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Inverse scale factor in isotropic quantum geometry
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The inverse scale factor, which in classical cosmological models diverges at the singularity, is quantized in
isotropic models of loop quantum cosmology by using techniques which have been developed in quantum
geometry for a quantization of general relativity. This procedure results lmwndedoperator which is
diagonalizable simultaneously with the volume operator and whose eigenvalues are determined explicitly. For
large scale factor6n fact, up to a scale factor slightly above the Planck lepdib eigenvalues are close to the
classical expectation, whereas below the Planck length there are large deviations leading to a nondiverging
behavior of the inverse scale factor even though the scale factor has vanishing eigenvalues. This is a first
indication that the classical singularity is better behaved in loop quantum cosmology.
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[. INTRODUCTION discreteness of the volume spectrum implies that the models

of loop quantum cosmology embody the distinctive feature

General relativity predicts singularities in many situationsOf quantum geometry of having a discrete structure. In fact,

of astrophysical or cosmological interest, which means thath€ quantization techniques of loop quantum cosmology are
there are limits for the classical theory beyond which it is nod€Signed to be as close to those of the full theory as possible,

longer valid. A widespread expectation is that a quantizatior)((a"lghcgﬂli’);':f];at da%?pgﬁ}'ggftteyg%fs%rgmggg' dSe?/e'[lfl)OSee dr?nog{e
of gravity is inevitable in order to describe these regime P

meaninafully. but to now there has been no com Ietesfu” theory, but they have also been used to derive new prop-
Ingfuly, but up W S P erties, e.g., a discrete time and discrete physioak just

generally accepted quantization of general relativity. For %nematica) spectra of geometric operatdi0].

long time, mini-superspace models obtained by a symmetry |, this paper we will use techniques which have been
reduction of the classical theory with a subsequent quantizgyeyeloped in order to quantize the Hamiltonian constraint
tion [1,2] (henceforth called f‘standard quantum cosmology” and matter Hamiltonians in the full theof12,13 for a

in the context of cosmological modelsiere the only ap- quantization of the inverse scale factor in isotropic quantum
proach to address those issues; but in view of the fact that tl"@ometry_ As a result we will derive a bounded operator
quantization techniques were those of simple quantum medespite the fact that the volume or the scale factor has van-
chanical systems, which cannot be applied to the full theoryishing eigenvalues. The underlying “mechanism” is the
the results are not likely to hold true in a full quantization. In same as the one which ensures, in the full theory, that matter
fact, it has been shown in quantum geomég8j/that geom-  Hamiltonians can be quantized to obtain densely defined op-
etry has a discrete structure leading, e.g., to a discrete voerators. One might suspect that this is simply a mathematical
ume spectrunj4,5], whereas in standard quantum cosmol-trick which serves to remove singularities but which will
ogy the scale factor, and so the volume, is still continuousspoil the classical limit. We will show that this is not the
with a range from zero to infinity. For large volume, this is a case: singularities are removed, but the classical regime is
very good approximation to the discrete volume spectrum oftot affected. In fact, for the inverse scale factor the classical
quantum geometry, but just in the domain close to the clasth€ory turns out to be an excellent approximation right up to

sical singularity there are huge deviations between the dis? Scale factor of the order of the Planck length. This is quite
crete and the continuous spectra. unexpecteda priori, one expects the classical behavior to be

Therefore, we follow a different approach to quantumva"d only for scale factors very large compared to the Planck
cosmology which has been initiated [6—11] and which Ien_?:]h. | £ th . foll Fi i I
starts by selecting symmetritsotropic, and in particular ho- e plan of the paper is as follows. First, we will reca
mogeneous, in this papestates in the kinematical Hilbert tN€ framework of isotropic loop quantum cosmology and ex-
space of quantum geometry. This means that the symmet nd the methods Qevgloped ig] to gauge non-invariant
reduction is not purely classical, but is done after an essenti fates in Sec. ”'I Trfns will thhe_nhbg apphe(_j fodr a d|Sscus|s|||onV\</)f
step of the quantization which already leads to the discretd!€ NVErse scaie actor which Is quantized in Sec. lll. We
structure of space. Consequently, the volume spectrum ill determine all |ts_ elgens.tates and its complete spectrum
cosmological models is discrete and even known explicity2d Study the two interesting regimes for very small and
in the isotropic cas@8]. The simplification of the spectrum large sc_ale factors. I_n the final section we W'l! present our
caused by symmetr{interpreted analogously to the familiar cpnclusmns concerning the validity of quantization te_ch-
level splitting in the spectroscopy of atopis very fortunate niques and the quantum picture of the classical singularity.

