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‘‘Physical process version’’ of the first law and the generalized second law
for charged and rotating black holes
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We investigate both the ‘‘physical process’’ version of the first law and the generalized second law of black
hole thermodynamics for charged and rotating black holes. We begin by deriving general formulas for the first
order variation in the Arnowitt-Deser-Misner mass and angular momentum for linear perturbations off a
stationary, electrovac background in terms of the perturbed nonelectromagnetic stress-energydTab and the
perturbed charge current densityd j a. Using these formulas, we prove the ‘‘physical process version’’ of the
first law for charged, stationary black holes. We then investigate the generalized second law of thermodynamics
~GSL! for charged, stationary black holes for processes in which a box containing charged matter is lowered
toward the black hole and then released~at which point the box and its contents fall into the black hole and/or
thermalize with the ‘‘thermal atmosphere’’ surrounding the black hole!. Assuming that the thermal atmosphere
admits a local, thermodynamic description with respect to observers following orbits of the horizon Killing
field, and assuming that the combined black-hole/thermal atmosphere system is in a state of maximum entropy
at fixed mass, angular momentum, and charge, we show that the total generalized entropy cannot decrease
during the lowering process or in the ‘‘release process.’’ Consequently, the GSL always holds in such pro-
cesses. No entropy bounds on matter are assumed to hold in any of our arguments.

DOI: 10.1103/PhysRevD.64.084020 PACS number~s!: 04.70.Dy, 04.40.Nr, 04.70.Bw
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I. INTRODUCTION
The close mathematical and physical connection betw

the laws of black hole physics and the laws of thermodyna
ics provides the main foundation for ideas and speculati
on the nature of quantum gravity in the strong field regim
Many aspects of black hole thermodynamics are on a c
pletely firm foundation, such as the classical laws of bla
hole mechanics and the fact that black holes radiate via
Hawking process as perfect black bodies~of finite size! at
temperature

TH5
k

2p
~1!

wherek denotes the surface gravity of the black hole~see,
e.g., @1# for a recent review!. Nevertheless, there rema
some unresolved and/or controversial issues in black h
thermodynamics.

One relatively minor unresolved issue concerns
‘‘physical process version’’ of the first law of classical blac
hole mechanics for charged black holes. Consider a lin
perturbation of a stationary, electrovac black hole cor
sponding to taking one to another stationary, electrovac b
hole. Then, as originally shown by Bardeen, Carter, a
Hawking@2# ~see@3# for a generalized version! the first order
variations of the areaA, massM, angular momentumJ, and
chargeQ are related by

1

8p
kdA5dM2VHdJ2FbhdQ ~2!

whereVH denotes the angular velocity of the horizon a
Fbh denotes the electrostatic potential of the horizon~i.e.,
Fbh52Aaja, whereja is the horizon Killing field andAa is
the vector potential!. However, it also is possible to consid
a ‘‘physical process’’ wherein some charged matter is thro
0556-2821/2001/64~8!/084020~14!/$20.00 64 0840
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into an initially stationary, electrovac black hole. Assumi
that the black hole eventually settles down to a final stati
ary state, one may calculate the change in black hole a
dA, using the Raychaudhuri equation and compare it w
dM , dJ, anddQ. If Eq. ~2! were to fail, this would give rise
to an inconsistency with the assumption that the black h
settles down to a final stationary state, and would ther
provide strong evidence against cosmic censorship. C
versely, a proof of the ‘‘physical process’’ version of the fir
law would provide support for cosmic censorship.

A proof of the ‘‘physical process’’ version of the first law
for uncharged black holes was given in@4#. However, some
difficulties arise in extending this proof to the charged cas1

One of the purposes of this paper is to remedy these diffi
ties by showing that Eq.~2! holds for all physical processes

A crucial issue in black hole thermodynamics is the v
lidity of the generalized second law~GSL!, which states that
the total generalized entropyS8[S1Sbh never decreases@5#,
whereS is the ordinary entropy of matter outside the bla
hole and, in general relativity,Sbh5

1
4 A. Early arguments by

Bekenstein for the validity of this law in quasi-static lowe
ing processes required the assumption that ordinary ma
must obey an entropy bound of the form@6#

S<2pER ~3!

in order to prevent the box from being lowered too close
the black hole. An alternative resolution not requiring a
entropy bounds on matter was given by Unruh and Wald@7#,
taking into account the quantum buoyancy force of the th
mal atmosphere surrounding the black hole. This analy
has been criticized by Bekenstein on a variety of groun

1We are indebted to A. Ashtekar for pointing out these difficulti
to us.
©2001 The American Physical Society20-1
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@8–10#; see@11# and @12# for responses to@8# and @9#. Re-
cently, it has been argued that even stronger entropy bou
than~3! are needed for charged and rotating black holes@13–
15#. These arguments have been countered for charged b
holes by Shimomura and Mukohyama@16#.

In view of the above situation, it seems worthwhile
give a new, general analysis of the validity of the GSL
quasi-static lowering processes that is applicable to cha
and rotating black holes and invokes no model depend
assumptions concerning the thermal atmosphere and the
tents of the box, or assumptions about the size and shap
the box~other than that it is much smaller than the black h
but large enough that a thermodynamic treatment of the t
mal atmosphere is adequate!. In this paper we shall give suc
an analysis. Our key assumptions are as follows:

~i! The thermal atmosphere admits a suitable local th
modynamic description with respect to observers follow
orbits of the horizon Killing field,ja. Furthermore, the ther
mal atmosphere is in thermal equilibrium with itself. Mo
precisely, we cannot increase the entropy of the therma
mosphere by any rearrangement of it that keeps fixed its t
mass, angular momentum, and charge, as well as other
served quantities, such as the number of particles of a g
species.

~ii ! The thermal atmosphere is in thermal equilibrium w
the black hole at temperature Eq.~1!. More precisely, we
cannot increase the total generalized entropy of the b
hole/thermal atmosphere system by any rearrangement
keeps fixed the total mass, angular momentum, and charg
the total system.

We consider processes in which a box containing arbitr
matter and charge is quasistatically lowered toward the b
hole and then ‘‘released,’’ so that the box or its contents
dropped into the black hole and/or allowed to thermal
with the thermal atmosphere. We will show that if the co
tents of the box are in thermal equilibrium, no decrease
the total generalized entropy can occur during the ‘‘lower
phase’’ of a quasistatic process. However, in the ‘‘rele
phase,’’ the total mass, angular momentum, and charge
not change. Consequently, since the black-hole–therma
mosphere system is assumed to have maximum genera
entropy at fixed mass, angular momentum, and charge,
generalized entropy cannot decrease in the ‘‘release ph
either.

A key ingredient in our analysis of both the ‘‘physic
process’’ version of the first law and the GSL is a gene
formula for the variation of the Arnowitt-Deser-Misne
~ADM ! mass,dM , and angular momentum,dJ, for pertur-
bations of stationary or, respectively, axisymmetric elect
vac spacetimes. In Sec. II, we will prove that these quanti
are given by2

dM52E
S
edabc~ tedTd

e1Aet
ed j d!1E

]S
~dQ@ t#2t•Q!

~4!

2Note that for perturbations of Minkowski spacetime~with S
taken to be a slice so that]S is empty!, these equations reduce t
the frequently used—but seldom, if ever, derived—formulasdM
52*Sedabct

edTd
e anddJ5*Sedabcw

edTd
e .
08402
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dJ5E
S
edabc~wedTd

e1Aew
ed j d!2E

]S
~dQ@w#2w•Q!.

~5!

