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Cure for unstable numerical evolutions of single black holes: Adjusting the standard ADM
equations in the spherically symmetric case
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Numerical codes based on a direct implementation of the standard Arnowitt-Deser-Misner~ADM ! formu-
lation of Einstein’s equations have generally failed to provide long-term stable and convergent evolutions of
black hole space-times when excision is used to remove the singularities. We show that, for the case of a single
black hole in spherical symmetry, it is possible to circumvent these problems by adding terms involving the
constraints to the evolution equations, thus adjusting the standard ADM system. We investigate the effect that
the choice of the lapse and shift has on the stability properties of numerical simulations and thus on the form
of the added constraint term. To facilitate this task, we introduce the concept of quasi-well-posedness, a version
of well-posedness suitable for ADM-like systems involving second-order spatial derivatives.
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I. INTRODUCTION

In numerical relativity, Einstein’s equations are usua
solved as an initial value problem. That is, the space-tim
foliated with spacelike hypersurfaces. These hypersurfa
or slices, are characterized by their intrinsic geometry~spa-
tial metric gi j ) and extrinsic curvatureKi j . Subsequent
slices in a given foliation are connected via the lapse fu
tion a and shift vectorb i @1#. Under this framework, the
components of Einstein’s equation naturally separate
constraint and evolution equations for the dynamical va
ablesgi j and Ki j . Thus a typical procedure to construct
space-time consists of first specifying Cauchy data (gi j ,Ki j )
that satisfy the constraints on the initial slice, and then
plying the evolution equations to update these data into
next slice. This procedure is known as free or unconstrai
evolution.

In order to propagate (gi j ,Ki j ) using the evolution equa
tions, one must provide, in addition, a prescription for cho
ing the lapse function and shift vector. One generally rega
the lapse-shift prescription as a choice of coordinates. At
continuum level, given a lapse-shift choice and a specific
of Cauchy data, the evolution equations yield not only
unique space-time metric expressed in a given coordin
system but also evolved data (gi j ,Ki j ) that continue to sat-
isfy the constraints.

Numerical approximations are likely to complicate t
picture described above. For instance, because of trunca
errors, the data (gi j ,Ki j ) do not satisfy the continuum Ein
stein constraints but rather their discrete approximatio
Even if consistency between the numerical approximati
of the evolution and constraint equations is achieved,
evolved data (gi j ,Ki j ) will at best satisfy the constraints u
to truncation errors. Of course, this is what one should
pect. However, the presence of numerical errors could
trigger fast growing modes that render the numerical evo
tion unstable. Characterizing and controlling these grow
modes has been and continues to be one of the most diffi
and demanding tasks in numerical relativity.

The origin of these destabilizing modes is multiple. U
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stable modes could be purely numerical~e.g., the Courant
instability! or they could already be present at the continu
level. An example of continuum instabilities are the so-cal
constraint-violating modes@2#. These are solutions of th
Einstein evolution equations that do not satisfy the Ham
tonian and momentum constraints. The general perceptio
that this class of solutions consists mostly of rapidly growi
solutions, although there is no formal proof that this is
deed the case. In summary, even if one were to start
evolution with ‘‘perfect’’ initial data that satisfy the con
straints, truncation errors could cause the numerical solu
to drift into a constraint-violating, and perhaps unbound,
lution.

Various groups accumulated numerical evidence supp
ing, as a possible cause of instabilities, the particular 311
form used to recast Einstein’s equation as an initial va
problem. These observations partially motivated the deve
ment of hyperbolic formulations of Einstein equations@3–8#.
Hyperbolic formulations have the advantage that mathem
cal tools exist to prove the existence and uniqueness of
solutions as well as well-posedness, thus providing impor
information for the implementation of stable discretizati
algorithms. If excision is used to handle the singulariti
numerical simulations of black hole space-times require
imposition not only of outgoing, radiative boundary cond
tions far away from the holes but also of conditions on t
excision boundary that respect the propagation of phys
modes to flow down into the hole. Because hyperbolic f
mulations also yield information regarding the characteris
of all the field variables in the system, in principle th
knowledge could be extremely useful when applying the
boundary conditions.

Unfortunately, so far, none of the numerical efforts bas
on hyperbolic formulations of Einstein equations have be
able to demonstrate their clear superiority. Currently, the f
mulation originally developed by Shibata and Nakamura@9#,
and later reintroduced by Baumgarte and Shapiro@10#
~BSSN!, seems to be the least prone to instabilities. Intere
ingly enough, the BSSN formulation is not explicitly hype
bolic. Just recently, a numerical implementation of t
Einstein-Christoffel hyperbolic system@7# was applied to
©2001 The American Physical Society13-1
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single black hole space-time, and produced thr
dimensional evolutions with stability properties compara
to those using the BSSN formulation@11#. The common lore
these days is, however, that the standard Arnowitt-De
Misner~ADM ! @12# formulation is the one which most easi
suffers from instabilities@13–15#. On the other hand, the
ADM formulation has the advantage of containing a minim
number of equations, making it attractive for numerical stu
ies.

The main objective of this paper is to show that, given
choice of lapse function and shift vector, it is possible
obtain long-term stable and convergent simulations using
standard ADM formulation if ‘‘appropriate’’ terms involving
the constraints are added to the evolution equations.
course, here the key ingredient is to understand what co
tutes an appropriate choice of constraint terms. We show
at least in spherical symmetry, it is possible to obtain a d
nite prescription for adding these constraint terms that o
depends on the choice of gauge or coordinate conditio
namely the lapse and shift. The idea of adding constr
terms to the evolution equations~adjusted ADM formula-
tions! is not new@16#. Just recently, Yoneda and Shinkai@17#
studied in full detail the propagation of the constraints in
family of adjusted ADM systems.

In order to help identify what constitutes a suitable cho
of constraint terms, we introduce a definition of quasi-we
posedness. The idea of quasi-well-posedness is simpl
make choices of lapse and shift such that, when the AD
system is enlarged with the addition of new variables~typi-
cally, but not always, quantities related to the first spa
derivatives of the 3 metric!, one obtains a strongly hype
bolic system. Once a strongly hyperbolic system is obtain
one can make use of standard results that apply to th
systems regarding the existence, uniqueness, and w
posedness of the solutions. The essence of quasi-w
posedness is then that the properties of the strongly hy
bolic system are to some degree inherited by the orig
ADM system. The advantage of this procedure is that
looking at a strongly hyperbolic system, one is also able
gain insight into the propagation of the constraints and ch
acteristics of the original system, thus improving the chan
of obtaining stable numerical evolutions.