because it facilitates explicit calculations. Reciprocally, the Il ISOTROPIC QUANTUM GEOMETRY

The general framework for a symmetry reduction of quan-
*Email address: bojowald@gravity.phys.psu.edu tized diffeomorphism invariant theories has been developed
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in [6] and specialized to homogeneous and isotropic modelgjjlbert space can be taken to be the spagg,

in [7]. Symmetric states are defined at the kinematical level L2(SU(2),duy) of square integrable functions @&U(2)

of the quantum theory, and thus have properties very differwith respect to the Haar measure. However, gauge invariance
ent from those of states obtained after quantizing a classis not imposed in the obvious sense by conjugation on this
cally reduced theory. Still, for explicit expressions of sym-copy of SU(2), butinstead in such a way that there is a

metric states and operators we need to know the symmetiyrger class of gauge invariant functiofsee[8] for details.
reduction of a theory of connections and triads which we will|n addition to the usual character functions

sketch first in the case of isotropy. o
Isotropic  connections are of the formAL=¢|w)
=cAjw), where A\=A|7 is an internalSU(2)-dreibein
(which is purely a gauge choicand o' are left-invariant
one-forms on the “translational partN of the symmetry
groupS=NXSQ(3) acting on the space manifokl [Here,
7j=—(i/2)o are generators o8U(2) with o; the Pauli
matricesN is isomorphic taR® for the spatially flat model or
SU(2) for the spatially positively curved modgFor homo-
geneous models, the nine parametgfsare arbitrary. A co-
triad can be expressed a5=ajw,=aA|w!, with the scale
factor' |a|. Using left-invariant vector fields, fulfilling
w'(X))= 5'3, momenta canonically conjugate A9, are den-
sitized triads of the forf E?=p/X2=pA!X® where p

sin(j+3)c

Xi ; 2
" sinke

where j is a non-negative half-integer, we have gauge-
invariant states given by_,= (12 sinic) * and

cogj+3)c
Tt ©
sinsc
All states (y;,¢;) form an orthonormal basis of the gauge
invariant kinematical Hilbert space. The fact that we need the
functions{; and also the valug¢= — % can be seen from a

=sgn(a)aZ. In addition to gauge freedom, there are only therepresentation of the kinematical Hilbert space as periodic

two canonically conjugate variablesand p which embody

the gauge invariant information of the connection and triad

functions inc, where the measure provides a factorsinA
complete set of those functions is given by sin and cos with

Information about the geometry of space is fully contained inpe ghove frequencies. Gauge noninvariant functions are

p, which is the square of the radius of a spacelike slice. Th
Liouville form

(76) " *pldgi=(yx) "pdcA{A|=3(yx) 'pde
leads to the symplectic structure
{c.p}=57« 1)

(k=8mG is the gravitational constant ang the Barbero-
Immirzi parameter The factors has been overlooked i8],

Qiven byA|x; andA|¢; whereA| is the internal dreibein and

provides pure gauge degrees of freedom.

In [8] the volume operato¥ has been shown to have the
eigenstatey;, ¢ with eigenvaluegcorrected here for the
missing factor3 in the symplectic structure and derivative

operators
Vi=(A3)¥Hi(j+3)(+1). (4)

The eigenvalue zero is three-fold degenerate, whereas all

and so also the derivative operators and the volume spectruftil€r eigenvalues are positive and twice degenerate. The

derived there have to be corrected by appropriate factors.
will do this in the formulas below.

Isotropic states in the connection representation are aél

fined as distributional states in the full theory which are sup

ported only on isotropic connections. Since all the informa-Xi -

tion of an isotropic connection is contained in one
SU(2)-element[expAsn), say the reduced kinematical

Yn a triad formulation we use a variab&ewhich can take both
signs, even though the two sectors of positive and negative-
spectively, are disconnected in a metric formulation.

2Note that, in contrast tf7], we use the physical metric in order

to provide the density weight and not an auxiliary homogeneous 0=

metric: p!:=|detal|al, a| being inverse tca|. Nevertheless, we

need to fix a reference system already in order to define the actiog

of our symmetry group, which leads to the factor \6f in the
formulas of[7,8]. However, this factor is an artifact of the homo-
geneous models and not of physical significance. It just tells us th

we cannot define an absolute scale factor in a diffeomorphism in*
variant setting, but only a relative one with respect to some given

value. In this paper we will sef,=1.

