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Curved dilatonic brane worlds
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We construct a broad family of exact solutions to the five-dimensional Einstein equations coupled to a scalar
field with an exponential potential. Embedding a three-brane in these bulk space-times in a particular way, we
obtain a class of self-tuned curved brane worlds in which the vacuum energy on the brane isgravitationally
idle, the four-dimensional geometry being insensitive to the value of the brane tension. This self-tuning arises
from cancellations, enforced by the junction conditions, between the scalar field potential, the brane vacuum
energy, and the matter on the brane. Finally, we study some physically relevant examples and their dynamics.
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I. INTRODUCTION

Brane worlds, the models in which our Universe appe
as some kind of domain wall or brane embedded in a high
dimensional space-time, have gained considerable atten
recently. Although the idea goes back to the 1980s@1#, its
current appeal comes from several directions. As shown
Hořava and Witten@2#, theE83E8 heterotic string theory a
strong coupling is described in terms of M theory in
eleven-dimensional space-time with boundaries, where
ten-dimensional gauge degrees of freedom exist on
‘‘branes at the end of the world.’’ This confinement of th
gauge fields to a lower-dimensional submanifold, in contr
with the gravitational field that can propagate into the bu
might help to explain the hierarchy between the electrow
and the Planck scales in four dimensions@3#. With the aim of
solving the hierarchy problem, Randall and Sundrum@4# put
forward a proposal, inspired by the AdS/CFT correspo
dence, where our four-dimensional universe is embedde
a nonfactorizable way into five-dimensional anti–de Sit
~AdS! space-time. Gravity in this scenario is ‘‘trapped’’ o
the four-dimensional brane due to the geometry of the b
space-time@4,5#.

The phenomenological viability of brane world models
now being extensively discussed in the literature@6#. In ad-
dition to the possible imprints of these models detectable
high-energy experiments, cosmology naturally emerges
very promising arena to study the possible consequence
living inside a brane~for an incomplete list of references se
@7–9#!. One of the important issues in cosmology is to e
plain how our homogeneous and isotropic universe co
have emerged from ‘‘generic’’ initial conditions. A popula
mechanism to address this question is to have a certain
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riod of inflation in the early universe, during which the po
sible initial anisotropies and inhomogeneities would
smoothed out. In the context of the brane world the issue
inflation @7,8,10# as well as the perturbative deviations fro
isotropy @11,12# have been investigated recently.

One of the most interesting consequences of conside
our universe as a brane inside a higher-dimensional sp
time is that the Einstein equations in four dimensions do
form a closed system@11#. As a consequence, for a fou
dimensional observer it is not sufficient to know the dist
bution of energy-matter in her/his universe to determine
geometry, the missing element coming from the geometr
features of the space-time outside the four-dimensional
verse. This ‘‘out of this world’’ ingredient to the right-han
side of the Einstein equations is crucial in analyzing the c
mological dynamics of the universe in four dimension
However, in many instances in the literature the fiv
dimensional solution in the bulk associated with a fou
dimensional brane cosmology is not known and its effects
the brane world have to be modeled using some simplify
assumptions, or neglected altogether.

Thus, in order to gauge to what extent the fiv
dimensional geometry influences the cosmological dynam
on the brane, it is important to consider exact bulk solutio
with various deviations from homogeneity and isotropy~see,
for example,@13–15# for some studies in this direction!. In
this paper we will propose a systematic way of construct
five-dimensional homogeneous and inhomogeneous
mologies coupled to a scalar field with an exponential pot
tial. We will construct brane cosmologies using these b
metrics and study the effect that the bulk dynamics has
the cosmological evolution of the brane world.

The cosmological constant problem remains a central
sue to be solved in theoretical physics@16#. Brane cosmol-
ogy provides new approaches that might help in the solu
of this long-standing problem@17#. One of the proposals re
cently put forward is a self-tuning mechanism that tunes
four-dimensional cosmological constant to zero, indep
©2001 The American Physical Society15-1
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dently of the value of the cosmological constant in the b
@18–21#. In this paper we propose rather a new realization
this self-tuning property in which vacuum energy on t
brane cancels despite the ‘‘bare’’ four-dimensional cosm
logical constant being nonzero. This is due to a nontriv
counterbalance between the nonvanishing ‘‘bare’’ cosmolo
cal term and the matter induced on the brane.

The paper is outlined as follows. In the next section
will briefly describe the dynamics of dilaton brane cosmo
gies. After this, in Sec. III, we present a solution generat
technique to build five-dimensional scalar cosmologies w
exponential potential starting with a vacuum solution in fi
dimensions. Section IV will be devoted to the study of bra
cosmologies embedded in the class of five-dimensional m
rics obtained here, and how for these particular embedd
there is a self-tuning mechanism at work, the fo
dimensional geometry being independent of the vacuum
ergy on the brane and the value of the scalar field poten
In Sec. V we illustrate our discussion with some physica
interesting examples, and in Sec. VI we summarize our
sults.

