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We construct a broad family of exact solutions to the five-dimensional Einstein equations coupled to a scalar
field with an exponential potential. Embedding a three-brane in these bulk space-times in a particular way, we
obtain a class of self-tuned curved brane worlds in which the vacuum energy on the bgraeitastionally
idle, the four-dimensional geometry being insensitive to the value of the brane tension. This self-tuning arises
from cancellations, enforced by the junction conditions, between the scalar field potential, the brane vacuum
energy, and the matter on the brane. Finally, we study some physically relevant examples and their dynamics.
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I. INTRODUCTION riod of inflation in the early universe, during which the pos-
sible initial anisotropies and inhomogeneities would be
Brane worlds, the models in which our Universe appearsmoothed out. In the context of the brane world the issue of
as some kind of domain wall or brane embedded in a higheiinflation [7,8,10 as well as the perturbative deviations from
dimensional space-time, have gained considerable attentiagsotropy[11,12 have been investigated recently.
recently. Although the idea goes back to the 1980 its One of the most interesting consequences of considering
current appeal comes from several directions. As shown bgur universe as a brane inside a higher-dimensional space-
Horava and Witteri2], the Eg X Eg heterotic string theory at time is that the Einstein equations in four dimensions do not
strong coupling is described in terms of M theory in anform a closed systerill]. As a consequence, for a four-
eleven-dimensional space-time with boundaries, where thdimensional observer it is not sufficient to know the distri-
ten-dimensional gauge degrees of freedom exist on thbution of energy-matter in her/his universe to determine its
“branes at the end of the world.” This confinement of the geometry, the missing element coming from the geometrical
gauge fields to a lower-dimensional submanifold, in contrasfeatures of the space-time outside the four-dimensional uni-
with the gravitational field that can propagate into the bulk,verse. This “out of this world” ingredient to the right-hand
might help to explain the hierarchy between the electroweakide of the Einstein equations is crucial in analyzing the cos-
and the Planck scales in four dimensi¢8§ With the aim of  mological dynamics of the universe in four dimensions.
solving the hierarchy problem, Randall and Sundifdihput ~ However, in many instances in the literature the five-
forward a proposal, inspired by the AdS/CFT correspon-dimensional solution in the bulk associated with a four-
dence, where our four-dimensional universe is embedded idimensional brane cosmology is not known and its effects on
a nonfactorizable way into five-dimensional anti—de Sitterthe brane world have to be modeled using some simplifying
(AdS) space-time. Gravity in this scenario is “trapped” on assumptions, or neglected altogether.
the four-dimensional brane due to the geometry of the bulk Thus, in order to gauge to what extent the five-
space-timg4,5]. dimensional geometry influences the cosmological dynamics
The phenomenological viability of brane world models is on the brane, it is important to consider exact bulk solutions
now being extensively discussed in the literat[B¢ In ad-  with various deviations from homogeneity and isotrdpge,
dition to the possible imprints of these models detectable ifor example,[13—15 for some studies in this directipnin
high-energy experiments, cosmology naturally emerges as this paper we will propose a systematic way of constructing
very promising arena to study the possible consequences €ife-dimensional homogeneous and inhomogeneous cos-
living inside a brangfor an incomplete list of references see mologies coupled to a scalar field with an exponential poten-
[7-9]). One of the important issues in cosmology is to ex-tial. We will construct brane cosmologies using these bulk
plain how our homogeneous and isotropic universe coulanetrics and study the effect that the bulk dynamics has on
have emerged from “generic” initial conditions. A popular the cosmological evolution of the brane world.
mechanism to address this question is to have a certain pe- The cosmological constant problem remains a central is-
sue to be solved in theoretical physid®]|. Brane cosmol-
ogy provides new approaches that might help in the solution

*Electronic address: wtpfexxa@Ig.ehu.es of this long-standing problerfil7]. One of the proposals re-
"Electronic address: kunze@amorgos.unige.ch cently put forward is a self-tuning mechanism that tunes the
*Electronic address: vazquez@nbi.dk four-dimensional cosmological constant to zero, indepen-
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dently of the value of the cosmological constant in the bulk 9as=0ag— NANg .

