* must
to F{P@® and 5F(9 coming from thel mode of the Green’s [ d @ @

: - ; . bare the same singular behavior at largas their difference
function [these two quantities are obtained by replacing th(ﬂyieIdS a convergent sum ovér—see Eq.(30)]. Also note

Green's functionGg,g, in Egs. (28) and (29) with its  here that the limitt—0 and the sum ovel should not be
I-modea'ﬁyﬂ,y, defined in Eq.(18)]. We may then express interchanged; otherwise, the crucial contribution from
the self-force as a sum ovemodes, in the forrh SF(I'= would be lost.
Equation (31) constitutes the basic expression for the
R b | gravitational self-force in the framework of the mode sum
Fe= lim IZ (Fi{Pe— 5E (), (80)  regularization approach. The implementation of this expres-
es0t 0 sion for calculating the self-force at a certain point along a
_ ) given trajectory involves twéessentially independerparts:
thel mode of the metric perturbatiam, s is everywhere fi-  general the | modes of the bare metric perturbatién the
nite and ContInUOUS; it remains fll’llte and continuous even Eﬁarmonic gaugk and then use these modes to construct the
the location of the particle, where the overall perturbationyare force modeg'®®®. In the second part of the calcula-
diverges. Conssg::ntly, thenlodes of the bare and instan- oy procedure one should obtain the “regularization func-
taneous force& (" and SF (' turn out to attain finite val- o> ! i principle, this function should be constructed
ues. This behavior has been analyzed and demonstr_ated 6@/ exploring the asymptotic behavior of the bare moﬂés
the analogou; scalar s.elf-_force proble®5,16, and is asl—oo, It is more convenient, however, to read this latge
equally \./al.'d in the gra\_/|tat|onal case as wéle demon- asymptotic behavior from the quantitg;?F(e)I which is
strate this in Sec. ) As in the scalar self-force model, the I(bare) =
Lo Cl(bare) (o)l . : strictly local (recall thatF, and 6F " bare the same
two quantitiesr, and 5F;” are discontinuous through singular behavior at largg. To this end, one merely needs
the particle’s Iocatiorﬁregard_ing the integrgnds appearing in the asvmptotic behavior Oii:(éﬂ in the im’mediate neiahbor-
Eqgs.(28) and(29) as vector fields in the neighborhood of the y Fi X a . 9
particld. That is, each of these two quantities attains differ-100d of €=0. This allows one to derivél,, (and later also
ent (finite) values if calculated by taking the limit— (') * !:)a) using local analytical methods, as we shall demonstrate
or else the limitr—(z) . [Later we assign t&="*® and " ISec. V. - ded vl ¢ theb g
6F () the labels+ or — to indicate weather they were cal- Fl(br;re)gengr;,(e)l e(or]:e-3|det (\j/.a e 0“ he arilm_l?h.es
culated fromr—(z")" or rather fromr—(z")", respec- a q an ta ; r:\jr(: oundto ;ve_rg(i a ar_geetls : | IS i
tively.] Note, however, that the diﬁerent_—éa(bare)_ SF [as was demonstrated for various trajectories in the scalar self-

. . force problem, and will be demonstrated below in the gravi-
well as the sum over modes in EQ0), producing the regu- . s )
: A tational case as well. To construct the regularization function
larized forceF,] does not depend on the direction from

| . .
which the limit is taken. H, so as to regularize the mode sum in E8fl), one should

Although each of the bare modgéﬂsbare) yields a finite therefore derive the three leading-order terms in theek/
contribution to the self-force, the infinite sum ovief"@®) pansion ofsF(". It appears more convenient to use an ex-

diverges, in general. This is easily demonstrated already jRANSION IN POWETS of the new variable

the simple case of a static mass in flat space, a case studied in L=|+1/2. (33
Sec. V(also see Ref.16] for a discussion of this point in the

analogous scalar cgs€fo carry out the regularization pro- Denoting the coefficients of the leading-order termsAyy,
cedure, one seeks are-{ndependent function H'f, such B,, andC,, we shall have, in general,

that the seriesy(F'(®*®* —H'*) would converge. Once

such a function is found, Eq30) can be written as H,=A,L+B,+C,/L. (34)

0 The implementation of the mode sum regularization scheme
F= > (Fl(arey_pl=y_p= (31)  therefore amounts t6) calculating the bare modes{**"®
=0 (this is usually done numerically (i) deriving the four
“regularization parametersA,, B,, C,, andD, (by local
where analytical methods and (iii) summing ovet using Eq.(31)
to obtain the regularized forde,, .
The scheme described here is based on the prescription
It is assumed here that the differentiation and the integratior(4), which is formulated within the harmonic gauge. It there-
involved in constructing®>® and 6F (9 out of G4,4,» can both  fore requires that the bare force modes be obtained from the
be performed term by term with respect to the sum dver metric perturbation in the harmonic gauge. This poses a
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problem from a practical point of view, as a separable for-spherical coordinate systetyr, 6, ¢. (Here we adopt spheri-
malism for the metric perturbation in the harmonic gauge hagal coordinates in order to make the calculation more closely
not been well developed as it has for other gaigepecially related to the Schwarzschild case discussed bglde

the Regge-WheelefRW) gaugd.® We shall deal with this  4-velocity of this static particle is“(r)=4¢ at all 7, and
gauge problem in a forthcoming papgk0], where an at- b5 only the Green's function componef@s,. ./ take part
tempt will be made to rephrase the scheme in terms of othgp, constructing the force through E@4). Considering the