II. BRANE DYNAMICS

In the spirit of the brane world picture, we assume that
four-dimensional universe is described by a domain w
~M,g! located at some hypersurfaceY(xA)50 in the five-
dimensional bulk space-time~M,G!. The only matter in the
bulk will be a massless scalar field with an exponential
tential. Therefore, the action governing the dynamics is1

S5D5E d5xA2GF 1

2k5
2 R2

1

2
]Af]Af2Le2~2/3!kfG

1E
Y50

d4xA2gLbrane, ~1!

wherek andL are constants and

Lbrane52l~f!1
1

k5
2 K61e4bfL~e2bfgmn,...!matter.

Herel~f! is af-dependent vacuum energy~i.e., tension! on
the brane,K6 is the extrinsic curvature on either side of th
brane, andLmatter is the Lagrangian of the matter degrees
freedom confined to the brane world minimally coupled
the metrice2bfgmn , bPR ~cf. @22#!. In the following we use
units in whichk551. The induced metric on the brane is th
projection of the five-dimensional metric onto the bra
world. If we denote bynA the unit spacelike vector normal t
the brane, the four-dimensional metric will be given by

1In the following we will use capital Latin indices for the five
dimensional coordinates, whereas the coordinates on the b
world will be denoted by Greek indices. To avoid the use of sup
indices to indicate the dimension, tensors in five dimensions wil
indicated by capital script letters and their four-dimensional co
terparts will be denoted by the corresponding italic types.
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gAB5GAB2nAnB .

Because of the embedding there will be two sources of c
vature for the four-dimensional universe. One will be t
intrinsic curvature induced by the ambient space-time an
will be given by the projection of the five-dimensional Ri
mann tensor onto the brane. The second one is due to
embedding itself and it is governed by the extrinsic curvat
Kmn5gm

Cgn
D¹CnD . Using the Gauss-Codazzi equations@23#

we can write the Einstein equations in four dimensions
@22,24,25# ~for a review see@26#!

Rmn2 1
2 gmnR5 2

3 @TABgm
Agn

B1~TABnAnB2 1
4 gABTAB!gmn#

1KKmn2Km
sKns2 1

2 gmn~K22KabKab!

2Emn , ~2!

where we have denoted byK[Km
m the trace of the second

fundamental form,Emn is written in terms of the five-
dimensional Weyl tensorCBCD

A as

Emn5CE
AFBnEnFgm

Agn
B ,

and the five-dimensional energy-momentum tensor in
bulk derived from Eq.~1! is

TAB5]Af]Bf2GAB~ 1
2 ]Cf]Cf1Le2~2/3!kf!. ~3!

It is important to point out that the right-hand side of Eq.~3!
can be evaluated on any side of the brane, the Einstein te
on the brane being uniquely defined. In theZ2-symmetric
case to be studied below, both the extrinsic curvature and
derivatives of the dilaton field on the two sides of the bra
differ just by a sign, so every term in the right-hand side
Eq. ~3! is well defined on the brane. If the reflection symm
try is relaxed, on the other hand, the uniqueness of the E
stein tensor is ensured in a nontrivial way@27#.

In addition to this, the scalar field will satisfy the wav
equation

¹2f1
2k

3
Le2~2k/3!f5

A2g

A2G @l8~f!2bgmntmn#d~Y!,

~4!

wheretmn is the energy-momentum tensor of the matter
tion, as derived frome4bfLmatter, and the prime denotes dif
ferentiation with respect tof. Upon projection we obtain the
four-dimensional equation for the dilaton

DmDmf2aC]Cf1KLnf1Ln
2f1

2k

3
Le2~2/3!kf

5
A2g

A2G @l8~f!2bgmntmn#d~Y! ~5!

with Dm the covariant derivative with respect to the induc
metric, aC5nB¹BnC, andLnf5nA¹Af the Lie derivative
in the directionnA.
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CURVED DILATONIC BRANE WORLDS PHYSICAL REVIEW D64 084015
As usual, we will take coordinates (x,xm) in such a way
that the brane world lies on the hypersurface defined bx
50. For later convenience we will consider that the fiv
dimensional metric takes the form

ds5D
2 5N~x,x!2dx21gmn~x,x!dxmdxn,

where the ‘‘shift’’ function N(x,x) depends on all five-
dimensional coordinates. Thereforen[N(x,x)21]x and, as
a consequence,

Kmn5
1

2N~x,x!
]xgmn~x,x!,

am52
1

N~x,x!
]mN~x,x!, ax50,

andEmn5Cmxn
x .

