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Inverse scale factor in isotropic quantum geometry
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The inverse scale factor, which in classical cosmological models diverges at the singularity, is quantized in
isotropic models of loop quantum cosmology by using techniques which have been developed in quantum
geometry for a quantization of general relativity. This procedure results in aboundedoperator which is
diagonalizable simultaneously with the volume operator and whose eigenvalues are determined explicitly. For
large scale factors~in fact, up to a scale factor slightly above the Planck length! the eigenvalues are close to the
classical expectation, whereas below the Planck length there are large deviations leading to a nondiverging
behavior of the inverse scale factor even though the scale factor has vanishing eigenvalues. This is a first
indication that the classical singularity is better behaved in loop quantum cosmology.
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I. INTRODUCTION

General relativity predicts singularities in many situatio
of astrophysical or cosmological interest, which means t
there are limits for the classical theory beyond which it is
longer valid. A widespread expectation is that a quantizat
of gravity is inevitable in order to describe these regim
meaningfully, but up to now there has been no comple
generally accepted quantization of general relativity. Fo
long time, mini-superspace models obtained by a symm
reduction of the classical theory with a subsequent quant
tion @1,2# ~henceforth called ‘‘standard quantum cosmolog
in the context of cosmological models! were the only ap-
proach to address those issues; but in view of the fact tha
quantization techniques were those of simple quantum
chanical systems, which cannot be applied to the full the
the results are not likely to hold true in a full quantization.
fact, it has been shown in quantum geometry@3# that geom-
etry has a discrete structure leading, e.g., to a discrete
ume spectrum@4,5#, whereas in standard quantum cosm
ogy the scale factor, and so the volume, is still continuo
with a range from zero to infinity. For large volume, this is
very good approximation to the discrete volume spectrum
quantum geometry, but just in the domain close to the c
sical singularity there are huge deviations between the
crete and the continuous spectra.

Therefore, we follow a different approach to quantu
cosmology which has been initiated in@6–11# and which
starts by selecting symmetric~isotropic, and in particular ho
mogeneous, in this paper! states in the kinematical Hilber
space of quantum geometry. This means that the symm
reduction is not purely classical, but is done after an esse
step of the quantization which already leads to the disc
structure of space. Consequently, the volume spectrum
cosmological models is discrete and even known explic
in the isotropic case@8#. The simplification of the spectrum
caused by symmetry~interpreted analogously to the familia
level splitting in the spectroscopy of atoms! is very fortunate
because it facilitates explicit calculations. Reciprocally,
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discreteness of the volume spectrum implies that the mo
of loop quantum cosmology embody the distinctive featu
of quantum geometry of having a discrete structure. In fa
the quantization techniques of loop quantum cosmology
designed to be as close to those of the full theory as poss
with only slight adaptations to the symmetry. So those m
els can be used for crucial tests of methods developed in
full theory, but they have also been used to derive new pr
erties, e.g., a discrete time and discrete physical~not just
kinematical! spectra of geometric operators@10#.

In this paper we will use techniques which have be
developed in order to quantize the Hamiltonian constra
and matter Hamiltonians in the full theory@12,13# for a
quantization of the inverse scale factor in isotropic quant
geometry. As a result we will derive a bounded opera
despite the fact that the volume or the scale factor has v
ishing eigenvalues. The underlying ‘‘mechanism’’ is th
same as the one which ensures, in the full theory, that ma
Hamiltonians can be quantized to obtain densely defined
erators. One might suspect that this is simply a mathema
trick which serves to remove singularities but which w
spoil the classical limit. We will show that this is not th
case: singularities are removed, but the classical regim
not affected. In fact, for the inverse scale factor the class
theory turns out to be an excellent approximation right up
a scale factor of the order of the Planck length. This is qu
unexpected;a priori, one expects the classical behavior to
valid only for scale factors very large compared to the Plan
length.

The plan of the paper is as follows. First, we will reca
the framework of isotropic loop quantum cosmology and e
tend the methods developed in@8# to gauge non-invarian
states in Sec. II. This will then be applied for a discussion
the inverse scale factor which is quantized in Sec. III. W
will determine all its eigenstates and its complete spectr
and study the two interesting regimes for very small a
large scale factors. In the final section we will present o
conclusions concerning the validity of quantization tec
niques and the quantum picture of the classical singulari

II. ISOTROPIC QUANTUM GEOMETRY

The general framework for a symmetry reduction of qua
tized diffeomorphism invariant theories has been develo
©2001 The American Physical Society18-1
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MARTIN BOJOWALD PHYSICAL REVIEW D 64 084018
in @6# and specialized to homogeneous and isotropic mo
in @7#. Symmetric states are defined at the kinematical le
of the quantum theory, and thus have properties very dif
ent from those of states obtained after quantizing a cla
cally reduced theory. Still, for explicit expressions of sym
metric states and operators we need to know the symm
reduction of a theory of connections and triads which we w
sketch first in the case of isotropy.