HereS is an arbitrary asymptotically flat hypersurface, po
sibly possessing an inner boundary]S ~which may be—but
need not be—the horizon of a black hole!, dTab denotes the
perturbednon-electromagneticstress-energy tensor,d j a de-
notes the perturbed electromagnetic charge-current ve
and Aa denotes the vector potential of the background in
gauge compatible with the symmetries@i.e., LtAa50 in the
stationary case, Eq.~4!, and LwAa50 in the axisymmetric
case, Eq.~5!#. The quantitiesQ andQ are given by Eqs.~27!
and ~21!–~22! of Sec. II below.

In Sec. III, we will give a proof of the physical proces
version of the first law based on the above formulas. In S
IV, we will establish properties of the thermal atmosphe
around a black hole that follow from the assumptions sta
above. The process of quasi-statically lowering a box fil
with matter towards a black hole and then releasing it will
considered in Sec. V, and it will be shown that the GSL ho
in such processes. Our analysis of the lowering proces
compatible with~i.e., it does not conflict with! the recent
analysis of Shimomura and Mukohyama@16# for charged,
nonrotating black holes, but some of our arguments are q
different from theirs, and we also clarify and generalize so
aspects of their derivation.3 We make some concluding re
marks in Sec. VI. In particular, we give an independent
gument that if the GSL could be violated in a quasi-sta
lowering and release process involving a black hole, th
there should be a corresponding process involving a s
gravitating system that does not contain a black hole
which the ordinary second law would be violated.4 Finally, in
the Appendix we give a general derivation of the for
needed to hold in place a box containing charged matter
stationary~but not necessarily static! spacetime.

II. FIRST ORDER VARIATION OF MASS AND ANGULAR
MOMENTUM

In this section, we first consider the general issue of c
culating the first order variation of conserved quantities in
diffeomorphism covariant theory of gravity in the case whe
the first order perturbation is not required to satisfy t
source free equations~except near infinity!. We will then

3In particular, in@16# the formula for the gravitational force on th
box is not derived, and it is unclear at certain points whether th
energy density,r, includes~or should include! the electromagnetic
interaction energy of the charged matter with the background e
tromagnetic field. Also, a proper justification for setting the chem
cal potential,m, to zero on the horizon of the black hole was n
given.

4This thereby provides a response to@10# by showing that if the
considerations of that paper could lead to a violation of the G
then they also should give rise to a violation of the ordinary sec
law.
0-2
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‘‘PHYSICAL PROCESS VERSION’’ OF THE FIRST . . . PHYSICAL REVIEW D 64 084020
specialize to the Einstein-Maxwell case and derive formu
~4! and ~5! above.

Consider a diffeomorphism covariant theory
n-dimensions derived from a LagrangianL, where the dy-
namical fields consist of a Lorentz signature metricgab and
other fieldsc. We will follow the notational conventions o
@3#, and, in particular, we will collectively refer to (gab ,c)
asf and will use boldface letters to denote differential for
The first order variation of the Lagrangian can always
expressed in the form

dL5E~f!df1dQ~f,df! ~6!

whereE(f) is locally constructed out off and its deriva-
tives andQ is locally constructed out off, df and their
derivatives. The equations of motion then can be read of

E~f!50. ~7!

The symplectic current (n21)-form v is defined by

v~f,d1f,d2f!5d1Q~f,d2f!2d2Q~f,d1f!. ~8!

Let ja be any smooth vector field on the spacetime.
associate toja and f a Noether current (n21)-form, de-
fined by

J5Q~f,Ljf!2j•L ~9!

where ‘‘• ’’ denotes contraction of the vector fieldja into the
first index of the differential formL. A simple calculation
yields

dJ52E~f!Ljf. ~10!

It was proven in the Appendix of@17# that there exists an
(n22)-form Q ~called theNoether charge!, which is locally
constructed fromf, ja and their derivatives, such that

J@j#5dQ@j#1jaCa ~11!

whereCa is an (n21)-form ~with an extra dual vector in-
dex! which is locally constructed out of the dynamical fiel
and is such thatCa50 when the equations of motion ar
satisfied.

Now suppose that the spacetime satisfies asymptotic
ditions at infinity corresponding to ‘‘case I’’ of@18# and that
ja is an asymptotic symmetry.~‘‘case I’’ of @18# is the case
where a true Hamiltonian corresponding to every asympt
symmetry exists, thereby giving rise to a conserved quan
Hj , associated withja. It includes the case of spacetime
that are asymptotically flat at spatial infinity in general re
tivity.! Let df satisfy the linearized equations of motio
dE(f)50, in a neighborhood of infinity, but not necessar
throughout the spacetime. Then the variation of the c
served quantity,dHj associated withja is given by@18#

dHj5 È ~dQ@j#2j•Q!. ~12!
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Here by ‘‘*`’’ we mean the following: LetS be a hypersur-
face inM that extends smoothly to the boundary represent
infinity in the unphysical spacetime. We perform the integ
of Eq. ~12! over an (n22)-surface inS and then take the
limit as this (n22)-surface goes to infinity alongS; see@18#
for further details.

Using Stokes’ theorem, we may re-write Eq.~12! as

dHj5E
S
@ddQ@j#2d~j•Q!#1E

]S
~dQ@j#2j•Q!

~13!

where ]S denotes any ‘‘interior boundary’’ ofS ~which
would be empty if S is a slice and there are no othe
asymptotic regions, but we keep this term since we may w
to terminateS at, e.g., the event horizon of a black hole!.
Using the identity@3#

dJ5v~f,df,Ljf!1d~j•Q! ~14!

we may eliminate the termd(j•Q) from Eq.~13! in favor of
dJ andv.

We now restrict consideration to the case whereja is a
Killing field of the background spacetime and is also a sy
metry of any background matter fieldsc. Then
v(f,df,Ljf)50, so Eq.~13! becomes

dHj5E
S
~ddQ@j#2dJ@j#!1E

]S
~dQ@j#2j•Q!

52E
S
jadCa1E

]S
~dQ@j#2j•Q! ~15!

where Eq.~11! was used in the last step. It is worth notin
that for an arbitrary perturbation,df—i.e., df need not sat-
isfy the linearized field equations or have an
symmetries—of a solution,f, of the equations of motion
E(f)50 also satisfyingLjf50, we have, from Eq.~11!,

d~jadCa!5ddJ@j#2d2dQ@j#50 ~16!

where the variation of Eq.~10! was used in the last step
together with the fact thatf satisfies bothE(f)50 and
Ljf50. Thus, provided only thatf satisfies the equation
of motion andLjf50, the current

aa52
1

3!
eabcddCbcdej

e ~17!

is always conserved,¹aaa50, whereeabcd is the metric
compatible volume element of the background spacetime

Equation~15! is our desired general formula for the fir
order variation of conserved quantities. It holds for an ar
trary diffeomorphism covariant theory of gravity derive
from a Lagrangian with an asymptotic region satisfying t
conditions of ‘‘case I’’ of @18#, provided only thatja is a
symmetry of the background spacetime~i.e., Ljf50) and
that df satisfies the source-free linearized equations of m
tion near infinity. Note that ifdf satisfies the linearized
equations of motion throughout the spacetime, thendCa50
and the integral overS in Eq. ~15! vanishes. If, in addition,
S has no interior boundary—i.e., if]S5B—then Eq.~15!
0-3
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SIJIE GAO AND ROBERT M. WALD PHYSICAL REVIEW D64 084020
reduces to simplydHj50 ~see@19#!. On the other hand, if
df satisfies the linearized equations of motion through
the spacetime but]S is the bifurcation surface of the even
horizon of a stationary black hole, then Eq.~15! yields the
general form of the first law of black hole mechanics wh
ja is chosen to be the horizon Killing field@19,3#. Our Eq.
~15! generalizes these results by allowingdf to fail to sat-
isfy the linearized equations except near infinity~i.e., by al-
lowing for the presence of sources for Einstein’s equation
well as the equations for the matter fields!, as well as by
allowing ]S to be arbitrary.

