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Gauge-invariant perturbations of Schwarzschild black holes in horizon-penetrating coordinates
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We derive a geometrical version of the Regge-Wheeler and Zerilli equations, which allows us to study
gravitational perturbations on an arbitrary spherically symmetric slicing of a Schwarzschild black hole. We
explain how to obtain the gauge-invariant part of the metric perturbations from the amplitudes obeying our
generalized Regge-Wheeler and Zerilli equations, and vice-versa. We also give a general expression for the
radiated energy at infinity, and establish a relation between our geometrical equations and the Teukolsky
formalism. The results presented in this paper are expected to be useful for the close-limit approximation to
black hole collisions, for the Cauchy perturbative matching problem, and for the study of isolated horizons.
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I. INTRODUCTION

In the last decade, perturbation theory for black holes
played, in several different ways, a key role in numerical a
computational relativity. Already in the 1970’s it proved
be a very valuable tool to predict gravitational wave form
from processes such as a particle falling toward a black h
Since the early 1990’s, due to the network of interferome
gravitational wave detectors in construction, there has be
renewed interest in predicting wave forms for strong sour
of gravitational waves such as black hole collisions. In p
ticular, the first predictions using perturbation theory in th
new era were quite striking@1#. Some of the applications o
perturbation theory in recent years involved computing
evolution for different conformally flat initial data describin
black holes in the close limit in order to predict radiat
energy and angular momentum@2#, to provide both an ana
lytical understanding and a benchmarking of full numeri
results@3#, or to quantify the amount of spurious radiation
conformally flat initial data@4# ~see Ref.@5# for a general
review!. The usual Regge-Wheeler~RW!-Zerilli @6,7# and
Teukolsky@8# formalisms were also extended to second
der@9#, a necessary step in providing first-order perturbatio
with their own ‘‘error bars’’ @10#. Other recent approache
used black hole perturbations to extend the computatio
domain in numerical simulations to the radiative zone
Cauchy-perturbative matching@11#, or concentrate full nu-
merical resources in the nonlinear regime and let pertu
tion theory take over in the late stage of black hole collisio
@12#.

All of the applications just mentioned, though divers
have a common feature: they are limited to perturbations
Schwarzschild black holes in Schwarzschild coordinates,
Kerr black holes in Boyer-Lindquist coordinates. The reas
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for this is that, until very recently, most of the initial da
typically used in numerical relativity were for maximal slic
ing, and thus reduced, in the various regimes where per
bation is used~far region, late times, initially close blac
holes, etc!, precisely to Schwarzschild and Kerr space-tim
in Schwarzschild and Boyer-Lindquist coordinates, resp
tively. In recent years, however, work was started on Ke
Schild-type initial data@13#, which are not maximal. Part o
the motivation for introducing these new kinds of initial da
is to avoid the typical grid stretching that maximal slicin
produce near the event horizon,1 a stretching that eventually
causes numerical simulations to crash.2 One is then faced
with the fact that in order to accommodate these new ini
data, either for the close-limit approximation or for Cauch
perturbative matching, a formalism is needed that allows p
turbations in more general slicings than Schwarzschild
Boyer-Lindquist.

Another important motivation for having such a forma
ism in place is to study the recently developedisolated-
horizon formalism @17# in the perturbative regime. For suc
studies, one needs to be able to analyze a neighborhoo
the background horizon, which necessitates the use
horizon-penetrating coordinates.

The two most used approaches to black hole perturbat
have been the RW-Zerilli and Teukolsky ones. Each of th
methods has its own advantages and limitations: The Teu
sky formalism can be used for rotating black holes, but o
cannot obtain the whole perturbed geometry but, rather,C4
or C0 ~this is enough to compute radiation, however!.3 The

1One does not have to move from maximal slicing to get rid
spurious radiation; it is enough to use initial data that are con
mally Kerr, instead of the more usual conformally flat@14#.

2There is some new evidence that these crashes can be avoid
excising the singularity and appropriately choosing the shift vec
@15#.

3Actually, one can construct solutions to the linearized vacu
©2001 The American Physical Society16-1
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OLIVIER SARBACH AND MANUEL TIGLIO PHYSICAL REVIEW D 64 084016
RW-Zerilli technique, on the other hand, provides the wh
perturbed metric, but is limited to non rotating black hole

The Teukolsky equation, in its original formulation, ca
in fact, be used to describe perturbations around any Pe
type-D background, without relying on a particular choice
coordinates. Work started very recently on an application
this to Kerr-Schild black hole perturbations@18#.

This paper, in turn, develops an appropriate extension
the RW-Zerilli formalism to perturbations of Schwarzsch
black holes in arbitrary spherically symmetric coordinat
One can imagine a huge variety of applications of such
extension; here we have concentrated on the aspects o
formalism that we need in order to proceed with our m
motivations. In order to generalize the RW-Zerilli formalism
we start from a perturbation formalism introduced
Gerlach and Sengupta@19#, and derive two master equation
which hold in any spherically symmetric coordinates of t
background, but reduce to the equations obtained by Re
Wheeler and Zerilli if one uses the standard Schwarzsc
coordinates.

Our approach is organized as follows. In Sec. II w
present the basic formalism that decouples the field eq
tions into generalized RW and Zerilli equation. The spec
cases with total angular momentuml 51 and 0 are treated
carefully. In Sec. III we work out a relation needed f
Cauchy-perturbative matching, namely, the one between
RW and Zerilli functions and the Arnowitt-Deser-Misne
~ADM ! quantities. In Sec. IV we establish a relation betwe
the present formalism and the Teukolsky one, a relation
is desirable not only to compute the radiated energy
make contact with Ref.@18#, but also from a conceptua
point of view. Finally, in Sec. V we comment on the prope
ties of the RW and Zerilli equations, and on a numerical co
that we have written to solve them. In order to establish
contact between the abstract formalism in the body of
paper and more direct applications, we give some exp
expressions in Appendix A. Finally, in Appendix B, we sum
marize some properties of spin-weighted spherical harm
ics which are needed in Sec. IV.

II. GENERALIZED RW AND ZERILLI EQUATION

In what follows, we assume that the background spa
time (M ,g) can be represented as a product ofM̃
5M /SO(3) andS2 with metric

g5g̃abdxadxb1r 2 ĝABdxAdxB. ~1!

Here ĝ5dV2 is the standard metric onS2, and g̃ and r de-
note the metric tensor and a positive function, respectiv

equations from a potential~which is notC4) that satisfies the Teu
kolsky equation@16#. This approach is very interesting, but the
are some issues that still have to be worked out before it can
implemented. For example, how to give initial data to the cor
sponding potential~in particular, can one obtain any linear vacuu
perturbation of the Kerr space-time from some potential?!, how to
construct gauge invariants and extract radiation, etc.
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defined on the two-dimensional pseudo-Riemannian o
spaceM̃ . In what follows, lower-case Latin indices refer t
coordinates on (M̃ ,g̃), while capital Latin indices refer to the
coordinatesq andw on (S2,ĝ). Below, we will derive per-
turbation equations which do not depend explicitly on t
background metric coefficients. In fact, we will only use t
background equations which are given by the component
the Einstein tensor

Gab52
2

r
¹̃a¹̃br 1

1

r 2
~2r D̃r 1N21!g̃ab ,

GAB5~r D̃r 2r 2k̃ !ĝAB , ~2!

GAb50.

