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Gauge-invariant perturbations of Schwarzschild black holes in horizon-penetrating coordinates
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We derive a geometrical version of the Regge-Wheeler and Zerilli equations, which allows us to study
gravitational perturbations on an arbitrary spherically symmetric slicing of a Schwarzschild black hole. We
explain how to obtain the gauge-invariant part of the metric perturbations from the amplitudes obeying our
generalized Regge-Wheeler and Zerilli equations, and vice-versa. We also give a general expression for the
radiated energy at infinity, and establish a relation between our geometrical equations and the Teukolsky
formalism. The results presented in this paper are expected to be useful for the close-limit approximation to
black hole collisions, for the Cauchy perturbative matching problem, and for the study of isolated horizons.
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[. INTRODUCTION for this is that, until very recently, most of the initial data
typically used in numerical relativity were for maximal slic-

In the last decade, perturbation theory for black holes hasg, and thus reduced, in the various regimes where pertur-
played, in several different ways, a key role in numerical andbation is usedfar region, late times, initially close black
computational relativity. Already in the 1970’s it proved to holes, etg, precisely to Schwarzschild and Kerr space-times
be a very valuable tool to predict gravitational wave formsin Schwarzschild and Boyer-Lindquist coordinates, respec-
from processes such as a particle falling toward a black holdively. In recent years, however, work was started on Kerr-
Since the early 1990's, due to the network of interferometricSchild-type initial datd13], which are not maximal. Part of
gravitational wave detectors in construction, there has beenthe motivation for introducing these new kinds of initial data
renewed interest in predicting wave forms for strong sourceés to avoid the typical grid stretching that maximal slicings
of gravitational waves such as black hole collisions. In par{roduce near the event horizdm, stretching that eventually
ticular, the first predictions using perturbation theory in thiscauses numerical simulations to crds@ne is then faced
new era were quite strikinpl]. Some of the applications of with the fact that in order to accommodate these new initial
perturbation theory in recent years involved computing thedata, either for the close-limit approximation or for Cauchy-
evolution for different conformally flat initial data describing perturbative matching, a formalism is needed that allows per-
black holes in the close limit in order to predict radiatedturbations in more general slicings than Schwarzschild and
energy and angular momentui], to provide both an ana- Boyer-Lindquist.
lytical understanding and a benchmarking of full numerical Another important motivation for having such a formal-
results[3], or to quantify the amount of spurious radiation in ism in place is to study the recently developstlated-
conformally flat initial data[4] (see Ref[5] for a general horizonformalism[17] in the perturbative regime. For such
review). The usual Regge-Wheel¢RW)-Zerilli [6,7] and  Studies, one needs to be able to analyze a neighborhood of
Teukolsky[8] formalisms were also extended to second or-the background horizon, which necessitates the use of
der[9], a necessary step in providing first-order perturbationdiorizon-penetrating coordinates.
with their own “error bars”[10]. Other recent approaches  The two most used approaches to black hole perturbations
used black hole perturbations to extend the computationdlave been the RW-Zerilli and Teukolsky ones. Each of these
domain in numerical simulations to the radiative zone viamethods has its own advantages and limitations: The Teukol-
Cauchy-perturbative matchind1], or concentrate full nu- sky formalism can be used for rotating black holes, but one
merical resources in the nonlinear regime and let perturbacannot obtain the whole perturbed geometry but, ratifgr,
tion theory take over in the late stage of black hole collisionsor ¥y, (this is enough to compute radiation, howeveThe
[12].

All of the applications just mentioned, though diverse,
have a common feature: they are limited to perturbations of *One does not have to move from maximal slicing to get rid of
Schwarzschild black holes in Schwarzschild coordinates, anspurious radiation; it is enough to use initial data that are confor-
Kerr black holes in Boyer-Lindquist coordinates. The reasormally Kerr, instead of the more usual conformally flad].

2There is some new evidence that these crashes can be avoided by
excising the singularity and appropriately choosing the shift vector
*Email address: sarbach@gravity.phys.psu.edu [15].
TEmail address: tiglio@gravity.phys.psu.edu 3Actually, one can construct solutions to the linearized vacuum
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RW-Zerilli technique, on the other hand, provides the wholedefined on the two-dimensional pseudo-Riemannian orbit
perturbed metric, but is limited to non rotating black holes. Spacem_ In what fo”ows’ lower-case Latin indices refer to

The Teukolsky equation, in its original formulation, can ; vt ; ; Co
. o . ’ ' coordinates onl{1,g), while capital Latin indices refer to the
in fact, be used to describe perturbations around any Petrov N.9) P

. 2 ~ . .
type-D background, without relying on a particular choice of coordinatesy and ¢ on (S",g). Below, we will derive per-

coordinates. Work started very recently on an application OLurbation equatiolns Whi(.:h. do not depend explicitly on the
this to Kerr-Schild black hole perturbatiofig]. ackground metric coefficients. In fact, we will only use the

This paper, in turn, develops an appropriate extension Olpackground equations which are given by the components of

the RW-Zerilli formalism to perturbations of Schwarzschild (€ Einstein tensor
black holes in arbitrary spherically symmetric coordinates.

One can imagine a huge variety of applications of such an G.=— E@ v r+£(2r§r+N—l)~

H . ab a¥b 2 Jab
extension; here we have concentrated on the aspects of the r r
formalism that we need in order to proceed with our main
motivations. In order to generalize the RW-Zerilli formalism, Gag=(rAr—r%x)gag, 2)
we start from a perturbation formalism introduced by
Gerlach and Sengupfd9], and derive two master equations Gap=0.

which hold in any spherically symmetric coordinates of the
background, but reduce to the equations obtained by ReggetereN=g(dr,dr), andx denotes the Gauss curvature of the

Wheeler and Zerilli if one uses the standard Schwarzschil%etrica A coordinate-invariant definition of the ADM mass
coordinates. is given. by

Our approach is organized as follows. In Sec. Il we
present the basic formalism that decouples the field equa-
tions into generalized RW and Zerilli equation. The special M=
cases with total angular momentuns1 and O are treated

carefully. In Sec. Ill we work out a relation needed for  \y\e can see by inspection that thig is the mass if
Cauchy-perturbative matching, namely, the one between thg.hywarzschild coordinates are used: on the other Hrid,
RW and Zerilli functions and the Arnowitt-Deser-Misner ) . =

defined in terms of scalars dvi, and thereforéVl represents

(ADM) quantities. In Sec. IV we establish a relation between ) ' ~ s
the present formalism and the Teukolsky one, a relation thaf’e ADM mass in any coordinates dvl. Note that in a

is desirable not only to compute the radiated energy angacuum space-time, Eq2) implies that G=r?(G,,V°r
make contact with Ref[18], but also from a conceptual —GPVar)=V.[r(1—N)], which shows thaM is constant.
point of view. Finally, in Sec. V we comment on the proper-  gince the background is spherically symmetric, it is con-

ties of the RW and Zerilli equations, and on a numerical cod enjent to expand the perturbed metric in spherical harmon-
that we have written to solve them. In order to establish the..

contact between the abstract formalism in the body of this

(1—N).

