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Cure for unstable numerical evolutions of single black holes: Adjusting the standard ADM
equations in the spherically symmetric case
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Numerical codes based on a direct implementation of the standard Arnowitt-Deser-NA&dr formu-

lation of Einstein’'s equations have generally failed to provide long-term stable and convergent evolutions of
black hole space-times when excision is used to remove the singularities. We show that, for the case of a single
black hole in spherical symmetry, it is possible to circumvent these problems by adding terms involving the
constraints to the evolution equations, thus adjusting the standard ADM system. We investigate the effect that
the choice of the lapse and shift has on the stability properties of numerical simulations and thus on the form
of the added constraint term. To facilitate this task, we introduce the concept of quasi-well-posedness, a version
of well-posedness suitable for ADM-like systems involving second-order spatial derivatives.
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[. INTRODUCTION stable modes could be purely numeri¢alg., the Courant
instability) or they could already be present at the continuum
In numerical relativity, Einstein’s equations are usuallylevel. An example of continuum instabilities are the so-called
solved as an initial value problem. That is, the space-time igonstraint-violating mode$2]. These are solutions of the
foliated with spacelike hypersurfaces. These hypersurface&instein evolution equations that do not satisfy the Hamil-
or S"ceS, are characterized by their intrinsic geom@m_ tonian-and momentum Constrai.nts. The genel’a|_percepti(_)n is
tial metric g;) and extrinsic curvature<;;. Subsequent that this class of solutions consists mostly of rapidly growing
slices in a given foliation are connected via the lapse funcSolutions, although there is no formal proof that this is in-

tion @ and shift vectorg' [1]. Under this framework, the deeld t_the C‘?‘t‘:‘]e;‘ In fsu?me}t(y,l %v?n ;L otne \t/yere tao start an
components of Einstein’s equation naturally separate ingg votution with “perfect” initial data that sa isfy the con-

. . : . . Straints, truncation error I he numerical solution
constraint and evolution equations for the dynamical van-St aints, truncation errors could cause the numerical solutio

ablesg; and K . Thus a typical procedure to construct ato drift into a constraint-violating, and perhaps unbound, so-

ii ists of first ifving Cauchv d lution.
space-time consists ot lirs spemfymg__ auchy a.K)) Various groups accumulated numerical evidence support-
that satisfy the constraints on the initial slice, and then ap;

, i X . ng, as a possible cause of instabilities, the particul&rl3
plying the evolution equations to update these data into thgym ysed to recast Einstein’s equation as an initial value
next slice. This procedure is known as free or unconstrainedohlem. These observations partially motivated the develop-
evolution. ment of hyperbolic formulations of Einstein equati¢Bs-8].

In order to propagateg; ,K;;) using the evolution equa- Hyperbolic formulations have the advantage that mathemati-
tions, one must provide, in addition, a prescription for choos<al tools exist to prove the existence and uniqueness of the
ing the lapse function and shift vector. One generally regardsolutions as well as well-posedness, thus providing important
the lapse-shift prescription as a choice of coordinates. At thinformation for the implementation of stable discretization
continuum level, given a lapse-shift choice and a specific sedlgorithms. If excision is used to handle the singularities,
of Cauchy data, the evolution equations yield not only anumerical simulations of black hole space-times require the
unique space-time metric expressed in a given coordinatinposition not only of outgoing, radiative boundary condi-
system but also evolved datg;{(,K;;) that continue to sat- tions far away from the holes but also of conditions on the
isfy the constraints. excision boundary that respect the propagation of physical

Numerical approximations are likely to complicate the modes to flow down into the hole. Because hyperbolic for-
picture described above. For instance, because of truncatianulations also yield information regarding the characteristics
errors, the datag; ,K;;) do not satisfy the continuum Ein- of all the field variables in the system, in principle this
stein constraints but rather their discrete approximationsknowledge could be extremely useful when applying these
Even if consistency between the numerical approximationgoundary conditions.
of the evolution and constraint equations is achieved, the Unfortunately, so far, none of the numerical efforts based
evolved data ¢;; ,K;;) will at best satisfy the constraints up on hyperbolic formulations of Einstein equations have been
to truncation errors. Of course, this is what one should exable to demonstrate their clear superiority. Currently, the for-
pect. However, the presence of numerical errors could alsmulation originally developed by Shibata and Nakam@ia
trigger fast growing modes that render the numerical evoluand later reintroduced by Baumgarte and Shafit6]
tion unstable. Characterizing and controlling these growingBSSN), seems to be the least prone to instabilities. Interest-
modes has been and continues to be one of the most difficultgly enough, the BSSN formulation is not explicitly hyper-
and demanding tasks in numerical relativity. bolic. Just recently, a numerical implementation of the

The origin of these destabilizing modes is multiple. Un- Einstein-Christoffel hyperbolic systerv] was applied to
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single black hole space-time, and produced threeable 7= d,¢, this equation takes the form

dimensional evolutions with stability properties comparable

to those using the BSSN formulati¢hl]. The common lore du=Payu+Qu, (2.9
these days is, however, that the standard Arnowitt-Deser-

Misner(ADM) [12] formulation is the one which most easily where

suffers from instabilitief13—15. On the other hand, the ® 0 0 0 1
ADM formulation has the advantage of containing a minimal u= , P=< and Q= ) .
number of equations, making it attractive for numerical stud- 7T 10 00

I€s. One can view the system of equatioi®sl) as an analog of

T_he main objectlve_ of this paper is to ShF"’.V that, 9VeN e standard ADM equations. Now, adding one more variable
choice of lapse function and shift vector, it is possible to — 3,0, We rewrite Eq.(2.1) as a first order system in both
— Ox¥y R .

obtain long-term stable and convergent simulations using th ;
standard ADM formulation if “appropriate” terms involving ime and space. That is,
the constraints are added to the evolution equations. Of
course, here the key ingredient is to understand what consti-
tutes an appropriate choice of constraint terms. We show thg{ith
at least in spherical symmetry, it is possible to obtain a defi-
nite prescription for adding these constraint terms that only [ 0 0 O 0 1 0
depends on the choice of gauge or coordinate conditionsy _ [ - A=l 0 0 1| and B=|l0 0 O
01 0 0

du=Ad,u+BU, (2.2

namely the lapse and shift. The idea of adding constraint ’
terms to the evolution equatiorigdjusted ADM formula- £

tions) is not new{ 16]. Just recently, Yoneda and Shinkai] .
studied in full detail the propagation of the constraints in theNOte that one needs to supplement sys{@ré) with the the

family of adjusted ADM systems constraintC=¢—4d, ¢. For this simple case, one can find