HereN5g̃(dr,dr), andk̃ denotes the Gauss curvature of t
metric g̃. A coordinate-invariant definition of the ADM mas
is given by

M5
r

2
~12N!.

We can see by inspection that thisM is the mass if
Schwarzschild coordinates are used; on the other hand,M is
defined in terms of scalars onM̃ , and thereforeM represents
the ADM mass in any coordinates onM̃ . Note that in a

vacuum space-time, Eq.~2! implies that 05r 2(Gab¹̃
br

2G b
b ¹̃ar )5¹̃a@r (12N)#, which shows thatM is constant.

Since the background is spherically symmetric, it is co
venient to expand the perturbed metric in spherical harm
ics:

dgab5HabY,

dgAb5Qb¹̂AY1hbSA ,

dgAB5KgABY1F¹̂A¹̂BY12k¹̂ (ASB) ,

whereHab denotes a tensor field,Qb andhb are vector fields,
andK, F, andk are scalar fields onM̃ . HereY[Ylm are the
standard spherical harmonics, andSA5( *̂ dY)A5 ê A

B ¹̂BY

and 2¹̂ (ASB)[¹̂ASB1¹̂BSA form a basis of odd-parity vec
tor fields and symmetric tensor fields, respectively, onS2

~See Appendix D of Ref.@21# for more details on spherica
tensor harmonics.! We suppress the indiceslm and the sum
over these indices since the modes belonging to differ
pairs of lm decouple in the perturbation equation.Ylm are
normalized with respect to the standard metricĝ on S2, an
exception being the casesl 50 and 1: there we choose th
normalization such thatY0051 and*S2Y1mȲ1mdV54p/3.

In what follows, it will also be convenient to use
coordinate-free notation for differential forms on (M̃ ,g̃): *̃
and d̃†[ *̃ d*̃ denote the Hodge dual and the codifferent
operator, respectively, with respect tog̃. That is,

be
-

6-2
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GAUGE-INVARIANT PERTURBATIONS OF . . . PHYSICAL REVIEW D 64 084016
*̃ uadxa5 ẽabu
adxb,

*̂ vAdxA5 êABvAdxB,

where ẽ and ê denote the standard volume elements
(M̃ ,g̃) and (S2,ĝ), respectively.4 For example, we have

d̃†h52¹̃aha , ~ d̃†dh!a52¹̃b¹̃ [ahb] .

A further simplification comes from the fact that a sphe
cally symmetric metric is invariant under parity transform
tion x°2x. As a consequence, the above defined am
tudes decouple into two sets, one set transforming likY
~called scalar perturbationsor even-parity perturbations!

and the other set transforming likeS5 *̂ dY ~called vector
perturbations or odd-parity perturbations! under parity
transformations. In this sense, the amplitudesHab , Qb , K,
andF have even parity, while the amplitudeshb andk have
odd parity.

A. Odd-parity sector

We start with the simpler case of the odd-parity sec
The perturbations ofgmn are parameterized in terms of
scalar fieldk and a 1- formh5hadxa;

dgab50, dgAb5hbSA , dgAB52k¹̂ (ASB) , ~3!

wherek andha depend on the coordinatesxb only. Note that

for l 51, ¹̂ (ASB) vanishes andk is not present. Forl 50,
SA50, and there are no gravitational perturbations.

1. Coordinate-invariant amplitudes

A vector field X5Xm]m , generating an infinitesimal co
ordinate transformation with odd parity, is determined by
function f (xb), where

Xa50, XA5
f

r 2
ĝABSB .

Using the fact that, to linear order,dgmn transforms like
the Lie derivative of the background metric with respect
X, we find the following transformations:

h°h1r 2dS f

r 2D ,

k°k1 f .

Note that one can choose a gauge in whichk50. This gauge,
which is usually called the RW gauge, is unique.

For l>2, one can construct the coordinate-invaria
1-form

4For ẽ we need to provide an orientation inM̃ ; if t and x are

timelike and spacelike coordinates, respectively, we chooseẽ tx

5ug̃u1/2.
08401
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h( inv)[h2r 2dS k

r 2D .

For l 51, we will see that only the invariant 2-form

Fh[dS h

r 2D ,

enters the perturbation equations.
In terms of these gauge-invariant quantities, the com

nents of the linearized Einstein tensor are

dGab50,
~4!

dGAbdxb5H d̃†F r 4dS h( inv)

r 2 D G1lh( inv)J SA

2r 2
,

dGAB52d̃†h( inv)¹̂ (ASB) , ~5!

where the background equations have been used, and w
here and in the following,

l[~ l 21!~ l 12!.

2. Master equation

Vacuum perturbations with odd parity are obtained fro
Eq. ~4!, which yields

d̃†F r 4dS h( inv)

r 2 D G1lh( inv)50. ~6!

The usual way to derive the RW equation forl>2 from
Eq. ~6! is to decompose the 1-formh( inv) with respect to
Schwarzschild coordinates,h( inv)5ht

( inv)dt1hr
( inv)dr, and

to use integrability condition~5! to eliminateht
( inv) . This

yields an equation forhr
( inv) alone, which is then cast into

wave equation for the functionḞ5(122M /r )hr
( inv)/r (F

defined below!. This can also be achieved in a coordina
invariant way as follows: One uses the integrability con
tion d̃†h( inv)50 to introduce the scalar potentialF accord-

ing to h( inv)5 *̃ d(rF)5 ẽab¹̃
a(rF)dxb. Equation~6! may

then be integrated to yield the following wave equation

F2D̃1r D̃S 1

r D1
l

r 2GF50, ~7!

where the two-dimensional Laplacian of a function isD̃F

[2d̃†dF5¹̃a¹̃aF. Here the free constant in the potenti
F has been used to set the integration constant to zero. E
tion ~7! is the coordinate-invariant version of the RW equ
tion. Indeed, we have not specified any coordinates on
orbit manifoldM̃ . Using the coordinate-independent vacuu
background equation 05r 2G a

a 52(r D̃r 1N21), Eq. ~7! fi-
nally assumes the form
6-3
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OLIVIER SARBACH AND MANUEL TIGLIO PHYSICAL REVIEW D 64 084016
@2D̃1VRW#F50, ~8!

with

VRW5
1

r 2 F l ~ l 11!2
6M

r G .
From Eq.~7!, we also obtain the relation

F52
r 3

l
*̃ dS h( inv)

r 2 D , ~9!

which enables us to computeF from the gauge-invarian
1-form h( inv).

For l 51 Eq.~7! is immediately seen to admit the solutio
1/r . Sincel50, we may also directly integrate Eq.~6!. This
yields

*̃ dS h

r 2D 52
6J

r 4
, ~10!

where 6J is a constant of integration. At this point, it i
important to recall that the 1-formh is not coordinate invari-
ant, but transforms according toh°h1r 2d( f /r 2). This im-
plies that the solution of the homogeneous part of the ab
equation is purely gauge. A special solution is

h52
2J

r
*˜ dr

N
. ~11!

As explicitly shown in Ref.@21#, this describes the Kerr met
ric in Boyer-Lindquist coordinates in first order of the rot
tion parametera5J/M . From Eq. ~10!, J is defined in a
coordinate-invariant way. In summary, a generall 51 pertur-
bation is given by

h52
2J

r
*˜ dr

N
1r 2d~ f /r 2!, ~12!

with f an arbitrary function on the orbit space.