We now specialize to Einstein-Maxwell theory, in order
obtain explicit formulas for the variation of mass and angu
momentum in that case. The Einstein-Maxwell Lagrangia

L5
1

16p
~eR2egacgbdFabFcd! ~18!

wheree is the volume element associated with the met
Computing the first order variation ofL, we obtain

dL5
1

16p
e~2Gab18pTEM

ab !dgab1
1

4p
e~¹aFab!dAb1dQ

~19!

whereTEM
ab is the stress energy tensor of the electromagn

field

~TEM!ab5
1

4p H FacFb
c2

1

4
gabFdeF

deJ ~20!

and

Qabc~f,df!5
1

16p
edabcv

d ~21!

with

vd5¹bdgdb2gce¹ddgce24Fd
bdAb. ~22!

The ~source free! Einstein-Maxwell equations can then b
read off from Eq.~19!:

Gab28pTEM
ab 50 ~23!

¹aFab50. ~24!

From Eq. ~9!, we find that the Noether current 3-form
with respect toja is given by

Jabc5dQabc
GR 1

1

16p
edabc~2G e

d je1jdF f gF f g!

2
1

4p
edabcF

d f~je¹eAf1Ae¹ fj
e! ~25!

where

Qab
GR52

1

16p
eabcd¹

cjd.
08402
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Writing ¹eAb5Feb1¹bAe in the last term of Eq.~25! and
differentiating by parts, we obtain

Jabc5dQabc
GR 1

1

8p
edabc~Gde28pTEM

de !je

2
1

4p
¹g~edabcF

dgAej
e!1

1

4p
edabcAej

e¹ fF
d f

5~dQ!abc1
1

8p
edabc~Gde28pTEM

de !je

1
1

4p
edabcAej

e¹ fF
d f ~26!

where

Qab52
1

16p
eabcd¹

cjd2
1

8p
eabcdF

cdAej
e. ~27!

Equation~26! is precisely of the required form~11!, so we
may identifyQab as the Noether charge, and read offCa to
be given by

Cbcda5
1

8p
eebcd~Ge

a28pTEMe
a!1

1

4p
eebcdAa¹ fF

e f.

~28!

Clearly, as is required, we haveCa50 whenever the
source-free Einstein-Maxwell equations~23! and ~24! hold.
When the source-free Einstein-Maxwell equations do
hold, we write

8pTde5Gde28pTEM
de ~29!

4p j d5¹bFdb. ~30!

Then Tab has the interpretation of being thenon-
electromagneticcontribution to the stress energy tensor~i.e.,
Tde5Ttotal

de 2TEM
de ) and j a is the charge-current of the Max

well sources. In terms of these sources, we have

Cbcda5eebcd~Te
a1 j eAa!. ~31!

Now, let (gab ,Aa) be a solution of the source-fre
Einstein-Maxwell equations ~23! and ~24!, and let
(dgab ,dAa) be a linearized perturbation which satisfies t
linearized Einstein-Maxwell equations with sourcesdTab
andd j a. Then, we have

dCbcda5eebcd~dTe
a1Aad j e!. ~32!

Substituting Eq.~32! into Eq. ~15!, we obtain the explicit
formula

dHj52E
S
eebcd~jadTe

a1jaAad j e!1E
]S

~dQ@j#2j•Q!

~33!

whereQab is given by Eq.~27! and Qabc is given by Eqs.
~21! and~22!. Finally, choosingja to be an asymptotic time
0-4
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‘‘PHYSICAL PROCESS VERSION’’ OF THE FIRST . . . PHYSICAL REVIEW D 64 084020
translation,ta, and writingM5Ht , we obtain Eq.~4! above,
whereas choosingja to be an asymptotic rotation,wa, and
writing J52Hw , we obtain Eq.~5! above.

III. PHYSICAL PROCESS VERSION OF THE FIRST LAW
OF BLACK HOLE MECHANICS

Consider a classical, stationary black hole solution to
Einstein-Maxwell equations~23! and ~24!. Suppose we per
turb the black hole by dropping in some~possibly charged!
matter. If we assume that the black hole is not destroye
this process and that it eventually settles down to a station
final state, we can compute its change in mass and ang
momentum using Eqs.~4! and ~5! above. We also can com
pute its change in electric charge from the flux of char
current through the horizon, and we can compute its cha
in area using the Raychaudhuri equation. In@4#, it was
proven that Eq.~2! above holds in the case where the unp
turbed black hole has no electromagnetic field, as is ne
sary for consistency with the first law of black hole mecha
ics @2,3#. In this section, we shall generalize this ‘‘physic
process’’ version of the first law to the case of charged bl
holes.

Let (gab ,Aa) be a solution to the source free Einstei
Maxwell equations~23! and~24! corresponding to a station
ary black hole. Let

ja5ta1VHwa ~34!

denote the horizon Killing field of this black hole@4#. Let S0
be an asymptotically flat hypersurface which terminates
the event horizonH of the black hole. We wish to conside
initial data onS0 for a linearized perturbation (dgab ,dAa)
with matter sourcesdTab and d j a @see Eqs.~29! and ~30!
above#. ~We emphasize thatdTab denotes the perturbation i
the non-electromagneticcontribution to the stress-energ
tensor.! We require that~i! dTab andd j a vanish near infinity
and ~ii ! the initial data fordgab anddAa ~and, hence,dTab
and d j a) vanish in a neighborhood of the horizonH on
S0—so that at the initial ‘‘time,’’S0, the black hole is un-
perturbed. We assume that all of the matter and charge e
tually fall into the black hole, and that the black hole eve
tually settles down to another stationary black hole solut
of the source free Einstein-Maxwell equations. Our goal is
computedM , dJ, dQ, anddA for the final state black hole
and verify that Eq.~2! holds.

Since the perturbation vanishes near the internal boun
]S0 of the initial hypersurface, it follows immediately from
Eq. ~33! @or equivalently, from Eqs.~4! and ~5!# that the
perturbed spacetime satisfies

dM2VHdJ52E
S0

edabc~jedTd
e1Aej

ed j d!. ~35!

Thus, the perturbed mass and angular momentum of the
black hole will satisfy this relation. In terms of the curren
a,

aa5jbdTa
b1Abjbd j a ~36!
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@see Eq.~17! and Eq.~32!#, we have

dM2VHdJ5E
S0

adndẽabc ~37!

wherena denotes the future-directed unit normal toS0 and
ẽabc5ndedabc. Using the conservation ofaa and our as-
sumption that all of the matter eventually falls into the bla
hole, we can rewrite Eq.~37! as5

dM2VHdJ5E
H

adkdẽabc ~38!

whereka is tangent to the affinely parametrized null geode
generators of the event horizon,H, of the unperturbed black
hole andẽabc satisfies

1

4
eabcd52k[aẽbcd] . ~39!

The second term inaa in Eq. ~36! yields a contribution to
the integral in Eq.~38! of the form

I 52E
H

Fbhd j dkdẽabc ~40!

where we have writtenFbh52(jaAa)uH . However,Fbh is
constant over the horizon of the black hole@20#, as can be
seen as follows. We have

¹a~Abjb!5LjAa1jb~dA!ab5LjAa1jbFab. ~41!

But LjAa vanishes sincejb is a symmetry of the backgroun
solution. Furthermore, by the Raychaudhuri equation~see
e.g. @21#!

du

dV
52

1

2
u22sabs

ab2Rabk
akb ~42!

~whereV denotes the affine parameter corresponding toka)
together with the fact that the expansion,u, and shear,sab ,
vanish in the stationary background, we have

05@TEM#abk
akbuH5FacFb

ckakb. ~43!