N =

paper and more direct applications, we give some explicit 89ap=HapY,
expressions in Appendix A. Finally, in Appendix B, we sum-
marize some properties of spin-weighted spherical harmon- 5gAb=Qb©AY+hbSAr

ics which are needed in Sec. IV.

89ns=K0agY +FVAVgY+2KV ASg) ,
Il. GENERALIZED RW AND ZERILLI EQUATION 9as= R 0as ATB (aSe)
ewhereH;, denotes a tensor fiel@, andhy, are vector fields,

In what follows, we assume that the background spac €
andK, F, andk are scalar fields oM. HereY=Y'™ are the

time (M,g) can be represented as a product ibf

=M/SO(3) andS? with metric standard spherical harmonics, arﬁ;&z(;‘dY)AzéE}ﬁBY
i and &V 4Sg)=V Sg+ VS, form a basis of odd-parity vec-
0= gapdx@d X+ r2 gpdxAdxB. (1) tor fields and symmetric tensor fields, respectively, $n

(See Appendix D of Ref[21] for more details on spherical
Here g=dQ? is the standard metric 082, andg andr de-  tensor harmonics We suppress the indicés and the sum

note the metric tensor and a positive function, respectivelyoVer these indices since the modes belonging to different
pairs ofIm decouple in the perturbation equatiod™ are

normalized with respect to the standard mef;ion S?, an
equations from a potentigwhich is notW,) that satisfies the Teu- €xception being the cas¢s-0 and 1: there we choose the
kolsky equation[16]. This approach is very interesting, but there normalization such thay®°= 1 andfszvlmvlmdgzmr/:s_
are some issues that still have to be worked out before it can be |n what follows, it will also be convenient to use a

implemented. For example, how to give initial data to the corre-rdinate-free notation for differential forms o (é) 5

sponding potentialin particular, can one obtain any linear vacuum ~t_ % . .
perturbation of the Kerr space-time from some potentjaiow to ~ andd'=*d* denote the Hodge dual and the codifferential

construct gauge invariants and extract radiation, etc. operator, respectively, with respectﬁoThat is,
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k
r_2 .

Forl=1, we will see that only the invariant 2-form

* a_"> a~ b
U dx®= €,,ucdx°, h(inv)=h_r2g

* UAdXA: EABUAdXB,

where'e and e denote the standard volume elements in
(M,g) and (S?,9), respectively. For example, we have h
- . FhEd(_z)'

d'h=-V2h,, (d'dh),=2V°V shy. r
A further simplification comes from the fact that a spheri- €nters the perturbation equations. N
cally symmetric metric is invariant under parity transforma- In terms of these gauge-invariant quantities, the compo-
tion x——x. As a consequence, the above defined amplinents of the linearized Einstein tensor are
tudes decouple into two sets, one set transforming Yke

(called scalar perturbationsor even-parity perturbations 0Gap=0, 4
and the other set transforming like=*dY (called vector (inv) S @
perturbations or odd-parity perturbations under parity 8GppdxP=1d" r4d( F AR} A
transformations. In this sense, the amplituties,, Q,, K, r2 2r?
andF have even parity, while the amplitudeg andk have
odd parity. 5G ap= _a*rh(inu)@(ASB) , (5)
A. Odd-parity sector where the background equations have been used, and where
We start with the simpler case of the odd-parity sectorN€re and in the following,

The perturbations ofj,,, are parameterized in terms of a A=(1-1)(1+2)
scalar fieldk and a 1- formh=h_dx?; a '

09ap=0, 69ap=hpSa, 5gAB:2k%(ASB)a ©) 2. Master equation

_ Vacuum perturbations with odd parity are obtained from
wherek andh, depend on the coordinate8 only. Note that Eq. (4), which yields

for =1, @(ASB) vanishes and is not present. Fof=0,

S,=0, and there are no gravitational perturbations. ~ h(inv) .
dt r4d( 5| [+ xhim)=0. (6)
1. Coordinate-invariant amplitudes r
A vector field X=X*g,, generating an infinitesimal co- The usual way to derive the RW equation fee2 from
ordinate transformation with odd parity, is determined by aEq. (6) is to decompose the 1-form(") with respect to
function f(x®), where Schwarzschild coordinated)")=h{")dt+h{")dr, and
to use integrability conditior(5) to eliminate h{™) . This
X2=0, XA:léABSB' yields an equation fohﬁi““) alon_e, which is then. cast into a
re wave equation for the functio® =(1—2M/r)h{")/r (d

defined below. This can also be achieved in a coordinate-
invariant way as follows: One uses the integrability condi-
tion dTh(")=0 to introduce the scalar potenti® accord-
ing to h(n)=%d(rd)="¢,,V3(r®)dx°. Equation(6) may

f then be integrated to yield the following wave equation
h—h+r2d Ik

r

Using the fact that, to linear ordefg,,, transforms like
the Lie derivative of the background metric with respect to
X, we find the following transformations:

A
r2

—A+rA =0, (7

kisk+f. r

NoFe that one can choose a gauge in th@fﬂ._ This gauge, where the two-dimensional Laplacian of a functionAi®
which is usually called the RW gauge, is unique.

For 1=2, one can construct the coordinate-invariant="—d'd®=V2V,®. Here the free constant in the potential
1-form ® has been used to set the integration constant to zero. Equa-
tion (7) is the coordinate-invariant version of the RW equa-
tion. Indeed, we have not specified any coordinates on the
“For e we need to provide an orientation M; if t andx are  orbit manifoldM. Using the coordinate-independent vacuum
timelike and spacelike coordinates, respectively, we chogse background equation:@rzGaa=2(rZr+N—l), Eq.(7) fi-
=[g|*2 nally assumes the form
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[—A+Vgw]®=0, (8) and 1; hence the amplitude is not present in those cases.

