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Hamiltonian formulation of general relativity in the teleparallel geometry
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We establish a Hamiltonian formulation of the teleparallel equivalent of general relativity, without fixing the
time gauge condition, by rigorously performing a Legendre transform. The time gauge condition, previously
considered, restricts the teleparallel geometry to the three-dimensional spacelike hypersurface. Geometrically,
the teleparallel geometry is now extended to four-dimensional space-time. The resulting Hamiltonian formu-
lation is structurally different from the standard Arnowitt-Deser-Misner formulation in many aspects, the main
one being that the dynamics is now governed by the Hamiltonian consHgimind a set of primary con-
straints. The vector constrailt is derivedfrom the Hamiltonian constraint. The vanishing of the latter implies
the vanishing of the vector constraint.
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[. INTRODUCTION at distant points are called paral(dl] if they have identical
components with respect to the local tetrads at the points
Hamiltonian formulations, when consistently establishedconsidered. Thus we consider a vector fislt(x). At the
not only guarantee that field quantities have a well defineghoint x* its tetrad components are given by?3(x)
time evolution, but also allow us to understand physical= e?,(X)V#(x). For the tetrad component*(x+dx) it is
theories from a different perspective. We have learned fromgasy to show thatV3(x+dx)=V?3(x)+DV?3(x), where
the work of Armowitt, Deser and MisndADM) [1] that a  pva(x)=e? (V,V*)dx". The covariant derivativ¥ is con-
Hamiltonian analysis of Einstein's general relativity revealSg.,cted out of Cartan’s connectid“rﬁyzeak 0,84, There-

t_he mtrmsp_ str_ucture of_the theory: the .t|me. evolution of fore the vanishing of such covariant derivative defines a con-
field quantities Is determined by the Ha}m|lton|an. and VeCOWition for absolute parallelism in space-time. Hence in the
constrqlnts. Thus fqur of the tgn E!nstem S equat|on§ vaUIr'%‘eleparallel geometry tetrad fields transform under the global
a prominent status in the Hamiltonian framework. Ultimately 0(3.1) group. Teleparallel geometry is less restrictive than

this is an essential feature for a canonical approach to thg. : hadl E . Ri ;
quantum theory of gravity. iemannian geometrj14]. For a given Riemaniann geom-

It is the case in general relativity that two distinct La- €Y there are many ways to construct the teleparallel geom-
grangian formulations that yield Einstein’s equations lead t@lrY; Since one Riemaniann geometry corresponds to a whole
completely different Hamiltonian constructions. An impor- €quivalence class of teleparallel geometries.
tant example in this respect is the reformulation of the ordi- [N the framework of the TEGR it is possible to make
nary variational principle, based on the Hilbert-Einstein ac-definite statements about the energy and momentum of the
tion, in terms of self-dual connections that define Ashtekagravitational field. This fact constitutes the major motivation
variables[2]. Under a Palatini type variation of an action for considering this theory. In the31 formulation of the
integral constructed out of these field quantities one preciselfEGR [12], and by imposing Schwinger’s time gauge con-
obtains Einstein’s equations. Interesting features of this apdition [15], we find that the Hamiltonian and vector con-
proach reside in the Hamiltonian domain. straints contain each one a divergence in the form of scalar

Einstein’s general relativity can also be reformulated inand vector densities, respectively, that can be identified with
the context of the teleparall@iVeitzenbak) geometry[3]. In  the energy and momentudensitiesof the gravitational field
this geometrical setting the dynamical field quantities corre{16].
spond to orthornormal tetrad fielé$, [a andu are S@3,1) In this paper we carry out a Hamiltonian formulation of
and space-time indices, respectivielJhese fields allow the the TEGR without imposing the time gauge condition, by
construction of the Lagrangian density of the teleparallelrigorously performing a Legendre transform. We have not
equivalent of general relativitfTEGR) [4—12], which offers ~ found it necessary to establish &3 decomposition for the
an alternative geometrical framework for Einstein’s equa-tetrad field. We only assung?®+ 0, a condition that ensures
tions. The Lagrangian density for the tetrad field in thethatt=const hypersurfaces are spacelike. The Lagrange mul-
TEGR is given by a sum of quadratic terms in the torsiontipliers are given by the zero components of the tetragls,
tensorT?,,=7,6%,—4d,6%,, which is related to the anti- The constraints corresponding to the Hamiltoni&) and
symmetric part of Cartan’s connectid”rﬁyzea*aueav. The vector (H;) constraints are obtained in the fol@¥=0. The
curvature tensor constructed out of the latter vanishes iderdynamical evolution of the field quantities is completely de-
tically. This connection defines a space with teleparallelismtermined byH, and by a set of primary constraints® and
or absolute parallelisil3]. I'%, as we will show. A surprising feature is thatHf;=0 in