[18-21]. In this paper we propose rather a new realization of

this self-tuning property in which vacuum energy on theBecause of the embedding there will be two sources of cur-

brane cancels despite the “bare” four-dimensional cosmovature for the four-dimensional universe. One will be the

logical constant being nonzero. This is due to a nontrivialintrinsic curvature induced by the ambient space-time and it

counterbalance between the nonvanishing “bare” cosmologiwill be given by the projection of the five-dimensional Rie-

cal term and the matter induced on the brane. mann tensor onto the brane. The second one is due to the
The paper is outlined as follows. In the next section Weembedding itself and it is governed by the extrinsic curvature

will briefly describe the dynamics of dilaton brane cosmolo-K , =g, ©9PVnp . Using the Gauss-Codazzi equatids]

gies. After this, in Sec. IIl, we present a solution generatingwe can write the Einstein equations in four dimensions as

technique to build five- d|menS|0naI scalar cosmologies with[22 24,25 (for a review sed?26])

exponential potential starting with a vacuum solution in five

dimensions. Section IV will be devoted to the study of brane R,,~39,,,R=35[7asgh0} + (Zasn*n®~19"*71p)g,,,]

cosmologies embedded in the class of five-dimensional met-

rics obtained here, and how for these particular embeddings +KK,,—K, K, ;= 39,,(K*= KK ,z)

there is a self-tuning mechanism at work, the four- E @)

dimensional geometry being independent of the vacuum en- my?

ergy on the brane and the value of the scalar field potentia(Nhere we have denoted Hy=K* the trace of the second
In Sec. V we illustrate our discussion with some phySica”yfundamental form E,,,, is WritteMn in terms of the five-
interesting examples, and in Sec. VI we summarize our res. | Wevl t (ﬂ

sults. imensional Wey ens Bcp as
E,w:CEAFBnEanﬁgE,
IIl. BRANE DYNAMICS

nd the five-dimensional energy-momentum tensor in the

In the spirit of the brane world picture, we assume that th ulk derived from Eq(1) is

four-dimensional universe is described by a domain wall
(M,g) located at some hypersurfad&x”)=0 in the five- c 3k
dimensional bulk space-timg\1,G). The only matter in the Tag=daddpd—Gap(zdchd° ¢+ Ae”2910).(3)
bulk will be a massless scalar field with an exponential po-

tential. Therefore, the action governing the dynamiés is |t iS important to point out that the right-hand side of &)
can be evaluated on any side of the brane, the Einstein tensor

on the brane being uniquely defined. In tAg-symmetric
case to be studied below, both the extrinsic curvature and the
derivatives of the dilaton field on the two sides of the brane
differ just by a sign, so every term in the right-hand side of

+f d*x V= gLrane (1) Eq.(3) is well defined on the brane. If the reflection symme-

V=0 try is relaxed, on the other hand, the uniqueness of the Ein-
stein tensor is ensured in a nontrivial Wig7].

In addition to this, the scalar field will satisfy the wave
equation

Soo- [ 4G

1 1
[ » . A —(2/3)k¢
2K§ R 5 danpd”p—Ae

wherek and A are constants and

1 +
Lprane= —N(@) + ;Z K=+ e4b¢|—(ezb¢g,uv,...)matter- ok
5
Vip+—A
3

e‘<2k’3>¢=ﬂ[x’<¢>)—bg*”rw] a(Y),
Here\(¢) is a ¢-dependent vacuum energye., tension on V=6
the braneK = is the extrinsic curvature on either side of the )
brane, and_ i/ iS the Lagrangian of the matter degrees of
freedom confined to the brane world minimally coupled to
the metrice??g,,,, be R (cf. [22]). In the following we use
units in whichks= 1. The induced metric on the brane is the
projection of the five-dimensional metric onto the brane
world. If we denote byn” the unit spacelike vector normal to

wherer,, is the energy-momentum tensor of the matter ac-
tion, as derlved frone*®?L e and the prime denotes dif-
ferentiation with respect tgh. Upon projection we obtain the
four-dimensional equation for the dilaton

2k
the brane, the four-dimensional metric will be given by D,D*¢p—acd®p+KLyp+ Lo+ ?Ae*@’@k‘/’
l . . . . . . . _ v - g ’ v
In the following we will use capital Latin indices for the five- =——[N'(¢)—bg""7,,]16(Y) 5)
dimensional coordinates, whereas the coordinates on the brane Y

world will be denoted by Greek indices. To avoid the use of super-
indices to indicate the dimension, tensors in five dimensions will bewith D, the covariant derivative with respect to the induced

indicated by capital script letters and their four-dimensional coun-metric, ac_nBVBn , and £L,¢p=n"V 1¢ the Lie derivative
terparts will be denoted by the corresponding italic types. in the directionn®.
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As usual, we will take coordinateg/(x*) in such a way determines the extrinsic curvature in terms of the energy-
that the brane world lies on the hypersurface defined¢yby momentum tensor on the brane. In the same WBQMZ can
=0. For later convenience we will consider that the five-be read from Eq(8). Substitution into Eq(9) leads then to

dimensional metric takes the form (cf. [22))

ds5p= NG *dX*+ g (xx) dx“dx, Ryv— 3R, = 3[0,60,8—$0,,(06)21+ I\ ()7,
where the “shift” function N(x,x) depends on all five- ~A49,,~ 16[2\ (¢)—b7lb7g,, ,+ T,
dimensional coordinates. Therefane= N(X,X)‘laX and, as
a consequence, —Eu, (10