gauges, such as the RW gauge. . .
Before proceeding to discuss some simple applications g ystem of equationsg) for the ten fun.cnanGﬁ“/t"’ , oneé
H}ds that the sourc& s+ is nonvanishing only forag

the method proposed here, we should comment on a certaln . d PPN
technical subtlety which we avoided so far in our discussion._tt' [To see .th's note n Eq20) that for 2’ 5’ =t t. th_e
As we thoroughly discuss in Rdf16] (in the context of the only(lciﬁqn'tnbutmn comes a=1. Th.en the pnly contnbuuon
scalar self-force problemthe Green’s function does not ad- to Yaﬁ in Eq. (19) is ata=tt.] Since all interaction terms
mit a convergent multipole expansion, as a result of its being s sGur'v appearing in Eqg8) vanish in Minkowski space-
singular along the light cone of the source point. As a coniime [see Eqs(A1)—(A10), with f'=0], we find that only
sequence, the modes ("®® (and 6F(9") contain certain the sourced compone@, s takes a nonzero value, while
terms which oscillate rapidly at larde rendering the sums all other component&,,,+ (which satisfy homogeneous
over | in Egs. (30), (31), and (32) nonconvergent. In Ref. equationgvanish. Thus, fow’ 8’ =t't’, the system of equa-
[16] we justified throwing away these divergent oscillatorytions (8) reduces to a single equation for the quantity
terms. To formalize the omission of these terms, we thereis ,  =G:

introduced a new summation and limit operatidtre “tilde

summation” and “tilde limit”) which eliminate any oscilla- OG=Zyy = —16m(—g) 2% x—x'). (35

tory divergent terms while preserving the monotonic behav-

ior. The same problem—uwith the same solution—persists if\ote that in the simple case considered here—a static par-
our current gravitational case. However, to avoid complexityicle in flat spacetime—onlpne Green’s function compo-

in our current presentation, we shall not attempt to indicatg,ent out of 100 actually takes part in the computation of the
explicitly where a tilde operation is to be appligas in t0  ggji-force.

above Egs(30), (31), and(32)]. In the analysis to follow, a The self-force can now be constructed from E4). by

tilde summation or a tilde limit will be implicitly used when
appropriate.

settingu“=§;" and ue = 5;“,' , and recalling that all compo-
nentGg,. ¢ but Gy vanish. We findevaluating the force
at 7=0 without loss of generality

V. SIMPLE APPLICATIONS

We now demonstrate the applicability of the above calcu- Fa:EmZJO G [24(r=0);z*(7)]d7" for a=r,0,¢,
lation scheme in two simple test cases. First we consider the —
trivial case of a static point mass in flat spacetime. This (36)
would provide a simple test cagehere the result is obvi-
ous: a vanishing self-forgegainst which we may check the as well asF;=0.[For a=t, the integrand in Eq4) in iden-
validity of our scheme. We then move on to the Schwarzstically zero. This is a trivial result for a static particle, as the
child spacetime, and consider a freely falling particle on aforce is known to satisfy the normalization conditiépu®
radial geodesic. In both cases we construct all four necessary0.]
regularization parameters. For simplicity, when considering The Green’s function equatiai85) is exactly the same as
the second case we shall focus on calculating the force atthe Green’s function equation for a scalar figkkbmpare
presumed turning point of the geodesi®., wheredZ/dr  with Eq. (4) in Ref. [16]], apart from a relative numerical
=0), for which case the calculation becomes considerablyactor of 4 on the right-hand sid¢he source in the gravita-
more simple(see below. We emphasize that our calculation tional case is greater by 4 than the source in the scalay.case
and results apply equally well for either weak or strongln addition, the construction of the self-force from the
fields. The application of the scheme in more realistic case§reen’s function through Ed36) is exactly the same as the
(ones of greater astrophysical relevanegll be presented construction of the tail part of the force in the scalar case
elsewherd29]. [compare with Eqs(12) and(13) of Ref.[16]], apart from a
relative factor of 1/4 on the right-hand side, which compen-
sates for the extra factor of 4 in the Green'’s function equa-
tion. We may conclude, in particular, that the bare modes of
We consider a static particle of massin Minkowski  the self-force acting on our static particle of massare
spacetime. The particle is located mtr,, in a certain equal to the bare modes of the scalar self-force acting on a
static particle of scalar chargg=m. It is then possible to
simply use the results already obtained in the scalar case: For
®This problem becomes more acute when dealing with Kerr spacethe  regularization parameters we obtaiftaking the
time, for which a separation formalism for the metric perturbationMinkowski limit of the results described in Refd5,16 and
has been developed so far only in the radiation gdagg replacingg—m)

A. Static particle in flat space
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m2 m2 In conclusion of the above discussion, we find that in the
A= :—25;, B,=— —25[1, c,=D,=0. (37 scenario considered here—a particle moving radially on a
o 21y spherically symmetric background—one has to deal with

