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We investigate both the “physical process” version of the first law and the generalized second law of black
hole thermodynamics for charged and rotating black holes. We begin by deriving general formulas for the first
order variation in the Arnowitt-Deser-Misner mass and angular momentum for linear perturbations off a
stationary, electrovac background in terms of the perturbed nonelectromagnetic stresséngrgnd the
perturbed charge current density?®. Using these formulas, we prove the “physical process version” of the
first law for charged, stationary black holes. We then investigate the generalized second law of thermodynamics
(GSL) for charged, stationary black holes for processes in which a box containing charged matter is lowered
toward the black hole and then releagatiwhich point the box and its contents fall into the black hole and/or
thermalize with the “thermal atmosphere” surrounding the black h@lesuming that the thermal atmosphere
admits a local, thermodynamic description with respect to observers following orbits of the horizon Killing
field, and assuming that the combined black-hole/thermal atmosphere system is in a state of maximum entropy
at fixed mass, angular momentum, and charge, we show that the total generalized entropy cannot decrease
during the lowering process or in the “release process.” Consequently, the GSL always holds in such pro-
cesses. No entropy bounds on matter are assumed to hold in any of our arguments.
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[. INTRODUCTION into an initially stationary, electrovac black hole. Assuming
The close mathematical and physical connection betweethat the black hole eventually settles down to a final station-
the laws of black hole physics and the laws of thermodynamary state, one may calculate the change in black hole area,
ics provides the main foundation for ideas and speculation$A, using the Raychaudhuri equation and compare it with
on the nature of quantum gravity in the strong field regime.sM, 63, and5Q. If Eq. (2) were to fail, this would give rise
Many aspects of black hole thermodynamics are on a comto an inconsistency with the assumption that the black hole
pletely firm foundation, such as the classical laws of blacksettles down to a final stationary state, and would thereby
hole mechanics and the fact that black holes radiate via thprovide strong evidence against cosmic censorship. Con-
Hawking process as perfect black bodi@e$ finite size at  versely, a proof of the “physical process” version of the first

temperature law would provide support for cosmic censorship.
A proof of the “physical process” version of the first law
- _ K 2 for uncharged black holes was given[#)]. However, some
H™om difficulties arise in extending this proof to the charged case.

One of the purposes of this paper is to remedy these difficul-
where x denotes the surface gravity of the black h@dee, ties by showing that E¢(2) holds for all physical processes.
e.g., [1] for a recent review Nevertheless, there remain A crucial issue in black hole thermodynamics is the va-
some unresolved and/or controversial issues in black holkdity of the generalized second lai&SL), which states that
thermodynamics. the total generalized entrof®/ =S+ S,, never decreasgs],

One relatively minor unresolved issue concerns thewhereSis the ordinary entropy of matter outside the black
“physical process version” of the first law of classical black hole and, in general relativity,,= 3 A. Early arguments by
hole mechanics for charged black holes. Consider a lineaBekenstein for the validity of this law in quasi-static lower-
perturbation of a stationary, electrovac black hole correing processes required the assumption that ordinary matter
sponding to taking one to another stationary, electrovac blackust obey an entropy bound of the fof]
hole. Then, as originally shown by Bardeen, Carter, and

Hawking[2] (see[3] for a generalized versigithe first order S<27ER 3
variations of the are&, massM, angular momentund, and
chargeQ are related by in order to prevent the box from being lowered too close to

the black hole. An alternative resolution not requiring any
entropy bounds on matter was given by Unruh and Wa]ld
taking into account the quantum buoyancy force of the ther-
mal atmosphere surrounding the black hole. This analysis
where Q) denotes the angular velocity of the horizon andhas been criticized by Bekenstein on a variety of grounds
d;, denotes the electrostatic potential of the horiZoa.,

D= —AyE8, whereé? is the horizon Killing field andh, is

the vector potential However, it also is possible to consider we are indebted to A. Ashtekar for pointing out these difficulties
a “physical process” wherein some charged matter is throwrto us.

1
g KOA= M — 0y 53— DpdQ 2)
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[8—10]; see[11] and[12] for responses t¢8] and[9]. Re-

cently, it has been argued that even stronger entropy bounds5J=J €dabd ¢e5Tde+Ae<Pe5id)—f (6Q[e]—¢-0O).
than(3) are needed for charged and rotating black hpl&s- * &

15]. These arguments have been countered for charged black ®)
holes by Shimomura and Mukohyarikg].

In view of the above situation, it seems worthwhile 10 yere s is an arbitrary asymptotically flat hypersurface, pos-

give a new, general analysis of the validity of the GSL in sjbly possessing an inner bounda#¥ (which may be—but
quasi-static lowering processes that is applicable to charg eed not be—the horizon of a black hpléT., denotes the
and rotating black holes and invokes no model dependen ab

. s
assumptions concerning the thermal atmosphere and the coperturbednon-electromagnetistress-energy tensosj” de-
tents of the box, or assumptions about the size and shape gptes the perturbed electromagqetlc charge-current vgctor,
the box(other than that it is much smaller than the black hole?NdAa denotes the vector potential of the background in a
but large enough that a thermodynamic treatment of the the@auge compatible with the symmetrige., £;A,=0 in the
mal atmosphere is adequattn this paper we shall give such Stationary case, E@t), and £,A,=0 in the axisymmetric
an analysis. Our key assumptions are as follows: case, Eq5)]. The quantitie® and® are given by Eqs(27)
(i) The thermal atmosphere admits a suitable local therand(21)—(22) of Sec. Il below.
modynamic description with respect to observers following In Sec. Ill, we will give a proof of the physical process
orbits of the horizon Killing field £2. Furthermore, the ther- version of the first law based on the above formulas. In Sec.
mal atmosphere is in thermal equilibrium with itself. More IV, we will establish properties of the thermal atmosphere
precisely, we cannot increase the entropy of the thermal ataround a black hole that follow from the assumptions stated
mosphere by any rearrangement of it that keeps fixed its totalbove. The process of quasi-statically lowering a box filled
mass, angular momentum, and charge, as well as other cofith matter towards a black hole and then releasing it will be
served quantities, such as the number of particles of a givegonsidered in Sec. V, and it will be shown that the GSL holds
Species. o o _in such processes. Our analysis of the lowering process is
(i) The thermal atmosphere is in thermal equilibrium with compatible with(.e., it does not conflict withthe recent
the blac_k hole at temperature E@). More precisely, we analysis of Shimomura and Mukohyarfiz6] for charged,
cannot increase the total generalized entropy of the blackqngtating black holes, but some of our arguments are quite

hole/thermal atmosphere system by any rearrangement th@gferent from theirs, and we also clarify and generalize some
keeps fixed the total mass, angular momentum, and charge Q pects of their derivatichWe make some concluding re-

the total system. marks in Sec. VI. In particular, we give an independent ar-

We consider processes in which a box containing arbitrar . . . ) .
matter and charge is quasistatically lowered toward the blac ument that if the GSL could t_>e wo!ated In a quasi-static
owering and release process involving a black hole, then

hole and then “released,” so that the box or its contents ar . . .
dropped into the black hole and/or allowed to thermalizeN€re should be a corresponding process involving a self-

with the thermal atmosphere. We will show that if the con-9ravitating system that does not contain a black hole in
tents of the box are in thermal equilibrium, no decrease iVhich the ordinary second law would be wo_laf’eEmaIIy, in

the total generalized entropy can occur during the “loweringth® Appendix we give a general derivation of the force

phase” of a quasistatic process. However, in the “releasé'®eded to hold in place a box containing charged matter in a
phase,” the total mass, angular momentum, and charge defationary(but not necessarily stajispacetime.

