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Hamiltonian formulation of general relativity in the teleparallel geometry

J. W. Maluf* and J. F. da Rocha-Neto
Instituto de Fı´sica, Universidade de Brası´lia, C.P. 04385, 70.919-970 Brası´lia, DF Brazil

~Received 16 March 2001; published 24 September 2001!

We establish a Hamiltonian formulation of the teleparallel equivalent of general relativity, without fixing the
time gauge condition, by rigorously performing a Legendre transform. The time gauge condition, previously
considered, restricts the teleparallel geometry to the three-dimensional spacelike hypersurface. Geometrically,
the teleparallel geometry is now extended to four-dimensional space-time. The resulting Hamiltonian formu-
lation is structurally different from the standard Arnowitt-Deser-Misner formulation in many aspects, the main
one being that the dynamics is now governed by the Hamiltonian constraintH0 and a set of primary con-
straints. The vector constraintHi is derivedfrom the Hamiltonian constraint. The vanishing of the latter implies
the vanishing of the vector constraint.
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I. INTRODUCTION

Hamiltonian formulations, when consistently establish
not only guarantee that field quantities have a well defin
time evolution, but also allow us to understand physi
theories from a different perspective. We have learned fr
the work of Arnowitt, Deser and Misner~ADM ! @1# that a
Hamiltonian analysis of Einstein’s general relativity reve
the intrinsic structure of the theory: the time evolution
field quantities is determined by the Hamiltonian and vec
constraints. Thus four of the ten Einstein’s equations acq
a prominent status in the Hamiltonian framework. Ultimate
this is an essential feature for a canonical approach to
quantum theory of gravity.

It is the case in general relativity that two distinct L
grangian formulations that yield Einstein’s equations lead
completely different Hamiltonian constructions. An impo
tant example in this respect is the reformulation of the or
nary variational principle, based on the Hilbert-Einstein a
tion, in terms of self-dual connections that define Ashte
variables@2#. Under a Palatini type variation of an actio
integral constructed out of these field quantities one preci
obtains Einstein’s equations. Interesting features of this
proach reside in the Hamiltonian domain.

Einstein’s general relativity can also be reformulated
the context of the teleparallel~Weitzenbo¨ck! geometry@3#. In
this geometrical setting the dynamical field quantities cor
spond to orthornormal tetrad fieldsea

m @a andm are SO~3,1!
and space-time indices, respectively#. These fields allow the
construction of the Lagrangian density of the telepara
equivalent of general relativity~TEGR! @4–12#, which offers
an alternative geometrical framework for Einstein’s equ
tions. The Lagrangian density for the tetrad field in t
TEGR is given by a sum of quadratic terms in the tors
tensor Ta

mn5]mea
n2]nea

m , which is related to the anti
symmetric part of Cartan’s connectionGmn

l 5eal]mean . The
curvature tensor constructed out of the latter vanishes id
tically. This connection defines a space with teleparallelis
or absolute parallelism@13#.

In a space-time with an underlying tetrad field two vecto
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at distant points are called parallel@4# if they have identical
components with respect to the local tetrads at the po
considered. Thus we consider a vector fieldVm(x). At the
point xl its tetrad components are given byVa(x)
5ea

m(x)Vm(x). For the tetrad componentsVa(x1dx) it is
easy to show thatVa(x1dx)5Va(x)1DVa(x), where
DVa(x)5ea

m(¹lVm)dxl. The covariant derivative¹ is con-
structed out of Cartan’s connectionGmn

l 5eal]mean . There-
fore the vanishing of such covariant derivative defines a c
dition for absolute parallelism in space-time. Hence in t
teleparallel geometry tetrad fields transform under the glo
SO~3,1! group. Teleparallel geometry is less restrictive th
Riemannian geometry@14#. For a given Riemaniann geom
etry there are many ways to construct the teleparallel ge
etry, since one Riemaniann geometry corresponds to a w
equivalence class of teleparallel geometries.

