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Chaos and gravitational waves
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The gravitational waveforms of a chaotic system will exhibit a sensitive dependence on initial conditions.
The waveforms of nearby orbits decohere on a time scale fixed by the largest Lyapunov exponent of the orbit.
The loss of coherence has important observational consequences for systems where the Lyapunov time scale is
short compared to the chirp time scale. Detectors that rely on matched filtering techniques will be unable to
detect gravitational waves from these systems.
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The evolution of two compact objects under their mutualgence of nearby waveforms. The phase space coordinates we
gravitational attraction is a major unsolved problem in gen-have in mind are the position and momentum of the masses.
eral relativity. A vast array of analytical and numerical ap- These coordinates are well defined in the test particle, post-
proximations have been used to attack the problem, builewtonian, and post-Minkowski approximations, but their
much remains to be understood. Among the many outstandneaning is less clear in the full theory. Indeed, the full evo-
ing questions is the degree to which the dynamics may béution equations are a set of coupled, nonlinear partial differ-
chaotic[1-4] or effectively chaoti¢5,6]. For example, when ential equations, so the real issue is gravitational turbulence,
one or more of the masses is spinning, it has been shown imot chaos. We will avoid this complication by assuming that
test-particle[2] and post-Newtonian3] limits that certain  the evolution equations can be approximated by some set of
classes of orbits are chaotic, at least when radiation reactiomonlinear ordinary differential equations for the phase space
is turned off[4]. variablesX;(t). Heret is taken to be the time measured by a

Here we consider the physical and observational consedistant observer, but the choice is unimportant. The evolution
guences wrought by chaotic behavior in the orbital dynam-equations can be written
ics. A key feature of chaotic systems is their sensitive depen-
dence on initial conditions—the so-called “butterfly effect.” dX;

It is intuitively obvious that a sensitive dependence in the W:Hi(xi)' (1)
dynamics will be reflected in the gravitational waveforms,

but the precise connection has not been established untiinearizing about a solution to this equation yields an equa-
now. We find that the waveforms of nearby orbits decoherdion for the perturbation,

on a time scale fixed by the largest Lyapunov exponent. The

observational consequences of this result depend on two time d 6X;(t) — K. (1) SX.( o
scales: the chirp time scale. and the Lyapunov time scale gt KiDeXj(), @

T, . A third time scale of interest is the gravitational wave

periodT,,. The wave period and chirp time scale for a sys-where

tem with reduced masg, total massM, and orbital separa-

tion R are given b IH;
= — an e
w= TV M ¢ 256 u \M is the infinitesimal evolution matrix. The solution to the lin-

o _ earized equations of motion can be expressed in terms of the
In the limit that one of the masses is very much smaller tharsyolution matrixL; (t):

its companion we have<<M andT.>T,,. The Lyapunov

time scale has to be calculated on a case-by-case basis, but OXi(t)=L;j(t)6X;(0). (4)
values as short a3,~T,, are possible for very unstable

orbits. Orbits whose Lyapunov time scale is short comparedhe eigenvalues and eigenvectors<gf(t) contain informa-

to the chirp time scale will produces highly unpredictabletion about the local stability of the phase space trajectory. In
waveforms. The number of templates required to detect these fixed coordinate system the eigenvectors may vary with
waveforms is exponentially large, making them impossibletime. To avoid this, a nonconstant basis can be defined that
to detect[3,7] with the Laser Interferometer Gravitational stays aligned with the eigenvectd&]. This is done by par-
Observatory(LIGO). allel transporting the basis vectors along the trajec¥q(y).

The connection between orbital instability and waveformBarring degeneracies, the infinitesimal evolution matrix is
decoherence is easily established. It relies on the fact that thdiagonal in the eigenvector basls;; (t) = ;A;(t) (no sum-
gravitational wavefornh ,,(t) can be expressed in terms of mation on the), where\;(t) are the eigenvalues &f;;(t).
the phase space coordinates of the system, so the divergentlee evolution matrix is also diagonal in the eigenvalue basis
of nearby trajectories in phase space is reflected in the diveend has components
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P Sh(do(t
0 h'(Po(t))
The principal Lyapunov exponent for the trajectofy(t) is .
defined as The quantity
1 SD(t)
A=lim —|n(|-ﬁ(t)|-ij(t))- (6) Ae=lim lim  In _‘ (13)
t—o 2t " t—o 8P(0)—0 5(1)(0)