In Sec. II, we introduce the concept of quasi-we
posedness. The explicit form of the equations and initial d
used in our numerical evolutions are described in Sec.
The prescription to adjust the standard ADM equations
presented in Sec. IV. In Sec. V we investigate in the imp
cations of the presence of gauge modes. Next, in Sec. VI
discuss the quasi-well-posedness properties of the adju
ADM system under three lapse and shift conditions. For e
of these conditions, we present numerical results showing
stability properties of the simulations. We end in Sec. V
with concluding remarks.

II. QUASI-WELL-POSEDNESS

To understand the general idea of quasi-well-posedn
let us consider the initial value problem for the wave eq
tion ] ttw5]xxw, ignoring boundaries. By adding a new va
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ablep5] tw, this equation takes the form

] tu5P]xxu1Qu, ~2.1!

where

u5S w

p
D , P5S 0 0

1 0D and Q5S 0 1

0 0D .

One can view the system of equations~2.1! as an analog of
the standard ADM equations. Now, adding one more varia
j5]xw, we rewrite Eq.~2.1! as a first order system in bot
time and space. That is,

] tũ5A]xũ1Bũ, ~2.2!

with

ũ5S w

p

j
D , A5S 0 0 0

0 0 1

0 1 0
D and B5S 0 1 0

0 0 0

0 0 0
D .

Note that one needs to supplement system~2.2! with the the
constraintC5j2]x w. For this simple case, one can fin
estimates for the solutionu from Eq. ~2.1! directly, but the
idea here is not to do so but rather to use what is kno
about the first order system~2.2!. The matrixA has the fol-
lowing set of eigenvalues and eigenvectors:

l151 with eigenvector eW15@0,1,1#,

l250 with eigenvector eW25@1,0,0#,
~2.3!

l3521 with eigenvector eW35@0,21,1#.

Given that matrixA has real eigenvalues and a comple
system of eigenvectors, the system of equations~2.2! is
strongly hyperbolic1 and thus well-posed. In this case, th
matrix A is also Hermitian~symmetric hyperbolicity!. and
has real and distinct eigenvalues~strictly hyperbolic!.

Since system~2.2! is well-posed, we can establish th
existence and uniqueness of the solution to system~2.2!,
together with the usual condition

zuũ~ t, !uz2<Deatzuũ~0, !uz2, ~2.4!

with a andD independent of the initial data andzu u z the L2

norm. Furthermore, because the vectorũ containsu as part
of its components,

zuu~ t, !uz2< zuũ~ t, !uz2.

1Following Ref. @18#, a system is called symmetric hyperbolic
the matrix A is Hermitian. It is called strictly hyperbolic if the
eigenvalues are real and distinct; it is called strongly hyperboli
the eigenvalues are real and there exists a complete syste
eigenvectors; finally, it is called weakly hyperbolic if the eigenva
ues are real.
3-2
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CURE FOR UNSTABLE NUMERICAL EVOLUTIONS OF . . . PHYSICAL REVIEW D 64 084013
It then follows from Eq.~2.4! that the solution of system
~2.1! satisfies the condition

zuu~ t, !uz2<Deat~ zuu~0, !uz21 zu]xu~0, !uz2!. ~2.5!

We should remark that, although Eq.~2.5! was derived using
L2 norms, the solution could in general be bounded by
initial data in some other Sobolev norm. The importance
condition ~2.5! and similar bounds is that it guarantee
among other things, that the solutions to system~2.1! will
not have unbounded high frequency modes. In numerical
culations however, this is not enough. For practical purpo
even large power-law growths such ast4 are likely to be
extremely problematic@2#.

The idea is then to investigate quasi-well-posedness in
standard ADM formulation. That is, given a choice of lap
and shift, one enlarges the standard ADM system introduc
new variables that render the system at least strongly hy
bolic. Existence, uniqueness and well-posedness for
ADM equations will then follow from the correspondin
usual properties of the strongly hyperbolic system. In so
instances, to obtain such hyperbolic formulations it is n
enough just to add the spatial derivatives of the metric
new variables; one also has to add the constraints to
evolution equations, or even take combinations of these e
lution equations. But the general idea is the same: add
constraints and/or take the same combination in the AD
equations as one does in the strongly hyperbolic system
will be in this sense that we will refer, in what follows, to th
quasi-well-posedness of some ADM systems.

It is important to mention that for this analysis we ha
neglected the effects from boundary conditions. For the c
under consideration~single black hole evolutions via exc
sion of the singularity! boundary conditions at the excise
region do not affect quasi-well-posedness since, as we s
see, all the characteristics of the system are outgoing into
hole. At the outer edge of the computational domain, we
the exact analytic solution as boundary condition. Our
merical results show that this does not influence the pro
ties drawn from quasi-well-posedness for the class of ga
choices and added constraint-terms we considered.

III. ġ-K̇ EQUATIONS

Although the idea of quasi-well-posedness can be app
to more general systems, throughout this paper we will c
centrate on the ADM evolution equations (ġ-K̇ equations!
obtained from the vanishing of the Ricci tensor, i.e.,

] tgi j 2Lbgi j 522aKi j , ~3.1!

] tKi j 2LbKi j 52¹ i¹ ja1a~Ri j 1KKi j 22KikK j
k!.

~3.2!

As customary in numerical relativity, we will focus on fre
evolutions; that is, we will not enforce the constraints

2H[R1K22Ki j K
i j 50, ~3.3!

Mi[¹ j~Ki j 2gi j K !50, ~3.4!
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except at the initial data. Finally, to facilitate our analysis, w
will only consider a single black hole in spherical coord
nates. The most general time-dependent spherically sym
ric metric in a 311 form is

ds25~2a21a2b2!dt212a2bdtdr1a2dr21b2dV2,
~3.5!

where all functions are assumed to depend only onr and t,
dV2[du21sin2udf2, andb[b r . In these spherical coordi
nates, the spatial metric, extrinsic curvature and Ricci ten
are diagonal:

gi j 5diag~a2,b2,b2sin2u!, ~3.6!

