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Quasinormal modes of Schwarzschildanti-de Sitter black holes:
Electromagnetic and gravitational perturbations
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We study the quasinormal modé3NM) of electromagnetic and gravitational perturbations of a Schwarz-
schild black hole in an asymptotically anti—de SittA&dS) spacetime. Some of the electromagnetic modes do
not oscillate; they only decay, since they have pure imaginary frequencies. The gravitational modes show
peculiar features: the odd and even gravitational perturbations no longer have the same characteristic quasi-
normal frequencies. There is a special mode for odd perturbations whose behavior differs completely from the
usual one in scalar and electromagnetic perturbations in AdS spacetime, but has a similar behavior to the
Schwarzschild black hole in an asymptotically flat spacetime: the imaginary part of the frequency goes as
1/r ., wherer . is the horizon radius. We also investigate the small black-hole limit showing that the imagi-
nary part of the frequency goes la’,s These results are important to the AAS/CFT conjecture since, according
to it, the QNM's describe the approach to equilibrium in the conformal field theory.
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[. INTRODUCTION compute directly, but can be done relatively easily using the
AdS/CFT correspondence. Horowitz and Hub¢ry8| have
Quasinormal modetQNM'’s) of black holes play an im- studied the QNM's in AdS, by thoroughly investigating sca-
portant role in the study of the dynamics outside black holeslar perturbations in 4, 5, and 7 spacetime dimensiwes
They appear, for instance, when one deals with the evolutioglso Ref.[9]). Subsequently, Wang aret al. [10,11] ana-
of some field in the black-hole spacetime, or in black-hole-lyzed scalar QNM's in a Reissner—Nordst\dS geometry.
black-hole collision processes. Numerical simulations rangRecently, Cardoso and Lemfi2] (see also Ref.13]) found
ing from the formation of a black hole in gravitational col- @n €xact solution for the QNM's of scalar, electromagnetic,
lapse[1] to the collision of two black hole] provide clear @nd Weyl perturbations of a Bados-Teitelboim-Zanelli
evidence that, no matter how one perturbs a black hole, ittfslack hole. Another conjecture is related to the speculation

- . ; ; 7,14,19 that there might be a connection between the criti-
response will be dominated by the QNM’s. QNM’s allow us -’ =™ . ) .
not only to test the stability of the event horizon againstCal exponent of Choptuiki6] and the imaginary part of the

small perturbations, but also to probe the black-hole mas frequency, for small black holes. This is still an open ques-

electric charge, and angular momentum, through their char- In this paper we shall go beyond the scalar perturbations

acteristic waveform. [7,10,11, and consider electromagnetic and gravitational
A great deal of effort has been spent to calculate theyerrhations of a Schwarzschild black hole in an asymptoti-
QNM's and their associated frequencies. New powerfuley)ly AdS spacetime. Electromagnetic perturbations are of
methods, both analytical and numerical, have been deve|nterest due to the AAS/CFT conjecture since they can be
oped. The main interest in these studies is in the applicatiogeen as perturbations for some generic supergravity gauge
to the analysis of the data from the gravitational waves to beie|d. In addition, the Maxwell field is an important field with
detected by the forthcoming gravitational wave detectors. Welifferent features from scalar or gravitational fields, which
refer the reader to Refg3,4] for reviews. In a different makes it worth studying. On the other hand, gravitational
context, York[5] tried to explain the thermal quantum radi- perturbations have the additional interest of arising from any
ance of a Schwarzschild black hole in terms of quantunother type of perturbation, be it scalar, electromagnetic,
zero-point fluctuations of zero mean in the QNM'’s. Weyl, etc., which in turn disturb the background geometry.
All these previous works deal with asymptotically flat Therefore, questions like the stability of spacetime for scalar
spacetimes, but the recent anti—de Si{t&dS) conformal  or other perturbations, have a direct dependence on the sta-
field theory(CFT) correspondence conjectur@] makes the bility to gravitational perturbations.
investigation of QNM's in anti—de Sitter spacetimes more We will find that in the case of electromagnetic perturba-
appealing. According to it, the black hole corresponds to d@ions of large black holes, the characteristic QNM frequen-
thermal state in the conformal field theory, and the decay o€ies have only an imaginary part, and scale with the horizon
the test field in the black-hole spacetime corresponds to theadius. As for gravitational perturbations, there are two fea-
decay of the perturbed state in the CFT. The dynamical titures. First, contrary to the asymptotically flat spacetime
mescale for the return to thermal equilibrium is very hard tocase, odd and even perturbations no longer have the same
spectra, although in certain limits one can still prove that the
frequencies are almost the same. The second intriguing result
*Email address: vcardoso@fisica.ist.utl.pt is that, for odd perturbations, there is a mode with a totally
TEmail address: lemos@Kkelvin.ist.utl.pt different behavior from that found in the scalar and electro-
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magnetic case, in this mode the frequency scales with 1/ details. It is assumed that the time dependencd (s,r)
just as in asymptotically flat Schwarzschild spacetime. We=e™'“"W(r). The potentialV appearing in Eq(4) is given
also investigate the small black-hole limi@ problem re- by