B where rEg“ﬁraB and the four-dimensional cosmological
K'“V_ZN(X,X) IxGun(X,X), constant and the tensar,, are given, respectively, by
1 Ag=3[Ae PB4 N ()7 N ()7,
aﬂ——m&#N(x,xh aX_O'

Tyuv= 1_127-7-,U,V+ %g,U.VTa,BTa'B_ %T,U,aTg_ 2%1 ng,u,u . (ll)

andg,,=C,,,~.
The discontinuity of the derivatives of the metric across Looking at the Einstein equations on the brane, @),

the brane due to the energy-momentum localized on the hyye find that in general the dynamics of the four-dimensional

persurfaceY (x*)=0 is given by the Israel junction condi- yniverse is not uniquely determined by the distribution of

tions [24,2@ They relate the Jump in the first derivative of energy inside the universe as encoded-ljp [11,22’ as itis

the metric aty=0 to the total energy-momentum tensor on the case with “ordinary” Einstein equations. Indeed, the only

the brane, namely, ingredient on the right-hand side of E.0) that cannot be
K. 1=—(S,—1g.) ©) related to the matter content of the four-dimensional universe
[Kun]= v~ 39ur>), (i.e., either four-dimensional matter or the scalar figldis
where we have used the usual notatidd=A"—A", and '\[/r\1/e tlert'SO'EW,l Whicdh istdetet”gi”etg by tfr|1e five—dir:(;:‘r?si?pal
: . eyl tensor. In order to stu e influence of the five-
S,., is the total brane energy-momentum tensor: y y

dimensional geometry on the cosmological evolution of the

2 S brane world vieE ,,, it is necessary to consider not only the
Suv ——W(\/—ngranQE—Md’)gMﬁ Ty - four-dimensional metric on the brane but also the higher-
V=g 99 dimensional ambient geometry. Thus, to address this prob-

(7) lem, we will proceed to construct explicitly five-dimensional
fsolutions to the Einstein equations in which our brane worlds

I imilar fashi find the j in the derivati
n a similar fashion we can find the jump in the derivative o will be embedded.

the scalar field by integrating E4) acrossy=0: namely,

[d,¢]=N(X,0[N (¢)—bg"’7,,]. (8 lll. SCALAR FIELD COSMOLOGIES IN FIVE

. . . . . . .. DIMENSIONS WITH AN EXPONENTIAL POTENTIAL
The Einstein equations in four dimensions can be now writ-

ten from Eq.(2) as Since we will be interested in studying the effects of the

(9.4)? bulk on the four-dimensional brane world, our starting point

_1 _2 45 2 L% will be the f|ve-d|men5|onal geometry in \_/vh|ch the_ brane is
Ruv™20uR=310,47,6+5(9¢)°g 0] 4N(x,0)zg‘” embedded. In particular, we want to consider solutions to the

equations of motion derived from the bulk terms in Et),
i.e., geometries coupled to a massless scalar field with a
1 2_wapB _ Liouville potential.
20, KT =K Kap) = © Such cosmologies can be constructed using a higher-

As we discussed above, the only discontinuities on the rightdimensional generalization of the theorem presented in Ref.
hand side of Eq(9) are contained in the extrinsic curvature [29]- Related models were studied by Lid4&f] in the con-
K,,. the derivative of the dilaton field “normal” to the text of heterotic M theory; some particular examples of con-
braned, ¢, and, eventually, the potential. These terms havestant curvature dilatonic branes were also discuss¢8lh
to be evaluated at any side of the brane, the sum of therket Us cpnsudgr &acuumsolution to the Einstein equations
being independent of the side chosen. All other terms involvin five dimensions of the form
ing the scalar field and their “tangent” derivatives are con-
tinuous and can be evaluated individually without ambiguity dS(Z\,ac,sg= ee’?Wdy?+e 2°Mh, (x)dx*dx’, (12
on the hypersurfacg=0.

