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Quasinormal modes of Schwarzschild–anti-de Sitter black holes:
Electromagnetic and gravitational perturbations

Vitor Cardoso* and Jose´ P. S. Lemos†

CENTRA, Departamento de Fı´sica, Instituto Superior Te´cnico, Av. Rovisco Pais 1, 1096 Lisboa, Portugal
~Received 12 April 2001; published 25 September 2001!

We study the quasinormal modes~QNM! of electromagnetic and gravitational perturbations of a Schwarz-
schild black hole in an asymptotically anti–de Sitter~AdS! spacetime. Some of the electromagnetic modes do
not oscillate; they only decay, since they have pure imaginary frequencies. The gravitational modes show
peculiar features: the odd and even gravitational perturbations no longer have the same characteristic quasi-
normal frequencies. There is a special mode for odd perturbations whose behavior differs completely from the
usual one in scalar and electromagnetic perturbations in AdS spacetime, but has a similar behavior to the
Schwarzschild black hole in an asymptotically flat spacetime: the imaginary part of the frequency goes as
1/r 1 , wherer 1 is the horizon radius. We also investigate the small black-hole limit showing that the imagi-
nary part of the frequency goes asr 1

2 . These results are important to the AdS/CFT conjecture since, according
to it, the QNM’s describe the approach to equilibrium in the conformal field theory.

DOI: 10.1103/PhysRevD.64.084017 PACS number~s!: 04.70.2s, 04.30.2w, 04.50.1h, 11.25.Hf
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I. INTRODUCTION

Quasinormal modes~QNM’s! of black holes play an im-
portant role in the study of the dynamics outside black ho
They appear, for instance, when one deals with the evolu
of some field in the black-hole spacetime, or in black-hol
black-hole collision processes. Numerical simulations ra
ing from the formation of a black hole in gravitational co
lapse@1# to the collision of two black holes@2# provide clear
evidence that, no matter how one perturbs a black hole
response will be dominated by the QNM’s. QNM’s allow u
not only to test the stability of the event horizon again
small perturbations, but also to probe the black-hole m
electric charge, and angular momentum, through their c
acteristic waveform.

A great deal of effort has been spent to calculate
QNM’s and their associated frequencies. New power
methods, both analytical and numerical, have been de
oped. The main interest in these studies is in the applica
to the analysis of the data from the gravitational waves to
detected by the forthcoming gravitational wave detectors.
refer the reader to Refs.@3,4# for reviews. In a different
context, York@5# tried to explain the thermal quantum rad
ance of a Schwarzschild black hole in terms of quant
zero-point fluctuations of zero mean in the QNM’s.

All these previous works deal with asymptotically fl
spacetimes, but the recent anti–de Sitter~AdS! conformal
field theory~CFT! correspondence conjecture@6# makes the
investigation of QNM’s in anti–de Sitter spacetimes mo
appealing. According to it, the black hole corresponds t
thermal state in the conformal field theory, and the decay
the test field in the black-hole spacetime corresponds to
decay of the perturbed state in the CFT. The dynamica
mescale for the return to thermal equilibrium is very hard
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compute directly, but can be done relatively easily using
AdS/CFT correspondence. Horowitz and Hubeny@7,8# have
studied the QNM’s in AdS, by thoroughly investigating sc
lar perturbations in 4, 5, and 7 spacetime dimensions~see
also Ref.@9#!. Subsequently, Wang andet al. @10,11# ana-
lyzed scalar QNM’s in a Reissner–Nordsto¨m AdS geometry.
Recently, Cardoso and Lemos@12# ~see also Ref.@13#! found
an exact solution for the QNM’s of scalar, electromagne
and Weyl perturbations of a Ban˜ados-Teitelboim-Zanelli
black hole. Another conjecture is related to the speculat
@7,14,15# that there might be a connection between the cr
cal exponent of Choptuik@16# and the imaginary part of the
frequency, for small black holes. This is still an open qu
tion.