B. Even-parity sector

The even-parity perturbations ofgmn are parametrized by
a symmetric tensor fieldHab , a 1-formQb , and two scalar
fields K andG on the orbit spaceM̃ :

dgab5HabY,

dgAb5Qb¹̂AY,

dgAB5KgABY1G r2S ¹̂A¹̂BY1
1

2
l ~ l 11!ĝABYD .

Here, the basis of symmetric tensors indgAB is chosen to be
orthogonal with respect to the inner product induced byg.

Furthermore, one has¹̂A¹̂BY1 1
2 l ( l 11)ĝABY50 for l 50
08401
e

and 1; hence the amplitudeG is not present in those case
For l 50, the amplitudeQb is also absent.

1. Coordinate-invariant amplitudes

An infinitesimal coordinate transformation with even pa
ity is generated by a vector fieldX with

Xa5jaY, XA5 f ĝAB¹̂BY,

whereja andf are a vector field and a function, respective
on M̃ . With respect to this, the metric perturbations tran
form according to

Hab°Hab1jaub1jbua ,

Qb°Qb1jb1r 2f ub , ~13!

K°K12vaja2 l ~ l 11! f ,

G°G12 f .

Here and in the following,jbua[¹̃ajb denotes the covarian
derivative with respect to the orbit metricg̃, andva[r ua /r .

For l>2, one can construct the following set o
coordinate-invariant amplitudes:

Hab
( inv)5Hab2~paub1pbua!, ~14!

K ( inv)5K22vapa1
1

2
l ~ l 11!G, ~15!

wherepa5Qa2 1
2 r 2Gua . The ~generalized! RW gauge is de-

fined by choosingja and f such thatQb and G vanish. We
see that in this gauge, which is also unique,Hab

( inv) andK ( inv)

coincide withHab andK.
For l 51, there is no such simple choice of coordina

invariant amplitudes, sinceG is not present in this case. Nev
ertheless, we can always chose the gauge such thatQb van-
ishes. One then is left withHab andK, which are subject to
the residual coordinate transformations as in Eq.~13!, with
jb1r 2f ub50. For l 50, Qb and G are absent, and one ca
arrange the gauge such thatK50. In summary, it is suffi-
cient to derive the linearized Einstein equations for the p
turbed metric

dgab5HabY, dgAb50, dgAB5KgABY,

where for l>2, Hab and K can be replaced by thei
coordinate-invariant counterparts defined in Eqs.~14! and
~15!.

2. Master equation

The long but straightforward computation of the linea
ized Einstein tensor was given in Ref.@20#. The structure of
the equations becomes much more transparent if one
splits the 2-tensorHab into trace and traceless part and th
introduces the 1-form

C5Ĥabr
uadxb, ~16!
6-4
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whereĤab denotes the traceless part ofHab . A similar split
is performed for the components of the Einstein tensor. A
result, the relevant components of the Einstein tensor de
two scalarsS andT and two 1-formsU andV according to

dĜAB5SS ¹̂A¹̂BY1
1

2
l ~ l 11!ĝABYD ,

g̃abdGab5T Y,

dGAbdxb5
1

2
U ¹̂AY,

dĜabr
uadxb5V Y.

The vacuum field equations are then expressed in term
the 1-form C and the two scalarsH5g̃abHab and K. The
simplest equation, which is present only forl>2, gives

0522S5H,

henceHab is traceless.@For l 50 and 1, we can make use o
the residual gauge freedom in order to imposeH50. Re-
sidual coordinate transformations are then of the form of
~13! with ja

ua50 and ja52r 2f ua for l 51.# Using H50,
the remaining equations reduce to

05T5
2

r
d̃†C2

2

r 2
g̃~C,dr !1D̃K1

4

r
g̃~dK,dr !2

l

r 2
K,

~17!

05U52
1

N
@~ d̃†C!dr1~ *̃ dC! *̃ dr#2dK, ~18!

05V5~ d̃†C!
dr

r
1

1

r
dg̃~C,dr !1

l ~ l 11!

2r 2
C1

1

2
D̃K dr

2dg̃~dK,dr !1S D̃r 2
N11

2r DdK, ~19!

where Eq.~18! is void for l 50. We recall that forl>2, we
should replaceHab by Hab

( inv) and K by K ( inv) in the above
equations in order to give them a coordinate-invariant me
ing. For l>1, we compute the component ofU parallel to
*̃ dr:

05g̃~U, *̃ dr !5 *̃ dC2g̃~dK, *̃ dr !5 *̃ d@C2rdK#.

This motivates us to replace the 1-formC with the 1-form

Z5C2rdK. ~20!

In terms ofZ andK, Einstein’s equations become

05g̃~U, *̃ dr !5 *̃ dZ, ~21!

05g̃~U,dr !52d̃†Z1r D̃K, ~22!
08401
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05T5
2

r
d̃†Z2

2

r 2
g̃~Z,dr !2D̃K2

l

r 2
K, ~23!

05r 2~2V2Tdr!

5d@2r g̃~Z,dr !#1 l ~ l 11!Z1r ~a01l!dK1lKdr,

~24!

where we defined

a052r D̃r 112N.

Using the background equation 05r 2G a
a 52(r D̃r 1N21)

andN5122M /r , one findsa056M /r .
In view of Eq. ~21!, we may introduce the scalar fieldz

according toZ5dz. Equation~24! may then be integrated to
yield

2r g̃~dz,dr !1 l ~ l 11!z1r ~a01l!K50. ~25!

It is now clear how to obtain a single, second order d
ferential equation forz: First, we eliminateD̃K from Eqs.
~22! and ~23!. This gives

2D̃z2
2

r
g̃~dz,dr !2

l

r
K50. ~26!

Next this equation is used to eliminateK in Eq. ~25!.
Hence

2~a01l!D̃z2
2a0

r
g̃~dz,dr !1

l ~ l 11!l

r 2
z50. ~27!

@Note that forl 51, this equation is equivalent to Eq.~26!
and thus is also valid in that case.# Finally, we define the new
scalar functionC by

z5~a01l!C,

in order to remove the first order derivatives. This yields t
Zerilli equation@7#

@2D̃1VZ#C50, ~28!

where

VZ5
l2r 2@~l12!r 16M !] 136M2~lr 12M !

~lr 16M !2r 3
. ~29!

Before we discuss the special casesl 50 and 1, we make
two remarks: First, forl>2, the scalar fieldC can be ob-
tained from the Zerilli 1-formZ using Eq.~27!. The second
point is that it is also possible to obtain the RW equation
the scalarFe5r 2d̃†Z. In fact, Chandrasekhar~see, e.g., Ref.
@27#! showed that the equations of RW and Zerilli for
Schwarzschild background are equivalent in the freque
domain. However, in the time domain, we were not able
expressZ in terms ofFe and its derivatives alone. For thi
6-5
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OLIVIER SARBACH AND MANUEL TIGLIO PHYSICAL REVIEW D 64 084016
reason, we will use the Zerilli equation in the even-par
sector and not the RW equation.

For l 51, Eq. ~27! reduces to

2D̃z2
2

r
g̃~dz,dr !5

1

r 2
d̃†~r 2dz!50. ~30!

However we recall that forl 51, Hab , and hence alsoz
are not defined in a coordinate-invariant manner. Under
residual gauge-freedom@Eq. ~13!# with ja52r 2f ua and

d̃†~r 2d f !52ja
ua50, ~31!

we find thatZ transforms according to

Z°Z16M d f and hence z°z16M f .