V\;‘gvo-fold degeneracy arises naturally in a triad formulation

because any value of the volume can be achieved in two
ifferent orientations of the triad. Intuitively, this demon-
strates the necessity of the statgsbesides the characters
Taking the cubic root yields the eigenvalues of the scale
factor|a| which are shown in Fig. 1.

However, in[8] the action ofV has not been determined
on gauge noninvariant states. An extension to those states is
done by using gauge invariance of the volume, which im-
plies [Al,V]=aA| for some aeR. We can now use
S;A|A{=1 (no sum ovetl) in order to obtain

Z R

=2 A[ALVI+ 2 [A] VIA[=2a

nd soa=0. Thus, the volume operator commutes wih
(acting as a multiplication operator in the connection repre-

a§entati0|)| and we can trivially extend its action to gauge

noninvariant states.
All we need for the following calculations is the action of

cossc and sifc appearing in the “point holonomy[14] h,

084018-2



INVERSE SCALE FACTOR IN ISOTROPIC QUANTUM. ..

14

1.2 X

0.8 x

0.6

0.4

0.2

i

FIG. 1. Eigenvalue¥/”® of the scale factofin units of \y1p).

::exp(cAiri)=cos(§c)+25in(%c)A‘,ri which in quantum ge-
ometry serves as the basic multiplication operator. This cal

be obtained in the connection representat@®n3) by using
trigonometric relations leading fgr=3 to

co3C) X = 3(Xj+ 12t Xj-172)
€09 50)¢;=5(Lj+ 12 {j-10) )

sin(30)x;j= — 3 ({j+ 2= &1,

SiN(3€) 4= 3(Xj+ 12~ Xj-112) (6)
with certain modifications in numerical coefficients fpr
=0 or j=—3, which are not important for our purposes.

Because of the exceptional formulas for Igwt is more
convenient to use the states

) exp(3inc)
n)yi=———,
J2sinkc

which are decomposed in the previous states by

neZ (7

INy=2"Y2(Z1ypn— 1y 1 SINN) X 1/2n( 1)

for n#0 and|0)={_4,,. The labeln of a state|n) is pro-
portional to the eigenvalue of the dreibein operdgjr note

the factor: in order to correct for the symplectic structure

(D]

b= ALEP= i

d
—+§cot§c).

On these states the action of gosnd sirjc is simply
cogz0)[n)=3(In+1)+[n—1)),
sin(zc)[n)=—7zi(In+1)—[n—1))

for all integern.
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IIl. QUANTIZATION OF THE INVERSE SCALE FACTOR

In isotropic geometries, the classical singularity is sig-
naled by the inverse scale fact@| ! which diverges for
a=0 and occurs by some positive power in all diverging
curvature components. Classically, we hsag =V~ so
that one might try to quantize it by using the inverse volume
operator. This inverse, however fails to be a densely defined

operator becaus¥ has the eigenvalue zefwith threefold

degeneracyV annihilatest_;,, xo and¢,). Thus, we have

to look for another approach. We will use an expression
which classically reduces to the inverse scale factor but is
better suited for a quantization, namely

diJ ailail 1

m,j:= = — =30
Y Jdetq |detal)| Ial "

®

in terms of the isotropic metriq,;=a24,; or the triad com-
Ronentsa',. Since the latter are not fundamental variables,
one needs a prescription to quantize them. Here one can
make use of the classical identity

eh=2(yx) " HAL,V} 9)

and quantize the co-triad by expressing the connection in
terms of a holonomy, using the volume operator and turning
the Poisson bracket into a commutator. This method has been
successfully employed if12] in order to quantize the
Hamiltonian constraint of the full theory. In this section we
carry out a similar procedure for a quantization of the inverse
scale factor. The regularization scheme adapted to isotropic
models is reviewed in Sec. Il A and then appliedntg; in

Sec. Il B where we derive an operatay;. Its spectrum is
determined in Sec. Ill C followed by a discussion of its main
features and viabilitySec. Il D).