cently addressed by Zhet al.[17]), and find that the QNM

frequencies go as’ . [(1+1)
V(r)=f£(r) 2| ®
Il. ELECTROMAGNETIC AND GRAVITATIONAL
PERTURBATIONS IN A SCHWARZSCHILD AdS and the tortoise coordinate,. is defined as
BACKGROUND
A. Maxwell perturbations a_r =£(r). (6)
ar,

We consider the evolution of a Maxwell field in a
Schwarzschild—anti-de Sitter spacetime with metric given bYpe can of course rescale r—r/R and if we do this, the

dr? wave equation again takes the for@#) with rescaled con-
ds?=f(r)d t?— — —r?(d#?+sirf6 d¢?), (1) stants, i.e.r,—r. /R, o—wR, wherer, is the horizon
f(r) radius. So, we can takB=1 and measure everything in

S ) i terms ofR.
where,f(r)=(r°/R°+1-2M/r), Ris the AdS radius, and
M the black-hole mass. The evolution is governed by Max- I )
, . . B. Gravitational perturbations
well's equations:
When dealing with first-order gravitational perturbations
Fer,=0, F,,=A,,—A,,, (2) one supposes that, at least in some restricted region of space-
time, the metric functions can be written as
where a comma stands for ordinary derivative and a semico- 2 — 4O (x") 4 hor (X 7
lon for covariant derivative. As the background is spherically 9an(X") = Gap (X") + Nap(X"), (7
symmetric, we can expand, in four-dimensional vector

spherical harmonicésee Ref[18)): where the metrigy;/(x") is the background metric, given by

some known solution of Einstein’s equations, dmg(x") is
a small perturbation[19]. Our background metric is a

0 Schwarszchild—anti-de Sitter metri€l) and the metric
0 Oap(Xx”) will follow Einstein’s equations in vacuum with a
A#(t,r,0,¢)=2 alm(t,r) cosmological constant:
I,m ing ¢ VIim
sin Gap~ AGap=0. (®)

—a'M(t,r)sin#d,Ym
Upon substituting Eq(7) in Eqg. (8) we will obtain some

Mt F)Y differential equations for the perturbations. We use the same
m perturbations as originally given by Regge and Whegé,
h™(6 ) Yim 3) retaining their notation. After a decomposition in tensorial

spherical harmonicgsee Zerilli [21] and Mathews[22]),
these fall into two distinct classes—odd and even—uwith
parities (—1)'** and (— 1), respectively, whergis the an-
gular momentum of the particular mode. While working in
where the first term in the right-hand side has parity general relativity, one has some gauge freedom in choosing
(—1)"*! and the second term has parity-1)', mis the the element$,,(x*) and should take advantage of that free-
azimuthal number, andthe angular quantum number. If we dom in order to simplify the rather lengthy calculations in-
put this expansion into Maxwell's equatiorfg) we get a  Volved in computing Eq(8). We shall, therefore, work with

K™(t,r)dgYim | |
K'™(t,r)3 Y m

second-order differential equation for the perturbation: the classical Regge-Wheeler gauge in which the canonical
form for the perturbations ig¢see also Ref[23]), for odd
(92‘1’ ( r ) parity,
> T[w®=V(r)]¥(r)=0, 4