For =0, the amplitudeQy, is also absent.

with
1. Coordinate-invariant amplitudes
Vew=—|1(1+1)— % ) An infinitesimal coordinate transformation with even par-
r2 r ity is generated by a vector field with

From Eq.(7), we also obtain the relation Xa=gay, XA= f@AB%BY,
r3; h(inv) whereé? andf are a vector field and a function, respectively,
b=- N d 2 |’ ©) on M. With respect to this, the metric perturbations trans-

form according to

which enables us to comput® from the gauge-invariant
1-form h(inv), P gate Hap—=Hapt Eapt Epjas

Forl=1 Eq.(7) is immediately seen to admit the solution

2
1/r. Sincex=0, we may also directly integrate E@). This Qo= Qo &t o 13
yields K=K+ 2023, — (1 +1)f,
~ [ h 6J
*d(—z)z——4, (10 G—G+2f.
r r

Here and in the followingéy .=V ,§, denotes the covariant
where @ is a constant of integration. At this point, it is derivative with respect to the orbit metrig andv,=r,/r.
important to recall that the 1-forimis not coordinate invari- For 1=2, one can construct the following set of
ant, but transforms according te—h+r2d(f/r?). This im-  coordinate-invariant amplitudes:
plies that the solution of the homogeneous part of the above

equation is purely gauge. A special solution is HQQ”)= Hab— (Pajb+ Poja) (14
2J % . 1
h:_TJ*Tdr. (12) K('””)=K—2vapa+zl(l+1)G, (15

As explicitly shown in Ref[21], this describes the Kerr met- V.VherepazQa_'%rzG\a- The (generalizegd RW gauge is de-
ric in Boyer-Lindquist coordinates in first order of the rota- fined by choosing® andf such thatQ, and G vanish. We
tion parametera=J/M. From Eq.(10), J is defined in a see that in this gauge, which is also unigdéj) andK (")
coordinate-invariant way. In summary, a genérall pertur-  coincide withH,, andK.

bation is given by For =1, there is no such simple choice of coordinate-
invariant amplitudes, sind8 is not present in this case. Nev-
2J % dr 5 ) ertheless, we can always chose the gauge suctQpaan-
h=———~ Frdd/ro, (120 ishes. One then is left withl,, andK, which are subject to
the residual coordinate transformations as in @), with
with f an arbitrary function on the orbit space. &+ r?fl,=0. For|=0, Q, and G are absent, and one can

arrange the gauge such that=0. In summary, it is suffi-
cient to derive the linearized Einstein equations for the per-

B. Even-parity sector .
party turbed metric

The even-parity perturbations gf,, are parametrized by
a symmetric tensor fielt,,, a 1-formQ,, and two scalar 09ap=HapY, 99apb=0, gag=KgagY,

fields K h i YE
lelds K andG on the orbit spacé where for =2, H,, and K can be replaced by their

59ab=HapY, coordinate-invariant counterparts defined in E(s}) and
(15).
8gap= Qb%AY, 2. Master equation
1 The long but straightforward computation of the linear-
89as=KagY+G 12 VoAVaY+ =1(1+1)gapY |- ized Einstein tensor was given in Rg20]. The structure of
2 the equations becomes much more transparent if one first

) i i splits the 2-tensoH ,, into trace and traceless part and then
Here, the basis of symmetric tensorsdgyg is chosen to be  jniroduces the 1-form

orthogonal with respect to the inner product inducedgby
Furthermore, one ha8 VY + 1(I+1)gagY=0 for =0 C=Hr'2dx, (16)
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whereﬂab denotes the traceless partldf,. A similar split 2~Jr 2. - )N
is performed for the components of the Einstein tensor. Asa 0=T= Fd Z——9(Z,dr)—AK—-—K, (23
result, the relevant components of the Einstein tensor define r r

two scalarsSand T and two 1-formsJ andV according to 0=r2(2v—Tdn)

N SN 1 - ~
5GAg=S VAVBY+§|(|+1)9ABY , =d[2rg(Z,dr)]+1(1+1)Z+r(ap+N)dK+AKdr,
(24)

~ab _
9%°6G,,=TY, where we defined

1 . -
5GAbdxb=§U VaY, ap=2rAr+1—N.

. Using the background equation=02G?,= 2(rAr+N-1)
5Gr'2dxP=V Y. andN=1-2M/r, one findsag=6M/r.

In view of Eq. (21), we may introduce the scalar field

The vacuum field equations are thgn expressed in terms %fccording toZ=d¢. Equation(24) may then be integrated to
the 1-form C and the two scalar$i=g3"H,, and K. The yield
simplest equation, which is present only fe#2, gives _
2rg(dZ,dr)+1(1+21)¢+r(ag+N)K=0. (25
0=—-2S=H,

It is now clear how to obtain a single, second order dif-
henceH, is traceless|For|=0 and 1, we can make use of ferential equation foiz: First, we eliminateAK from Egs.
the residual gauge freedom in order to impd$e-0. Re-  (22) and(23). This gives
sidual coordinate transformations are then of the form of Eq.

(13) with £,2=0 and £a=—r?f|, for I=1] Using H=0, - 2. A
the remaining equations reduce to —A¢—g(dddr)—~K=0. (26)
2~T 2. ~ 4. A Next this equation is used to eliminate in Eq. (25).
0=T= Fd C—r—zg(C,dr)+AK+ Fg(dK,dr)—r—zK, Hence
17 ~  2ap- [(I+21)N
1 — (@ NAL— ——g(d,dr) + r—2§=0- (27)
0=U=—-5[(dC)dr+(*dC)*dr]-dK, (19
[Note that forl=1, this equation is equivalent to E(R6)
and thus is also valid in that ca$€inally, we define the new
~ dr 1 _ I(1+1) 1. ;
0=V=(d'C) —+—dg(C.dr)+ 7c+ SAKdr scalar function¥” by
r
{=(ap+\N)V,
~ ~ N+
—dg(dK,dr)+| Ar— T dK, (19 in order to remove the first order derivatives. This yields the
Zerilli equation[7]
where Eq.(18) is void for |=0. We recall that fot=2, we ~ _
should replaceH ,, by H{) andK by K("™) in the above [-A+Vz]¥=0, (28)
equations in order to give them a coordinate-invariant mean
. ere
ing. Forl=1, we compute the component bf parallel to
dr: v NI +2)r +6M)]+36M2(Ar +2M) 29
LU AR =T e dK Fdr =T A e — z (AT +6M)%r3 '
0=g(U,*dr)=*dC—g(dK,*dr)=*d[C—rdK].
This motivates us to replace the 1-fo@with the 1-form Before we discuss the special cased) and 1, we make
two remarks: First, fot=2, the scalar fieldl can be ob-
Z=C-rdK. (20) tained from the Zerilli 1-formZ using Eq.(27). The second
point is that it is also possible to obtain the RW equation for
In terms ofZ andK, Einstein’s equations become the scala,=r?d’Z. In fact, Chandrasekhdsee, e.g., Ref.
- - [27]) showed that the equations of RW and Zerilli for a
0=g(U,*dr)=*dZ, (21)  schwarzschild background are equivalent in the frequency
5 5 5 domain. However, in the time domain, we were not able to
O=g(U,dr)= —d'z+rAK, (22 expres<Z in terms of®, and its derivatives alone. For this
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reason, we will use the Zerilli equation in the even-paritywherez is the Lap|acian with respect to the orbit mefgc
sector and not the RW equation. and where the potentidl depends on the ADM masd, on

Forl=1, Eq.(27) reduces to r, and on the angular momentum numbemly.