In this paper we shall go beyond the scalar perturbati
@7,10,11#, and consider electromagnetic and gravitation
perturbations of a Schwarzschild black hole in an asympt
cally AdS spacetime. Electromagnetic perturbations are
interest due to the AdS/CFT conjecture since they can
seen as perturbations for some generic supergravity ga
field. In addition, the Maxwell field is an important field wit
different features from scalar or gravitational fields, whi
makes it worth studying. On the other hand, gravitatio
perturbations have the additional interest of arising from a
other type of perturbation, be it scalar, electromagne
Weyl, etc., which in turn disturb the background geomet
Therefore, questions like the stability of spacetime for sca
or other perturbations, have a direct dependence on the
bility to gravitational perturbations.

We will find that in the case of electromagnetic perturb
tions of large black holes, the characteristic QNM freque
cies have only an imaginary part, and scale with the horiz
radius. As for gravitational perturbations, there are two f
tures. First, contrary to the asymptotically flat spaceti
case, odd and even perturbations no longer have the s
spectra, although in certain limits one can still prove that
frequencies are almost the same. The second intriguing re
is that, for odd perturbations, there is a mode with a tota
different behavior from that found in the scalar and elect
©2001 The American Physical Society17-1
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VITOR CARDOSO AND JOSE´ P. S. LEMOS PHYSICAL REVIEW D64 084017
magnetic case, in this mode the frequency scales with 1/r 1 ,
just as in asymptotically flat Schwarzschild spacetime.
also investigate the small black-hole limit~a problem re-
cently addressed by Zhuet al. @17#!, and find that the QNM
frequencies go asr 1

2 .

II. ELECTROMAGNETIC AND GRAVITATIONAL
PERTURBATIONS IN A SCHWARZSCHILD AdS

BACKGROUND

A. Maxwell perturbations

We consider the evolution of a Maxwell field in
Schwarzschild–anti-de Sitter spacetime with metric given

ds25 f ~r !d t22
dr2

f ~r !
2r 2~du21sin2u df2!, ~1!

where, f (r )5(r 2/R21122M /r ), R is the AdS radius, and
M the black-hole mass. The evolution is governed by M
well’s equations:

Fmn
;n50, Fmn5An,m2Am,n , ~2!

where a comma stands for ordinary derivative and a sem
lon for covariant derivative. As the background is spherica
symmetric, we can expandAm in four-dimensional vector
spherical harmonics~see Ref.@18#!:

Am~ t,r ,u,f!5(
l ,m S F 0

0

alm~ t,r !

sinu
]fYlm

2alm~ t,r !sinu]uYlm

G
1F f lm~ t,r !Ylm

hlm~ t,r !Ylm

klm~ t,r !]uYlm

klm~ t,r !]fYlm

G D , ~3!

where the first term in the right-hand side has parit
(21)l 11 and the second term has parity (21)l , m is the
azimuthal number, andl the angular quantum number. If w
put this expansion into Maxwell’s equations~2! we get a
second-order differential equation for the perturbation:

]2C~r !

]r
*
2

1@v22V~r !#C~r !50, ~4!

where the wave functionC(r ) is a linear combination of the
functionsf lm, hlm, klm, andalm as they appear in Eq.~3!. C
has a different functional dependence according to the pa
for odd parity, i.e., (21)l 11, C is explicitly given by C
5alm, whereas for even parity (21)l it is given by C
5r 2/ l ( l 11)(2 ivhlm2d flm/dr), see Ref.@18# for further
08401
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details. It is assumed that the time dependence isC(t,r )
5e2 ivtC(r ). The potentialV appearing in Eq.~4! is given
by

V~r !5 f ~r !F l ~ l 11!

r 2 G , ~5!

and the tortoise coordinater * is defined as

]r

]r *
5 f ~r !. ~6!

We can of course rescaler, r→r /R and if we do this, the
wave equation again takes the form~4! with rescaled con-
stants, i.e.,r 1→r 1 /R, v→vR, where r 1 is the horizon
radius. So, we can takeR51 and measure everything i
terms ofR.