not change. Consequently, since the black-hole—thermal at-

mosphere system is assumed to have maximum generalized

entropy at fixed mass, angular momentum, and charge, thdl- FIRST ORDER VARIATION OF MASS AND ANGULAR

generalized entropy cannot decrease in the “release phase” MOMENTUM

either. o . . In this section, we first consider the general issue of cal-

A key ingredient in our analysis of both the “physical cyjating the first order variation of conserved quantities in a
process” version of the first law and the GSL is a generaljiffeomorphism covariant theory of gravity in the case where
formula for the variation of the Arnowitt-Deser-Misner the first order perturbation is not required to satisfy the

(ADM) mass,oM, and angular momentunsJ, for pertur-  soyrce free equationgexcept near infinity We will then
bations of stationary or, respectively, axisymmetric electro-

vac spacetimes. In Sec. Il, we will prove that these quantities———

are given by 3In particular, in[16] the formula for the gravitational force on the

box is not derived, and it is unclear at certain points whether their
SM = _f €dab({t95Tde+ Aete(de)—l— f (8Q[t]—t-O®) energy densityp, includes(or should includgthe electromagnetic
p Iz interaction energy of the charged matter with the background elec-
4 tromagnetic field. Also, a proper justification for setting the chemi-
cal potential,., to zero on the horizon of the black hole was not
given.

Note that for perturbations of Minkowski spacetinf@ith 3 “This thereby provides a response[i®] by showing that if the
taken to be a slice so thak is empty, these equations reduce to considerations of that paper could lead to a violation of the GSL,
the frequently used—but seldom, if ever, derived—formusds then they also should give rise to a violation of the ordinary second
=— [y €4apd®T% and 3= [y €4app®6TY%. law.
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specialize to the Einstein-Maxwell case and derive formulasiere by “f..” we mean the following: Lett, be a hypersur-
(4) and(5) above. face inM that extends smoothly to the boundary representing
Consider a diffeomorphism covariant theory in infinity in the unphysical spacetime. We perform the integral
n-dimensions derived from a Lagrangian where the dy- of Eq. (12) over an o—2)-surface in% and then take the
namical fields consist of a Lorentz signature megig and  limit as this (1—2)-surface goes to infinity alony; see[18]
other fieldsy. We will follow the notational conventions of for further details. .
[3], and, in particular, we will collectively refer tog(, , %) Using Stokes’ theorem, we may re-write H@2) as
as ¢ and will use boldface letters to denote differential form.
The first or_der variation of the Lagrangian can always be 5H§:j [5dQ[§]—d(§-®)]+J" (6Q[&]—-¢&-0)
expressed in the form = %
(13
SL=E(¢)d¢+dO(¢,5¢) ®  where 93 denotes any “interior boundary” o (which
. . . would be empty ifY is a slice and there are no other
where E(¢) is locally constructed out of and its deriva- asymptotic regions, but we keep this term since we may wish

tives a_nd@ is locally (_:onstructed_ out o, 5¢ and their to terminates, at, e.g., the event horizon of a black hole
derivatives. The equations of motion then can be read off aEJsing the identity[3]

E(¢)=0. (7 0T=w($h,0¢,L:0p)+d(&-O) (14)

The symplectic currentn(—1)-form o is defined by we ma()j/ eliminate the term(¢- ®) from Eq.(13) in favor of
0J and w.

(P,810,0,0)=5,0(h,5,0)— 5,0(h,6,4). (8) We now restrict consideration to the case whétds a

Killing field of the background spacetime and is also a sym-
Let £2 be any smooth vector field on the spacetime. wemetry of any background matter fieldsy. Then
associate ta2® and ¢ a Noether currentr(—1)-form, de- @(#,6¢,L:¢)=0, so Eq.(13) becomes
fined by

o= [ (odae-saten+ | (saie-z-0)
s a3

T=0(h,Le)— L 9)
where “-” denotes contraction of the vector field into the = _f gagca+f (8Q[&]—¢-9) (15)
first index of the differential formL. A simple calculation z %
yields where Eq.(11) was used in the last step. It is worth noting
_ that for an arbitrary perturbatiod¢—i.e., d¢ need not sat-
dT=—E($)Leo. (10 isfy the linearized field equations or have any

. . . symmetries—of a solutiong, of the equations of motion
It was proven in the Appendix dfl7] that there exists an = e _
(n—2)-form Q (called theNoether chargg which is locally E(#)=0 also satisfyingC,$=0, we have, from Eq(11),
constructed fromp, £ and their derivatives, such that d(£26C,) =dé g £]—d?6Q[£]=0 (16)

JE]=dQ[£]+ £2C, (1)  Where the variation of Eq(10) was used in the last step,
together with the fact thatp satisfies bothE(4)=0 and
whereC, is an (—1)-form (with an extra dual vector in- £:¢=0. Thus, provided only tha$ satisfies the equations
dex which is locally constructed out of the dynamical fields of motion and(.¢=0, the current
and is such thaC,=0 when the equations of motion are 1
satisfied. al=— —ePCU5C, 4 £° (17)
Now suppose that the spacetime satisfies asymptotic con- 3!
d;tipns at infinity cprresponding to “c?se [ c[fl_8] and that g always conservedy,a?=0, where e,pq is the metric
¢ is an asymptotic symmetry'case I” of [18] is the case ompatible volume element of the background spacetime.
where a true Hamiltonian corresponding to every asymptotic - gqy;ation(15) is our desired general formula for the first
symmetry exists, t_heraeby giving rise to a conserved quantityyqer variation of conserved quantities. It holds for an arbi-
H,, associated witlt". It includes the case of spacetimes ,r diffeomorphism covariant theory of gravity derived

t_hgt are asymptotipally flat at spgtial infinity_ in general rela'from a Lagrangian with an asymptotic region satisfying the
tivity.) Let 6¢ satisfy the linearized equations of motion, .qnditions of “case I” of [18], provided only thate? is a

SE(¢)=0,ina neighbc_;rhood of infinity, bl.!t not necessarily symmetry of the background spacetirfiee., £;¢=0) and
throughout the spacetime. Then tr;e_ variation of the conga; 54 satisfies the source-free linearized equations of mo-
served quantitygH  associated witl® is given by[18] tion near infinity. Note that ifé¢ satisfies the linearized
equations of motion throughout the spacetime, th€g=0
5H§:f (5Q[£]—-¢-9). (120  and the integral ovek in Eq. (15) vanishes. If, in addition,
% > has no interior boundary—i.e., ifs, =J—then Eq.(15)
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reduces to simplypH,=0 (see[19]). On the other hand, if Writing V.A,=F¢p+ V,A, in the last term of E¢25) and
¢ satisfies the linearized equations of motion throughoutifferentiating by parts, we obtain

the spacetime buty is the bifurcation surface of the event
horizon of a stationary black hole, then EG5) yields the
general form of the first law of black hole mechanics when
&2 is chosen to be the horizon Killing field9,3]. Our Eq.

1
Jabc= dQa\bc Edabc(G _877Td w) €e

(15) generalizes these results by allowidg to fail to sat- _i dgp g€ +i ey pdf
isfy the linearized equations except near infinitg., by al- 47 ¥ ol €aabd™ AL €aabdet Vs
lowing for the presence of sources for Einstein’s equation as 1

well as the equations for the matter fieldas well as by = (dQ)apet Edabc(G _8771—%&)59

allowing % to be arbitrary.

