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Chaos and gravitational waves
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~Received 21 June 2001; published 20 September 2001!

The gravitational waveforms of a chaotic system will exhibit a sensitive dependence on initial conditions.
The waveforms of nearby orbits decohere on a time scale fixed by the largest Lyapunov exponent of the orbit.
The loss of coherence has important observational consequences for systems where the Lyapunov time scale is
short compared to the chirp time scale. Detectors that rely on matched filtering techniques will be unable to
detect gravitational waves from these systems.
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The evolution of two compact objects under their mutu
gravitational attraction is a major unsolved problem in ge
eral relativity. A vast array of analytical and numerical a
proximations have been used to attack the problem,
much remains to be understood. Among the many outsta
ing questions is the degree to which the dynamics may
chaotic@1–4# or effectively chaotic@5,6#. For example, when
one or more of the masses is spinning, it has been show
test-particle@2# and post-Newtonian@3# limits that certain
classes of orbits are chaotic, at least when radiation reac
is turned off@4#.

Here we consider the physical and observational con
quences wrought by chaotic behavior in the orbital dyna
ics. A key feature of chaotic systems is their sensitive dep
dence on initial conditions—the so-called ‘‘butterfly effect
It is intuitively obvious that a sensitive dependence in
dynamics will be reflected in the gravitational waveform
but the precise connection has not been established
now. We find that the waveforms of nearby orbits decoh
on a time scale fixed by the largest Lyapunov exponent.
observational consequences of this result depend on two
scales: the chirp time scaleTc and the Lyapunov time scal
Tl . A third time scale of interest is the gravitational wa
periodTw . The wave period and chirp time scale for a sy
tem with reduced massm, total massM, and orbital separa
tion R are given by

Tw.pM S R

M D 3/2

and Tc.
5

256

M2

m S R

M D 4

.

In the limit that one of the masses is very much smaller th
its companion we havem!M and Tc@Tw . The Lyapunov
time scale has to be calculated on a case-by-case basis
values as short asTl;Tw are possible for very unstabl
orbits. Orbits whose Lyapunov time scale is short compa
to the chirp time scale will produces highly unpredictab
waveforms. The number of templates required to detect th
waveforms is exponentially large, making them impossi
to detect@3,7# with the Laser Interferometer Gravitation
Observatory~LIGO!.

The connection between orbital instability and wavefo
decoherence is easily established. It relies on the fact tha
gravitational waveformhmn(t) can be expressed in terms
the phase space coordinates of the system, so the diverg
of nearby trajectories in phase space is reflected in the di
0556-2821/2001/64~8!/084011~4!/$20.00 64 0840
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gence of nearby waveforms. The phase space coordinate
have in mind are the position and momentum of the mas
These coordinates are well defined in the test particle, p
Newtonian, and post-Minkowski approximations, but th
meaning is less clear in the full theory. Indeed, the full ev
lution equations are a set of coupled, nonlinear partial diff
ential equations, so the real issue is gravitational turbulen
not chaos. We will avoid this complication by assuming th
the evolution equations can be approximated by some se
nonlinear ordinary differential equations for the phase sp
variablesXi(t). Heret is taken to be the time measured by
distant observer, but the choice is unimportant. The evolu
equations can be written

dXi

dt
5Hi~Xj !. ~1!

Linearizing about a solution to this equation yields an eq
tion for the perturbation,

d dXi~ t !

dt
5Ki j ~ t !dXj~ t !, ~2!

where

Ki j ~ t !5
]Hi

]Xj
U

Xi (t)

~3!

is the infinitesimal evolution matrix. The solution to the lin
earized equations of motion can be expressed in terms o
evolution matrixLi j (t):

dXi~ t !5Li j ~ t !dXj~0!. ~4!

The eigenvalues and eigenvectors ofKi j (t) contain informa-
tion about the local stability of the phase space trajectory
a fixed coordinate system the eigenvectors may vary w
time. To avoid this, a nonconstant basis can be defined
stays aligned with the eigenvectors@8#. This is done by par-
allel transporting the basis vectors along the trajectoryXi(t).
Barring degeneracies, the infinitesimal evolution matrix
diagonal in the eigenvector basis,Ki j (t)5d i j l i(t) ~no sum-
mation on thei ), wherel i(t) are the eigenvalues ofKi j (t).
The evolution matrix is also diagonal in the eigenvalue ba
and has components
©2001 The American Physical Society11-1
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Li j ~ t !5d i j expS E
0

t

l i~ t8!dt8D . ~5!

