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Oscillatory approach to the singularity in vacuum spacetimes withT? isometry
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We use qualitative arguments combined with numerical simulations to argue that, in the approach to the
singularity in a vacuum solution of Einstein’s equations viithisometry, the evolution at a generic point in
space is an endless succession of Kasner epochs, punctuated by bounces in which either a curvature term or a
twist term becomes important in the evolution equations for a brief time. Both curvature bounces and twist
bounces may be understood within the context of local mixmaster dynamics although the latter have never
been seen before in spatially inhomogeneous cosmological spacetimes.
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I. INTRODUCTION observer still satisfies the Kasner map.
Our previous study of the magnetic Gowdy family of
Thirty years ago, Misnef1] and Belinskii, Khalatnikov, ~spacetimes8] provided firm support for BKL's claim in a
and Lifshitz (BKL) [2] noted that Bianchi type-IX spatially spatially inhomogeneous setting. In that work, we numeri-
homogeneous cosmological solutions of Einstein’s equationfa"y evolve spacetimes in the family using the standard areal

seem to exhibit a sort of oscillatory behavior in the approact©’ “Gowdy”) time foliation, and we find generic observers
to the singularity. This behavior, labeled “mixmasteit], see oscillatory behavior in the metric evolution. Moreover,

involves an infinite sequence of periotisr “epochs”) dur- our studies of the magnetic Gowdy spacetimes indicate that
ing which the solution qevolves esgentially aspa Kasner Spac%be sequence of Kasne_r epochs_ seen by each observer follow
time [3,4], with each Kasner epoch ended by a “bounce” of he pattern of succession predicted by BK,6]. Further,

: ) : these studies agree with the qualitative picture which the
short duration which changes the evolution from that of on€s, \hisé-Moncrief method of consistent potentialCP)
Kasner to that of another one. The sequence of Kasn

o . uggest$9].
epochs satisfies a rule, called the Kasner map, which takes gjyce this magnetic Gowdy work, numerical and MCP

one Kasner epoch in the sequence to the haitis charac-  studies of two other families of cosmological spacetimes
terization of the Bianchi type-IX singularity has recently have been carried out: tHe symmetric vacuum spacetimes
been made rigoroU$]. BKL also made the rather surprising and theU(1) symmetric vacuum spacetimes. Both studies
claim [2,6] that in spatially inhomogeneous solutions of strongly support the BKL claim that the approach to the sin-
Einstein's equations, timelike observepproaching a big gularity is oscillatory. The results fdg(1) symmetric solu-
bang or big crunch singularity should generally see this ostions have been reported elsewhgt6|. Here we discuss the
cillatory behavior, with the Kasner epoch seen by one obbehavior near the singularity fof? symmetric vacuum
server differing from that seen by other neighboring observspacetimes.
ers; however, the sequence of Kasner epochs for each SinceU(1) is a subgroup off?=U(1)xU(1), the T?
symmetric vacuum spacetimes are a subfamily oflit{&)
symmetric vacuum spacetim&©ne may then ask why it is

*Email address: berger@Oakland.edu useful to study thd? symmetric family directly. The reason
"Email address: jim@newton.uoregon.edu is that, since the equations for tAé symmetric family are
*Email address: weaver@aei-potsdam.mpg.de considerably simplef1+1 partial differential equations

However, it is not necessarily expected that the evolution con{PDES rather than 2-1 PDE{ the numerical studies can be
verges to a single such sequence of Kasner epochs. It may be thdbne significantly more accurately. Hence the studies are
the evolution always eventually diverges from any one such semore accurate for th&2 symmetric family, and the behavior
quence and another sequence, which again follows the Kasner mapf the bounces seen by the observers can be monitored more
becomes a better approximation. carefully. The MCP analysis has been carried out in great

%In this paper, by the term “observer” we mean a timelike path detail in this simpler case. We report this study here both to
with constant spatial coordinates. We assume that foliation and
threading have been chosen. Whether results of the sort discussed—
here will be seen by inequivalent sets of observers is not yet gen-3Note that in studies of the behavior near the singularit i)
erally known. However, this does seem to be true at least in certaisymmetric spacetimes, a restrictive assumption is made. This re-
caseq7]. striction is consistent with the full range  symmetric solutions.
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present the detailed picture it gives of the dynamics in theséhese conditions again appear to persist, there is as yet no

spacetimes, and also, we hope, as an aid to obtaining rigoevidence that the bounces stop at nearby points, in contrast to

ous results about the dynamics. the situation in a magnetic Gowdy solution. The occurrence
We define thel? symmetric family in Sec. Il, noting the Of the exceptional points is observed in the numerical simu-

relationship between this family and others, such as théations, and the long time behavior is predicted by the MCP

Gowdy[11] and the Kasner spacetimes. Also in Sec. I, weanalysis. We discuss and exhibit exceptional points in Secs.

discuss the areal function and coordinates, recalling resul#$l and IV, but leave extensive discussion of these to future

which justify their use fofT2 symmetric solutions and writ- WOrk [12]. We make concluding remarks in Sec. V.

ing out the field equations. In Sec. lll, we set up the MCP

treatment of the evolution equations for tfi@ symmetric Il. T2 SYMMETRIC SPACETIMES

spacetimes and use it to argue that oscillatory behavior oc- , 5 . . )

curs. We recall that in setting up the MCP form of a given set . Ve define ther” symmetric family of spacetimes to con-

of evolution equations, one presumes that at each spatidiSt Of globally hyperbolic solutions of the vacuum Einstein
point, the fields evolve to Kasner epoch valiest neces- €duations with compact Cauchy surfaces and ittt &som-

sarily at the same time for all spatial pointene then sub- €Ty group acting spatially and without fixed points. Gener-
stitutes these Kasner-like values of the fields into the righ@lly for spacetimes in this family, at least one of the “twist”
hand side of the evolution equations, and attempts to infefunctions

how the various terms in these equations should behave in v Py LT PV
time, and what the resulting behavior of the fields should be. K00*=€urmX*Y'VPX® and K(y):=€,,pX“Y"'VIY
This analysis2 predicts that there should be three types of (1)
bounces inT? symmetric spacetimes: curvature bounces, vanish(Here X and Y are a pair of Killing fields

twist bounces, and kinetic bounces. A kinetic bounce is not : i . .
' which generate th@? isometry group. If in fact both twist

transition between two distinct Kasner epochs. Rather, it oc]; " d ish. th btains the i tant subf
curs within a Kasner epoch. However, in terms of the evoly- UNnctions do vanish, then one obtains the important subfam-

tion of the metric functions, it is a bounce on a par with theIly _IqLGoc\slvdydspacetlmtes. h b tensivelv studied
others and its occurrence is necessary for the oscillatory be- € Lowdy spacelimes have been extensively studied,

havior to continue. In Appendix A we state the explicit evo- and it s believec[9_,13—19 that they are all asymptotical_ly
lution of the fields during each of the three boun@gsaoring velocity term dommatedAVTD). Rpughly spegklng, this

in each case terms in the evolution equations which ar eans that as each observer in agiven spacetime approaches
smal) and discuss the qualitative nature of each in Sec. lll. e singularity, she sees at most a finite number of bounces,