In order to help identify what constitutes a suitable choiceSStimates for the solution from Eq. (2.1) directly, but the

of constraint terms, we introduce a definition of quasi-well-Idea here IS not to do so but rather 1o use what is known
posedness. The idea of quasi-well-posedness is simply bO.Ut the first prder systef@.2). The matnxA has the fol-
make choices of lapse and shift such that, when the AD owing set of eigenvalues and eigenvectors:

system is enlarged with the addition of new variallgpi-

cally, but not always, quantities related to the first spatial
derivatives of the 3 metrjc one obtains a strongly hyper-
bolic system. Once a strongly hyperbolic system is obtained,
one can make use of standard results that apply to those
systems regarding the existence, uniqueness, and well- . -
posedness of the solutions. The essence of quasi-well- Ag=—1 with eigenvector e;=[0,~1,1].
posedness is then that the properties of the strongly hypeE

0 0

A\,=1 with eigenvector €;,=[0,1,1],

\,=0 with eigenvector e,=[1,0,0],
(2.3

. . ! 7 iven that matrixA has real eigenvalues and a complete
bolic system are to some degree inherited by the origina g b

. . ystem of eigenvectors, the system of equatiGh®) is
ADM system. The advantage of this procedure is that bystrongly hyperbolit and thus well-posed. In this case, the

quking at a.strongly hyperbo_lic system, one iS. also able tcfnatrix A is also Hermitian(symmetric hyperbolicity and
gain insight into the propagation of the constraints and charr-1615 real and distinct eigenvalugsrictly hyperbolig.

acteristics of the original system, thus improving the chances Since system2.2) is well-posed, we can establish the

of ?nbteé'z'gg |Tta\?v|§ ?rL:tToeijr:JCcael iﬁﬂugggié t of quasi-well- existence and uniqueness of the solution to sys(ard),
- P q éogether with the usual condition

posedness. The explicit form of the equations and initial dat
used in our numerical evolutions are described in Sec. IlI. ~ 2 M eat|T 2
The prescription to adjust the standard ADM equations is lluct, H[F<De{ju(o, )I* 2.4

pre_sented in Sec. IV. In Sec. V we investigate _in the impli-yith a andD independent of the initial data afid || the L,

cations of the presence of gauge modes. Next, in Sec. VI, we ~ .
. ) ) ' norm. Furthermore, because the vealocontainsu as part

discuss the quasi-well-posedness properties of the adjuste its components

ADM system under three lapse and shift conditions. For each P '

of these conditions, we present numerical results showing the

stability properties of the simulations. We end in Sec. VII

with concluding remarks.

lluct, HIP<I[uct, HI

IFollowing Ref.[18], a system is called symmetric hyperbolic if
Il. QUASI-WELL-POSEDNESS the matrix A is Hermitian. It is called strictly hyperbolic if the
eigenvalues are real and distinct; it is called strongly hyperbolic if
To understand the general idea of quasi-well-posednesge eigenvalues are real and there exists a complete system of
let us consider the initial value problem for the wave equa-igenvectors; finally, it is called weakly hyperbolic if the eigenval-
tion dy@ = dyye, ignoring boundaries. By adding a new vari- ues are real.
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It then follows from Eq.(2.4) that the solution of system except at the initial data. Finally, to facilitate our analysis, we
(2.1) satisfies the condition will only consider a single black hole in spherical coordi-
nates. The most general time-dependent spherically symmet-
lluct, HIP<De*(llu(o, )[P+]au(0, )IP). (25  ric metric in a 3+ 1 form is

We should remark that, although Eg.5) was derived using ds?=(—a?+a?B?)dt>+ 2a’pdtdr+a?dr?+ b%d0?,

L, norms, the solution could in general be bounded by the (3.5
initial data in some other Sobolev norm. The importance of

condition (2.5) and similar bounds is that it guarantees, where all functions are assumed to depend only amdt,
among other things, that the solutions to systéhi) will ~ dQ?=d6#*+sirfede?, andB=p". In these spherical coordi-
not have unbounded high frequency modes. In numerical cahates, the spatial metric, extrinsic curvature and Ricci tensor
culations however, this is not enough. For practical purposegre diagonal:
even large power-law growths such tsare likely to be

—di 2 h2 KW
extremely problemati€2]. g = diag(a®,b* b?sir ), (3.6
The idea is then to investigate quasi-well-posedness in the P
standard ADM formulation. That is, given a choice of lapse K'j=diagKa,Kp,Kp), 3.7
and shift, one enlarges the standard ADM system introducing ; )
R=diagRs,Rp,Rp). (3.9

new variables that render the system at least strongly hyper-
bolic. Existence, uniqueness and well-posedness for the . . .
ADM equations will then follow from the corresponding Theg-K equations take the forms
usual properties of the strongly hyperbolic system. In some _
instances, to obtain such hyperbolic formulations it is not (9= pdr)a= —aakytadp, (3.9
enough just to add the spatial derivatives of the metric as
new variables; one also has to add the constraints to the
evolution equations, or even take combinations of these evo-
lution equations. But the general idea is the same: add the (0~ B )K= — i(aza_ 10 ad.a
constraints and/or take the same combination in the ADM ' v 21777 a
equations as one does in the strongly hyperbolic system. It
will be in this sense that we will refer, in what follows, to the +a[Ra+ (Ka+ 2Kp)Kg], (3.1
guasi-well-posedness of some ADM systems.