We now specialize to Einstein-Maxwell theory, in order to 1
obtain explicit formulas for the variation of mass and angular + 4_6dabcAe§erFdf (26)
momentum in that case. The Einstein-Maxwell Lagrangian is T

1 where

L= 15 (€R— €0*g"FapFcq) (18)

1 1
Qab= — 75— €ancdV €% fbdF dage. (27
where € is the volume element associated with the metric. 2 16m *°¢ e ¢

Computing the first order variation af, we obtain Equation(26) is precisely of the required forrtll), so we

may identify Q,, as the Noether charge, and read Gff to

1
L= e~ G+ 87T2) 59+ EE(VaFab)b‘Aber@ be given by
(19 1 1
Cheda=o— €ebed GCa—87TEME )+ — e pcAaViFEh
whereT is the stress energy tensor of the electromagnetic coa g eve 2 & 4gehetE
field (28)
1 1 Clearly, as is required, we have,=0 whenever the
(Tem)ab= yp FacFpt— ZgadeeFde (200  source-free Einstein-Maxwell equatiof®3) and (24) hold.

When the source-free Einstein-Maxwell equations do not
hold, we write

and
1 87 TIe=G— 87Ty (29
Oapd ¢, 6¢) = fdabc,U (21) y i
4] =V Fo. (30
with Then T,, has the interpretation of being th@on-
electromagneticontribution to the stress energy tensie.,
vd=Vb5gdb—gceVd5gce—4de5Ab- 22 ctr gneti ributi stress energy tengoe

Tde=Tde —Td) and? is the charge-current of the Max-

The (source freg Einstein-Maxwell equations can then be well sources. In terms of these sources, we have

read off from Eq.(19): Coeda= €obed T+ °Ay)- (31)
b _
G*—87mTegy=0 (23 Now, let (g.p.A.) be a solution of the source-free
ab Einstein-Maxwell equations (23) and (24), and let
VaF*"=0. (24) (69.p,0A,) be a linearized perturbation which satisfies the

linearized Einstein-Maxwell equations with sourcé$

From Eg.(9), we find that the Noether current 3-form and 5j. Then, we have

with respect to£? is given by

6Chcda= €ebed 5Tea+Aa5j e)_ (32
— GR e d fg
Jape=dQabe T 167 GdabC(ZG & T EFFT) Substituting Eq(32) into Eq.(15), we obtain the explicit
L formula
— - aand (EVA+AN £9) (25 |
OH=— Leebco(faﬁTeaJr §3AL0)°) + Lz(ﬁQ[é]—é-@)

where (33

GR_ whereQ,y, is given by Eq.(27) and ® ., is given by Egs.

1
- ced
ab = ~ g Cabed? & (21) and(22). Finally, choosings? to be an asymptotic time
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translationt?, and writingM =H,, we obtain Eq(4) above, [see Eq(17) and Eq.(32)], we have
whereas choosing® to be an asymptotic rotationz?, and

writing J=—H,,, we obtain Eq(5) above. SM—Q,83= f a®Ng€apc (37)
3

0
Ill. PHYSICAL PROCESS VERSION OF THE FIRST LAW
OF BLACK HOLE MECHANICS wheren? denotes the future-directed unit normal3g and
eEabC= n%qape. Using the conservation of? and our as-
sumption that all of the matter eventually falls into the black
hole, we can rewrite Eq37) as’

Consider a classical, stationary black hole solution to th
Einstein-Maxwell equation§23) and (24). Suppose we per-
turb the black hole by dropping in sontpossibly charged
matter. If we assume that the black hole is not destroyed in
this process and that it eventually settles down to a stationary M —Q 8= f adkd}abc (39)
final state, we can compute its change in mass and angular H
momentum using Eqg4) and(5) above. We also can com- . ] . _
pute its change in electric charge from the flux of chargeWherek? is tangent to the affinely parametrized null geodesic
current through the horizon, and we can compute its chang@enerators of the event horizof, of the unperturbed black
in area using the Raychaudhuri equation. [#1, it was hole ande, satisfies
proven that Eq(2) above holds in the case where the unper-
turbed black hole has no electromagnetic field, as is neces- 1 ~
sary for consistency with the first law of black hole mechan- 4 Cabed™ Kla€beq- (39
ics [2,3]. In this section, we shall generalize this “physical
process” version of the first law to the case of charged black The second term ia? in Eq. (36) yields a contribution to
holes. the integral in Eq(38) of the form

Let (gap,As) be a solution to the source free Einstein-

Maxwell equationg23) and(24) corresponding to a station- a4y~
ary black hole. Let = J’Hq)bhaj Kg€anc (40)

a_¢a a
E=H0ye (34 where we have writteb = — (£2A,)|5,. However,®y;, is

he horizon of the black h
denote the horizon Killing field of this black hold]. LetS,  con> ot Oyt e Aonzon of the black oo, as can be

be an asymptotically flat hypersurface which terminates on
the event horizorH of the black hole. We wish to consider Vo (AED) = LA 4 ED(dA) .= LA+ EPF .. 41
initial data on3,, for a linearized perturbationdg,p, 6A,) alAoE) = Lehat E(dR)ap=Lfa+ EFap (4

with matter sourcesiT,, and 6j* [see Eqs(29) and (30) Byt £,.A, vanishes sincg” is a symmetry of the background

abovd. (We emphasize thaiT,, denotes the perturbation in so|ytion. Furthermore, by the Raychaudhuri equatisee
the non-electromagneticcontribution to the stress-energy e g.[21])

tenson We require thati) 6T, and §j2 vanish near infinity

and (ii) the initial data forsg,, and A, (and, hencegT,, de 1

and §j2) vanish in a neighborhood of the horizdd on v 592—Uab0ab— Rapk?K® (42)
3 ,—so that at the initial “time,”2,, the black hole is un-

perturbed. We assume that all of the matter and charge eVefiyhereV denotes the affine parameter corresponding®o

tually fall into the black hole, and that the black hole eVeN-y,qether with the fact that the expansiah,and sheargy,
tually settles down to another stationary black hole solution,4nish in the stationary background, we ’have a

of the source free Einstein-Maxwell equations. Our goal is to

computedM, 8J, 6Q, and SA for the final state black hole _ apb| _ crab

and verify that Eq(2) holds. 0=[Temlank®k?l = FacFok?k” “43
Since the perturbation vanishes near the internal boundard

d% of the initial hypersurface, it follows immediately from

Eqg. (33) [or equivalently, from Eqgs(4) and (5)] that the

perturbed spacetime satisfies

onsequentlyF . k? is null, and sinceF,,k?%kP=0 by the
antisymmetry ofF;, it follows that F,,k? is proportional to
ky . Hence, the pullback of ,,k? to H vanishes. Thus, the
pullback of V&, to H also vanishes, i.edy,, is constant
on H, as we desired to show. Consequently, we have

M —Qp8)=— f €qand E80T9+AL88]9). (35
D)

] SIn fact, Eq.(38) should hold for the black hole final state even if
Thus, the perturbed mass and angular momentum of the fingl| of the matter and charge do not eventually fall into the black

black hole will satisfy this relation. In terms of the current, hole, with SM and 8J being the perturbed mass and angular mo-
a, mentum of the black hole—which no longer equal the perturbed

mass and angular momentum of the spacetime because of the pres-
a?=EPST3 + ALgPs)2 (36)  ence of matter outside of the black hole.
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- assumptions about the thermal atmosphere surrounding the
I = —q’bhi 8] Kg€anc= PpndQ (44 black hole and derive certain properties of it.