arg 0 0 0 ho(r)
where the wave functio® (r) is a linear combination of the h,,= 0 0 0 (M)
functionsf'™, h'™, k'™ anda'™ as they appear in E43). ¥ g 0 0 0 0
has a different functional dependence according to the parity; ho(r) hy(r) 0 ho(r)
for Iodd parity, i.e., €1)'*t, ¥ is exlplicitly given by ¥ ;
=a™, whereas for even parity(1)' it is given by ¥ ot
~r2/1(I+1)(~iwh™—df™/dr), see Ref[18] for further xe S'”aa_a) Pi(cos6), ©
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for even parity, where
H f H 0 0
o(r)f(r) 1(r) 1+1)  6m
3 Hq(r) Ho(r)/f(r) 0 0 Voaq= f(r) 2 _r_3 . (13
wr 0 0 r2K(r) 0
0 0 0 r?K(r)sir’ ¢ Likewise, following Zerilli [25], one can define for even

modes the wave functiof(r) implicitly in terms ofHg, Hy,

—iwt
Xe '“'Py(cos0). 10 and K, through the equations

HereP,(cos) is the Legendre polynomial with angular mo-
mentuml. If we put this decomposition into Einstein’s equa- 6m?+c(l+c)r+m(3cr—3(r¥R?)_ dT
tions we get ten coupled second-order differential equations K= r2(3m+cr) + dr.’
that fully describe the perturbations: three equations for odd *

. X . (14
perturbations and seven for even perturbations. It is, how-
ever, possible to circumvent the task of solving these coupled

equations. Regge and Whee|@0] and Zerilli [25] showed . iw(—3m?—3cmr+cr?—3m(r¥R?))
=

how to combine these ten equations into two second-order r(3m+cr)f(r)
differential equations, one for each parity. So following
Regge and Wheel¢R0] (see also Ref.24] for more detaily i wL dar (15
we define, for odd parity, the wave functi@(r) given by f(r) dr,’
perturbations:
£(r) wherec=3[I(l+1)—2]. Then Einstein’s equations for even
Q(r)=——hy(r). (11)  parity perturbations can be written as
r
After some work, Einstein’s equations yield Al
q g = [0 Vered NIT=0, (16

aZQ 0r*

—5 T[0?=Veud1)]1Q=0, 1

g with

2f(r) 9m3+3c?mr?+c?(1+c)ri+3m?(3cr+3(r¥/R?))

= 17
sven 3 (3m+cr)?
|
Now, by defining Il. QUASINORMAL MODES AND SOME
OF ITS PROPERTIES
We 2m . -3-2c . 3c?+2c?+ 27(m?/R?) L A. Analytical properties
r2 3r 3c(3m+cr) b

To solve Eq(4) for Maxwell fields and Eq912)—(16) for
(18) gravitational fields, one must specify boundary conditions.
) . 5 5 ) Consider first the case of a Schwarzschild black hole in an
wherej = —3(c/m+c/m+9m/cR’), we obtain asymptotically flat spacetimésee, e.g., Ref[3]). Since in
this case the potential vanishes at both infinity and horizon,
the two solutions near these points are plane waves of the
type W ~e*'“"x where ther, coordinate in this case ranges
from —o to «. Quasinormal modes are defined by the con-
whereB=—(c?+2c3+c*/9m?). It is interesting to note that dition that at the horizon there are only ingoing waves, i.e.,
the two potentials, odd and even, can be written in such & ho~e '“"* . Furthermore, one does not want to have fields
simple form, a fact which seems to have been discovered bgoming in from infinity (where the potential in this case van-
Chandrasekhaf27]. Potentials related in this manner are ishes. So, there is only a purely outgoing wave at infinity,
sometimes called superpartner potent[@6]. We note that i.e., ¥, .~e'“’+. Only a discrete set of complex frequencies
similar equations were obtained by Mellor and Mf28] for @ meet these requirements.
Schwarzschild—de Sitter spacetime, using a different ap- Consider now a Schwarzschild black hole in an asymp-
proach. totically AdS spacetime. The boundary condition at the ho-

dw
Vogs= W+

Vever= W? aw 19
dl'* +Bv even dl’* +:81 ( )
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rizon is the same, we want that near the horizbm,  Puttingx=1/r we have
~e '“'« However,r, has a finite range, so the second 24 s
boundary condition needs to be modified. There have been J . d _
several papers discussing which boundary conditions one ﬁ+2'wa_x_l(l+1)¢_o’ (26)
should impose at infinity in AdS spacetimef29-31]). We
shall require energy conservation and thus adopt the reflegith solution = ¢.. given by
tive boundary conditions at infiniy29]. This means that the
wave function is zero at infinity. For a different boundary do(x)=Aexp{—iw+i[w?—1(1+1)]¥3x
condition see Ref.32]. i i

We now show that the imaginary part of the frequeacy +Bexp—io—ile’~I(1+1)]x. (27
is negative, for waves satisfying these boundary conditions'\IO
provided the potentiaV/ is positive. The proof proceeds as
for the scalar field perturbation capg|, although there are b.(X)=Ae 1 sin[ w?—1(1+1)]¥). (28)
some steps we think are useful to display explicitly here.