Consequently,Fabk
a is null, and sinceFabk

akb50 by the
antisymmetry ofFab it follows that Fabk

a is proportional to
kb . Hence, the pullback ofFabk

a to H vanishes. Thus, the
pullback of ¹aFbh to H also vanishes, i.e.,Fbh is constant
on H, as we desired to show. Consequently, we have

5In fact, Eq.~38! should hold for the black hole final state even
all of the matter and charge do not eventually fall into the bla
hole, with dM and dJ being the perturbed mass and angular m
mentum of the black hole—which no longer equal the perturb
mass and angular momentum of the spacetime because of the
ence of matter outside of the black hole.
0-5
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SIJIE GAO AND ROBERT M. WALD PHYSICAL REVIEW D64 084020
I 52FbhEH
d j dkdẽabc5FbhdQ ~44!

wheredQ denotes the net flux of charge into the black ho
From Eqs.~38!, ~36! and ~44!, we obtain

dM2VHdJ2FbhdQ5E
H

dTd
ej

ekd. ~45!

We now compute the change in area of the black hole
simplify the calculation, we use our diffeomorphism freedo
in identifying the perturbed spacetime with the backgrou
spacetime to make the null geodesic generators of the e
horizon of the perturbed black hole coincide~as unparam-
etrized curves! with the null geodesic generators of the u
perturbed stationary black hole. As a result of this gau
choice, the perturbation in the location of the horizon va
ishes, and we havedka}ka. The perturbed Raychaudhu
equation~42! yields

d~du!

dV
528pd~@Ttotal#abk

akb!uH

528pd~@TEM#ab!k
akbuH28p~dTab!k

akbuH
~46!

where we have used the fact that@TEM#abk
akbuH50 @see Eq.

~43!# together with dka}ka to eliminate such terms a
@TEM#abk

adkb. However, we have

d~@TEM#ab!k
akbuH5S 2FacdFb

c2
1

4
dgabFdeF

de

2
1

2
gabFdedFdeD kakb. ~47!

The last two terms vanish sinceka is null in both the per-
turbed and unperturbed spacetimes. On the other hand
showed above thatFack

c}ka , so FacdFb
ckakb}dFbck

bkc

50 by antisymmetry ofdFbc . Thus, we obtain

d~du!

dV
528pdTabk

akbuH. ~48!

A calculation identical to that given in@4# then yields

kdA58pE
H

dTd
ej

ekd. ~49!

Substitution of this result into Eq.~45! then yields Eq.~2!, as
we desired to show.

IV. THE THERMAL ATMOSPHERE
AROUND A BLACK HOLE

The remainder of this paper will be devoted to analyz
the validity of the generalized second law~GSL! for pro-
cesses in which some~possibly charged! matter is quasi-
statically lowered toward a~possibly charged and rotating!
black hole and then released. In this section, we will state
08402
.

o

d
nt

e
-

we

ur

assumptions about the thermal atmosphere surrounding
black hole and derive certain properties of it.

An isolated black hole would continuously emit Hawkin
radiation to infinity, and quantum fields around the bla
hole cannot come to thermal equilibrium. However, therm
equilibrium should be possible if the black hole is enclos
in a box. Nevertheless, even for an uncharged and nonro
ing black hole, this equilibrium will be unstable unless t
box enclosing the black hole is sufficiently small@22#. For a
rotating black hole, a more serious problem occurs: Th
cannot exist a thermal equilibrium state of quantum fie
outside the black hole unless the black hole is enclosed
box that is sufficiently small that the horizon Killing fieldja,
Eq. ~34!, is timelike everywhere within the box@23#. Simi-
larly, for a charged black hole, thermal equilibrium of
charged field outside the black hole would not be poss
unless the box is sufficiently small that the electrostatic
tential differences inside the box are insufficient to perm
pair creation. In the following, we will restrict consideratio
to the case where we have a~possibly charged and rotating!
black hole enclosed in a sufficiently small box6 that the
quantum fields outside of the black hole are in a therm
equilibrium state with respect to the notion of ‘‘time transl
tions’’ provided by the horizon Killing fieldja.

We shall refer to observers following orbits ofja, i.e.,
observers with 4-velocity

ua5ja/~2jcjc!
1/2 ~50!

as stationary observers. We shall assume that the therm
atmosphere admits a local thermodynamic description w
respect to stationary observers. There is a natural gro
state of the quantum field associated withja @24,4#, which
we shall refer to as theBoulware vacuum state. It would be
natural for stationary observers to consider the n
electromagnetic stress-energy tensorTab and charge-curren
j a relative to the Boulware vacuum, so we define

T̃ab5Tab2~T0!ab ~51!

j̃ a5 j a2 j 0
a ~52!

where (T0)ab and j 0
a denote, respectively, the~true, renor-

malized! non-electromagnetic stress energy and char
current of the Boulware vacuum state.

It will be assumed that in thermal equilibrium, the no
electromagnetic energy currentT̃abj

b and the charge curren
j̃ a relative to the Boulware vacuum state are proportiona
ja. We also shall allow for the possibility that other local
defined conserved currents (s i)

a may exist—such as, e.g
the number currents of various species of particles that
resent additional conservation laws beyond conservation

6Note that if the black hole were enclosed in a box that was la
enough forja to become spacelike and/or allow a large electrosta
potential difference, the black hole would presumably simply lo
angular momentum and/or discharge until the quantum fields
side the black hole could reach a thermal equilibrium state.
0-6
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charge. We also shall assume that in thermal equilibrium
corresponding currents (s̃ i)

a measured relative to the Bou
ware vacuum state are proportional toja. Consequently, in
thermal equilibrium, the above currents can be characteri
respectively, by the energy densityr̃5T̃abu

aub, the charge
density q̃52 j̃ aua, and the quantitiesl̃ i52(s̃ i)aua, all
measured relative to the Boulware vacuum state.

It also will be assumed that in local thermal equilibriu
the stationary observers would assign an entropy currens̃a

to the thermal atmosphere, which also will be assumed to
proportional toja, so that it also can be described by t
entropy densitys̃52 s̃aua, relative to the Boulware vacuum
state. We explicitly allow for the possibility that som
‘‘renormalization’’ of entropy may occur@25#, so that the
‘‘true’’ entropy density,s, of the thermal atmosphere is give
by

s5 s̃1s0 ~53!

where s0 is the ~true! entropy density of the Boulware
vacuum. It would appear that such a renormalization of
tropy must occur to avoid a divergence in the contribution
the thermal atmosphere to the total entropy due tos̃ becom-
ing arbitrarily large near the horizon.

We will assume thatr̃, q̃, and l̃ i serve as ‘‘state vari-
ables’’ that characterize the local thermodynamic state,
that the entropy density,s̃, can be expressed as a function
these state variables

s̃5 s̃~ r̃,q̃,l̃ i !. ~54!

However, it should be emphasized that we make no assu
tions about the explicit functional form ofs̃.

The renormalized non-electromagnetic stress energy,Tab ,
and charge-current,j a, of the thermal atmosphere will, o
course, perturb the spacetime metric,gab , and electromag-
netic field,Aa , around the black hole. These perturbations
gab andAa will, in turn, affect the distribution and propertie
of the thermal atmosphere. However, for a macrosco
black hole~i.e., a black hole of mass much greater than
Planck mass!, Tab and j a will be small compared with scale
set by the background curvature, and we shall assume
they can be treated as linear perturbations of the class
electrovac black hole spacetime. In particular, we will a
sume that the formulas of Sec. II apply for the contributi
of the thermal atmosphere to the total mass and angular
mentum of the spacetime. The effects of the perturbation
gab and Aa on the thermal atmosphere would then be
second and higher order, and therefore will be neglected

In the following, we shall consider the effects of pertur
ing the state of the thermal atmosphere to a nearby state
is locally in thermal equilibrium. In accordance with the r
marks in the previous paragraph, we shall neglect the eff
of the resulting perturbations ofgab andAa when calculating
the changes in the renormalizedTab and j a of the thermal
atmosphere caused by the perturbation of its state. We s
similarly neglect the effects of these perturbations ofgab and
08402
e

d,

e

-
f

o
f

p-

f

ic
e

at
al
-

o-
of
f

at

ts

all

Aa when calculating the changes inT̃ab and j̃ a. In view of
Eqs. ~51! and ~52!, this additional assumption amounts
assuming that the perturbations of (T0)ab and j 0

a are small
compared with the perturbations ofTab and j a. Similar re-
marks apply to (s i)

a and (s̃ i)
a. Finally, we also shall neglec

the effects of the perturbations ofgab andAa when calculat-
ing the changes insa and s̃a.