If we assume that our brane world is at the fixed point ofwheree=*1 depending on whethey is a spatial direction
a Z, orbifold, as is the case in the Fara-Witten scenario, or the time coordinate, and the metric functio@$x) and
K;V= —K,,, and the Israel junction conditiait) completely  h,,(x) are independent of the coordinate. The new metric

—3Ae g +KK,,~K, K,,
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dsé _ Ee(4k/\/k2+6)Q(x)+a1§XdX2 dimensionallmetric c_ouplgd to a massless scalar fi_eld can be
D embedded into a five-dimensional bulk space-time with
+ e~ (2KNIZ+6)Q00 +az¢xp (x)dxtdx”  (13) negative cosmological constant by the ansdi@ with e
mr =1. Finally, in the cas&(x) =0 the Einstein vacuum equa-

and the scalar field tions for Eq.(12) imply thath,,, has to be a Ricci flat four-

dimensional metric. For the particular choibg,= 7,, we

6 3ké 243 recover the family of metrics considered [a8] after the

X x)= ===—=Q(X) + kZ=3% (14)  obvious change of coordinatedxs=expGa; £x)dy and a

k“+6 +V3¢y, k3=3, rescaling of the dilaton field. On the other hand, taking

to be the Schwarzschild metric in four dimensions we can
solve Einstein equations coupled to a massless scalar fiegpnstruct embeddings of four-dimensional black holes in five

with potentialV(¢)=Ae™ 3¢ where dimensions of the form
9 12-k? 2M dr?
-5z K3, d2= ed1éxdy2+ o228 — | 1— ——|di2+ ————
2 (k?—3)? e x-te o+ —
A= o r 1-2M/r
-8 k?=3,
2 2402,
and
) ) which, fork=0, corresponds to the AdS black string consid-
a =k—a _ if k2+3 ered by Chamblin, Hawking, and RefB4]. Whenk# 0 the
173927 k2-3 ’ four-dimensional black hole is embedded into a five-
a=a,=2 if k2=3. 15 dimensional bulk space-time with a nontrivial profile for the
1o 19 dilaton field, which, on the other hand, is constant on the
Finally, ¢ fixes the scale of the cosmological constant brane.

Although some algebra is involved, the result can easily
be proved following the same steps as in the four-
dimensional casg29]; we therefore leave this to the reader.
Using the theorem we can construct five-dimensional dilaton
gravity solutions with a cosmological constaftegative In the previous section we constructed a generic proce-
whenk?<12). At a glance, there are several interesting val-dure to obtain five-dimensional cosmologies coupled to a
ues ofk for which the metric(13) admits different physical scalar field with an exponential potenti@r a negative cos-
interpretations. The first one i¥= 12 when the potential for mological constant The final aim is to use these solutions as
the scalar field vanishes. The second and more interestirigulk geometries of four-dimensional brane worlds. As we
one isk=0, at which the coupling between the dilaton field reviewed in Sec. Il, given the solution in the bulk, the matter/
and the cosmological constant is zero and we are left with &nergy content of the brane world is strongly constrained by
negative cosmological constant= —6&2. In this case the the junction conditions for both the metric and the scalar

IV. BRANE COSMOLOGIES WITH IDLE VACUUM
ENERGY

geometries are characterized by the line element field.
Among the different possibilities for embedding a four-
dst_o=edyx?+e 2*h, (x)dx*dx” (16)  dimensional brane world in the five-dimensional solution

(13) the simplest ones correspond to taking the codimension
which solves the Einstein equations with a negative cosmogf the brane along one of the four spacelike coordinates.
logical constant and a massless scalar fief{x) Let us consider the solutior&3) and (14) with e=1 so
=/6Q(x). Takinge= 1 andy as the bulk coordinate, we are that the brane world lies on the hypersurface defined by the
provided with generalizations of the Randall-Sundrum modekquationy= 0. This choice leads naturally to warped geom-
with a generic four-dimensional metric and a massless scalaftries that generalize the Randall-Sundrum construction to
field. If k?=18 ande=1 we obtain solutions to the low- include a scalar field with a Liouville potential.
energy field equations of th&gXEg heterotic string at We begin by assuming, symmetry around the location
strong coupling compactified on a threefold Calabi-Yauof the brane ajy=0. In this case we are led to the following

space, with the scalar fielgp representing the breathing nonfactorizable geometry in five dimensions:
mode of the internal manifolf30,32.