We compare the MCP predictions for bounce behavior withand even'FuaIIy settles_ Into a f|_naI Kgsner egoshich gen-
those of BKL. In Sec. Il we also discuss the MCP argumen e_raIIy varies from point to point. Since the Gowdy space-

that, in these spacetimes, an observer following a timelik imes are fairly well understood, and since they are a set of

path of constant spatial coordinate should see an unendir@easure zero in the full family oF* symmetric spacetimes,

succession of bounces, a key ingredient of mixmaster dy; € st_hall henceforth p_reSL:]r_ni that otr;]e or Ibotth Olf the twist
namics and the BKL olaims. unctions is nonzero, in which case the only topology com-

. . 2 . . l
MCP analysis provides useful predictions, but is limited patlple with T symmetrlc ;pacetlmes TEB.XR X .
in that, in addition to being nonrigorous, it does not predict, Itis very useful in studying the properties of the evolution

whether generic initial data will evolve into a spacetime in'n & given family of spacetimes to have available a universal

which, along each appropriate timelike observer's path, é;hoice of spacetime f(_)liation which exactly covers thelmax.i-
Kasner-like state is reachehis, again, is a prerequisite for 2l globally hyperbolic development of every spacetime in

carrying out the MCP studyTo justify the MCP predictions, th"’.‘t family. As proven in Ref[z;], the “areal .fOI'at'On"
we rely on numerical studies @ symmetric solutions. For (with corresponding areal coordinaleserves this purpose

2 . . - .
representative sets of initial data, Kasner epoch values for th'c rT symmetric solutions. We recall t_hat the :_areallfohauon
ooses spacelike hypersurfaces which are invariant under

fields are reached at each spatial point. Once the Kasné&

2 B . . . .
regime is reached at a given spatial point, the bounces occire T action(thereby containing complete orbits o) with

as predicted by our MCP studies, as far as we are able t%aCh leaf of the foliation consisting of all orbits of a fixed

H H .T3 1 1 7
carry out the evolution. A discussion of these results is pref"rr(:'_""'h Tha_t s, if we. leR: T XR. —R . behthe func]ttlr%?
sented in Sec. IV. These numerical studies do not prove thaf bI'C ar?.sEns toa g|ver:1 spaqenmeh pom';]t € arelafol_ €
T2 symmetric solutions generically exhibit an oscillatory be-°" It which contains that point, then the areal foliation

havior near the singularity, as predicted by BKL. They do,Chooses for it; .time function someR. I2n Ref. [21.] (also
however, strongly support this contention. see Ref[22]), it is shown that for everfi= symmetric solu-

In the magnetic Gowdy family of spacetimes, we havetion (_TSXR_*Q)_ of the vacuum Einstein equation(s) such a
found that in a generic solution, conditions can occur at nonfunction t is indeed timelike; (i) for every value oft
generic spatial pointée.g., the derivative of a metric com- € (to,) With to>0 (t, fixed for each spacetim¢hett leaf
ponent has a zeyavith the result that at various points near
this nongeneric point, there is only a finite number of
bounces. While similar conditions occur at nongeneric spa- “Asymptotically velocity term dominated behavior is defined
tial points in a genericT? symmetric solution, and while more carefully in Refs[16,20].
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is indeed ar® Cauchy surface; angii) thet hypersurfaces, Simply tells us that the twist functions are constant in space
with te (to,%), collectively cover the maximal globally hy- and tllme(agd hence are labeled the “twist constantsFor
perbolic region of T3X R,g). Hence the areal foliation pro- @ny givenT* symmetric spacetime, we may always replace
vides the desired universal choice of time for i sym- and Y by a linear combination of themselves and thereby

metric spacetimes. We note that for the Gowdy spacetimes,cause one or the other twist function to vanisht not both.
is the familiar Gowdy time. Hence, without loss of generality, we may further presume

If we use &,y) e T2 as coordinates labeling points on the that only one of the twist constants is nonzero. We label this

T2 isometry group orbits, and usee S' as a coordinate
parametrizing distinct orbits, therd(x,y,t) serve as univer-
sal coordinates for th&” symmetric spacetimes, and we may
write the generic metric for this family in the form

The next two sets are the constraint equations and the
evolution equations for the metric functiod$®,Q, u,\}.
They involve the twist constari, but are independent of
{G1,G,,M{,M,}. We discuss these equations below. The

g=e>""Y(— adt®+d6?) last set of equations govefs;,G,,M;,M,}. They take the
form
+ oe?V[dx+Ady+ (G, +AG,)dd
+(Mq+AM,)dt]?+ ge 292 9,G1=—e "9,M+Q elnF2ATaPteniak 9
X[dy+G,d6+Modt]?, 2) 0.Gy=—e 79,M,— ekt TAPTED/4K (10

whereU, A, v, a, G1, G,, M, andM, are functions off .

andt (independent ok andy), ando is a positive constant. e see from these equations that, oj€8Q,w,\} have
This form[Eq. (2)] for the T?> symmetric metrics is used for Peen determined, one obtaifs;,G,,M,M,} by choosing
the analysis in Ref21]. Here, to make it easier to compare M1(¢,7) andM»(6,7) to be arbitrary functions ob and 7,
the present study df? symmetric spacetimes with previous choosingG;(6) and G,(6) as arbitrary(initial data func-
similar studies of magnetic Gowdy spacetimg& and tions onSt, and then integrating Eq$9) and(10) over 7 to
Gowdy spacetime$13—15,23, it is useful to replace the obtain G,(6,7) and G,(6,7). Thus{G;,G,,M,,M,} are
time functiont by 7= —Int (one still has an areal type folia- nondynamical fields. They are essentially “shift functions,”
tion) and the metric functions, A, v anda by the following ~ which determine how the coordinatesy) evolve inr and

equivalent functions: 0. If K is nonvanishing{G,,G,,M;,M,} cannot all vanish
everywhere in spacetime; the symmetry group does not act
P=2U+r, (3 orthogonally transitively25].
The dynamics of the gravitational field i? symmetric
Q=A, (4)  spacetimes lie ifP,Q, x,\}. To study these fields we find it
useful to work in Hamiltonian form. Lettingrp, mq, 7,,
u=-2Ina, ®  and m, denote the momenta conjugate to these four fields,

we find that 7, may be eliminated, that the functions

A=4v—4U+2Ina—r. (6) {P,Q,u,\,mp,mq,m\} Must satisfy the constraint equations

In terms of these variables, the metric takes the form
g= — e\ =30/24 24 o\ u+1)I2g g2 4 aep’f[dx+ Qdy m— EeMMZO, (ll)
+(G1+QG,)do+(M,;+QM,)(—e "d7)]?

mpd P+ 175 d,Q+ 7 dyN=0, 12
+oe P Tdy+G,do+My(—e 7d7)]2 (7) PdoP+ g 5sQ+ mdy a3

and that the evolution equations f¢P,Q,\,mp,mq,m\}

We note, for purposes of comparison, that the metric fo X ; e C
pUp P can be obtained by varying the Hamiltonian dertsity

magnetic Gowdy spacetimes is the same as (Bgexcept

thatG,, G,, M, andM, vanish. If one relaxes the assump-

tion of theT? isometry to allow it to be a local isometry, then

other spatial topologies in addition T are possible in the

magnetic case or the Gowdy case but not in the geriéral

symmetric case with nonvanishing twist. The topology af-

fects the spatial boundary conditions of the functiéhand

Q, but not the qualitative behavior of the evolution toward In particular we have

the singularity{12,16,24.