A. The regularization scheme

Let us first recall from{9] the regularization scheme. As
noted in[12], it is important to be aware of the density
weight when regularizing expressions in a diffeomorphism
invariant field theory: only scalar quantities, usually space
integrals of weight 1 densities, can be quantized in a back-
ground independent manner. This is also important in our
reduced models. Although we do not have the freedom to
make arbitrary coordinate transformations since most of
them would violate the symmetry conditions, we do have
dilatations with a scale parametemwhich allow us to keep
track of the density weight. These scale transformations also
play an important role in adapting the regularizatior Hf]
in the full theory to reduced mode{see[9] for detailg. We
will proceed along the lines of the following recipe: Starting
from a classical expression in the full theory we first insert
homogeneous fields parametrized by the components
P, pi' , ... and arrive at the reduced expression for a ho-
mogeneous model. Now we start the regularization by per-
forming a scale transformation with parameteifaking care
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of the density weights, we have to multiply any one-form Yab
component bye, any density-weighted vector field compo- H—J’ PBx——— E2EP.
nent by €2, Poisson brackets by 3, etc. Our original ex- Vdetq

pression, a density integrated over space, then gets multj-

plied by a factore® which is absorbed in the rescaled spaceIn 'ghis paper we are only interested in the gravitqtional part
volume. In a homogeneous model, the continuum IimitWh'Ch will be separated later, but the full expression can be

needed in the regularization is replaced by a limit-0 used for studying, e.g., Maxwell theory coupled to quantum

) . ; gravity.
::;??,X?r:]e;zz’ eﬁ?}' tggfozimigtﬁi ;(();22;:)—' f:ia;sik;e First we have to insert homogeneous co-triad components
- 1) 14

(I R | H ; —Elya
+0(€) as in the full theory. The quantized expression, on-a a,lwa_and also homogeneouz electric f|erI]El§ E lx.' ¢
the other hand, will be independent ef for a detailed dis- (we also integrate over space and suppress the resulting fac-

cussion seg9]. tor of the coordinate volume setting,=1):

If we are interested in isotropic models, we have to per- i
form another step because the homogeneous coefficients HzﬂEIEJ‘
have to be put in isotropic form thereby vyielding the isotro- \/|de(p})|
pic classical expressions. In the quantization, we also start _
from the quantized homogeneous operator and insert speciblow we have to express the co-triad componentsy Pois-
holonomiesh, = coséc)+2 sinGc)A} 5 which leads to the op-  SON brackets using E). This expression can be derived by

erators coic and sirkc whose action we already know. De- first computing

rivative operators are treated ;lmllarly, but we usually only {¢l|(< L PiM pJ!\lp:_}::g,YKeijkeMNKpil\/Ip][\l

need the volume operator which has already been derived )

8. | , _ _ =3yxel e aysgrdelpy))
We illustrate a typical calculation by computing the Pois-

son brackets X \|detpy)]

_ k M
[singc,V}={sinic, p|*% = 1y cos 3) VIplsanp) —6yxaksgridetpy))

X \/|detpy)|

using the symplectic structur@). The corresponding com-

mutator of the quantized objects acts gnas where we have usedy=play|detp|~*2 in the second
A step. We thus have the reduction of Thiemann’s ideifig]
[sinzC,V1x;=3(Vjs12= V) vt 5(Vj=Vi_12) {- 12 to homogeneous variables:

als=[ yrsgridetp))]V|detpl)]) ~H o, detph)}
=2(yk) Y b ,N|de(pi)[}

which we expanded in the last line for largeé\ quantization = Z(yK)‘l{qSﬁ V1. (10
of \[p[sgn() should have the asymptotic behavior
XjHI mmg] for |argej (because of the Sign it maps We insert this eXpI’eSSion iH to obtain
to i{ and vice versa, and the factqfj/3 follows from the YRy
large§j behavior of the volume spectrunSo we see that for H 24(7,()72{(#' VH 5.V} E'E’=16(yk) 2[¢| ,\V}
largej (where the ordering is irrelevanthe commutator is \ "
iyl ,%cos(%c)\/msgn(f)) which demonstrates that we have x{¢ WIE'E?
the correct expression correspondingfidimes the classical ’
Poisson brackets. For the correct prefacidt is important  \hich we now use for the regularization. Note that we were
that we used the symplectic structut® and corrected the apje to absorb th&/ in the denominator into the Poisson
volume eigenvalues. bracket in the numerator, as first dong 12]. This is the key
point leading to a bounded operator after quantization
B. Quantization We now multiply the components, , E', the volume

i 2 3 -3
In order to quantize the inverse scale factor we use th@nd the Poisson brackets by the facterse®, e ande™,

expression(8). However, it is not a density and thus for a respectlvely, and obtain the regularized expressairsorb-