In the framework of the TEGR it is possible to mak
definite statements about the energy and momentum of
gravitational field. This fact constitutes the major motivati
for considering this theory. In the 311 formulation of the
TEGR @12#, and by imposing Schwinger’s time gauge co
dition @15#, we find that the Hamiltonian and vector con
straints contain each one a divergence in the form of sc
and vector densities, respectively, that can be identified w
the energy and momentumdensitiesof the gravitational field
@16#.

In this paper we carry out a Hamiltonian formulation
the TEGR without imposing the time gauge condition,
rigorously performing a Legendre transform. We have n
found it necessary to establish a 311 decomposition for the
tetrad field. We only assumeg00Þ0, a condition that ensure
that t5const hypersurfaces are spacelike. The Lagrange m
tipliers are given by the zero components of the tetrads,ea0.
The constraints corresponding to the Hamiltonian (H0) and
vector (Hi) constraints are obtained in the formCa50. The
dynamical evolution of the field quantities is completely d
termined byH0 and by a set of primary constraintsG ik and
Gk, as we will show. A surprising feature is that ifH050 in
the subspace of the phase space determined byG ik5Gk50,
then it follows thatHi50. As we will see,Hi can be ob-
tained from the very definition ofH0. Furthermore by calcu-
lating Poisson brackets we show that the constraints con
©2001 The American Physical Society14-1
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tute a first class set. Hence the theory is well defin
regarding time evolution.

As a consequence of this analysis, we arrive at a sc
density that transforms as a 4-vector in the SO~3,1! space,
again arising in the expression of the constraints of
theory, and whose zero component is related to the energ
the gravitational field. In analogy with previous investig
tions, we interpret the constraint equationsCa50 as energy-
momentum equations for the gravitational field.

The analysis developed here is similar to that develo
in Ref. @17#, in which the Hamiltonian formulation of the
TEGR in null surfaces was established. The 311 formula-
tion of the TEGR was already considered in Ref.@10#. There
are several differences between the latter analysis and
present analysis. The investigation in Ref.@10# pointed out
neither the emergence of the scalar densities mentio
above nor the relationship betweenH0 and Hi . Our ap-
proach is different, and allows us to proceed further in
understanding of the constraint structure of the theory.

@Notation: space-time indicesm,n, . . . and SO~3,1! indi-
ces a,b, . . . run from 0 to 3. Time and space indices a
indicated according tom50,i and a5(0),(i ). The tetrad
field ea

m yields the definition of the torsion tensor:Ta
mn

5]mea
n2]nea

m . The flat, Minkowski space-time metric i
fixed by hab5eamebngmn5(2111).#

II. LAGRANGIAN FORMULATION

In order to carry out the 311 decomposition we need
first order differential formulation of the Lagrangian dens
of the TEGR. For this purpose we introduce an auxilia
field quantityfabc52facb that will be related to the torsion
tensor. The first order differential Lagrangian formulation
empty space-time reads

L~e,f!5keLabc~fabc22Tabc!, ~1!

whereTabc5eb
mec

nTamn , e5det(ea
m) andk51/16p. Labc

is defined by

Labc5
1

4
~fabc1fbac2fcab!1

1

2
~hacfb2habfc!, ~2!

andfb5fa
ab . The Lagrangian density@Eq. ~1!# is invariant

under coordinate and global SO~3,1! transformations.
Variation of the action constructed out of Eq.~1! with

respect tofabc yields an equation that can be reduced
fabc5Tabc . This equation can be split into two equations

fa0k5Ta0k5]0eak2]kea0 , ~3a!

faik5Taik5] ieak2]keai . ~3b!

The variation of the action integral with respect toeam yields
the field equation
08401
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dL

deam5ealebm]n~eSbln!2eS Sbn
aTbnm2

1

4
eamTbcdS

bcdD
50. ~4!

The tensorSabc is defined in terms ofTabc exactly likeLabc

in terms offabc. By explicit calculations@12# it is verified
that these equations are equivalent to Einstein’s equation
tetrad form:

dL

deam[
1

2
eH Ram~e!2

1

2
eamR~e!J .