Forl=0 and 1, there are no dynamical modes. The only
physical solutions in those cases are stationary, describing
variations of the mass and angular momentum. The gauge-
invariant part of the metric can be obtained fromand vice

However we recall that for=1, H,,, and hence als§  versa. These relations are made more precise in Sec. Ill.
are not defined in a coordinate-invariant manner. Under the Finally, we would like to mention that our gauge-invariant

-2 1.,
—A¢- Tydg,dn=—d'(r’dg) =0, (30)

residual gauge-freedofiq. (13)] with &,= — r2f|a and perturbation formalism has also been generalized to the case
where matter fields are coupled to the mef£6,21]. In the
HT(rzdf)=—§a|a=0, (31 case of Einstein-Maxwell, we were able to generalize the
equations obtained by Moncrig22]. However, as we argued
we find thatZ transforms according to in a recent papei23], the perturbation formalism presented
here fails to yield a wave equation of the form of Eg4)
Z—Z+6Mdf andhence {—{+6Mf. with a symmetricpotential V=VT, when non-Abelian fields

Sincef is an arbitrary solution of Eq.31), and since Eqgs. are coupled to the metric.

(30) and(31) are equivalent, it is clear that every solution of

Eq. (30) corresponds to a pure gauge. In particular, we can Ill. RELATION TO THE ADM QUANTITIES
choose the residual gauge in order foto vanish. In this
gaugeK vanishes as We”, as a consequence Of(Ea) The As mentioned in Sec. | one of the motivations for the
even-parity sector is therefore empty for 1. present work is Cauchy-perturbative matching. This amounts
For =0, one can choose the gauge such that bbind  to matching numerically, at each time step, the variables used
K vanish. Then Eqg(17) and (19) yield in a nonlinear code with the ones used in the perturbative
regime (in our case the RW and Zerilli functionsThe
df(rc)=0, g(rC,dr)=25M=const. matching takes place at a timelike boundary. For this purpose
we explicitly show the relation between the RW and Zerilli
which have the general solution gauge-invariant potentials and the ADM quantities, namely,
the 3-metric and the extrinsic curvature. This does not re-
C= 26—Mdr+¥dh (32) strict the formulation of Einstein’s equations to be used in
"IN ' the nonlinear regime, since for a formulation other than the

standard ADM(e.g. conformal ADM, or a hyperbolic formu-
Here M is a constant describing the variation of the ADM |ation) the relevant quantities can be obtained from the three-
mass, andh is a function that only depends enComparing  metric and the extrinsic curvature, and vice versa.

this with a residual gauge, which is generated by Thus our aim is to make explicit the relationship between
:}abk\b for a functionk of r, we obtain the scalar field® and¥ satisfying the RW and Zerilli equa-

tions (8) and (28) and the components of the linearized

CHC—;[Nk”(r)dr], 3-metric and extrinsic curvature. We will show in this sec-

tion that-modulo gauge transformations-there is a one-to-one
showing that the functioi(r) above corresponds to a pureé correspondence betwedy;; and K;; and the scalar ampli-

gauge. This can also be seen in a gauge-invariant way: Re- _ . i
call that for any spherically symmetric metric of the form of ?udes@, =42, q’.’ and‘I': FL!rthermore, this correspon
dence involves no time derivatives. For example, it is pos-

Eq. (1) we defined the mass parametdt through 1 ) . } T

—2M/r—N—§abr| rp. Using the fact that(for Y=1) sible to expresal in terms of purely spatial quantities, i.e.,
=N= allb- = — . . O

~ 2y_ 2 : dgij ,» and 6Kj; and theirspatial derivatives only.

99ap=Hap aNd 5(r%) ="K, we obtain We assume that the full metric, satisfying the nonlinear

25M=rrlarlbH_, —rr Ib(rK)‘bjL MK. (33 field equations, has the ADM form
It can be checked that the right-hand side is indeed a gauge- B 2102 Co
invariant combination. On the other hand, fo==0, Eq.(33) 9(p)=—a(p)*dt*+g;(p)[dX + ' (n)dt]
yields 26M =g(rC,dr), as above. X [dxi+ Bi(w)dt],
C. Summary

where u is a variational parameter, such that j@or=0, the
In both the odd- and even-parity sectors, perturbations ometric is spherically symmetric. With respect to the-2

any spherically symmetric vacuum background are describegpjit (1), the orbit metricg takes the form

by a wave equation of the form

(—=A+V)u=0, (34) 9= — a?dt 2+ y2(dx+ Bdt)2,
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wherex is any radial coordinatey and 8= * are the back-

ground lapse and shift, respectively, av\%iE@(X. The com-
ponents of the extrinsic curvature are

PHYSICAL REVIEW D 64 084016

observe thah,=b, h,=h,, andk=h, whereh,, h,, andk
are the amplitudes introduced in E®). Therefore, we ob-
tain

2aK,=2y(doy—vB'),

. .o
h{") =p—h,+2-h,,
2aK,2=0, '

(37

~ . r’
2aKag=2rdol Gas, hin)=h, —hj+ 2-h,. (39)
where the prime denotes differentiation with respect, tand
where we have also introduced the normal derivatiye
= (?t_ ,Bﬁx .
The components of the linearized metric have the forms

Next, the second and third equations of E2f) yield the
relations

. r’ b\’
_ —h.—28—h,—r2| —
80u=2a 80— F260.,+ 28585, 2am=mm2B (rz) ' 39
og;j = 5&1» , Using the last of these relatioh&qg. (40)], to reexpress, in

[Eq. (37)], time derivatives oh, in terms of spatial quanti-
wherei =x,A. Note that we use perturbations of the coshiftties, the components of the gauge-invariant 1-fduf{")
rather than the shift vector. This fact will turn out to be take the forms
important when we try to express the ADM quantities in

terms of the RW and Zerilli scalars. Similarly, the compo- . dor
aari oo : h{" = —2q 7,+2—nh (42)
nents of the linearized extrinsic curvature are given by 0 QT r 2
_ 50y 5B\’ )
_ _ 2 XX _ X . h
2a 6K = 010gxx— 2K 0+ By ( ’)’2 ) 27( v ) , h)((”w):hl—r2 r—;) , (42

!

_ r’ A A
2a0Kyp= 3;69y5a— ZIBT 09xat BV a00xx— V a6By

A2

20{5KAB: 07055AB— ZKAB(SCZ“F ZﬁV(AagB)X_ ZV(AéﬁB)

whereh{"™)=h{")— gh{") Next, one uses Eq9), trad-
ing time derivatives for spatial ones with the aid of E89),
to find

(36)
r dol
b= —’y(2a Wl_ZThl

\Na ’ (43

which is one of the formulas we were looking for. In order to
obtain the time derivative o, one uses the definition df,

i.e., h(n)=%d(r®). This yields

!