Writing ¢ for a generic wave function as We can now proceed in the proof. Multiplying EQ1) by ¢
p=elvz (20) (the complex conjugate ab), and integrating fronm , to o«
’ we obtain

W, ¢..(x=0)=0, thereforeA= —B, and thus,

where,Z can be¥, Q, or T, we find

_d¢ V_
—2iwg d—f’— ?qﬁqﬁ}:O. (29)

© [_d(f(dg/dr))
J s G

P I Y
f(r)—2+[f’—2|w]a—r—?¢>=0, (21)
or Integrating by parts yields

where f=(r?+1—(2M/r)). In the proof, we are going to

s 2
need the asymptotic behavior of the solutions of Exfl). f dr W_fd_d) —Ziwgd—d)— !|¢|2}:0.
For r—r, we havef~(3r,+1/r,)(r—r,) andV/f~C, ry dr dr dr f
whereC is a constant which takes different values depending (30
on the case, electromagnetic, odd or even gravitational per- _
turbations. So Eq(21) becomes, in this limit, Now, one can show thaihf(d¢/dr) ], =0, in order to sat-
isfy the boundary conditions. Indeed, at,., ¢(r.)
) L) =constant andf(r,)=0. Now, at infinity, even though
Ay[?_),2+[A_2'w]W_C¢_O’ (22 ¢(=)=0, we have alsd(=)==, so we have to show that

[gf(qu/dr)]w:O. From Eq.(28) we can check that this is
wherey=r—r,, andA=3r+ 1/, . This equation has an indeed true. Thus, Eq30) gives
exact solution in terms of the modified Bessel functions

w dg|? —d¢ V
1(2) [33], f arl 1122 2105 22 Vgl =0, ()

r dr dr f

1/2 +
_ i(wlA)] el
¢=Cay |~ Giwra) Z(Ay) } Taking the imaginary part of Eq31) we have

_ C 1/2 w _d o d_

+Coy N Z(Zy) : (23 fr dr{w¢d—(rb+w¢d—(f =0, (32)

We want the asymptotic behavior of these functions WheQNhiCh after an integration by parts reduces to
y—0, which is given byl ,(z)—(2/2)"/T'(v+1),z—0. So, '

near the horizon the wave functiah behaves as _ (> [_d _
(o= [ arat|=olsa ) @3
~(iw/A 2iwlA iwl/A ¢ rt dr|” 1PV
b = (CIA)~(eA) y2lACIA) 24
TN (2iw/A) T T(1+2i0/A) Finally, inserting this back into Eq31) yields
We can see that if one wants to rule out outgoing modes at x de|2 Vv lw|2 (1)
the horizon, we must havé,=0, so that¢ in Eq. (20) does f dr fa + ?|¢|2 = e (34
M+

not depend ory. Let us now investigate the asymptotic be-
havior at infinity. Forr—o, we have V/f—I(l+1)/r2.

Therefore, near infinity, Eq21) becomes From this relation, one can infer that\ifis positive definite

then Imw<0, necessarily. So, since electromagnetic and

24 a6 1(1+1) even gravitational perturbqtio.ns have>-0, one always has

2= [ 2r—2iw]—— $=0. (25) Imw<<0. As for odd gravitational perturbations, there are
2 oar 2 instances wher&/<0, making this theorem unreliable for
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these cases. However, for, <[I(1+1)/3—1]*? i.e., small TABLE I. Lowest QNM of electromagnetic perturbations for
enough massed/>0 [see Eq.(13)], and the theorem ap- =1. The " in Liu's approximation columns means that the
plies. method is not applicable.
Another important point concerns the late time behavior : — —
of these fields, and the existence or not of power-law tails. Numerical Liu's approximation
As shown by Chinget al. [34], for potentials that vanlsh' r, -~ o, -~ o,
exponentially near the horizon, there are no power-law ta'ISO.S 1.287 2175 ) )
so there will be no such tails in our case. 1 1.699 2163 i )
) ) ) 5 8.795 ~0 7.6 ~0
B. Numerical calculation of the QNM frequencies 10 15.506 -0 15.05 -0
To find the frequencies that satisfy the boundary con- 50 75.096 ~0 75.01 ~0
ditions, we first note that Eq21) has only regular singulari- 100 150.048 ~0 150.005 ~0

ties in the range of interest. It has therefore, by Fuchs theo=
rem, a polynomial solutiofi35]. To deal with the point at
inﬁnity' we first Change the independent variabpleo x perturbations fol=1 andl=2 and for selected values of
=1/r. Now we can use Ftmenius method by |00king foran r+. For frequencies with no real part, we list the values
indicial equation(for further details see Reff7]), and force it ~ Obtained in Liu's aproximation.