Isotropic connections are of the formAa
i 5f I

i va
I

5cL I
i va

I , where L I5L I
i t i is an internalSU(2)-dreibein

~which is purely a gauge choice! and v I are left-invariant
one-forms on the ‘‘translational part’’N of the symmetry
groupS>N’SO(3) acting on the space manifoldS. @Here,
t j52( i /2)s j are generators ofSU(2) with s j the Pauli
matrices;N is isomorphic toR3 for the spatially flat model or
SU(2) for the spatially positively curved model.# For homo-
geneous models, the nine parametersf I

i are arbitrary. A co-
triad can be expressed asea

i 5aI
i va

I 5aL I
i va

I with the scale
factor1 uau. Using left-invariant vector fieldsXI fulfilling
v I(XJ)5dJ

I , momenta canonically conjugate toAa
i are den-

sitized triads of the form2 Ei
a5pi

IXI
a5pL i

IXI
a where p

5sgn(a)a2. In addition to gauge freedom, there are only t
two canonically conjugate variablesc and p which embody
the gauge invariant information of the connection and tri
Information about the geometry of space is fully contained
p, which is the square of the radius of a spacelike slice. T
Liouville form

~gk!21pi
Idf I

i 5~gk!21pdcL i
IL I

i 53~gk!21pdc

leads to the symplectic structure

$c,p%5 1
3 gk ~1!

(k58pG is the gravitational constant andg the Barbero-
Immirzi parameter!. The factor1

3 has been overlooked in@8#,
and so also the derivative operators and the volume spec
derived there have to be corrected by appropriate factors
will do this in the formulas below.

Isotropic states in the connection representation are
fined as distributional states in the full theory which are s
ported only on isotropic connections. Since all the inform
tion of an isotropic connection is contained in o
SU(2)-element@exp(cL3

i ti), say# the reduced kinematica

1In a triad formulation we use a variablea which can take both
signs, even though the two sectors of positive and negativea, re-
spectively, are disconnected in a metric formulation.

2Note that, in contrast to@7#, we use the physical metric in orde
to provide the density weight and not an auxiliary homogene
metric: pi

I
ªudetaJ

j uai
I , ai

I being inverse toaI
i . Nevertheless, we

need to fix a reference system already in order to define the ac
of our symmetry group, which leads to the factor ofV0 in the
formulas of@7,8#. However, this factor is an artifact of the homo
geneous models and not of physical significance. It just tells us
we cannot define an absolute scale factor in a diffeomorphism
variant setting, but only a relative one with respect to some gi
value. In this paper we will setV051.
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Hilbert space can be taken to be the spaceHkin
5L2

„SU(2),dmH… of square integrable functions onSU(2)
with respect to the Haar measure. However, gauge invaria
is not imposed in the obvious sense by conjugation on
copy of SU(2), but instead in such a way that there is
larger class of gauge invariant functions~see@8# for details!.
In addition to the usual character functions

x j5
sin~ j 1 1

2 !c

sin1
2 c

, ~2!

where j is a non-negative half-integer, we have gaug

invariant states given byz21/25(A2 sin1
2c)21 and

z j5
cos~ j 1 1

2 !c

sin1
2 c

. ~3!

All states (x j ,z j ) form an orthonormal basis of the gaug
invariant kinematical Hilbert space. The fact that we need
functionsz j and also the valuej 52 1

2 can be seen from a
representation of the kinematical Hilbert space as perio

functions inc, where the measure provides a factor sin21
2c. A

complete set of those functions is given by sin and cos w
the above frequencies. Gauge noninvariant functions
given byL I

i x j andL I
i z j whereL I

i is the internal dreibein and
provides pure gauge degrees of freedom.

In @8# the volume operatorV̂ has been shown to have th
eigenstatesx j , z j with eigenvalues~corrected here for the
missing factor1

3 in the symplectic structure and derivativ
operators!

Vj5~g l P
2!3/2A 1

27 j ~ j 1 1
2 !~ j 11!. ~4!

The eigenvalue zero is three-fold degenerate, whereas
other eigenvalues are positive and twice degenerate.
two-fold degeneracy arises naturally in a triad formulati
because any value of the volume can be achieved in
different orientations of the triad. Intuitively, this demon
strates the necessity of the statesz j besides the character
x j . Taking the cubic root yields the eigenvalues of the sc
factor uau which are shown in Fig. 1.