B. Gravitational perturbations

When dealing with first-order gravitational perturbatio
one supposes that, at least in some restricted region of sp
time, the metric functions can be written as

gab~xn!5gab
(0)~xn!1hab~xn!, ~7!

where the metricgab
(0)(xn) is the background metric, given b

some known solution of Einstein’s equations, andhab(x
n) is

a small perturbation@19#. Our background metric is a
Schwarszchild–anti-de Sitter metric~1! and the metric
gab(x

n) will follow Einstein’s equations in vacuum with a
cosmological constant:

Gab2Lgab50. ~8!

Upon substituting Eq.~7! in Eq. ~8! we will obtain some
differential equations for the perturbations. We use the sa
perturbations as originally given by Regge and Wheeler@20#,
retaining their notation. After a decomposition in tensor
spherical harmonics~see Zerilli @21# and Mathews@22#!,
these fall into two distinct classes—odd and even—w
parities (21)l 11 and (21)l , respectively, wherel is the an-
gular momentum of the particular mode. While working
general relativity, one has some gauge freedom in choo
the elementshab(x

n) and should take advantage of that fre
dom in order to simplify the rather lengthy calculations i
volved in computing Eq.~8!. We shall, therefore, work with
the classical Regge-Wheeler gauge in which the canon
form for the perturbations is~see also Ref.@23#!, for odd
parity,

hmn5F 0 0 0 h0~r !

0 0 0 h1~r !

0 0 0 0

h0~r ! h1~r ! 0 h0~r !

G
3e2 ivtS sinu

]

]u D Pl~cosu!, ~9!
7-2
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for even parity,

hmn5F H0~r ! f ~r ! H1~r ! 0 0

H1~r ! H2~r !/ f ~r ! 0 0

0 0 r 2K~r ! 0

0 0 0 r 2K~r !sin2 u

G
3e2 ivtPl~cosu!. ~10!

HerePl(cosu) is the Legendre polynomial with angular mo
mentuml. If we put this decomposition into Einstein’s equ
tions we get ten coupled second-order differential equati
that fully describe the perturbations: three equations for
perturbations and seven for even perturbations. It is, h
ever, possible to circumvent the task of solving these coup
equations. Regge and Wheeler@20# and Zerilli @25# showed
how to combine these ten equations into two second-o
differential equations, one for each parity. So followin
Regge and Wheeler@20# ~see also Ref.@24# for more details!
we define, for odd parity, the wave functionQ(r ) given by
perturbations:

Q~r !5
f ~r !

r
h1~r !. ~11!

After some work, Einstein’s equations yield

]2Q

]r
*
2

1@v22Vodd~r !#Q50, ~12!
t
h

re

a
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where

Vodd5 f ~r !F l ~ l 11!

r 2
2

6m

r 3 G . ~13!

Likewise, following Zerilli @25#, one can define for even
modes the wave functionT(r ) implicitly in terms ofH0 , H1,
andK, through the equations

K5
6m21c~11c!r 21m~3cr23~r 3/R2!!

r 2~3m1cr !
T1

dT

dr*
,

~14!

H152
iv~23m223cmr1cr223m~r 3/R2!!

r ~3m1cr ! f ~r !
T

2 iv
r

f ~r !

dT

dr*
, ~15!

wherec5 1
2 @ l ( l 11)22#. Then Einstein’s equations for eve

parity perturbations can be written as

]2T

]r
*
2

1@v22Veven~r !#T50, ~16!

with
Veven5
2 f ~r !

r 3

9m313c2mr21c2~11c!r 313m2~3cr13~r 3/R2!!

~3m1cr !2
. ~17!
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an

on,
the
s
n-

.e.,
lds
-

y,
es

p-
o-
Now, by defining

W5
2m

r 2
1

2322c

3r
1

3c212c2127~m2/R2!