The Einstein vacuum field equations for fie symmetric

spacetimeg21] naturally divide themselves into four sets. °Note thatH in Eq. (13) is not a super-Hamiltonian, and isot

The first set, required to vanish as a consequence of the constraints. It is a Hamil-
tonian (density corresponding to the choice of time foliation made

IKx)=0, 9.Kxy=0, dyKvy=0, 9,Kyy=0 (8)  for these spacetimes.

1
H= E[WEﬂr e Pag+e 2(9,P)?+e*P 7(5,Q)%
A

+0_7T)\e()\+2p+37)/2K2' (13)
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T vectors are tangent to the isometry orbits generate¥ agd
IP=5_ (14) Y. Then the relation between the two frames is a time depen-
A dent rotation.
Another subfamily of theT? symmetric spacetimes is

1 e 27(9,P)(d4my) - L -
9, 4rp= e Prite 279,,P— 9 oA worth noting. If one chooses initial data witQ(6,7,) =0
TP 2my, Q 2, and mo(6,70) =0, thenQ(8,7)=0 andm(6,7)=0 for all
points in the spacetime development of this dgBee Egs.
—e2(P=7(9,Q)2|— o, e( T2P30/2K 2, (150  (16) and(17).] Hence one can consider a subfamily, the “po-
larized” T2 symmetric spacetimes, with the metric coeffi-

cient Q—and the corresponding gravitational degree of

e 2Py freedom—turned off. The polarize@? symmetric space-
9,Q= 2m, (160 times have been studied using Fuchsian methods, and one
finds[26] that there are full-parameter sets of these which are
02(P—17) (9,0)(9y7) AVTD rather than oscillatory near the singularity. Thus al-
0,m=—5——1 dgsQ— 9—m+2(aap)((90Q) , though oscillatory behavior is expected to occur generically
2, T\ in T? symmetric spacetimes, it is not expected to occur in
17 either the Gowdy or the polarized subfamilies.
1
IN=— 2 )Z[W%+e_zpﬂé+e_27(ﬁap)2 I1l. MCP ARGUMENT FOR OSCILLATORY BEHAVIOR
T\
The method of consistent potentials is a systematic ap-
2(P—7 2 N+2P+37)/2)2 . ; -~ )
+e?P70(0,Q)%]+ ol 2K, (18) proximation schemg27] for predicting the behavior of cos-
mological solutions of Einstein’s equations in the neighbor-
1 hood of their singularities. It is based on a key assumption
— N+2P+37)/2) 2 !
9rm\=— Egﬂe( 2K2, 19 which in practice must be checked numerically. The conse-

quence of this assumption is a weighting of the influence of
various terms in the Hamiltonian. To describe this, it is use-

The evolution for the remaining metric function, follows , - g !
g p ful to split the Hamiltonian densitjEq. (13)] as follows:

from constraint(11):

(97#:_20-90\*'2'3‘*'37)/2}(2_ (20) H=Ho+Hyint HsmantHeuro T Huwist, (21

The constraint equations, the Hamiltonian and the evolu¥here
tion equations for the fields for magnetic Gowdy spacetimes

are very similar to these; the main difference is that the twist H :iwz 22)
terms in the Hamiltonian density and in the evolution equa- 4 P

tions are replaced by magnetic terms, with the exponential

coefficient for the magnetic termg**7/2_ differing from

1
that for the twist termse® *2P*37/2 This difference leads to Hkin=ne_zpﬂ'ré : (23
interesting consequences, which we discuss in a future work A
[12].
We have already noted the relationship between the famil- H _ 1 e 27(g,P)> (24)
iar Gowdy spacetimes and tA& symmetric spacetimes dis- small™ 4.7, o

cussed here. The spatially homogeneous subfamily of the

Gowdy spacetimes consists of the Kasner spacetimes. The 1

spatially homogeneous subfamily of the gendrfcsymmet- Heunn=-—>""7(4,Q)?, (25)

ric spacetimes, with nonvanishing twist, consists of Kasner 4y

spacetimes as well. This may seem surprising since, for the

standard Kasner Killing vectors, all the twist functions van- Hiwist= o, e 2P H370/2K 2, (26)
ish. However, one verifies that, in the homogeneous subfam-

ily, X andY (with nonvanishing twistare a linear combina- The assumption, for a fixe@i> symmetric vacuum solution
tion (with constant coefficienjsof the three Kasner Killing (T3xR,g) with the singularity atr— % concerns the mo-
vector fields. The coefficients are constant, but since thénentary values of the fields for large

norms are changing in time, the angles between the two sets

of Killing vectors are changing in time. More specifically,

consider two orthonormal spatial basds:;, made up of  6ynile the long time existence resii®21] does not show that
eigenvectors of the extrinsic curvatufthe Kasner direc- o, this is expected to be the case generically in this family. We
tions), ande;, such that each vector in the frame is propor-need r—z to obtain the prediction of an unending sequence of
tional to a Killing vector and such that two of the frame bounces since eadlocal) Kasner epoch has a finite durationn
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Kasner epoch assumption (KEA): For eaéle S, there  evolution equationl4) derived fromH ., Heur, OF Hiwist -

exists a timer( such that That is, besides dominating the relative size of the various
terms in the Hamiltonian densit{d3) and in the evolution
—19<0, (27)  equations(14)—(19), the exponential terms dominate the
changesin relative size of the terms. So, for example, if
—P(6,7(4)<0, (28 \(6,7(0)) +2P(8,7(9)) +375y<0 and @/d)(\(6,7(y)
+2P(0,75)+374) (s, ,)>0, then it follows from the
P(8,7(0) = 7(<0, (29 KEA that Hy,, is small relative toH, at (6,74, and it
twist 0 11 (6))
follows from this assumption combined with the evolution
N(O,79) +2P(0,7(9) +379<0, (30) equations thaH,,s; iS growing in .
such that Numerical results, which we discuss in Sec. IV, indicate
that the KEA holds fofT? symmetric solutions.
Ho>Hyin. (32) We now consider what happens to the gravitational fields
along a fixedd observer path after a Kasner epoch has begun
Ho>Hemal (32 at some timer, . We presume a fixed spacetime, and we
assume the KEA discussed above. Examining the evolution
Ho>Heury » (33 equationg(14)—(19), we find that the right hand sides of all
but Egs.(14) and(18) are extremely small. Hence the vari-
Ho>Hiyist (34)  ables{Q,u,mp,mq,m\} are essentially constant. The vari-

ablesP and\ are not constant; however, if we set

and such that the terms in the evolution equations duego H
dominate the terms in the evolution equations due g, H W__E (35)
Hsmalla chrv and Htwist- '_27T>\,

Explicitly, this assumption says that for eaéhlabeled
observer in the spacetime, there is a timg such that all of ~ we have
the exponential factors in the Hamiltonian density @tr( ;)
are very small(The same factors also appear in the evolu- d,P=w (36)
tion equations. This follows from conditiong27)—(30).” In
addition, this assumption states that at this time the fieldgnd
{P,Q.,\,mp, 7, m\} have developed in such a way that the

. : . ) )
exponential factors control the relative size of the various dA=—-w+0, (37)
terms in the Hamiltonian density and also in the evolution o )
equationg where O indicates terms which, as a consequence of the