In a space-time with an underlying tetrad field two vectorsthe subspace of the phase space determined'byI'*=0,

then it follows thatH;=0. As we will see,H; can be ob-
tained from the very definition dfl;. Furthermore by calcu-
*Email address: wadih@fis.unb.br lating Poisson brackets we show that the constraints consti-
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tute a first class set. Hence the theory is well defined sL 1

regarding time evolution. S €arBh,d,(62PMY) —e| 3P aTbV;L_Zea,uTbcdszd
As a consequence of this analysis, we arrive at a scalar

density that transforms as a 4-vector in the($@ space, =0. (4)

again arising in the expression of the constraints of the

theory, and whose zero component is related to the energy dihe tensoi.2*¢ is defined in terms oT2°¢ exactly like A2°°

the gravitational field. In analogy with previous investiga- in terms of 2. By explicit calculationg12] it is verified

tions, we interpret the constraint equatid®®=0 as energy- that these equations are equivalent to Einstein’s equations in

momentum equations for the gravitational field. tetrad form:
The analysis developed here is similar to that developed

in Ref. [17], in which the Hamiltonian formulation of the —Ele

TEGR in null surfaces was established. The B formula- oet 2

tion of the TEGR was already considered in R&0]. There i o )

are several differences between the latter analysis and th¥e note finally that by substituting Eqe3a) and (3b) into

present analysis. The investigation in RE0] pointed out  Ed- (1), the Lagrangian density reduces to

neither the emergence of the scalar densities mentioned L(e,,)=—k e abeT

above nor the relationship betweéty, and H;. Our ap- an abe

proach is different, and allows us to proceed further in the 1_., 1_., a
ke ZT CTabC+ ET CTbaC—T Ta .

1
{Raﬂ(e)— Eea#R(e)}-

understanding of the constraint structure of the theory. =
[Notation: space-time indices, v, ... and S@3,1) indi-
cesa,b, ... run from 0 to 3. Time and space indices are
indicated according tqu=0, and a=(0),(i). The tetrad lll. LEGENDRE TRANSFORM AND THE 3 +1
field e®, yields the definition of the torsion tensof?,, DECOMPOSITION
=d,e%,~d,e%,. The flat, Minkowski space-time metric is ~ The Hamiltonian density will be obtained by a standard
fixed by 7ap=€,,,€p,9""=(—+++).] prescriptionL =pqg—H, and by properly identifying primary
constraints. We have not found it necessary to establish any
Il. LAGRANGIAN FORMULATION kind of 3+1 decomposition for the tetrad fields. Therefore
N in the following bothe,,, andg,,, are space-time fields. Here
In order to carry out the 31 decomposition we need a we will follow the procedure presented in REL7].
first order differential formulation of the Lagrangian density  The Lagrangian densitjEq. (1)] can be expressed as
of the TEGR. For this purpose we introduce an auxiliary
field quantitydapc= — ¢acp that will be related to the torsion (e, ¢p) = — 4keA 2%, + 4keA %5, e,0— 2keA ¥ T,
tensor. The first order differential Lagrangian formulation in abe
empty space-time reads +keA® papc, ®)

where the dot indicates a time derivative, and®
L(e, ) =keA®( .y 2T sp0), 1) =A% ek, AM=A"%)e.). Therefore the momentum
canonically conjugated te, is given by

whereTp.= ey €. Ta,,, e=dete?,) andk=1/16m. A?"° [12k= — 4keA a0k (6)
is defined by
In terms of Eq.(6) expression5) reads