" An isolated black hole would continuously emit Hawking
where5Q denotes the net flux of charge into the black hole.radiation to infinity, and quantum fields around the black
From Egs.(39), (36) and (44), we obtain hole_ _ca_nnot come to therm_al eqwhbrlum. Howev_er, thermal

equilibrium should be possible if the black hole is enclosed
B d e in a box. Nevertheless, even for an uncharged and nonrotat-
M =0y 6] — PyrdQ= J;fT & Ky. (45 ing black hole, this equilibrium will be unstable unless the
box enclosing the black hole is sufficiently sm&P]. For a
We now compute the change in area of the black hole. Téotating black hole, a more serious problem occurs: There
simplify the calculation, we use our diffeomorphism freedomcannot exist a thermal equilibrium state of quantum fields
in identifying the perturbed Spacetime with the background)UtSide the black hole unless the black hole is enclosed in a
spacetime to make the null geodesic generators of the eveRex that is sufficiently small that the horizon Killing fiegd,
horizon of the perturbed black hole coincides unparam- Ed. (34), is timelike everywhere within the ba}23]. Simi-
etrized curveswith the null geodesic generators of the un- larly, for a charged black hole, thermal equilibrium of a
perturbed stationary black hole. As a result of this gauge&harged field outside the black hole would not be possible
choice, the perturbation in the location of the horizon van-unless the box is sufficiently small that the electrostatic po-
ishes, and we havek®xk?. The perturbed Raychaudhuri tential differences inside the box are insufficient to permit
equation(42) yields pair creation. In the following, we will restrict consideration
to the case where we havegossibly charged and rotating

d(s9) aLb black hole enclosed in a sufficiently small Sothat the
av — 87 ([ Tiotallank™K”) 3¢ quantum fields outside of the black hole are in a thermal
equilibrium state with respect to the notion of “time transla-
= — 87 ([ Temlan)k?k®| 5= 87 (ST ap) kK" 5 tions” provided by the horizon Killing field?.
(46) We shall refer to observers following orbits &f, i.e.,

observers with 4-velocity
where we have used the fact tfidligy ] ,k?k|,=0 [see Eq. i
(43)] together with sk?=k? to eliminate such terms as ud=£€3/(— &%) (50)

[ Temlank?0kP. However, we have '
as stationary observersWe shall assume that the thermal

1 atmosphere admits a local thermodynamic description with
ZFacﬁFE—Z&JadeeFde respect to stationary observers. There is a natural ground
state of the quantum field associated with[24,4], which
1 del Lavb we shall refer to as thBoulware vacuum statdt would be
- §9adee5F k. (47 natural for stationary observers to consider the non-
electromagnetic stress-energy ten$qf and charge-current
The last two terms vanish sind€ is null in both the per- j2 relative to the Boulware vacuum, so we define
turbed and unperturbed spacetimes. On the other hand, we 5
showed above thaF,Kk°xk,, SO F,.0F k3P 5FkPk® Tab=Tar—(To)ab (51)
=0 by antisymmetry ofbF,.. Thus, we obtain

S([ Temlan) kK] 3=

'*a: ja__ja 52
a9 _ — 87 6T 4pk3K"| (48) L ©
dv ab s where (Tg)ap and j§ denote, respectively, thérue, renor-
o ) ) ) ) malized non-electromagnetic stress energy and charge-
A calculation identical to that given ip4] then yields current of the Boulware vacuum state.
It will be assumed that in thermal equilibrium, the non-
K5A=87TJH5Tde§ekd- (49)  electromagnetic energy currenf,£® and the charge current

7@ relative to the Boulware vacuum state are proportional to
Substitution of this result into E¢45) then yields Eq(2), as &% We also shall allow for the possibility that other locally

we desired to show. defined conserved currents;}® may exist—such as, e.g.,
the number currents of various species of particles that rep-
IV. THE THERMAL ATMOSPHERE resent additional conservation laws beyond conservation of

AROUND A BLACK HOLE

The remainder of this paper will be devoted to analyzing énote that if the black hole were enclosed in a box that was large
the validity of the generalized second la@SL) for pro-  enough foré? to become spacelike and/or allow a large electrostatic
cesses in which somgossibly chargedmatter is quasi- potential difference, the black hole would presumably simply lose
statically lowered toward &possibly charged and rotating angular momentum and/or discharge until the quantum fields out-
black hole and then released. In this section, we will state ouside the black hole could reach a thermal equilibrium state.
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Charge. We also shall assume that in thermal equilibrium th@\a when Ca|cu|ating the Changes :i"r&b and‘]:a. In view of
corresponding currentsr{)® measured relative to the Boul- Egs. (51) and (52), this additional assumption amounts to
ware vacuum state are proportional§& Consequently, in  assuming that the perturbations dfgj., andj§ are small
thermal equilibrium, the above currents can be characterizeg¢dompared with the perturbations ®f,, and j. Similar re-
respectively, by the energy density=T,,uu, the charge marks apply to ;) and (;)2. Finally, we also shall neglect
density g=—7],u? and the quantities\;=—(o;),u?, all  the effects of the perturbations gf;, andA, when calculat-
measured relative to the Boulware vacuum state. ing the changes is? and's?.

It also will be assumed that in local thermal equilibrium  \We now consider perturbing the state of the thermal at-
the stationary observers would assign an entropy cus®nt mosphere to a nearby state that is locally in thermal equilib-
to the thermal atmosphere, which also will be assumed to bgum, characterized by the state variables sp, g+ &q,
proportional to&®, so that it also can be described by they, 1 X, . variation of Eq.(54) yields the local form of the
entropy densitys= —s,u?, relative to the Boulware vacuum ordinary first law of thermodynamics
state. We explicitly allow for the possibility that some
“renormalization” of entropy may occuf25], so that the ~ 1
“true” entropy density,s, of the thermal atmosphere is given 5= T
by

Sp+Wq+ Y, vio\ (55)
I

where the temperaturd, and the potentialdd and y; are

s=s+sg (53 defined by appropriate partial derivativessofvith respect to
the state variables. In a small volumé, the locally mea-

where s, is the (true) entropy density of the Boulware g, eq energy relative to the Boulware vacuurtlis pV, and

vacuum. It would appear that such a renormalization of en- o ~  ~ ~ ~ .
tropy must occur to avoid a divergence in the contribution of V€ similarly haveQ=qV, andA;=A;V. Hence, we obtain

the thermal atmosphere to the total entropy dus becom- _ _ 1 ~ N
ing arbitrarily large near the horizon. 0S= 5(SV)=V(T5P+‘I’5Q+Z Yio\i| +s6V
We will assume thap, q, and \; serve as “state vari-
ables” that characterize the local thermodynamic state, so SU _ _
that the entropy densitg, can be expressed as a function of - T +WeQ+ Z VidA,
these state variables
3=33,a.%). (54) + 5—%—*1’5—2 %Xi)SV- (56)

However, it should be emphasized thatxve make no assuUMRye interpret the coefficient 0dV in this formula asP/T,
tions about the explicit functional form

; . whereP denotes the pressure of the thermal atmosphere rela-
The renormalized non-electromagnetic stress endigy,

tive to the Boulware vacuum. We thereby obtain the inte-

o ;
and charge-current”, of the therma}l atmosphere will, of grated form of the Gibbs-Duhem relationship for the thermal
course, perturb the spacetime metdg,,, and electromag- atmosphere:

netic field,A,, around the black hole. These perturbations of

Oap @andA, will, in turn, affect the distribution and properties e - -

of the thermal atmosphere. However, for a macroscopic P=Ts—p-T¥q-TX 7\ (57
black hole(i.e., a black hole of mass much greater than the !