3c~3m1cr !
1 j ,

~18!

where j 52 1
3 (c/m1c2/m19m/cR2), we obtain

Vodd5W21
dW

dr*
1b, Veven5W22

dW

dr*
1b, ~19!

whereb52(c212c31c4/9m2). It is interesting to note tha
the two potentials, odd and even, can be written in suc
simple form, a fact which seems to have been discovered
Chandrasekhar@27#. Potentials related in this manner a
sometimes called superpartner potentials@26#. We note that
similar equations were obtained by Mellor and Moss@28# for
Schwarzschild–de Sitter spacetime, using a different
proach.
a
by

p-

III. QUASINORMAL MODES AND SOME
OF ITS PROPERTIES

A. Analytical properties

To solve Eq.~4! for Maxwell fields and Eqs.~12!–~16! for
gravitational fields, one must specify boundary conditio
Consider first the case of a Schwarzschild black hole in
asymptotically flat spacetime~see, e.g., Ref.@3#!. Since in
this case the potential vanishes at both infinity and horiz
the two solutions near these points are plane waves of
typeC;e6 ivr

* , where ther * coordinate in this case range
from 2` to `. Quasinormal modes are defined by the co
dition that at the horizon there are only ingoing waves, i
Chor;e2 ivr

* . Furthermore, one does not want to have fie
coming in from infinity~where the potential in this case van
ishes!. So, there is only a purely outgoing wave at infinit
i.e., C`;eivr

* . Only a discrete set of complex frequenci
v meet these requirements.

Consider now a Schwarzschild black hole in an asym
totically AdS spacetime. The boundary condition at the h
7-3
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VITOR CARDOSO AND JOSE´ P. S. LEMOS PHYSICAL REVIEW D64 084017
rizon is the same, we want that near the horizonChor
;e2 ivr

* . However, r * has a finite range, so the secon
boundary condition needs to be modified. There have b
several papers discussing which boundary conditions
should impose at infinity in AdS spacetimes~ @29–31#!. We
shall require energy conservation and thus adopt the re
tive boundary conditions at infinity@29#. This means that the
wave function is zero at infinity. For a different bounda
condition see Ref.@32#.

We now show that the imaginary part of the frequencyv
is negative, for waves satisfying these boundary conditio
provided the potentialV is positive. The proof proceeds a
for the scalar field perturbation case@7#, although there are
some steps we think are useful to display explicitly he
Writing f for a generic wave function as

f5eivr
* Z, ~20!

where,Z can beC, Q, or T, we find

f ~r !
]2f

]r 2
1@ f 822iv#

]f

]r
2

V

f
f50, ~21!

where f 5(r 2112(2M /r )). In the proof, we are going to
need the asymptotic behavior of the solutions of Eq.~21!.
For r→r 1 we have f ;(3r 111/r 1)(r 2r 1) and V/ f ;C,
whereC is a constant which takes different values depend
on the case, electromagnetic, odd or even gravitational
turbations. So Eq.~21! becomes, in this limit,

Ay
]2f

]y2
1@A22iv#

]f

]y
2Cf50, ~22!

wherey5r 2r 1 , andA53r 111/r 1 . This equation has an
exact solution in terms of the modified Bessel functio
I n(z) @33#,

f5C1yi (v/A)I 2( iv/A)F2S C

A
yD 1/2G

1C2yi (v/A)I ( iv/A)F2S C

A
yD 1/2G . ~23!

We want the asymptotic behavior of these functions wh
y→0, which is given byI n(z)→(z/2)n/G(n11),z→0. So,
near the horizon the wave functionf behaves as

f r 1
5C1

~C/A!2( iv/A)

G~12~2iv/A!!
1C2

y2iv/A~C/A! iv/A

G~112iv/A!
. ~24!

We can see that if one wants to rule out outgoing mode
the horizon, we must haveC250, so thatf in Eq. ~20! does
not depend ony. Let us now investigate the asymptotic b
havior at infinity. For r→`, we have V/ f→ l ( l 11)/r 2.
Therefore, near infinity, Eq.~21! becomes

r 2
]2f

]r 2
1@2r 22iv#

]f

]r
2

l ~ l 11!

r 2
f50. ~25!
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Puttingx51/r we have

]2f

]x2
12iv

]f

]x
2 l ~ l 11!f50, ~26!

with solutionf5f` given by

f`~x!5A exp$2 iv1 i @v22 l ~ l 11!#1/2%x

1B exp$2 iv2 i @v22 l ~ l 11!#1/2%x. ~27!

Now, f`(x50)50, thereforeA52B, and thus,

f`~x!5A e2 ivxsin$@v22 l ~ l 11!#1/2x%. ~28!