three sets of seven coupled equations for a total of 21 non-
As the average of the two sided valuesigf vanishes, from trivial independent Componenégzl;;: One of these sets
Eq. (31) we finally obtain (corresponding tax’' B’ =t't’) contains a source term only
ati=1; the other sefcorresponding tax' 8’ =t'r’ orr’t’)
* is sourced only at=2, and the thirdfor o’ 8'=r'r") only
Fo=2> (FP-B,), (38) ati=3. To write these three sets of equations in a simple
=0 form, it is convenient to redefine our spherical coordinate
system, such that the radial trajectory would be directed
whereF!(barel= [ p(bare} 4 pl(bare)-1/5 along the polar axis. In this spherical system, the Green’s
Now, in our current trivial case, the averaged bare-forcgfunction (now sourced only ap’=0) would contain only
modes appearing in E¢B8) are easily calculated 6]: Solv-  axially symmetricn=0 modes. We then also introduce the
ing first for the metric perturbation mod@sne finds that all new variableség?'ﬁ, , defined(for a’ 8’ =t't’ ,t'r’,r't’, or
components of the trace-reversed moﬁbg vanish, except r’r’) through
hl,, which is given byhl,=mr='~1r} (for r>rg) and hl,
=mr'r5"1 (for r<rg). Then, using the second equality of
Eq. (29, one obtains Fl*=—(1+1)m’r;% and F.~
=Im?r, 2, yielding Fl = —m?/(2r2) (with all other compo-
nents vanishing Thus the averaged bare modes of the forcewhere Y'(6)=Y"™=C and a®’=1 for all i, excepta®
are found to bd independent, each identically equal to the =i/\/2. Then each of the above three sets of equatitors
regularization parameteB,. Consequently, one finds that «’'B'=t't’, t'r’, orr’r’) takes the form
each of the terms in the sum ovkiin Eq. (38) vanishes

il , , " ol . = (0)]
Gl =870, (o (X )G pgyor (X ) 0 77 aDY! (0B,

(no summation overi), (39

independently, with an obviougnd expectedvanishing of DL@S?'B,+7§}))'E;S)'B/:quﬁ/g(u_uf)g(v_v'), (40)
the overall self force.
where

B. Radial geodesic motion in Schwarzschild, at a turning point 5t, 5t, 1

Let us now consider a particle moving in a radial geodesic “ U
in Schwarzschild spacetime. For this orbit we have, identi- () 25}0(,5{3,), i=2
cally, u’=u¢=0, and therefore only the Green’s function Qorpr =Y ./ i=3 “
componentss g/t , Gupgtrrr=Gagrtr» @aNdG g Would SarOpr '=
take part in constructing the force through E4). Now, for 0, i=4,...7,
any given combination o&’ B', Eq. (8) constitutes a set of
ten coupled equations for the ten independent quantitiesnd ’jg}))'zz(i)' for all i,j, except ﬂ;jg;'zangg; and

Gupa'p - Considering the thrge sets of equatidBs with ﬂ}jg))':IE?))'/a(z). Finally, to express thé-mode Green’s
a'fT=t'U, U'r", andr'r’, we ,f|n,d that the SOUICE,g.15  fynction G , ., in terms of the new variable"),, , we
is nonvanishing only fore8= 'S’ (e.g., in the set of equa- T _ @'

. — . — : substitute forG'; ., in Eq. (18), and consider only Green'’s
tions for G, 41, Only the equation foGy;/» is sourced funct a'p ; e Bttt hall d
Similarly, Eq. (24) forms, for any specific value at’8', a unction components withaf=tt,tr,rr (we shall nee

set of ten equations for the ten tensor-harmonic modegnly _these ‘hfee components in  our following

-1 10m ‘?rh ¢ mont analysis. Recalling Y'(6)=[(2] +1)/(47)]¥2P,(cos6)
a'pl - 1N€ SOUTCE, 5 Tof t, ese equations 'S NON" —[1/(2m) 2P| (cosé) (whereP, is the Legendre polynomigl

vanishing only ati=1 for «’g’=t't’, ati=2 for «'p and P,(cos#')=1 for §'=0, for the three relevant compo-

=t'r’, r't’, or ati=3 for a’p’=r'r". Clearly, the three pgnis of thd-mode Green’s function, evaluated at the polar
odd-parity mode$=28, 9, and 10, which are not sourced and 4 (9=0), we then obtain

also do not couple to any of the even parity moded, 2,
and 3, woulq all vanisitthis lis expect_ed, of course, by virtug altmrﬁr =4(rr") " H(r ')Léilr)llgr ,
of our physical setup, which only includes an even-parity

source. However, the four even-parity modes 4, 5, 6, and

ol - _ =1 &@)
7, although not sourced in Eq®4), do couple to the modes Girarp=—2(11") LG,
i=1, 2, and 3, and will therefore not vanish, in general. _ ~ 3
Gy o g =A(rr ) T 2(r)LB, (42)

*Interestingly, in our case—a static particle in flat spacetime—thd At this stage we may already evaluate the Green’s function
metric perturbation in the harmonic gauge exactly coincides withat the polar axigwhere the particle is locatgdas the fol-
the one in the RW gauge. lowing construction of the component of the force does not
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involve differentiation of the Green'’s function with respect to Ap=Ffol(rl—ry0),
either # or p—see Eq(43) below]
To implement our mode sum prescription, we would now A=foL(t—to),
like to derive the regularization parameteks, B,, C,,
and D,. This task turns out to be considerably simpler Ap=Ffol(to—t"),
(though not trivial when the self-force is evaluated at a pre-
sumed turning point of the radial geodesic. As a first non- z=foL[(u—u")(v—v")]¥2
trivial demonstration of applying our mode-sum regulariza- (44)

tion scheme, hereafter we focus on this special case. That is,

we assume that the geodesic particle is momentarily at resthere ¢,t) is an off-worldline point in the neighborhood of
(i.e.,u"=0) atr =r, and calculate the local self-force at that rq, (r',t") is a worldline point in the past neighborhood of
point. For simplicity, in our calculation we shall consider ro, andf,=fY%(r,)/r,. We then consider themode Green’s
only ther component of the forc® Extension of this calcu- function as being dependent only brand the above “neu-
lation to an arbitrary point of a radial geodesic is straightfor-tra|” variables, and formally expand the quantiti%?' . in
ward though rather laborious, and will be treated elsewhergqyers of 11, while holding the “neutral” variables fixed:
[29]. On the technical side, the calculation of the regulariza-

tion parameters very much resembles the calculation in the _ * _
scalar case, which we described in much detail in REg]. GU =2 LG,
For this reason, here we avoid many of the technicalities k=0

involved in deriving the parameters, and refer the reader t
Ref. [16] for more details. In what follows we only give a
very general description of how the analysis proceeds in ou

current gravitational case. . ; X .
g Eq. (43). Higher order terms in this expansion do not affect