We now consider perturbing the state of the thermal
mosphere to a nearby state that is locally in thermal equi
rium, characterized by the state variablesr̃1dr̃, q̃1dq̃,
l̃ i1dl̃ i . Variation of Eq.~54! yields the local form of the
ordinary first law of thermodynamics

d s̃5
1

T
dr̃1Cdq̃1(

i
g idl̃ i ~55!

where the temperature,T, and the potentialsC and g i are
defined by appropriate partial derivatives ofs̃ with respect to
the state variables. In a small volume,V, the locally mea-
sured energy relative to the Boulware vacuum isŨ5 r̃V, and
we similarly haveQ̃5q̃V, andL̃ i5l̃ iV. Hence, we obtain

dS̃5d~ s̃V!5VS 1

T
dr̃1Cdq̃1(

i
g idl̃ i D 1 s̃dV

5
dŨ

T
1CdQ̃1(

i
g idL̃ i

1S s̃2
r̃

T
2Cq̃2(

i
g i l̃ i D dV. ~56!

We interpret the coefficient ofdV in this formula asP̃/T,
whereP̃ denotes the pressure of the thermal atmosphere r
tive to the Boulware vacuum. We thereby obtain the in
grated form of the Gibbs-Duhem relationship for the therm
atmosphere:

P̃5Ts̃2 r̃2TCq̃2T(
i

g i l̃ i . ~57!

Since only differences are taken in Eq.~55!, the ground
state contributions cancel out because, as discussed in
previous paragraph, we neglect changes in the ground s
quantities. Therefore, Eq.~55! also holds for the true, renor
malized quantities, i.e.,

ds5
1

T
dr1Cdq1(

i
g idl i . ~58!

In the following, we will work with the true, renormalized
quantities.

As discussed above, the contribution,

E[M2VHJ ~59!

of the thermal atmosphere to the total ‘‘energy’’ conjugate
ja of the spacetime is given by@see Eq.~33!#
0-7
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E52E
S
eebcd~jaTe

a1jaAaj e!. ~60!

Similarly, the contribution of the thermal atmosphere to t
total electric charge is

Q5E
S
eebcdj

e ~61!

and its contribution to the globally conserved quantities,L i ,
associated with (s i)

a is

L i5E
S
eebcd~s i !

e. ~62!

If the state of the thermal atmosphere is perturbed, varia
of the above formulas yields

dE5dM2VHdJ52E
S
eebcd~jadTe

a1jaAad j e!

~63!

dQ5E
S
eebcdd j e ~64!

dL i5E
S
eebcdd~s i !

e. ~65!

However, since as discussed above, we havedTab5dT̃ab ,
d j a5d j̃ a, and d(s i)

a5d(s̃ i)
a and since the ‘‘tilded’’ cur-

rents have been assumed to be proportional toja, we may
rewrite Eqs.~63!–~65! as

dE5dM2VHdJ5E
J

~xdr2jaAadq! ~66!

dQ5E
J

dq ~67!

dL i5E
J

dl i ~68!

whereJ denotes the manifold of orbits@26# of ja with the
natural volume elementēabc5edabcu

d on J understood. In
Eq. ~66!, the ‘‘redshift factor’’x is defined by

x[~2jaja!1/2. ~69!

We now impose the assumption that the thermal atm
sphere is in thermal equilibrium with itself. More precise
we assume that at fixed total ‘‘energy,’’E, fixed total charge,
Q, and fixedL i , the total entropyS5*Js is maximum. In
order for this to be the case, it is necessary forS to be an
extremum with respect to all first order variations that p
serve the above constraints. We have

dS5E
J

ds5E
J
S 1

T
dr1Cdq1(

i
g idl i D . ~70!
08402
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The necessary and sufficient conditions fordS to vanish for
all variationsdr, dq and dl i satisfyingdE5dQ5dL i50
can be determined as follows. If we setdq5dl i50 ~so that
we automatically satisfydQ5dL i50), we see that by a
suitable choice ofdr we can makedSÞ0 while preserving
the remaining constraintdE50 unless the temperature,T,
obeys the Tolman law

T5T0 /x ~71!

whereT0 is a constant. The first term in Eq.~70! can then be
written as

E
J

1

T
dr5

1

T0
E

J
xdr5

dE

T0
1

1

T0
E

J
jaAadq. ~72!

Substituting this into Eq.~70!, we find that by a suitable
choice ofdq we can makedSÞ0 unlessC is of the form

C52
1

T0
~jaAa1F0! ~73!

whereF0 is a constant. Finally, it is easily seen that extre
ization of S under the constraints requires eachg i to be
constant,7

g i5g0i . ~74!

It is easily seen that Eqs.~71!, ~73!, and~74! are also suffi-
cient for S to be an extremum.

Finally, taking Eqs.~71!, ~73!, and ~74! into account in
Eq. ~70!, we see that for a perturbation that does not nec
sarily preserveE, Q, or L i , the change in the total entropy
S, of the thermal atmosphere is given by

dS5E
J
S x

T0
dr2

1

T0
~jaAa1F0!dq1(

i
g0idl i D

5
1

T0
~dE2F0dQ!1(

i
g0idL i

5
1

T0
~dM2VHdJ2F0dQ!1(

i
g0idL i . ~75!

Equation~75! is the ‘‘global form’’ of the first law of ther-
modynamics for the thermal atmosphere. Note that our ab
analysis and results are applicable to any thermodyna

7If the conserved current (s i)a corresponds to a particle numbe
current of a neutral particle, thenL i can be varied independently o
Q and the other particle species. The chemical potential,m i , of this
species would then be given in terms ofg i by m i52Tg i . Taking
Eq. ~71! into account, we see that the behavior of the chemi
potential corresponding to Eq.~74! is m i52T0g0i /x. If ( s i)a is
the particle number current of a charged particle, then a variatio
L i holding the number of other particle species fixed require
corresponding variation ofQ. The chemical potential for a specie
of charged particles would be given bym i5(2T0g0i1ei@F0

1jaAa#)/x, whereei denotes the charge per particle of this speci
0-8
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system that is locally ‘‘at rest’’ with respect to a timelik
Killing field ja, i.e., we did not use any special properties
the thermal atmosphere to derive Eqs.~71!, ~73!, ~74!, or
~75!, although in our formula forE, we did assume that th
non-electromagnetic stress-energy,Tab , and charge-current
j a, could be treated as a linear perturbation of an electro
spacetime.

We now impose our assumption that the thermal atm
sphere is in thermal equilibrium with the black hole, i.e., th
the total generalized entropy,SC[S1Sbh, of the combined
black hole/thermal atmosphere system is at its maxim
possible value for the given values of the combined ma
MC5M1Mbh, angular momentum, JC5J1Jbh, and
charge,QC5Q1Qbh, of the total system. By the first law o
black hole mechanics, we have

dSbh5
1

TH
~dMbh2VHdJbh2FbhdQbh!. ~76!

Comparing Eqs.~75! and ~76!, we see thatSC will be an
extremum under interchange of mass, angular momen
and charge between the thermal atmosphere and the b
hole if and only if we have

T05TH ~77!

F05Fbh ~78!

and

g0i50. ~79!