K j
i 5diag~Ka ,Kb ,Kb!, ~3.7!

R j
i 5diag~Ra ,Rb ,Rb!. ~3.8!

The ġ-K̇ equations take the forms

~] t2b] r !a52aaKa1a] rb, ~3.9!

~] t2b] r !b52abKb , ~3.10!

~] t2b] r !Ka52
1

a2 S ] r
2a2

1

a
] ra] ra D

1a@Ra1~Ka12Kb!Ka#, ~3.11!

~] t2b] r !Kb52
1

ba2
] rb] ra1a@Rb1~Ka12Kb!Kb#

~3.12!

and the constraints

H[
Ra

2
1Rb12KaKb1Kb

250, ~3.13!

M[] rKb1~Kb2Ka!
] rb

b
50, ~3.14!

where the components of the Ricci tensor are given by

Ra5
2

a3b
~2a] r

2b1] ra] rb!, ~3.15!

Rb5
1

a3b2
@2ba] r

2b1b] ra] rb1a32a~] rb!2#. ~3.16!

Our numerical results consist of free evolutions of analy
single black hole initial data (a,b,Ka ,Kb) in a computa-
tional domainr e<r<r o , wherer o denotes the location o
the outer boundary far from the hole, andr e the excision
boundary inside the black hole horizon. The numerical co
used solves theġ-K̇ equations in the interior of the compu
tational domain by the method of lines. That is, theġ-K̇
system has the generic form
3-3
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BERNARD KELLY et al. PHYSICAL REVIEW D 64 084013
] tu5b] ru1r, ~3.17!

with u5u(a,b,Ka ,Kb) andr given by the right hand side o
Eqs. ~3.9!–~3.12!. The starting point is then to approxima
the derivatives appearing inr by second order accurate, ce
tered finite differences. On the other hand, the the spa
derivative in the ‘‘advection’’ termb] ru is approximated by
an upwind discretization@19# of the form

] rui'D rui[
~ui 112ui 21!

2 Dr
6q

~ui 7123ui13ui 612ui 62!

3Dr
,

~3.18!

whereq>0 and the choice of sign is given by65sgn(b).
As we shall see below, for the black hole space-time met
under consideration, the shift vector is always non-negat
Thus, the discretization@Eq. ~3.18!# is only needed with the
upper sign. The above upwind discretization has a trunca
error

t i[D rui2] rui5
1

6
~122q!Dr 2] r

3ui7
q

6
Dr 3] r

4ui .

~3.19!

Thus the discretization is second order accurate for
choice of the adjustable parameterq, except forq50.5 when
the truncation errors are ofO(Dr 3). In our simulations, we
setq50.5. This value yields both stable evolutions and mi
mizes the amount of dissipation introduced by the discr
zation. After the discretization of the spatial differential o
erators, Eq.~3.17! becomes a set of ordinary differenti
equations for the interior grid points$r i% i 51, . . . ,N21. The grid
valuesr 0 and r N denote the locations of the inner and ou
boundaries, respectively. The temporal updating of th
equations is carried out via an iterated Crank-Nichols
method@20#. Note that at the outermost grid pointr N21, the
upwind scheme@Eq. ~3.18!# requires ‘‘ghost’’ values atr N11.
These values are computed using second or third order a
rate extrapolations.

Next is the implementation of boundary conditions. A
mentioned above, there are two boundaries in the prob
one far from the black hole atr N5r o and a second at th
point of excision,r 05r e . The boundary condition used atr o
is that all field variables take the values provided by
exact analytic solution. It is important to note that in pre
ous efforts in numerical evolutions of spherically symmet
black hole space-times, the stability of the evolutions
pended not only in the location of the outer boundary
also on the imposition of ‘‘outgoing’’ boundary condition
One of these outgoing conditions is constructed by assum
that the solution erroru2ū is of the forme(t2r )/r n, with ū
the analytic exact solution. This condition yields

] tu52] ru1] r ū1n
~u2ū!

r
, ~3.20!

to be applied at the nodal grid pointr N5r o The outgoing
condition @Eq. ~3.20!# is then added to system~3.17! and
handled with the same method of lines used for the inte
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points.2 Obviously, there is no reason to believe that the
lution error should behave ase(t2r )/r n for general choices
of lapse and shift. Another approach to construct ou
boundary conditions that has been used is to blend@21# the
numerical solution to the analytic one beyond a certain
dius, r.

Finally, at the inner or excision boundary, the workin
assumption is that all of the fields have outgoing~into the
hole! characteristics. We will show that for the gauge or c
ordinate conditions under consideration, this is indeed
situation. Therefore, there is no need to impose any bound
condition, and atr e one can just apply the same system
equations used in the interior of the computational doma
However, a finite difference discretization would requi
‘‘ghost’’ values atr 21. We construct these values by extrap
lation. Another possibility, which is becoming popular
three-dimensional simulations@22#, is instead to extrapolate
the right hand side of Eq.~3.17! to r 05r e . Either approach
was stable for the cases considered in the present work.

An important requirement when performing numeric
simulations of black holes in which the singularities are e
cised from the computational domain is to use coordina
that are regular and penetrate the horizon. Foliations
penetrate the horizon facilitate the task of removing~i.e.,
excising! a region containing the black hole singularity whi
preserving the causal structure of the space-time exterio
the event horizon. Thus the numerical results we present
consist of numerical evolutions that for infinite resolutio
correspond to the solution of a single black hole expresse
ingoing-Eddington-Finkelstein~IEF! and also Painleve´-
Gullstrand ~PG! @23,24#. coordinates. The IEF coordinate
coincide with Kerr-Schild coordinates in the case of ze
angular momentum@25#. Recently, Martel and Poisson@26#
have showed that the PG and IEF coordinates are mem
of the same one-parameter family of coordinate systems

In IEF coordinates, the line element@Eq. ~3.5!# takes the
explicit form

ds252S 12
2m

r Ddt21
4m

r
dt dr1S 11

2 m

r Ddr21r 2dV2.

~3.21!

The ADM variables in these coordinates are given by

a5S 11
2m

r D 21/2

, ~3.22!

b5
2m

r S 11
2m

r D 21

, ~3.23!

a5S 11
2m

r D 1/2

, ~3.24!

b5r , ~3.25!