As explained in Sec. 1V, the mode-sum scheme’s regular | f th larizati s B |
ization parameters can be derived by exploring the behavioztlhe values of the regularization parametgr§]. By analyz-

of the quantitysF (' [see Eq(29)] at smalle, using a per- ![?]g the tG'l;etta'ns :;;f&ﬂn equatm{ﬁsol), wetnO\év shovlv tfhat
turbation analysis of the Green'’s functibmodes at largé- € contribution r - comes at relevant order only from

and small spacetime deviations. In our current problem of dhe three componenGy;, , Gy, » andGy,,,. - In particu-
radially moving particle at a turning point, the radial compo-lar, it is shown that the terms of E¢3) involving E'M,B,
nent 5F(9' is constructed from the various components ofcontribute(for any @’ 8') only at irrelevant high order.
thel-mode Green’s function by We start by substituting expansigd5) into the set of
Green’s function equation@0), and pointing out a few use-
ful “rules of thumb:"*? (i) When the operatof.)'S acts on a

1 ot
(O = 251 Al re—1l Ty i - . e (i
oF ;¢ =zMm f jﬁE[Gtta’B’,r—H‘ f " Gitarp ~4Gitarprt mode GS?'B, it “lowers” its order by 2; namely, ifG"!

(Ar,Arr,At,Z). (45)

q’o derive all necessary regularization parametarsiuding
Pa)' it is sufficient to obtain an expression for the three
leading-order terms in the ll/expansion of the integrand in

o alBl
— _ , . «O(L") (for somen), thenD'sGS?'ﬁ,ocO(L“*z). (i) A t de-
H1°C 4 TG g JUT (7)UP () d 7 rivative always acts to lower the order éﬂ?'ﬁ, by one: if

43 G =0(L"), thenG),, =O(L"*). (iii) An r derivative
may lower the order by one at most when acting on a func-
(with f and f’=df/dr understood to be evaluated mf), tion of bothz andA,, but does not affect the order when
which is obtained from Eq(29) by settingu"=u’=u¢=0  acting on a function ofz alone®® (iv) The source terms
andut=f"12 «8(u—u')8(v—v') appearing in Eqs40) are of order.?.

To analyze the largé behavior of thel modesaaﬁa,ﬁ, (v) An immediate consequence of all above rules is now

appearing in Eq(43), we first introduce the “neutralized”

spacetime deviation variablés
P 2In the following discussion we use a terminology according to

which the “order” of a modeG"", is determined by its expansion
Ar=fol(ry —ryo), through Eq(45), where the “neutral” variables are held fixed. That
is, the “order” of égzlﬁ, is L%, wherek, is the smallest indek
%The angular components, andF, are expected to vanish due folr Wh.iCh Gg?ﬁ.’“‘]..i.s ponvanjshing. . . .
¢ 3This behavioniii) is special to a turning point. To see this note

to the symmetry of our physical setup, although here we shall no{hat atr=r, we havedzdr=(f,/f)LA,, /z. Expandingd, andz

attempt to verify that our scheme indeed leads to this obvious result, _ - . "
) ? S L ih powers ofr about7(ro)=0 and defining the “neutral” proper
At a turning point we also haveé,=0, stemming, in a trivial man-

ner, from the orthogonality relatioRi u®=0. timgr as in Eq.(50) below, we find, at =0, ArlE%fglr /L and

The variables\, , A, , A, andzare “neutral” in the sense that 2=7 (to leading order in 1/). Consequently, if(z) is sonje func-
they each consist of a smal)(e) spacetime deviation, multiplied tion of a certain order in 1/, then ther derivative df(z)/dr
by the large quantity.. The motivation for introducing this kind of =[d?(z)/dz](dz/dr)z %f’l[d?(z)/dz]FT remains of the same or-
variables stems from the detailed discussion in [RES]. der.
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apparent from examining Eq$40): For any giveni, a k
=0 contribution to a mod&"), can only come from the

source term(when nonvanighin)g whereas the coupling
termsZ{})'G!),, contribute only at higherk>0) order.
First consider Eqs(40) for o' B’ =t"t’. In this case, the
only sourced equation is the one f@f,lt),' . After substituting
expansion(45), we find by the above rulév) that at thek

=0 order this equation takes the simple foG{),

:5(u—ur)5(v—vlf), with no contribution from the cou-
pling termszgjl))lf;fl)l

’t’
tion is of order L° [see Eq.(49a below]; thus G*)

t't’
«<O(L%. Now, the modeG?), is coupled toG},, through

the G{) term in Eq.(26h). By the above rule§) and (i) we
thus findG (% <O(L ). On the other hand, the mod&.,,

is excited only atk=2, through coupling with(~35,lt),I and

(~3§,2t),'yt—see Eq. (260. We find further that G\
«O(L73), G=0(L7?), and G{[)=«O(L™*. It can be
easily checked now that, up ©(L~?), the first two equa-

tions of the set of equation@4)—the ones withi=1 and

at this order. The solution to this equa-
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(43) only at order. "2, which is irrelevant for calculating the
regularization parameters. Moreover, one finds that at the
relevant order, the moc%f,zr)', satisfies a single closed-form
equation

DG =5(v—v')s(u—u").