We can now proceed in the proof. Multiplying Eq.~21! by f̄
~the complex conjugate off), and integrating fromr 1 to `
we obtain

E
r 1

`

drF f̄ d~ f ~df/dr !!

dr
22ivf̄

df

dr
2

V

f
f̄fG50. ~29!

Integrating by parts yields

E
r 1

`

drFd@f̄ f ~df/dr !#

dr
2 fUdf

dr U
2

22ivf̄
df

dr
2

V

f
ufu2G50.

~30!

Now, one can show that@f̄ f (df/dr)# r 1
50, in order to sat-

isfy the boundary conditions. Indeed, atr 1 , f(r 1)
5constant andf (r 1)50. Now, at infinity, even though
f̄(`)50, we have alsof (`)5`, so we have to show tha

@f̄ f (df/dr)#`50. From Eq.~28! we can check that this is
indeed true. Thus, Eq.~30! gives

E
r 1

`

drF fUdf

dr U
2

12ivf̄
df

dr
1

V

f
ufu2G50. ~31!

Taking the imaginary part of Eq.~31! we have

E
r 1

`

drFvf̄
df

dr
1v̄f

df̄

dr
G50, ~32!

which, after an integration by parts reduces to

~v2v̄ !E
r 1

`

drF f̄df

dr G5v̄uf~r 1!u2. ~33!

Finally, inserting this back into Eq.~31! yields

E
r 1

`

drF fUdf

dr U
2

1
V

f
ufu2G52

uvu2uf~r 1!u2

Im v
. ~34!

From this relation, one can infer that, ifV is positive definite
then Imv,0, necessarily. So, since electromagnetic a
even gravitational perturbations haveV.0, one always has
Im v,0. As for odd gravitational perturbations, there a
instances whereV,0, making this theorem unreliable fo
7-4
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QUASINORMAL MODES OF SCHWARZSCHILD–ANTI-de . . . PHYSICAL REVIEW D 64 084017
these cases. However, forr 1,@ l ( l 11)/321#12, i.e., small
enough masses,V.0 @see Eq.~13!#, and the theorem ap
plies.

Another important point concerns the late time behav
of these fields, and the existence or not of power-law ta
As shown by Chinget al. @34#, for potentials that vanish
exponentially near the horizon, there are no power-law ta
so there will be no such tails in our case.

B. Numerical calculation of the QNM frequencies

To find the frequenciesv that satisfy the boundary con
ditions, we first note that Eq.~21! has only regular singulari
ties in the range of interest. It has therefore, by Fuchs th
rem, a polynomial solution@35#. To deal with the point at
infinity, we first change the independent variabler to x
51/r . Now we can use Fro¨benius method by looking for an
indicial equation~for further details see Ref.@7#!, and force it
to obey the boundary condition at the horizon (x51/r 1

5h). We get the following solution to Eq.~21!:

f~x!5 (
n50

`

an(v)~x2h!n, ~35!

wherean(v) is a function of the frequency. If we put Eq.~35!
into Eq.~21! and use the boundary conditionf50 at infinity
(x50) we obtain

(
n50

`

an(v)~2h!n50. ~36!

Our problem is reduced to that of finding a numerical so
tion of the polynomial equation~36!. The numerical roots for
v of Eq. ~36! can be evaluated resorting to numerical co
putation. Obviously, one cannot determine the full sum
expression~36!, so we have to determine a partial sum fro
0 to N, say and find the rootsv of the resulting polynomial
expression. We then move onto the next termN11 and de-
termine the roots. If the method is reliable, the roots sho
converge. We stop our search when we have a three dec
digit precision.

1. Electromagnetic modes

As long as the modes are decaying, it does not ma
whether or not they are oscillating. However, as we will s
there are frequencies in the electromagnetic case with a
ishing real part, which makes it possible to use an appro
mation, due to Liu@19#, to the highly damped modes. A
though the method was originally developed for t
asymptotically flat space, it is quite straightforward to app
it to our case. There is, therefore, a way to test our resu
Unfortunately, this method relies heavily on having a fr
quency with a large pure imaginary part, so as we shall se
will only work for electromagnetic perturbations. We ha
computed the lowest frequencies for some values of the
rizon radiusr 1 , and l. The frequency is written asv5v r
1 iv i , wherev r is the real part of the frequency andv i is its
imaginary part. In Tables I and II we list the numerical va
ues of the lowest quasinormal frequencies of electromagn
08401
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perturbations forl 51 and l 52 and for selected values o
r 1 . For frequencies with no real part, we list the valu
obtained in Liu’s aproximation.