Note that the vanishing ofg0i is essentially a consequence
the ‘‘no hair theorems’’: Although for matter~including the
thermal atmosphere! there may be locally conserved curren
(s i)

a aside from mass, angular momentum, and charge, t
is no global conservation law for these quantities whe
black hole is present, since the ‘‘charges’’L i can fall into the
black hole, which retains no ‘‘memory’’ of them. If th
chargeL i corresponds to the number of particles of a p
ticular species, then the chemical potential for that spe
~see footnote 7! is given by

m i5ei~Fbh2F!/x. ~80!

It follows from Eq. ~80! that m i vanishes on the horizon o
the black hole, as had previously been claimed in@16#.

Taking into account the above relations, we find that
integrated Gibbs-Duhem relation~57! for the thermal atmo-
sphere now takes the form

x P̃5THs̃2xr̃2~F2Fbh!q̃. ~81!

We also note that the combined black hole/thermal atm
sphere system satisfies

dSC5
1

TH
~dMC2VHdJC2FbhdQC!5

1

TH
~dEC2FbhdQC!.

~82!
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V. LOWERING PROCESS

In this section, we will consider a process in which a b
containing charged matter is quasi-statically lowered tow
the black hole and then dropped into the black hole or o
erwise allowed to thermalize with the black hole/thermal
mosphere system. The box will be assumed to be ‘‘perfe
insulating,’’ i.e., the walls will be assumed to be perfec
reflecting with respect to the fields inside and outside of
box. However, as will be discussed further below, the wa
of the box will necessarily radiate energy, charge, etc. into
out of the box as the box is lowered@7#. We make no as-
sumptions concerning the size, shape, or contents of the
other than that its size is small compared with that of
black hole and that its contents satisfy the ordinary therm
dynamic laws~see below!. In particular, we do not make th
‘‘thin box’’ approximation @7#, nor do we even assume tha
the walls of the box are rectangular in shape.

The process under consideration consists of two dist
stages:~i! A quasi-static process in which the box is slow
lowered toward the black hole. In this process, work may
done by an external agent, so that the total energy conta
in the box/black hole/thermal atmosphere system m
change.~ii ! A non-quasi-static process in which the box
dropped into the black hole or otherwise destroyed, and
system is allowed to thermalize. No change in the total
ergy or charge of the complete system occurs in this sta
We will argue that the total generalized entropy,S8, cannot
decrease in either of these stages.

Consider, first, the quasi-static lowering process. At a
given time during this process, the total generalized entro
S8 of the system can be written as

S85SB1SC2SD. ~83!

Here,SB denotes the total entropy contained in the box, a
SC denotes the total entropy that the combined black ho
thermal atmosphere system would have at the given va
of TH and Fbh if the box were not present. Finally,SD de-
notes the entropy of the displaced thermal atmosphere,
the entropy that would have been contained in the ther
atmosphere~at the given values ofTH and Fbh) within the
region occupied by the box.

We now focus attention onSB . It is instructive to con-
sider, first, the case where the box initially is ‘‘empty,’’ i.e
the initial state of the fields inside the box is the natu
vacuum/ground state relative to the notion of time trans
tions defined byja ~see @24#!. Then, we claim that if the
lowering process is sufficiently slow, no ‘‘particle creation
will occur as the box is lowered, and the box will remain
its ground state. In other words, an empty box will rema
empty as it is quasi-statically lowered. By definition, the C
simir energy of the box is the difference between the ene
contained in the empty box and the energy that would
contained in the Boulware vacuum in the region of spa
occupied by the box.„Recall here that by ‘‘energy,’’E, we
mean the conserved quantity conjugate to the horizon Kill
field ja rather than the asymptotic time translationta, i.e.,
E5M2VHJ @see Eq.~59! above#.… If we neglect possible
0-9
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SIJIE GAO AND ROBERT M. WALD PHYSICAL REVIEW D64 084020
changes in the Casimir energy of the box as it is lowered
follows that in the lowering process for an empty box, w
have

DEB5DE0 ~84!

whereDEB denotes the difference in the energies contain
in the box at two stages of the lowering process, andDE0
denotes the difference in the Boulware vacuum energie
the corresponding volumes. Here we have written ‘‘D ’’ rather
than ‘‘d ’’ to emphasize that we are taking differences
quantities associated with different regions of space ra
than differences of quantities associated with the same re
of space, as in the previous section.

Similarly, the total chargeQB within the empty box satis-
fies

DQB5DQ0. ~85!

It should be noted that changes in the charge conta
within the box can occur only as a result of radiation by t
walls of the box. However, this radiation by the walls of t
box is independent of the contents of the box. Therefore
all cases~i.e., whether or not the box is empty!, the change in
the charge of the box as it is lowered is given by Eq.~85!.
However, Eq.~84! holds only for the empty box, since th
total energy contained within the box can vary due to r
shifting of the energy of the contents of the box as well as
radiation by the walls of the box.

Now suppose that the box is initially filled with~possibly
charged! matter that is in thermal equilibrium. As the box
lowered, the matter will, in general, redistribute itself with
the box due to the changing electromagnetic and grav
tional fields. However, if the box is lowered sufficient
slowly, the matter will remain in thermal equilibrium as it
lowered. Observers inside of the box will view the process
being isentropic for the same reason as slow variations
parameters in the Hamiltonian result in isentropic proces
in flat spacetime physics. Thus, the entropy above the gro
state must remain constant8 as the box is lowered. Taking
into account the possibility that the ground state entropy
nonzero due to ‘‘renormalization’’ as discussed in the pre
ous section, we see that in a slow lowering process where
matter is initially in thermal equilibrium, we haveDSB
5DS0, where S0 denotes the entropy of the Boulwa
vacuum in the region occupied by the box. Equivalently,
haveDS̃B50, where in accord with the notation of the pr
vious section,S̃B[SB2S0.

Finally, suppose now that the box is initially filled wit
arbitrary matter, not necessarily in thermal equilibriu
Then, as the box is lowered, the matter may~partially or
fully ! thermalize. Observers inside the box will see

8This result also can be derived from energy balance consi
ations, as outlined in footnote 2 of@12#. However, this argumen
assumes that no ‘‘extra energy’’~i.e., ‘‘heat’’! is fed into or taken
out of the box as it is lowered, and thus, in essence,assumesthat
the lowering process is isentropic.
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increase—or, at least, a non-decrease—of entropy relativ
the ground state during the lowering process for the sa
reason that the ordinary second law of thermodynam
holds in flat spacetime physics. Consequently, we concl
that whatever is initially placed inside the box, we have

DS̃B[DSB2DS0>0 ~86!

during the lowering process.
We now turn our attention to the calculation of th

change,DSC, in SC during the lowering process. By Eq
~82!, we have

DSC5dSC5
1

TH
~dEC2FbhdQC! ~87!

so we need to calculate the energy,dEC, and charge,dQC
delivered to the black hole/thermal atmosphere system
ing the lowering process. The total charge of the entire s
tem is

Q85QB1QC2QD ~88!

so by conservation of charge, we have

dQC52DQB1DQD. ~89!

We already found above thatDQB5DQ0 @see Eq.~85!#, so
we have

dQC52DQ01DQD5DQ̃D. ~90!

To calculatedEC, we note that this quantity cannot de
pend upon what is placed inside the box during the lower
process, so it suffices to restrict attention to the case wh
the box is empty. In that case, the change in total ene
inside the box is given by Eq.~84!, so by conservation of
energy, we have

dEC5W2DE01DED5W1DẼD ~91!

whereW denotes the work done by the external agent dur
the lowering process. We calculateW as follows. As shown
in the Appendix, the net forceFa exerted by an externa
agent at redshiftx0 on a stationary box whose size is muc
smaller than the scales set by curvature is given by9

x0Fa5eaE
]B

x P̃ebnbdA. ~92!