2It is important to emphasize that this outgoing condition appl
only to the assumed behavior of the solution error since in sph
cally symmetric space-times there is no gravitational radiation.
3-4
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Ka52
2m

r 3
~r 1m!S 11

2m

r D 23/2

, ~3.26!

Kb5
2m

r 2 S 11
2m

r D 21/2

. ~3.27!

Similarly, for PG coordinates,

ds252S 12
2m

r Ddt212A2m

r
dtdr1dr21r 2dV2

~3.28!

and

a51, ~3.29!

b5A2m

r
, ~3.30!

a51, ~3.31!

b5r , ~3.32!

Ka52
b

2r
, ~3.33!

Kb5
b

r
. ~3.34!

The geometrical interpretation of the IEF coordinate syst
is that in addition to having a timelike killing vector, th
combination of timelike and radial tangent vectors]W t-]W r re-
mains null. In terms of the space-time metric, this condit
is stated asgtt22gtr1grr 50, or similarly in terms of 311
metric functions asa5a(12b). On the other hand, the PG
coordinate system can be viewed as that anchored to a fa
of freely moving observers~timelike! starting at infinity with
vanishing velocity@26#.

Finally, in numerical evolutions of spherically symmetr
space-times, it is useful to monitor not only the Hamiltoni
and momentum constraints but to pay attention also to
mass function@30#

M~r ,t !5
b

2
~12¹mb¹mb!. ~3.35!

In vacuum, thisM is the gauge invariant definition of mas

IV. ADJUSTED ADM SYSTEMS

Each of the equations in theġ-K̇ or standard ADM system
~3.9!–~3.12! has the form

] tu(n)2b] ru(n)5B(n)u(n)1C(n) ~4.1!

~no summation overn), with

u(n)5~a,b,Ka ,Kb!, ~4.2!
08401
ily

e

B(n)5diag~2aKa1] rb,2aKb ,2aKb ,aKa!.
~4.3!

C(n) contain the remaining terms that cannot be written
the form B(n)u(n) , with B(n) independent ofu(n) . If one
views each equation as independent, that isb, B(n) , andC(n)
as given and independent ofu(n) , Eqs. ~4.1! rapidly admit
growing solutions ifB(n).0, exponentially growing ifB(n)
and b are non-negative constants. Obviously, when E
~4.1! are considered as a coupled system of equations,
cannot guarantee the above conclusion. However, we h
been able to track the problems observed in our numer
evolutions to those terms for whichB(n).0.

In IEF and PG coordinates, the second and fourth com
nents ofB(n) are nonpositive. The first component ofB(n)
vanishes for PG coordinates and is positive for IEF coor
nats. Finally, the third component ofB(n) is always non-
negative for both IEF and PG coordinates. Our numeri
experiments indicate that the origin of the instabilities is d
to the term involvingB(n53)52aKb . The term in IEF coor-
dinates involvingB(n51) with the ‘‘wrong’’ sign did not seem
to affect the evolutions~see results below!.

The objective is then to find a way to ‘‘change the sig
of B(n53) . Fortunately, the combinationKbKa also appears
in the Hamiltonian constraint@Eq. ~3.13!#. One can then add
a term of the form2maH to the evolution equation forKa .
As a consequence,B(n53)52(12m)aKb . Therefore, in
principle, any value ofm>1 should produce stable evolu
tions. Our numerical simulations show thatm52 is an opti-
mal value to reach quickly the time independent solutio
However, the same experiments indicate also that even
ues ofm'0.5 yield stable evolutions. The reason for this
likely because the simple analysis above does not take
consideration the non-linear coupling in the equations.

V. LINEAR GAUGE MODES

A potential source of instabilities in numerical simulatio
is the presence of gauge modes. Gauge modes arise be
a prescription of the lapse and shift is not sufficient for co
plete gauge fixing. If the lapse and shift functions are,
instance, determined from algebraic expressions or differ
tial equations, there still remains freedom to perform a co
dinate transformation that takes us from (gi j ,Ki j ) to
(g̃i j ,K̃ i j ), leaving the lapse-shift prescription invariant.
other words, the data (gi j ,Ki j ) will be unique up to coordi-
nate transformations that leave the lapse-shift prescrip
invariant. One can then encounter a situation in which
transformed pair (g̃i j ,K̃ i j ) continues to satisfy the con
straints, but possesses unbounded growth. In principle,
cause (g̃i j ,K̃ i j ) are allowed solutions to the evolution equ
tions, through numerical convergence and monitoring of
constraints one could single out these modes. In practice
situation is not that simple. Gauge conditions that allow
rapid growth of grid functions are likely to trigger numeric
instabilities.

To investigate these modes, let us consider an infinit
mal coordinate transformation
3-5
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xm→xm1jm. ~5.1!

This transformation induces a linear perturbation of
space-time metric,

gmn→gmn1dgmn , ~5.2!

of the form

dgmn52Ljgmn . ~5.3!

In spherical symmetry, the most general coordinate trans
mations are

t→t1dt~r ,t !, ~5.4!

r→r 1dr ~r ,t !, ~5.5!

or equivalently

jm5~dt,dr ,0,0!. ~5.6!

Given Eq.~5.6!, the gauge induced perturbations of the m
ric take the forms

dgtt522~2a21a2b2!] tdt22a2b] tdr

2] t~2a21a2b2!dt2] r~2a21a2b2!dr , ~5.7!

dgtr52a2b] tdt2a2] tdr 2~2a21a2b2!] rdt

2a2b] rdr 2] t~a2b!dt2] r~a2b!dr , ~5.8!

dgrr 522a2b] rdt22a2] rdr 2] t~a2!dt2] r~a2!dr ,
~5.9!

dguu52] t~b2!dt2] r~b2!dr , ~5.10!

dgff5dguusin2u, ~5.11!

with all remaining components vanishing. On the other ha
from Eq.~3.5!, the components of the perturbed metricdgmn

above are also given by

dgtt522ada12adab212a2bdb, ~5.12!

dgtr52adab1a2db, ~5.13!

dgrr 52ada, ~5.14!

dguu52bdb. ~5.15!