However, in@8# the action ofV̂ has not been determine
on gauge noninvariant states. An extension to those stat
done by using gauge invariance of the volume, which i
plies @L I

i ,V̂#5aL I
i for some aPR. We can now use

( iL I
i L i

I51 ~no sum overI ) in order to obtain

05F(
i

L I
i L i

I ,V̂G5(
i

L I
i @L i

I ,V̂#1(
i

@L I
i ,V̂#L i

I52a

and soa50. Thus, the volume operator commutes withL I
i

~acting as a multiplication operator in the connection rep
sentation! and we can trivially extend its action to gaug
noninvariant states.

All we need for the following calculations is the action o

cos1
2c and sin1

2c appearing in the ‘‘point holonomy’’@14# hI

s

on

at
n-
n
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INVERSE SCALE FACTOR IN ISOTROPIC QUANTUM . . . PHYSICAL REVIEW D64 084018
ªexp(cLI
iti)5cos(12c)12sin(12c)LI

iti which in quantum ge-
ometry serves as the basic multiplication operator. This
be obtained in the connection representation~2!,~3! by using
trigonometric relations leading forj > 1

2 to

cos~ 1
2 c!x j5

1
2 ~x j 11/21x j 21/2!,

cos~ 1
2 c!z j5

1
2 ~z j 11/21z j 21/2! ~5!

sin~ 1
2 c!x j52 1

2 ~z j 11/22z j 21/2!,

sin~ 1
2 c!z j5

1
2 ~x j 11/22x j 21/2! ~6!

with certain modifications in numerical coefficients forj
50 or j 52 1

2 , which are not important for our purposes.
Because of the exceptional formulas for lowj it is more

convenient to use the states

un&ª
exp~ 1

2 inc!

A2sin1
2 c

, nPZ ~7!

which are decomposed in the previous states by

un&5221/2~z1/2(unu21)1 i sgn~n!x1/2(unu21)!

for nÞ0 and u0&5z21/2. The labeln of a stateun& is pro-
portional to the eigenvalue of the dreibein operator@8# @note
the factor 1

3 in order to correct for the symplectic structu
~1!#

p̂5L3
i Ei

3ˆ 52 1
3 ig l P

2S d

dc
1 1

2 cot12 cD .

On these states the action of cos1
2c and sin1

2c is simply

cos~ 1
2 c!un&5 1

2 ~ un11&1un21&),

sin~ 1
2 c!un&52 1

2 i ~ un11&2un21&)

for all integern.

FIG. 1. EigenvaluesVj
1/3 of the scale factor~in units of Ag l P).
08401
n

III. QUANTIZATION OF THE INVERSE SCALE FACTOR

In isotropic geometries, the classical singularity is s
naled by the inverse scale factoruau21 which diverges for
a50 and occurs by some positive power in all divergi
curvature components. Classically, we haveuau215V21/3 so
that one might try to quantize it by using the inverse volum
operator. This inverse, however fails to be a densely defi
operator becauseV̂ has the eigenvalue zero~with threefold
degeneracy:V̂ annihilatesz21/2, x0 andz0). Thus, we have
to look for another approach. We will use an express
which classically reduces to the inverse scale factor bu
better suited for a quantization, namely

mIJª
qIJ

Adetq
5

aI
i aI

i

udet~aI
i !u

5
1

uau
d IJ ~8!

in terms of the isotropic metricqIJ5a2d IJ or the triad com-
ponentsaI

i . Since the latter are not fundamental variabl
one needs a prescription to quantize them. Here one
make use of the classical identity

ea
i 52~gk!21$Aa

i ,V% ~9!

and quantize the co-triad by expressing the connection
terms of a holonomy, using the volume operator and turn
the Poisson bracket into a commutator. This method has b
successfully employed in@12# in order to quantize the
Hamiltonian constraint of the full theory. In this section w
carry out a similar procedure for a quantization of the inve
scale factor. The regularization scheme adapted to isotr
models is reviewed in Sec. III A and then applied tomIJ in
Sec. III B where we derive an operatorm̂IJ . Its spectrum is
determined in Sec. III C followed by a discussion of its ma
features and viability~Sec. III D!.