The discontinuity of the derivatives of the metric acro
the brane due to the energy-momentum localized on the
persurfaceY(xA)50 is given by the Israel junction cond
tions @24,28#. They relate the jump in the first derivative o
the metric atx50 to the total energy-momentum tensor
the brane, namely,

@Kmn#52~Smn2 1
3 gmnS!, ~6!

where we have used the usual notation@A#[A12A2, and
Smn is the total brane energy-momentum tensor:

Smn52
2

A2g

d

dgmn ~A2gLbrane![2l~f!gmn1tmn .

~7!

In a similar fashion we can find the jump in the derivative
the scalar field by integrating Eq.~4! acrossx50: namely,

@]xf#5N~x,0!@l8~f!2bgmntmn#. ~8!

The Einstein equations in four dimensions can be now w
ten from Eq.~2! as

Rmn2 1
2 gmnR5 2

3 @]mf]nf1 5
8 ~]f!2gmn#1

~]xf!2

4N~x,0!2 gmn

2 1
2 Le2~2/3!kfgmn1KKmn2Km

sKns

2 1
2 gmn~K22KabKab!2Emn . ~9!

As we discussed above, the only discontinuities on the rig
hand side of Eq.~9! are contained in the extrinsic curvatu
Kmn , the derivative of the dilaton field ‘‘normal’’ to the
brane]xf, and, eventually, the potential. These terms ha
to be evaluated at any side of the brane, the sum of th
being independent of the side chosen. All other terms invo
ing the scalar field and their ‘‘tangent’’ derivatives are co
tinuous and can be evaluated individually without ambigu
on the hypersurfacex50.

If we assume that our brane world is at the fixed point
a Z2 orbifold, as is the case in the Horˇava-Witten scenario
Kmn

1 52Kmn
2 and the Israel junction condition~6! completely
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determines the extrinsic curvature in terms of the ener
momentum tensor on the brane. In the same way (]xf)2 can
be read from Eq.~8!. Substitution into Eq.~9! leads then to
~cf. @22#!

Rmn2 1
2 Rgmn5 2

3 @]mf]nf2 5
8 gmn~]f!2#1 1

6 l~f!tmn

2L4gmn2 1
16 @2l8~f!2bt#btgmn1pmn

2Emn , ~10!

where t[gabtab and the four-dimensional cosmologic
constant and the tensorpmn are given, respectively, by

L45 1
2 @Le2~2k/3!f1 1

6 l~f!22 1
8 l8~f!2#,

pmn5 1
12 ttmn1 1

8 gmntabtab2 1
4 tmatn

a2 1
24 t2gmn . ~11!

Looking at the Einstein equations on the brane, Eq.~10!,
we find that in general the dynamics of the four-dimensio
universe is not uniquely determined by the distribution
energy inside the universe as encoded intmn @11,22#, as it is
the case with ‘‘ordinary’’ Einstein equations. Indeed, the on
ingredient on the right-hand side of Eq.~10! that cannot be
related to the matter content of the four-dimensional unive
~i.e., either four-dimensional matter or the scalar fieldf! is
the tensorEmn , which is determined by the five-dimension
Weyl tensor. In order to study the influence of the fiv
dimensional geometry on the cosmological evolution of
brane world viaEmn , it is necessary to consider not only th
four-dimensional metric on the brane but also the high
dimensional ambient geometry. Thus, to address this p
lem, we will proceed to construct explicitly five-dimension
solutions to the Einstein equations in which our brane wor
will be embedded.

III. SCALAR FIELD COSMOLOGIES IN FIVE
DIMENSIONS WITH AN EXPONENTIAL POTENTIAL

Since we will be interested in studying the effects of t
bulk on the four-dimensional brane world, our starting po
will be the five-dimensional geometry in which the brane
embedded. In particular, we want to consider solutions to
equations of motion derived from the bulk terms in Eq.~1!,
i.e., geometries coupled to a massless scalar field wit
Liouville potential.

Such cosmologies can be constructed using a hig
dimensional generalization of the theorem presented in R
@29#. Related models were studied by Lidsey@30# in the con-
text of heterotic M theory; some particular examples of co
stant curvature dilatonic branes were also discussed in@31#.
Let us consider avacuumsolution to the Einstein equation
in five dimensions of the form

ds~vac,5D!
2 5ee4Q~x!dx21e22Q~x!hmn~x!dxmdxn, ~12!

wheree561 depending on whetherx is a spatial direction
or the time coordinate, and the metric functionsQ(x) and
hmn(x) are independent of thex coordinate. The new metric
5-3
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ds5D
2 5ee~4k/Ak216!Q~x!1a1jxdx2

1e2~2k/Ak216!Q~x!1a2jxhmn~x!dxmdxn ~13!

and the scalar field

f~x,x!5
6

Ak216
Q~x!1H 3kj

k223
x, k2Þ3

6)jx, k353,

~14!

solve Einstein equations coupled to a massless scalar
with potentialV(f)5Le2(2/3)kf where

L5H 2
9

2

122k2

~k223!2 j2, k2Þ3,

2
9

2
j2, k253,

and

a15
k2

3
a2[

2k2

k223
if k2Þ3,

a15a2[2 if k253. ~15!