The principal Lyapunov exponent for the trajectoryXi(t) is
defined as

l5 lim
t→`

1

2t
ln„L ji* ~ t !Li j ~ t !…. ~6!

The multiplicative ergodic theorems establish the existe
of this limit for a large range of situations. Trajectories wi
positive Lyapunov exponents are unstable against small
turbations. When the unstable orbits are dense in some
gion of phase space, the system is said to be chaotic. A p
tive principal Lyapunov exponent will dominate the lon
term dynamics. Settingl1 to be the principle eigenvalue, th
asymptotic form of the evolution matrix can be written

Li j ~ t !.eltF f ~ t ! 0 0 •••

0 0 0 •••

0 0 0 •••

A A A �

G , ~7!

whereu f (t)u51. If X1(t) is real, thenf (t)51.
A gravitational wave can be decomposed into two pol

izations with amplitudesh1(t) and h3(t). A gravitational
wave detector responds to the wave according to

s~ t !5h1~ t !F11h3~ t !F3 , ~8!

whereF1 andF3 are the antenna patterns for each polari
tion. The antenna patterns for LIGO and Laser Interfero
eter Space Antenna~LISA! can be found in Refs.@9# and
@10# respectively. The gravitational wave amplitudeh(t)
measured at the detector can be expressed in terms o
phase space variablesXi(t). Nearby orbits have gravitationa
waveforms that differ by

dh~ t !5
]h~Xm!

]Xi
~ t !dXi~ t !

5
]h~Xm!

]Xi
~ t !Li j ~ t !dXj~0!. ~9!

Employing an eigenvector basis and using the asympt
form @Eq. ~7!# for the evolution matrix yields

dh~ t !.eltg~ t !, ~10!

where

g~ t !5
]h~Xm!

]X1
~ t ! f ~ t !dX1~0! ~11!

is an oscillatory factor with bounded amplitude. The div
gence of the waveforms can be better expressed in term
their relative phase. Writing the amplitude of the referen
trajectory ash(F), and definingF0(t) to be the phase fo
which h(F0)50, we find the relative phase is given by
08401
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dF~ t !5
dh„F0~ t !…

h8„F0~ t !…
. ~12!

The quantity

lh5 lim
t→`

lim
dF(0)→0

lnU dF~ t !

dF~0!
U ~13!

is equal to the principal Lyapunov exponent of the trajecto
In other words, the waveforms of nearby trajectories w
decohere exponentially in time, on a time scale set byTl

5l21.
A couple of comments are in order. Firstly, the limitt

→` used in Eqs.~6! and ~13! will return l5lh50 if we
include the effects of radiation reaction. This reflects the f
that the dynamics is not chaotic in a formal sense@4#. The
limit t→` has to be replaced by the limitt→T, whereTl

!T!Tc . This is done by replacing the Lyapunov expone
by a finite-time or local Lyapunov exponent@11#, and mak-
ing a similar change to Eq.~13!. Clearly, the whole notion of
waveform decoherence only makes sense if the Lyapu
time scaleTl is very much shorter than the chirp time sca
Tc . It remains to be seen if this condition is satisfied for a
realistic systems. The second comment concerns the g
noninvariance of the Lyapunov exponents and the choice
time variable. Lyapunov exponents gained a bad reputa
when they were used to study the Bianchi type IX dynami
Different time slices yielded principal Lyapunov exponen
that were positive or zero, making it difficult to decide if th
dynamics was chaotic. However, this difficulty can
avoided by making relative, rather than absolute comp
sons. For example, the ratioTl /Tc is the same in any coor
dinate system, so the choice of time variable is irreleva
The confusion surrounding the Bianchi type IX dynami
could have been avoided if the Lyapunov time scale h
been compared to the average time between bounces@12#.

We can illustrate the connection between orbital insta
ity and waveform decoherence with a simple example. C
sider the Lagrangian for a test particle in the Schwarzsc
spacetime~in units whereG5c5M51)

L5
1

2 S r 22

r S dt

dl D 2

1
r

r 22 S dr

dl D 2

1r 2S du

dl D 2

1r 2 sin2 uS df

dl D 2D . ~14!

The system is completely integrable~nonchaotic! as it has
four generalized coordinatest, r , u, and f and four con-
stants of motion: the massm; the energyE; thez component
of the angular momentum,Lz ; and the total angular momen
tum squared,L2. Despite the lack of chaos, the dynami
does admit isolated unstable orbits that serve to illustrate
connection between orbital instability and waveform dec
herence. Restricting our attention to equatorial orbits w
fixed energyE allows us to make the replacement
1-2
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d

dl
5

r 22

rE

d

dt
~15!

in the equations of motion

ṗr52
E3r

~r 22!3
2

Epr
2

r ~r 22!
1

Epf
2

r 2~r 22!
,

ṗf50,

~16!