In studying these gauge perturbations, we consider a num
of different prescriptions for choosing the lapse and sh
These impose restrictions on the components ofdgmn to lin-
ear order, but are not sufficient for complete gauge fixing

One piece of evidence usually given to argue for
highly unstable properties of the standard ADM formulati
is its inability to simulate single black hole space-times. S
cifically, the problem consists of using a known analy
black hole solution of Einstein’s equation to construct init
data, set boundary conditions, and specify the lapse and s
Given this input, the output is the numerical evolution of t
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e
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spatial metricgi j and extrinsic curvatureKi j . This simple
setup does not yield stable evolutions.

Choosing the lapse and shift to be given by exact anal
solutions implies that in the coordinate transformatio
above,da5db50. We shall call this the ‘‘exact lapse plu
exact shift’’ (EL1ES) condition. It is clear from Eqs.~5.7!–
~5.11! that the EL1ES choice does not fix the coordinate
uniquely, but rather results in a nontrivial system of part
differential equations~PDE’s! to be satisfied bydt and dr .
The solutions to this PDE system form an equivalence c
of gauges all satisfying the same condition on the lapse
shift. At the analytic level, one selects a unique member
this equivalence class by imposing boundary and initial c
ditions. Numerically, however, because of truncation erro
this is only possible if the evolution is stable.

Substitution ofda5db50 in Eqs.~5.12!–~5.14! yields
dgtr2bdgrr 5dgtt2b2 dgrr 50. Using Eqs. ~5.7!–~5.9!,
these conditions can be rewritten in terms of the gauge
turbationjm as

] tj5A] rj1Bj, ~5.16!

where

j5S dt

dr D and A5S b 0

a2

a2
bD .

The matrixA has a degenerate eigenvaluel5b and a cor-
responding eigenvectoreW5@0,1#. Therefore, the system i
only weakly hyperbolic and thus ill-posed. It is then not po
sible to guarantee the absence of rapidly growing ga
modes. Gauge instabilities, by themselves, do not violate
constraints; however, they are likely to trigger numerical
stabilities and thereby couple to constraint-violating mod
Note that this conclusion does not depend on the use of
standard ADM formulation, but applies to any initial valu
formulation of Einstein’s equation. This is likely the reaso
why it has not been possible to produce hyperbolic formu
tions of Einstein equations using the EL1ES lapse-shift con-
dition. Other groups reported numerical instabilities asso
ated with an EL1ES prescription.~See, for example, Refs
@27,28#.! Our result, which provides some analytic insig
into the source of these instabilities, extends the analysi
Ref. @27# by including perturbations of a general spherica
symmetric space-time@Eq. ~3.5!# and by making no assump
tions about the form of the coupling between gauge a
constraint-violating perturbations.

Finally, the inability to guarantee the absence of unbou
gauge modes does not necessarily imply that it is imposs
to design an evolution scheme that is long term stable
convergent. As we shall see, by adjusting the standard A
system with constraint terms, stable evolutions are poss
even in the presence of these gauge modes.
3-6
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VI. STABLE ADJUSTED ADM SYSTEMS IN ONE
DIMENSION

We consider next a series of lapse-shift choices. For e
choice, we investigate~1! the quasi-well-posedness of th
resulting system of adjusted ADM evolution equations,~2!
the propagation of the constraints, and~3! the convergence
and stability of numerical simulations.

A. Exact lapse plus area locking

We can take advantage of the assumed spherical sym
try of the problem and ‘‘lock’’ the area of constant-r sur-
faces. That is, we exploit the lapse-shift freedom and
] tguu50, or equivalently] tb50 ; t. From Eq.~3.10!, this
yields

052b] rb1abKb , ~6.1!

which can be seen as an algebraic equation to solve forb or
a. We will use Eq.~6.1! as

b5
a b Kb

] r b
, ~6.2!

with b determined by the initial data. In our case, for bo
IEF and PG coordinates,b5r . In addition, we choose an
exact lapse, i.e., an arbitrary buta priori specified function
of space-time. Here again, since the goal is to reprod
numerically the analytic solution, we set the lapse to t
given by the IEF or PG solutions.

This exact lapse, area locking (EL1AL) gauge condition
was previously investigated in Ref.@27#. However, the
implementation of locking the area was done at the num
cal level. That is, condition~6.2! was not explicitly used.
Instead, during the temporal updating of grid functions
correction to the shift was introduced to keep the a
locked. With this numerical area locking and with a blendi
of outer boundary conditions, stable simulations were
ported in Ref.. @27# for computational domains withr o
<11m.

Interestingly enough, this EL1AL choice of lapse and
shift yields an ADM system of equations already first ord
in space and quasi linear: namely,

] tu5A] ru1Bu, ~6.3!

with

u5S a

Ka

Kb

D and A5S b 0 aar

r ] ra12~12m!a

a3 r
b 0

a

a3r
0 b

D ,

where b is given by Eq.~6.2! and we have setb5r to
simplify notation. In the numerical evolutions, however, w
do not setb5r . The numerical code includes the evolutio
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equation forb. We do not explicitly write the matrixB since
it is not necessary for the analysis below. However, we m
emphasize that, in order to achieve stability, a value ofm
>1 is in principle needed~see Sec. IV!.

Although this EL1AL case is not representative of th
general ADM equations, where second spatial derivatives
appear, we will use it to introduce the main techniques a
ideas regarding quasi-well-posedness. We note first that
matrix A has eigenvalues

l15b, ~6.4!

l25b1
a

a
, ~6.5!

l35b2
a

a
, ~6.6!

and corresponding eigenvectors

eW15@0,1,0# ~6.7!

eW25Fa2r ,
r ] ra12~12m!a

a
,1G , ~6.8!

eW35F2a2r ,
r ] ra12 ~12m!a

a
,1G . ~6.9!

Because all of the eigenvalues are real and distinct, sys
~6.3! is strictly hyperbolic independent of the addition of th
constraint term. The EL1AL system of equations is then a
example of a hyperbolic system that, unless suita
constraint-terms are added, is subject to developing rap
growing solutions~see Ref.@2# for another example!. It is
also important to note thatl1 represents a characterist
speed corresponding to propagation along the timelike n
mal to the foliation. Similarly,l2 and l3 are characteristic
speeds along the light cone.