It is important to mention that for this analysis we have 1
neglected the effects from boundary conditions. For the case (9= BIr)Kp=— @ﬁfb‘?r‘wr a[ Ry + (Kat+2Kp)Kp]
under consideratiorisingle black hole evolutions via exci- (3.12
sion of the singularity boundary conditions at the excised
region do not affect quasi-well-posedness since, as we shadnd the constraints
see, all the characteristics of the system are outgoing into the

(6,— Bd,)b=— abK,, (3.10

hole. At the outer edge of the computational domain, we use ~Rq 2

the exact analytic solution as boundary condition. Our nu- H=75 TRyt 2K K +K;;=0, (3.13

merical results show that this does not influence the proper-

ties drawn from quasi-well-posedness for the class of gauge d;b

choices and added constraint-terms we considered. M=d;Kp+(Kp=Ka)=-=0, (3.14
lll. g-K EQUATIONS where the components of the Ricci tensor are given by

Although the idea of quasi-well-posedness can be applied
to more general systems, throughout this paper we will con- R,= —(—aa§b+ d,adb), (3.15

R 3
centrate on the ADM evolution equationg-K equationy a’b
obtained from the vanishing of the Ricci tensor, i.e., L
— _ 2 3_ 2
00ij — Lg0ij = —2aKjj, (3.) Rp= a3b2[ bas’b+ba,ad,b+a—a(a,b)?]. (3.16
K= LgKij= = ViV e+ Ry + KK — 2K KE). Our numerical results consist of free evolutions of analytic,

(3.2 single black hole initial dataa b,K,,K;) in a computa-
tional domainr.<r=r,, wherer, denotes the location of
the outer boundary far from the hole, angd the excision
boundary inside the black hole horizon. The numerical code

As customary in numerical relativity, we will focus on free
evolutions; that is, we will not enforce the constraints

2H=R+K?2— K”-K” =0, (3.3 used solves thg-K equations in the interior of the compu-
. o tational domain by the method of lines. That is, the&k
M'=V;(K"-g"K)=0, (3.9 system has the generic form
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du=Bd,u+p, (3.17 points.2 Obviously, there is no reason to believe that the so-
lution error should behave agt—r)/r" for general choices
with u=u(a,b,K,,Ky) andp given by the right hand side of of lapse and shift. Another approach to construct outer
Egs.(3.9—-(3.12. The starting point is then to approximate boundary conditions that has been used is to b[@id the
the derivatives appearing pjnby second order accurate, cen- numerical solution to the analytic one beyond a certain ra-
tered finite differences. On the other hand, the the spatiaius,r.

derivative in the “advection” termBd,u is approximated by Finally, at the inner or excision boundary, the working
an upwind discretizatiofl9] of the form assumption is that all of the fields have outgoiigio the
hole) characteristics. We will show that for the gauge or co-
_(Ujp1—Ui—1)  (Ujz1—3Ui+3Ujx1— Ujso) ordinate conditions under consideration, this is indeed the
U= A= 2 Ar =4 3Ar ' situation. Therefore, there is no need to impose any boundary

(3.18 condition, and at, one can just apply the same system of
equations used in the interior of the computational domain.
whereq=0 and the choice of sign is given by=sgn(8).  However, a finite difference discretization would require
As we shall see below, for the black hole space-time metricSghost” values atr _;. We construct these values by extrapo-
under consideration, the shift vector is always non-negativelation. Another possibility, which is becoming popular in
Thus, the discretizatiofEq. (3.18] is only needed with the three-dimensional simulatio@2], is instead to extrapolate
upper sign. The above upwind discretization has a truncatiothe right hand side of Eq3.17) to ro=r,. Either approach

error was stable for the cases considered in the present work.
1 An important requirement when performing numerical
TiEArUi—(9rUi=—(1—ZQ)N2(9?U11—N3(9?1U1 _ s!mulatlons of black holes in which t_he. singularities are ex
6 6 cised from the computational domain is to use coordinates

(3.19 that are regular and penetrate the horizon. Foliations that

_ L penetrate the horizon facilitate the task of removing.,
Thus the discretization is second order accurate for anyycising a region containing the black hole singularity while
choice of the adjustable parametpiexcept foq=0.5when  yreserving the causal structure of the space-time exterior to
the truncation errors are @(Ar~). In our simulations, we  the event horizon. Thus the numerical results we present here
setq=0.5. This value yields both stable evolutions and mini-consist of numerical evolutions that for infinite resolution
mizes the amount of dissipation introduced by the discreticorrespond to the solution of a single black hole expressed in
zation. After the discretization of the spatial differential op- ingoing-Eddington-Finkelstein(IEF) and also Painléve
erators, Eq.(3.17 becomes a set of ordinary differential Gyistrand (PG) [23,24. coordinates. The IEF coordinates
equations for the interior grid poin{s;}i—1 . n-1. The grid  coincide with Kerr-Schild coordinates in the case of zero
valuesry andry denote the locations of the inner and outer gngular momenturfi25]. Recently, Martel and Poissd@6]
boundaries, respectively. The temporal updating of thesgaye showed that the PG and IEF coordinates are members
equations is carried out via an iterated Crank-Nicholsoryf the same one-parameter family of coordinate systems.

method[20]. Note that at the outermost grid poing-;, the In IEF coordinates, the line elemefifq. (3.5)] takes the
upwind schem¢Eq. (3.18] requires “ghost” values aty.1.  explicit form

These values are computed using second or third order accu-

rate extrapolations. 2m| ., 4m 2my o,
Next is the implementation of boundary conditions. As d°=—{1——/|dt +——dtdr+| 1+ ——|dro4redQ”.
mentioned above, there are two boundaries in the problem, (3.2

one far from the black hole aty=r, and a second at the

point of excisionfry=r.. The boundary condition usedigf = The ADM variables in these coordinates are given by
is that all field variables take the values provided by the
exact analytic solution. It is important to note that in previ-
ous efforts in numerical evolutions of spherically symmetric
black hole space-times, the stability of the evolutions de-
pended not only in the location of the outer boundary but 2m 2m\ 1
also on the imposition of “outgoing” boundary conditions. ﬂ=—( 1+ ) ,
One of these outgoing conditions is constructed by assuming

that the solution erron—u is of the forme(t—r)/r", with u
the analytic exact solution. This condition yields a=