ṙ 5Epr ,

ḟ5
Epf

r ~r 22!
.

Our reference trajectories are circular orbits with

pr50,

pf5Lz5L,
~17!

r 5r 65
1

2
L~L6AL2212!,

u5vt.

Perturbing the equations of motion about the reference
jectory yields the infinitesimal evolution matrix

Ki j 53
0

2EL

r 2~r 22!

2E3~r 11!

~r 22!4
2

EL2~3r 24!

r 3~r 22!2
0

0 0 0 0

E 0 0 0

0
E

r ~r 22!
2

2EL~r 21!

r 2~r 22!2
0
4 .

~18!

The eigenvalues are

l152l25
A2E2r 3~r 11!2L2~3r 24!~r 22!2

r 2~r 22!2
,

~19!
l35l450.

The well known innermost stable circular orbit atr 56 has
L52A3, E5A8/9, and l15l250. Circular orbits with
larger values ofL come in two varieties, those withr 5r 1

and those withr 5r 2 ; that is, settingE51 andL54 yields
orbits with r 1512 andr 254. The outer orbit is stable,l1

52l25 iA6/108, while the inner orbit is unstable,l1

52l251/2A2. The unstable orbit atr 54 has eigenvectors
08401
a-

e15S 1

3A2
,0,

2

3
,2

1

A2
D ,

e25S 1

3A2
,0,2

2

3
,2

1

A2
D , ~20!

e35e45~1,0,0,0!.

Since the zero eigenvalues have degenerate eigenvectorKi j
cannot be diagonalized, but it is enough to putKi j into Jor-
dan normal form with the transformation matrix

Pi j 53
7A2

24
2

7A2

24
0 0

0 0 0 1

7

6

7

6
0 22

2
7A2

8

7A2

8

7

8
0

4 . ~21!

In terms of the transformed phase space coordinates the
finitesimal evolution matrix has components

Ki j 53
1

2A2
0 0 0

0 2
1

2A2
0 0

0 0 0 1

0 0 0 0

4 , ~22!

and the evolution matrix has components

Li j 53
et/2A2 0 0 0

0 e2t/2A2 0 0

0 0 1 t

0 0 0 1
4 . ~23!

Taking the limit defined in Eq.~6! yields the principal
Lyapunov exponentl51/2A2. The Lyapunov time scale fo
this orbit,Tl5l2152A2, is actuallyshorterthan the gravi-
tational wave periodTw52p.

Next we need an expression for the gravitational wa
amplitude in terms of the phase space variables. The cor
approach would be to solve the Teukolsky equation using
method described by Hughes@5#, but no analytical solutions
exist in the strong field limit. Instead we will use the qua
1-3
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rupole approximation, knowing full well that it is being ap
plied outside of its domain of validity. Since our goal is
illustrate a general phenomenon—not to produce accu
templates for LIGO data analysis—a qualitative descript
of the waveform’s dependence on the phase space varia
will suffice.

The gravitational wave amplitude can be written
hmn(t)5h1(t)emn

1 1h3(t)emn
3 , where the polarization ten

sors have nonzero components

exx
1 51, eyy

1 521,
~24!

exy
3 51, eyx

3 51.

A detector situated atr 5R on the z axis will encounter a
wave with plus polarization given by

h1~ t !52
2mE2

R F2pfpr~r 23!

~r 22!2
sin 2f1S E2r 2

~r 22!3

1
pf

2 ~r 12!

r ~r 22!2
2

pr
2~r 23!

r 22 D cos 2fG , ~25!

and similarly for the cross polarization. Specializing to t
orbit with E51, L54, andr 54 we have
m

ys

08401
te
n
les

h152
8m

R
cos 2f,

]h1

]pr
52

2m

R
sin 2f,

]h1

]pf
52

3m

R
cos 2f, ~26!

]h1

]r
5

17m

2R
cos 2f,

]h1

]f
5

16m

R
sin 2f.

Putting everything together in Eq.~9! yields

dh1~ t !.
m

84R
et/2A2~119 cos 2f2175A2 sin 2f!„3 dr ~0!

16 dpf~0!16A2dpr~0!…, ~27!

so that

dF~ t !.et/2A2dF~0!. ~28!

As promised, the phase difference grows exponentially o
time scale equal toTl52A2.

I would like to thank Scott Hughes and Janna Levin f
several interesting discussions.
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