Finally, j fixes the scale of the cosmological constantL.
Although some algebra is involved, the result can ea

be proved following the same steps as in the fo
dimensional case@29#; we therefore leave this to the reade
Using the theorem we can construct five-dimensional dila
gravity solutions with a cosmological constant~negative
whenk2,12!. At a glance, there are several interesting v
ues ofk for which the metric~13! admits different physica
interpretations. The first one isk2512 when the potential for
the scalar field vanishes. The second and more interes
one isk50, at which the coupling between the dilaton fie
and the cosmological constant is zero and we are left wi
negative cosmological constantL526j2. In this case the
geometries are characterized by the line element

dsk50
2 5e dx21e22jxhmn~x!dxmdxn ~16!

which solves the Einstein equations with a negative cos
logical constant and a massless scalar fieldf(x)
5A6Q(x). Takinge51 andx as the bulk coordinate, we ar
provided with generalizations of the Randall-Sundrum mo
with a generic four-dimensional metric and a massless sc
field. If k2518 ande51 we obtain solutions to the low
energy field equations of theE83E8 heterotic string at
strong coupling compactified on a threefold Calabi-Y
space, with the scalar fieldf representing the breathin
mode of the internal manifold@30,32#.

Whenevere51 it can be easily realized that the vacuu
five-dimensional metric~12! can be thought of as the ‘‘oxi
dation’’ of a four-dimensional massless scalar field cosm
ogy with a scalar fieldc(x)4D5A6Q(x) ~cf., for example,
@33#!. Therefore in order to get Eq.~12! one can start with
any four-dimensional solution to the Einstein scalar equ
tions. If k50 the previous results tell us thatany four-
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dimensional metric coupled to a massless scalar field ca
embedded into a five-dimensional bulk space-time w
negative cosmological constant by the ansatz~16! with e
51. Finally, in the caseQ(x)50 the Einstein vacuum equa
tions for Eq.~12! imply that hmn has to be a Ricci flat four-
dimensional metric. For the particular choicehmn5hmn we
recover the family of metrics considered in@18# after the

obvious change of coordinatesdx55exp(12a1 jx)dx and a
rescaling of the dilaton field. On the other hand, takinghmn

to be the Schwarzschild metric in four dimensions we c
construct embeddings of four-dimensional black holes in fi
dimensions of the form

ds25ea1jxdx21ea2jxF2S 12
2M

r Ddt21
dr2

122M /r

1r 2dV2
2G ,

which, for k50, corresponds to the AdS black string cons
ered by Chamblin, Hawking, and Reall@34#. WhenkÞ0 the
four-dimensional black hole is embedded into a fiv
dimensional bulk space-time with a nontrivial profile for th
dilaton field, which, on the other hand, is constant on
brane.

IV. BRANE COSMOLOGIES WITH IDLE VACUUM
ENERGY

In the previous section we constructed a generic pro
dure to obtain five-dimensional cosmologies coupled to
scalar field with an exponential potential~or a negative cos-
mological constant!. The final aim is to use these solutions
bulk geometries of four-dimensional brane worlds. As w
reviewed in Sec. II, given the solution in the bulk, the matt
energy content of the brane world is strongly constrained
the junction conditions for both the metric and the sca
field.

Among the different possibilities for embedding a fou
dimensional brane world in the five-dimensional soluti
~13! the simplest ones correspond to taking the codimens
of the brane along one of the four spacelike coordinates

Let us consider the solutions~13! and ~14! with e51 so
that the brane world lies on the hypersurface defined by
equationx50. This choice leads naturally to warped geom
etries that generalize the Randall-Sundrum construction
include a scalar field with a Liouville potential.

We begin by assumingZ2 symmetry around the location
of the brane atx50. In this case we are led to the followin
nonfactorizable geometry in five dimensions:

ds5D
2 5e~4k/Ak216!Q~x!1a1juxudx2

1e2~2k/Ak216!Q~x!1a2juxuhmn~x!dxmdxn ~17!

with a1 anda2 given by Eq.~15!. The dilaton, on the othe
hand, is given by
5-4
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f~x,x!5w~x!1H 3kj

k223
uxu, k2Þ3,

6)juxu, k253,

~18!

wherew(x)5(6/Ak216)Q(x).
In principle, for generickÞ0, the metric~17! can have a

curvature singularity located atx56` ~cf. @18,35#!, in ad-
dition to the possible singularities of the metrichmn . De-
pending on the value ofk and on the particular solution
considered, this singularity can be harmless provided i
located at an infinite proper distance from the brane locat
It can easily be seen that this is the case wheneverk2>3.
However, in this case the four-dimensional Planck scale
tained by integrating out the coordinatex in the five-
dimensional action~1! diverges. On the other hand, whe
k2,3 the singularity is located at finite proper distance fro
the brane but the four-dimensional Planck scale is finite
well. Whenever needed, a second brane can be locate
x0.0, imposing reflection symmetry around this point,
the bulk coordinate is restricted to the interval@0,x0# and the
singularity is screened.