As one can see, the imaginary part of the frequen
which determines how damped the mode is, and which
cording to the AdS/CFT conjecture is a measure of the ch
acteristic timet51/v i of approach to thermal equilibrium
scales linearly~for large black holes! with the horizon radius
supporting the arguments given in Ref.@7#. Moreover, the
frequencies do not seem to depend on the angular quan
numberl, and are in excellent agreement with the analyti
approximation for strongly damped modes.

For a better visualization, we also plotv i3r 1 in Fig. 1.

2. Gravitational modes

The numerical calculation of the quasinormal frequenc
for gravitational perturbations proceeds as outlined pre
ously @the associated differential equation has only regu
singularities, so it is possible to use an expansion such as
~35!#.

~i! Odd modes: In Tables III and IV we show the tw
lowest QNM frequencies forl 52 andl 53 odd gravitational
perturbations. An important point in odd QNM’s is that the
is a mode for which the frequencies are not only pure ima
nary and very small, but also scale with 1/r 1! This is similar
to the behavior of Schwarzschild black holes in asympto
cally flat spacetimes, as mentioned. However, all frequen
have a negative imaginary part, which indicates that
spacetime is stable for these kinds of perturbations.

The valuev52 in Table III marked with a ‘‘?’’ is a some-
what dubious result. In fact, from Eq.~24! it follows that if

TABLE I. Lowest QNM of electromagnetic perturbations forl
51. The ‘‘-’’ in Liu’s approximation columns means that th
method is not applicable.

Numerical Liu’s approximation

r 1 2v i v r 2v i v r

0.8 1.287 2.175 - -
1 1.699 2.163 - -
5 8.795 ;0 7.6 ;0
10 15.506 ;0 15.05 ;0
50 75.096 ;0 75.01 ;0
100 150.048 ;0 150.005 ;0

TABLE II. Lowest QNM of electromagnetic perturbations fo
l 52.

Numerical Liu’s approximation

r 1 2v i v r 2v i v r

0.8 1.176 2.501 - -
1 1.579 2.496 - -
5 10.309 0.822 7.6 ;0
10 15.755 ;0 15.05 ;0
50 75.139 ;0 75.01 ;0
100 150.069 ;0 150.005 ;0
7-5
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VITOR CARDOSO AND JOSE´ P. S. LEMOS PHYSICAL REVIEW D64 084017
12(2iv/A)52n, with n an integer, then there is nothin
going down the hole, so perhaps it is not a QNM. It is also
‘‘algebraically special value’’ in the sense of Chandrasek
@36#.

~ii ! Even modes: In Table V we show the lowest QN
frequencies forl 52 and l 53 even gravitational perturba
tions. We point out the remarkable resemblance of the va
in Table III with those in Ref.@7# for scalar perturbations
even though the potentials are quite different. We have
formed calculations for higher values of the angular quant
number l, and found that the QNM frequencies are inde
very similar throughout all values ofl.

~iii ! Discussion: We first note that there is clearly a d
tinction between odd and even perturbations, they no lon
have the same spectra, contrary to the asymptotically
space case~see Ref.@37#!, a problem we shall consider i
more detail in the next section. We also remark that, in e
tromagnetic and scalar perturbations, the frequency sc
with r 1 ~for large black holes at least!. Since the temperatur
scales also withr 1 in the large black-hole regime, thi
means that the frequency scales with the temperature. T
in the dual CFT, the approach to thermal equilibrium is fas
for higher temperatures. This is a totally different behav
from that of asymptotically flat space, in which the fr
quency scales with 1/r 1 . However, for odd modes there
one that scales with 1/r 1 . This is a reflection of the differen

FIG. 1. Lowest electromagnetic QNM forl 51 as function of
r 1. The black lozenges represent some frequencies numeri
calculated. The line connecting them is a linear fit.