A. The regularization scheme

Let us first recall from@9# the regularization scheme. A
noted in @12#, it is important to be aware of the densit
weight when regularizing expressions in a diffeomorphi
invariant field theory: only scalar quantities, usually spa
integrals of weight 1 densities, can be quantized in a ba
ground independent manner. This is also important in
reduced models. Although we do not have the freedom
make arbitrary coordinate transformations since most
them would violate the symmetry conditions, we do ha
dilatations with a scale parametere which allow us to keep
track of the density weight. These scale transformations a
play an important role in adapting the regularization of@12#
in the full theory to reduced models~see@9# for details!. We
will proceed along the lines of the following recipe: Startin
from a classical expression in the full theory we first ins
homogeneous fields parametrized by the compone
f I

i , pi
I , . . . and arrive at the reduced expression for a

mogeneous model. Now we start the regularization by p
forming a scale transformation with parametere. Taking care
8-3
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MARTIN BOJOWALD PHYSICAL REVIEW D 64 084018
of the density weights, we have to multiply any one-for
component bye, any density-weighted vector field compo
nent bye2, Poisson brackets bye23, etc. Our original ex-
pression, a density integrated over space, then gets m
plied by a factore3 which is absorbed in the rescaled spa
volume. In a homogeneous model, the continuum lim
needed in the regularization is replaced by a limite→0
which means, e.g., that connection componentsf I

i can be
approximated by holonomieshI5exp(efI

iti)511efI
iti

1O(e2) as in the full theory. The quantized expression,
the other hand, will be independent ofe; for a detailed dis-
cussion see@9#.

If we are interested in isotropic models, we have to p
form another step because the homogeneous coeffic
have to be put in isotropic form thereby yielding the isotr
pic classical expressions. In the quantization, we also s
from the quantized homogeneous operator and insert sp

holonomieshI5cos(12c)12 sin(12c)LI
iti which leads to the op-

erators cos12c and sin1
2c whose action we already know. De

rivative operators are treated similarly, but we usually o
need the volume operator which has already been der
@8#.

We illustrate a typical calculation by computing the Po
son brackets

$sin1
2 c,V%5$sin1

2 c,upu3/2%5 1
4 gk cos~ 1

2 c!Aupusgn~p!

using the symplectic structure~1!. The corresponding com
mutator of the quantized objects acts onx j as

@sin1
2 c,V̂#x j5

1
2 ~Vj 11/22Vj !z j 11/21

1
2 ~Vj2Vj 21/2!z j 21/2

;
1

4A3
~g l P

2!3/2Aj • 1
2 ~z j 11/21z j 21/2!

which we expanded in the last line for largej. A quantization
of Aupusgn(p) should have the asymptotic behavi
x j° iAg l P

2Aj /3z j for large j ~because of the sign it mapsx
to i z and vice versa, and the factorAj /3 follows from the
large-j behavior of the volume spectrum!. So we see that for
large j ~where the ordering is irrelevant! the commutator is
1
4 ig l P

2cos(12c)Au p̂usgn(p̂) which demonstrates that we hav
the correct expression corresponding toi\ times the classica
Poisson brackets. For the correct prefactor1

4 it is important
that we used the symplectic structure~1! and corrected the
volume eigenvalues.

B. Quantization

In order to quantize the inverse scale factor we use
expression~8!. However, it is not a density and thus for
regularization along the above lines we need to first tra
form it into an expression which is a density such that it c
be integrated to a scalar. This can easily be achieved
contracting with two density weighted vector fields, e.g. t
electric fieldEa, leading to the electric part of the Maxwe
Hamiltonian
08401
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H5E d3x
qab

Adetq
EaEb.

In this paper we are only interested in the gravitational p
which will be separated later, but the full expression can
used for studying, e.g., Maxwell theory coupled to quant
gravity.

First we have to insert homogeneous co-triad compone
ea

i 5aI
i va

I and also homogeneous electric fieldsEa5EIXI
a

~we also integrate over space and suppress the resulting
tor of the coordinate volume settingV051):

H5
aI

i aJ
i

Audet~pi
I !u

EIEJ.

Now we have to express the co-triad componentsaI
i by Pois-

son brackets using Eq.~9!. This expression can be derived b
first computing

$fK
k ,eMNLe i j l pi

Mpj
Npl

L%53gke i jkeMNKpi
Mpj

N

53gke i jke i j l aK
l sgn„det~pm

M !…

3Audet~pm
M !u

56gkaK
k sgn„det~pm

M !…

3Audet~pm
M !u

where we have useddK
L 5pl

LaK
l udetpm

Mu21/2 in the second
step. We thus have the reduction of Thiemann’s identity@12#
to homogeneous variables:

aK
k 5@gksgn~det~pm

M !!#Audet~pm
M !u)21$fK

k ,det~pm
M !%

52~gk!21$fK
k ,Audet~pm

M !u%

52~gk!21$fK
k ,V%. ~10!