Let us now consider the particular case of initial data a
lapse function constructed from the single black hole so
tion in IEF or PG coordinates. The eigenvalues are given
these coordinates by

l15
2m

r 12m
5A2m

r
, ~6.10!

l2515A2m

r
11, ~6.11!

l35
2m2r

2m1r
5A2m

r
21, ~6.12!

where the first and second equalities are for IEF and
coordinates, respectively. Since the excision boundaryr e is
by construction inside the black hole horizon~i.e., r e<r h
[2m), we have that all the eigenvalues are positive the
By looking at the principal part of Eq.~6.3!, it is easy to see
that non-negative eigenvalues imply a propagation of fi
3-7
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variables in the direction of decreasingr-coordinate. There-
fore, at r e all the fields propagate out of the computation
domain into the hole singularity; thus boundary conditio
are not required. On the other hand, at the outer bound
r o , one hasl3,0, with the remaining eigenvalues still non
negative. Atr o , one has then two ingoing modes (l1 and
l2! and only one outgoing mode (l3). Given this informa-
tion, it is perfectly possible to impose a condition suppre
ing modes entering the computational domain. However
we mentioned above, we choose not to do so and impos
r o the analytic, exact solutions. The direct consequence
be the appearance of a pulse at the outer boundary of
computational domain due to discontinuities in the truncat
errors between the outermost evolved point and the boun
point r o . This pulse propagates in the direction of the bla
hole and leaves the computational domain through the e
sion boundary.

The next step is to analyze the effect that the EL1AL
choice has on the propagation of the constraints. At the c
tinuum level, for arbitrary choice of lapse, shift and initi
data (gi j ,Ki j ) satisfying constraints~3.3! and ~3.4! and the
evolution equations~3.1! and ~3.2! guarantee, ignoring for
the moment boundary conditions, that the evolved data
continue to satisfy the constraints. If one now takes bound
conditions, into consideration it is important to keep in mi
that boundary data (gi j ,Ki j ) must satisfy the constraints. B
looking at the way constraints propagate, i.e., their cha
teristics, one gains insight into the allowed boundary con
tions consistent with the constraints. Another important
pect of well-posedness in the propagation of the constra
is that it guarantees that there will be no unbounded h
frequency growth appearing in the constraints if they are
exactly satisfied at the initial slice~for example, due to nu-
merical errors!. This well-posedness for the constraint prop
gation is a nontrivial property, not possible to prove for
generic formulation of Einstein’s equations@29#.

What we look for are evolution equations for the co
straints, equations that would hold if system~6.3! is satisfied.
They can be found by taking time derivatives in both sides
Eqs. ~3.13! and ~3.14!, replacing the time derivatives of th
metric by the right hand sides of Eqs.~3.9!–~3.12!, and fi-
nally expressing the metric and its spatial derivatives
terms of the constraints and their spatial derivatives. Follo
ing this procedure, it is not too difficult to show that

] tv5P] rv1Qv, ~6.13!

where now

v5S H

M D and P5S b
4a

a2

a

4
b
D . ~6.14!

The matrixP has eigenvaluesl̄15l2 and l̄25l3 , with l2
andl3 given by Eqs.~6.5! and ~6.6!, respectively. This im-
plies that system~6.13! is also strictly hyperbolic with char
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acteristic speeds along the light cone. Note that the c
straints atr e propagate out of the computational domain in
the hole singularity, consistent with the outgoing propagat
of the field variables atr e , namely the tilting, into the black
hole, of the light cone. At the outer boundaryr o , there is an
ingoing mode (l̄2.0). Therefore, one has, as expected,
be careful to provide data atr o consistent with this entering
mode. Since we are imposing at the outer boundary the a
lytic IEF and PG solutions, the data atr o already satisfy the
constraints. However, as mentioned above, choosing
lapse and shift does not completely fix the gauge freed
thus one still has to be careful handling the gauge mo
described in Sec. V.

Figure 1 shows theL2 norm of the Hamiltonian constrain
as a function of time. The initial data are given by the IE
analytic solution@Eq. ~3.21!#, and the lapse and shift ar
chosen from the EL1AL conditions. Similar results were
obtained with PG coordinates. The computational dom
extends from r e51m to r o540m. We tried larger and
smaller values forr o . However, the stability of the simula
tions was not affected by the location of the outer bounda
We use an upwind parameterq50.5 and a constraint-term
parameterm52. We show runs for resolutions ofDr
5m/5, m/10, m/20, andm/40, with Dt50.25Dr . The run
with Dr 5m/5 has a resolution similar to those used in thre
dimensional simulations of black hole collisions.

Figure 2 shows theL2 norm of the Hamiltonian constrain
~top! and theL2 norm of the mass@Eq. ~3.35!# error~bottom!
taken at timet5200m as a function of resolution. The con
vergence rate implied by the Hamiltonian constraint is 2.
and that imphed by the mass error is 1.7. The converge
rate from the Hamiltonian constraint is larger than seco
order because we used third order accurate discretization

FIG. 1. L2 norm of the Hamiltonian constraint as a function
time for IEF initial data and the EL1AL lapse shift. The computa-
tional domain extends fromr e51m to r o540m. Lines from top to
bottom correspond to resolutions ofDr 5m/5,m/10,m/20,m/40,
respectively.
3-8
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CURE FOR UNSTABLE NUMERICAL EVOLUTIONS OF . . . PHYSICAL REVIEW D 64 084013
the advection term as well as third order accurate extrap
tions at the excision. On the other hand, the convergence
obtained from the mass error is less than second order
cause the mass function is proportional togrr , a quantity
difficult to handle numerically near the singularity. The re
son for using the Hamiltonian constraint and mass to mon

FIG. 2. L2 norm of the Hamiltonian constraint~top! and L2

norm of the mass error~bottom! as functions of resolution. The
errors plotted were obtained att5200m. The convergence rate im
plied by the Hamiltonian errors is 2.18, and that implied by t
mass error 1.7.

FIG. 3. L2 norm of the Hamiltonian constraint as a function
time for D5m/10 andr o540m. Each line corresponds to differen
values of the constraint-term parameterm. The values ofm are 0.0,
0.025, 0.5, and 2 in order of stability improvement.
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accuracies and convergence is because of the gauge inva
nature of these quantities. Finally for reference, in Fig. 3
show theL2 norm of the solution Hamiltonian constraint as
function of time for runs with resolutionDr 5m/10, varying
the parameterm. Different lines correspond to values ofm
50.0, 0.025, 0.5, and 2 in order of stability improvement.
is clear from this figure the dramatic effect that the add
constraint term has on the stability of the simulations.