We note finally that by substituting Eqs.~3a! and ~3b! into
Eq. ~1!, the Lagrangian density reduces to

L~eam!52k eSabcTabc

52k eS 1

4
TabcTabc1

1

2
TabcTbac2TaTaD .

III. LEGENDRE TRANSFORM AND THE 3 ¿1
DECOMPOSITION

The Hamiltonian density will be obtained by a standa
prescriptionL5pq̇2H0 and by properly identifying primary
constraints. We have not found it necessary to establish
kind of 311 decomposition for the tetrad fields. Therefo
in the following botheam andgmn are space-time fields. Her
we will follow the procedure presented in Ref.@17#.

The Lagrangian density@Eq. ~1!# can be expressed as

L~e,f!524keLa0kėak14keLa0k]kea022keLai jTai j

1keLabcfabc , ~5!

where the dot indicates a time derivative, andLa0k

5Labceb
0ec

k, Lai j5Labceb
iec

j . Therefore the momentum
canonically conjugated toeak is given by

Pak524keLa0k, ~6!

In terms of Eq.~6! expression~5! reads

L5Pakėak2Pak]kea022keLai jTai j1keLabcfabc

5Pakėak2Pak]kea02keLai j~2Tai j2fai j !

12keLa0kfa0k . ~7!

The last term on the right hand side of Eq.~7! is identified as
2keLa0kfa0k52 1

2 Pakfa0k .
The Hamiltonian formulation is established once we

write the Lagrangian density@Eq. ~7!# in terms ofeak , Pak

and further nondynamical field quantities. This is carried o
in two steps. First, we take Eq.~3b! into account in Eq.~7!,
so that half of the auxiliary fieldsfai j are eliminated from
the Lagrangian by means of the identification

fai j5Tai j .

As a consequence we have
4-2
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2keLai j~2Tai j2fai j !52keLai jTai j52keS 1

4
gimgn jTa

mnTai j1
1

2
gn jTi

mnT
m

i j 2gikTj
j i T

n
nkD

1keS 2
1

2
g0igjkfa

0kTai j2
1

2
gjkf i

0kT
0

i j 1
1

2
g0 jf i

0kT
k
i j 2g0kf j

0 jT
i
ik1gikf0

0iT
j
jkD .

The last five terms of the expression above may be rewritten as

2
1

2
kefa0k@g0igk jTa

i j 2eai~g0 jTk
i j 2gk jT0

i j !12~eakg0i2ea0gki!Tj
ji #.

Therefore we have

L~eak ,Pak,ea0 ,fa0k!5Pakėak1ea0]kP
ak2]k~ea0Pak!2keS 1

4
gimgn jTa

mnTai j1
1

2
gn jTi

mnT
m

i j 2gikTj
j i T

n
nkD

2
1

2
fa0k$P

ak1ke@g0igk jTa
i j 2eai~g0 jTk

i j 2gk jT0
i j !12~eakg0i2ea0gki!Tj

ji #%. ~8!
au

e

o

-

’’

.

g-
-

The second step consists of expressing the remaining
iliary field quantities, the ‘‘velocities’’fa0k , in terms of the
momentaPak. This is the nontrivial step of the Legendr
transform.

We need to consider the full expression ofPak. It is given
by Eq. ~6!,

Pak5ke$g00~2gk jfa
0 j2ea jfk

0 j12eakf j
0 j !1g0k~g0 jfa

0 j

1ea jf0
0 j !1ea0~g0 jfk

0 j1gk jf0
0 j !22~ea0g0kf j

0 j

1eakg0 jf0
0 j !2g0igk jTa

i j 1eai~g0 jTk
i j 2gk jT0

i j !