_3 . .
regularization along the above lines we need to first trans’'d € N the space integral
form it into an expression which is a density such that it can B Cor i i 2l 2]
be integrated to a scalar. This can easily be achieved by e~ 167K {ed \VHeds \V}'E'€’E

1
~r@(y|§)3/2\/j—' 2(&ruat &-1)

contracting with two density weighted vector fields, e.g. the — 39 “2trthfht Wrhdho! WV
electric fieldE?, leading to the electric part of the Maxwell (yi) (i Wiho{h ™ W)
Hamiltonian X e?E'?E'+ O(€').
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; < C. Spectrum of the inverse scale factor
6 [
i Both squared brackets in the operatb®) act diagonally
5 [i on the stateg;, ¢; which can be derived by using the vol-
';‘ ume eigenvalue$4) and the operators cés and sisc in
afh Egs.(5), (6). The result is
sty [V~ cog 3c) VWeog 3c) —sin(2c) VUsin(2c) 12,
2 x =( \/VJ =3 V1= 3V - 122,
e SR . . = S
1 e [sin(3c)VVcos 4¢) — cog se) VUsin(3¢) 12y,
0
0 1 2 3 4 5 == 1(Wjr12— Wi 12X
i
_ _ _ _ . and analogously o (the statel 4, is annihilated by both
FIG. 2. Eigenvaluesn; ;, j=0 [in units of (ylg) "] of the  gperators, so we have to definé ;=0 when using the
inverse scale factorX() compared to the classical expectation ghove formulas in this case
-1/3 H . . . .
V; ** (dashed ling Inserting these operators in E@.2) we immediately ob-

o . ) tain the eigenvalues
Now we can read off the gravitational part and immediately
quarjnze: The remam_mg_factors ef are needed for a quan- myy,;=16(yl g)*Z[ 85( ‘/Vj+1/2_ ‘/Vj_1/2)2+4(\/7j
tization of the electric field components, whereas the rest
yields =3 W13 Wi 1) (13

in terms of the volume eigenvalues. Note that there are also
nonvanishing off-diagonal terms which are independent of
I,J. Using Eq.(4) we can expand the eigenvalues of the

productV®m;, which classically should bé, :

fyy=32412)2r(h[h ATy T AR (1)

which is independent of the regulater
So far, we have only used homogeneity; next, we cal
reduce Eq.(11) to isotropy: We have to insert the special

X . ) =1 . .
form of holonomies and the isotropic volume operator and My =V, 85+ (st 15:819)] 2+ 03]
can then take the trace over the dreibein componant® y L a4
arrive at the isotropic inverse scale factor ~V Y 815+ 5( 556+ 162 019) Yo a1, (14

For largej we used the approximaticaf=|p|~ £ y13j. This

oo 2y =271 N/ — coq L o) Weog L
m;y=64(ylp) {[\N cos(zc)\/\—/cosizc) demonstrates that the leading order is in fact given by
Vv~ 1355 and higher order corrections only start witha™*.

et Wi LoV 12— 8 Tsin Lo VW eog L
sin(3¢) VUsin(i )1~ aulsin(ie) VVeogie) Also the off-diagonal termswhich are of purely quantum

—cog te) Wsinte)12r. 12 origin,.on'ly arise at .this ord_erThus, we have the c_orrect
ik )\/_ nze) % (12 behavior in the classical regime of a large scale fatdirce
the only way to obtain dimensionful geometric quantities is

This operator has two striking features. First, it provides . . ) : e
ook ) y multiplying a given function of by I, the classical limit
guantization of the inverse scale factor bp@nded opera- 4 : ; X
with | .— 0 also involveg — <, as in the treatment of angu-

tor despite the fact that the classical expression diverges fqrar momentum in quantum mechaniesd we see that all the

a—0. As seen in Fig. 2, the upper bound is given by Itstechniques involved in the quantization of the inverse scale

. . b1 2
?%‘Vallge,'ﬂzthﬁ. S;a(tf with= Zf %nd (:] aihthe .;"f’"“t‘fj(?. factor are perfectly compatible with the classical limit. Note

. )(vIP) w ',C Iverges fom —U. Thus 1t1S e T~ 5155 that the leading order in the expansion is independent of
niteness of Planck’s constant that removes the infinity of the[he Barbero-Immirzi parameter

classical inverse scale factor. This is somewhat analogous to
the ground state energy of the hydrogen atom: it is negativ
and finite in quantum theory, but diverges for-0 in cor-