[

(47)

(This equation happens to coincide with the scalar Green'’s
function equation.

Finally, let us consider Eq940) for «’'B'=r'r'. The
only sourced mode is no@f?', , which is therefore of order
L% However, recalling that at a turning point we have
(u")2xO(L™?), we find that the contribution from this
mode to the integral in Eq43) is only at ordei. ~?, and that
the contribution fronG(7), andG(?), is at still higher order.
Therefore, no relevant contributions t6F(9' arise for
a'B'=r'r'.

In conclusion, when restricting our analysis to the case of

2—form a closed set of equations, with coupling to other@ turning point, the problem of calculating the self-force via

modes affecting only at higher orders:

— 5t 2+aft G+ 1 11GY)

t't’ t't’,t

DB+ 111G

t't’ t't’,r

=8(v—v')é(u—u’),

DG+ 371Gl =o0.

(46)

Using Eq.(42) we may now evaluate the order bimodes
=

Goptrtr
grand terms involved in constructingF(' through Eq/(43).
Using rules(ii) and (i) and recallingu «O(L°), we find
that the first integrand term in E¢43) is of orderL?, the
second and third terms are of ordef, and the last two terms

(the ones invoIvingEm,t,) are only of orderL™*. Since

only integrand terms up t®(L°) are necessary for calculat-

and proceed to evaluate the order of the five inte

our mode-sum scheme simplifies considerably: Instead of the
three sets of seven equations each for the 21 components
required for an arbitrary point of a radial geodesic, one now
has to deal with only the three equatio@®) and (47) (of
which two are coupled and one is clogdor the three com-

ponentsG'), G, andG?,.
Equations(46) and (47) are solvable in a perturbative
manner, using the technique described in detail in Sec. V of

Ref.[16]. To apply this technique, one first writes

g g

wp =Cap@U—u)0@-v') (i=123), (49

where® is the standard step function, acting to confine the
support of the Green’s function to within the future light

ing the regularization parameters, we conclude that the COMone of the source point’. Substituting this expression into

—

ponentG,,,, would be of no relevance for this calculation. gqs. (46) and (47), one then finds that the new quantities

Up to the necessary order, the set of Green’s function equag (i)

tions (40) therefore reduces, in the caggép’'=t't’, to a

closed-form set fo6{), andG\?), given by Eq.(46).

Next consider the set of equatio40) for o' B’ =t'r".

Here only thei=2 component is sourced, and we find

G{7)=O(L°). The modes=1 and 3 are sourced .7, ,,
leading to éf,lf)'ocO(Lfl). One similarly finds that the
modei=4 is of orderL "1, the modei =5 is of orderL "2,
and the modes=6 and 7 are only of order 3. Again, we

use Eq.(42) to evaluate the order of each of the five inte-

grand terms appearing in Ed43), this time for o'’
=t'r’. We now recall, however, that" vanishes at, and

« p (treated as functions af,u with a fixed source point
v',u") must satisfy the homogeneous part of these equations
anywhere ab>v’ andu>u’. One also finds that the value
of GS?'ﬁ, along the null raye=v' andu=u’ is uniquely
determined from Eqg46) and(47). [Obtaining these “initial
values” for the quantitieéﬂ?'ﬁ, involves the solution of a set
of ordinary differential equations along=v' and u=u’
[29]. In the scalar case, the Green’s function was found, in
this way, to admit a constant valuef unity) along these
initial rays [16]. In the gravitational case, the “initial data”
are a bit more complicated, and will be given elsewhere
[29].] Thus, in effect, the above procedure converts the origi-

is therefore of ordeu’ or/L. It is then easily shown that the nal set of Green’s function equations into a characteristic

—

only relevant integrand term S, ,,, ’tut'ur’ocO(Ll) , while

!

initial-data problem for the quantitid%a,ﬁ, , with a unique

each of the four other terms contribute to the integral in Eqsolution. This unique solution reads, to the relevant order,

084021-12



GRAVITATIONAL SELF-FORCE BY MODE SUM . .. PHYSICAL REVIEW D64 084021

ésrlt)fl=Jo(2)+[f2(Ar—Ar')Jo(Z)—fl(Ar fronj differenti.ating the@l(u.— u’)(zg—v’) factor appear-
ing in Eq. (48): the contribution coming from the light cone
A NZI(D)IL HH{[(A = A )[(Fa+ A, [through thes(u—u’) or 8(v—uv") factord depends, in its
overall sign, upon the direction through which this derivative
+ 140,01+ 15AF14]30(2) + [F3(A,+ A1) is taken. This effect is further discussed and illustrated in

Sec. IV C of Ref[16] (see especially Fig. 1 thergin
In terms of the function#d{"), the regularization param-

_f3(Ar21+ArAr'+Ar21)+fs]ZJl(z)}L72+O(L73)= eters are constructed 1j§6]

(492 A =it [ O (idr, B~ [ RO,
0 0

—13]2235(2) 2+ £22805(2) 16+ [ — F1F (A2 =A%)

G@ = — (A +A) ()L 14 [fezdy(2)
+f5,30(2)JA A L2+ 0(L73), (49b) C,=m2f H®(rdr (52)
0

¥ =30(2)— f1zd(2) (A +A)LTI+O(L™Y), (4990  gnd

t'r!

where J,(2) are the Bessel functions of the first kind, of ~ D,=—m2lim >, | [LHO= + HW+H@)Ld 7.
order n, and the f's are radial factors given byf; e—01=0 JLelrg
=27 Yrf = 2f), fo=rf' 2 fo=rf 1(f")%2+{"]/12 (53