Planck mass T,;, andj? will be small compared with scales Since only differences are taken in E§5), the ground
set by the background curvature, and we shall assume tha{ate contributions cancel out because, as discussed in the
they can be treated as linear perturbations of the C""‘SS'Cﬂrevious paragraph, we neglect changes in the ground state

electrovac black hole spacetime. In particular, we will as-gyantities. Therefore, E¢55) also holds for the true, renor-
sume that the formulas of Sec. Il apply for the contribution,5jized quantities, i.e.

of the thermal atmosphere to the total mass and angular mo-
mentum of the spacetime. The effects of the perturbations of 1
Jap and A, on the thermal atmosphere would then be of 55:f5p+‘1’5q+2 Yio\. (58)
second and higher order, and therefore will be neglected. '

In the following, we shall consider the effects of perturb- |, the following, we will work with the true, renormalized
ing the state of the thermal atmosphere to a nearby state tha{lantities.
is locally in thermal equilibrium. In accordance with the re- * aq giscussed above, the contribution,
marks in the previous paragraph, we shall neglect the effects
of the resulting perturbations of,, andA, when calculating E=M-QpJ (59)
the changes in the renormalizdq, and j2 of the thermal
atmosphere caused by the perturbation of its state. We shaif the thermal atmosphere to the total “energy” conjugate to
similarly neglect the effects of these perturbationggfand &2 of the spacetime is given Hgee Eq(33)]
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The necessary and sufficient conditions &8 to vanish for
all variationsdp, 6q and o\; satisfying SE=6Q=J6A;=0
can be determined as follows. If we s#= S\;=0 (so that

Similarly, the contribution of the thermal atmosphere to theWe automatically satisfydQ=o6A;=0), we see that by a

total electric charge is

Q= J'Eeebcdie (61)

and its contribution to the globally conserved quantities,
associated with;)? is

Ai:fzeebco(o'i)e- (62

If the state of the thermal atmosphere is perturbed, variatio
of the above formulas yields

SE=0M—Q,,8]=— f €oncd E20TC,+ £2A,5°)
3

(63

5Q:jzeebcd5je (64)

5Ai:f Eebcd5(0'i)e- (65
3

However, since as discussed above, we héVg,= 5T,

5j2=68j2, and &8(o;)?= 5(o;)® and since the “tilded” cur-
rents have been assumed to be proportionad®owe may
rewrite Egs.(63)—(65) as

5E=5M—QH5J=f_()(&p—gaAaéq) (66)
5Q= |_s0 (67)
5Ai = J“‘ 5)\| (68)

whereZ denotes the manifold of orbi{R6] of £&* with the

natural volume element,,.= 4., 1% 0N = understood. In
Eq. (66), the “redshift factor” y is defined by

X=(—EE)"2

We now impose the assumption that the thermal atmo
sphere is in thermal equilibrium with itself. More precisely,
we assume that at fixed total “energ)g, fixed total charge,
Q, and fixedA;, the total entropys= [=s is maximum. In
order for this to be the case, it is necessary $a0 be an

(69

suitable choice oBp we can make’S+ 0 while preserving
the remaining constrainfE=0 unless the temperaturg,
obeys the Tolman law

T=Tolx (71

whereT is a constant. The first term in E/0) can then be
written as

n

Substituting this into Eq(70), we find that by a suitable
choice of5q we can make’S# 0 unlessW¥ is of the form

1

5—lf5—5E+1f A, 6 72
TP | XOP= T T_oag a0q. (72

v

1
—T—O(§ Aat o) (73

where® is a constant. Finally, it is easily seen that extrem-
ization of S under the constraints requires eaghto be
constant,

Yi= Yoi- (74
It is easily seen that Eq$71), (73), and(74) are also suffi-
cient for Sto be an extremum.

Finally, taking Eqs.(71), (73), and (74) into account in
Eqg. (70), we see that for a perturbation that does not neces-
sarily preserveE, Q, or A;, the change in the total entropy,
S of the thermal atmosphere is given by

X 1
8S= J T 00— T (£*AaF Do) 8a+ 2 00\,
=\To To |

1
T—0<5E—<I>05Q>+2 Yoi OA,

1
T—O(éM—QH&J—CI)O&Q)nLZ Yoi A, . (75)

Equation(75) is the “global form” of the first law of ther-
modynamics for the thermal atmosphere. Note that our above
analysis and results are applicable to any thermodynamic

_"If the conserved currentsf), corresponds to a particle number
current of a neutral particle, the; can be varied independently of
Q and the other particle species. The chemical potential of this
species would then be given in termsgfby u;=—Tv;. Taking

Eqg. (71) into account, we see that the behavior of the chemical
potential corresponding to Eq74) is ui=—Tovyei/x- If (0i)a is

extremum with respect t_o all first order variations that Pr€the particle number current of a charged particle, then a variation of
serve the above constraints. We have

A; holding the number of other particle species fixed requires a
1 corresponding variation d. The chemical potential for a species
53:f 5S:f (—5p+‘lf5q+2 Yid\i|.  (70) of charged particles would be given by;=(—Toyei+el[Po
=) =\ T i + &A1)/ x, wheree; denotes the charge per particle of this species.
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system that is locally “at rest” with respect to a timelike V. LOWERING PROCESS
Killing field &2, i.e., we did not use any special properties of

the thermal atmosphere to derive EG1), (73), (74), or In this section, we will consider a process in which a box

(75), although in our formula foE, we did assume that the containing charged matter is quasi-statically lowered toward

’ 9 ! i the black hole and then dropped into the black hole or oth-

non-electromagnetic stress-energy;,, and charge-current, . lowed to th i ith the black hole/th |

j2, could be treated as a linear perturbation of an electrovag " o¢ &owe to thermalize with the black hole/thermal at-
' ﬁwosphere system. The box will be assumed to be “perfectly

Sp&\l/s/gtlrr:f,{, impose our assumption that the thermal atmoinsulating,” i.e., the walls will be assumed to be perfectly
g P assumpti . reflecting with respect to the fields inside and outside of the
sphere is in thermal equilibrium with the black hole, i.e., that

. . box. However, as will be discussed further below, the walls
the total generalized entropgc=S+ Sy, O.f the _Comb'”e.d of the box will necessarily radiate energy, charge, etc. into or
black_ hole/thermal atmqsphere system is at |ts_ maximuny ¢ the box as the box is lowerdd]. We make no as-
Eﬂosf'k/lli\ﬁlue for thel given valuttas othth(fTblned r(;]"’1‘°‘S’3umptions concerning the size, shape, or contents of the box

hC_ _bh’+ angu ?rh momlen um, CB_ h t]if" lan ; other than that its size is small compared with that of the
chargeQc=Q Qbh.’ of the total system. By the firstlaw of - o hole and that its contents satisfy the ordinary thermo-
black hole mechanics, we have dynamic laws(see below. In particular, we do not make the