Whenevere=1 it can be easily realized that the vacuum
five-dimensional metri¢12) can be thought of as the “oxi-
dation” of a four-dimensional massless scalar field cosmol-
ogy with a scalar fields(x) ,p=6Q(x) (cf., for example,
[33]). Therefore in order to get Eq12) one can start with
any four-dimensional solution to the Einstein scalar equa-with a; anda, given by Eq.(15). The dilaton, on the other
tions. If k=0 the previous results tell us thainy four-  hand, is given by

ds,= e(4k/vk2+6)Q<X>+a1§\x|dX2

+ e—<2k/w<2+ 6)Q(x)+a2g|X\hW(X)dX,LdXV (17)
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3ké 5 = —poe*est . (23
px=ot0+] =3 T3 g
X)= ¢ Therefore the matter content of the brane described Qye,
has as its effective equation of stgte — p,. Notice that the
B — form of the energy-momentum tensor is independent of the
whlere<p_(x)_—|(6]{ K +6)QC§(X) .O h o1 h value of k and therefore valid forll brane models con-
N principie, Ior_ge?en z ’ t_ 3 metrflc( 7 can . avz a  structed using the solution generating technique of Sec. lll,
cy_rvature sihgu arl_ty oc_ate a<t_—_ oo (cf. [18’35.)’ N a0~ and that the constant energy density and the equation of state
dition to the possible singularities of the methg,,. De- 4 o depend on the value of the dilaton couplmgWe

pending on the value ok and on the particular solution now evaluate the tensar,, that appears on the right-hand
considered, this singularity can be harmless provided it i%ide of Eq.(10). The resulftyis

located at an infinite proper distance from the brane location.

+V3¢|x|, K?=3,

It can easily be seen that this is the case when&ver3. P _1_12pge8b(pg .
However, in this case the four-dimensional Planck scale ob- a a
tained by integrating out the coordinate in the five- With these expressions for the tensors appearing on the

dimensional actior(1) diverges. On the other hand, when right-hand side of Eq(10) we can study the source of the

k?< 3 the singularity is located at finite proper distance fromprane gravitational field. Remarkably, we find that
the brane but the four-dimensional Planck scale is finite as

well. Whenever needed, a second brane can be located at%)\(c,o)rw—A‘lgW—ﬁ[Z)\’(go)—ba-]bq-g,wwL 7,,=0,

xo0>0, imposing reflection symmetry around this point, so (24
the bulk coordinate is restricted to the inter{/@Jx,] and the . .
singularity is screened. so the “effective” energy-momentum tensor in EJ.0) re-

Since we have completely determined the bulk geometr eives contributions only from the dilaton field and the tidal
and assumed reflection symmetry aroynd0, the junction Pulk effects
conditions(6) will determine the energy-momentum tensor off 2 5 2
of the matter fields on the brane. Imposing the matching T.=3500,0d,0—59,,(d¢)°]-E,,.
condition on the scalar fiel(B) at the brane location for the

dilaton (18) we find the following relation: An interesting thing to notice about the cancellati@d)

is that the four-dimensional cosmological constant, as de-

6k fined by Eq.(11), is different from zero. Only whepy=0
e KRe  Kk2£3, and Q(x)=0 does the four-dimensional cosmological con-
N (¢)—bg*r7,, = k*=3 (19 stantA, vanish exactly independently of the value of the
+2v3geT(WWe  k2=3 cosmological constant in the bulk. A particular case is the

) ) Randall-Sundrum moddl4], whereh,,=7,,, k=0, and
where we have used the fact that in our case the shift fun(kzz —6A. In the generic case, howeve&“1 is canceled by
tion N(x,x) can be written in terms of the scalar field as  the matter contributions encoded in the energy-momentum

tensor and the dilaton-induced terms on the right-hand side
— a(K3)$(x,x) . . :

N(x,x)=e . 20 of Eq. (10). This counterbalance of the four-dimensional
vacuum energy by matter cosmological terms is imposed by
the junction conditions, representing a different realization of

the self-tuning mechanism ¢18,19.

Note, however, that in the case at hand we are not making

any a priori assumption about the form of the energy-

Moreover, using Eq19) and the expression of the extrin-
sic curvature of the hypersurfage=0 embedded in the met-
ric (17), K, = 3a,ée~ ¥3¢g , we can write a differential
equation forA(¢):

1 momentum tensor on the bramg, . The Israel junction con-
6é——e—(ki3)gp, k?#3, dition, together with the jump condition for the dilaton
N (@) —4bh(¢)= k*=3 acrossy=0, force it to be of vacuum type, the net cosmo-
2£(12b+v3)eT(We k2=3 logical term (24) being zero independently of the value of

(21 po, b, and&.
. . . For five-dimensional metrics of the for we can
This equation can be solved to get the functional dependenCé=Valuate the tenscE . in terms of the cur\rgtz)re and the