B. Ingoing null plus area locking

The ingoing null 1 area locking (IN1AL) recipe to
specify the lapse and shift consists, in addition to locking
areal coordinate, of imposing the condition that the vec
] t2] r remains null throughout the evolution. This null co
dition is only compatible with the IEF case, since, by co
struction, the IEF solution is based on ingoing null observe
An analogous~ingoing timelike! condition can be obtained
for the PG case. In terms of the space-time metric, the in
ing null condition is stated asgtt22 gtr1grr 50, or simi-
larly in terms of 311 metric functions in Eq.~3.5! as

a5a~12b!. ~6.15!

Conditions~6.15! and ~6.1! yield

a5
a

arKb11
and b5

arKb

arKb11
, ~6.16!

where we have setb5r , since by constructionb remains
locked to r. This prescription for the lapse and shift wa
successfully applied in the past@30–32#.

In order to make the ADM equations in the IN1AL
gauge a first order in space system, we need to introduce
new variablesw[] ra and y[] rKb . Even after this choice
is made, there is no unique way of writing the resulting eq
tions as a quasilinear system. The reason for this is the
biguity one encounters when dealing with terms involvi
] r a. One has the choice to either keep it as] ra, substitute it
with w, or a combination of both. Either choice changes
principal part of the equation. However, in our case, we ne
only find a choice that yields a strongly hyperbolic system
turns out that the simplest choice of replacing] ra by w ev-
erywhere yields a system that is well-posed. That is, the
sulting ADM equations have the form

] tu5A] ru1Bu, ~6.17!

with

u5S a

Ka

Kb

y

w

D ~6.18!

and
3-9
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A5
1

z2S 0 0 0 0 0

0 z a r Kb 0 r 2a22

0 0 0 0 0

0 z a Kb 0 z1a2r 2Kb
2 a21 Kb

0 2z a2 0 a2 r a r K b~11z!

D ,

~6.19!

where we have introducedz[11a r Kb to simplify the no-
tation. The corresponding eigenvalues and eigenvectors

l150 with eigenvectors eW15@1,0,0,0,0#,

eW25@0,0,1,0,0#, ~6.20!

l251 with eigenvectors eW35@0,1,0,0,2z a2#,

eW45@0,0,0,1,a2r #, ~6.21!

l35
arKb21

z
with eigenvector

eW55@0,1,0,2aKb ,a2#. ~6.22!

Note that all the eigenvectors are independent, and thus
system is strongly hyperbolic. Also note that the eigenval
l2 and l3 are again characteristic speeds (b6a/a) along
the light cone. Furthermore, in IEF coordinates,l35(2m
2r )/(2m1r ). Therefore, one encounters a situation simi
to that of the EL1AL case; namely, atr e all the eigenvalues
are non-negative, and atr 0 one has that onlyl3,0. The
existence, uniqueness, and well-posedness for IN1AL then
follows as with the EL1AL case.

Regarding the constraints, their evolution is also d
scribed by a strongly hyperbolic system with characteris
speeds along the light cone. It is important to stress that
ADM equations already imply this, i.e., the evolution do
not have any relation to making the evolution equations fi
order in space. In fact, the principal part of the evoluti
equations for the constraints is exactly the same as in
EL1AL gauge, but now the lapse and shift are given by E
~6.16!. Thus the analysis and conclusions also follow as
that case.

An interesting aspect of the IN1AL choice is that it is
possible to find a general solution to Einstein’s equations.
start by definingf [r a Kb . We then use momentum con
straint ~3.14! to eliminateKa from the other equations. Th
outcome is that we need only to solve three of the four eq
tions ~3.9! and ~3.11!–~3.13!. We choose to work with the
Hamiltonian constraint,@Eq. ~3.13!# and Eqs. ~3.9! and
~3.12!. The resulting system of equations reads

05a~ f 21a221!12ra f ] r f 12r ~12 f 2!] ra,
~6.23!
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~] t2] r !a5
a~ f 21a221!

2r ~11 f !2
, ~6.24!

~] t2] r ! f 5
~ f 21a221!

r ~11 f !
. ~6.25!

The general solutions of these equations are

f 5
2m

r
2CS 12

2 m

r D , ~6.26!

a25~11C!~11 f !, ~6.27!

whereC5C(t1r ), and m is a constant. In terms of the 3
11 variables, the solutions read

a25~11C!~11 f !, b25r 2, Ka5] r S f

aD ,

Kb5
f

ar
, a5

a

11 f
, b5

f

11 f
, ~6.28!

with the line element@Eq. ~3.5!# given explicitly by

ds252~11C!2S 12
2 m

r Ddt212~11C!

3F2m

r
2S 12

2m

r DCGdt dr1~11C!F11
2m

r

2S 12
2m

r DCGdr21r 2dV2. ~6.29!

By settingC50 one recovers the IEF solution@Eq. ~3.21!#.
Also, it is not difficult to show from the gauge invarian
definition of mass@Eq. ~3.35!# that the parameterm is indeed
the mass of the black hole. An important property of gene
solution ~6.29! is that it explicitly shows the residual gaug
freedom associated with the IN1AL choice of lapse and
shift. We have explicitly found the equivalence class of s
lutions gauge related to the IEF solutions that satisfy
IN1AL lapse-shift condition.