to obey the boundary condition at the horizor=(1/r , As one can see, the imaginary part of the frequency,
=h). We get the following solution to Eq21): which determines how damped the mode is, and which ac-

cording to the AdS/CFT conjecture is a measure of the char-
” . acteristic timer=1/w; of approach to thermal equilibrium,
()=, An(w)(X—)", (35  scales linearlyfor large black holeswith the horizon radius
n=0 . . .
supporting the arguments given in RET]. Moreover, the
wherea,,, is a function of the frequency. If we put E(5) frequencies do not seem to depend on the angular quantum

into Eq.(21) and use the boundary conditien=0 at infinity numberl, and are in excellent agreement with the analytical
(x=0) we obtain approximation for strongly damped modes.

For a better visualization, we also pletx<r, in Fig. 1.

> anw)(—h)"=0. (36) 2. Gravitational modes
=0

The numerical calculation of the quasinormal frequencies
Our problem is reduced to that of finding a numerical solu-for gravitational perturbations proceeds as outlined previ-
tion of the polynomial equatiof86). The numerical roots for ously [the associated differential equation has only regular
o of Eg. (36) can be evaluated resorting to numerical com-Singularities, so it is possible to use an expansion such as Eq.
putation. Obviously, one cannot determine the full sum in(35)].
expression(36), so we have to determine a partial sum from (i) Odd modes: In Tables Il and IV we show the two
0 to N, say and find the roots of the resulting polynomial lowest QNM frequencies fdr=2 andl =3 odd gravitational
expression. We then move onto the next tédm 1 and de-  perturbations. An important point in odd QNM's is that there
termine the roots. If the method is reliable, the roots shoulds @ mode for which the frequencies are not only pure imagi-

converge. We stop our search when we have a three decima@ry and very small, but also scale with 1I' This is similar
digit precision. to the behavior of Schwarzschild black holes in asymptoti-

cally flat spacetimes, as mentioned. However, all frequencies
1. Electromagnetic modes have a negative imaginary part, which indicates that the
. pacetime is stable for these kinds of perturbations.
it does not mattef The valuew =2 in Table lll marked with a “?” is a some-
hat dubious result. In fact, from E@4) it follows that if

As long as the modes are decaying,
whether or not they are oscillating. However, as we will see
there are frequencies in the electromagnetic case with a van’
ishing real part, which makes it possible to use an approxi-
mation, due to Liu[19], to the highly damped modes. Al- | _
though the method was originally developed for the i

TABLE Il. Lowest QNM of electromagnetic perturbations for

asymptotically flat space, it is quite straightforward to apply Numerical Liu's approximation
it to our case. There is, therefore, a way to test our results.

Unfortunately, this method relies heavily on having a fre-r, — o w; — wj w;

guency with a large pure imaginary part, so as we shall see 1.8 1.176 2.501 - -
will only work for electromagnetic perturbations. We have 1 1.579 2.496 - -
computed the lowest frequencies for some values of the ha 10.309 0.822 7.6 ~0
rizon radiusr ., andl. The frequency is written as&= w, 10 15.755 ~0 15.05 ~0
+iw;, wWherew, is the real part of the frequency aagisits 50 75.139 ~0 75.01 ~0
imaginary part. In Tables | and Il we list the numerical val- 100 150.069 ~0 150.005 ~0

ues of the lowest quasinormal frequencies of electromagnetie
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Wi TABLE IV. Lowest QNM of gravitational odd perturbations for
I=3.
140
120 Lowest QNM Second lowest QNM
1001 M — Wi Wy — Wi wr
sol 1 10 0 1.639 3.849
2 2.189 0 5.080 4.615
60 5 0.690 ~0 13.247 9.735
s0l 10 0.336 ~0 26.603 18.742
50 0.0669 ~0 133.19 92.521
20¢ 100 0.0333 ~0 266.382 184.967
T+