. ; : uv
of the vacuum energy on the brane with the dilaton field scalar field. The result is

i% e (Ko k223 1 1 2k? 1 X
)\((P)z_poellbw_ k-3 (22) EMV:_§ R,uV_Zg/.LVR _f &MQDquD_Z(aQD) gMV
6ce™ e K2=3
’ i) 2k
_ N o V4
wherepg is an integration constant. We can now substitute 9 (DMD""D 4 D ¢0uy |- (25

Eq. (22) into Egs.(7) and (6) to obtain the form of the
energy-momentum tensar,,. Proceeding in this way we Using this expression the effective energy-momentum tensor
find driving the four-dimensional geometry can be written solely
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in terms of the four-dimensional projection of the scalar field . k 5
©(x). The four-dimensional equations are given by 0= €X (gi V(k +6)/3> @9
1 1 K d=+(k®+6)/3¢, 2
R,U.V_Eg,U,VR:é’,LL(P(?V(P_Eg/_LV(O')(p)Z—’_g D,u,DV(P ( ) ® ( 7)
) so we arrive at the usual equations for dilaton gravity in the
1 i ; i ati PR
_ ZgWDZ‘P n 5 0,000 string frame(with the normalizationZy.,,~€e" "R)
1 R,,=—-D,D,®,
= 29,,(09)?. (26) —
4=k D2d=0""9,0d,P. (29)
The first important thing to notice is that whém=0 we An important stage in the evolution of the early Universe

recover an ordinary four-dimensional scalar cosmology withs inflation. As shown above the solutions on the brane can
@(X)=6Q(x). Actually, by looking at the original ansatz be conformally related to low-energy string cosmology in the
for the vacuum five-dimensional metric in EG.2) we real- string frame. With one further conformal transformation they
ize that this is exactly the four-dimensional geometry whoséan, of course, be related to the usual Einstein frame in
“oxidation” produces Eq.(12). This is yet another way to Which the metric is jush,, and the physics is described by
see our previous conclusion, that any four-dimensional cosEinstein relativity coupled to a massless scalar fig{et) ,p
mology coupled to a massless scalar field can be trivially=V6Q(x). In this frame standard inflation does not take
embedded into a five-dimensional cosmology with negativeplace. However, in the string frame there is the possibility of
cosmological constant by the ansat#). In this caseE,,, implementing inflation in the framework of the pre-big-bang
has a purely “geometrical” origin, being determined just by scenario[37]. In particular, if the four-dimensional metric
the four-dimensional curvature, as can be seen fron(Z=5j. has a spacelike Killing vector, scale factor duality along that

If k#0 things get more involved, however, since now thedirection will be a symmetry of Eq$28).
effective energy-momentum tensor in Eg6) cannot be in- It is interesting to note that from the point of view of a
terpreted as that of a minimally coupled massless scalar fieldive-dimensional observer there are inflating solutions on the
The nontrivial cosmological dynamics in the coordinate  brane. Using the form of the energy-momentum tensor in
translates into Brans-Dicke-like terms in the energy-five dimensions the strong energy condition reads, for any
momentum tensoicf. [36]). It is interesting to notice that in  timelike vectort(tat"=—1),
the largelk| limit, even if the dilatone(x) is switched off, B
there igs !14 residual contribution Comgng; from the last two 0<Ragt"t®=(t"da )"~ S A e ZOK2,
terms in Eq.(26). Since¢(x)~ 1/k| for large |k the weak-
ness of the scalar field is compensated by the extra powers
k in Eg. (26) so a source for the gravitational field is left in
that limit, given by the terms in the “effective” energy-
momentum tensor with explick dependence.

As it turns out, the four-dimensional cosmologies can be A. Bianchi type-I brane cosmologies
conformally related to the equations of low-energy string

cosmology. In order to see this note that the vacuum Einstei{\ ASI t‘;’m |Ilustrat|n|g _example V‘Il.e. Ca{‘h constlru%él?lfmchl
equations for Eq(12) imply thatDﬁcpzo, where the cova- YPE-!brane cosmologies generaiizing the analys 0

: o . . S nonzero profiles for a scalar field with a nontrivial potential.
riant derivative is defined with respect to the methig, ; . S S )

X . : . . We start with a vacuum Kasner-like line element in five di-
when written in terms of the four-dimensional metric . X ) .