We insert this expression inH to obtain

H54~gk!22
$f I

i ,V%$fJ
i ,V%

V
EIEJ516~gk!22$f I

i ,AV%

3$fJ
i ,AV%EIEJ

which we now use for the regularization. Note that we we
able to absorb theV in the denominator into the Poisso
bracket in the numerator, as first done in@12#. This is the key
point leading to a bounded operator after quantization.

We now multiply the componentsf I
i , EI , the volume

and the Poisson brackets by the factorse, e2, e3 ande23,
respectively, and obtain the regularized expression~absorb-
ing e23 in the space integral!

He516~gk!22$ef I
i ,AV%$efJ

i ,AV%e2EIe2EJ

5232~gk!22tr~hI$hI
21 ,AV%hJ$hJ

21 ,AV%!

3e2EIe2EJ1O~e7!.
8-4
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INVERSE SCALE FACTOR IN ISOTROPIC QUANTUM . . . PHYSICAL REVIEW D64 084018
Now we can read off the gravitational part and immediat
quantize: The remaining factors ofe2 are needed for a quan
tization of the electric field components, whereas the r
yields

m̂IJ532~g l P
2!22tr~hI@hI

21 ,AV̂#hJ@hJ
21 ,AV̂# ! ~11!

which is independent of the regulatore.
So far, we have only used homogeneity; next, we c

reduce Eq.~11! to isotropy: We have to insert the speci
form of holonomies and the isotropic volume operator a
can then take the trace over the dreibein componentsL I to
arrive at the isotropic inverse scale factor

m̂IJ564~g l P
2!22$@AV̂2cos~ 1

2 c!AV̂cos~ 1
2 c!

2sin~ 1
2 c!AV̂sin~ 1

2 c!#22d IJ@sin~ 1
2 c!AV̂cos~ 1

2 c!

2cos~ 1
2 c!AV̂sin~ 1

2 c!#2%. ~12!

This operator has two striking features. First, it provide
quantization of the inverse scale factor by abounded opera-
tor despite the fact that the classical expression diverges
a→0. As seen in Fig. 2, the upper bound is given by
eigenvalue in the state withj 5 1

2 and has the value32
3 (2

2A2)(g l P
2)21/2 which diverges for\→0. Thus it is the fi-

niteness of Planck’s constant that removes the infinity of
classical inverse scale factor. This is somewhat analogou
the ground state energy of the hydrogen atom: it is nega
and finite in quantum theory, but diverges for\→0 in cor-
respondence with the fact that the classical energy is
bounded from below. The second feature is that the opera
valued matrixm̂IJ is not diagonal as in the classical case.
one would expect, the off-diagonal components have
purely quantum origin and go to zero as\ tends to zero. In
order to critically examine the viability of the quantizatio
procedure we need to discuss the classical limit which
will do below after deriving the complete spectrum ofm̂IJ .

FIG. 2. EigenvaluesmII , j , j >0 @in units of (g l P
2)21/2# of the

inverse scale factor (3) compared to the classical expectatio
Vj

21/3 ~dashed line!.
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C. Spectrum of the inverse scale factor

Both squared brackets in the operator~12! act diagonally
on the statesx j , z j which can be derived by using the vo

ume eigenvalues~4! and the operators cos1
2c and sin1

2c in
Eqs.~5!, ~6!. The result is

@AV̂2cos~ 1
2 c!AV̂cos~ 1

2 c!2sin~ 1
2 c!AV̂sin~ 1

2 c!#2x j

5~AVj2
1
2 AVj 11/22

1
2 AVj 21/2!

2x j

@sin~ 1
2 c!AV̂cos~ 1

2 c!2cos~ 1
2 c!AV̂sin~ 1

2 c!#2x j

52 1
4 ~AVj 11/22AVj 21/2!

2x j

and analogously onz j ~the statez21/2 is annihilated by both
operators, so we have to defineV2150 when using the
above formulas in this case!.

Inserting these operators in Eq.~12! we immediately ob-
tain the eigenvalues

mIJ, j516~g l P
2!22@d IJ~AVj 11/22AVj 21/2!

214~AVj

2 1
2 AVj 11/22

1
2 AVj 21/2!

2# ~13!

in terms of the volume eigenvalues. Note that there are a
nonvanishing off-diagonal terms which are independent
I ,J. Using Eq. ~4! we can expand the eigenvalues of t
productV̂1/3m̂IJ , which classically should bed IJ :

mIJ, j5Vj
21/3@d IJ1~ 1

2561 37
192d IJ! j 221O~ j 23!#

;V21/3@d IJ1 1
9 ~ 1

2561 37
192d IJ!g2l P

4a24#. ~14!