The intent of the KEA is to imply that, in any of these KEA, can be neglected. The functiom is essentially con-

spacetimes, the evolution proceeds in such a way that each 8fant, SoP and X evolve linearly with 7. Since all four

the 6=const observers will, at some timgs, (generally —Hamiltonian potentialsHyin . Hsmai.Heur, .Huwistt are neg-

varying from point to pointreach a Kasner epoch. This fol- ligible, we call the evolution “velocity dominated .whe(a)

lows immediately from the evolution equations under theth® KEA holds,(b) {Q,u,7p,mq,m\} are essentially con-

conditions assumed. One might worry that it is too restrictiveStant (note that this implies thal is essentially constant

to require thatH, dominate the other terms in the Hamil- @nd(©) 9:A~—(J.P)"=—w*. To reiterate, parta) implies

tonian density, because it is possible thatvanishes during Parts(b) and(c), that is, the KEA implies that the evolution

a Kasner epoch, but then the prediction of the MCP analysit$ Velocity dominated at;y, . _ _

is thatH, will dominate the other terms in the next Kasner _ ThiS predicted pattern of evolution for the variables

epoch occurring at that value @ so the KEA will thus be  1P:Q.\ i, e, g, my} and their spatial derivatives, none

satisfied in this next Kasner epoch. increasing or decreasm_g fas'_cer than Imearl_y, is consistent
A consequence of the KEA, combined with the MCP with the KEA. The conditions in the assumption continue to

analysis, is that generallgthe exceptions are briefly dis- hold sg long as the Hamiltonian potentials _stay small relative

cussed later in this sectipthe fields evolve in such a way t© Ho.” To see whether or not these potentials do indeed stay

that they do not counteract any explicit exponential decay opmall for 77, at 6, we need to examine the time deriva-

growth of Hyin, Heurs OF Huwists OF that of terms in the tives of the exponential quantities in expressiq@g) for

Hkina Hsmalla chrv! andHtwist- We have

"Note that the assumption domst say that condition$27)—(30) d(—2P)=—2w, (38)

hold for all 7> 7, at 6.
i i is di i —27)=-2 (39
8The dominance of the exponential factors is discussed in[BEf. . T )
and assumed in “Assumption A.” There we failed to note that there
are exceptional situations in which exponential dominance does not
hold. We address those cases briefly in this paper and in more detai’Hence the name for this analysis: the “method of consistent po-
in Ref.[12]. tentials.”
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TABLE |. Behavior of potentials when the KEA holds.

Condition Potentials that grow Potentials that do not grow
ws-1 and 7TQ7&O Hiin Hsman  Heuro Hiwist
—1lsw<0 and 71'Qqﬁo Hyin Hiwist Hsman  Heur
Osw=l1 Htwist |_|kin Hsmall chru
1<w<3 and 070Q¢0 chru Htwist Hkin Hsmall
3sw and 59Q¢0 chru Hkin Hsmall Htwist

4.(2P—27)=2(w—1), (40) the generalized Kasner exponents fof asymmetric solu-
tion are
1 1 3
§T§(x+2P+37) =—§W2+w+§, (41 B =Uz_1+o . =2_2v+o . =2+2v+
7p243 7 7 T2 243 T 243

with w approximately constant in. Clearly the value of the 47

quantityw is crucial in determining whether each of the po- As before, O indicates terms which can be neglected at

tentials grows or not. In particular, we have, at fixéddy),  (¢,7.,) when the KEA is satisfied, as shown in Appendix B.
Note that the KEA implie® ~| 7p|/2, =|w|, and therefore

Hyin growsif w<0 (andwq#0), (42)  that the generalized Kasner exponents are essentially con-
stant in time. Furthermore, considering expressi@s, we

Hgman decays (if d,P#0), (43)  see that, in addition ta&; + x,+ k3=1 which always is sat-
isfied, when the KEA holds it is also the case thgt+ x5

Heur growsif w>0 (andd,Q#0), (449 + k3~1. These are the necessary and sufficient conditions
that a set of three numbers be a set of Kasner exponents.

Howist grows if —1<w<3. (450  Thus the generalized Kasner exponents are approximately a

set of Kasner exponents when the KEA holds, and so the

Stating this another way, we have the results listed in Table IKEA does indeed imply that the evolution is essentially Kas-
Note that the conditions within the parentheses in E4@—  ner at (0, 7).
(44) ensure “generic” behavior. We recall that the BKL parameteru” summarizes the

It doesnot follow from Table | that if the KEA holds there information in a set of Kasner exponeri6]. Except for
must be at least one growing potential & ,). To argue the casg{0,0,1}, there always exists a=1 such that
this, we need to assume that beth andd,Q are nonzero at

(0,7(9). Since generally these smooth functions, and v o 1+u — u(l+u

g . Kmin 21 Kmid 1 Kmax 2
d4Q, are nonzero at a giverg(r), we define ¢,7,) to be 1+tu+tu 1+u+u 1+u+u
genericif neither vanishes, andxceptionalif one of them (48)

does vanish. Exceptional behavi@f a different type, to be
discussed lateralso occurs ifv=1. Our subsequent discus- i the | | ‘s th
sion presumes tha(7,) is generic unless explicitly stated {".gg‘l"(m‘dl"‘ma&' Kmax IS the argesrt] va ule,_andmd IS t 3
otherwise; we discuss the exceptional cases briefly belof!'ddie value. For expression@?), the relative magnitude

and in more detail in Re{12] depends on the value of for v<1, one has¢;<k,<ks;
Assuming genericity, it does follow from Table | that, for 1<v<3,Fone hhaSKZ;ﬁK1<K3; and forf 3<Iv onefhas
during velocity dominated evolution, at least one of the po—"tz)< _"3;:1' or these a erfentfranges OI Vﬁf“;m we
tentials is growing. Indeed, the growth is exponentiat.iifo 0 taln_ ! erizn;cze);pr:essmns or for ?xa][np © | h v onef
see what affect this has, we need to consider how the fieldd@SU=(v—1)/2. The expressions far for each range o

; ; lues ofv are given in Table II.
evolve with one or more of the potentiat§,;,, Hc,r, and va .
Hywic: turned on and hence addedHg,. To understand what happens to the fields when, as a Kas-

In discussing what happens when some of the potentialg_er ?POCh Progresses, one or more Of. the potent_ials becomes
become significant, it is useful to keep track of eneral- significant, one can look at the evolution of the_ fields lfbr
ized Kasner exponentShese are defined to be the eigenval- — Hot+ Hyin, H=Ho+ Hkin+_Htwi5t’ etc. According to the
ues of the extrinsic curvature, divided by the mean curvaturéICP results summarized in Table |, there are five such
It follows from the definition that the sum of the three gen-
eralized Kasner exponents is equal to 1. Defining the quan-

where ki, is the smallest of a set of Kasner exponents

TABLE Il. Calculation of the BKL parameteu.

tity [9,13-13 Range ofv O=<v<1 1<v<3 3<v
1 1+v 2 v—1
2 —2P_2\1/2 Value ofu _ _ _
v ——277)\(7Tp+e m) " (46) u=1-, u=-— u=—
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Hamiltonian densities which in principle must be considered: We next consider the dynamics for a curvature bounce
H=Hy+Hy,, H=Ho+H¢.,,, H=Hg+Huist, H=Hg  determined by

+Hyint Hiwist, and H=Hg+H¢, +Huwist- 1N fact, for
both Hy;, and Hyist, or both H.,, and Hus, tO
become significant simultaneously, some fine tuning
is needed. For example, if the KEA holds aﬁo(r(go)) _ _ _ _
with 1<w<3, then we have(for constantsA>0 and Again, m, is a constant of the motion. If we define
B>0) chrv /HO'\’eiAHZWi 2 7(60)) and Htwist/HO z=P— (53)
~e Br(-wir2w3)(r—r4))2 5o they are both growing. n
Then, for the giverA,B,T(%), and the timer’ of the next  then
bounce, there is some valuewfsuch that the two potentials

are equal atr'. A similar argument may be made for1 dyz=mp— 2, (54)
<w<0 andHy;,/Hg andHyisi/Ho. We find (see Sec. IY . o .