Sincef is an arbitrary solution of Eq.~31!, and since Eqs
~30! and~31! are equivalent, it is clear that every solution
Eq. ~30! corresponds to a pure gauge. In particular, we
choose the residual gauge in order forz to vanish. In this
gaugeK vanishes as well, as a consequence of Eq.~25!. The
even-parity sector is therefore empty forl 51.

For l 50, one can choose the gauge such that bothH and
K vanish. Then Eqs.~17! and ~19! yield

d̃†~rC !50, g̃~rC,dr ![2dM5const.

which have the general solution

C5
2dM

rN
dr1 *̃ dh. ~32!

HeredM is a constant describing the variation of the AD
mass, andh is a function that only depends onr. Comparing
this with a residual gauge, which is generated byja

5 ẽabk
ub for a functionk of r, we obtain

C°C2 *̃ @Nk9~r !dr#,

showing that the functionh(r ) above corresponds to a pu
gauge. This can also be seen in a gauge-invariant way:
call that for any spherically symmetric metric of the form
Eq. ~1! we defined the mass parameterM through 1
22M /r 5N5g̃abr uar ub . Using the fact that~for Y51!

dg̃ab5Hab andd(r 2)5r 2K, we obtain

2dM5rr uar ubHab2rr ub~rK ! ub1MK. ~33!

It can be checked that the right-hand side is indeed a ga
invariant combination. On the other hand, forK50, Eq.~33!

yields 2dM5g̃(rC,dr), as above.

C. Summary

In both the odd- and even-parity sectors, perturbations
any spherically symmetric vacuum background are descr
by a wave equation of the form

~2D̃1V!u50, ~34!
08401
e

n

e-

e-

n
d

whereD̃ is the Laplacian with respect to the orbit metricg̃
and where the potentialV depends on the ADM massM, on
r, and on the angular momentum numberl only.

For l 50 and 1, there are no dynamical modes. The o
physical solutions in those cases are stationary, descri
variations of the mass and angular momentum. The gau
invariant part of the metric can be obtained fromu, and vice
versa. These relations are made more precise in Sec. III

Finally, we would like to mention that our gauge-invaria
perturbation formalism has also been generalized to the
where matter fields are coupled to the metric@20,21#. In the
case of Einstein-Maxwell, we were able to generalize
equations obtained by Moncrief@22#. However, as we argued
in a recent paper@23#, the perturbation formalism presente
here fails to yield a wave equation of the form of Eq.~34!
with a symmetricpotentialV5VT, when non-Abelian fields
are coupled to the metric.

III. RELATION TO THE ADM QUANTITIES

As mentioned in Sec. I one of the motivations for th
present work is Cauchy-perturbative matching. This amou
to matching numerically, at each time step, the variables u
in a nonlinear code with the ones used in the perturba
regime ~in our case the RW and Zerilli functions!. The
matching takes place at a timelike boundary. For this purp
we explicitly show the relation between the RW and Zer
gauge-invariant potentials and the ADM quantities, name
the 3-metric and the extrinsic curvature. This does not
strict the formulation of Einstein’s equations to be used
the nonlinear regime, since for a formulation other than
standard ADM~e.g. conformal ADM, or a hyperbolic formu
lation! the relevant quantities can be obtained from the thr
metric and the extrinsic curvature, and vice versa.

Thus our aim is to make explicit the relationship betwe
the scalar fieldsF andC satisfying the RW and Zerilli equa
tions ~8! and ~28! and the components of the linearize
3-metric and extrinsic curvature. We will show in this se
tion that-modulo gauge transformations-there is a one-to-
correspondence betweendḡi j anddKi j and the scalar ampli-

tudesF, Ḟ[] tF, C, andĊ. Furthermore, this correspon
dence involves no time derivatives. For example, it is p
sible to expressĊ in terms of purely spatial quantities, i.e
dḡi j , anddKi j and theirspatial derivatives only.

We assume that the full metric, satisfying the nonline
field equations, has the ADM form

g~m!52a~m!2dt 21ḡi j ~m!@dxi1b i~m!dt#

3@dxj1b j~m!dt#,

wherem is a variational parameter, such that form50, the
metric is spherically symmetric. With respect to the 212
split ~1!, the orbit metricg̃ takes the form

g̃52a2dt 21g2~dx1bdt!2,
6-6
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wherex is any radial coordinate,a andb[bx are the back-
ground lapse and shift, respectively, andg2[ḡxx . The com-
ponents of the extrinsic curvature are

2aKxx52g~]0g2gb8!,

2aKxA50,

2aKAB52r ]0r ĝAB ,

where the prime denotes differentiation with respect tox, and
where we have also introduced the normal derivative]0
[] t2b]x .

The components of the linearized metric have the form

dgtt522ada2b2dḡxx12bdbx ,

dgt j5db j , ~35!

dgi j 5dḡi j ,

wherei 5x,A. Note that we use perturbations of the cosh
rather than the shift vector. This fact will turn out to b
important when we try to express the ADM quantities
terms of the RW and Zerilli scalars. Similarly, the comp
nents of the linearized extrinsic curvature are given by

2adKxx5] tdḡxx22Kxxda1bg2S dḡxx

g2 D 8
22gS dbx

g D 8
,

2adKxA5] tdḡxA22b
r 8

r
dḡxA1b¹̂Adḡxx2¹̂Adbx

2r 2S dbA

r 2 D 8
, ~36!

2adKAB5]0dḡAB22KABda12b¹̂ (AdgB)x22¹̂ (AdbB)

22
rr 8

g2
ĝAB~dbx2bdḡxx!.

A. Odd-parity sector

In the odd-parity sector withl>2, the only nonvanishing
perturbations can be parameterized according to

dbA5bSA ,

dḡxA5h1SA , dḡAB52h2¹̂ (ASB) ,

dKxA5p1SA , dKAB52p2¹̂ (ASB) .

1. Potentials in term of the ADM quantities (lÐ2)

We want to expressF and Ḟ in terms of the quantities
b,h1 ,h2 ,p1, and p2 and their spatial derivatives. First w
08401
t

observe thatht5b, hx5h1, andk5h2 whereht , hx , andk
are the amplitudes introduced in Eq.~3!. Therefore, we ob-
tain

ht
( inv)5b2ḣ212

ṙ

r
h2 , ~37!

hx
( inv)5h12h2812

r 8

r
h2 . ~38!

Next, the second and third equations of Eq.~36! yield the
relations

2a p15ḣ122b
r 8

r
h12r 2S b

r 2D 8
, ~39!

2a p25]0h21bh12b. ~40!