The multiplicative ergodic theorems establish the existence )

of this limit for a large range of situations. Trajectories with iS €qual to the principal Lyapunov exponent of the trajectory.
positive Lyapunov exponents are unstable against small peld other words, the waveforms of nearby trajectories will
turbations. When the unstable orbits are dense in some rélecohere exponentially in time, on a time scale sefThy
gion of phase space, the system is said to be chaotic. A posi_=7\_1-

tive principal Lyapunov exponent will dominate the long A couple of comments are in order. Firstly, the lintit
term dynamics. Settiny, to be the principle eigenvalue, the — used in Eqs(6) and (13) will return A=\,=0 if we

asymptotic form of the evolution matrix can be written include the effects of radiation reaction. This reflects the fact
that the dynamics is not chaotic in a formal sefég The
f(t) 0 O --- limit t—o has to be replaced by the limit-T, whereT,
00 ... <T<T,. This is done by replacing the Lyapunov exponent
|_”.(t):eM , (7) by a finite-time or local Lyapunov exponefitl], and mak-
o 00 - ing a similar change to E@13). Clearly, the whole notion of

waveform decoherence only makes sense if the Lyapunov
time scaleT, is very much shorter than the chirp time scale
where|f(t)|=1. If X,(t) is real, thenf(t)=1. T.. It remains to be seen if this condition is satisfied for any
A gravitational wave can be decomposed into two polartealistic systems. The second comment concerns the gauge
izations with amplituded(t) and h*(t). A gravitational  noninvariance of the Lyapunov exponents and the choice of

wave detector responds to the wave according to time variable. Lyapunov exponents gained a bad reputation
N y when they were used to study the Bianchi type IX dynamics.
s(t)=h"(OF . +h™(O)F, (8)  Different time slices yielded principal Lyapunov exponents

that were positive or zero, making it difficult to decide if the
‘dynamics was chaotic. However, this difficulty can be

tion. The antenna patterns for LIGO and Laser Interferom-_7 . : . :
. avoided by making relative, rather than absolute compari-
eter Space AntennéISA) can be found in Refd9] and sons. For example, the ratig, /T, is the same in any coor-

[10] respectively. The gravitational wave amplitudit) dinate system, so the choice of time variable is irrelevant.

measured at the_ detector can be expressed n t‘?”“_s of Uﬁe confusion surrounding the Bianchi type IX dynamics
phase space variabl&s(t). Nearby orbits have gravitational could have been avoided if the Lyapunov time scale had

waveforms that differ by been compared to the average time between boJi&gs

whereF , andF are the antenna patterns for each polariza

Jh(X,.) We can illustrate the connection between orbital instabil-
oh(t)= T (t) oX;(1) ity and waveform decoherence with a simple example. Con-
26 sider the Lagrangian for a test particle in the Schwarzschild
IN(X) spacetimgin units whereG=c=M=1)
:T(t)l-ij(t)fsxj(o)- 9
' Lfr=2(dt\> r [dr|\*> _[d6)\?
Employing an eigenvector basis and using the asymptotic LZE rldn + r—2\dn +r dn
form [Eq. (7)] for the evolution matrix yields )
, [dé
sh(t)=eMg(t), (10) +r?sir? 9(5) ) (14)
where
The system is completely integrableonchaoti¢ as it has
ah(Xm) four generalized coordinatés r, 6, and ¢ and four con-
9(t) = Xy (DT(1)X4(0) 1D stants of motion: the mags; the energyg; thezcomponent