—1/2

; (3.22

2m

(3.23

; (3.29

—  (u-u)
&tu=—aru+(3ru+n( ; ), (3.20 b=r, (329

to be applied at the nodal grid point=r, The outgoing 2lt is important to emphasize that this outgoing condition applies
condition [Eqg. (3.20] is then added to systerf8.17) and  only to the assumed behavior of the solution error since in spheri-
handled with the same method of lines used for the interiocally symmetric space-times there is no gravitational radiation.
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2m —3/2 B(n)=diag—aKa+a,B,—aKb,2aKb,aKa).
) , (3.26 4.3

C(n contain the remaining terms that cannot be written in
(3.27) the form B(nyu) . with _B(n) independent _ofu(n). If one
views each equation as independent, th#,i8 ), andC,,
as given and independent afy,), Egs.(4.1) rapidly admit
Similarly, for PG coordinates, growing solutions ifB(,)>0, exponentially growing iB
and B are non-negative constants. Obviously, when Egs.
di2+2 lz—mdtdr+dr2+r2d92 (4.1) are considered as a coupled sy;tem of equations, one
r cannot guarantee the above conclusion. However, we have
(3.28 been able to track the problems observed in our numerical
evolutions to those terms for whidsy,>0.

In IEF and PG coordinates, the second and fourth compo-
nents ofB, are nonpositive. The first component Bf,
vanishes for PG coordinates and is positive for IEF coordi-
nats. Finally, the third component @&, is always non-
B=\/—, (3.30  hegative for both IEF and PG coordinates. Our numerical

r experiments indicate that the origin of the instabilities is due
to the term involvingB ,-3y=2aKy . The term in IEF coor-
a=1, (3.3 dinates involvingB -1y with the “wrong” sign did not seem
to affect the evolutiongsee results below
b=r, (3.3 The objective is then to find a way to “change the sign”
of B(,=3). Fortunately, the combinatiok,K, also appears
K= B (3.33 in the Hamiltonian constraif€q. (3.13]. One can then add
& 2r’ ' a term of the form— uaH to the evolution equation fdf , .
As a consequenceB,-3=2(1—u)aKy. Therefore, in
principle, any value ofu=1 should produce stable evolu-
(3.34 tions. Our numerical simulations show that=2 is an opti-
mal value to reach quickly the time independent solution.
The geometrical interpretation of the IEF coordinate systenHowever, the same experiments indicate also that even val-
is that in addition to having a timelike killing vector, the ues ofu~0.5 yield stable evolutions. The reason for this is

combination of timelike and radial tangent vectdysd, re-  likely because the simple analysis above does not take into

mains null. In terms of the space-time metric, this conditionconsideration the non-linear coupling in the equations.

is stated a®);— 29, + g, =0, or similarly in terms of 3-1

metriq functions a$z=a(1—_ﬁ). On the other hand, the PG _ V. LINEAR GAUGE MODES

coordinate system can be viewed as that anchored to a family

of freely moving observeréimelike) starting at infinity with A potential source of instabilities in numerical simulations

vanishing velocity[ 26]. is the presence of gauge modes. Gauge modes arise because
Finally, in numerical evolutions of spherically symmetric a prescription of the lapse and shift is not sufficient for com-

space-times, it is useful to monitor not only the Hamiltonianplete gauge fixing. If the lapse and shift functions are, for

and momentum constraints but to pay attention also to théstance, determined from algebraic expressions or differen-

dsz=—(1—27m

and

a=1, (3.29

mass functior{30] tial equations, there still remains freedom to perform a coor-
dinate transformation that takes us frong;;(K;) to
b ~ & . . S .
Ft)==(1—V bV*b). 3.3 (9ij ,Kjj), leaving the Iapse-sh!ft presquptlon mvarlant.. In
M(r.Y 2( w ) (3.39 other words, the datag(; ,K;;) will be unique up to coordi-

o . ) o nate transformations that leave the lapse-shift prescription
In vacuum, thisM is the gauge invariant definition of mass. jnvariant. One can then encounter a situation in which the

transformed pair @; ,K;;) continues to satisfy the con-

IV. ADJUSTED ADM SYSTEMS straints, but possesses unbounded growth. In principle, be-
Each of the equations in theK or standard ADM system Cause @ij ,K;;) are allowed solutions to the evolution equa-
(3.9~(3.12 has the form tions, through numerlcal convergence and monitoring pf the
constraints one could single out these modes. In practice the
iU (my— BIrUgm=BmUm+ Cm) (4.1  situation is not that simple. Gauge conditions that allow the
rapid growth of grid functions are likely to trigger numerical
(no summation oven), with instabilities.
To investigate these modes, let us consider an infinitesi-
Umy=(a,b,K4,Kyp), (4.2 mal coordinate transformation
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XH— XM+ EX, (5.1)  spatial metricg;; and extrinsic curvaturdS;; . This simple
setup does not yield stable evolutions.
This transformation induces a linear perturbation of the Choosing the lapse and shift to be given by exact analytic

space-time metric, solutions implies that in the coordinate transformations
above,sa= §B=0. We shall call this the “exact lapse plus
9=t 094y, (5.2 exact shift” (EL+ES) condition. It is clear from Eq$5.7)—
of the form (5.11) that the ELL-ES choice does not fix the coordinates

uniquely, but rather results in a nontrivial system of partial
89,0= L9, - (5.3 differential equationgPDE’s) to be satisfied byt and or.
The solutions to this PDE system form an equivalence class
In spherical symmetry, the most general coordinate transforef gauges all satisfying the same condition on the lapse and

mations are shift. At the analytic level, one selects a unigue member of
this equivalence class by imposing boundary and initial con-
t—=t+48t(r,0), (54 ditions. Numerically, however, because of truncation errors,
this is only possible if the evolution is stable.
F—r+or(r.p), (5.9 Substitution ofsa=88=0 in Eqgs.(5.12—(5.14 yields
i 89t — B9y = 6gu— B> 69, =0. Using Egs. (5.7~(5.9),
or equivalently these conditions can be rewritten in terms of the gauge per-
Er=(6t,6r,0,0). (5.6)  turbationg” as
Given Eq.(5.6), the gauge induced perturbations of the met-
ric take the forms E=A0,E+BE, (5.19
89y = —2(— a®+a?B%)d,8t—2a*Ba,or
—d(— a®+a?B%) ot—a,(—a®+a?B%)sr, (5.7) where
89y = —a%Bd,0t—a%s,or — (— a’+a?B?)d, ot 0
—a?Ba, 51 — a(a2B) St— d,(aB) o, (5.8 5:( A I
or — B
89, = — 2a%Bd, 6t— 2a29, 6r — a,(a?) st— 9,(a?) or, a?
(5.9
89 99=— 9(b?) dt—d,(b?) ér, (5.10  The matrixA has a degenerate eigenvalue 8 and a cor-
o responding eigenvectce=[0,1]. Therefore, the system is
09 4p=09psSIN 0, (51D only weakly hyperbolic and thus ill-posed. It is then not pos-

sible to guarantee the absence of rapidly growing gauge
modes. Gauge instabilities, by themselves, do not violate the
constraints; however, they are likely to trigger numerical in-

stabilities and thereby couple to constraint-violating modes.