. —
- Z?QAB( 5,8x_ ,ngxx)-

(¢4

A. Odd-parity sector hgnu): — —ay(r®), (44)
In the odd-parity sector with=2, the only nonvanishing ’
perturbations can be parameterized according to y
h{m)=— Z go(rd). 45
5,8A: bSA , X @ 0( ) ( )
— — 2 which one can solve fod. Using E s.(43), (41), and(42),
09xa=N1Sa,  89as=2h,V (AS) the result is 9=
5KXA: 7T18A, 5KAB:2W2V(ASB)' . 1 2%0"0" zyﬁ 2r
(D:_I’ —a+ et 1+T7T2—)\—7T1
1. Potentials in term of the ADM quantities &2) Y Y
We want to expres® and @ in terms of the quantities fa E) — %hz_ (46)
b,h;,h,, 7, and 7, and their spatial derivatives. First we Y \r? rla
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2. ADM quantities from the potentials &2)

On the other hand, give®® and ®, we obtainsg;; and
6Kj; in the following way: First, we computé (inv} and
h('””) from Egs.(44) and (45). Then, using the above equa-
tions, it is straightforward to express h,, 7, and m, in
terms ofh{"), h{") &, andk, wherek parametrizes the
gauge freedom:

_ . k

b=h{""+ gh{") +r2g, r—z), (47)

_ k
hlzhgnv>+r23x(r—2>, (48)
h,=Kk, (49

ay &OI’
Zaﬂlz)\Tq)‘l'ZThl, (50)

) dof
2aw2=—hgnv>+2rlk. (51)

3. Special case+1
Forl=1, the amplitude®, and, are absent. According

to the analysis in Sec. IlI, the only physical solution is the

Kerr mode. Using Eq(10), one finds that the rotation param-
eter (the only gauge invariant fok=1) can be extracted
from the ADM quantities according to

r? dof
6J=a—y 2a7r1—27h1 . (52
On the other hand, using E@L1), one finds
2J( By o | f
b—m ;80r+y + 10, r_2 , (53)
2] vy 5 | f
h,= N 2 —dotf +1°09, 2 )

wheref parametrizes the gauge freedom, and whérel
—2M/r=—(dor)? a®+r'?/y?. The amplituder, then fol-
lows from Eq.(52).

B. Even-parity sector

Here the perturbations are

Sa=aY, &B,=b.Y, Ba=b,V,Y,

hY, 8g,a=qV.,Y,

5@()(:

_ _ . 1 .
59pp=KgagY +Gr? VAVBY+§I(I+1)gABY ,

PHYSICAL REVIEW D 64 084016

K=Y, SKya=mgVAY,

_ A A 1 ~
5KAB:7TKgABY+7TGr2 VAVBY+ §|(|+1)gABY .
1. Potential in terms of the ADM quantities &2)

From Egs. (35 one finds Hy=—2aa— B%h+28b,,
Hy=b4, Hyx=h, Q;=b,, andQ,=q, while K andG agree
with their definitions in Sec. Il. The expressions for the lin-
earized curvature tensEq. (36)] yield

h)’ 2(b1>
y? Ny

b
—b.—r2 =2
; g+Bh—by—r (rz) ,

2ay

2am,=h+By? ——(doy=7B"),

!

2amy=q-28 (54)

!

1 ) 2r
2&"7TK: r_zﬁo(r K)+W(,Bh_bl)

|(|+1) 2
(Bg—by) - _07ora

1,2
2 7TG:r_2(90(r G)+r_2(ﬁq_b2)

At first sight it is not clear how the Zerilli 1-fornx,
defined in Eq.(20), can be expressed in terms of spatial
amplitudes only, since from the definition blt('““) one sees
that second time derivatives of metric components can ap-
pear. However, it turns out that only the 2-fory,= py|a
— Pajb, Which contains no second time derivativeshpd, K,
and G, appears in the Zerilli 1-form. Using the fact that
H('””) is traceless as a consequence of the field equations,
one obtains

1
Za=Hapt "= 1Kja= S1(1+1)1Gja+ 1 Pwap+ 2rvg ap®.

Now, using Eq.(54), it is easy to find that

Po=—ar?mg+r(dor)G, (55)
1
Px=0-5r*G’, (56)
! 1 2 !
0x=2a('n'q+l’r WG)—F(&OI’)(I‘ G) _(ﬁh_bl)
Using the background equationvy,=Mr~ 3920

-r- r|ar|b, one eventually obtains
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3. Special case+1

1
ZO=—2aI’ ’7TK+ §|(|+1)7TG +2((90r)

For =1, according to the analysis of Sec. Il we have
only gauge modes, an@ and 7 are absent. Therefore, the
o ADM-based amplitudes are obtained from the same equa-
Z“Wq_qu) - F( 1_37) Po. 57 tions as above, but wheite{"") andK(") are set to zero,
andp, andG are replaced by, and 2f, respectively, where
£ andf parametrize the gauge transformation that brings us

Zi+1e)
K+3510+1)G

r’

+_
2

Y

Z,= r—zh—r K+%I(I + 1)(_;) + ‘?L;( 2am,— 2ﬂq> from the RW gauge to the actual gauge that one wants to use.
y r
> M 4. Special case+0
- ?( 1_3T> Py - (58) For1=0, b,, g, and 7, are also absent. Using E(3)
and relationg54), the perturbed mass parameter is found to
The Zerilli scalar{ (and V) can now be obtained from its be
definition, Eq.(25), with
1 2 M rz(a ) o , 2h+1( M)K " (r’K)’
_ =—(doN)mk+ 5| — =(r— ——(r .
KM =K+ Z1(1+1)G = —rl°py, a TOTKT 21 2 2 242
r\bpb: — (9P )Pol &®+1"pyl Y2, In order to obtain the perturbed three-metric and extrinsic

curvature in terms oM, one uses Eq32) which gives
and the 1-formZ given by Eqs(57) and(58). On the other
hand, the latter equations also give Jiffom '§=ZO+,BZX. 45M N_
Note that—as in the odd-parity sector—the scalamnd ¢ Hap= (f|af|b— Egab) +(gauge,
do not depend on the perturbed lapse nor on the perturbed
shift. Finally, we see that for a Schwarzschild slicing, where
dor=0, ® and { are linear combinations of the extrinsic and the ADM quantities are obtained in a similar way to
curvature components only. These combinations precisel@Pove.
agree with the ones obtained in a perturbative approach on a
F;%Sic background in terms of curvature-based quantities C. Gauge fixing vs choices of lapse and shift

rN2

We have shown above how to construct the 3-metric and

2. ADM quantities from the potentials &2) extrinsic curvature from the potentigland vice versa up to
. gauge freedom. In numerical simulations, however, usually
If £ and { are known, Eq.(25) tells us how to obtain one does not fix the gauge but rather chooses the lapse and
K (M) andk (") Next the traceless part bfg{;”) is obtained  shift, perhaps as prescribed functions of space-itegact
from this and the definition of the Zerilli 1-forrd. Finally, lapse” or “exact shift”) or as dynamical quantities coupled

one has to the the three metric and/or extrinsic curvatuféive
_ gauges)). In general thisdoes not fix the gauge completely
2ca=—H{W - 2Pyt 2B(Pyxt Pxe) — 2ﬂ2px|X , which means that we have to relate the gauge freedom to the