+(f—rf’ — 2 =f, + 2 +rf o+ . B .
:gtlfrf(z)f/f,’z_ff"’)/g far/ii,f fzf’rzglj‘,ll;?,/fzfrizl(zf,)%ﬁi (;ﬁ’ [Both functionsH(®* andH®~ can be showf16] to yield
2 2 ! the same contribution to the integral in E&3), which is

evaluated at =rg). . . ~
The analysis now proceeds as follows: We substitute why no = sign has been assigned to the paramier The

solutions (49) in Eq. (42) to obtain the relevant modes ~evaluation of the integrals over[and of the sum over in
G s and then substitute thekenodes into Eq(43). (i) Eqg. (53)] is done in a manner completely analogous to the
To be able to carry out the integration in Eé3), we next scalar case, as described in Sec. VIl of Réb]. Here we

expand allx’ -dependent quantities now appearing in the in_m+erely give the results of this calculation: The parameters

tegrand in powers of about the evaluation point(ry)=0. A Br, _Cf’ ar_1dD,fare fg_qu inotljur_case—ba mass %article
(This procedure is described in detail, as applied to thét @ uming point of a radial geodesic—to be given by

analogous scalar case, in Sec. VI of Réf6].) (iii) We in- 5 oM | - 12 2

troduce the “neutral” proper time variabfé A= ;m_ —— —_— C.=D.=0
B ' ra ro I S
7=—(L/rg) T, (50 (54

and write the integrand as an expansion in powers bf 1/ We comment that the vanishing of the paraméigris nec-
with 7 held fixed. essary to assure consistency of our entire scheme: otherwise,

Following these manipulations, E¢3) takes the form the parameteD, would have been indefinitéhis point is
explained in Sec. VII D of Ref{16]).1®

T L L T T T o The values derived here for the regularization parameters
OF " =m fo [LH () + H () + H () /L find support from a recent numerical analysis carried out by
Lousto[12], who numerically calculated the bare modes of
+0O(L2)]dr, (51 the force,F'(*@®, for a radially moving particle in Schwarzs-

child spacetimdas part of the implementation of a different
whereH!" are certain functions of only andr, (but do not ~ 'égularization schemeand found that these modes indeed
depend ori otherwise. These functions all have the form of Show a largd- behavior of the form indicated in Ed34)
% . above. Furthermore, the analytical expressions derived here
a sum over a few terms 7J,(7), wherek,ne N [see, in the for th ficientsA” B 4C. sh fect
anlogous scaler case Exis-(99 of Ret 1] The 0 1° SNk, B snacy w8 Pt e
function HSO) has two different values, denoted in E§J) y :

(0)+ (0)— . S tion, our result of a vanishing paramet®y, confirms, in the
_by H; _and H™ gcco(rgmg to whether the dfrlvatwes cases studied here, Lousto’s result based on his proposed
involved in constructingH,;”’ are taken fromr—rg, or r

- i I . o | zeta-function regularization(Although Lousto’s numerical
—T, , respectively. This kind of discontinuity, which shows

up only at the leading order in thell/expansion, results

BInterestingly, the parameter valuggq. (54)] coincide with the
" . . . values obtained for thecalar self-force acting on a particle of
Note the different notation used in R¢lL6], where the “neu-  scalar chargeg=m, at a turning point of a radial geodesic in

tral” proper time variabler has been denoted by. Schwarzschild spacetime—see Réf6].
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calculations were carried out in a different gauge—in the RWion of the bare modes—typically involves a numerical
gauge rather than in the harmonic gauge—this should nainalysis, the derivation of the regularization parameters may
alter the values of the regularization parameters, as we exse carried out analytically, by means of local analysis of the
plain in Ref.[10].) Finally, we mention that the expressions Green’s function. This kind of local analysis was described
derived here forA,” and B, also agree with the analytic and demonstrated in Sec. V, where we constructed all neces-
values obtained recently using a different formalism, insary regularization parameters for two simple cases.
which the self-force was derived from the so-called Moncrief ~ The first case examined in Sec. V was the trivial test case
wave form [29].26 of a static particle in flat spacetime. Here the mode-sum
In conclusion of this section, we have found that the Sscheme easily reproduced the obvious result of a vanishing
component of the regularized self-force at a turning point ofself-force. We then calculated the regularization parameters
a radial geodesic in Schwarzschild spacetime is given byor the case of a mass particle at a turning point of a radial
above Eq(38), where the parametd, is given in Eq.(54),  geodesic in Schwarzschild spacetime. The values of these
and whereF!?2®) are the(sided average modes of the bare Parameters were given in E4). These values find support
force. These bare modes are deriédrough the second [TOM & recent numerical analysis by Lou$t®,29.

equality of Eq.(28)] from the metric perturbatiom the har- Our calculation scheme—like the formal prescription by
monic gaugeFor practical use, it would be desirable to ex- MST and QW on which it relies—is formulated within the

press our result in a more useful gau@eg., in the Rw  armonic gauge. In an accompanying palj we explore
gauge. This shall be done in a forthcoming pagddo], as the gauge dependence of the gravitational self-force, and re-
part of a more general discussion of the gauge issue in thfprmulate our scheme in terms of other gauges—ones more

context of the gravitational self-force problem. commonly adopted in perturbation analygsich as the RW
gauge. We then conclude that an expression of the form of