1 “thin box” approximation[7], nor do we even assume that

5Sbh=-|-—(5'\/| bh— Q1 83pn— PpndQpp).- (76)  the walls of the box are regtangu!ar in she_\pe. .
H The process under consideration consists of two distinct
) i stages{i) A quasi-static process in which the box is slowly
Comparing Eqs(75) and (76), we see thaSc will be an  |owered toward the black hole. In this process, work may be
extremum under interchange of mass, angular momentungone py an external agent, so that the total energy contained
and gharge betvyeen the thermal atmosphere and the blagk the  box/black hole/thermal atmosphere system may
hole if and only if we have change.(ii) A non-quasi-static process in which the box is
dropped into the black hole or otherwise destroyed, and the
To=Th 77 system is allowed to thermalize. No change in the total en-
ergy or charge of the complete system occurs in this stage.
Po=yy, (78 we will argue that the total generalized entrofy, cannot
decrease in either of these stages.
and Consider, first, the quasi-static lowering process. At any
given time during this process, the total generalized entropy,
%0i=0. (79) S’ of the system can be written as

Note that the vanishing ofy; is essentially a consequence of

the “no hair theorems”: Although for mattefincluding the S'=Sg+Sc— Sp. (83
thermal atmospheyéhere may be locally conserved currents

(07)? aside from mass, angular momentum, and charge, thelidere, S; denotes the total entropy contained in the box, and
is no global conservation law for these quantities when & denotes the total entropy that the combined black hole/
black hole is present, since the “charge$;’ can fall into the  thermal atmosphere system would have at the given values
black hole, which retains no “memory” of them. If the of T, and ®,, if the box were not present. Finall§, de-
chargeA; corresponds to the number of particles of a par-notes the entropy of the displaced thermal atmosphere, i.e.,
ticular species, then the chemical potential for that speciethe entropy that would have been contained in the thermal

(see footnote Yis given by atmospherdat the given values of ; and ®,,) within the
region occupied by the box.
Hi =€ (Ppr—P)/x. (80) We now focus attention oSg. It is instructive to con-

) ) sider, first, the case where the box initially is “empty,” i.e.,
It follows from Eq. (80) that w; vanishes on the horizon of tne jnitial state of the fields inside the box is the natural
the black hole, as had previously been claimei1i6]. vacuum/ground state relative to the notion of time transla-
Taking into account the above relations, we find that thgjgns defined byg? (see[24]). Then, we claim that if the
integrated Gibbs-Duhem relatid67) for the thermal atmo-  |owering process is sufficiently slow, no “particle creation”

sphere now takes the form will occur as the box is lowered, and the box will remain in
~ L - its ground state. In other words, an empty box will remain
XP=Tus—xp— (P —py)q. (81)  empty as it is quasi-statically lowered. By definition, the Ca-

simir energy of the box is the difference between the energy
We also note that the combined black hole/thermal atmocontained in the empty box and the energy that would be
sphere system satisfies contained in the Boulware vacuum in the region of space
occupied by the box(Recall here that by “energy,E, we
58C=i(5M 0,63 DpoQ ):in —®,:600) mean the conserved quantity conjugate to the horizon Killing
Ty € THHOSCT EOhTC/ T AEECTEbhTC) figld ¢ rather than the asymptotic time translatith i.e.,
(82 E=M-QuJ [see Eq.(59) abovd.) If we neglect possible
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changes in the Casimir energy of the box as it is lowered, ithcrease—or, at least, a non-decrease—of entropy relative to
follows that in the lowering process for an empty box, wethe ground state during the lowering process for the same

have reason that the ordinary second law of thermodynamics
holds in flat spacetime physics. Consequently, we conclude

AEg=AE, (84)  that whatever is initially placed inside the box, we have

whereAEg denotes the difference in the energies contained AEBEASB—ASOBO (86)

in the box at two stages of the lowering process, Ark} ) _

denotes the difference in the Boulware vacuum energies ifuring the lowering process. _

the corresponding volumes. Here we have writtey{ father We now turn our attention to the calculation of the

than “8” to emphasize that we are taking differences of change,ASc, in Sc during the lowering process. By Eq.

quantities associated with different regions of space rathei82), we have

than differences of quantities associated with the same region 1

of space, as in the previous section. _ ASc=0Sc=7~(SEc—P4rdQ0) (87)
Similarly, the total charg€g within the empty box satis- H

fies so we need to calculate the energ¥c, and chargesQc

delivered to the black hole/thermal atmosphere system dur-
ing the lowering process. The total charge of the entire sys-
m is

AQg=AQo. (89)

It should be noted that changes in the charge containe
within the box can occur only as a result of radiation by the Q' =Qg+Qc—Qp (89)
walls of the box. However, this radiation by the walls of the
box is independent of the contents of the box. Therefore, iso by conservation of charge, we have
all casedi.e., whether or not the box is emptyhe change in
the charge of the box as it is lowered is given by ERF). 0Qc=—AQp+AQp. (89)
However, Eq.(84) holds only for the empty box, since the
total energy contained within the box can vary due to red Ve already found above thatQg=AQ, [see Eq(85)], so
shifting of the energy of the contents of the box as well as byVe have
radiation by the walls of the box. ~

Now suppose that the box is initially filled wittpossibly 6Qc=~AQo+AQp=AQp. (90
charged matter that is in thermal equilibrium. As the box is
lowered, the matter will, in general, redistribute itself within
the box due to the changing electromagnetic and gravit

To calculateSE-, we note that this quantity cannot de-
pend upon what is placed inside the box during the lowering
%rocess, so it suffices to restrict attention to the case where

e o 1 o s sy e DO 5 e n that case, the change i total energy
Y, _— € inside the box is given by Eq84), so by conservation of
lowered. Observers inside of the box will view the process as we have

LT . o energy,
being isentropic for the same reason as slow variations o
parameters in the Hamiltonian result in isentropic processes YV _ =

in flat spacetime physics. Thus, the entropy above the ground OBEc=W—ABy+ABp=W+AEp (91)

state must remain constéras the box is lowered. Taking \yherew denotes the work done by the external agent during
into account the possibility that the ground state entropy ishe |owering process. We calculaté as follows. As shown
nonzero due to “renormalization” as discussed in the previ-, the Appendix, the net forc&2 exerted by an external
ous section, we see that in a slow lowering process where t%ent at redshifi, on a stationary box whose size is much

matter is initially in thermal equilibrium, we havASg  gmaller than the scales set by curvature is giveh by
=AS,, where S, denotes the entropy of the Boulware

vacuum in the region occupied by the box. Equivalently, we
haveASz=0, where in accord with the notation of the pre-
vious sectionSg=Sg— Sy.