(59 choice of lapse and shift. The properties of such relations
depend on the details of how the lapse and shift are chosen,

h=H{"+2p, . and it is therefore not possible to give a general discussion.
These equations, for example, might be elliptic if some kind
b1=H§LnU)+I0t\x+ Pt (60)  ©of minimal distortion is imposed, hyperbolic as in the case

we discuss below, or of some othg@erhaps unknowntype.
1 . Here we will concentrate on a specific simple prescrip-
b,=p+ ErzG’ tion, but it should be clear that other cases can be treated
similarly. The case we are going to discuss is exact-coshift,
exact-lapse; that is, the lapse and shift covector are arbitrary

q=p,+ lrzG’ 61) but a priori given functions on the orbit space.
X2 ' We start with the odd-parity sector. The perturbed lapse is
zero, and, fof =2, the perturbed coshift is given by the right
_ 2 1 hand side of Eq(47). The functionk parametrizes the gauge
K=K{) + Fr|bpb_ S1(I+1)G. freedom, and it is thus given by the equation
Herep, and G parametriz_e the gauge freedom. The ampli- k= i(b—hg‘”—ﬁh‘x””). (62)
tudesm,, . ..mg are obtained from this and Eq&4). r2
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Sinceb is a given function, this equation can be solvedkor andmis a complex 1-form such that

provided we supply initial data. Given any 3-metric and ex- o o

trinsic curvature at,, the initial data fork are given by r2gag=MaMg+MgM, .

k(to,x):hz(to,x). ) ) )
The treatment fof=1 is similar. Now the gauge freedom  Here and in the following, a bar denotes complex conju-

is controlled byf, which can be related to the coshift by Eq. gation. Note that

(53), rewritten as ~ R _ _

€ap=laNp—lpNa, r?€ap=i(Mamg—mgmy).

f _ 1 23 [ By a . -
o P e b= | dort i (63 The only nonvanishing\ P coefficients are
, . . 1 1
In the even-parity case with=2 the gauge functions p=——-Dr, u=-—Ar,
P:, Px, andG are related to the lapse and shift by evolution r r
equations which are straightforwardly obtained from Egs. 1 1
(59—(61). These evolution equations form ax3 coupled e==dl(l n):_|anb'§ I
system, first order in space and in time, 27 an
5= 1 1 ~
G=0+(l.o.), (64) - zdn(l,n)=—zlbnavanb,
py=—p; +(1.0.), (65 )
. , a=—B="a,
pi=—B%p,+(.0.), (66) r

where |.0. stands for lower order terms. Initial data for thewhere o= — d(m,m) = 2MAmB¥ smg is an NP coeffi-
system of equation&4)—(66) is given by the 3-metric and
the extrinsic curvature at some tintg, and formulas(55) 2= = )
and(56) for p, andp, . It is easy to see that Eq64)—(66) =12V, andA=n%V,. WeAaIsEJ |[1troduce, for later use, the
constitute a weakly hyperbolisee, e.g., Ref24]) system if ~ angular derivative operat@é=m"V 5. From theN P vacuum
B=0 and a stricly hyperbolic system otherwise. That is, ifequations(see, e.g. Ref.29]), it then follows that all Weyl
these equations are written as=Auy,+l.0., with u scalars but¥, vanish:¥,=¥,=¥,;=v,=0. In terms of
=(G,pyx.py T, the matrixA has three different real eigenval- the invariant definition ofV given in Sec. II,¥, can be
ues if B#0; and a single degenerate real eigenvdkerg expressed as

with only two independent eigenvectors@f=0. The struc-

ture of the equations fdr=1 is the same, replacinm, andG M

by &, and 2, respectively. Finally, fof =0 the situation is Vo= r_3
similar but simplerG does not appear, and the principal part

of the evolution equations for two gauge quantig=andp,  |n particular, the metric is of typB, with repeated principal

is also given by Eqs(65) and (66). As before, these equa- | vectors aligned with? andn?.

tions are weakly hyperbolic if the background shift is zero, | yyhat follows, we study the decoupled equation derived
and strictly hyperbolic otherwise. If we use densitized Iapseby Teukolsky[8] governing linear fluctuations oF, on any

as is usually done in hyperbolic formulatioteee, €.9., Ref. gpherically symmetric vacuum background. To linear order,
[25]), the above system of equations is strongly hyperbolicy = angw, are invariant with respect to both infinitesimal

even in the case wheg=0. In contrast to this, the system . dinate transformations and null tetrad rotations. The rea-
is ill posed if we use an exact shift instead of a coshift. Forgyn we focus on¥, and notW, is that we want to study
=0, this fact was already noted in R¢26]. outgoing radiation at null infinity, which is described Hg,

(see Ref[8]). However, by interchanging with n and m

IV. RELATION TO THE TEUKOLSKY FORMALISM with m in what follows, one easily obtains the corresponding

In order to compare our perturbation equations with the’€Sults for¥o, describing ingoing radiation at the event ho-
Teukolsky equation for a non-rotating background, we intro-"120N-

duce aNP null tetrad that is adapted to the spherically sym-  With respect to the chosen null (tle)trad_, the pulsation op-
metric metric[Eq. (1)], i.e., erator acting on the linearized fielft;’ splits into the sum

of an orbital and an angular operator,

cient with respect to the dyad defined ty=m/r. Here,D

_ a _ a _ A
[=1,d%% n=nydx? m=mydx", L

r

~ Y (1=
wherel andn form a null dyad ofg, At Va'=0, (67)

Jab=—laNp—pNa, where
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A=(A+2y+5u)(D+4e—p)—3T, Provided that®,, and ¥, satisfy the RW and Zerilli
' equations(7) and (28), respectively, and using the vacuum
(69 : . :
- = o~ A T NP equations and the commutation relations
A=—(6—2a)(6+4a).
(D+2(s+1)e+qp)(A+2sy+pu)
Next we compute the perturbed Wey! scataf") : With

respect to the background metfit), one obtains —(A+2(s=1)y+pu)(D+2se+qp)
_ +
W)= R nPndmAmC. _P (s+p+q) ¥y,

Performing the multipole decomposition as described i

. Twheres, p, andq are arbitrary real numbers, one can show
Sec. Il, we obtain

that indeed,\Ifﬁll) satisfies the Teukolsky equatig67).
Finally, the total radiated energy per unit time can be ob-

W=V ,h{™ ] [mAm®Y S ] tained from
in the odd-parity sector and dE—I' rzf fu @G i 2dQ 20
du mazlel ). sur,Mdu dQ,  (70)