Eq. (55) is applicable for calculating the self-force in any
specific gauges (as long as the the self-force attains a defi-
In this paper we have generalized the scheme of modenite finite value in that gaugeby just replacing the har-
sum regularization, previously applied only in the scalarmonic gauge moddd'("®|" on the right-hand side of Eq.
case, to the problem of calculating the gravitational self{55) with the G gauge mode§F'(*@®¢_the ones derived
force on a mass particle. The proposed scheme offers a pragom the G gauge metric perturbation using E@6), with
tical way for implementing the formal prescription devel- H—G. The analysis of Ref[10] further tells us that the
oped by MST and QW, even in strong-field calculations.  regularization parameters in Eq&5) should not carry any
Within the mode-sum scheme, the basic formula for congauge label: these parameters are “gauge invariant,” in the
structing the (harmonic-gauge relatgdgravitational self- sense that they are always to be derived from the Green’s
force is given by function associated with the harmonic-gauge wave operator
[the one defined through E€B)], irrespective of the gauge in
which the bare modes are calculated. In particular, we find
that the values specified in Eq54) are valid under any
gauge.
whereL=1+1/2 and the labeH indicates a quantity associ-
ated with the metric perturbation in the harmonic gauge. To o _
apply this formula in actual calculatiorge., for a certain Further applications of the proposed calculation scheme
orbit on a specific backgrouhdone needs to be provided  The analysis of Sec. IIl provides formal tools for calcu-
with (i) the bare force modds'(**®)H and(ii) the values of  lating the gravitational self-force in any orbit on a Schwarzs-
the four regularization parametets,, B,, C,, andD,. To  child background. For any such orbit, the regularization pa-
obtain the bare mode[sl:'ofba’e)]'*, one first calculates the rameters may be derived by local analysis of the Green'’s
multipole modes of the metric perturbation in the harmonicfunction modes, based on the separated system of equations

VI. SUMMARY AND DISCUSSION

F=> ([F'®aH_A | -B,~C,/L)-D,, (55
=0

gauge, and then uses the relation (24) [supplemented by Eq$26)]—as demonstrated in Sec.
V. It should be noted, however, that in more general cases
[FiPaenH —mk, B h), 17, (56)  than the simple ones considered here, the derivation of the

regularization parameters shall require much more technical
wherek*#7? is the tensor given in Eq5), and[ﬁrﬂy]“ isthe  effort: Here we only had to deal with one equation for one
| mode of the trace-reversed metric perturbatiionthe har- ~ Green’s function componeriin the case of a static particle

monic gauge Whereas this part of the analysis—the deriva-in flat spacetimg or with three coupled equations for three
componentgin the case of a particle at a turning point of a

radial geodesic We shall have to face three sets of 7

1650 far, agreement has been achieved for both one-sided valué9upled equations each for a total of 21 components already
of A, andB, , as well as for theveragevalue ofC, . Currently, we  fOr an arbitrary point of a _radlal geodesic. m general cases,
obtain, using Moncrief's formalism, that although the averaged ©One would have to deal with up to 58 equatidssven sets

vanishegas in our present analygishe one-sided values 6F, fail ~ Of seven coupled equations each for even perturbation
to vanish. It is most likely that this preliminary result is erroneous.modes, and three sets of three equations each for odd pertur-
This point awaits further examination. bation modeps
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To fully implement the regularization scheme and deriveSchwarzschild spacetime ca&nd using Schwarzschild co-
the self-force, one also needs to calculate the bare modes ofdinate$. In the following expression§=1—2M/r and a

the force. This was already done by Loukt@], using Mon-
crief’s formalism [30], for radial geodesic motion in
Schwarzschild spacetime. In his analysis, Lousto numeri- Aﬁ”G
cally calculated théone-sided averagedalues ofA,, B,,
andC,, and presumed a null value f@r, based on a pro-
posed zeta-function regularization scheme. To provide a full
theoretical basis for Lousto’s results in the radial motion case
(and verify its consistency with MSTQW regularizatjome
intend to calculate analytically, using our mode-sum scheme,
all four parameter\,, B,, C,, andD, for an arbitrary
point of a radial geodesif29]. Then, the next natural step
would be to consider more general, nonradial orbits. This
would require a considerable amount of both analytical work
(deriving the regularization parameteend numerical work A//-VG
(calculating the bare modes of the force by solving the met-
ric perturbation equations

We finally comment on the applicability of our mode-sum
regularization scheme to orbits in Kerr spacetime. Although
the theoretical basis for applying our scheme for nonspheri-
cally symmetric backgrounds has not been developed yet
(even in the scalar cagave believe that a properly general-
ized version of this scheme could, eventually, cope with theA{‘,,”G
Kerr case as well. Such a generalization could still be based
on MST and QW's formal prescriptiofsee Eq.4)], which
applies for any vacuum spacetime. The main obstacle in re-
designing our scheme for the Kerr case would be, of course A#)G
the nonseparability of the metric perturbation and Green’s
function into multipole modes in the time domaisuch a
separation has been a necessary step when executing our
scheme in spherically symmetric capsehis difficulty
would make both the analytical and numerical parts of the
mode-sum scheme more challenging: The bare modes of the
force would usually have to be calculated in the frequency
domain(using the Teukolsky-Chrzanowski formaligi28]),
and then appropriately summed over Fourier frequencies. AS_AZ(;’G
to the analytical part of the scheme, it seems to us that, with
the use of an appropriate local perturbation analysis, enough
information for constructing the regularization parameters
could be extracted from the time-domain Green’s function
equations, even without fully separating these equations.