in our numerical simulations that simultaneous growth andSince the variation of, yields d; 7=2). Now d; z must
action of two potentials, though rare, does indeed occur.  change sign during the bounce so that

(mp—2m\) = —(mp—2m)). (55

1
Co=0=2m, m+ o 75+ (9,Q)2e?P~7]. (52

A. Derivation of the bounce rules
Dividing both sides by the constanti? and solving forw’

If a T?> symmetric spacetime satisfies the KEA with a -
yields the bounce law

particular value ofw, and if it approaches one of the five
types of bouncesHy+Hyin, HotHeurwes HotHiwist: Ho
+Hyint Hiwist» @andHo+Heyr, T Hiwist)s 0ne would like to
determine what the MCP predicts for the valuencéfter the
bounce is over. One way to do this is to follow the evolution
of the fields through each type of boungeith appropriate
Hamiltonian) into the post-bounce Kasner epoch, and calcu- 1

late the change i directly. The explicit bounce solutions Co=0=2m,m\+ §w§,+ 20 wiKk2eNT2PTIN2Z - (57)
given in Appendix A facilitate this approach. Another ap-

Frr%aCh’nWhr'\?htiWr? ;sr?nhetrﬁ ' 'E bz?lsed 0_?hert1?rgy aigd mor?el[}'we evaluate the time derivative of the argument of the
um conservation during the bounces. That Is, using the re xponential in the twist potential using the equations of mo-

evant Ham_lltonlan dens_,lty for _each type of b°‘4f.‘ce* aN%on obtained from the variation of E@57), we find that
noting that its conservation requires certain quantitites to be

of the same magnitude—but opposite sign—after the bounce
as compared to before, we can determine howhanges. 5,
Note that in carrying out this approach, it is convenient to
consider7(t) to be a dynamical variable, dependent on a
new time coordinaté. It follows that 7.= —H, and we can
work in terms of a Hamiltonian constraint densiy rather
thanH, and treat the former as a super-Hamiltonfor unit
lapse. For example, foH=Hy+H,;,, the Hamiltonian for

a kinetic bounce, we have

w' =2—w. (56)

We now consider the twist bounce governed by H,
+Hupist- In this case, we have

37 5
—+P+ —) =3m\t7p— —+0"7T)\K29()\+2P+3T)/2.
477)\

2 2
(58)

Asymptotically (i.e., when the twist potential may be ne-
glected, 3\, + ’7Tp_’7T|23/(47T)\) is the momentum associated
with the time derivativdi.e. the growth rateon the left hand
side of Eq.(58). Thus it must change sign during the bounce:
mH

3m\+7p — 4—7]_)\) . (59

2.\
1 7TP -
Co=0=2m, m\+ 5(77,2; + Wé e 2Py, (49 (377)\+7Tp_ yp ) =—

N

o To find a rule forw, we must also recognizérom the equa-
For a kinetic bouncegr, and m, are constants of the {jons of motion that mp— 2, is conserved in a twist
motion, while7, changes sign. If we then form the quantity 5 nce. so that

Tp (mp—2m\) = (mp—2m)). (60)
W=, (50)
L) If we write both sides of Eqg59) and(60) so that factors of
), and 2m, , respectively, are shown explicitly, divide Eq.
we immediately obtain the bounce law for kinetic bounces(s9) by Eq. (60) to cancel themr,’s on each sidgnot the
(where unprimed quantities are evaluated in the Kasner egsame of course since the left hand side is after and the right

gch bgfore the bounce and primed quantities after th¢and side before the bouncand identifyw, we find that
ounc

(62)

3+2w—w? o
w—1 B

3+ 2W—W2)

=—Ww. (51 w—1
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TABLE Ill. Summary of bounce rules.

Bounce type Kinetic Curvature Twist Curvature twist Kinetic twist
Bounce rule W =—w w=2-w ,_W+3 ,_W—5S ,_3—w
T T T
Equation(61) has the solutior(there are two solutions but w2—2w+5\" /w2—2w+5
one is trivia) w1 =\ —1-w (66)
w+3 s i
W = _ 62) This in turn gives the bounce rule
w—1
w—>5
. , . w=|——|. (67)
Note that X=<xw=3 maps inton’ =3 while —1<=w<1 maps w—1

intow’<—1. Thus the former will always yield a curvature _ _
bounce after the twist bounce while the latter will yield a Note that Eq(67) maps the region £w<3 intow<—1, so

kinetic bounce after the twist bounce. that the combined bounce will always be followed by a ki-
Before deriving the bounce rules for the combinednetic bounce.
bounces—those with eitheH=Hg+H,;,+Hisi or H The previous analysis must be modified for the combined

=Ho+Heur, + Huwise—We wish to make two observations. Kinetic-twist bounce because successive kinetic and twist
We first note that the quantityp— 277, picks out a direction ~bounces do not bring into the range leading to a curvature
in local minisuperspace which is orthogonal to the twist, sdoounce. To do this, three bounces are required—either
its evolution is essentially unaffected by the presence or alkinetic-twist-kinetic or twist-kinetic-twist. Either choice
sence of the twist potential. Second, we note that the twisieads to the same rule:
bounce rulgEqg. (62)] may be obtained in a way different

from that used above. Specifically, we find that the evolution

generated byd=H,+ H,,is; conserves the “energy”

-w+3
w+1

. (68)

g ' To avoid any implicit assumption regarding the number of
E=(4—+ oy k2eM 2P TIN2 37T)\) bounces which form the combined bounce, we consider only
KR conserved quantities. The energy quantity conservedt by

77% 5 P32 =Ho+Hyint Hwist is
=| —+omr2eMt2PT3N2 L34 | (63)
4y 72 e 2Pnl

g o, e F2PE3NRK2 4 3

(69

E

Then, if we factor outr, appropriately from Eq(63), and if dmy - 4m,

we divide on the left and right hand sides by the left and

right hand sides of Eq(60), we derive The second conserved quantity arises in the eventHiat

=Huist- In this casemp+ 2, is conserved since its time

2 ’ 2
w+3 _|W +3 _ (64) derivative is proportional tély;,— Hwist- This leads(using
w—1 w—1 the previous procedureso
The nontrivial solution of Eq(64) yields Eq.(62). w?+3\" [w?+3
We now consider the curvature-twist bounce. Analogously w+1/! \w+1 (70

to Eg. (63), the evolution generated byH=Hg+H¢,,

+Huwist CONserves the energy quantity which has the nontrivial solution Eq68). Since it is un-
likely that H,;,=His: fOr any extended timéthis would
require both the growth rates and coefficients to be gqual

2 2.2(P—1)
P (94Q)°€e 26(\+2P+37)12

T am, A, tomx ~ e one would not expect the generic behavior to include
bounces of this type. In fact, none were seen in the numerical
+5, . (65 simulations. The bounce rules are summarized in Table Il