K3 ” ! 2 mensions and apply the algorithm described to find, after a
g,,=e ®¢n  the condition translates intoD%¢p : . : .
v K/3 M,,&#Va In this wav.E . is qiven b suitable redefinition of the constants, the following solution
== (ki3)g"" 0,09, ¢. IS way,E,, IS given by (we will consider thatk?# 3; the casek?=3 can easily be
obtained:

This condition can in principle be violated far>0, i.e., if
R~ 12,

V. EXAMPLES

k2

1 k
E,o=— 3 + 9 du9d, @+ 1—29,w((990)2_ 3 D,.D,e, dszzt(zk/s)ﬁe[szgukZ—3>]|X|dX2+eeg/(k2—3>|x|

. . o . . X (—dt?+ t221dx?+ t2*2dy? + t293d 72),
whereas the four-dimensional Einstein equations can be writ-

ten as 3k
d(t,x)=Blogt+ 7= Ixl,
2
B k k
Ruw=0d,0d,¢+ 3D Do+ 5d,0d,6. where the constants; and 8 satisfy the following relations:
. L : - kg O kB2
Dilaton gravity is then recovered through the field redefini- Soa=1——, > a-2=1—,82—(—> . (29
tions (cf. [30]) = 3 & 3

084015-6



CURVED DILATONIC BRANE WORLDS PHYSICAL REVIEW D64 084015

We notice that fok=0 the usual conditions for a Kasner C(1-0) Ca;
metric coupled to a massless scalar field are retrieved. As we P=— Pi T
saw in the general analysis of Sec. IV, for vanishithe
four-dimensional effective energy-momentum tensor is that
of a massless scalar field. Whks 0 the usual Kasner con-
ditions are modified. Looking at the scaling of powerkgf
in Eg. (29) we see that the first condition is modified by the  Another physically interesting example is the Friedmann-
linear terms in the dilaton field in E¢26), whereas the Robertson-Walke(FRW) cosmologies. These can be easily
modification of the second condition comes from the qua-<constructed by considering the five-dimensional vacuum line
dratic ones. In the Hawa-Witten case the conditions on the element33]

Kasner exponents reduce to the ones founB8;. 5

Looking at the constraint€9) it can easily be seen that 4, = t dy2— di2+ (1— xt?)
there is no volume inflation for any value of the paraméter ac” 1 — 2 X
and g, since the average scale factor scales"agith 0<n dr2
<5 _ , o x[ 2+r2(d¢92+sin20d¢2)}

The case wheik|— is of some interest. In this limit, 1—«r
regularity of the five-dimensional metric requires thzk
~const so the homogeneous part of the scalar field vanishes., . .
The result is a Biar?chi typePI metric in four dimensions Where=0,+ 1. Taking x as the bulk coordinate and apply-

: : ing the algorithm of Sec. Il we get, after changing into con-
where the Kasner exponenis satisfy the constraints formal time, the following four-dimensional metrics:

B. Friedmann-Robertson-Walker models

2

1—«kr

3 3
> a=1-C, 2 a?=1-C?
i=1 i=1

dsﬁDzaz(wy)[—danr 5 +r2(d6%+sir? 0d¢2)},
with |C|<1 a numerical constant. In this case ttracelesp
effective energy-momentum tensor is that of an anisotropic

fluid with energy density and pressure given by where

(Coshn)(vk2+6+ k)/(zvk2+e>(sinhn)(vk2+6—k)/(2\/k2+6) k=—1,

a(y)= 7 \/k2+67k)/(2Vk2+6), k=0, (30)
(COS,,])(Vk2+6+k)/(2vk2+6)(sin 77)(w<2+6—k)/(2vk2+6)’ k=1,
|
while the dilaton field is that this corresponds to the dynamics of the universe being

dominated by E,,. The opposite limit k—o gives
Minkowski space-time as a result.
( For the nonflat FRW models we find again that inflation
3 logtanhy, «k=-1, dpes not occur for any value &f In th.e case of the nega-
Jk2+6 tively curved model k=—1) the Universe approaches a
radiation-dominated regime at late timeg—{) in which
_ the dilaton field is frozen, independently kfAs in the flat
k=0, L ! o .
case, the limikk— — o retrieves a radiation-dominated open
FRW model. Wherk— o, on the other hand, we getregu-
lar vacuum FRW model with scale factaf ) = coshz. The
conclusions are similar in the case of the models with
=1: no value ofk renders an inflationary universe.
We will not present further explicit examples, but just
mention again that the ansdti2) is quite generic. One may
In the flat («x=0) case we recover the solution discussedstart directly with any vacuum five-dimensional solution and
in [35]. There is no inflation for any value & since the put it into the (12) form, or rather start with a four-
exponent of the scale factor in E@O) is always positive. It  dimensional dilaton solution lifting it to a five-dimensional
is interesting to notice, however, that whker> —~ we re-  vacuum geometry. Thus, for example, the solution$ 13
cover a radiation-dominated Universe. Looking at the effec-and their generalizations may easily be obtained by using the
tive energy-momentum tensor on the brane, 6), we see dilatonic plane wave solutions given [B89].