1 . ——— A
V== S HEY M mPY AV Y] _ _ _
where asymptotically flat coordinates and an asymptotically

flat NP tetrad are chosen, and whewe=t—r. In our case

in the even-parity sector. Using the definition of the deriva- W,=0 on the background, so the radiated energy depends
tive operatord and theN P coefficienta, one can check that only quadratically on#’{?) . Since the fieldsb,, andqflm are

in both parity sectors, the angular part is proportional to the
spin-weighted spherical harmonm’éf‘ defined in Appendix
B. Explicitly, we have

scalars with respect to the background mefjjcwe can
evaluate Eq(70) using any asymptotically flat coordlnates
on the background. Using the fact that at infinity= 3 (4,
1 — - —3,)+0(r 1, a, Yu=0(r" 1, and imposing the outgo-
Y@z=6(5—2a)5\('m, ing wave condition®,+®/, =0 and¥,,+¥/ =0 at in-

' finity, one arrives at

where C,2:(I—1)I(I+1)(I+2)/4. It remains to express [

hin) andH{[") in terms of the scalar field® and{: Using dE_ 1o > (I+ ! o (P 24 (W 1]?).

the definitions of the RW and Zerilli potentiadg and £, as du 1677er =2 m=—-1 (1-2)!

well as Egs(20) and(25), we obtain (77
hg"”)=~€atﬁa(r¢), (In the derivation, we have also used the orthogonality of the

Y™, and ¥,=V¥,_, and ®;,,=®,_,.) As a consistency
o check, it is useful to note that this coincides with the usual
[—2NZ)p—2r%0?jap—r?vpV2Vall, well known result for Schwarzschild black holes in
Schwarzschild coordinatésEquation(?l), however, holds
for any coordinates.

C.=
b~ a5+
where we recall thady=6M/r. Eventually, we obtain

V. RW AND ZERILLI EQUATIONS AND NUMERICAL
(A+2y+2u)A(ag+ M)V, ISSUES

vp=3

m [r(agt\)
| The RW and Zerilli equations are wave equations with
(A4 29+ 20)AD | C Y™ 69 exa_ctly the same _dlfferent|a_1l operat@he Laplgman on the
r ( v 2p)Abin C ©9 orbit spacg they differ only in the corresponding potentials,
[cf. Eq. (34)]. This simplifies their analysis, since properties
which gives¥{" in terms of the RW and Zerilli potentials such as well posedness do not depend on lower order terms
D, and V.= {im/(ag+\) introduced in Sec. Il. Here we (as the potentials areWe now discuss certain properties of
have reintroduced the indicéandm. In order for the metric the RW and Zerilli equations. In particular, we wish to note
perturbation to be real, we must ha\ﬁlm:xpl _, and the fact that they are perfectly well defined as long as the
— ’ background is regulaiboth in the coordinate and curvature

@iy =), (@ bar denoting complex conjugatjoiEquation sens@ Provided the latter holds there is no pathology in

(69) (or its Fourier transform in timeis some kind of gen-
eralization of the Chandrasekar transformati@®e Ref.
[2(71]); and also Ref[30]). The corresponding expression for 5Taking into account, of course, that different normalizations are
Vg follows after the replacements—D, y——¢€, u— used in the literature when defining the RW and Zerilli potentials;
—p andY'"™,— Y " in the equation above. see, e.g. Ref31].
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the equationgor the solutiony at, for example, the event
horizon.

PHYSICAL REVIEW D 64 084016

which is enough to prove well posedness for the initial-
boundary value problem if one gives boundary data for the

We start writing these equations explicitly by introducing characteristic modes that enter the domp24]. For the

coordinates. We then express the whole metricgg’#’le
=0T 69,,, with the background metric given by

g=(— a’+ yzﬁz)dtz-f— 2)/2,8dtdx+ 'yzdxz

+r2(d 9%+ sirf9d¢?) (72
The RW and Zerilli equations are
Z=C1Z'+CyZ"+c3Z+CZ' —a?VZ (73

whereZ denotes either the RW or Zerilli function. The coef-
ficientsc; are

ClZZB,

(@®=¥*B?)
2= 5
Y

(ya—yBa'+afy —ay+yap')
C3: ya y

1 .
ci=——(—7*Ba—a’y' +¥*B%a’ —2y°aBp’
v
+yap+ Y apy+yala' —y*ap?y'),

and the corresponding potentials are

1 6M
VRW:r_2 I+1)——

CNFPAL(N+2)r+6M]+36MA(\r +2M)
(Ar+6M)?r3 '

z

close-limit evolution of black holes in horizon-penetrating
coordinates, for example, one would put the inner boundary
inside the black hole, check that the characteristic modes are
indeed leaving the computational doméie., that the eigen-
values ofA are positive, and thus not put boundary condi-
tions there(“excision”). At the outer boundary one would
typically put zero boundary conditions for the ingoing
modes.

One of the additional advantages of having a hyperbolic
equation is that one can write codes that @ampriori be
shown to be convergeriB2]. We have indeed written two
such codes for the RW and Zerilli equations with an arbitrary
background. One of them uses fourth-order centered differ-
ences in space and fourth order Runge-Kutta difference in
time. It uses an extrapolation at the inner boundagsumed
to be inside the black holeand gives zero boundary data to
the characteristic mode that enters the computational domain
at the outer boundary. The other code is second order; it also
uses Runge-Kutta differences for time integration and cen-
tered differencing in space, but now needs some dissipation
(one can prove that this scheme is unstable without dissipa-
tion;, see Ref[32]). In future work we will present numeri-
cal details of these codes applied to the close-limit collision
of superposed Kerr-Schild and Painle@elistrand black
holes.
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To make the hyperbolic character of these equations

manifest, we introduce new variablgs=Z' andw:=Z, and
write them as a first-order system for the “vectod
=(w,y,Z)7, i.e.,u=Au’+Bu, where in this case the prin-
cipal part is

cp ¢, O
A= 1 0 O ,
0 0 O

and has eigenvalues and eigenvectors

Ao=0 with €,=[0,0,1],

1 >
)\izz[cli(ci—}—élcz)l/z] with ei=[)\¢,1,0]-

2

In our case,c§+4c2=4a2y‘ , and so the eigenvectors

of A are independent provided the background metric is lo-
cally well defined. Thus the system is strongly hyperbolic,

APPENDIX A: PERTURBED 4-METRIC IN TERMS
OF THE POTENTIALS

Here we will give explicitly some of the expressions used
in the body of the paper. That is, we choose a general coor-
dinate system for the background metric, as in &Q).