22~g0ieak2gikea0!Tj
ji %, ~9!

where we have already identifiedfai j5Tai j . Denoting
(•••) and@•••# as the symmetric and antisymmetric parts
field quantities, respectively, we decomposePak into irre-
ducible components

Pak5ea
iP

( ik)1ea
iP

[ ik]1ea
0P0k, ~10!

where

P ( ik)5ke$g00~2gk jf i
0 j2gi j fk

0 j12gikf j
0 j !1g0k~g0 jf i

0 j

1gi j f0
0 j2g0if j

0 j !1g0i~g0 jfk
0 j1gk jf0

0 j

2g0kf j
0 j !22gikg0 jf0

0 j1D ik%, ~11a!

D ik52g0m~gk jTi
m j1gi j Tk

m j22gikTj
m j!2~gkmg0i

1gimg0k!Tj
m j , ~11b!

P [ ik]5ke$2gimgk jT0
m j1~gimg0k2gkmg0i !Tj

m j%, ~12!

P0k522ke~gk jg0iT0
i j 2g0kg0iTj

i j 1g00gikTj
i j !. ~13!
08401
x-

f

The crucial point in this analysis is that only the sym
metrical componentsP ( i j ) depend on the ‘‘velocities’’fa0k .
The other six componentsP [ i j ] and P0k depend solely on
Tai j . Therefore we can express only six of the ‘‘velocity
fields fa0k in terms of the componentsP ( i j ). With the pur-
pose of finding out which components offa0k can be in-
verted in terms of the momenta we decomposefa0k identi-
cally as

fa
0 j5eai c i j 1eai s i j 1ea0l j , ~14!

where c i j 5
1
2 (f i0 j1f j 0i), s i j 5

1
2 (f i0 j2f j 0i), l j5f00j ,

andfm0 j5ea
mfa0 j ~like fabc , the componentsc i j , s i j and

l j are also auxiliary field quantities!. Next we substitute Eq
~14! into Eq. ~11a!. By defining

Pik5
1

ke
P ( ik)2D ik, ~15!

we find thatPik depends only onc i j :

Pik522g00~gimgk jcm j2gikc!12~g0igkmg0 j

1g0kgimg0 j !cm j22~gikg0mg0 jcm j1g0ig0kc!,

~16!

wherec5gmncmn .
We can now invertcm j in terms ofPik. After a number of

manipulations we arrive at

cm j52
1

2g00S gimgk jP
ik2

1

2
gm jPD , ~17!

whereP5gikPik.
At last we need to rewrite the second line of the Lagran

ian density@Eq. ~8!# in terms of canonical variables. By mak
ing use of Eqs.~9!, ~14! and ~17! we can rewrite
4-3
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2
1

2
fa0k$P

ak1ke@g0igk jTa
i j 2eai~g0 jTk

i j 2gk jT0
i j !

12~eakg0i2ea0gki!Tj
ji #%

in the form

1

4g00keS gikgjl P
i j Pkl2

1

2
P2D .

Thus we finally obtain the primary Hamiltonian densi
H05Pakėak2L:

H0~eak ,Pak,ea0!52ea0]kP
ak2

1

4g00keS gikgjl P
i j Pkl

2
1

2
P2D1keS 1

4
gimgn jTa

mnTai j

1
1

2
gn jTi

mnT
m

i j 2gikTj
j i T

n
nkD . ~18!

We may now write the total Hamiltonian density. For th
purpose we have to identify the primary constraints. They
given by expressions~12! and~13!, which represent relation
betweeneak and the momentaPak. Thus we define

G ik52Gki

5P [ ik]2ke$2gimgk jT0
m j1~gimg0k2gkmg0i !Tj

m j%,

~19!

Gk5P0k12ke~gk jg0iT0
i j 2g0kg0iTj

i j 1g00gikTj
i j !.

~20!

Therefore the total Hamiltonian density is given by

H~eak ,Pak,ea0 ,a ik ,bk!5H01a ikG ik1bkG
k1]k~ea0Pak!,

~21!

wherea ik andbk are Lagrange multipliers.

IV. SECONDARY CONSTRAINTS

Since the momenta$Pa0% vanish identically, they also
constitute primary constraints that induce the secondary c
straints

Ca[
dH

dea0
50. ~22!