Since we have completely determined the bulk geome
and assumed reflection symmetry aroundx50, the junction
conditions~6! will determine the energy-momentum tens
of the matter fields on the brane. Imposing the match
condition on the scalar field~8! at the brane location for the
dilaton ~18! we find the following relation:

l8~w!2bgmntmn5H 6kj

k223
e2~k/3!w, k2Þ3,

62)je7~1/) !w, k253,

~19!

where we have used the fact that in our case the shift fu
tion N(x,x) can be written in terms of the scalar field as

N~x,x!5e~k/3!f~x,x!. ~20!

Moreover, using Eq.~19! and the expression of the extrin
sic curvature of the hypersurfacex50 embedded in the met
ric ~17!, Kmn5 1

2 a2je2(k/3)wgmn , we can write a differential
equation forl~w!:

l8~w!24bl~w!5H 6j
k112b

k223
e2~k/3!w, k2Þ3,

2j~12b6) !e7~1/) !w, k253.
~21!

This equation can be solved to get the functional depende
of the vacuum energy on the brane with the dilaton field

l~w!52r0e4bw2H 18j

k223
e2~k/3!w, k2Þ3,

6je7~1/) !w, k253,

~22!

wherer0 is an integration constant. We can now substit
Eq. ~22! into Eqs. ~7! and ~6! to obtain the form of the
energy-momentum tensortmn . Proceeding in this way we
find
08401
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Therefore the matter content of the brane described byLmatter
has as its effective equation of statep52r0 . Notice that the
form of the energy-momentum tensor is independent of
value of k and therefore valid forall brane models con-
structed using the solution generating technique of Sec.
and that the constant energy density and the equation of
do not depend on the value of the dilaton couplingb. We
now evaluate the tensorpmn that appears on the right-han
side of Eq.~10!. The result is

pmn52 1
12 r0

2e8bwgmn .

With these expressions for the tensors appearing on
right-hand side of Eq.~10! we can study the source of th
brane gravitational field. Remarkably, we find that

1
6 l~w!tmn2L4gmn2 1

16 @2l8~w!2bt#btgmn1pmn50,
~24!

so the ‘‘effective’’ energy-momentum tensor in Eq.~10! re-
ceives contributions only from the dilaton field and the tid
bulk effects

Tmn
eff 5 2

3 @]mw]nw2 5
8 gmn~]w!2#2Emn .

An interesting thing to notice about the cancellation~24!
is that the four-dimensional cosmological constant, as
fined by Eq.~11!, is different from zero. Only whenr050
and Q(x)50 does the four-dimensional cosmological co
stant L4 vanish exactly independently of the value of th
cosmological constant in the bulk. A particular case is
Randall-Sundrum model@4#, where hmn5hmn , k50, and
l2526L. In the generic case, however,L4 is canceled by
the matter contributions encoded in the energy-momen
tensor and the dilaton-induced terms on the right-hand s
of Eq. ~10!. This counterbalance of the four-dimension
vacuum energy by matter cosmological terms is imposed
the junction conditions, representing a different realization
the self-tuning mechanism of@18,19#.

Note, however, that in the case at hand we are not mak
any a priori assumption about the form of the energ
momentum tensor on the branetmn . The Israel junction con-
dition, together with the jump condition for the dilato
acrossx50, force it to be of vacuum type, the net cosm
logical term ~24! being zero independently of the value
r0 , b, andj.

For five-dimensional metrics of the form~17! we can
evaluate the tensorEmn in terms of the curvature and th
scalar field. The result is

Emn52
1

3 S Rmn2
1

4
gmnRD2

2k2

27 F]mw]nw2
1

4
~]w!2gmnG

2
2k

9 S DmDnw2
1

4
D2wgmnD . ~25!

Using this expression the effective energy-momentum ten
driving the four-dimensional geometry can be written sole
5-5
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in terms of the four-dimensional projection of the scalar fie
w(x). The four-dimensional equations are given by

Rmn2
1

2
gmnR5]mw]nw2

1

2
gmn~]w!21

k

3 S DmDnw

2
1

4
gmnD2w D1

k2

9 F]mw]nw

2
1

4
gmn~]w!2G . ~26!