Using the bounce law§Egs. (51), (56), and (62)] and
The quantitymp— 27, is now not conserved. However, as Table Il for the BKL parameteu in terms ofv =|w|, the
noted above, the behavior efp,— 7, during a curvature- change inu during each type of bounce may be found.
twist bounce should match its behavior during a curvatureClearly, Eq.(51) yieldsu’=u for any kinetic bounce, since
bounce; so we have E@55) (as can be verified by consid- the change in sign ofv does not change. In a curvature
ering conserved and monotonic quantitid§ we now com-  bounce, the initial rangev=1 yields two possible relation-
bine Eqs.(55) and(65), as we have described above for Egs.ships between and u while the finalw’ can involve all
(60) and (63), we derive three. The possibilities are shown in Figall All possibili-
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10 : : : : gal wall. This mean$28,29 that the identity of the principal
(a) 1 axis associated with the growing cosmological scale factor
] changes during the bounce. However, the natures of the
g L - '|2-W| i bounces are quite different. During a twist bounce or a com-

, 7 bined kinetic twist bounce at a point in space, the rotation of
—&-u ’ l the principal axes is such that one of them is orthogonal to
] the T? symmetry orbits before the bounce and tangent after,
while another principal direction is tangent before the
bounce and orthogonal to the symmetry orbits after. During a
kinetic bounce the rotation of the principal directions is in
the symmetry plane. One principal direction is orthogonal to
the symmetry orbit throughout the bounce. In Appendix B a
comparison is made between the dynamics near the singular-
ity at a spatial point and the dynamics of tilted Bianchi
type-Il models studied if30].

In Sec. IV, we shall examine the validity of the KEA and
the bounce laws in numerical simulations. However, explicit
solutions through the kinetic, curvature, and twist bounces
are known. These may be used to generate further predic-
tions which can in turn be explored in numerical simulations.
We leave these for future research. The explicit bounce so-
lutions are given in Appendix A.

B. Exceptional points

In a genericT? symmetric spacetime there are nongeneric
points at which the gravitational field doest evolve away
from an era of velocity dominated evolution in the manner
that we have described thus far. There are three cases in
which this happensw=1 during a Kasner epocli,,Q=0
during a Kasner epoch with>1, andmo=0 during a Kas-
ner epoch withw<<0. In each case, one can give rough ar-
guments which indicate that bounces are likely to occur. We
state these here.

10 Leeeoivieiieno T We first consider the case=1. The twist bounce solu-
-1 -0.5 0 0.5 1 1.5 2 2.5 3 tion given in Appendix A isnotdefined forw=1. One can, it
w turns out, write down a solution generated b{=H,

+ Hwist €xplicitly in terms of 7 in this case. It blows up at
finite 7. It is a Kasner spacetime with,P =0, with a non-
vanishing twist constanK, and withw=1. However, we
claim that this is not a good approximation to the dynamics
at aw=1 exceptional point in a generic spacetime. Gener-
ally it will not be the case that,P vanishes. This leads to a
situation in which the exponential factors do not control the
terms they appear in. In the solution that blows uR—0.

ties yield the standard BKL map far. i.e.u’'=u—1 if u However, if 7r, is small enough, 1/, wrests control of
=2 andu’=1/(u—1) if 1<u=<2. A similar construction for Hgmga from e 27 and H¢, becomes relevant. The sub-
the twist bounce is shown in Fig(l). Here we see that’ Hamiltonian that governs the evolution in this caseHs
=u results for all initial values ofv. The rule foru is the  =Hg+Hgsmant Huwist- This has(after a canonical transfor-
same in a twist bounce, or in a combination twist-kineticmation the same structure as the Hamiltonian for a polarized
bounce, as in a kinetic bounce. Furthermore, since a solutiomagnetic Bianchi type-\\l model, in which case there are
to any of the three sub-Hamiltoniansl,+H,;,, Ho  rigorous results which show that the solution does not blow
+ Hiwist, OF Ho+ Hyin+Huwist i @ one parameter family of up in finite time, and which predict the bounce rule. One also
Kasner spacetimes, it follows that the generalized Kasnenotes that the- dependence of the argument of the exponen-
exponents argapproximately constant in time when any tial in Hg,,, vanishes ifw=1. This means that, generically,
one of these subhamiltonians essentially governs the evolld,;, contributes a constarhot an exponentially decaying
tion, and therefore is (approximately constant. The kinetic term to Eq.(15) for d,7p. But w=1 yields y:==mp— 2,

and twist potentials are each, at any spatial point, a centrifu=0 for the quantity which is conserved in the twist bounce.

FIG. 1. Relations betweew, w’, u, andu’. (a) Curvature-
bounce: Initially,w>1, so thatv=w. The dashed line shows’
=|w’|=|2—w]|. Table Il is used to compute for v>1 andu’ for
O<v'. The horizontal lines show<u, u’<2. (b) Twist bounce:
Initially, —1<w=3. The corresponding, v, w', u’, andv’ are
shown. Note that the curves farandu’ =u are superposed. Table
Il'is used to computel from v.
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FIG. 2. The local MSS in thegg-. /|Q| plane. The triangle rep- UU ]
resents the Bianchi type-IX MSS potential. Scaling the anisotropy _10 [ ]
variablesgB-. by the logarithmic volumeéQ| (21— —« is the sin- ]
gularity) keeps the bounce locations fixed. The Gowdy models be- 0 10 20 30 40 50 60 70 80

gin generically with the wall<C and C’, which disappear as the
spacetime becomes AVTD. In magnetic Gowdy models, a third
curvature-like wallM is created by a magnetic field. TFf symmet- FIG. 3. Typical behavior ofv(7) at representative values 6f

ric models, a centrifugal wall' closes off the potential. Here the The upper points are offset by 20 and 40 respectively for display
kinetic “wall” is understood to mapC’ onto C, so that the dynam- convenience. The flat regions characterize the Kasner epochs.

ics is confined to the shaded region. . . .
lutions to the MSS approach. In particular, we wish to see

. _ how the local twist bounces appear in the MSS picture.

The change iny due to the term fronii ., will remove the We recall that the MSS approach represents spatially ho-
exceptional point condition. mogeneous spacetimes as follows: For each choice of the

We next consider the case thaiQ crosses zero at some spatial isometry group (e.9.,G=R3< Bianchi type |,
6, during a Kasner epoch witv>1. The curvature bounce G=SU(2)« Bianchi type IX one chooses a fixed group
is suppressed in a neighborhood @f. The closer to the invariant frame, and then one can parametrize the set of
exceptional point, the longer the bounce is suppressed. If 3-9€ometries invariant undé using the MSS variable€
<2 there will be a twist bounce which sends-w’>3. As (volume, .. (anisotropy and y; (if the metric is not diag-

. . . onal). Using a simple choice of lapse and shift, one can rep-
the neighborhood on which the curvature bounce is SUPresent a spacetime by a trajectory in the MSS configuration

pressed pecqmes smaller and smalfepP a}nd mTQ 9OW  gpacd (1), 8. (1), B_(t)], with the u;(t) playing a subsid-
exponentially ifw>2 [13] (as can be seen in the curvature jary role. It follows from Einstein’s equations, adapted to the
bounce solutior{Eq. (A15)] by considering the case thdt  spatial homogeneity, that the trajectories corresponding to
crosses zeno This wrests control oH,;, and terms in the solutions evolve via Hamilton’s equations, with the Hamil-
evolution equations derived frok.,, from the exponential tonian potential proportional to the scalar curvature
factors, and causes to decrease until it is again less than 2, *R(B+.B-.0Q).