3
e(n)={ ﬁ'ogﬂ,

I
=

log tanz, K

3
| Vk*+6
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VI. CONCLUSIONS AND OUTLOOK somey>0. The coordinate is then restricted to the inter-
val [0,xq] by assumingZ, reflection symmetry around the

Brane cosmology is special, as compared to standard EiAgcation of the. second brane. Imposing the j””.°“°’.’ condi-
stein gravity, in that the four-dimensional world is not dy- 1ONS atxo We findX (&) nidden= —A(¢), where(¢) is given
namically self-contained, in the sense that the matter/enerdgy Ed-(22) with po=0. This value of the vacuum energy for
content of the Universe encoded in the energy-momenturf’® s_econd brane_ _|mpI|es again that the model satisfies the
tensor does not determine the gravitational field. The “miss£onsistency condition d#2] for any value ofk.
ing” part on the right-hand side of the Einstein equations In order to illustrate the physics of the family of brane
comes from gravitational effects in the bulk that are notworlds considered, we have analyzed a number of explicit
sourced by four-dimensional matter. It is important to notice @xamples of physical relevance. For Bianchi type-l and all
however, that the term containing the tidal bulk effects is thehe FRW models we find that the time dependence of the
only one not suppressed by powers of the five-dimensionadcale factois) is controlled only by the constaktmeasuring
Newton’s constant. the slope of the potential of the scalar field in the bulk. The

Here we have studied the physical and cosmological relresult is that no inflation occurs on the brane for any value of
evance of bulk effects by looking at five-dimensional cos-k, whereas there is a region in parameter space for which
mologies coupled to a Liouville scalar field and embeddinginflation takes place in the bulk. The difference between the
the brane world into them. One of the remarkable propertiegehavior on the brane and in the bulk is mainly due to dif-
of the class of brane cosmologies under study is that there igrences in the character of the velocity of the fluid flow as
a natural self-tuning of the vacuum energy on the brane. Thigerived from the scalar field on the brane and in the bulk.
insensitivity of the brane solutions to the value of the brangypile the five-velocity in the bulk is not orthogonal to the

tension happens because the “bare” cosmological constan), e rsrfaces of constant time, its projection onto the brane
on the brane is dynamically counterbalanced by the bran[eS

matter, which the junction cqndltlons force to ue Of. vacuum 5 ihe analysis presented here we have assumed that the
energy type. So the dynamics of the four-dimensional uni-

verse is driven just by the dilaton field and the nonlocal bulkbrane _world is trapped at an OTb'fO'd point an_d '.t does n(_)t
effects contained in the tensar . . move in the l_aulk. It can be ea5|_ly seen that this is a consis-
y22Y

The five-dimensional bulk cosmologies we constructeaient.assumpt'on for the self-tumng brane cqsmologles stud-
using the theorem stated in Sec. Il generalize and includéd in Sec. IV. Once&Z, symmetry is relaxed in general the
those studied previously in the literatufeee, for example, brane will move and t.he problem of Fhe d.ynamlc.al stability
[13,18,30,31,35,40. In addition, the brane cosmologies ob- of the brang world arises. An espemally interesting way to
tained by warped embeddings extend and complement th€lax reflection symmetry in our case is to consider bulk
self-tuning mechanism df18,2Q to generic non-Ricci-flat space-times in whiclj takes different values at the two sides
branes. Incidentally, the technique proposed can also be uséf the brane. If we regard the dilaton potential as arising
to construct static five-dimensional solutions which on thefrom some kind of phase transition, the brane world plays the
brane reduce to four-dimensional black holes. role of a(infinitely thin) domain wall separating two regions

The authors of41,42 have argued that the self-tuning of space with different values for the cosmological constant,
mechanism proposed [18] is actually a fine tuning in dis- in the spirit of the scenarios discussed4g)]. In this case the
guise due to the presence of the singularity in the bulk. Fopossible motion of the brane in the bulk will affect the gravi-
the brane worlds studied in this paper, however, we find thatational dynamics on the brane world4,45. A detailed
whenevek?< 3 the four-dimensional effective theory is well study of these nonsymmetric brane worlds and their stability
defined, in the sense that the four-dimensional Planck scale Will be presented elsewhere.
finite and the consistency condition of Rg42] is satisfied
without adding extra sources due to the “on-shell” identity
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