In fact, the classical behavior can be observed in a range
By far larger than expected from thje 1-expansion. As can

be seen in Figs. 2 and 3, even downjtel, i.e. for a scale

: Tactor slightly above the Planck length, the eigenvalues lie
bounded fromAbeIow. The second feature is that the Ooperatofnse to the classical expectation. Only the lowest eigenval-
valued matrixm; is not diagonal as in the classical case. Asyes deviate strongly from the classical curve, but this is in a
one would expect, the off-diagonal components have gegime where quantum effects are important. Those effects
purely quantum origin and go to zero astends to zero. In  gre responsible for the boundedness of the quantized inverse
order to critically examine the viability of the quantization scale factor and its finite eigenvalues even on the states
procedure we need to discuss the classical limit which we,, 7, and ¢_,,, which are annihilated by the volume op-

will do below after deriving the complete spectrumrAnp‘J . erator.
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35 x (nonexisting inverse “a” 1" of the quantization ofa. Such
3 effects are not unexpected in quantum theory. A second fea-
ture of the quantization of the inverse scale factor seems to
25 be more questionable: one of the zero volume eigenstates has
also a zera(not just finite eigenvalue of the inverse scale
2 factor and so botta andm;, annihilate the same state. Of
course, this happens at a point where the classical theory
15 completely breaks down and classical intuition cannot be
x trusted, but still an elucidation is need&his is even more
1 * important because these issues are essential for a quantum
evolution through the classical singularity/5,16].
0.5 A basic observation in this respect is that the classical
0 value of the inverse scale factam; corresponding to the

0 1 2 3 4 5 guantization11) is not defined aa=0, and san,; has to be
i appropriately extended to this point. This can formally be
s _ done asm,;:=sgn(@)?|al 14, (taking into account the de-
EIG. 3. Product;~m;, ; of eigenvalues of thg scale factori and rjyative of V=|p|3/2 in the Poisson bracketwhich, of
the inverse scale factor compared to the classical expectation MSurse, is the same as E() on the classically allowed
(dashed ling regiona>0. In the pointa=0 both this expression arai *
are ill-defined and so its introduction does not change the
As expected from the fact that both classical quantitiexclassical situation.The sign does not lead to a better behav-
only depend on the triad degrees of freedom, the voluméor since it is, as the derivative of the absolute value, not
operator\’\/ and the quantized inverse scale fa(;[’\[)lrJ are well-defined for a=0; and even the standard definition

simultaneously diagonalizable. The surprising fact is thgt ~ S9N(0¥=0 leads to an undefined expression "0/0,” whereas
is a densely defined operator with the correct classical beh€ limita—0 is not different from the one faa "] How-

havior in a wide range. Thus, even in states which are anni€Vel, as we have seen the situation is very different upon
hilated by the volume operator we must have finite eigenvalduantization which leads to a well-defined formulation also

- . X at states corresponding to the classical vale€).
ues ofm,;; otherwisem,; would not be densely defined. ; . . .
In order to illustrate this point, one can do essentially the

Sinceﬁ1,| isa quanti;ation qf the_inverse scalg factor, syc_h %ame quantization in a simpler model which is the standard
behavior would be impossible in the classical descnptlorhuanwm theory of the cylindeF* St with canonically con-

where we have the idgntit\y1’3m,3 =41y Inquantum theory,  jygate coordinatep, 7} = 1. Its states arfn) = exp(ng) on
while this relationis valid at large volumésee Fig. 3 quan-  \yhich the basic operators act as

tum corrections cause large deviations at the Planck scale
close to the zero volume states. Thi¥%,and m;, are not cosgn)=z(In+1)+[n—1)) (15
inverse operators of each other, which in particular allows

~ ~ H _ 1;
finite eigenvalues ofn;, in states annihilated by. This is a sing|n)=—3i(|[n+1)~[n—1)) (16)
new mechanism with the origin purely in quantum geometryand
by which the classical singularity is resolved.
7|ny=n#|n). 17)

D. The j=—1-state 1

0 . Being interested in a quantization jaf| ~*4, one cannot use
Two aspects of the quantization of the inverse scale factO{he inverse ofr. which does not exist. Instead. one can re-
are important: first, it is a bounded operator cutting off the ' ' '

. . X . write
classical divergence and simultaneously preserving the clas-

sical behavior for values of the volume largarot much —1/2_ ; .