The first important thing to notice is that whenk50 we
recover an ordinary four-dimensional scalar cosmology w
w(x)5A6Q(x). Actually, by looking at the original ansat
for the vacuum five-dimensional metric in Eq.~12! we real-
ize that this is exactly the four-dimensional geometry who
‘‘oxidation’’ produces Eq.~12!. This is yet another way to
see our previous conclusion, that any four-dimensional c
mology coupled to a massless scalar field can be trivi
embedded into a five-dimensional cosmology with nega
cosmological constant by the ansatz~16!. In this caseEmn

has a purely ‘‘geometrical’’ origin, being determined just b
the four-dimensional curvature, as can be seen from Eq.~25!.

If kÞ0 things get more involved, however, since now t
effective energy-momentum tensor in Eq.~26! cannot be in-
terpreted as that of a minimally coupled massless scalar fi
The nontrivial cosmological dynamics in thex coordinate
translates into Brans-Dicke-like terms in the energ
momentum tensor~cf. @36#!. It is interesting to notice that in
the large-uku limit, even if the dilatonw(x) is switched off,
there is a residual contribution coming from the last tw
terms in Eq.~26!. Sincew(x);1/uku for large uku the weak-
ness of the scalar field is compensated by the extra powe
k in Eq. ~26! so a source for the gravitational field is left
that limit, given by the terms in the ‘‘effective’’ energy
momentum tensor with explicitk dependence.

As it turns out, the four-dimensional cosmologies can
conformally related to the equations of low-energy stri
cosmology. In order to see this note that the vacuum Eins
equations for Eq.~12! imply that Dh

2w50, where the cova-
riant derivative is defined with respect to the metrichmn ;
when written in terms of the four-dimensional metr
gmn5e2(k/3)whmn the condition translates intoD2w
52(k/3)gmn]mw]vw. In this way,Emn is given by

Emn52S 1

3
1

k2

9 D ]mw]nw1
1

12
gmn~]w!22

k

3
DmDnw,

whereas the four-dimensional Einstein equations can be w
ten as

Rmn5]mw]nw1
k

3
DmDnw1

k2

9
]mw]nw.

Dilaton gravity is then recovered through the field redefi
tions ~cf. @30#!
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ḡmn5expF S k

3
6A~k216!/3DwGgmn ,

F56A~k216!/3w, ~27!

so we arrive at the usual equations for dilaton gravity in
string frame~with the normalizationLgrav;e2FR̄!

R̄mn52D̄mD̄nF,

D̄2F5ḡmn]mF]nF. ~28!

An important stage in the evolution of the early Univer
is inflation. As shown above the solutions on the brane
be conformally related to low-energy string cosmology in t
string frame. With one further conformal transformation th
can, of course, be related to the usual Einstein frame
which the metric is justhmn and the physics is described b
Einstein relativity coupled to a massless scalar fieldc(x)4D

5A6Q(x). In this frame standard inflation does not ta
place. However, in the string frame there is the possibility
implementing inflation in the framework of the pre-big-ban
scenario@37#. In particular, if the four-dimensional metri
has a spacelike Killing vector, scale factor duality along th
direction will be a symmetry of Eqs.~28!.

It is interesting to note that from the point of view of
five-dimensional observer there are inflating solutions on
brane. Using the form of the energy-momentum tensor
five dimensions the strong energy condition reads, for a
timelike vectortA(tAtA521),

0,RABtAtB5~ tA]Af!22 2
3 Le2~2/3!kf.

This condition can in principle be violated forL.0, i.e., if
k2.12.

V. EXAMPLES

A. Bianchi type-I brane cosmologies

As an illustrating example we can construct Bianc
type-I brane cosmologies generalizing the analysis of@14# to
nonzero profiles for a scalar field with a nontrivial potenti
We start with a vacuum Kasner-like line element in five d
mensions and apply the algorithm described to find, afte
suitable redefinition of the constants, the following soluti
~we will consider thatk2Þ3; the casek253 can easily be
obtained!:

ds25t ~2k/3!be@2k2j/~k223!#uxudx21e6j/~k223!uxu

3~2dt21t2a1dx21t2a2dy21t2a3dz2!,

f~ t,x!5b log t1
3kj

k223
uxu,

where the constantsa i andb satisfy the following relations:

(
i 51

3

a i512
kb

3
, (

i 51

3

a i
2512b22S kb

3 D 2

. ~29!
5-6
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We notice that fork50 the usual conditions for a Kasne
metric coupled to a massless scalar field are retrieved. As
saw in the general analysis of Sec. IV, for vanishingk the
four-dimensional effective energy-momentum tensor is t
of a massless scalar field. WhenkÞ0 the usual Kasner con
ditions are modified. Looking at the scaling of powers ofkb
in Eq. ~29! we see that the first condition is modified by th
linear terms in the dilaton field in Eq.~26!, whereas the
modification of the second condition comes from the q
dratic ones. In the Horˇava-Witten case the conditions on th
Kasner exponents reduce to the ones found in@38#.