In order to obtain the expression ofCa we have only to vary
H0 with respect toea0, because variations ofG ik andGk with
respect toea0 yield the constraints themselves:

dG ik

dea0
52

1

2
~eaiGk2eakG i !, ~23a!

dGk

dea0
52ea0Gk. ~23b!
08401
re

n-

In Eqs. ~23a! and ~23b!, we make use of variations like
debm/dea052eameb0. In the process of obtainingCa we
need a variation ofPi j with respect toea0. This reads

dPi j

dea0
52ea0Pi j 1gai j ,

with gai j defined by

gai j52
1

2ke
~eaiG j1ea jG i !2eak@g00~gjmTi

km1gimTj
km

12gi j Tm
mk!1g0m~g0 jTi

mk1g0iTj
mk!22g0ig0 jTm

mk

1~gjmg0i1gimg0 j22gi j g0m!T0
mk#. ~24!

Note thatgai j satisfiesea0gai j50.
After a long calculation we arrive at an expression forCa:

Ca52]kP
ak1ea0F2

1

4g00keS gikgjl P
i j Pkl2

1

2
P2D

1keS 1

4
gimgn jTb

mnTbi j1
1

2
gn jTi

mnT
m

i j

2gikTm
miT

n
nkD G2

1

2g00keS gikgjl g
ai j Pkl2

1

2
gi j g

ai j PD
2keeai~g0mgn jTb

i j Tbmn1gn jT0
mnT

m
i j 1g0 jTn

m jT
m

ni

22g0kTm
mkT

n
ni22gjkT0

i j T
n

nk!. ~25!

In spite of the fact that expression above is someh
intricate, we immediately note that

ea0Ca5H0 . ~26!

Therefore, the total Hamiltonian becomes

H~eak ,Pak,ea0 ,a ik ,bk!5ea0Ca1a ikG ik1bkG
k

1]k~ea0Pak!. ~27!

We observe that$ea0% arise as Lagrange multipliers@see Eq.
~50! below#.

Before closing this section we remark that the Ham
tonian formulation described here is different from that d
veloped in Ref.@10#, the difference residing in the definitio
of the canonical momentum. In the latter reference the
nonical momentum is not defined by taking the variation oL
with respect toėak . Instead, it is defined by

pa
k5

dL

d~N'Ta
'k!

5
dL

d~Ta
0k2NiTa

ik!
,

whereN' andNi are the usual lapse and shift functions. A
a consequence, three of the six primary constraints of R
@10# are different from the corresponding constraints o
tained here. The expression for the componentst [ ik] andt'

k

of Ref. @10#, equivalent toP [ ik] andP0k, respectively, given
by Eqs.~12! and ~13!, read, in our notation,

t [ ik]52e$gimgk jT0
i j 1Nj~gimg0k2gkmg0i !T0

m j%,
4-4
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t'
k5

1

2k
N'P0k.

The Hamiltonian and vector constraints of the above m
tioned reference are parametrized in terms of the lapse
shift functions. In the present work we have parametrized
set of four constraints according to Eq.~26!, and identified
the Lagrange multipliers asea0. The final expression ofCa

acquires the total divergence2]kP
ak. This divergence is

different from the one that appears in the expression of
total Hamiltonian density of gravitational fields for asym
totically flat space-times, either in the metric@18# or in the
tetrad formulation@see, for example, Eq.~3.17! of Ref. @10#
or Eq. ~27! above; it is possible to show that the latter e
pressions are exactly the same field quantities#. We finally
note that the constraint algebra to be presented in the com
section has not been evaluated in Ref.@10#.

V. SIMPLIFICATION OF THE CONSTRAINTS AND
POISSON BRACKETS

The first two terms of the expression ofCa yield the pri-
mary Hamiltonian in the formea0H0. This fact can be easily
verified by expressing the first term of Eq.~25! as

2]kP
ak5ea0~2eb0]kP

bk!1ea j~2eb j]kP
bk!.