largen than a Planck cube. This fact is welco?ne and can besgr(w)hr| _Z(COSQS{SI”(Z)’\/W} smq&{cosd),\/m})
understood as originating in quantum effects which become (18)
important only for small volume where the classical theorywhich is a classical identity and clearly shows the origin of
breaks down. Technically, this is done by choosing an approthe sign. We used a similar identitfhiemann’s to rewrite
priate classical expression as the starting point for quantizahe inverse scale factor in isotropic cosmological models. It

tion. Since the volume operator has zero eigenvalues, its ins also clear that one cannot use an analogous formula to
verse does not exist and, therefore, cannot be used for @write | 77| =2 itself, since one always needs to take deriva-

guantization of the inverse scale factor. But as we have seeflyes of the absolute value af. But in 7=0 both classical

it is possible to rewrite the inverse scale factor as the expresxpressions are ill-defined and so there is no “correct” one
sion (8) which is quantized to a bounded operat®g). In

this way, it is understandable that the quantizafmm of the
classical quantityn;;=|a| ~16,; does not coincide with the  3The author is grateful to A. Ashtekar for raising this issue.
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as a starting point for quantization. The only difference isdue to Thiemanfl2]. Most of the operators studied so far in
that, as we will see shortly, sgnj|w| 2 can be quantized quantum geometry are built from the fundamental holono-
to a densely defined operator, wher¢as 2 cannot. mies or derivative operators quantizing the triad components.
Expression(18) can easily be quantized by turning the The co-triad, however, is not a fundamental field in this
Poisson brackets intd#) ~* times commutators which leads framework, and so its quantization is less clear-cut. Never-

to theless, it is of importance because it enters the quantization
o _ of the Hamiltonian constraint, which controls the dynamics
sgr( )| |~ Y2=—2i% " Y(cos¢[ sin d),\/ﬁ] of the theory. Models like the isotropic ones can be used to
- investigate quantization ambiguities in detail, and we pre-
~sing[cosg, V| []). (19 sented a first test of the co-triad quantization by studying a

quantization of the inverse scale factor which can be ex-
pressed in terms of the co-triad. As we have seen, applying
Thiemann’s identity leads to a bounded operator while pre-
serving the correct classical limit. Although quantization am-

Using Eqgs(15), (16) and(17), its action on the statds) can
be computed which shows that) are eigenstates with ei-
genvalues

1 1 biguities like factor ordering problems do not affect the clas-
\/|n+1|ﬁ B \/|n—1|ﬁ ' (20 sical limit, the outcome of the correct classical limit is not
For large|n|, one can perform a Taylor expansion demon-triVial'.A look .at the eigenvalue(sll?,)i revea[s that allarg.g'a—
: ol limi behavior V;~j%? leads tom, i~j 96~V 3 which is
strating the correct classical limit i~ =) i
needed for the correct classical limit of the inverse scale
VIn+1la " 1=|n-1]a"1 factor, only ford=3. Also the prefactor is important because
otherwise the producy;”m, ; would not approach 1 for
= ﬁ‘l’zx/ﬁ( Vi+n t—y1-n"1 largej. For this it was necessary to use the correct symplectic
structure(1) and also to correct the volume spectri#).
—#22{In[[n"1+0(n"3)] The quantization techniques 2] are working perfectly in
_ _1p our gquantization which should also increase our confidence
=sgrin)(|n#) in the quantization of the Hamiltonian constraint in the full
X[1+0(n"?)]. theory.

An expansion for largg¢ showed the correct classical be-
On the other hand, fan=0 the eigenvalue is zero, which is havior (14); but the situation is even better than expected:
the same situation as in the quantization of the inverse scaRich an expansion is supposed to break dowrn fming of
factor: both7 and sgnfr)| 77|~ Y2 annihilate the same state. f[he order 1, but Fig. 2 shows that the elggnvalues of the
In view of the sign appearing with the inverse this is less"VerS€ scale .factor are close to_the classmal. expectatlon
surprising than initially, but again we emphasize that the sigrfVe" down toj=1. In fact, there is a cancellation in the
makes no difference for the acceptability of the classical _-cOrrection to the classical expression in Et), but this
quantity. This toy example demonstrates that the importanttill cannot explain the good behavior f@!t_113 the Taylor
features of the quantization of the inverse scale factor are néXpPansion of Eq(13) aroundx=0 for x:=j~*, which has
special and can also be obtained in standard quantum m&en used in Eq(14), does not converge fax=1 corre-
chanics. Nevertheless one may ask why such quantizatiorf0nding to thg = 1-eigenvalue. This fact shows that a non-
have not been used before. The answer is related to the cla@grturbative treatment is mandatory: a perturbative expan-
sically allowed regions of the canonical coordinates, whichS!Ion 1N j~*, which is meaningful for large scale factors,
are different in theT* S!-example and in isotropic cosmo- Preaks down at the Planck scale. o o
logical models: on the cylinder, the full range far is al- Close to the classical singularity, quantization ambiguities
lowed includingm=0 and so the inverse of is not well- d_o affect the_ eigenvalues quanfutatwely, b_ut not the_quallta-
defined and also not of physical interest. But in the gravitytlVé conclusion of a nondiverging behavior of the inverse
model, the scale facta must be positive classically, and so Scalé factor. One can draw lessons from our quantization,
a~!is well-defined on the classical phase space. In contragt.g., one could replace the objeecth[h™*,V] by [h,V] in