with all remaining components vanishing. On the other hand
from Eq.(3.5), the components of the perturbed me#g,,,
above are also given by

591 = —2a5a+2a5a,82+2a2,85,3, (5.12) Note that this conclusion does not depend on the use of the
standard ADM formulation, but applies to any initial value
59, =2asaB+a2sp, (5.13  formulation of Einstein’s equation. This is likely the reason
why it has not been possible to produce hyperbolic formula-
59,,=2ada, (5.14  tions of Einstein equations using the EES lapse-shift con-
dition. Other groups reported numerical instabilities associ-
59ys=2bdb. (5.15  ated with an EH-ES prescription(See, for example, Refs.

[27,28.) Our result, which provides some analytic insight
In studying these gauge perturbations, we consider a numbaérto the source of these instabilities, extends the analysis of
of different prescriptions for choosing the lapse and shift.Ref.[27] by including perturbations of a general spherically
These impose restrictions on the componentégyf, to lin-  symmetric space-timgEq. (3.5] and by making no assump-
ear order, but are not sufficient for complete gauge fixing. tions about the form of the coupling between gauge and

One piece of evidence usually given to argue for theconstraint-violating perturbations.

highly unstable properties of the standard ADM formulation  Finally, the inability to guarantee the absence of unbound
is its inability to simulate single black hole space-times. Spegauge modes does not necessarily imply that it is impossible
cifically, the problem consists of using a known analyticto design an evolution scheme that is long term stable and
black hole solution of Einstein’s equation to construct initial convergent. As we shall see, by adjusting the standard ADM
data, set boundary conditions, and specify the lapse and shiffystem with constraint terms, stable evolutions are possible
Given this input, the output is the numerical evolution of theeven in the presence of these gauge modes.
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VI. STABLE ADJUSTED ADM SYSTEMS IN ONE equation forb. We do not explicitly write the matriB since
DIMENSION it is not necessary for the analysis below. However, we must
mphasize that, in order to achieve stability, a valueguof
=1 is in principle neededsee Sec. IV.

Although this EL+ AL case is not representative of the
general ADM equations, where second spatial derivatives do
appear, we will use it to introduce the main techniques and
ideas regarding quasi-well-posedness. We note first that the
matrix A has eigenvalues

We consider next a series of lapse-shift choices. For eac
choice, we investigatél) the quasi-well-posedness of the
resulting system of adjusted ADM evolution equatio(®,
the propagation of the constraints, a8l the convergence
and stability of numerical simulations.

A. Exact lapse plus area locking

We can take advantage of the assumed spherical symme- A=B, (6.9
try of the problem and “lock” the area of constantsur-
faces. That is, we exploit the lapse-shift freedom and set =B+ a (6.5)
:949=0, or equivalentlyy,b=0 V t. From Eq.(3.10, this 2 a’ '
yields
a
0=—Bd,b+ abKy, (6.1 A== (6.6)

which can be seen as an algebraic equation to solvg far

. and corresponding eigenvectors
a. We will use Eq.(6.1) as P geq

B=—p (62
r s ropa+2(l—pa 1 6.9
with b determined by the initial data. In our case, for both ? 7 a T
IEF and PG coordinatefh=r. In addition, we choose an
exact lapse, i.e., an arbitrary batpriori specified function 6.=| —ar rora+2(l-—pa 1 6.9
of space-time. Here again, since the goal is to reproduce 3 ' a ' '

numerically the analytic solution, we set the lapse to that
given by the IEF or PG solutions. Because all of the eigenvalues are real and distinct, system
This exact lapse, area locking (EIAL) gauge condition (6.3 is strictly hyperbolic independent of the addition of the
was previously investigated in Ref27]. However, the constraint term. The EEAL system of equations is then an
implementation of locking the area was done at the numeriexample of a hyperbolic system that, unless suitable
cal level. That is, conditior(6.2) was not explicitly used. constraint-terms are added, is subject to developing rapidly
Instead, during the temporal updating of grid functions, agrowing solutions(see Ref[2] for another example It is
correction to the shift was introduced to keep the aredlso important to note thak; represents a characteristic
locked. With this numerical area locking and with a blendingspeed corresponding to propagation along the timelike nor-
of outer boundary conditions, stable simulations were remal to the foliation. Similarly\, and\; are characteristic
ported in Ref..[27] for computational domains with,  Speeds along the light cone.
=11m. Let us now consider the particular case of initial data and
Interestingly enough, this ELAL choice of lapse and lapse function constructed from the single black hole solu-
shift yields an ADM system of equations already first ordertion in IEF or PG coordinates. The eigenvalues are given in

in space and quasi linear: namely, these coordinates by
du=Ad,u+Bu, (6.3 . 2m [2m 6.1
. Yr+2m™ NV (6.10
with
2m
B 0 aar No=1=\/ 71, (6.11)
a ro,a+2(l—pu)a
K d A r a3r '8 0 N _2m_r _ 2m 1 6.1
u=| "a] an B ’ S 2m+r NV 7 ©.12
Ky
* 0o B where the first and second equalities are for IEF and PG
asr coordinates, respectively. Since the excision boundarig
by construction inside the black hole horizére., r.<ry
where 8 is given by Eq.(6.2) and we have seb=r to = =2m), we have that all the eigenvalues are positive there.

simplify notation. In the numerical evolutions, however, we By looking at the principal part of E46.3), it is easy to see
do not setb=r. The numerical code includes the evolution that non-negative eigenvalues imply a propagation of field
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variables in the direction of decreasingoordinate. There- 1078 T T
fore, atr, all the fields propagate out of the computational
domain into the hole singularity; thus boundary conditions
are not required. On the other hand, at the outer boundan
ro, one has\;<<0, with the remaining eigenvalues still non- - 1
negative. Atr,, one has then two ingoing modes,(and

\») and only one outgoing mode\§). Given this informa-

tion, it is perfectly possible to impose a condition suppress-
ing modes entering the computational domain. However, as_«
we mentioned above, we choose not to do so and impose &=
r, the analytic, exact solutions. The direct consequence will
be the appearance of a pulse at the outer boundary of th
computational domain due to discontinuities in the truncation
errors between the outermost evolved point and the boundar
pointr,. This pulse propagates in the direction of the black
hole and leaves the computational domain through the exci:
sion boundary.