Finally, suppose now that the box is initially filled with Heree® denotes the unit “upward pointing” tangent to the
arbitrary matter, not necessarily in thermal equilibrium.string (defined over the volume of the box via parallel
Then, as the box is lowered, the matter miggartially or  transport—see the Appendix for detailsnd n® is the unit
fully) thermalize. Observers inside the box will see anoutward pointing normal to the surface, of the box in the

XoF2=¢e? f xPepn°dA. (92
JB

®This result also can be derived from energy balance consider- *Here we neglect any contributions of the Casimir energy and/or
ations, as outlined in footnote 2 $12]. However, this argument the walls of the box tg. These will not, in any case, affect the
assumes that no “extra energyi'e., “heat”) is fed into or taken energy delivered to the black hole/thermal atmosphere system, pro-
out of the box as it is lowered, and thus, in essemssumeghat vided that their locally measured stress-energy remains constant
the lowering process is isentropic. during the lowering process, so that E§4) holds.
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manifold of orbits ofé2. If the box is lowered, the work done tion (ii) asserts that the final state maximizes the total gen-
by the external agent during the lowering process is eralized entropy at the given values of total mass, angular
momentum, and charge. Therefore, the initial state could not
have had more generalized entropy than the final state.
Consequently, under the assumptions stated in Sec. | as
well as our assumptions about the thermodynamic properties
wherel denotes proper length along the path of lowering ingf the thermal atmosphere stated in Sec. IV, the GSL cannot

the manifold of orbits. Equatio(f_)?a) is easiest to analyze in pe violated in any quasi-static lowering/dropping process.
the case of a rectangular box with “top” and “bottom” faces

perpendicular toe?. In that case, Eq(93) corresponds to
performing a volume integral of P over the spatial region VI. CONCLUDING REMARKS ON THE VALIDITY
swept out by the top face of the box, and subtracting from it OF THE GSL

the similar integral over the spatial region swept out by the
bottom face. The result is

WI—Xof (Faea)||d|=—fxf’eanadAdl (93

In this paper, we have established the validity of the GSL
in arbitrary quasi-static lowering/dropping processes for

_ charged and rotating black holes, without the need to assume

W=Af xPdV (94 any entropy bounds for matter. Our analysis depends, prima-
B rily, only on the two very general assumptions stated in Sec.

where the integral is taken over the volume of the box, and I. It thereby generalizes and simplifies previous analyses of

denotes the difference between the final and initial values ofUCh processes. ,

this integral in the lowering process. By a similar argument, However, it should be noted that during the course of our
it is not difficult to see that Eq(94) remains valid for a box analysis, we made several simplifying assumptions concern-
of arbitrary shape. ing the thermodynamic properties of the thermal atmosphere.

We now apply the integrated Gibbs-Duhem relatiga) In particular, it was assumed that stationary observers would

for the thermal atmosphere. We thereby obtain (i) assign a locally homogeneous entropy densitio the
thermal atmosphere that is valid on all relevant scales and

W=A | T3 5= (D —P0)a1dV (ii) thats is a function only ofp, g, and\;. The first as-
f[ WS xp—( on) 0] sumption need not be valid if one considers boxes whose

~ ~ ~ size is small compared with the wavelength of the ambient
=ThASpy—AEp+PprAQp (95 thermal atmosphergsee[10]). The second assumption could

where the subscript D denotes quantities associated with tHéil because the formula far might also depend nontrivially

displaced thermal atmosphere and E8f) was used. Com- UPON “location in the gravitational field{e.g., depend upon
bining Egs.(87), (90), (91), and(95), we obtain the local value of the curvature and/or derivativescoy.
In this concluding section, we wish to argue that if the

1 1 - breakdown of any such simplifying assumptions about the
ASc=5-[0Ec= PpndQc]= 7 [W+AEp— PpndQc] thermal atmosphere were to allow one to violate the GSL,
H H they also would allow one to violate the ordinary second law.

=AS, (96) Specifically, suppose that—on account of, say, the break-

down of assumption&) or (ii) of the previous paragraph—it
combining this equation with Eq$83) and(86), we obtain ~ were possible to violate the GSL in a quasi-static lowering/
dropping process. Since the validity of the GSL during the
AS' =AS=0 97 “dropping” phase does not depend upon any simplifying as-
sumptions about the thermal atmosphere, it follows that a
which shows that the generalized second law holds duringiolation of the GSL must occur in the lowering phase. Now,
the lowering process. in the lowering phase, the box will stay some finite distance,
Now, consider the “dropping process,” i.e., we supposee, outside of the horizon of the black hole. Then, it should be
that—after completion of the above lowering process—thepossible, in principle, to construct @harged and rotating
box is released and allowed to fall into the black h@ethat  shell with a perfectly reflecting surface whose exterior gravi-
the box is destroyed and its contents are allowed to thermatational and electromagnetic fields coincide with those of the
ize with the black hole/thermal atmosphere systeéive as-  black hole at distances greater thaiirom the horizon. We
sume that at the end of this process, the final state of thean enclose this shell in a cavity of the same size as used for
system is that of a black hole in equilibrium with its thermal the black hole and then fill this cavity with “real” thermal
atmosphere. Although the “dropping process” is a highly radiation in such a way that its temperatureTig/y, its
nonequilibrium process and we cannot analyze the time evgsotentiald is equal tod,;, and the potentialy,; are equal
lution of the total entropy during this process, it is clear thatto zero.(This can be accomplished by supplying the atmo-
if the second assumption of Sec. | holds, the total generalizegphere with the appropriate amounts of energy, charge, and
entropy,S’, cannot decrease in this process. Namely, duringther conserved quantiti¢sThere may be slight differences
the “dropping process” the total mass, angular momentumpetween the properties of the thermal atmosphere of the
and charge of the system remain constant. However, assumplack hole and those of the “real” atmosphere around the
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shell that we have put in “by hand” on account of slight [\ p2
differences between the ground states and modes in the two
cases. However, these differences can be made arbitrarily
small by choosing the radius of the shell to be arbitrarily |
close to the horizon radius of the black hole. ,
Now, the analysis of the lowering process given in the i
previous section applies without change to a lowering pro-
cess where the black hole/thermal atmosphere system is re-
placed by the shell surrounded by a “real” atmosphere, pro-
vided that the subscript “C” is now interpreted as referring
to the “real” atmosphere around the shell. The valueSgf
Ec, etc. may be very different for the “real” atmosphere
around the shell as compared with the black hole/thermal
atmosphere system, but the variations of these quantities dur-
ing the lowering process will be the sarf@ovided that the
radius of the shell is sufficiently close to the horizon radius
of the black holg It follows that if a lowering process that
decreases the total generalized entropy can be done in the
black hole case, a corresponding lowering process in the case
of the shell will decrease the total ordinary entropy. Thus, if
the GSL can be violated, then a corresponding process will
violate the ordinary second law.

FIG. 1. In a stationary spacetime, a box is held in place by an
ACKNOWLEDGMENTS agent who holds a massless string connected to the box. The sur-
face, C, enclosing the box and string is represented by the dotted
This research was supported in part by NSF Grants Ndine.
PHY95-14726 and No. PHY00-90138 to the University of
Chicago. We decompose the stress-energy tensor of everything—
including the contents of the box, the walls of the box, the
APPENDIX: FORCE EXERTED ON A STATIONARY BOX string, gnd the matter outside of. the box—into its electro-
' magnetic and non-electromagnetic parts
In this appendix, we consider a stationdbyt not neces-
sarily stati¢ spacetime, with timelike Killing vector fielg?.