in which case the twist potential begins to grow again, so For Bianchi type-I spacetimesR=0, so that the trajec-
bounces will continue. In the case thag crosses zero dur- tOries are straight lines. For the diagonal Bianchi type-IX
ing a Kasner epoch wittv<0 a similar mechanisnthere solutions, the potential may be represented by triangular

. . B . walls, as in Fig. 2(Note that, in this figure, the dynamics has
‘9|”“’P and : 0Q gc:QW exponentlaltl)y itw<—1) (Refr'][l?’l]’ been projected onto the anisotropy plane and rescaled
also see Appendix Acausesw to become greater thanl, (5 /10| 3_/|Q) so that the location of the potential walls

in. which. case the twist potential starts growing, so bouncegg independent of2.) The dynamics then consists of straight
will continue. _ line segmentgeffectively Kasner intervajspunctuated by
These arguments suggest that there continue to be oscihtermittent reflections off one or the other of the watlsese
lations even at or near exceptional points. The behavior ofre the bouncesThe Kasner map describes the sequences of
the gravitational field at an exceptional point is delicate,bounces, and relates the parameters of the Kasner interval
however. It may, for example, be the case that higher ordeafter the bounce to those of the Kasner interval before the
terms play an important role. Further study of exceptionabounce. The MCP prediction that an infinite sequence of

points is needed, and is now underway. bounces should occur follows from the closed nature of the
region in MSS configuration space which is bounded by the
C. Minisuperspace picture and twist bounces walls.

o Before tying this picture to the local behavior ©f sym-
One of the more usefuind most pictoriglways to study  metric solutions, we note what happens to the MSS descrip-
the dynamics of spatially homogeneous cosmological solution of Bianchi type-IX spacetimes if the metric is not diag-
tions of Einstein’s equations is via the minisuperspd8S)  onal. In this case, additiondl'centrifugal”) walls appear,
picture. We would like to relate our discussion thus far ofpisecting the angles of the triangle. One or more may be
local oscillatory behavior and bouncesTA symmetric so-  present, depending on the orientation of the rotational axis
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FIG. 4. Onset and recurrence of the KEA, as monitoredvby

(&) w(r,6,) for fixed 0,. Flat regions indicate the KEAb) and(c)
Detailed closeups afi(7,6,) at early(b) and later(c) times. At the
later time,w is flatter during the Kasner epoch.
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FIG. 5. Typical behavior and accuracy of the bounce laws at
three adjacent spatial points. Each point represents the smallest dif-
ference between predicted and measured valuesusing all of the
bounce rules. This shows that each sequence starts with a twist
bounce and is followed by alternating kinetic and curvature
bounces. As the simulation evolves, the accuracy of the bounce law
prediction improves. The data were obtained by measwifay all
bounces over a symmetric regi¢of length 7r) in the simulations.

The bounces are numbered consecutiydlyfollowing bounces at
increasingr at a given point, and then moving to the sequence of
bounces at the next point. The vertical lines divide the bounces at a
given spatial point from those at the next point.

relative to the principal axes in the spacetime. The centrifu-
gal walls do affect the bounces; however, a very slightly
modified Kasner map allows one to predict the effect of these
bounces on the Kasner interval transitions.

To obtain a MSS type picture for the local dynamicsTéf
symmetric solutions, it is useful to first do so for certain
subfamilies. For the Gowdy subfamilywist equal to zerp
we compare the Bianchi type-I spatial metric

y,= e20=4B1 92 4 @222+ +2V3B_ (52

+eZQ+2lB+*2v‘§B,dy2 (71)

with the polarizedand diagonal Gowdy spatial metric
,yPG:e()HrT)/Zd 02+e7 T+ PdX2+ef T— de2, (72)

to find the following relations between the MSS variables
(Q,B4,B-) and the Gowdy metric components

P=2y38_, \=6(Q—B,), =—2(Q+8,). (73

(These identifications are not unique, since we have singled
out one directiong/d6, in the Bianchi type-l spacetime to
identify with the direction of spatial dependence in the
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FIG. 6. Twist bounces identified by the difference between the FIG. 8. Combined curvature and twist bounces. This graph is

measured and predicted valuesioll bounces at all spatial points — gonarated as in Fig. 6 but using the rule for combined bounces. The
in the considered interval had their preceding and subsequent Valugﬁtual combined bounces hajdew|~10"°

of w measured and then computed according to the twist bounce
rule. Where the difference between the measured and predicted vaé—
ues is large, it means that the bounce was not a twist bounce. The
twist bounces early in the simulation agree with the bounce rule

with rather low accuracy because the KEA is not yet completely _
valid. The highest accuracy agreement with predictions indicates e29—4ﬁ+cosz§+e29+2ﬁ++2\f§ﬁ,sinz§ '
second twist bounces later in the simulation. Clustering of the more

accurate twist bounces just indicates that similar behavior is occulNow adding the spatial dependence @to the Kasner solu-
ring at nearby spatial points. tion obtained by the rotation through yields a generic
Gowdy spacetime where we recall that the Gowdy space-
times may be obtained frorfi? symmetric spacetimes by

siné cosg(e22+ 26+ +2V38_ _ @20 464)

(75

Gowdy spacetimg.Then if we rotate in the-y plane by an
angle¢ and make identifications; and\ are unchanged but
we have 5 T . .

eP=e2B3B-cod¢+ e 2PRB-gint¢ (79

40 45 50 55 60 65

0 l.l.... FIG. 9. Structure of a combined bounce. The combined
0 10 20 30 40 50 60 70 80 bounce’sw(7) at 6, is shown as a solid line. The segment after the
T bounce hasv<—1 so a kinetic bounce will followw(r) for a
point with @ slightly less tharg, is shown by the dotted line. Here
FIG. 7. Behavior oP at twist bounces. Since in a Kasner epoch, the final pre-kinetic bounce segme(if) is preceded by pre-twist
d,P=w, the piecewise constamtimplies a piecewise lined®. The  (T) and pre-curvaturdC) segments. The dot-dashed line shows
twist bounces are indicated by the arrowswi§>1, thenw’>3 w(7) for 6 slightly greater thand,. Here first a pre-curvature
and the next bounce will be a curvature bouncew}f<1, then  bounce and then a pre-twist bounce segment precede the final pre-
w’<—1 and the next bounce is kinetic. kinetic bounce segment.
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FIG. 10. Spatial resolution dependence. The evolufitor FIG. 12. Resolution dependence of wave forms. As noted in the
w(6,7)]is shown at three representative valuesdbffset by 15 eyoution of U(1) symmetric cosmologieL0], narrowing spiky
and 30, respectivelyfor 1024 (solid line) and 2048(dotted line features[15] cause the simulations to yield resolution dependent
with circles spatial grid points. The dependence on spatial resoluyegylts where the functions are not smooth. The choice of initial
tion increases with the value ¢fv| which follows the initial twist  4ata made here yields an especially spiky wave formPfoh rep-
bounce. resentative portion is shown.

setting the twist constant to zero andm, to 1/2. Unpolar- 4 those appropriate to a polariz@d symmetric spacetime.
ized Gowdy spacetlmgs have two nonvanishing potential§ne igentifications are based on the mef. (7)] with Q
Hyin andHe,, (specialized to the Gowdy casdt follows 474G, set to zero in the spatial metric. We find

from Eq. (74) that the Gowdy potentiaH,, will be of

order unity on the lines labele@ and C’ in Fig. 2 if that

diagram is assumed to depict a local MSS picture for a

Gowdy spacetime. Similarly,;, will be of order unity on

the line labeledK in Fig. 2 when the distances from the e 27=gtB+ T4 o2y + e2V3B- 2B+ +40 gi2

system point taC andC’ are equal. (77
In a similar fashion, a rotation through an anglér) in

the 6-y plane leads to new identifications which correspondynq the twist potential combination

e 2P=g 43B.cody e 208 ~6BigiRy,  (76)