ABG,

ur=L(F

prime denotesl/dr:

=[fX(f")%2- 21" ,]1Gy+ 21" 9,Gy, +[ 21"
—f(£)212]G, +1 3/ (Gyy+sin 26G,,),
(A1)
L= —F71(F)2—2r "2f]Gy, + f ~2f 9,Gy
+£/9,Gyp —2r “3(9y+coth) Gy,
—2r3sin"%9 a¢€t¢, (A2)
=[2f'9,—4f/r 2+ 11 (£)212]G,, +2f 2" 3Gy,

H 7267~ £73(£/)22]Gy— 4r ~3(d,+ cOtH)G,

—4r3sin"209,G, ,+ (2r 413 ") (Gy,y
+sin"26G,,), (A3)
=[f'/r=(f'+2f/r)3,— 1~ %sin 201Gy + ' 3Gy
+2(fIr)9,Gy, —2r ~2sin 20cot03,Gy,, (A4)
—2f/r)9,— 4f/r2—r~2sin"26]G,,
+2(f11)3,Gye + 2 9,Gyy—2r ~3(d,
+c0t0) G gy+2r “3sin” 26 cot6G,,,
—2r2sin 26 ¢cot#3,G,,— 2r 3sin 269,Gy,,
(A5)
=[—4(fIr)a,+2(f/r?) —2r 2sin"26]Gy,

+rf U Gyt (2f2—rff7)G, +4(/1)3,G,,

+2(r ~2cofg+f'Ir)sin 26G,,

—4r ~2sin"26cot03,Gy,, (AB)
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APPENDIX: COUPLING OF GREEN’S FUNCTION’S A’”G =[—(f'+2f/r)9,—2r "%cotha,+ 2f’/r]€w

COMPONENTS (SCHWARZSCHILD SPACETIME )

In this appendix we explicitly give the coupling terms
appearing in the Green's function equatid®), for the
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AMG,,=[(f'—2f/r)9,—4fIr2—2r ~2cotd,)G,,
+2(F11),Gy + 72 9,Gy,
—2r ~3sin"264,G,,+2r “2cot8d,G,,

—2r3(d9y+coth)Gy,, (A9)
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Aﬁgaﬂv=[—4(f/r)ar—2r‘2cot6(99—3r‘2c0t20—2f’/r
+(2f=1)/r2]Gp,+2(/1)3,Gyy
+2(fIr)(8,—2 coth) G, ,+2r ~2c0t03,G 4y

—2r~%sin"29cot3,G,, . (A10)

[1] P.A.M. Dirac, Proc. R. Soc. London, Ser.167, 148 (1938.
[2] See, e.g., E.E. Flanagan and R.M. Wald, Phys. Red4,[3233

[18] L.M. Burko, Phys. Rev. Lett84, 4529(2000.
[19] L. Barack and L.M. Burko, Phys. Rev. B2, 084040(2000.

(1996 for a pedagogical introduction to the ALD equation see [20] L.M. Burko, Y.-T. Liu, and Y. Soen, Phys. Rev. 68, 024015

E. Poisson, gr-qc/9912045.

[3] B.S. DeWwitt and R.W. Brehme, Ann. Phy§N.Y.) 9, 220
(1960.

[4] LISA webpage: http://lisa.jpl.nasa.gov/

[5] See, e.g., S.W. Leonard and E. Poisson, Phys. R&6, 8789
(1997, and references therein.

[6] Y. Mino, M. Sasaki, and T. Tanaka, Phys. Rev.55, 3457
(1997.

[7] T.C. Quinn and R.M. Wald, Phys. Rev. 55, 3381(1997.

[8] J. Hadamardl.ectures on Cauchy’s Problem in Linear Partial
Differential EquationgDover, New York, 1952

[9] T.C. Quinn, Phys. Rev. B2, 064029(2000.

[10] L. Barack and A. Ori, gr-qc/0107056.

[11] M.J. Pfenning and E. Poisson, gr-qc/0012057.

[12] C.O. Lousto, Phys. Rev. Let®4, 5251(2000.

[13] H. Nakano and M. Sasaki, Prog. Theor. PHy35 197 (2001J.

[14] S. Detweiler, Phys. Rev. Let86, 1931(2002.

[15] L. Barack and A. Ori, Phys. Rev. b1, 061502R) (2000.

[16] L. Barack, Phys. Rev. B2, 084027(2000.

[17] L.M. Burko, Class. Quantum Grat7, 227 (2000.

(2002.

[21] L.M. Burko and Y.-T. Liu, Phys. Rev. B4, 024006(200J.

[22] C.W. Misner, K.S. Thorne, and J.A. Wheeldggravitation
(Freeman, San Francisco, 1970

[23] Note the mistake in Eqs49)—(51) of Ref. [7], where the
trace-reversed Green’s function has been used instead of the
Green’s function associated with the metric perturbation itself.

[24] T. Regge and J.A. Wheeler, Phys. R£08 1063(1957). Note
that the basis of tensor harmonics introduced by Regge and
Wheeler is not orthogonal.

[25] F.J. Zerilli, J. Math. Phys11, 2203 (1970; Phys. Rev. D2,
2141(1970.

[26] F.J. Zerilli, Phys. Rev. 2, 2141(1970.

[27] For a comprehensive review of tensor multipole expansions,
see K.S. Thorne, Rev. Mod. Phy&2, 299 (1980.

[28] P.L. Chrzanowski, Phys. Rev. DI, 2042(1975.

[29] L. Barack and C. O. Loust@npublishedl Some preliminary
results of this work are given in C.O. Lousto, Proceedings of
the 3rd International LISA Symposium, gr-qc/0010007.

[30] V. Moncrief, Ann. Phys(N.Y.) 88, 323 (1974.

084021-16