The next step is to analyze the effect that the+#L 10-8 el L
choice has on the propagation of the constraints. At the con 1 10 100
tinuum level, for arbitrary choice of lapse, shift and initial t (m)
data @;; ,Kjj) satisfying constraint¢3.3) and(3.4) and the FIG. 1. L, norm of the Hamiltonian constraint as a function of
evolution equationd3.1) and, (,3'2) guarantee, ignoring for _time for IEF initial data and the Et AL lapse shift. The computa-
the r_noment bc_Jundary condltl_ons, that the evolved data Wl|tiona| domain extends from,=1m to r,=40m. Lines from top to
continue to satisfy the constraints. If one now takes boundaryqom correspond to resolutions dfr =m/s, m/10,m/20,m/40,
conditions, into consideration it is important to keep in mindegpectively.
that boundary datag(; ,K;;) must satisfy the constraints. By o .
looking at the way constraints propagate, i.e., their characacteristic speeds along the light cone. Note that the con-
teristics, one gains insight into the allowed boundary condistraints at . propagate out of the computational domain into
tions consistent with the constraints. Another important asthe hole singularity, consistent with the outgoing propagation
pect of well-posedness in the propagation of the constraintef the field variables at., namely the tilting, into the black
is that it guarantees that there will be no unbounded higthole, of the light cone. At the outer boundary, there is an
frequency growth appearing in the constraints if they are noingoing mode §,>0). Therefore, one has, as expected, to
exactly satisfied at the initial slicéor example, due to nu- be careful to provide data at, consistent with this entering
merical errors This well-posedness for the constraint propa-mode. Since we are imposing at the outer boundary the ana-
gation is a nontrivial property, not possible to prove for alytic IEF and PG solutions, the data faf already satisfy the
generic formulation of Einstein’s equatiof&9]. constraints. However, as mentioned above, choosing the

What we look for are evolution equations for the con-lapse and shift does not completely fix the gauge freedom;
straints, equations that would hold if systéén3) is satisfied.  thus one still has to be careful handling the gauge modes
They can be found by taking time derivatives in both sides ofdescribed in Sec. V.

Egs.(3.13 and(3.14), replacing the time derivatives of the  Figure 1 shows thé&, norm of the Hamiltonian constraint
metric by the right hand sides of Eg8.9—(3.12, and fi-  as a function of time. The initial data are given by the IEF
nally expressing the metric and its spatial derivatives inanalytic solution[Eq. (3.21)], and the lapse and shift are
terms of the constraints and their spatial derivatives. Followchosen from the Et AL conditions. Similar results were
ing this procedure, it is not too difficult to show that obtained with PG coordinates. The computational domain
extends fromr,=1m to r,=40m. We tried larger and
dw=Pdv+Qu, (6.13  smaller values for,. However, the stability of the simula-
tions was not affected by the location of the outer boundary.
where now We use an upwind parametgre=0.5 and a constraint-term
parameteru=2. We show runs for resolutions oAr
4o =m/5, m/10, m/20, andm/40, with At=0.25Ar. The run

( B 2 with Ar=m/5 has a resolution similar to those used in three-

v=

104

10-5

and P= ' (6.14) dimensional simulations of black hole collisions.
Figure 2 shows thé, norm of the Hamiltonian constraint

B (top) and theL, norm of the maspEq. (3.35] error (bottom)

taken at timet=200m as a function of resolution. The con-
_ _ vergence rate implied by the Hamiltonian constraint is 2.18,
The matrixP has eigenvalues; =\, and\,=\3 , with \, and that imphed by the mass error is 1.7. The convergence
and\; given by Eqs.(6.5 and(6.6), respectively. This im- rate from the Hamiltonian constraint is larger than second
plies that systen(6.13 is also strictly hyperbolic with char- order because we used third order accurate discretizations of

a
4
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' ' T T T : accuracies and convergence is because of the gauge invariant
nature of these quantities. Finally for reference, in Fig. 3 we
show thel , norm of the solution Hamiltonian constraint as a
function of time for runs with resolutioAr =m/10, varying

the parametep. Different lines correspond to values pf
=0.0, 0.025, 0.5, and 2 in order of stability improvement. It

is clear from this figure the dramatic effect that the added
constraint term has on the stability of the simulations.

10-%

B. Ingoing null plus area locking

1073 The ingoing null + area locking (IN-AL) recipe to
specify the lapse and shift consists, in addition to locking the
areal coordinate, of imposing the condition that the vector
dy— d, remains null throughout the evolution. This null con-
dition is only compatible with the IEF case, since, by con-
struction, the IEF solution is based on ingoing null observers.
An analogousingoing timelikg condition can be obtained
for the PG case. In terms of the space-time metric, the ingo-
Ar (m) ing null condition is stated agy—2 g +9,,=0, or simi-
larly in terms of 3+1 metric functions in Eq(3.5 as

ll1—mll,

10—

FIG. 2. L, norm of the Hamiltonian constrair(top) and L,
norm of the mass errofbotton) as functions of resolution. The a=a(l-p). (6.19
errors plotted were obtained &t 200m. The convergence rate im-
plied by the Hamiltonian errors is 2.18, and that implied by the Conditions(6.15 and(6.1) yield
mass error 1.7.