Looking at the constraints~29! it can easily be seen tha
there is no volume inflation for any value of the parametek
andb, since the average scale factor scales astn with 0,n
, 2

3 .
The case whenuku→` is of some interest. In this limit

regularity of the five-dimensional metric requires thatbk
;const so the homogeneous part of the scalar field vanis
The result is a Bianchi type-I metric in four dimensio
where the Kasner exponentsa i satisfy the constraints

(
i 51

3

a i512C, (
i 51

3

a i
2512C2

with uCu<1 a numerical constant. In this case the~traceless!
effective energy-momentum tensor is that of an anisotro
fluid with energy density and pressure given by
e

ec

08401
e

t

-

es.

ic

r5
C~12C!

t2 , pi5
Ca i

t2 .

B. Friedmann-Robertson-Walker models

Another physically interesting example is the Friedman
Robertson-Walker~FRW! cosmologies. These can be eas
constructed by considering the five-dimensional vacuum
element@33#

dsvac
2 5

t2

12kt2 dx22dt21~12kt2!

3F dr2

12kr 2 1r 2~du21sin2 u df2!G
wherek50,61. Takingx as the bulk coordinate and apply
ing the algorithm of Sec. III we get, after changing into co
formal time, the following four-dimensional metrics:

ds4D
2 5a2~h!F2dh21

dr2

12kr 2 1r 2~du21sin2 u df2!G ,
where
a~h!5H ~coshh!~Ak2161k!/~2Ak216!~sinhh!~Ak2162k!/~2Ak216!, k521,

h~Ak2162k!/~2Ak216!, k50,

~cosh!~Ak2161k!/~2Ak216!~sinh!~Ak2162k!/~2Ak216!, k51,

~30!
ing

on
-
a

n

st

nd

al

the
while the dilaton field is

w~h!55
3

Ak216
log tanhh, k521,

3

Ak216
logh, k50,

3

Ak216
log tanh, k51.

In the flat (k50) case we recover the solution discuss
in @35#. There is no inflation for any value ofk, since the
exponent of the scale factor in Eq.~30! is always positive. It
is interesting to notice, however, that whenk→2` we re-
cover a radiation-dominated Universe. Looking at the eff
tive energy-momentum tensor on the brane, Eq.~26!, we see
d

-

that this corresponds to the dynamics of the universe be
dominated by Emv . The opposite limit k→` gives
Minkowski space-time as a result.

For the nonflat FRW models we find again that inflati
does not occur for any value ofk. In the case of the nega
tively curved model (k521) the Universe approaches
radiation-dominated regime at late times (h→`) in which
the dilaton field is frozen, independently ofk. As in the flat
case, the limitk→2` retrieves a radiation-dominated ope
FRW model. Whenk→`, on the other hand, we get aregu-
lar vacuum FRW model with scale factora(h)5coshh. The
conclusions are similar in the case of the models withk
51: no value ofk renders an inflationary universe.

We will not present further explicit examples, but ju
mention again that the ansatz~12! is quite generic. One may
start directly with any vacuum five-dimensional solution a
put it into the ~12! form, or rather start with a four-
dimensional dilaton solution lifting it to a five-dimension
vacuum geometry. Thus, for example, the solutions of@13#
and their generalizations may easily be obtained by using
dilatonic plane wave solutions given in@39#.
5-7
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VI. CONCLUSIONS AND OUTLOOK

Brane cosmology is special, as compared to standard
stein gravity, in that the four-dimensional world is not d
namically self-contained, in the sense that the matter/en
content of the Universe encoded in the energy-momen
tensor does not determine the gravitational field. The ‘‘mi
ing’’ part on the right-hand side of the Einstein equatio
comes from gravitational effects in the bulk that are n
sourced by four-dimensional matter. It is important to noti
however, that the term containing the tidal bulk effects is
only one not suppressed by powers of the five-dimensio
Newton’s constant.

Here we have studied the physical and cosmological
evance of bulk effects by looking at five-dimensional co
mologies coupled to a Liouville scalar field and embedd
the brane world into them. One of the remarkable proper
of the class of brane cosmologies under study is that the
a natural self-tuning of the vacuum energy on the brane. T
insensitivity of the brane solutions to the value of the bra
tension happens because the ‘‘bare’’ cosmological cons
on the brane is dynamically counterbalanced by the br
matter, which the junction conditions force to be of vacuu
energy type. So the dynamics of the four-dimensional u
verse is driven just by the dilaton field and the nonlocal b
effects contained in the tensorEmv .