to the inverse angular momentumi L, it is of direct physi- isotropic models because all edges are closed there and both
cal interest since it appears, e.g., in curvatures. correspond to the same classical Poisson bragkét has
been done 9] for simplicity). In the full theory, this is not

IV DISCUSSION possible because any edge appearing in a holonomy has to be

traced back. One can see that such a replacement would not

Isotropic cosmological models are not only interesting adead to the desired properties for the inverse scale factor in
models of an expanding universe, for which they have beersotropic models because the resulting expression would not
widely used in the past century, but also provide systems imommute with the volume operatwhich it should because
which explicit calculations are feasible, and therefore are exboth only depend on metrical variable$hus, one has to use
cellent test arenas for sophisticated techniques developed ftre same procedure as in the full theory despite a larger
a quantization of general relativity. The basic technique usethitial freedom.
in this paper is the quantization of the co-triad components A consequence of the particular quantization presented in
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| ((haLhy V) "= Cegp(hyhy L VV])°c
251 % = (h3HFel(hy)A V]
2| N —~[\V-cog}c)VVeog te)
s —sin(tc)VVsin(3c)18%
; e +2A%g[sin(3c) \/§cos{ ic)
X e _
o —cogc)\Vsin(ic)].
The subtraction of the product of traces in E2{l) leads to a
0 cancellation of the off-diagonal components in the resulting
0 1 2 3 4 5 m;; . However, there is no independent argument in favor of

i Eqg. (11) or Eq. (21) besides the vanishing of off-diagonal
components since both expressions have the same classical
limit. Off-diagonal components may have relevance in devia-
tions from the Lorentz-invariant vacuum structure because a
non-diagonal metric at small scales leads to anisotropies and
Sec. Il is the fact that the metric eigenvalues form a non-so to birefringence effects in the propagation of waves. In
diagonal matrix even for an isotropic model. The off- this context, it may be interesting that the corrections are
diagonal terms are, however, only of the ortféa* and so ~ only of fourth order in the Planck length.

do not affect the classical limitsee Fig. 4 Their precise _ The main result of this paper is that the divergence of the
value depends on the factor ordering and other ambiguitie§Verse scale factor is completely cured by the quantization
which cannot be fixed by studying the classical limit. For Methods of quantum geometry, most importantly those de-

P eloped in[12]. This fact opens up a new way for a resolu-
fhxsrgglﬁi,atglse)é;an be removed by quantizing the product 0;{ion of the classical singularity in quantum cosmoldgy|

which will be investigated in more detail elsewhdrEs].
Technically, this comes from an absorption ¥f ! into a

FIG. 4. Eigenvalues of the off-diagonal components naf
compared to the classical inverse scale fa¢iashed ling

tr( Tih|[hf1,\/\7])tr( rth[hjl,N]) Poisson bra_cket. which is the same procedure which allows
matter Hamiltonians to be quantized to densely defined op-
= Lr(h[hy WV hyThy LN D eratord 13]. Thereforejt is the same mechanism which regu-

larizes ultraviolet divergencies in quantum field theories and
—%tr(h,[hfl,N])tr(hj[hjl,\/\rl]) (21 removes the classica! singL_JIarity in quantum co_smaldgy
particular, geometry itself is responsible for this, and not

matter effects.
instead of Eq(11). Here we used the identityr(”s(7;)p

=3€e"Cegp— 3 0"56%p and defined I~ 1)A5:=e*CegphPe. ACKNOWLEDGMENTS
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