For largej we used the approximationa25upu; 1
3 g l P

2 j . This
demonstrates that the leading order is in fact given
V21/3d IJ and higher order corrections only start withl P

4 a24.
Also the off-diagonal terms, which are of purely quantum
origin, only arise at this order. Thus, we have the correc
behavior in the classical regime of a large scale factor~since
the only way to obtain dimensionful geometric quantities
by multiplying a given function ofj by l P, the classical limit
with l P→0 also involvesj→`, as in the treatment of angu
lar momentum in quantum mechanics! and we see that all the
techniques involved in the quantization of the inverse sc
factor are perfectly compatible with the classical limit. No
also that the leading order in the expansion is independen
the Barbero-Immirzi parameterg.

In fact, the classical behavior can be observed in a ra
by far larger than expected from thej 21-expansion. As can
be seen in Figs. 2 and 3, even down toj 51, i.e. for a scale
factor slightly above the Planck length, the eigenvalues
close to the classical expectation. Only the lowest eigen
ues deviate strongly from the classical curve, but this is i
regime where quantum effects are important. Those effe
are responsible for the boundedness of the quantized inv
scale factor and its finite eigenvalues even on the st
x0 , z0 and z21/2 which are annihilated by the volume op
erator.
8-5
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As expected from the fact that both classical quantit
only depend on the triad degrees of freedom, the volu
operatorV̂ and the quantized inverse scale factorm̂IJ are
simultaneously diagonalizable. The surprising fact is thatm̂IJ
is a densely defined operator with the correct classical
havior in a wide range. Thus, even in states which are a
hilated by the volume operator we must have finite eigenv
ues of m̂IJ ; otherwisem̂IJ would not be densely defined
Sincem̂II is a quantization of the inverse scale factor, suc
behavior would be impossible in the classical descript
where we have the identityV1/3mIJ5d IJ . In quantum theory,
while this relationis valid at large volume~see Fig. 3!, quan-
tum corrections cause large deviations at the Planck s
close to the zero volume states. Thus,V̂ and m̂II are not
inverse operators of each other, which in particular allo
finite eigenvalues ofm̂II in states annihilated byV̂. This is a
new mechanism with the origin purely in quantum geome
by which the classical singularity is resolved.

D. The jÄÀ 1
2 -state

Two aspects of the quantization of the inverse scale fa
are important: first, it is a bounded operator cutting off t
classical divergence and simultaneously preserving the c
sical behavior for values of the volume larger~not much
larger! than a Planck cube. This fact is welcome and can
understood as originating in quantum effects which beco
important only for small volume where the classical theo
breaks down. Technically, this is done by choosing an app
priate classical expression as the starting point for quant
tion. Since the volume operator has zero eigenvalues, its
verse does not exist and, therefore, cannot be used f
quantization of the inverse scale factor. But as we have s
it is possible to rewrite the inverse scale factor as the exp
sion ~8! which is quantized to a bounded operator~12!. In
this way, it is understandable that the quantizationm̂IJ of the
classical quantitymIJ5uau21d IJ does not coincide with the

FIG. 3. ProductVj
1/3mII , j of eigenvalues of the scale factor an

the inverse scale factor compared to the classical expectation
~dashed line!.
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~nonexisting! inverse ‘‘â21’’ of the quantization ofa. Such
effects are not unexpected in quantum theory. A second
ture of the quantization of the inverse scale factor seem
be more questionable: one of the zero volume eigenstates
also a zero~not just finite! eigenvalue of the inverse sca
factor and so bothâ and m̂II annihilate the same state. O
course, this happens at a point where the classical the
completely breaks down and classical intuition cannot
trusted, but still an elucidation is needed.3 This is even more
important because these issues are essential for a qua
evolution through the classical singularity@15,16#.

A basic observation in this respect is that the class
value of the inverse scale factormIJ corresponding to the
quantization~11! is not defined ata50, and somIJ has to be
appropriately extended to this point. This can formally
done asmIJªsgn(a)2uau21d IJ ~taking into account the de
rivative of V5upu3/2 in the Poisson bracket! which, of
course, is the same as Eq.~8! on the classically allowed
regiona.0. In the pointa50 both this expression anda21

are ill-defined and so its introduction does not change
classical situation.@The sign does not lead to a better beha
ior since it is, as the derivative of the absolute value,
well-defined for a50; and even the standard definitio
sgn(0)ª0 leads to an undefined expression ‘‘0/0,’’ where
the limit a→0 is not different from the one fora21.# How-
ever, as we have seen the situation is very different u
quantization which leads to a well-defined formulation a
at states corresponding to the classical valuea50.