We repeat the same type of numerical experiment as w
the EL1AL case; the same parameter values, resolutio
boundary conditions, and initial data. However, lapse a
shift are constructed in this case from Eq.~6.16!. Figure 4
shows theL2 norm of the Hamiltonian constraint as a fun
tion of time for different resolutions. Figure 5 shows theL2
norms of the Hamiltonian constraint~top! and mass error
~bottom! for different resolutions. The convergence rates
similar to those in EL1AL, namely 2.19 from the Hamil-
tonian constraint and 1.7 from the mass error. Finally, Fig
shows theL2 norm of the Hamiltonian constraint as a fun
tion of time for a resolution ofDr 5m/10. Different lines
correspond to values ofm50.0, 0.025, 0.5, and 2 in order o
stability improvement. It is clear from these results that t
stability behavior of the system of equations under the
1AL gauge choice closely follows that of EL1AL gauge
choice.
3-10
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C. Exact lapse plus exact shift

Finally, we consider the case in which the lapse funct
and shift vector are prescribed by exact analytic solutions
date, with the standard ADM system, it has not been poss
to obtain long-term stable and convergent numerical evo
tions under the EL1ES choice. Before we present results
EL1ES evolutions using the adjusted ADM system of eq
tions, let us investigate its quasi-well-posedness proper
To make the evolution equations first order in space, we
a new variabley5] rb. Once more, the resulting set of equ
tions has the form

FIG. 4. Same as in Fig. 1 but for the IN1AL case.
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] tu5A] ru1Bu, ~6.30!

with

u5S a

b

Ka

Kb

y

D ~6.31!

and

FIG. 5. Same as in Fig. 2 but for the IN1AL case.
A51
b 0 0 0 0

0 0 0 0 0

b] ra12~12m!ay

a3b
0 b 0 2

2~12m!a

a2b

ay

ba3
0 0 b 2

a

a2b

0 0 0 2ab b

2 . ~6.32!
The matrixA has eigenvalues

l15b, ~6.33!

l25b, ~6.34!
l350, ~6.35!

l45b1a/a, ~6.36!

l55b2a/a. ~6.37!
3-11
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BERNARD KELLY et al. PHYSICAL REVIEW D 64 084013
There are two fields that propagate with a characteri
speed (b) along the normal to the hypersurfaces in the
liation, one field with zero speed, and two other fields w
characteristic speeds (b6a/a) along the light cone. It is no
difficult to show that eigenvectors corresponding to the
genvaluel15l25b are not distinct, whatever the value o
m. Therefore, the system of equations is only weakly hyp
bolic and thus not quasi-well-posed, as we have already s
by considering the EL1ES gauge perturbations by them
selves in Sec. V.

As in the previous two cases, the constraints propag
according to

] tv5P] rv1Qv, ~6.38!

where now

v5S H

M D ~6.39!

FIG. 6. Same as in Fig. 3 but for the IN1AL case.
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P5S b
4a

a2

a

4
b
D . ~6.40!

This is, we have the same situation as before, namely pro
gation of the constraints along with characteristic spe
along the light cone.

We have carried out the same numerical experiments
for the previous two cases. However, for the IEF solutio
the simulations with computational domains forr o>40m
crashed. We have been able to identify two possible sou
behind this problem. One of them is the pulse originated
the outer boundary due to discontinuities of the truncat
error. This pulse propagates in the direction of the black h
~i.e., the decreasingr coordinate! with a characteristic spee
b. As the pulse travels its amplitude grows in time. Th
effect is shown in Fig. 7. Here we plot the solution error f
the metric functiona as a function of space and time for
resolution Dr 5m/10 and outer boundary located atr o
540m. The simulation stops because this pulse error
creases to the point that the metric functiona becomes nega
tive. For small computational domains (r o,40m), the cross-
ing time of this pulse is short enough and does not allow
catastrophic growth of the pulse. The pulse is able to le
the computational domain through the excision bound
without crashing the simulation. Since the initial amplitu
of this pulse isO(Dr 2), i.e., the accuracy of the discretiza
tion, in principle one could find a resolution small enou
such that the growth of the pulse would not affect the life
the simulation. However, accessing those fine resolution
three-dimensional simulations is likely to be impractical. T
second, and perhaps more severe, source of the proble
the presence of the zero velocity mode. Zero velocity mo
were in principle also allowed in the case of IN1AL; see Eq.
~6.20!. However, the adjusted IN1AL system yields only
numerical solutions of the general form of Eq.~6.29!, which
clearly does not contain a zero velocity mode. Ifm50, these
y

ti-
he

e-
c-
FIG. 7. Solution error for the metric function
a in IEF coordinates for the EL1ES case. The
resolution isDr 5m/10, and the outer boundar
is located atr o540m. A pulse originated at the
location of the outer boundary, due to discon
nuities in the truncation error, propagates in t
direction of the black hole~decreasingr coordi-
nate!. The simulation stops because this puls
error increases to the point that the metric fun
tion a becomes negative.
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zero velocity modes are not suppressed and eventually
minate the simulation. This catastrophic effect induced
zero velocity modes was previously noted by Alcubie
et al. @13#.

Figure 8 shows theL2 norm of the Hamiltonian constrain
as a function of time with resolutionDr 5m/10 for different
locations of the outer boundary. For computational doma
with approximatelyr o<40m, the zero velocity mode is stil
present, but is eventually damped. The reasons why
mode stops growing remain unclear. Nonetheless, there
strong indication that this behavior is connected to the p
ticular choice of coordinates used to set the exact lapse
shift. If, instead of the IEF solution, one sets the lapse a
shift from the PG solution, the outcome of the simulations
completely different. EL1ES simulations with a PG laps
and shift are long term stable and convergent for arbitr
sizes of the computational domain as long as the system
equations was adjusted withm>1. Figure 9 shows theL2
norm of the solution error for the metric functiona as a
function of time for different resolutions withr o540m for
EL1ES in PG coordinates.

FIG. 8. L2 norm of the Hamiltonian constraint in IEF coord
nates for the EL1ES case as a function of time. The resolutions
Dr 5m/10 andm52. Each line corresponds to different location
the outer boundary:r o520m(solid line), 30m ~short dashed line!,
40m ~long dashed line!, 50m ~short dashed–long dashed line!.
d

nd

08401
er-
y

s

is
a

r-
nd
d
s

y
of

VII. CONCLUSIONS

We have demonstrated that, at least for the case of si
black hole space-times in spherical symmetry, it is poss
to obtain long-term stable and convergent numerical simu
tions using the standard ADM system of equations if t
equations are adjusted by introducing terms involving
constraints. Results were presented for three choices of l
and shift. In addition, we introduced the concept of qua
well-posedness, which appears to be useful in characteri
the properties of the system of evolution equations. We
currently investigating the extension of this approach
three-dimensional evolutions.
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FIG. 9. L2 norm of the solution error in PG coordinates of th
metric functiona as a function of time. Each line correspond
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tively, from top to bottom.
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