The second term considered above is the collection of te
in Eq. ~25! multiplied by ea0. Substituting definitions~11b!
and ~24! for D i j andgai j , respectively, into Eq.~25!, after a
long calculation we obtain a simplified form forCa,

Ca5ea0H01eaiFi , ~28!

with the following definitions:

Fi5Hi1GmT0mi1G lmTlmi1
1

2g00S gikgjl P
kl2

1

2
gi j PDG j ,

~29!

Hi52ebi]kP
bk2PbkTbki . ~30!

We denoteH0 the Hamiltonian constraint.Hi is the vector
constraint. This amounts to a SO~3,1! version of the vector
constraint of Ref.@12#. The true constraints of the theory a
Ca, G ik, andGk. Dispensing with the surface term the tot
Hamiltonian reads

H5ea0Ca1a ikG ik1bkG
k. ~31!

The Poisson bracket between two quantitiesF and G is
defined by

@F,G#5E d3xS dF

deai~x!

dG

dPai~x!
2

dF

dPai~x!

dG

deai~x! D ,

by means of which we can write down the evolution equ
tions. The first set of Hamilton’s equations is given by
08401
-
nd
e

e

ng

s

-

ėa j~x!5$ea j~x!,H%

5E d3y
d

dPa j~x!
@H0~y!1a ik~y!G ik~y!

1bk~y!Gk~y!#, ~32!

where H is the total Hamiltonian. This equation can b
worked to yield

Ta0 j52
1

2g00ea
kS gikgjmPim2

1

2
gk jPD

1ea
ia i j 1ea

0b j , ~33!

from which we obtain

1

2
~Ti0 j1Tj 0i !5c i j

52
1

2g00S gikgm jP
km2

1

2
gi j PD , ~34a!

1

2
~Ti0 j2Tj 0i !5s i j 5a i j , ~34b!

T00j5l j5b j , ~34c!

according to the definitions in Eq.~14!. Thus the Lagrange
multipliers in Eq.~31! acquire a well defined meaning. Ex
pression~34a! is in total agreement with Eq.~17!. Conse-
quently we can obtain an expression forP ( i j ) in terms of
velocities via Eqs.~15! and~16!. The dynamical evolution of
the field quantities is completed with Hamilton’s equatio
for P ( i j ),

Ṗ ( i j )~x!5$P ( i j )~x!,H%

5E d3yS dP ( i j )~x!

deak~y!

dH

dPak~y!

2
dP ( i j )~x!

dPak~y!

dH

deak~y! D , ~35!

together with

G ik5Gk50. ~36!

The calculations of the Poisson brackets between th
constraints are exceedingly complicated. Here we will j
present the results. Instead of consideringCa(x) in the cal-
culations below, we found it more appropriate to consid
H0(x) andHi(x). The constraint algebra is given by

$H0~x!,H0~y!%50, ~37!

$H0~x!,Hi~y!%52H0~x!
]

]yi d~x2y!2H0ea0] iea0d~x2y!

2F je
a j] iea0d~x2y!, ~38!
4-5
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$H j~x!,Hk~y!%52Hk~x!
]

]xj d~x2y!2H j~y!
]

]yk d~x2y!,

~39!

$G i~x!,G j~y!%50, ~40!

$G i j ~x!,Gk~y!%5~g0 jGki2g0iGk j!d~x2y!, ~41!

$G i j ~x!,Gkl~y!%5
1

2
~gil G jk1gjkG i l 2gikG j l

2gjl G ik!d~x2y!, ~42!

$H0~x!,G i j ~y!%5F 1

2g00PklS 1

2
gklgmn2gkmgnlD

3~gmiGn j2gm jGni!1
1

2

3~Gn jeai2Gniea j!]nea0Gd~x2y!, ~43!

$H0~x!,G i~y!%5Fg0iH01
1

g00PklS 1

2
gklgjm2gk jgmlD

3g0 jGmi1~Gniea01Gneai!]nea0

1
1

2
GmnTi

nm12]nGni1gin~Hn

2G jT0n j2Gm jTmn j!G
3d~x2y!1Gni~x!