In order to illustrate this point, one can do essentially t
same quantization in a simpler model which is the stand
quantum theory of the cylinderT* S1 with canonically con-
jugate coordinates$f,p%51. Its states areun&5exp(inf) on
which the basic operators act as

cosfun&5 1
2 ~ un11&1un21&) ~15!

sinfun&52 1
2 i ~ un11&2un21&) ~16!

and

p̂un&5n\un&. ~17!

Being interested in a quantization ofupu21/2, one cannot use
the inverse ofp̂, which does not exist. Instead, one can r
write

sgn~p!upu21/252~cosf$sinf,Aupu%2sinf$cosf,Aupu%!

~18!

which is a classical identity and clearly shows the origin
the sign. We used a similar identity~Thiemann’s! to rewrite
the inverse scale factor in isotropic cosmological models
is also clear that one cannot use an analogous formul
rewrite upu21/2 itself, since one always needs to take deriv
tives of the absolute value ofp. But in p50 both classical
expressions are ill-defined and so there is no ‘‘correct’’ o

3The author is grateful to A. Ashtekar for raising this issue.
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as a starting point for quantization. The only difference
that, as we will see shortly, sgn(p)upu21/2 can be quantized
to a densely defined operator, whereasupu21/2 cannot.

Expression~18! can easily be quantized by turning th
Poisson brackets into (i\)21 times commutators which lead
to

sgn~p̂ !up̂u21/2522i\21~cosf@sinf,Aup̂u#

2sinf@cosf,Aup̂u# !. ~19!

Using Eqs.~15!, ~16! and~17!, its action on the statesun& can
be computed which shows thatun& are eigenstates with ei
genvalues

Aun11u\212Aun21u\21. ~20!

For largeunu, one can perform a Taylor expansion demo
strating the correct classical limit

Aun11u\212Aun21u\21

5\21/2Aunu~A11n212A12n21!

5\21/2Aunu@n211O~n23!#

5sgn~n!~ unu\!21/2

3@11O~n22!#.

On the other hand, forn50 the eigenvalue is zero, which i
the same situation as in the quantization of the inverse s
factor: bothp̂ and sgn(p̂)up̂u21/2 annihilate the same state
In view of the sign appearing with the inverse this is le
surprising than initially, but again we emphasize that the s
makes no difference for the acceptability of the classi
quantity. This toy example demonstrates that the impor
features of the quantization of the inverse scale factor are
special and can also be obtained in standard quantum
chanics. Nevertheless one may ask why such quantizat
have not been used before. The answer is related to the
sically allowed regions of the canonical coordinates, wh
are different in theT* S1-example and in isotropic cosmo
logical models: on the cylinder, the full range forp is al-
lowed includingp50 and so the inverse ofp is not well-
defined and also not of physical interest. But in the grav
model, the scale factora must be positive classically, and s
a21 is well-defined on the classical phase space. In cont
to the inverse angular momentump21, it is of direct physi-
cal interest since it appears, e.g., in curvatures.

IV. DISCUSSION

Isotropic cosmological models are not only interesting
models of an expanding universe, for which they have b
widely used in the past century, but also provide system
which explicit calculations are feasible, and therefore are
cellent test arenas for sophisticated techniques develope
a quantization of general relativity. The basic technique u
in this paper is the quantization of the co-triad compone
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due to Thiemann@12#. Most of the operators studied so far
quantum geometry are built from the fundamental holon
mies or derivative operators quantizing the triad compone
The co-triad, however, is not a fundamental field in th
framework, and so its quantization is less clear-cut. Nev
theless, it is of importance because it enters the quantiza
of the Hamiltonian constraint, which controls the dynam
of the theory. Models like the isotropic ones can be used
investigate quantization ambiguities in detail, and we p
sented a first test of the co-triad quantization by studyin
quantization of the inverse scale factor which can be
pressed in terms of the co-triad. As we have seen, apply
Thiemann’s identity leads to a bounded operator while p
serving the correct classical limit. Although quantization a
biguities like factor ordering problems do not affect the cla
sical limit, the outcome of the correct classical limit is n
trivial. A look at the eigenvalues~13! reveals that a large-j
behavior Vj; j d/2 leads to mII , j; j 2d/6;Vj

21/3, which is
needed for the correct classical limit of the inverse sc
factor, only ford53. Also the prefactor is important becaus
otherwise the productVj

1/3mII , j would not approach 1 for
largej. For this it was necessary to use the correct symple
structure~1! and also to correct the volume spectrum~4!.
The quantization techniques of@12# are working perfectly in
our quantization which should also increase our confide
in the quantization of the Hamiltonian constraint in the fu
theory.