1. Odd-parity sector
a. 4-metric
The perturbation for the 4-metric with=2 is given by
(Yys=3,Y, etc)
rk’—2kr’
—

Yy

T—rd+pro’+a(pr'—n))+ =,

69y 9=

rk’ —2kr’
5gx¢:_ _

T—rd+praor+aipr -]+

XsindYy,
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2k ) .
89 g9=—>—[—Cc0oSIY 4+sinIY 4,1, SK9=———] a(r—Br' ) (K'r—=2kr" )+ yr2(—r+ Br’
9o Sinzl‘}[ p 0] D= 2 2 (r=pr’)( )+ yr<( Br')
. ar
8994=K[COSTY y+SiN 1Y 4, —SINDY 5], ><(<I>—,8<I>’)+7[—2(r’)2,82+a2[l(l+1)—2]
1 : —2r2+4Brr'|®
09.9t= %[—YZBV(DH(YZBZ—CKZ)@' ’
. rk—2kr| Y
20 2 1 ~20Q2 ¢ .
+(—at' —rBy +r' vy po)d]+ ; sno’ - Y ysin© _ o ,
K== a(r—pBr')(k'r—2kr")
rea

89 4= 2K[COSDY 4—SiNDY 54],

1 .

+(—a’r =1 By +1 2B D]+

rk—Zk}}
XsindY.

It is straightforward to compute the linearized Ricci or Ein-
stein tensor for the above perturbed metric, and see that they
are indeed annihilated if the master equati@8) holds.

Thel=1 components of the metric, on the other hand, are
given by

1
5Kﬁﬁ=[;(r®'+r'¢))+

+yr2(—r+Br')(d—pd’)

+ %r{—z(r')252+a2[|(| +1)—2]-2r?

+4,8'rr’}<13),

2k(r—pr’)
ar
Y 4,cost N Yoo
sit9  sind

frr—2fr’ 2Jy(—r+Br')| Y, 101 2K(i — Br')
0xo= r * (2M—r)a |sind’ 5Kﬂ¢=§{;(r¢’+r’db)+—ar }
frr—2fr’ 2Jy(—r+pr')| . X(MnLcosﬁYﬂ—sinﬁYM),
89xg=— - + 2M-Da sindYy, sind
fr—2fr 23[y2B(Br'—1)—a?'1] Y, 1 2k(r—pr’)
099= r ya(2M—r) sind’ Kgy= ;(rcp o)+ ar
_ _ _ X (Y 4cosd—sindY y,),
fr—2fr 2J[y?B(Br'—r)—a’r']|
0Gtp= — ; 2M=r) sindYy,
ya and, forl=1,

and it is also straightforward to check that this linearized
metric satisfies the linearized vacuum equations.

b. Perturbed ADM quantities

The 3-metric can be obtained straightforwardly from the
spatial components of the 4-metric explicitly given above
and, similarly, the coshift can be obtained frof®; = 5g;;
and the above expressions f8g;; . On the other hand, the
nontrivial components of the perturbed extrinsic curvature
can be computed directly from the 4-metric above explicitly,
or from the results in the body of the paper. In either case,
the results fol =2, are
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(F—Br')(f'r—2fr") J dowp .here. For this reason we will only pres_ent_the simplest
SKyy=— > - 5 5 explicit example: the perturbed four metric, in the RW
ar rya*(r—2M) gauge, forl=2 perturbations of the Painlex@ullstrand

. . spacetime. The background metric is, thus, given b
X[472M Bbb’ —272M a?— 27?M? P g gven by

—2B2y*M(b")2+ry?a?—4By?b'bb
+2B2y%(b")*b—4a?(r')’r +6a*(r')*m

2M

1/2
Oxx=1, gxt:(T> ) g,_%,=r2,

+2(r)%9r]|Ygsin 9. oM
Upp="TSIM, Ou= 1+ —— (where r

2. Even-parity sector

X),
The expressions in this sector are also straighforward to
obtain, but the final expression are too long to be writterwhile the perturbation is

2M\Y2(rl(I1+1)—2r+2M) . r(r+3M)I(1+1)—2r2=6M(r—M)
5gxx: 3 - v A A \I’*ZI’\I’"* 2 !

r 6M—2r+rl(1+1) r(6M—2r+rl(1+1)]

+[3r3I5+r3I577I3r3fI4r3+4lr3f18Mr2I2+12Mr2I3+6Mr2I4724Mr2(I71)+36M2rl(I+1)+72M2(Mfr)]q, v
[6M—2r+rl(l+1)]%r2
. r(r—=3M)I(1+1)—2r2+6M(r—M .
8gy=| —2r¥’' -2 ( N ( )[rl’z\lff(ZM)l’z\If’]
r¥6M—2r+rl(1+1)]

[3r315+ 31— 7133 —1%r3+ 41r 3 — 18M 1212+ 12Mr 213+ 6Mr2l1*4— 24Mr2(1 — 1) + 36M?rl (1 + 1) + 72M3(M — )] v

+(2M)Y?
( (6M —2r +rl(1+1))%r?

Y

—12M(r—2M)+6Mrl (I +1)—r212+2r2%+ r2I4—2r2I)

—| _ 32\ Uy _ r_
8999 _ (2r)"* MW —2(r —2M)rw ( eM—2r+r(1+1) ‘II}Y,

Y sirt 9,

—12M(r—2M)+6Mrl (I +1)—r212+2r213+r2*-2r2| v
6M—2r+rl(l+1)

8944= —(2r)3’2M1’2\P—2(r—2M)r\I"—(

i 2M)Yr212—6Mr(12+1—1)+r2 —2r2—12mM?]) .
8gy=| —4(2rMm)V2p’ — W —2(r—2M)W”
I r¥I6M—2r+rl(1+1)]
r(r2=3Mr+6M3?)I(1+1)—2r3+6Mr(r—M)+12M3
-2 W'+ (r+2M)
r(eM—2r+rl(1+1)]

><(3r3|5+ r38—713r3— 1434+ 41r 3— 18Mr212+ 12Mr213+ 6Mr214—24Mr?(1 — 1)+ 36M?rl (I + 1) + 72M?(M —r))q} v
6M—2r+rl(1+1))%r3

APPENDIX B: SPIN-WEIGHTED SPHERICAL c(s)cf(s)—cf(s—1)c(s—1)=—s
HARMONICS

: o diointet
We define the operatorg(s) and their adjoint’(s) by o any real numbes, we can construct the eigenfunctions of
As=c(s)c’(s) from the standard spherical harmoni¢¥",

c(s)=—(3+2(s+1)a), cl(s)=(5—2sa), which fulfill
respectively. The angular operator defined in Ef) takes
the form A=c(—2)c’(—2). Using the commutation rela- c(0)ct(0)Y'm=— EAYlm:L(Hl)Ylm
tions 2 2 ’
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The eigenfunctions of,zls are called thespin-weighted 1
spherical harmonicsand are proportional to Cff;(' —s+1)(I=s+2)---(I+5s)
1
C—c*(s— 1)cf(s—2)---cf(o)Yy™, s=0 _ o
yim= Is is a normalization constant. For &l we have
c c(s)c(s+1)---c(—1)Y'™, s<0,
I—-s . 1
where ASY'szz(I —s)(I+s+1)Y™,
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