Here ea denotes the unit ‘‘upward pointing’’ tangent to th
string ~defined over the volume of the box via parall
transport—see the Appendix for details! and na is the unit
outward pointing normal to the surface,]B, of the box in the

r-
9Here we neglect any contributions of the Casimir energy and

the walls of the box tor̃. These will not, in any case, affect th
energy delivered to the black hole/thermal atmosphere system,
vided that their locally measured stress-energy remains cons
during the lowering process, so that Eq.~84! holds.
0-10
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manifold of orbits ofja. If the box is lowered, the work don
by the external agent during the lowering process is

W52x0E ~Faea!u ldl52E x P̃eanadAdl ~93!

wherel denotes proper length along the path of lowering
the manifold of orbits. Equation~93! is easiest to analyze in
the case of a rectangular box with ‘‘top’’ and ‘‘bottom’’ face
perpendicular toea. In that case, Eq.~93! corresponds to
performing a volume integral ofx P̃ over the spatial region
swept out by the top face of the box, and subtracting from
the similar integral over the spatial region swept out by
bottom face. The result is

W5DE
B
x P̃dV ~94!

where the integral is taken over the volume of the box, anD
denotes the difference between the final and initial value
this integral in the lowering process. By a similar argume
it is not difficult to see that Eq.~94! remains valid for a box
of arbitrary shape.

We now apply the integrated Gibbs-Duhem relation~81!
for the thermal atmosphere. We thereby obtain

W5DE @THs̃2xr̃2~F2Fbh!q̃#dV

5THDS̃D2DẼD1FbhDQ̃D ~95!

where the subscript D denotes quantities associated with
displaced thermal atmosphere and Eq.~66! was used. Com-
bining Eqs.~87!, ~90!, ~91!, and~95!, we obtain

DSC5
1

TH
@dEC2FbhdQC#5

1

TH
@W1DẼD2FbhdQC#

5DS̃D ~96!

combining this equation with Eqs.~83! and ~86!, we obtain

DS85DS̃B>0 ~97!

which shows that the generalized second law holds du
the lowering process.

Now, consider the ‘‘dropping process,’’ i.e., we suppo
that—after completion of the above lowering process—
box is released and allowed to fall into the black hole~or that
the box is destroyed and its contents are allowed to therm
ize with the black hole/thermal atmosphere system!. We as-
sume that at the end of this process, the final state of
system is that of a black hole in equilibrium with its therm
atmosphere. Although the ‘‘dropping process’’ is a high
nonequilibrium process and we cannot analyze the time e
lution of the total entropy during this process, it is clear th
if the second assumption of Sec. I holds, the total general
entropy,S8, cannot decrease in this process. Namely, dur
the ‘‘dropping process’’ the total mass, angular momentu
and charge of the system remain constant. However, assu
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tion ~ii ! asserts that the final state maximizes the total g
eralized entropy at the given values of total mass, ang
momentum, and charge. Therefore, the initial state could
have had more generalized entropy than the final state.

Consequently, under the assumptions stated in Sec.
well as our assumptions about the thermodynamic prope
of the thermal atmosphere stated in Sec. IV, the GSL can
be violated in any quasi-static lowering/dropping process

VI. CONCLUDING REMARKS ON THE VALIDITY
OF THE GSL

In this paper, we have established the validity of the G
in arbitrary quasi-static lowering/dropping processes
charged and rotating black holes, without the need to ass
any entropy bounds for matter. Our analysis depends, pri
rily, only on the two very general assumptions stated in S
I. It thereby generalizes and simplifies previous analyses
such processes.

However, it should be noted that during the course of o
analysis, we made several simplifying assumptions conc
ing the thermodynamic properties of the thermal atmosph
In particular, it was assumed that stationary observers wo
~i! assign a locally homogeneous entropy densitys̃ to the
thermal atmosphere that is valid on all relevant scales
~ii ! that s̃ is a function only ofr̃, q̃, and l̃ i . The first as-
sumption need not be valid if one considers boxes wh
size is small compared with the wavelength of the ambi
thermal atmosphere~see@10#!. The second assumption cou
fail because the formula fors̃ might also depend nontrivially
upon ‘‘location in the gravitational field’’~e.g., depend upon
the local value of the curvature and/or derivatives ofja).

In this concluding section, we wish to argue that if th
breakdown of any such simplifying assumptions about
thermal atmosphere were to allow one to violate the GS
they also would allow one to violate the ordinary second la
Specifically, suppose that—on account of, say, the bre
down of assumptions~i! or ~ii ! of the previous paragraph—i
were possible to violate the GSL in a quasi-static lowerin
dropping process. Since the validity of the GSL during t
‘‘dropping’’ phase does not depend upon any simplifying a
sumptions about the thermal atmosphere, it follows tha
violation of the GSL must occur in the lowering phase. No
in the lowering phase, the box will stay some finite distan
e, outside of the horizon of the black hole. Then, it should
possible, in principle, to construct a~charged and rotating!
shell with a perfectly reflecting surface whose exterior gra
tational and electromagnetic fields coincide with those of
black hole at distances greater thane from the horizon. We
can enclose this shell in a cavity of the same size as used
the black hole and then fill this cavity with ‘‘real’’ therma
radiation in such a way that its temperature isTH /x, its
potentialF0 is equal toFbh and the potentialsg0i are equal
to zero.~This can be accomplished by supplying the atm
sphere with the appropriate amounts of energy, charge,
other conserved quantities.! There may be slight difference
between the properties of the thermal atmosphere of
black hole and those of the ‘‘real’’ atmosphere around
0-11
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SIJIE GAO AND ROBERT M. WALD PHYSICAL REVIEW D64 084020
shell that we have put in ‘‘by hand’’ on account of slig
differences between the ground states and modes in the
cases. However, these differences can be made arbitr
small by choosing the radius of the shell to be arbitrar
close to the horizon radius of the black hole.

Now, the analysis of the lowering process given in t
previous section applies without change to a lowering p
cess where the black hole/thermal atmosphere system i
placed by the shell surrounded by a ‘‘real’’ atmosphere, p
vided that the subscript ‘‘C’’ is now interpreted as referrin
to the ‘‘real’’ atmosphere around the shell. The values ofSC,
EC, etc. may be very different for the ‘‘real’’ atmosphe
around the shell as compared with the black hole/ther
atmosphere system, but the variations of these quantities
ing the lowering process will be the same~provided that the
radius of the shell is sufficiently close to the horizon rad
of the black hole!. It follows that if a lowering process tha
decreases the total generalized entropy can be done in
black hole case, a corresponding lowering process in the
of the shell will decrease the total ordinary entropy. Thus
the GSL can be violated, then a corresponding process
violate the ordinary second law.
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APPENDIX: FORCE EXERTED ON A STATIONARY BOX

In this appendix, we consider a stationary~but not neces-
sarily static! spacetime, with timelike Killing vector fieldja.
We consider a stationary box in this spacetime which is h
in place by an agent who holds a massless string tha
connected to the box~see Fig. 1!. The box may be of arbi-
trary shape and may contain charged matter. An exte
electromagnetic field may be present and there also ma
additional matter outside of the box~which may exert a
‘‘buoyancy force’’ on the box!. We wish to calculate the
force that the agent must exert on the ‘‘far end’’ of the stri
in order to hold the box in place under the following assum
tions:

We assume that the world sheet of the string is invari
underja, and has stress-energy of the form

TS
ab5Peaeb ~A1!

whereea is a unit vector that is tangent to the world sheet
the string and is orthogonal toja. ~We choose the direction
of ea to point ‘‘towards the agent,’’ i.e., ‘‘away from the
box.’’! This stress tensor corresponds to a massless st
which we consider for simplicity; it is straightforward t
allow the string to have mass, but then the weight of
string would contribute to the force exerted by the exter
agent. The ‘‘P’’ in Eq. ~A1! is understood to be proportiona
to a delta-function on the world sheet of the string. We a
assume that the string does not contain any electromag
charge or current.
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We decompose the stress-energy tensor of everythin
including the contents of the box, the walls of the box, t
string, and the matter outside of the box—into its elect
magnetic and non-electromagnetic parts

Ttotal
ab 5Tab1TEM

ab ~A2!

whereTEM
ab denotes the stress tensor of the electromagn

field @see Eq.~20!#. We assume that the electromagnetic fie
is stationary

LjAa50. ~A3!