—T72ka T2k _ U b
Aabczl(qﬁabc_f_ $hac— ¢cab)+1(nac¢b_ 7°¢%), (2) L=T1%eq— 1% &0 — 2keA T 4+ kKeA® b,y
4 2 ' - o
= Hakeak— Haké’keao_ keAaI](2Taij — daij)

and ¢, = ¢2,,. The Lagrangian densiffEq. (1)] is invariant +2keA X pogy . (7)
under coordinate and global $&1) transformations.
Variation of the action constructed out of E@L) with
respect to¢2°¢ yields an equation that can be reduced to
dane= Tape- This equation can be split into two equations:

The last term on the right hand side of E@) is identified as
2keAaOk¢a0k: - %Hak¢aok .

The Hamiltonian formulation is established once we re-
write the Lagrangian densifyEq. (7)] in terms ofe,,, 113
and further nondynamical field quantities. This is carried out

®aok= Taok= d0€ak— H€a0> (3a  intwo steps. First, we take E(Bb) into account in Eq(7),
so that half of the auxiliary fieldg,;; are eliminated from
Gaik=Taik=9i€ax— I€ai - (3p)  the Lagrangian by means of the identification
®aij = Taij -

The variation of the action integral with respecteg, yields
the field equation As a consequence we have
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—keA (2T i — paij) = —keA I T, = —ke

+ke
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1 . . 1 _
ZglmgnJTamnTaij+§9nJT'mnTmij—glkTinTnnk)

1 1. 1. . S . .
- 590'91k¢a0kTaij _Eg]k¢|0kToij +§90' ¢'oT") _gOk¢JOjTlik+glk¢ooiTij) :

The last five terms of the expression above may be rewritten as

- Eke¢a0k[90|ngTaij —e?(gUTK; —gMTY%)) +2(e?*g% — e ") TI; .

Therefore we have

L(€ak, 1T €40, daok) = I13*€1+ €400 IT3 = gy (€401179)

5 baod 1+ ke[ g gMI T3 — e (g TH; — gMITY;) +2(e?g” — 209K T, 1}

1 . 1 . L
—ke ZglmgnJTamnTaij+§gnJT'mnTmij—glkTinTnnk

®

The second step consists of expressing the remaining aux- The crucial point in this analysis is that only the sym-

iliary field quantities, the “velocities’,q,, in terms of the

momentall®*. This is the nontrivial step of the Legendre

transform.

We need to consider the full expressionlbi. It is given

by Eq. (6),

12 =ke{g® — g*l g3y — el ¥ + 26Kl o) + g% (g% @7
+e?l ¢00j) +e20(g” ¢k0j +g4 ¢00j) —2(eXg% g 0j
+ eak90j d)OOj) _ gOigijaij + eai(QOkaij _ gijOij )
—2(g%e*—g'e?) T}, 9

where we have already identifiegh,;;=T,;;. Denoting

(--+) and[- - -] as the symmetric and antisymmetric parts of

field quantities, respectively, we decompddéX into irre-
ducible components

Hak: eaiH(ik)+eaiH[ik]+ea0HOk, (10)

where

W =kef{g®(—g" ¢i0j —g" ¢’k01 +2g' gl o))+ g% (g% ¢i0j
+9" ¢%;—g% ¢lo;) +9°% (g% ¢*o; + g %y

_gOK¢joj)_29ikng ¢00j+Aik}! (11a

Aik: _ gom(gijimj+ gij Tkmj_ 29iijmj) _ (gkaOi
+9"™Mg%) Ty, (11b)
H[ik] — ke{ _ gimgijOmj+ (gimgOk_ gkmgOi)ijj}, (12)
HOk: _ Zke(gkaOiTOij _ gOkgOi-I-jij + googiijij ) ) (13)

metrical componentEl (/) depend on the “velocities¥ gy .
The other six component !l and I1% depend solely on
Taij- Therefore we can express only six of the “velocity”
fields ¢, in terms of the componenid (1), With the pur-
pose of finding out which components ¢k, can be in-
verted in terms of the momenta we decompggg, identi-
cally as

¢aoj = eai lp” + eai Tij + eao)\j ) (14)
where ;=3 (dioj+ bjoi). ij=3(bioj— Pjoi), N\j= bog »
and¢ﬂoj=eaﬂ¢aoj (like ¢apc, the componentsy;;, oj; and
\; are also auxiliary field quantitigsNext we substitute Eq.
(14) into Eq.(113. By defining