Using the last of these relations@Eq. ~40!#, to reexpress, in
@Eq. ~37!#, time derivatives ofh2 in terms of spatial quanti-
ties, the components of the gauge-invariant 1-formh( inv)

take the forms

h0
( inv)522a p212

]0r

r
h2 , ~41!

hx
( inv)5h12r 2S h2

r 2 D 8
, ~42!

whereh0
( inv)[ht

( inv)2bhx
( inv) . Next, one uses Eq.~9!, trad-

ing time derivatives for spatial ones with the aid of Eq.~39!,
to find

F5
r

lag S 2a p122
]0r

r
h1D , ~43!

which is one of the formulas we were looking for. In order
obtain the time derivative ofF, one uses the definition ofF,
i.e., h( inv)5 *̃ d(rF). This yields

h0
( inv)52

a

g
]x~rF!, ~44!

hx
( inv)52

g

a
]0~rF!. ~45!

which one can solve forḞ. Using Eqs.~43!, ~41!, and~42!,
the result is

Ḟ5
1

gr
S 2a1

2ṙ ]0r

la
D h11

2gb

r
p22

2ṙ

lg
p1

1
ra

g S h2

r 2 D 8
2

2gb ṙ

r 2a
h2 . ~46!
6-7
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2. ADM quantities from the potentials (lÐ2)

On the other hand, givenF and Ḟ, we obtaindgi j and
dKi j in the following way: First, we computeh0

( inv) and
hx

( inv) from Eqs.~44! and ~45!. Then, using the above equa
tions, it is straightforward to expressb, h1 , p1, andp2 in
terms ofh0

( inv) , hx
( inv) , F, andk, wherek parametrizes the

gauge freedom:

b5h0
( inv)1bhx

( inv)1r 2] tS k

r 2D , ~47!

h15hx
( inv)1r 2]xS k

r 2D , ~48!

h25k, ~49!

2ap15l
ag

r
F12

]0r

r
h1 , ~50!

2ap252h0
( inv)12

]0r

r
k. ~51!

3. Special case lÄ1

For l 51, the amplitudesh2 andp2 are absent. According
to the analysis in Sec. II, the only physical solution is t
Kerr mode. Using Eq.~10!, one finds that the rotation param
eter ~the only gauge invariant forl 51) can be extracted
from the ADM quantities according to

6J5
r 2

ag S 2ap122
]0r

r
h1D . ~52!

On the other hand, using Eq.~11!, one finds

b5
2J

rN S bg

a
]0r 1

a

g
r 8D1r 2] tS f

r 2D , ~53!

h15
2J

rN

g

a
]0r 1r 2] rS f

r 2D ,

where f parametrizes the gauge freedom, and whereN51
22M /r 52(]0r )2/a21r 82/g2. The amplitudep1 then fol-
lows from Eq.~52!.

B. Even-parity sector

Here the perturbations are

da5aY, dbx5b1Y, dbA5b2¹̂AY,

dḡxx5hY, dḡxA5q¹̂AY,

dḡAB5KḡABY1Gr2S ¹̂A¹̂BY1
1

2
l ~ l 11!ĝABYD ,
08401
dKxx5phY, dKxA5pq¹̂AY,

dKAB5pKḡABY1pGr 2S ¹̂A¹̂BY1
1

2
l ~ l 11!ĝABYD .

1. Potential in terms of the ADM quantities (lÐ2)

From Eqs. ~35! one finds Htt522a a2b2h12bb1 ,
Htx5b1 , Hxx5h, Qt5b2, andQx5q, while K andG agree
with their definitions in Sec. II. The expressions for the li
earized curvature tensor@Eq. ~36!# yield

2aph5ḣ1bg2S h

g2D 8
22gS b1

g D 8
2

2ag

a
~]0g2gb8!,

2apq5q̇22b
r 8

r
q1bh2b12r 2S b2

r 2 D 8
, ~54!

2apK5
1

r 2
]0~r 2K !1

2r 8

rg2
~bh2b1!

2
l ~ l 11!

r 2
~bq2b2!2

2

ar
]0ra,

2a pG5
1

r 2
]0~r 2G!1

2

r 2
~bq2b2!.

At first sight it is not clear how the Zerilli 1-formZ,
defined in Eq.~20!, can be expressed in terms of spat
amplitudes only, since from the definition ofHab

( inv) one sees
that second time derivatives of metric components can
pear. However, it turns out that only the 2-formvab5pbua
2paub , which contains no second time derivatives ofh, q, K,
and G, appears in the Zerilli 1-form. Using the fact th
Hab

( inv) is traceless as a consequence of the field equati
one obtains

Za5Habr
ub2rK ua2

1

2
l ~ l 11!rG ua1r ubvab12rvbuapb.

Now, using Eq.~54!, it is easy to find that

p052ar 2pG1r ~]0r !G, ~55!

px5q2
1

2
r 2G8, ~56!

v0x52a~pq1rr 8pG!2
1

r
~]0r !~r 2G!82~bh2b1!.

Using the background equationvbua5Mr 23g̃ab
2r 22r uar ub , one eventually obtains
6-8
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Z0522ar S pK1
1

2
l ~ l 11!pGD12~]0r !S K1

1

2
l ~ l 11!GD

1
r 8

g2 S 2apq22
]0r

r
qD2

2

r S 123
M

r D p0 , ~57!

Zx5
r 8

g2
h2r S K1

1

2
l ~ l 11!GD 8

1
]0r

a2 S 2apq22
]0r

r
qD

2
2

r S 123
M

r D px . ~58!

The Zerilli scalarz ~and C) can now be obtained from it
definition, Eq.~25!, with

K ( inv)5K1
1

2
l ~ l 11!G2

2

r
r ubpb ,

r ubpb52~]0r !p0 /a21r 8px /g2,

and the 1-formZ given by Eqs.~57! and ~58!. On the other
hand, the latter equations also give usż from ż5Z01bZx .
Note that—as in the odd-parity sector—the scalarsz and ż
do not depend on the perturbed lapse nor on the pertu
shift. Finally, we see that for a Schwarzschild slicing, whe
]0r 50, F and ż are linear combinations of the extrins
curvature components only. These combinations preci
agree with the ones obtained in a perturbative approach
static background in terms of curvature-based quanti
@28#.

2. ADM quantities from the potentials (lÐ2)

If z and ż are known, Eq.~25! tells us how to obtain
K ( inv) andK̇ ( inv). Next the traceless part ofHab

( inv) is obtained
from this and the definition of the Zerilli 1-formZ. Finally,
one has

2a a52H00
( inv)22ptut12b~ptux1pxut!22b2pxux ,

~59!

h5Hxx
( inv)12pxux ,

b15Htx
( inv)1ptux1pxut , ~60!

b25pt1
1

2
r 2Ġ,

q5px1
1

2
r 2G8, ~61!

K5K ( inv)1
2

r
r ubpb2

1

2
l ~ l 11!G.

Here pa and G parametrize the gauge freedom. The amp
tudesph , . . .pG are obtained from this and Eqs.~54!.
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3. Special case lÄ1

For l 51, according to the analysis of Sec. II we ha
only gauge modes, andG andpG are absent. Therefore, th
ADM-based amplitudes are obtained from the same eq
tions as above, but whereHab

( inv) and K ( inv) are set to zero,
andpa andG are replaced byja and 2f , respectively, where
ja and f parametrize the gauge transformation that brings
from the RW gauge to the actual gauge that one wants to

4. Special case lÄ0

For l 50, b2 , q, andpq are also absent. Using Eq.~33!
and relations~54!, the perturbed mass parameter is found
be

dM5
r 2

a
~]0r !pK1

r

2 S r 8

g2D 2

h1
1

2
~r 2M !K2

r 8

2g2
~r 2K !8.

In order to obtain the perturbed three-metric and extrin
curvature in terms ofdM , one uses Eq.~32! which gives

Hab5
4dM

rN2 S r uar ub2
N

2
g̃abD1~gauge!,

and the ADM quantities are obtained in a similar way
above.