This implies, of course, thatTEM
ab and the electromagneti

charge-current vector,j a, also are Lie derived byja. We
further assume thatj a takes the form

j a5qua5
q

x
ja ~A4!

where ua5ja/x with x5(2jaja)1/2, i.e., we assume tha
the charges are ‘‘at rest’’~no current flow! with respect to the
stationary observers. Similarly, we assume that the total n
electromagnetic stress-energy tensor,Tab , is stationary

LjTab50 ~A5!

and we further assume thatTab takes the form

Tab5ruaub1tab ~A6!

with tabu
a50, i.e., we assume that the non-electromagne

stress-energy tensor has no ‘‘time-space’’ components~i.e.,
no momentum density! relative to the stationary observer

FIG. 1. In a stationary spacetime, a box is held in place by
agent who holds a massless string connected to the box. The
face,C, enclosing the box and string is represented by the do
line.
0-12
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Note that our assumptions concerningTab are compatible
with our assumed form of the stress-energy tensor of
string, Eq.~A1!, which is included inTab.

It is convenient to work on the manifold,J, of orbits of
ja ~see@26#!. All tensor fields onM that are Lie derived by
ja and have all indices perpendicular toja have a natural
projection toJ, and we will not distinguish in our notation
such spacetime tensors from their projections toJ. In par-
ticular, J naturally acquires a Riemannian metrichab given
by

hab5gab1uaub. ~A7!

We denote byDa the derivative operator onJ associated
with hab . Our final assumption is that the size of the box
small compared with the scales of curvature in the manif
of orbits.

The string stress-energyTS
ab , Eq.~A1!, must be conserved

everywhere except at the end points of the string. This
plies thatea must be a geodesic in spacetime,eb¹bea50. It
follows immediately thatebDbea50, i.e., the projection of
the string to the manifold of orbits,J, is a geodesic in the
manifold of orbits. We now choose a surfaceC in J which
encloses the box and string in the manner shown in Fig
We extend the definition ofea to the interior ofC by parallel
transport~with respect toDa) along geodesics~with respect
to Da) starting from the point at which the string is attach
to the box.~Note that since the size of the box has be
assumed to be small compared with scales set by curva
parallel transport over the box will be essentially path ind
pendent in any case.!

Conservation of the total stress energy, Eq.~A2!, yields

05¹bTtotal
ab 5¹b~ruaub!1¹btab1¹bTEM

ab

5rub¹bua1¹btab2Fabj b ~A8!

where we have usedub¹br50 and¹bub50 in the last line.
Sinceua5ja/x, we obtain

ub¹bua5
1

x
Dax. ~A9!

On the other hand,

Fabj b5~¹aAb2¹bAa!
q

x
jb5

q

x
@2LjAa1¹a~Abjb!#

52
q

x
DaF ~A10!

whereF[2Aaja. Thus, we obtain

05
r

x
Dax1¹btab1

q

x
DaF. ~A11!

We now contract this equation withea , using
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ea¹btab5¹b~eatab!2tab¹bea5
1

x
Db~xeatab!2tabDbea.

~A12!

Here we have used the identity

¹bvb5
1

x
Db~xvb! ~A13!

that holds for any vector fieldva in the class that projects to
J, and we also changed¹b to Db in the second term since
tab has both indices perpendicular toja. We thus obtain

05reaDax1qeaDaF1Db@xtabea#2xtabDbea.
~A14!

By construction,Dbea vanishes at the point where th
string is attached to the box. If the geometry ofJ were flat,
then Dbea would vanish identically throughout the box
Since the geometry ofJ is not flat, Dbea is, in general,
nonvanishing. However, its magnitude is bounded by the s
of the box times the curvature ofJ. Therefore, for a box
whose size is small compared with the scales set by the
vature of J, the last term in Eq.~A14! will be negligible
compared with the other terms in that equation. Therefo
we shall drop this term.

Integrating the remaining three terms in Eq.~A14! over
the volume,V, enclosed byC and using Gauss’s law, we
obtain

05E
V
@reaDax1qeaDaF#1E

C
xtabeanbdS ~A15!

where the natural volume elements~with respect tohab) on
V andC are understood, andna is the unit, outward pointing
normal toC. We now ‘‘shrinkC down’’ so that it just barely
encloses the box and string. In this limit, the volume integ
receives no contribution from the string~since we assume
that r5q50 on the string!, and the surface term also re
ceives no contribution from the portion surrounding t
string ~since the area of this portion goes to zero!, except for
the contribution*xP5x0*P arising from the end point of
the string held by the external agent, wherex0 denotes the
value of x at this end point. SinceFa52ea*P is just the
force that the external agent must exert to counterbalance
tension/pressure of the string and thereby hold the box
place, we obtain the desired general expression for the fo
needed to hold the box in place,

x0Fa5eaS E
B
@rebDbx1qebDbF#1E

]B
xtcbecnbdSD

~A16!

where the volume integral is now taken over the box,B, and
the surface integral is taken over the boundary of the b
]B. The first term in the volume integral can be interpret
as the ‘‘weight’’ of the contents of the box. Note thatr in-
cludes only the non-electromagnetic energy density, i.e.,
ther the electromagnetic self-energy of charges within
box nor their interaction energy with external electroma
0-13
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netic fields contributes to the first term. The second term
just the Lorentz force on the charge distribution in the b
~including ‘‘self-force’’ effects!. The final term correspond
to the buoyancy force exerted on the box by the matter
rounding the box.

We now specialize this result to the case of a box h
near a black hole, which is surrounded by the thermal atm
sphere of the black hole. In this case, we takeja to be the
horizon Killing field, Eq.~34!. However, there is no reaso
to expect the true, renormalized charge-current,j a, will be of
the form ~A4! nor do we expect the renormalized nonele
tromagnetic stress-energy tensor,Tab, to be of the form~A6!,
since the charge-current and stress-energy of the Boulw
vacuum would not be expected to have this form. Howev
it seems reasonable to expect that the differences,j̃ a andT̃ab,
between the true charge-current and stress-energy and
of the Boulware vacuum@see Eqs.~51! and~52! above# will
have this form. Now, the total stress-energy, (T0)total

ab , of the

Boulware vacuum must be conserved, soT̃total
ab also is con-

served. If treat bothTEM
ab and (T0)EM

ab as small perturbations
of the electromagnetic stress-energy tensor of the black
~so that only linear terms in the deviation from the bac
th

nd
,
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ground black hole electromagnetic stress-energy are ke!,
then a repetition of the steps in the above derivation sho
that in this case, Eq.~A16! continues to hold, provided only
thatr, q, andtab are replaced by their ‘‘tilded’’ counterparts
i.e., we have

x0F5E
B
@ r̃eaDax1q̃eaDaF#1E

]B
x t̃ abeanbdS

~A17!

whereF5Faea andF52Aaja with Aa is the vector poten-
tial of the background black hole.

Finally, for the case where the thermal atmosphere s
rounds the box,T̃ab outside of the box will have a perfec
fluid form, so Eq.~A17! further simplifies to

x0F5E
B
@ r̃eaDax1q̃eaDaF#1E

]B
x P̃eanadS.

~A18!

For the case of an empty box (r̃5q̃50), we obtain Eq.~92!
used in our analysis in Sec. V.
,
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