20 40 60 80 100

FIG. 1. Lowest electromagnetic QNM fdr=1 as function of  pehavior of the potentia¥ 4 for odd perturbationéthat was
r+. The black lozenges represent some frequencies numericallyhy we could not prove stability for odd perturbations in the
calculated. The line connecting them is a linear fit. first placé and of the boundary conditions, as we shall show

in Sec. llIC. The odd modes are therefore particularly long

1—(2iw/A)=—n, with n an integer, then there is nothing lived.

going down the hole, so perhaps it is not a QNM. It is also an

“algebraically special value” in the sense of Chandrasekhar - g the isospectrality breaking between odd and even
[36]. perturbations

(i) Even modes: In Table V we show the lowest QNM ) ) .
frequencies fol =2 and|=3 even gravitational perturba-  AS is well known[27,37] in the case of a Schwarzschild

tions. We point out the remarkable resemblance of the valugdlack hole in an asymptotically flat space the two potentials
in Table 11l with those in Ref[7] for scalar perturbations, Veven@NdVoqqgive rise to the same quasinormal frequencies
even though the potentials are quite different. We have pe,(,ln fact to the same absolute value of the reflection and trans-
formed calculations for higher values of the angular quantuninission  coefficients This remarkable property followed

numberl, and found that the QNM frequencies are indeedffom a special relatiofithe equivalent for asymptotically flat
very similar throughout all values of spacetimes of our Eq19)] between the potentials and the

(iii) Discussion: We first note that there is clearly a dis-Pehavior ofW at the boundaries. However, as one can see in

tinction between odd and even perturbations, they no longefables lll-V there is a isospectrality breaking between odd
have the same spectra, contrary to the asymptotically flaand even perturbations in Schwarzschild anti—de Sitter
space casésee Ref[37]), a problem we shall consider in Spacetime. _ _ _

more detail in the next section. We also remark that, in elec- We shall now treat this problem. The breaking of the isos-
tromagnetic and scalar perturbations, the frequency Sca|€.p°ectrr:1llty is intimately related to the behawor‘ﬂ»fat infin-

with r .. (for large black holes at leasSince the temperature y- On taking advantage of the_machmery developed by
scales also withr, in the large black-hole regime, this Chandragekhar, we seek a relation between odd and even
means that the frequency scales with the temperature. Thugerturbations of the form

in the dual CFT, the approach to thermal equilibrium is faster

for higher temperatures. This is a totally different behavior Q=p,T+q; dr , (37)
from that of asymptotically flat space, in which the fre- dr,
guency scales with i/ . However, for odd modes there is
one that scales with A/ . This is a reflection of the different
dQ
TZPzQ"‘QzF: (38)
TABLE lll. Lowest QNM of gravitational odd perturbations for *
1=2.
TABLE V. Lowest QNM of gravitational even perturbations.
Lowest QNM Second lowest QNM
Lowest QNM,|=2 Lowest QNM,|=3
ry — w;j W, — w;j W,
0.5 6.4 0 0.72 3.037 ry — wj , — w; ;
1 ~2(?) 0 2.404 3.033 1 1.584 3.018 1.392 3.909
2 0.728 ~0 5.258 4.447 2 3.974 4.546 3.299 4.597
5 0.2703 ~0 13.294 9.577 5 12.649 9.83 11.642 10.217
10 0.13378 ~0 26.626 18.662 10 26.301 18.806 25.788 19.089
50 0.02667 ~0 133.19 92.505 50 133.125 92.535 133.022 92.596
100 0.0132 ~0 266.384 184.959 100 266.351 184.959 266.300 185.005
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yielding (see Ref[27] for detaily, qi=1/8— w?, p;=qW,
p>=—p1, andg,=q;=0. Thus, we obtain
daT |
Q=qWT+qdr , (39) i
* v L
dQ s 0 a v
T=—qWQ+qy—. (40) _
dry FIG. 2. The potential for small black holesV,,,=4l(l

_ . +1)/27%% anda~3r, .
Suppose now thab is a QNM frequency ofT, i.e., one for

which d\P/dr* .
_ v e r, <o, (45
T—Aeef '™, r—r, (41
T—0, r—w. (42) dw/dr, ik;Be*i'x—ik,Ce 1"
v Bekix + Ce iK1« , 0<r,<a,
Substituting this into Eq(40) we see that (46)