of the angular momentunt,, ; and the total angular momen-
is an oscillatory factor with bounded amplitude. The diver-tum squared.?. Despite the lack of chaos, the dynamics
gence of the waveforms can be better expressed in terms dbes admit isolated unstable orbits that serve to illustrate the
their relative phase. Writing the amplitude of the referenceconnection between orbital instability and waveform deco-
trajectory ash(®), and definingdy(t) to be the phase for herence. Restricting our attention to equatorial orbits with
which h(®,) =0, we find the relative phase is given by fixed energyE allows us to make the replacement
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d r—-2d 1 2 1
e q+ (15) €= 701_1__ ’
dn  rE dt 1 3,273 2
in the equations of motion ( 1 . 5 1 ) 0
62: _l l_ _!— = L)
: E%r Ep? Epj 3v2" 7 3 2
Pr (r=2)3 r(r=2) r2r-2)’ e;=6,=(1,0,0,0.
I-%ZO’ Since the zero eigenvalues have degenerate eigenvegiprs,
(16) cannot be diagonalized, but it is enough to gt into Jor-
dan normal form with the transformation matrix
r=Ep,, [ 742 72 0 0'
24 24
=P8
rir—2)° 0 0 0 1
Our reference trajectories are circular orbits with Pij= 7 7 (21)
— — 0 -2
6 6
p,=0,
7
py=L.~L, _78_\/5 ¥ g °
7 - -
1 . .
—r In terms of the transformed phase space coordinates the in-
r=r,=zL Li\/LZ—lz, S . .
- 2 ( ) finitesimal evolution matrix has components
- [ 1 1
6= wt. \/_ 0 0 0
242
Perturbing the equations of motion about the reference tra-
jectory yields the infinitesimal evolution matrix 1
) . 1 0 —-— 0 0
o _2EL 2E3(r+1) EL%(3r—4) 0 Kij= 2\2 : (22)
rAr=2)  (r-=2)*  r3r-2)»? 0 o o0 1
0 0 0
Kij= E 0 0 ol 0 0 0 0
0 L _ w 0 and the evolution matrix has components
r(r—2) r2(r—2)>? ) ]
- - et/2v‘§ 0 0 0
(18)
0 eftlzv? 0 0
The eigenvalues are
0 0 1 t
V2E?r3(r+1)—L%(3r—4)(r—2)?
N=—Np= 5 > :
re(r—2) 0 0o o0 1
(19 - -
A3=N4=0. Taking the limit defined in Eq.6) yields the principal

Lyapunov exponenk = 1/2\/2. The Lyapunov time scale for
The well known innermost stable circular orbitiat6 has  thjs orbit, T, =\ ~1=24/2, is actuallyshorterthan the gravi-

L=2\/§, E= \/8_/9, and N1=A,=0. Circular orbits with tational wave period’W: 2.

larger values oL come in two varieties, those with=r , Next we need an expression for the gravitational wave
and those witlr =r _; that is, settingg=1 andL=4 yields  amplitude in terms of the phase space variables. The correct
orbits withr, =12 andr _=4. The outer orbit is stable\;  approach would be to solve the Teukolsky equation using the
= —\,=1i1/6/108, while the inner orbit is unstable,;  method described by Hughgs], but no analytical solutions
=—\,=1/2/2. The unstable orbit at=4 has eigenvectors exist in the strong field limit. Instead we will use the quad-
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rupole approximation, knowing full well that it is being ap-
plied outside of its domain of validity. Since our goal is to
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8
ht=— %COS 20,

illustrate a general phenomenon—not to produce accurate

templates for LIGO data analysis—a qualitative description oht 2u
of the waveform’s dependence on the phase space variables ap =T RSN 2¢,
will suffice. '

The gravitational wave amplitude can be written as oh* 3u
h.()=h*(t)e;,+h*(t)e;,, where the polarization ten- @Z — R C0S 2, (26)
sors have nonzero components

ont 17u 2
——= ——C0S 29,
en=1, e;ry: -1, ar 2R
(24 e
ef =1, es=1. 6 R SN2

) o Putting everything together in EQ) yields
A detector situated at=R on thez axis will encounter a

wave with plus polarization given by Sh (1) = %e“z"i(llg c0821>—175\/§ sin 26)(3 61 (0)

2uE?| 2 r—3 E?r2 +6 8p,(0)+6+28p,(0 2
()= — 2E | 2o )Sin2¢+( : P4(0)+6125p,(0), (27)
(r=2) (r=2) so that
pA(r+2) pi(r- 3)) %l 5 5D (1) =22 50(0). 28)
+ - L
r(r-2)% r-2 As promised, the phase difference grows exponentially on a

time scale equal td, =22.

and similarly for the cross polarization. Specializing to the | would like to thank Scott Hughes and Janna Levin for
orbit with E=1, L=4, andr=4 we have several interesting discussions.
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