The five-dimensional bulk cosmologies we construc
using the theorem stated in Sec. III generalize and incl
those studied previously in the literature~see, for example
@13,18,30,31,35,40#!. In addition, the brane cosmologies o
tained by warped embeddings extend and complement
self-tuning mechanism of@18,20# to generic non-Ricci-flat
branes. Incidentally, the technique proposed can also be
to construct static five-dimensional solutions which on
brane reduce to four-dimensional black holes.

The authors of@41,42# have argued that the self-tunin
mechanism proposed in@18# is actually a fine tuning in dis-
guise due to the presence of the singularity in the bulk.
the brane worlds studied in this paper, however, we find
wheneverk2,3 the four-dimensional effective theory is we
defined, in the sense that the four-dimensional Planck sca
finite and the consistency condition of Ref.@42# is satisfied
without adding extra sources due to the ‘‘on-shell’’ identit

2

3
LE

2`

`

dxA2Ge2~2/3!kf~x,x!1
1

3
A2g@l~w!1r0e4bw~x!#

50, ~31!

where we have used the fact that for our family of solutio
Lmatter52r0 . Actually, Eq. ~31! is automatically enforced
by the Israel junction conditions and the matching condit
for the dilaton, which in turn determine both the energ
momentum tensor on the brane andl~w!. If k2>3 the diver-
gence in the four-dimensional Planck scale can be cut
provided a second ‘‘hidden’’ vacuum brane is located
08401
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somex0.0. The coordinatex is then restricted to the inter
val @0,x0# by assumingZ2 reflection symmetry around th
location of the second brane. Imposing the junction con
tions atx0 we findl(f)hidden52l(f), wherel~f! is given
by Eq.~22! with r050. This value of the vacuum energy fo
the second brane implies again that the model satisfies
consistency condition of@42# for any value ofk.

In order to illustrate the physics of the family of bran
worlds considered, we have analyzed a number of exp
examples of physical relevance. For Bianchi type-I and
the FRW models we find that the time dependence of
scale factor~s! is controlled only by the constantk measuring
the slope of the potential of the scalar field in the bulk. T
result is that no inflation occurs on the brane for any value
k, whereas there is a region in parameter space for wh
inflation takes place in the bulk. The difference between
behavior on the brane and in the bulk is mainly due to d
ferences in the character of the velocity of the fluid flow
derived from the scalar field on the brane and in the bu
While the five-velocity in the bulk is not orthogonal to th
hypersurfaces of constant time, its projection onto the br
is.

In the analysis presented here we have assumed tha
brane world is trapped at an orbifold point and it does n
move in the bulk. It can be easily seen that this is a con
tent assumption for the self-tuning brane cosmologies s
ied in Sec. IV. OnceZ2 symmetry is relaxed in general th
brane will move and the problem of the dynamical stabil
of the brane world arises. An especially interesting way
relax reflection symmetry in our case is to consider b
space-times in whichz takes different values at the two side
of the brane. If we regard the dilaton potential as aris
from some kind of phase transition, the brane world plays
role of a~infinitely thin! domain wall separating two region
of space with different values for the cosmological consta
in the spirit of the scenarios discussed in@43#. In this case the
possible motion of the brane in the bulk will affect the grav
tational dynamics on the brane world@44,45#. A detailed
study of these nonsymmetric brane worlds and their stab
will be presented elsewhere.

ACKNOWLEDGMENTS

One of us~M.A.V.-M. ! would like to thank Jun Nishimura
for stimulating discussions. A.F. acknowledges support fr
University of the Basque Country Grants UPV 172.31
EB150/98 and UPV 172.310-G02/99 and Spanish Scie
Ministry Grant 1/CI-CYT 00172.310-0018-12205/200
K.E.K. was supported by the Swiss National Science Fo
dation and Spanish Science Ministry Grant 1/CICY
00172.310-0018-12205/2000. The work of M.A.V.-M. wa
supported by EU Network ‘‘Discrete Random Geometr
Grant HPRN-CT-1999-00161, ESF Network no. 82 on ‘‘G
ometry and Disorder,’’ Spanish Science Ministry Gra
AEN99-0315, and University of the Basque Country Gra
UPV 0.63.310.-EB187/98 and UPV 172.310.-G02/9
5-8



ov

B
.

ett
u,

e

v.
y

l-
ell
lk
.
g
9

is

on

e-

0,

m

.

,

,’’
.
ev.

tum

s.

D

99,
id

B

h

ng
ld

. B

CURVED DILATONIC BRANE WORLDS PHYSICAL REVIEW D64 084015
@1# K. Akama, in Gauge Theory and Gravitation, edited by K.
Kikkawa, N. Nakanishi, and H. Nariai~Springer-Verlag, Berlin
1983!, hep-th/0001113; V. Rubakov and M. Shaposhnik
Phys. Lett.125B, 136 ~1983!.
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