—Aeef[W(r+)—iwle™ ™, r—r,, (43 . .
Q= Al W(r+)—le] o dW/dr, ikDek'x—ik,Ee '+

¥ Dek«+Ee K«

r,>a, 4
4T x (47)

Q—)C](dr*)rw, [—o, (44)

wherek; = (0?— Va2 andk=[w?—1(1+1)]*2 Impos-
ing the continuity of the logarithmic derivative and, further-

However, from EQq.(28), (dT/dr,),-.., iS in general, not s
a.28), ( o g more, that¥ =0 at infinity (r, = w/2), we get

zero so thaiw will, in general, fail to be a QNM frequency
for Q. ShouldQ andT be smooth functions ab, one expects

that if  is “almost zero” thenw should “almost” be a QNM (ki— w/k+w)e?a?—1] e?k(m27a) 4
frequencyzforQ. Now, the condition that] is almqst Zero is 1 (k;— wlky+ w)edkid+ 1 | 1= e2ik(m2-a) |
that 8— w“ be very large, and one expects this to be true (49)

either wherw is very large or else wheg is very large. And

in fact, as one can see in Tables IlI-V for very laigethe  |n the limit a—0, k;— o (m—0) we have, supposing that
frequencies are indeed almost identical. On the other hang, stays small, the conditioe?*("? =1 which means that

for very small black holes § very large one expects the

frequencies to be exactly the same, since both potentials w§=4n2+|(|+1), n=12, ... (49)
have the same asymptotic behavior in this regime, as we

shall see in Sec. IV. One would be tempted to account for thec‘orresponding to a bound state. This gives for the lowest
remarkable resemblances between QNM frequencies of SCENM frequencies 1=1) wo=2.45 forl =1 and wo=3.16
lar and gravitational perturbations by a similar approach, bu* o~ o>

the proof is still eluding us. Should such an approach work, - |=2. The above are to be compared with those in Tables
the p g uS. ppr . _1=V. The agreement seems excellent, and we can now go a
it could be of great importance, not only to this specific

problem, but also to the more general problem of finding th step further. If we linearize Eq48) around the solution Eq.

S TE e : ! ; e(49), i.e, if we write w=wy+i6 and substitute back in Eq.
asymptotic distribution of eigenvalues, by studying a dlffer—(48) we obtain, to third order i, the values listed in Table

ent potential with(asymptotically the same eigenvalues, but VI

more easy to handle. We have chosen a typical value @f- 3/h, but we can see
that, although the real part does not depend very much, on
IV. THE LIMIT m—0 the imaginary part is strongly sensitive & Nevertheless,
Although it is not possible to solve exactly for the QNM one can beé sure _that whatever v_alueapfhe Imaginary part
frequencies, it is possible to gain some analytical insight iff°€S as 1” and is always negative.
the special case of very small black holes. There has been
some discussion about this regirtgee Ref[17], and also
Ref.[7,38] and references thergirHere we shall exploit the
behavior of QNM frequencies in this regime a little further.

TABLE VI. The linearized frequency for selected values of
the angular quantum numbkand the potential widtla.

For very small black holes, one can easily see that both po- a=3h a=6h
tentials (electromagnetic and gravitationdbok like, in the | 8 )
r, coordinate, a barrier with unequal heigliisg. 2). 1 —2.1h—i(1.42h?) —1.92h—i(0.05h?)
It is trivial to obtain equations for the quasinormal fre- 2 —0.859h—i(0.04h?) ~0.85h—i(1.4x 10 %/h?)

guencies in this limit. If¥" is a general wave function then
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V. CONCLUSIONS

We have computed the electromagnetic and gravitatione}tfg
QNM frequencies of Schwarzschild-AdS black holes in four
dimensions. These modes dictate the late time behavior of
minimally coupled electromagnetic field and of small gravi-

tational perturbations, respectively. The conclusions (gre

The frequencies all have a negative imaginary part, which
means that the black hole is stable against these perturba-

tions, since these will decay exponentially with tim@;)

PHYSICAL REVIEW D64 084017

In terms of the AdS/CFT correspondence, this implies that
e greater the mass, the more time it takes to approach equi-
rium, an unusual result(iv) scalar[7] and gravitational
even perturbations exhibit an amazing similarity for the char-
Scteristic time damping of the perturbations, but we have not
been able to prove it analytically; arid) in the small black-
hole regime the imaginary part of the frequernciecaying
mode scales withr? .
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