]

]xn d~x2y!, ~44!

$Hi~x!,G j~y!%5d i
jGn~y!

]

]yn d~x2y!1G j~x!
]

]xi d~x2y!

2G jea0] iea0d~x2y!, ~45!

$Hk~x!,G i j ~y!%5G i j ~x!
]

]xk d~x2y!1~dk
j Gni~y!

2dk
i Gn j~y!!

]

]xn d~x2y!1
1

2
~ea j~x!G i~x!

2eai~x!G j~x!!
]

]xk ea0~x!d~x2y!. ~46!

It is clear from the constraint algebra above th
H0 , Hi , G ik, andGk constitute a set of first class constrain
Now it is easy to conclude thatCa, G ik, andGk also consti-
tute a first class set. By means of Eq.~28! we have
$Ca(x),Cb(y)%5ea0(x)$H0(x),H0(y)%eb0(y)1H0(x)
3$ea0(x),H0(y)%eb0(y)1••• . On the right hand side o
this Poisson bracket as well as of the brack
08401
t
.

s

$Ca(x),G ik(y)% and $Ca(x),Gk(y)%, there will always ap-
pear a combination of the constraintsH05ea0Ca, G ik, Gk

and

Hi5eaiC
a2GmT0mi2G lmTlmi2

1

2g00

3S gikgjl P
kl1

1

2
gi j PDG j . ~47!

The expression above follows from Eq.~29!. All constraints
of the theory are first class, and therefore the theory is w
defined regarding time evolution.

The Hamiltonian density@Eq. ~31!# determines the time
evolution of any field quantityf (x):

ḟ ~x!5E d3y$ f ~x!,H~y!%uG ik5Gk50 . ~48!

Physical quantities take values in the subspace of the p
spacePG defined by Eq.~36!. In this subspace the constrain
Ca become

Ca5ea0H01eaiHi . ~49!

Restricting considerations toPG we note that ifH0 van-
ishes, thenea0Ca also vanishes. Since$ea0% are arbitrary, it
follows thatCa50. In order to arrive at this conclusion w
note that the constraintsCa are independent ofea0. From the
orthogonality relationeameal5dm

l we obtain debm/dea0

52eameb0. Using this variational relation and Eqs.~22! and
~49!, it is possible to show that

dCa

deb0
5

d

deb0
~ea0H01eaiHi !52eb0ea0H0

1ea0
dH0

deb0
2ebiea0Hi

52eb0ea0H01ea0~eb0H01ebiHi !2ebiea0Hi50.

~50!

Hi does not depend explicitly or implicitly onea0. We re-
mark that by taking the variation with respect toeb0 of both
sides of Eq.~26!, H05ea0Ca, we arrive at

Cb5Cb5ea0

dCa

deb0
,

from which follows the general resultea0(dCa/deb0)50.
Taking into account the arbitrariness ofea0 in the latter equa-
tion, we are led to Eq.~50!.

Therefore the vanishing of the Hamiltonian constraintH0
implies the vanishing ofCa, and ultimately of the vector
constraintHi . Moreover we observe from Eqs.~47! and~49!
that Hi can be obtained fromH0 in PG according to

eai

d

dea0
H05eaiC

a5Hi . ~51!
4-6
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ThusHi is derivedfrom H0. In the complete phase space t
vanishing ofHi is a consequence of the vanishing ofH0 , G ik

andGk.
Finally we would like to remark that the Hamiltonian fo

mulation of the theory can be described more succinctly
terms of the constraintsH0 , G ik andGk, by the Hamiltonian
density in the form

H~eak ,Pak,ea0 ,a ik ,bk!5H01a ikG ik1bkG
k. ~52!