We consider a stationary box in this spacetime which is held

. : where T2, denotes the stress tensor of the electromagnetic
in place by an agent who holds a massless string that i EM o
connected to the bofsee Fig. 1 The box may be of arbi- ﬁ/eld [see Eq(20)]. We assume that the electromagnetic field

trary shape and may contain charged matter. An externdf Stationary

electromagnetic field may be present and there also may be LA=0. (A3)
additional matter outside of the boxvhich may exert a ¢a

“buoyancy force” on the box We wish to calculate the This implies, of course, that2y, and the electromagnetic

force that the agent must exert on the “far end” of the stringcharge-current vectoi?, also are Lie derived by?. We
in order to hold the box in place under the following assump-fyrther assume thge takes the form

tions:
We assume that the world sheet of the string is invariant .
a - ji=qui=—40 (A4)
under&?®, and has stress-energy of the form Y

Tona= TP+ T2 (A2)

total

TaP=peieP (A1)  whereu?= &y with y=(—£3¢,)*? i.e., we assume that
the charges are “at restho current flow with respect to the

wheree? is a unit vector that is tangent to the world sheet ofStationary observers. Similarly, we assume that the total non-
the string and is orthogonal . (We choose the direction €lectromagnetic stress-energy tensgy,, is stationary
of e? to point “towards the agent,” i.e., “away from the £T.=0 (AS)
box.”) This stress tensor corresponds to a massless string, §lab™
which we co_nsider for simplicity; it is straightfo_rward 1o and we further assume thait,, takes the form
allow the string to have mass, but then the weight of the
string would contribute to the force exerted by the external Tab= puayP+ 2P (AB)
agent. The P”in Eqg. (A1) is understood to be proportional
to a delta-function on the world sheet of the string. We alsawith t,,u®=0, i.e., we assume that the non-electromagnetic
assume that the string does not contain any electromagnetitress-energy tensor has no “time-space” componéis,
charge or current. no momentum densifyrelative to the stationary observers.
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Note that our assumptions concernii§® are compatible . ) ) 1 ) )
with our assumed form of the stress-energy tensor of the€aVpt®’=Vp(ext*) —t**Vye,= ;Db()(eata ) —t*°Dye,.
string, Eq.(A1), which is included inT?®,

? ; . . (A12)
It is convenient to work on the manifol&, of orbits of
&2 (see[26)). All tensor fields onM that are Lie derived by Here we have used the identity
&2 and have all indices perpendicular ¢ have a natural 1
projection to=, and we will not distinguish in our notation V.oP=-D b A13
such spacetime tensors from their projectionEtoln par- by b(xv") (AL3)

ticular, 2 naturally acquires a Riemannian methig, given . ) )
by that holds for any vector field? in the class that projects to

E, and we also changeWd, to D, in the second term since

ab . . . .
hab=Gap+ UaUp. (A7) t2° has both indices perpendicular §6. We thus obtain

0=pe®D,x+qe*D,® + D[ xt?%e,]— xt*°De,.

We denote byD, the derivative operator oE associated (A14)

with h,,. Our final assumption is that the size of the box is

small compared with the scales of curvature in the manifold By construction,D,e, vanishes at the point where the

of orbits. string is attached to the box. If the geometry=®ifwere flat,
The string stress—energ')gb, Eq. (A1), must be conserved then Dye, would vanish identically throughout the box.

everywhere except at the end points of the string. This imSince the geometry oE is not flat, Dye, is, in general,

plies thate® must be a geodesic in spacetine8y ,e2=0. It

follows immediately thae®D,e?=0, i.e., the projection of

nonvanishing. However, its magnitude is bounded by the size
of the box times the curvature &. Therefore, for a box

the string to the manifold of orbitsZ, is a geodesic in the Wwhose size is small compared with the scales set by the cur-

manifold of orbits. We now choose a surfaCan = which

vature of 2, the last term in Eq(A14) will be negligible

encloses the box and string in the manner shown in Fig. 1compared with the other terms in that equation. Therefore,

We extend the definition a#® to the interior ofC by parallel
transport(with respect toD,) along geodesicéwith respect

we shall drop this term.
Integrating the remaining three terms in E414) over

to D,) starting from the point at which the string is attachedthe volume,V, enclosed byC and using Gauss's law, we
to the box.(Note that since the size of the box has beenobtain
assumed to be small compared with scales set by curvature,

parallel transport over the box will be essentially path inde-

pendent in any case.
Conservation of the total stress energy, ER), yields

0=V, T2 =V (puuP) + V,t3+ v, T2,

= puPV U+ Vit — Fabj, (A8)

where we have useafV,p=0 andV,u®=0 in the last line.
Sinceu?= £#/ y, we obtain

1
ubeuaz;DaX. (A9)

On the other hand,

. q q
Fabj b= (VaAp— VbAa); gb: )_([ - LgAa"' Va(Abgb)]

= ED@ (A10)
X
where®=— A, £2. Thus, we obtain
— p a ab a a
O—;D x+t Vit +;D D. (A11)

We now contract this equation wit,, using

0= f [pe®D,x+qe*D ]+ f xt?Pe,n,dS (A15)
\Y C

where the natural volume elemerttgith respect tah,;,) on

V andC are understood, amf is the unit, outward pointing
normal toC. We now “shrink C down” so that it just barely
encloses the box and string. In this limit, the volume integral
receives no contribution from the strifgince we assume
that p=q=0 on the string, and the surface term also re-
ceives no contribution from the portion surrounding the
string (since the area of this portion goes to 2eexcept for

the contributionf yP= xof P arising from the end point of
the string held by the external agent, wheigdenotes the
value of y at this end point. Sinc&?=—e?/P is just the
force that the external agent must exert to counterbalance the
tension/pressure of the string and thereby hold the box in
place, we obtain the desired general expression for the force
needed to hold the box in place,

XoF2= ea< JB[PebDbX"‘ qe’Dyd ]+ JantheCnbd S)
(A16)

where the volume integral is now taken over the H8xand

the surface integral is taken over the boundary of the box,
dB. The first term in the volume integral can be interpreted
as the “weight” of the contents of the box. Note thatin-

cludes only the non-electromagnetic energy density, i.e., nei-
ther the electromagnetic self-energy of charges within the
box nor their interaction energy with external electromag-
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netic fields contributes to the first term. The second term iground black hole electromagnetic stress-energy are),kept
just the Lorentz force on the charge distribution in the boxthen a repetition of the steps in the above derivation shows
(including “self-force” effecty. The final term corresponds that in this case, EA16) continues to hold, provided only
to the buoyancy force exerted on the box by the matter sutthatp, g, andt?® are replaced by their “tilded” counterparts,
rounding the box. i.e., we have

We now specialize this result to the case of a box held
near a black hole, which is surrounded by the thermal atmo-

sphere of the black hole. In this case, we tgReo be the

horizon Killing field, Eq.(34). However, there is no reason

to expect the true, renormalized charge-currghtwill be of

XOF:J’ [;eaDax-FaeaDa(I)]-l-f xt?%e,n,dS
B B
(A17)

the form (A4) nor do we expect the renormalized nonelec-whereF =F2e, and® = — A, £2 with A, is the vector poten-

tromagnetic stress-energy tensbt®, to be of the form(A6),

tial of the background black hole.

since the charge-current and stress-energy of the Boulware Finally, for the case where the thermal atmosphere sur-
vacuum would not be expected to have this form. However,qnds the boxT2P outside of the box will have a perfect

it seems reasonable to expect that the differerjcesndT2®,

fluid form, so Eq.(A17) further simplifies to

between the true charge-current and stress-energy and those

of the Boulware vacuurfsee Eqs(51) and(52) abovg will
have this form. Now, the total stress-energp)Cy,;, of the

Boulware vacuum must be conserved, &, also is con-
b

served. If treat boti2Y, and (To)2, as small perturbations

Xonf [BeaDaX+aeaDa®]+f xPe,n%dS.
B B
(A18)

of the electromagnetic stress-energy tensor of the black holEor the case of an empty box £ q=0), we obtain Eq(92)
(so that only linear terms in the deviation from the back-used in our analysis in Sec. V.
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