TABLE III. Lowest QNM of gravitational odd perturbations fo
l 52.

Lowest QNM Second lowest QNM

r 1 2v i v r 2v i v r

0.5 6.4 0 0.72 3.037
1 ;2(?) 0 2.404 3.033
2 0.728 ;0 5.258 4.447
5 0.2703 ;0 13.294 9.577
10 0.13378 ;0 26.626 18.662
50 0.02667 ;0 133.19 92.505
100 0.0132 ;0 266.384 184.959
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behavior of the potentialVodd for odd perturbations~that was
why we could not prove stability for odd perturbations in t
first place! and of the boundary conditions, as we shall sh
in Sec. III C. The odd modes are therefore particularly lo
lived.

C. On the isospectrality breaking between odd and even
perturbations

As is well known@27,37# in the case of a Schwarzschil
black hole in an asymptotically flat space the two potenti
VevenandVodd give rise to the same quasinormal frequenc
~in fact to the same absolute value of the reflection and tra
mission coefficients!. This remarkable property followed
from a special relation@the equivalent for asymptotically fla
spacetimes of our Eq.~19!# between the potentials and th
behavior ofW at the boundaries. However, as one can see
Tables III–V there is a isospectrality breaking between o
and even perturbations in Schwarzschild anti–de Si
spacetime.

We shall now treat this problem. The breaking of the iso
pectrality is intimately related to the behavior ofW at infin-
ity. On taking advantage of the machinery developed
Chandrasekhar, we seek a relation between odd and
perturbations of the form

Q5p1T1q1

dT

dr*
, ~37!

T5p2Q1q2

dQ

dr*
, ~38!

TABLE IV. Lowest QNM of gravitational odd perturbations fo
l 53.

Lowest QNM Second lowest QNM

r 1 2v i v r 2v i v r

1 10 0 1.639 3.849
2 2.189 0 5.080 4.615
5 0.690 ;0 13.247 9.735
10 0.336 ;0 26.603 18.742
50 0.0669 ;0 133.19 92.521
100 0.0333 ;0 266.382 184.967

TABLE V. Lowest QNM of gravitational even perturbations.

Lowest QNM, l 52 Lowest QNM,l 53

r 1 2v i v r 2v i v r

1 1.584 3.018 1.392 3.909
2 3.974 4.546 3.299 4.597
5 12.649 9.83 11.642 10.217
10 26.301 18.806 25.788 19.089
50 133.125 92.535 133.022 92.596
100 266.351 184.959 266.300 185.005

lly
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yielding ~see Ref.@27# for details!, q1
251/b2v2, p15qW,

p252p1, andq25q15q. Thus, we obtain

Q5qWT1q
dT

dr*
, ~39!

T52qWQ1q
dQ

dr*
. ~40!

Suppose now thatv is a QNM frequency ofT, i.e., one for
which

T→Aevene
2 ivr

* , r→r 1 , ~41!

T→0, r→`. ~42!

Substituting this into Eq.~40! we see that

Q→Aevenq@W~r 1 !2 iv#e2 ivr
* , r→r 1 , ~43!

Q→qS dT

dr*
D

r 5`

, r→`. ~44!

However, from Eq.~28!, (dT/dr* ) r 5` , is in general, not
zero so thatv will, in general, fail to be a QNM frequency
for Q. ShouldQ andT be smooth functions ofv, one expects
that if q is ‘‘almost zero’’ thenv should ‘‘almost’’ be a QNM
frequency forQ. Now, the condition thatq is almost zero is
that b2v2 be very large, and one expects this to be tr
either whenv is very large or else whenb is very large. And
in fact, as one can see in Tables III–V for very largev the
frequencies are indeed almost identical. On the other h
for very small black holes (b very large! one expects the
frequencies to be exactly the same, since both poten
have the same asymptotic behavior in this regime, as
shall see in Sec. IV. One would be tempted to account for
remarkable resemblances between QNM frequencies of
lar and gravitational perturbations by a similar approach,
the proof is still eluding us. Should such an approach wo
it could be of great importance, not only to this speci
problem, but also to the more general problem of finding
asymptotic distribution of eigenvalues, by studying a diff
ent potential with~asymptotically! the same eigenvalues, bu
more easy to handle.