C. Gauge fixing vs choices of lapse and shift

We have shown above how to construct the 3-metric a
extrinsic curvature from the potentials~and vice versa!, up to
gauge freedom. In numerical simulations, however, usu
one does not fix the gauge but rather chooses the lapse
shift, perhaps as prescribed functions of space-time~‘‘exact
lapse’’ or ‘‘exact shift’’! or as dynamical quantities couple
to the the three metric and/or extrinsic curvature~‘‘live
gauges’’!. In general thisdoes not fix the gauge completel,
which means that we have to relate the gauge freedom to
choice of lapse and shift. The properties of such relatio
depend on the details of how the lapse and shift are cho
and it is therefore not possible to give a general discuss
These equations, for example, might be elliptic if some k
of minimal distortion is imposed, hyperbolic as in the ca
we discuss below, or of some other~perhaps unknown! type.

Here we will concentrate on a specific simple prescr
tion, but it should be clear that other cases can be trea
similarly. The case we are going to discuss is exact-cos
exact-lapse; that is, the lapse and shift covector are arbit
but a priori given functions on the orbit space.

We start with the odd-parity sector. The perturbed laps
zero, and, forl>2, the perturbed coshift is given by the righ
hand side of Eq.~47!. The functionk parametrizes the gaug
freedom, and it is thus given by the equation

] tk5
1

r 2
~b2h0

inv2bhx
inv!. ~62!
6-9
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Sinceb is a given function, this equation can be solved fork,
provided we supply initial data. Given any 3-metric and e
trinsic curvature att0, the initial data fork are given by
k(t0 ,x)5h2(t0 ,x).

The treatment forl 51 is similar. Now the gauge freedom
is controlled byf, which can be related to the coshift by E
~53!, rewritten as

] tS f

r 2D 5
1

r 2 Fb2
2J

rN S bg

a
]0r 1

a

g
r 8D G . ~63!

In the even-parity case withl>2 the gauge functions
pt , px , andG are related to the lapse and shift by evoluti
equations which are straightforwardly obtained from E
~59!–~61!. These evolution equations form a 333 coupled
system, first order in space and in time,

Ġ501~l.o.!, ~64!

ṗx52pt81~l.o.!, ~65!

ṗt52b2px81~l.o.!, ~66!

where l.o. stands for lower order terms. Initial data for t
system of equations~64!–~66! is given by the 3-metric and
the extrinsic curvature at some timet0, and formulas~55!
and ~56! for pt andpx . It is easy to see that Eqs.~64!–~66!
constitute a weakly hyperbolic~see, e.g., Ref.@24#! system if
b50 and a stricly hyperbolic system otherwise. That is
these equations are written asut5Aux1 l.o., with u
5(G,px ,pt)

T, the matrixA has three different real eigenva
ues if bÞ0; and a single degenerate real eigenvalue~zero!
with only two independent eigenvectors ifb50. The struc-
ture of the equations forl 51 is the same, replacingpa andG
by ja and 2f , respectively. Finally, forl 50 the situation is
similar but simpler:G does not appear, and the principal pa
of the evolution equations for two gauge quantitiespx andpt
is also given by Eqs.~65! and ~66!. As before, these equa
tions are weakly hyperbolic if the background shift is ze
and strictly hyperbolic otherwise. If we use densitized lap
as is usually done in hyperbolic formulations~see, e.g., Ref.
@25#!, the above system of equations is strongly hyperbo
even in the case whereb50. In contrast to this, the system
is ill posed if we use an exact shift instead of a coshift. F
l 50, this fact was already noted in Ref.@26#.

IV. RELATION TO THE TEUKOLSKY FORMALISM

In order to compare our perturbation equations with
Teukolsky equation for a non-rotating background, we int
duce aNP null tetrad that is adapted to the spherically sy
metric metric@Eq. ~1!#, i.e.,

l 5 l adxa, n5nadxa, m5mAdxA,

wherel andn form a null dyad ofg̃,

g̃ab52 l anb2 l bna ,
08401
-
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f
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e
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andm is a complex 1-form such that

r 2ĝAB5mAm̄B1mBm̄A .

Here and in the following, a bar denotes complex con
gation. Note that

ẽab5 l anb2 l bna , r 2êAB5 i ~mAm̄B2mBm̄A!.

The only nonvanishingNP coefficients are

r52
1

r
Dr , m5

1

r
Dr ,

e5
1

2
dl~ l ,n!5

1

2
l anb¹̃al b ,

g5
1

2
dn~ l ,n!52

1

2
l bna¹̃anb ,

a52b̄5
1

r
â,

where â52 1
2 dm̄̂(m̂,m̂̄)5 1

2 m̂̄Am̂B¹̂Am̂̄B is an NP coeffi-
cient with respect to the dyad defined bym̂[m/r . Here,D

5 l a¹̃a and D5na¹̃a . We also introduce, for later use, th

angular derivative operatord̂5m̂A¹̂A . From theNP vacuum
equations~see, e.g. Ref.@29#!, it then follows that all Weyl
scalars butC2 vanish:C05C15C35C450. In terms of
the invariant definition ofM given in Sec. II,C2 can be
expressed as

C252
M

r 3
.

In particular, the metric is of typeD, with repeated principal
null vectors aligned withl a andna.

In what follows, we study the decoupled equation deriv
by Teukolsky@8# governing linear fluctuations ofC4 on any
spherically symmetric vacuum background. To linear ord
C0 and C4 are invariant with respect to both infinitesim
coordinate transformations and null tetrad rotations. The r
son we focus onC4 and notC0 is that we want to study
outgoing radiation at null infinity, which is described byC4
~see Ref.@8#!. However, by interchangingl with n and m

with m̄ in what follows, one easily obtains the correspondi
results forC0, describing ingoing radiation at the event h
rizon.

With respect to the chosen null tetrad, the pulsation
erator acting on the linearized fieldC4

(1) splits into the sum
of an orbital and an angular operator,

S Ã1
1

r 2
ÂD C4

(1)50, ~67!

where
6-10
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Ã5~D12g15m!~D14e2r!23C2 ,
~68!

Â52~ d̄̂22â !~ d̂14ā̂ !.

Next we compute the perturbed Weyl scalarC4
(1) : With

respect to the background metric~1!, one obtains

C4
(1)5RAbCd

(1) nbndm̄Am̄C.

Performing the multipole decomposition as described
Sec. II, we obtain

C4
(1)5@nanb¹̃ahb

( inv)#@m̄Am̄B¹̂ASB#

in the odd-parity sector and

C4
(1)52

1

2
@nanbHab

( inv)#@m̄Am̄B¹̂A¹̂BY#

in the even-parity sector. Using the definition of the deriv
tive operatord̂ and theNP coefficientâ, one can check tha
in both parity sectors, the angular part is proportional to
spin-weighted spherical harmonicsY22

lm defined in Appendix
B. Explicitly, we have

Y22
lm 5

1

Cl
~ d̄̂22â !d̄̂Ylm,

where Cl
25( l 21)l ( l 11)(l 12)/4. It remains to expres

hb
( inv) andHab

( inv) in terms of the scalar fieldsF andz: Using
the definitions of the RW and Zerilli potentialsF andz, as
well as Eqs.~20! and ~25!, we obtain

hb
( inv)5 ẽab¹̃

a~rF!,

Cb5
1

a01l
@22Nz ub22r 2vaz uaub2r 2vb¹̃a¹̃az#,

where we recall thata056M /r . Eventually, we obtain

C4
(1)5(

lm
F 1

r ~a01l!
~D12g12m!D~a01l!C lm

1
i

r
~D12g12m!DF lmGClY22

lm , ~69!

which givesC4
(1) in terms of the RW and Zerilli potential

F lm andC lm5z lm /(a01l) introduced in Sec. II. Here we
have reintroduced the indicesl andm. In order for the metric

perturbation to be real, we must haveC̄ lm5C l ,2m and

F̄ lm5F l 2m ~a bar denoting complex conjugation!. Equation
~69! ~or its Fourier transform in time! is some kind of gen-
eralization of the Chandrasekar transformation~see Ref.
@27#; and also Ref.@30#!. The corresponding expression fo
C0

(1) follows after the replacementsD°D, g°2e, m°
2r andY22

lm °Y2
lm in the equation above.
08401
n

-

e

Provided thatF lm and C lm satisfy the RW and Zerilli
equations~7! and ~28!, respectively, and using the vacuu
NP equations and the commutation relations

„D12~s11!e1qr…~D12sg1pm!