An expansion for largej showed the correct classical be
havior ~14!; but the situation is even better than expecte
such an expansion is supposed to break down forj being of
the order 1, but Fig. 2 shows that the eigenvalues of
inverse scale factor are close to the classical expecta
even down toj 51. In fact, there is a cancellation in th
j 21-correction to the classical expression in Eq.~14!, but this
still cannot explain the good behavior forj 51: the Taylor
expansion of Eq.~13! aroundx50 for xª j 21, which has
been used in Eq.~14!, does not converge forx51 corre-
sponding to thej 51-eigenvalue. This fact shows that a no
perturbative treatment is mandatory: a perturbative exp
sion in j 21, which is meaningful for large scale factor
breaks down at the Planck scale.

Close to the classical singularity, quantization ambiguit
do affect the eigenvalues quantitatively, but not the qual
tive conclusion of a nondiverging behavior of the inver
scale factor. One can draw lessons from our quantizat
e.g., one could replace the objects2h@h21,V̂# by @h,V̂# in
isotropic models because all edges are closed there and
correspond to the same classical Poisson bracket~this has
been done in@9# for simplicity!. In the full theory, this is not
possible because any edge appearing in a holonomy has
traced back. One can see that such a replacement would
lead to the desired properties for the inverse scale facto
isotropic models because the resulting expression would
commute with the volume operator~which it should because
both only depend on metrical variables!. Thus, one has to us
the same procedure as in the full theory despite a lar
initial freedom.

A consequence of the particular quantization presente
8-7
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Sec. III is the fact that the metric eigenvalues form a no
diagonal matrix even for an isotropic model. The o
diagonal terms are, however, only of the orderl P

4/a4 and so
do not affect the classical limit~see Fig. 4!. Their precise
value depends on the factor ordering and other ambigu
which cannot be fixed by studying the classical limit. F
example, they can be removed by quantizing the produc
the co-triads by

tr~t ihI@hI
21 ,AV̂# !tr~t ihJ@hJ

21 ,AV̂# !

5 1
2 tr„hI@hI

21 ,AV̂#~hJ@hJ
21 ,AV̂# !21

…

2 1
4 tr~hI@hI

21 ,AV̂# !tr~hJ@hJ
21 ,AV̂# ! ~21!

instead of Eq.~11!. Here we used the identity (t i)
A

B(t i)
C

D
5 1

2 e ACeBD2 1
4 dA

BdC
D and defined (h21)A

BªeACeBDhD
C .

The latter is an identity for the inverse ofh if hPSU(2), but

the commutatorhJ@hJ
21 ,AV̂# is in general not invertible as

an ~operator valued! 232-matrix. Therefore,

(hJ@hJ
21 ,AV̂#)21 is just a short form for

FIG. 4. Eigenvalues of the off-diagonal components ofm̂IJ

compared to the classical inverse scale factor~dashed line!.
08401
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of

„~hJ@hJ
21 ,AV̂# !21

…

A
Bªe ACeBD~hJ@hJ

21 ,AV̂# !D
C

5~hJ
21!F

B@~hJ!
A

F ,AV̂#

5@AV̂2cos~ 1
2 c!AV̂cos~ 1

2 c!

2sin~ 1
2 c!AV̂sin~ 1

2 c!#dA
B

12LA
B@sin~ 1

2 c!AV̂cos~ 1
2 c!

2cos~ 1
2 c!AV̂sin~ 1

2 c!#.

The subtraction of the product of traces in Eq.~21! leads to a
cancellation of the off-diagonal components in the result
m̂IJ . However, there is no independent argument in favor
Eq. ~11! or Eq. ~21! besides the vanishing of off-diagona
components since both expressions have the same clas
limit. Off-diagonal components may have relevance in dev
tions from the Lorentz-invariant vacuum structure becaus
non-diagonal metric at small scales leads to anisotropies
so to birefringence effects in the propagation of waves.
this context, it may be interesting that the corrections
only of fourth order in the Planck length.

The main result of this paper is that the divergence of
inverse scale factor is completely cured by the quantiza
methods of quantum geometry, most importantly those
veloped in@12#. This fact opens up a new way for a resol
tion of the classical singularity in quantum cosmology@15#
which will be investigated in more detail elsewhere@16#.
Technically, this comes from an absorption ofV21 into a
Poisson bracket which is the same procedure which allo
matter Hamiltonians to be quantized to densely defined
erators@13#. Therefore,it is the same mechanism which reg
larizes ultraviolet divergencies in quantum field theories a
removes the classical singularity in quantum cosmology. In
particular, geometry itself is responsible for this, and n
matter effects.
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