(6.16

the advection term as well as third order accurate extrapola- “ arkK,+1

tions at the excision. On the other hand, the convergence rate

obtained from the mass error is less than second order bgyhere we have seb=r, since by constructiom remains

cause the mass function is proportionaldd, a quantity |ocked tor. This prescription for the lapse and shift was

difficult to handle numerically near the singularity. The rea-successfully applied in the pag0—-33.

son for using the Hamiltonian constraint and mass to monitor |n order to make the ADM equations in the H\AL

gauge a first order in space system, we need to introduce two

0.1 — T — T new variablesv=4,a andy=4,K,. Even after this choice

is made, there is no unique way of writing the resulting equa-

tions as a quasilinear system. The reason for this is the am-

biguity one encounters when dealing with terms involving

d, a. One has the choice to either keep itsaa, substitute it

with w, or a combination of both. Either choice changes the

0.01 -
- ] principal part of the equation. However, in our case, we need
C ] only find a choice that yields a strongly hyperbolic system. It
r T turns out that the simplest choice of replacifi@ by w ev-
EN i ] erywhere yields a system that is well-posed. That is, the re-
~ 102 L - sulting ADM equations have the form
- du=Ad,u+Bu, (6.17)
| with
107 & E
- ] a
L 1 1 | | 1 1 1111l I 1 1 L1111 | i Ka
1 10 100 103
t (m) u=| Kp (6.18
FIG. 3. L, norm of the Hamiltonian constraint as a function of y
time for A=m/10 andr,=40m. Each line corresponds to different W
values of the constraint-term parameterThe values ofu are 0.0,
0.025, 0.5, and 2 in order of stability improvement. and
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0 0 0 0 0 a(f?+a2-1)
(= d)a=———- (6.29
0 zarK, O r —a 2 2r(1+1)
1 (f°+a%—1)
=—]10 0 0 0 0 - = = -
A ZZ ' (at &r)f r(l+f) (625)
2,212 -1
0 zak, 0 zta’T'kK, —a K The general solutions of these equations are
0 —-za 0 a’r arkKy(1+z) 2m 2m
(6.19 f=—-Cl1-—] (6.26
where we have introducer=1+ar K, to simplify the no- a?=(1+C)(1+f) (6.27)

tation. The corresponding eigenvalues and eigenvectors are

whereC=C(t+r), andm is a constant. In terms of the 3

N1=0 with eigenvectors él=[1,0,0,0,q, +1 variables, the solutions read

- f
e,=[0,0,1,0,0, (6.20 a’=(1+C)(1+f), b?=r?2 K,=4, 5/
A,=1 with eigenvectors e;=[0,1,0,0;-z a*], f a f
. e T A nen (629
e,=[0,0,0,1ar], (6.22)
with the line elemeniEqg. (3.5)] given explicitly by
\ arK,—1 ith e . om
= ———— with eigenvector
3T g d?=—(1+C)?| 1- —|dt?+2(1+C)
es=[0,1,0akKy,a?]. 6.2 2m 2m 2m
5=l b ] 6.22 X[T—(l—T)C}dtdrﬁ-(l-ﬁ-C) 1+T
Note that all the eigenvectors are independent, and thus the
system is strongly hyperbolic. Also note that the eigenvalues 2m 2 242
N\, and \; are again characteristic speedd* a/a) along B 1_7 C|dro+radO”. (6.29

the light cone. Furthermore, in IEF coordinatés,=(2m
—r)/(2m+r). Therefore, one encounters a situation similarBy settingC=0 one recovers the IEF solutidizq. (3.21)].
to that of the El+ AL case; namely, at, all the eigenvalues Also, it is not difficult to show from the gauge invariant
are non-negative, and af one has that onlj\;<0. The  definition of mas$Eq. (3.35] that the parametan s indeed
existence, uniqueness, and well-posedness far AN then  the mass of the black hole. An important property of general
follows as with the El+ AL case. solution (6.29 is that it explicitly shows the residual gauge
Regarding the constraints, their evolution is also defreedom associated with the #NAL choice of lapse and
scribed by a strongly hyperbolic system with characteristicshift. We have explicitly found the equivalence class of so-
speeds along the light cone. It is important to stress that odktions gauge related to the IEF solutions that satisfy the
ADM equations already imply this, i.e., the evolution doesIN-+AL lapse-shift condition.
not have any relation to making the evolution equations first We repeat the same type of numerical experiment as with
order in space. In fact, the principal part of the evolutionthe EL+AL case; the same parameter values, resolutions,
equations for the constraints is exactly the same as in theoundary conditions, and initial data. However, lapse and
EL+ AL gauge, but now the lapse and shift are given by Eqshift are constructed in this case from E§.16. Figure 4
(6.16). Thus the analysis and conclusions also follow as inshows thel, norm of the Hamiltonian constraint as a func-
that case. tion of time for different resolutions. Figure 5 shows the
An interesting aspect of the INAL choice is that it is norms of the Hamiltonian constrairitop) and mass error
possible to find a general solution to Einstein’s equations. Webottom) for different resolutions. The convergence rates are
start by definingf=r a K,. We then use momentum con- similar to those in Ek-AL, namely 2.19 from the Hamil-
straint(3.14 to eliminateK, from the other equations. The tonian constraint and 1.7 from the mass error. Finally, Fig. 6
outcome is that we need only to solve three of the four equashows thel., norm of the Hamiltonian constraint as a func-
tions (3.9 and (3.11)—(3.13. We choose to work with the tion of time for a resolution ofAr =m/10. Different lines

Hamiltonian constraint[Eq. (3.13] and Egs. (3.9 and
(3.12. The resulting system of equations reads

O=a(f?+a?—1)+2rafg,f+2r(1—f?)g,a,
(6.23

correspond to values @f=0.0, 0.025, 0.5, and 2 in order of
stability improvement. It is clear from these results that the
stability behavior of the system of equations under the IN
+AL gauge choice closely follows that of BLAL gauge
choice.
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10_3 [y T T T T T LB T T T T T T 1 1] : T T T T T T T . :
- 1 107 & =
i 1 = i ]
107 = 3 i 1
- ] 107 & E
:‘\l i T : 1 [l ] 1 1 1 1 | ] :
5 - - - T T T T T T T I T
10 E E
107 = F ]
r . T C ]
T - ]
i | 1o e E
10-8 1 1 1 1 1 Ll | | 1 1 1 1 1 L1 | : | | | | | | | | ) :
10 100 o1
t (m) Ar (m)
FIG. 4. Same as in Fig. 1 but for the #\AL case. FIG. 5. Same as in Fig. 2 but for the #NAL case.
C. Exact lapse plus exact shift du=Ad,u+Bu, (6.30