The Poisson brackets between these constraints are give
Eqs. ~37! and ~40!–~44!. They constitute a first class se
except for the fact that on the right hand side of Eq.~44!
there appears the constraintHi . However, this poses no
problem for the consistency of the constraints provid
H0 , G ik andGk are taken to vanish at the initial timet5t0.
Let f(xi ,t) represent any of the latter constraints. At t
initial time we have f(xi ,t0)50. At t01dt we find
f(xi ,t01dt)5f(xi ,t0)1ḟ(xi ,t0)dt such that ḟ(xi ,t0)
5$f(xi ,t0),H%. Since the vanishing ofHi at an instant of
time is a consequence of the vanishing ofH0 , G ik andGk at
the same time, the consistency of the constraints is gua
teed at anyt.t0.

VI. DISCUSSION

The Weitzenbo¨ck space-time allows a consistent descr
tion of the Hamiltonian formulation of the gravitational field
Although the underlying geometry is not Riemannian, t
Lagrangian field equations~4! assure that the theory dete
mined by Eq.~1! is equivalent to Einstein’s general relativit
To our knowledge there does not exist any impediment ba
on experimental facts that rules out the teleparallel geom
in favor of the Riemannian geometry for the description
the physical space-time. The natural geometrical setting
teleparallel gravity is the teleparallel geometry. The Ham
tonian formulation of the TEGR in the Riemannian geo
etry, with local SO~3,1! symmetry, requires the introductio
of a large number of field variables that renders an intric
constraint structure@19#.

We have shown that the vector constraintHi can be ob-
tained from the Hamiltonian constraintH0 by means of a
functional derivative ofH0, making use of the orthogonalit
properties of the tetrads in the reduced phase spacePG .
However, it is an independent constraint. In contrast, in
ADM formulation the Hamiltonian and vector constraints a
not mutually related, and in practice one has to consider b
constraints for the dynamical evolution via Hamilton equ
tions.

The number of degrees of freedom may be counted as
total number of canonical variables,eak and Pak, minus
twice the number of first class constraints. Therefore,
08401
n

by

d

n-

-

e

ed
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f
or
-
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e

th
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he

e

have 2422054 degrees of freedom in the phase space,
expected. Since the constraintsG ik andGk are first class, they
act on eak , and Pak, and generate symmetry transform
tions. In particular, foream we have

deak~x!5E d3z@« i j ~z!$eak~x!,G i j ~z!%1« j~z!

3$eak~x!,G j~z!%#5E d3zF« i j ~z!
dG i j ~z!

dPak~x!

1« j~z!
dG j~z!

dPak~x!G5« ikea
i1«kea

0, ~53!

where « i j (x)52« j i (x) and « j (x) are infinitesimal param-
eters. Note that these transformations donot act onea0. This
issue has not been completely analyzed. The physical im
cations of these symmetries to the theory are currently un
investigation.

In an analysis of a theory described by a Lagrangian d
sity similar to Eq.~1!, Mo” ller pointed out that some supple
mentary conditions on the tetrads are needed. He sugge
that these conditions arise from suitable boundary conditi
for the field equations, possibly in the form of an antisym
metric tensor. These supplementary conditions wo
uniquely determine atetrad lattice@4#, apart from a constan
rotation of the tetrads in the lattice. The problem of cons
tently defining these supplementary conditions is likely to
related to the symmetry transformation determined by
~53!.

The Hamiltonian density@Eq. ~52!# determines the time
evolution of field quantities via Eq.~48!, and in particular of
the metric tensorgi j of three-dimensional spacelike hype
surfaces. This property might simplify approaches to a
nonical, nonperturbative quantization of gravity provided w
manage to construct the reduced phase space determine
Eq. ~36!.

After implementing the primary constraints via Eq.~36!,
the first term ofCa is given by2] iP

ai, with Pai defined by
Eq. ~9!. From our previous experience~cf. Ref. @16#! we are
led to conclude that this term is related to energy and m
mentum of the gravitational field. In the present case we a
interpret equationsCa50 as energy-momentum equation
for the gravitational field. According to this interpretatio
the integral form of the constraint equationC(0)50 can be
written in the formE2H50. Integration of2] iP

ai over
the whole three-dimensional space yields the ADM energy
complete analysis of this issue will be presented elsewhe
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