2„D12~s21!g1pm…~D12se1qr!

5
p1q

2r 2
12~s1p1q!C2 ,

wheres, p, andq are arbitrary real numbers, one can sho
that indeed,C4

(1) satisfies the Teukolsky equation~67!.
Finally, the total radiated energy per unit time can be o

tained from

dE

du
5 lim

r→`

r 2

4pES2U E2`

u

C4~ ũ,r ,V!dũU2

dV, ~70!

where asymptotically flat coordinates and an asymptotic
flat NP tetrad are chosen, and whereu5t2r . In our case
C450 on the background, so the radiated energy depe
only quadratically onC4

(1) . Since the fieldsF lm andC lm are

scalars with respect to the background metricg̃, we can
evaluate Eq.~70! using any asymptotically flat coordinate
on the background. Using the fact that at infinity,D5 1

2 (] t
2] r)1O(r 21), a,g,m5O(r 21), and imposing the outgo

ing wave conditionḞ lm1F lm8 50 andĊ lm1C lm8 50 at in-
finity, one arrives at

dE

du
5

1

16p
lim

r→`
(
l>2

(
m52 l

l
~ l 12!!

~ l 22!!
~ uḞ lmu21uĊ lmu2!.

~71!

~In the derivation, we have also used the orthogonality of

Y22
lm and C̄ lm5C l 2m and F̄ lm5F l 2m .) As a consistency

check, it is useful to note that this coincides with the us
well known result for Schwarzschild black holes
Schwarzschild coordinates.5 Equation ~71!, however, holds
for any coordinates.

V. RW AND ZERILLI EQUATIONS AND NUMERICAL
ISSUES

The RW and Zerilli equations are wave equations w
exactly the same differential operator~the Laplacian on the
orbit space!; they differ only in the corresponding potential
@cf. Eq. ~34!#. This simplifies their analysis, since properti
such as well posedness do not depend on lower order te
~as the potentials are!. We now discuss certain properties
the RW and Zerilli equations. In particular, we wish to no
the fact that they are perfectly well defined as long as
background is regular~both in the coordinate and curvatur
sense!. Provided the latter holds there is no pathology

5Taking into account, of course, that different normalizations
used in the literature when defining the RW and Zerilli potentia
see, e.g. Ref.@31#.
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the equations~or the solutions! at, for example, the even
horizon.

We start writing these equations explicitly by introducin
coordinates. We then express the whole metric asgmn

total

5gmn1dgmn , with the background metric given by

g5~2a21g2b2!dt212g2bdtdx1g2dx2

1r 2~dq21sin2qdf2! ~72!

The RW and Zerilli equations are

Z̈5c1Ż81c2Z91c3Ż1c4Z82a2VZ ~73!

whereZ denotes either the RW or Zerilli function. The coe
ficientsci are

c152b,

c25
~a22g2b2!

g2
,

c35
~gȧ2gba81abg82aġ1gab8!

ga
,

c45
1

g3a
~2g3bȧ2a3g81g3b2a822g3abb8

1g3aḃ1g2abġ1ga2a82g2ab2g8!,

and the corresponding potentials are

VRW5
1

r 2 F l ~ l 11!2
6M

r G ,
VZ5

l2r 2@~l12!r 16M #136M2~lr 12M !

~lr 16M !2r 3
.

To make the hyperbolic character of these equati
manifest, we introduce new variablesyªZ8 andwªŻ, and
write them as a first-order system for the ‘‘vector’’u

5(w,y,Z)T, i.e., u̇5Au81Bu, where in this case the prin
cipal part is

A5S c1 c2 0

1 0 0

0 0 0
D ,

and has eigenvalues and eigenvectors

l050 with eW05@0,0,1#,

l65
1

2
@c16~c1

214c2!1/2# with eW 65@l6,1,0#.

In our case,c1
214c254a2g22, and so the eigenvector

of A are independent provided the background metric is
cally well defined. Thus the system is strongly hyperbo
08401
s

-
,

which is enough to prove well posedness for the initi
boundary value problem if one gives boundary data for
characteristic modes that enter the domain@24#. For the
close-limit evolution of black holes in horizon-penetratin
coordinates, for example, one would put the inner bound
inside the black hole, check that the characteristic modes
indeed leaving the computational domain~i.e., that the eigen-
values ofA are positive!, and thus not put boundary cond
tions there~‘‘excision’’ !. At the outer boundary one would
typically put zero boundary conditions for the ingoin
modes.

One of the additional advantages of having a hyperbo
equation is that one can write codes that cana priori be
shown to be convergent@32#. We have indeed written two
such codes for the RW and Zerilli equations with an arbitra
background. One of them uses fourth-order centered dif
ences in space and fourth order Runge-Kutta difference
time. It uses an extrapolation at the inner boundary~assumed
to be inside the black hole!, and gives zero boundary data
the characteristic mode that enters the computational dom
at the outer boundary. The other code is second order; it
uses Runge-Kutta differences for time integration and c
tered differencing in space, but now needs some dissipa
~one can prove that this scheme is unstable without diss
tion;, see Ref.@32#!. In future work we will present numeri-
cal details of these codes applied to the close-limit collis
of superposed Kerr-Schild and Painleve´-Gullstrand black
holes.
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APPENDIX A: PERTURBED 4-METRIC IN TERMS
OF THE POTENTIALS

Here we will give explicitly some of the expressions us
in the body of the paper. That is, we choose a general c
dinate system for the background metric, as in Eq.~72!.

1. Odd-parity sector

a. 4-metric

The perturbation for the 4-metric withl>2 is given by
(Yf5]fY, etc.!

dgxq5Fg

a
@2r Ḟ1brF81F~br 82 ṙ !#1

rk822kr8

r G Yf

sinq
,

dgxf52Fg

a
@2r Ḟ1brF81F~br 82 ṙ !#1

rk822kr8

r G
3sinqYq ,
6-12
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dgqq5
2k

sin2q
@2cosqYf1sinqYqf#,

dgqf5k@cosqYq1sin21qYff2sinqYqq#,

dgqt5F 1

ga
@2g2br Ḟ1r ~g2b22a2!F8

1~2a2r 82 ṙbg21r 8g2b2!F#1
rk̇22kṙ

r
G Yf

sinq
,

dgff52k@cosqYf2sinqYqf#,

dgft52F 1

ga
@2g2br Ḟ1r ~g2b22a2!F8

1~2a2r 82 ṙbg21r 8g2b2!F#1
rk̇22kṙ

r
G

3sinqYq .

It is straightforward to compute the linearized Ricci or Ei
stein tensor for the above perturbed metric, and see that
are indeed annihilated if the master equation~73! holds.