Finally, we consider the case in which the lapse functionwith
and shift vector are prescribed by exact analytic solutions. To
date, with the standard ADM system, it has not been possible a
to obtain long-term stable and convergent numerical evolu- b
tions under the Ek ES choice. Before we present results of

EL+ ES evolutions using the adjusted ADM system of equa- u=| Ka (6.3
tions, let us investigate its quasi-well-posedness properties. Ky
To make the evolution equations first order in space, we add y
a new variable/=d,b. Once more, the resulting set of equa-
tions has the form and
|
B 0 0 0 0
0 0 0 0 0
bo,a+2(1—u)ay 05 0 _2(1—,u)a
A= ash a’b ) (6.32
2 o0 5
ba® a’b
0 0 0 —ab B
|
The matrixA has eigenvalues A3=0, (6.35
)\l=B7 (633) )\4:B+ a/a, (63@
No=p, (6.39 Ns=pB—ala. (6.37
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0.1: T T T T 11T T T T T T T T TTTT E and
- ] 3 4o
L 4 a2
001 | _: p= . (6.40
u ] @
L ] 2 B

IIEdll,

This is, we have the same situation as before, namely propa-
gation of the constraints along with characteristic speeds
along the light cone.

We have carried out the same numerical experiments as
for the previous two cases. However, for the IEF solution,
the simulations with computational domains fog=40m
crashed. We have been able to identify two possible sources
behind this problem. One of them is the pulse originated at
the outer boundary due to discontinuities of the truncation

10-3

1 10 100 109 error. This pulse propagates in the direction of the black hole
t (m) (i.e., the decreasingcoordinat¢ with a characteristic speed
B. As the pulse travels its amplitude grows in time. This
FIG. 6. Same as in Fig. 3 but for the #\AL case. effect is shown in Fig. 7. Here we plot the solution error for

the metric functiona as a function of space and time for a
There are two fields that propagate with a characteristigesolution Ar=m/10 and outer boundary located af
speed ) along the normal to the hypersurfaces in the fo-=40m. The simulation stops because this pulse error in-
liation, one field with zero speed, and two other fields withcreases to the point that the metric functimhecomes nega-
characteristic speed@(- «/a) along the light cone. Itis not tive. For small computational domains,& 40m), the cross-
difficult to show that eigenvectors corresponding to the eiing time of this pulse is short enough and does not allow a
genvalue\ ;=\,= g are not distinct, whatever the value of catastrophic growth of the pulse. The pulse is able to leave
. Therefore, the system of equations is only weakly hyperthe computational domain through the excision boundary
bolic and thus not quasi-well-posed, as we have already seeatithout crashing the simulation. Since the initial amplitude
by considering the Ei:ES gauge perturbations by them- of this pulse isO(Ar?), i.e., the accuracy of the discretiza-

selves in Sec. V. tion, in principle one could find a resolution small enough
As in the previous two cases, the constraints propagatsuch that the growth of the pulse would not affect the life of
according to the simulation. However, accessing those fine resolutions in
three-dimensional simulations is likely to be impractical. The
dw=Pdv+Qu, (6.389  second, and perhaps more severe, source of the problem is

the presence of the zero velocity mode. Zero velocity modes

where now were in principle also allowed in the case of4ML; see Eq.
(6.20. However, the adjusted INAL system yields only
U:( H ) (6.39 numerical solutions of the general form of E§.29, which
M clearly does not contain a zero velocity modeuwk 0, these
Logq (lal) L=z

p
s
s
e

FIG. 7. Solution error for the metric function

a in IEF coordinates for the ELES case. The
resolution isAr=m/10, and the outer boundary
is located atr ,=40m. A pulse originated at the

40 location of the outer boundary, due to disconti-
nuities in the truncation error, propagates in the
direction of the black holédecreasing coordi-
nate. The simulation stops because this pulse-
error increases to the point that the metric func-
tion a becomes negative.

R R
oNOUOARN 2O

4500
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FIG. 9. L, norm of the solution error in PG coordinates of the

FIG. 8. L, norm of the Hamiltonian constraint in IEF coordi- metric functiona as a function of time. Each line correspond to
nates for the Et- ES case as a function of time. The resolutions aregjfferent resolutions:Ar=m/5, m/10, m/20, and m/40, respec-

Ar=m/10 andu=2. Each line corresponds to different location of tyely, from top to bottom.
the outer boundaryr,=20m(solid line), 30n (short dashed line

40m (long dashed ling 50m (short dashed-long dashed line
VIl. CONCLUSIONS

zero velocity modes are not suppressed and eventually ter- ,
minate the simulation. This catastrophic effect induced by Ve have demonstrated that, at least for the case of single

zero velocity modes was previously noted by AlcubierrePlack hple space-times in spherical symmetry, it.is pqssible

et al. [13]. to obtain long-term stable and convergent numerical simula-
Figure 8 shows thée, norm of the Hamiltonian constraint tions using the standard ADM system of equations if the

as a function of time with resolutioAr =m/10 for different ~€quations are adjusted by introducing terms involving the

locations of the outer boundary. For computational domaingonstraints. Results were presented for three choices of lapse

with approximatelyr ,<40m, the zero velocity mode is still @nd shift. In addition, we introduced the concept of quasi-

present, but is eventually damped. The reasons why thig/ell—posedr_less, which appears to be l_JsefuI in c_haracterlzmg

mode stops growing remain unclear. Nonetheless, there isthe properties of the system of evolution equations. We are

strong indication that this behavior is connected to the parcurrently investigating the extension of this approach to

ticular choice of coordinates used to set the exact lapse arfiree-dimensional evolutions.

shift. If, instead of the IEF solution, one sets the lapse and

shift from the PG solution, the outcome of the simulations is

completely different. E-ES simulations with a PG lapse ACKNOWLEDGMENTS

and shift are long term stable and convergent for arbitrary
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