Pik:kien(ik)_Aik, (15)
we find thatP'® depends only on; :
Pk = — 2% g'Mg"l o, — g™ 9h) + 2( g% gFg"
+9%9"™mg%) im;— 2(9™9°Mg" yim;+ 9% 9%Y),
(16)

where y=9""Ymn. _
We can now invery,; in terms of Pk, After a number of
manipulations we arrive at

1

. 1
lﬂmj:—zgoo gimgkjplk_zgmjp : (17)

whereP=g;, P'*.

At last we need to rewrite the second line of the Lagrang-
ian densityEg. (8)] in terms of canonical variables. By mak-
ing use of Eqs(9), (14) and(17) we can rewrite
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1 ) o ki ook ciro In Egs. (238 and (23b), we make use of variations like
— 5 Paod 1+ ke[ g™ g T, — (g™ T — g T7)) 56| Se,0=—e?*€. In the process of obtaininG? we
_ o need a variation oP" with respect toe,,. This reads
+2(eakgol_eaogk|)-|—1ji]} 5Pij

e
in the form S —e®TPU+ %,
L ikl * with 2 defined b
mke gig; P P¥— EPZ)- 4 y
i L it Ak 00 .
Thus we finally obtain the primary Hamiltonian density " = ~ 5ra(&" L' +€¥T) =¥ (g™ (" Tt g Tk
Ho=11%e,, —L: y L L o
v 20" T + 9GO T it 0O T i) — 267/ G0 Ty
Ho(€ak TT%, €50) = — €400 12K~ mke( 9ig; P PX +(g'™g% +g'™g% — 29" "™ Tl (24)
1 1 Note thaty?! satisfiese,yy*=0.
—§P2 + ke(Zgimganamn-l—aij After a long calculation we arrive at an expression@t

C=— g, 113K+ 20

I o _iooke(g.kg.lpijpk'_EPZ)
+EgnJTlmnTmij_glkTinTnnk)- (18) 4g S 2

1. . 1
We may now write the total Hamiltonian density. For this +ke(Zg'mgnJTbmnTbij+§g”’T'mnTmij
purpose we have to identify the primary constraints. They are

given by expressiond 2) and(13), which represent relations kem —n 1 aij okl 1 i
betweene,, and the moment&l2X. Thus we define 9 T miT | |~ zgooke 91y P =507 P
[=—Tx — ke (Mg TP Tyt GV TO 0 T™ + g% T Ty
=T10 —ke{ —gMg I Tm; + (99~ g*"0*) T, =207 T = 20T T (25
(19 In spite of the fact that expression above is somehow
i 0i i ik intricate, we immediately note that
Fk=H°k+2ke(ngg°'T°ij—go"go'T'ij+g°°g"‘TJi,~). Yy
(20 €20C*=Ho. (26)

Therefore the total Hamiltonian density is given by Therefore. the total Hamiltonian becomes

H(eak, 117 a0, ik, Bi) = Ho+ I+ BT+ 9y (e4011%%),
(21)

H(eak, 117 50, @ik , Bi) = €20C2+ a '+ B, I

+ dy(€011%%). (27)

wherea and , are Lagrange multipliers. We observe thafe,o} arise as Lagrange multipliefsee Eq.

(50) below].
IV. SECONDARY CONSTRAINTS Before closing this section we remark that the Hamil-
Since the momentdlI12°} vanish identically, they also tonian formulation described here is different from that de-
constitute primary constraints that induce the secondary corteloped in Ref[10], the difference residing in the definition

straints of the canonical momentum. In the latter reference the ca-
nonical momentum is not defined by taking the variatioh of
SH with respect tog,,. Instead, it is defined by
Ci=—-—=0. (22
€a0 ) sL L
Ta

In order to obtain the expression 6f we have only to vary TONTTE ) 8(To— NTZy)