IV. THE LIMIT m\0

Although it is not possible to solve exactly for the QN
frequencies, it is possible to gain some analytical insigh
the special case of very small black holes. There has b
some discussion about this regime~see Ref.@17#, and also
Ref. @7,38# and references therein!. Here we shall exploit the
behavior of QNM frequencies in this regime a little furthe
For very small black holes, one can easily see that both
tentials~electromagnetic and gravitational! look like, in the
r * coordinate, a barrier with unequal heights~Fig. 2!.

It is trivial to obtain equations for the quasinormal fr
quencies in this limit. IfC is a general wave function then
08401
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dC/dr*
C

52 iv, r * ,0, ~45!

dC/dr*
C

5
ik1Beik1r

* 2 ik1Ce2 ik1r
*

Beik1r
* 1Ce2 ik1r

*
, 0,r * ,a,

~46!

dC/dr*
C

5
ikDeikr

* 2 ik1Ee2 ikr
*

Deikr
* 1Ee2 ikr

*
, r * .a, ~47!

wherek15(v22Vmax)
1/2, andk5@v22 l ( l 11)#1/2. Impos-

ing the continuity of the logarithmic derivative and, furthe
more, thatC50 at infinity (r * 5p/2), we get

k1F ~k12v/k11v!e2ik1a21

~k12v/k11v!e2ik1a11
G5kFe2ik(p/22a)11

12e2ik(p/22a)G .

~48!

In the limit a→0, k1→` (m→0) we have, supposing tha
v stays small, the conditione2ik(p/2)51, which means that

v0
254n21 l ~ l 11!, n51,2, . . . , ~49!

corresponding to a bound state. This gives for the low
QNM frequencies (n51) v052.45 for l 51 andv053.16
for l 52. The above are to be compared with those in Tab
I–V. The agreement seems excellent, and we can now g
step further. If we linearize Eq.~48! around the solution Eq
~49!, i.e, if we write v5v01 id and substitute back in Eq
~48!, we obtain, to third order ind, the values listed in Table
VI.

We have chosen a typical value ofa;3/h, but we can see
that, although the real part does not depend very much oa,
the imaginary part is strongly sensitive toa. Nevertheless,
one can be sure that whatever value ofa, the imaginary part
goes as 1/h2 and is always negative.

FIG. 2. The potential for small black holes.Vmax54l(l
11)/27r 1

2 anda;3r 1 .

TABLE VI. The linearized frequencyd for selected values of
the angular quantum numberl and the potential widtha.

a53/h a56/h

l d d
1 22.1/h2 i (1.42/h2) 21.92/h2 i (0.05/h2)
2 20.859/h2 i (0.04/h2) 20.85/h2 i (1.431024/h2)
7-7
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V. CONCLUSIONS

We have computed the electromagnetic and gravitatio
QNM frequencies of Schwarzschild-AdS black holes in fo
dimensions. These modes dictate the late time behavior
minimally coupled electromagnetic field and of small gra
tational perturbations, respectively. The conclusions are~i!
The frequencies all have a negative imaginary part, wh
means that the black hole is stable against these pertu
tions, since these will decay exponentially with time;~ii !
Maxwell perturbations are strongly damped, so according
the AdS/CFT conjecture, any electromagnetic perturbed t
mal state will rapidly approach equilibrium;~iii ! for odd
gravitational perturbations in the large black-hole regime,
imaginary part of the frequency~decaying mode! goes to
zero scaling with 1/r 1 , just as in asymptotically flat space
J.

n,

e

08401
al
r
f a

h
a-

to
r-

e

In terms of the AdS/CFT correspondence, this implies t
the greater the mass, the more time it takes to approach e
librium, an unusual result;~iv! scalar@7# and gravitational
even perturbations exhibit an amazing similarity for the ch
acteristic time damping of the perturbations, but we have
been able to prove it analytically; and~v! in the small black-
hole regime the imaginary part of the frequency~decaying
mode! scales withr 1

2 .
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