The l 51 components of the metric, on the other hand,
given by

dgxq5F f 8r 22 f r 8

r
1

2Jg~2 ṙ 1br 8!

~2M2r !a
G Yf

sinq
,

dgxf52F f 8r 22 f r 8

r
1

2Jg~2 ṙ 1br 8!

~2M2r !a
GsinqYq ,

dgtq5F ḟ r 22 f ṙ

r
1

2J@g2b~br 82 ṙ !2a2r 8#

ga~2M2r !
G Yf

sinq
,

dgtf52F ḟ r 22 f ṙ

r
1

2J@g2b~br 82 ṙ !2a2r 8#

ga~2M2r !
GsinqYq ,

and it is also straightforward to check that this lineariz
metric satisfies the linearized vacuum equations.

b. Perturbed ADM quantities

The 3-metric can be obtained straightforwardly from t
spatial components of the 4-metric explicitly given abo
and, similarly, the coshift can be obtained fromdb i5dgti
and the above expressions fordgti . On the other hand, the
nontrivial components of the perturbed extrinsic curvat
can be computed directly from the 4-metric above explici
or from the results in the body of the paper. In either ca
the results forl>2, are
08401
ey

e

e
,
,

dKxq5
Yf

r 2a2sinq
Fa~ ṙ 2br 8!~k8r 22kr8!1gr 2~2 ṙ 1br 8!

3~Ḟ2bF8!1
ar

2
@22~r 8!2b21a2@ l ~ l 11!22#

22ṙ 214b ṙ r 8#FG ,

dKxf52
Yqsinq

r 2a2 Xa~ ṙ 2br 8!~k8r 22kr8!

1gr 2~2 ṙ 1br 8!~Ḟ2bF8!

1
gr

2
$22~r 8!2b21a2@ l ~ l 11!22#22ṙ 2

14b ṙ r 8%F C,

dKqq5F 1

g
~rF81r 8F!1

2k~ ṙ 2br 8!

ar
G

3S 2
Yfcosq

sin2q
1

Yqf

sinq D ,

dKqf5
1

2
F 1

g
~rF81r 8F!1

2k~ ṙ 2br 8!

ar
G

3S Yff

sinq
1cosqYq2sinqYqqD ,

dKff5F 1

g
~rF81r 8F!1

2k~ ṙ 2br 8!

ar
G

3~Yfcosq2sinqYqf!,

and, for l 51,

dKxq5F ~ ṙ 2br 8!~ f 8r 22 f r 8!

ar 2
2

J

rga2~r 22M !2

3@4g2Mbḃb822g2Ma222g2Mṙ 2

22b2g2M ~b8!21rg2a224bg2b8bḃ

12b2g2~b8!2b24a2~r 8!2r 16a2~r 8!2M

12~ ṙ !2g2r #G Yf

sinq
,
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dKxf52F ~ ṙ 2br 8!~ f 8r 22 f r 8!

ar 2
2

J

rga2~r 22M !2

3@4g2Mbḃb822g2Ma222g2Mṙ 2

22b2g2M ~b8!21rg2a224bg2b8bḃ

12b2g2~b8!2b24a2~r 8!2r 16a2~r 8!2M

12~ ṙ !2g2r #GYqsinq.

2. Even-parity sector

The expressions in this sector are also straighforward
obtain, but the final expression are too long to be writ
-

08401
to
n

down here. For this reason we will only present the simpl
explicit example: the perturbed four metric, in the R
gauge, for l>2 perturbations of the Painleve´-Gullstrand
spacetime. The background metric is, thus, given by

gxx51, gxt5S 2M

r D 1/2

, gqq5r 2,

gff5r 2sin2q, gtt5211
2M

r
~where r

[x!,

while the perturbation is
dgxx5F3S 2M

r D 1/2S rl ~ l 11!22r 12M

6M22r 1rl ~ l 11! D Ċ22rC92S 2
r ~r 13M !l ~ l 11!22r 226M ~r 2M !

r @6M22r 1rl ~ l 11!# DC8

1
@3r 3l 51r 3l 627l 3r 32 l 4r 314lr 3218Mr 2l 2112Mr 2l 316Mr 2l 4224Mr 2~ l 21!136M2rl ~ l 11!172M2~M2r !#

@6M22r 1rl ~ l 11!#2r 2
CGY,

dgxt5F22r Ċ822
r ~r 23M !l ~ l 11!22r 216M ~r 2M !

r 3/2@6M22r 1rl ~ l 11!#
@r 1/2Ċ2~2M !1/2C8#

1~2M !1/2
@3r 3l 51r 3l 627l 3r 32 l 4r 314lr 3218Mr 2l 2112Mr 2l 316Mr 2l 4224Mr 2~ l 21!136M2rl ~ l 11!172M2~M2r !#

„6M22r 1rl ~ l 11!…2r 5/2
CGY

dgqq5F2~2r !3/2M1/2Ċ22~r 22M !rC82S 212M ~r 22M !16Mrl ~ l 11!2r 2l 212r 2l 31r 2l 422r 2l

6M22r 1rl ~ l 11! DCGY,

dgff5F2~2r !3/2M1/2Ċ22~r 22M !rC82S 212M ~r 22M !16Mrl ~ l 11!2r 2l 212r 2l 31r 2l 422r 2l

6M22r 1rl ~ l 11! DCGY sin2q,

dgtt5F24~2rM !1/2Ċ82S ~2M !1/2@r 2l 226Mr ~ l 21 l 21!1r 2l 22r 2212M2#

r 3/2@6M22r 1rl ~ l 11!#
D Ċ22~r 22M !C9

2S 2
r ~r 223Mr 16M2!l ~ l 11!22r 316Mr ~r 2M !112M3

r 2@6M22r 1rl ~ l 11!#
D C81~r 12M !

3
„3r 3l 51r 3l 627l 3r 32 l 4r 314lr 3218Mr 2l 2112Mr 2l 316Mr 2l 4224Mr 2~ l 21!136M2rl ~ l 11!172M2~M2r !…

„6M22r 1rl ~ l 11!…2r 3
CGY.
of
APPENDIX B: SPIN-WEIGHTED SPHERICAL
HARMONICS

We define the operatorsc(s) and their adjointsc†(s) by

c~s!52„d̄̂12~s11!â…, c†~s!5~ d̂22sā̂ !,

respectively. The angular operator defined in Eq.~68! takes
the form Â5c(22)c†(22). Using the commutation rela
tions
c~s!c†~s!2c†~s21!c~s21!52s

for any real numbers, we can construct the eigenfunctions
Âs5c(s)c†(s) from the standard spherical harmonicsYlm,
which fulfill

c~0!c†~0!Ylm52
1

2
D̂Ylm5

1

2
l ~ l 11!Ylm.
6-14
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The eigenfunctions ofÂs are called thespin-weighted
spherical harmonics, and are proportional to

Ys
lm[H 1

Cls
c†~s21!c†~s22!•••c†~0!Ylm, s>0

1

Cl 2s
c~s!c~s11!•••c~21!Ylm, s,0,

where
.

vit
J.

e

nd

.
M

tu
.

i-

H

08401
Cls
2 5

1

2s
~ l 2s11!~ l 2s12!•••~ l 1s!

is a normalization constant. For alls, we have

ÂsYs
lm5

1

2
~ l 2s!~ l 1s11!Ys

lm .
R.

, J.
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