H, with respect tae,,, because variations &F% andI"* with

L 1 . .
respect tae,, yield the constraints themselves: whereN+ andN' are the usual I'apspT and shift funptlons. As
a consequence, three of the six primary constraints of Ref.
STk 1 i i [10] are different from the corresponding constraints ob-
Se— (e T MY, (238 tained here. The expression for the componefits and 7, ¥
a0 of Ref.[10], equivalent td1l'*l andI1%, respectively, given
STk by Egs.(12) and(13), read, in our notation,
= —e¥rx. (23b [ik] im - kj7-0 i imaOk_ ~km0i\7-0
€30 7= —e{g"Mg T + N (g'""g™ — g""g™) T st
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ke LNtk €aj(X) ={eq;(X),H}
2k ’

T

o )
= | d%y———[H + o rik
The Hamiltonian and vector constraints of the above men- f y5HaJ(X)[ oY) +au(Y)THY)

tioned reference are parametrized in terms of the lapse and
shift functions. In the present work we have parametrized the
set of four constraints according to E®@6), and identified
the Lagrange multipliers as,,. The final expression of?

acquires the total divergence 4,112, This divergence is

+ B (Y)TX(y)], (32)

where H is the total Hamiltonian. This equation can be
worked to yield

different from the one that appears in the expression of the 1 1

total Hamiltonian density of gravitational fields for asymp- Taoj=— W)eak(gikgij'm—Egij

totically flat space-times, either in the metfit8] or in the 9

tetrad formulatior{see, for example, Eq3.17) of Ref.[10] +eaiaij +ea0/gj , (33

or Eq. (27) above; it is possible to show that the latter ex-

pressions are exactly the same field quanfiti®ée finally  from which we obtain
note that the constraint algebra to be presented in the coming
section has not been evaluated in R&D]. 1

5 (Tioj T Tjoi) = i)
V. SIMPLIFICATION OF THE CONSTRAINTS AND

POISSON BRACKETS L

1
~ 2g% OikGmjP ™~ 59iP | (3439
The first two terms of the expression 6f yield the pri-
mary Hamiltonian in the forne®*°H,. This fact can be easily 1
verified by expressing the first term of EQ5) as 5 (Tioj = Tjoi) =oyj =@, (34b

_ ak_ ~a0/ _ bk aj/_ . bk

L?kH e ( eboakH )+e ( eb]akH ) Tooj:)\j:ﬂj , (340)
The second term considered above is the collection of termg
in Eq. (25) multiplied by €. Substituting definitiong11b)
and(24) for Al and y?l, respectively, into Eq(25), after a
long calculation we obtain a simplified form f@?,

ccording to the definitions in Eq14). Thus the Lagrange
multipliers in Eqg.(31) acquire a well defined meaning. Ex-
pression(34a is in total agreement with Eq17). Conse-
quently we can obtain an expression fdf!) in terms of
velocities via Eqs(15) and(16). The dynamical evolution of
the field quantities is completed with Hamilton’s equations
for T1(1),

C?=e"H,+eF,, (28)

with the following definitions:
T19D(x) = {110 (x), H}

1 1 :
Fi=Hi+FmT0mi+F"“Tlmi+m<gikgj.Pk'—zgnP r, f & (5H<‘i>(x> SH

(29 Seay) SIK(y)
H; = — epidi [IPK—T1°KT . (30 B si(x)  oH ) 35
SIPK(y) Seay))’
We denoteH, the Hamiltonian constrainH; is the vector .
constraint. This amounts to a §&)1) version of the vector together with
constraint of Ref[12]. The true constraints of the theory are ek
C?, 'k, andT'*. Dispensing with the surface term the total =1"=0. (36)

Hamiltonian reads The calculations of the Poisson brackets between these

_ ai o ke k constraints are exceedingly complic_ated. Her_e we will just
H= a0 and T+ A S present the results. Instead of consider@t{x) in the cal-

The Poisson bracket between two quantifeand G is culations below, we found |t.more apprpprlgte to consider
defined by Ho(x) andH;(x). The constraint algebra is given by

5G SF 5G {Ho(X),Ho(y)} =0, (37

[F'G]:f dsx(&eai(x) SIT(x)  SII*(x) deg(x))"

14
{Ho(¥), Hi(y)} =~ HO(X)W 8(x—y) —Hoe™diea08(x—y)
by means of which we can write down the evolution equa- A
tions. The first set of Hamilton’s equations is given by —Fe¥die08(x—y), (38
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P 9 {C3(x), I (y)} and {C*(x),['(y)}, there will always ap-
{Hj(X)-Hk(Y)}:—Hk(X)0—XJ'5(X—Y)—HJ(Y)WR5(X—Y)- pear a combination of the constrairty=e,oC?, 'k, T'
(39) and

{I'(x), I (y)}=0, (40 Hi=eaica—rmT0mi—r'mTlmi—m
T (0. M4y} = (99T =g TH) s(x—y), (4D 1 4
X gikgjlpkl+§gijp)rl- (47)

rii ,rkl — IlI‘Jk+ Jkl-wl_ |kFJI ) ]
o0, Iy} 2(g g 9 The expression above follows from E@9). All constraints
of the theory are first class, and therefore the theory is well

ik
—g' I a(x-y), (42 gefined regarding time evolution.

L L The Hamiltonian densityEq. (31)] determines the time
ij luti f fiel tit :
{Ho(X),FIJ(y)}:[mPkl(Egklgmn_gkmgnl) evolution of any field quantity (x)

R | i‘<x>=f d*y{f(x),H(y)}rik=rk=o- (48)
mipnj _ qmjpni _

X (gMrMN—g™r™) + 5

Physical quantities take values in the subspace of the phase

spacePr defined by Eq(36). In this subspace the constraints

X (I'Med —Tnigal) g e
( )9na0 C? become

o(x—y), (43

C2=e%H,+e?H;. (49

Restricting considerations t8r we note that ifH, van-
ishes, there,,C? also vanishes. Since,o} are arbitrary, it
follows thatC?=0. In order to arrive at this conclusion we
note that the constrainG?® are independent a,,. From the

{Ho(X),FI(y)}:

gOiH +ipk| E 0.
0 gOO nglgjm gkjgml

X g™+ (I'"e?®+Me) dyeqo

1 ‘ o orthogonality relation eaMea"= 52 we obtain 5eP#/de,,
+5 Myt 20,1+ g (Hy = —e*eP, Using this variational relation and Eq&2) and
(49), it is possible to show that
_I‘jTO ‘_I‘ij )} 5C2 )
" o (e®%H,+e?H;)= —eP%e?’H,

5eb0 B 5eb0

o
XS(x=y)+TMX)=7d(x=y), (44 40 Mo bigao,
e ——ee i

d€no
. : J . d _ i i —
{HiO0), T ()} = 8Ty 25 6(x—y) +TI(x) 2 S(x—y) =~ €% Ho+ (e Ho+ eH;) — e”'e™H; 0.
- (50
—T1e®9e508(x—y), (45) R
H; does not depend explicitly or implicitly om,o,. We re-
) ) 9 o mark that by taking the variation with respectdg, of both
{Hk(x),F'J(y)}=F'J(x)mé(x—y)ﬂé{(l“”'(y) sides of Eq(26), Hy=e,,C? we arrive at
sca
- d 1 . b_ ~b_
= ALM(y) 7 5 S(x=y)+ 5 (0T (x) OO ey

_ _ F] from which follows the general resubt,o(5C?/ deyg)=0.
— MO0 (X) - x€a0(X)8(Xx—y).  (46)  Taking into account the arbitrarinessey in the latter equa-
tion, we are led to Eq(50).

It is clear from the constraint algebra above that Therefore the vanishing of the Hamiltonian constraiigt
Ho, H;, T'K, andI'¥ constitute a set of first class constraints. IMPlies the vanishing ofC%, and ultimately of the vector
Now it is easy to conclude th&?, T'K, andT* also consti- constraintH; . Moreqver we obsgrve from Eq@?) and(49)
tute a first class set. By means of E(28) we have thatH; can be obtained froril, in Py according to
{C(),C°(y)}=e°(x){Ho(X),Ho(y) }e*°(y) + Ho(x) s
x{e*°(x),Ho(y)}e”(y)+-- - . On the right hand side of e, ——Ho=e,C2=H, . (51)
this Poisson bracket as well as of the brackets 2
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ThusH; is derivedfrom Hy. In the complete phase space the have 24-20=4 degrees of freedom in the phase space, as

vanishing ofH; is a consequence of the vanishing-f, T'' expected. Since the constraifité andI'¥ are first class, they

andT'*. act oney,, andI13% and generate symmetry transforma-
Finally we would like to remark that the Hamiltonian for- tions. In particular, fore,, we have

mulation of the theory can be described more succinctly in

terms of the constraintd,, I'* andT'¥, by the Hamiltonian

density in the form 5eak(x):f d®Z £ (2){ea(¥). I (2)} +(2)
ST (z)

H(ear, 1% €20, @it , Bi) =Ho+ ay I+ B T*. (52 £/ (2) e
i () STk ()

x{eak(x):l—‘j(z)}]:j d°z

The Poisson brackets between these constraints are given by

Egs. (37) and (40)—(44). They constitute a first class set, 8T1(2) i 0
except for the fact that on the right hand side of E4y) +8j(2)m =eies + ek (53)

there appears the constraint,. However, this poses no

problem for the consistency of the constraints prOVidetheresij(x)z—sji(x) and &;(x) are infinitesimal param-
Ho, I' andI'* are taken to vanish at the initial tinte=to.  eters. Note that these transformationsndbact one,o. This

Let ¢(x',t) represent any of the latter constraints. At theissue has not been completely analyzed. The physical impli-
initial time we have ¢(x',to))=0. At to+ 4ot we find  cations of these symmetries to the theory are currently under
(X 1o+ 8t) = (X', tg) + (X', 1) 8t such that ¢(x',ty)  investigation.

={¢(x',tg),H}. Since the vanishing off; at an instant of In an analysis of a theory described by a Lagrangian den-
time is a consequence of the vanishingtf, I'* andT' at  sity similar to Eq.(1), Méller pointed out that some supple-

the same time, the consistency of the constraints is guaramentary conditions on the tetrads are needed. He suggested
teed at anyt>t,. that these conditions arise from suitable boundary conditions

for the field equations, possibly in the form of an antisym-
V1. DISCUSSION metric tensor. These supplementary conditions would
_ uniquely determine &etrad lattice[4], apart from a constant
The Weitzenbok space-time allows a consistent descrip-rotation of the tetrads in the lattice. The problem of consis-
tion of the Hamiltonian formulation of the gravitational field. tently defining these supplementary conditions is likely to be
Although the underlying geometry is not Riemannian, therelated to the symmetry transformation determined by Eq.
Lagrangian field equation@) assure that the theory deter- (53).
mined by Eq(1) is equivalent to Einstein’s general relativity. ~ The Hamiltonian densityEq. (52)] determines the time
To our knowledge there does not exist any impediment basegvolution of field quantities via Eq48), and in particular of
on experimental facts that rules out the teleparallel geometrihe metric tensog;; of three-dimensional spacelike hyper-
in favor of the Riemannian geometry for the description ofsurfaces. This property might simplify approaches to a ca-
the physical space-time. The natural geometrical setting fofionical, nonperturbative quantization of gravity provided we
teleparallel gravity is the teleparallel geometry. The Hamil-manage to construct the reduced phase space determined by
tonian formulation of the TEGR in the Riemannian geom-gq. (36).
etry, with local S@3,1) symmetry, requires the introduction  After implementing the primary constraints via Eg6),
of a large number of field variables that renders an intricatghe first term ofC? is given by— ¢,I1%, with I1* defined by
constraint structurg19]. Eq. (9). From our previous experiencef. Ref.[16]) we are
We have shown that the vector constrdifitcan be ob-  |ed to conclude that this term is related to energy and mo-
tained from the Hamiltonian constraitt, by means of a mentum of the gravitational field. In the present case we also
functional derivative oH,, making use of the orthogonality interpret equation€®=0 as energy-momentum equations
properties of the tetrads in the reduced phase sfice for the gravitational field. According to this interpretation,
However, it is an independent constraint. In contrast, in thehe integral form of the constraint equati@i®=0 can be
ADM formulation the Hamiltonian and vector constraints arewritten in the formE—H=0. Integration of— 4,112 over
not mutually related, and in practice one has to consider botthe whole three-dimensional space yields the ADM energy. A
constraints for the dynamical evolution via Hamilton equa-complete analysis of this issue will be presented elsewhere.
tions.
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