(¥ ' ' ' i M F2P+30)2— (@384 = BB+ e 3B+ T 3B-gintew) L.
é (78)
10 ° ® A 2048 3
" ® A 1024 Each of these identifications contains two exponential terms
L °® - 4 on the right hand side, only one of which can be large at a
] given time. If we choose one of these to represent the cen-
1074 L | ] trifugal wall (e.g., the one consistent with the original Kasner
a identifications forP and 7), we find that the centrifugal wall
a 1 is of order unity along the line label€din Fig. 2.
a E We claim that in the general?> symmetric models, the
-6 a ] walls C, C’, K, andT, and the walls allowed by alternate
° ) a 3 identifications(e.g., T’ in Fig. 2) are present in the local
] MSS picture. In this case, the local dynamics is confined to
3 o u. the shaded region in Fig. 2. A twist producing rotation yields
. ] a termp?/sint?(68, —2/38_) in the Kasner or mixmaster
10 TS S S CA IR R S Hamiltonian[28]. Identification of the exponentials from the
N 6 8 10 metric is not the same as constructing the relevant
potential—hence, the absence of a minus sign in the denomi-
FIG. 11.|Aw| for a sequence of bounces at the same valug of nator of Eq.(78). However, if only one of the two exponen-
for different spatial resolutions. The difference between the meatials in the denominator is large, such a sign cannot be de-
sured and predicted values wfis shown. tected. Presumably, an analysis such as that in Rf
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level off, this could just reflect the exponential increase of Kasner
epoch duration characteristic of mixmaster dynami@r) is nota
power law.

0O ——

FIG. 13. Exceptional points. Exceptional points withQ=0
andd,P=0 are associated with the peaksiwhile 7o=0 causes

9P
FIG. 14. The number of exceptional points ¥sThe growth in
the number of exceptional points vds shown. WhileN appears to

apparent discontinuities i@ [15,13. Zero crossings of all three
functions are shown at a latevalue for a portion of the axis.

should demonstrate the equivalence between the twist poten-
tial and the Kasner centrifugal potential in the local MSS
picture.

IV. NUMERICAL RESULTS

MCP arguments give a qualitative prediction of what be-
havior one might see in solutions of Einstein’s equations.
They are, however, neither rigorous nor complete. Thus it is
important to compare the solution behavior predicted by
MCP arguments with the behavior observed in numerical
studies ofT? symmetric spacetimes. As we discuss here, the
agreement is remarkable.

Equations(14)—(19) are solved numerically using a sec-

ond order iterative Cranck-Nicholsdi©N) method(see for

example _Ref[32]). Symplectic methods used in our previ-  FiG. 15. P(6,7) (top), Q(6,7) (middle), and\(6,7) (bottom
ous studieg 15,27 fail for these models. Apparently, the are shown for the full simulatiortwith arbitrary scales for their

operator splitting used in the symplectic algorithm allows avalues. The left hand column uses 1024 spatial grid points and the
pathological behavior inr, which is suppressed by other right hand column 2048 spatial grid points. In each frame, the hori-

(more standandmethods. The CN algorithm can be shown to zontal axis is— 7/5< §<9#/5 and the vertical axis is€ r<76.
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behavior ofP at spatial points with a second twist bounce
havingw>1 andw<1.

Interestingly, we find in our numerical simulations a num-
ber of spatial points where a combined curvature-twist
bounce has occurred. This is shown in the plot of combined
bounce rulgAw|s shown in Fig. 8. Figure 9 shows(r) at
such a spatial point with the same quantity at nearby spatial
points. At the latter, it is clear that the combined bounce has
split into separate curvature and twist bounces.

As illustrated in Fig. 10, for small values e after the
first twist bounce, the evolution changes very little if we
change the spatial resolution. This indicates convergénce
the computational analysis sehs¢ such spatial points. i

FIG. 16. Limits on the simulation. The plot showe (6,7) is large after the first twist bOL_mce, then the evolution_does
computed from the simulationg( 6, 7) using the twist bounce rule. appear to be S_Ome,What sz_itlal-resolutlon depe”,@f‘“s
The scale is set so that values100 (<—100) appear white gl;_o |IIustr§1t_ed in Fig. 1_D Th|§ reflects some sensitivity to
(black. The white and black lines which extend to the end of theinitial conditions at the first twist bounce where a subtraction
simulation indicate) values which are destined to have dangerously@Ppears in the denominator of the bounce law. However,

large values ofv after the next twist bounce. Only a portion of the Within a given trajectory, the agreement with bounce laws is
0 axis is shown. more convergent with increasing spatial resolution as seen in
Fig. 11. The wave forms at=61.66 are shown for different
be more stable but less accurate than symplectic methorfé)atial reso_lutions in Fig. 12 Inclusion of adaptive mesh
finement in these codes is in progrg33].

prior to blow-up of the latter. In Fig. 13, a section of the spatial axis is shown for graphs

In our numerical studies, we have examined the evolutiorbf 3,Q, d,P, andmo, vs 0 at a late value of. If any of these
of the gravitational field for a wide variety of sets of initial qua(r’nit,iesﬁ vanish gt somé,, exceptional behavior results

data. We obtain qu.alitatively similf';\r results in all cases. Th‘ihere. The zero crossings are shown. For the given initial
graphical results displayed and discussed here are primarilyata the density of exceptional points increases rapidly with
based on the representative choice of initial data Wth tjme as shown in Fig. 14. Since such points are generated by
=0, mp=5cos@+m/5), Q=cos@+m/5), mo=0, A=0,  evolving small scale spatial structure, one could argue that
and 7,=1/2, and withc=1 and x=10"*. This particular exceptional points should become a dense(stimeasure
choice of data is useful in that it leads to early onset of twistzerg as r—«. This means that any rigorous statements
bounces. about the nature of these solutions must include consider-

A crucial feature of BKL(or AVTD) behavior is that the ation of the behavior at exceptional points.
evolving fields satisfy the KEA within finite time at each At a few points, there are anomalies where the bounce
spatial pointd. To check for the onsefand later, the recur- laws are violated. This seems to be a consequence of inad-
rence of field evolution consistent with the KEA, we moni- equate resolution since the effect disappears at higher spatial
torw=mp/(2,) at every spatial point. Typical behavi@t resolution. The data foP, Q, and\ (at two spatial resolu-
three spactial poinids shown in Fig. 3. The analysis of Sec. tions) for the results discussed in this section are shown in
[l predicts thatw(#) should be asymptotically piecewise Fig. 15.
constant. This is seen to be the case. Careful examin@tion The simulations illustrated here cannot be run signifi-
Fig. 4) shows that the constancy wof(#) becomes an ever cantly beyondr~75 (as indicated in various figuresThe
better approximation ag— . reason becomes clear from examination of the values aif

To study the validity of the MCP predictions for the 7=~75. At several values o, w(6) is very close tqand less
change of the value ofv(#) following a bounce, given its than unity. From Eq.(62), it is then clear that the next
value beford Egs.(51), (56), (62), (67), and(68)], we mea- bounce should be a twist bounce with a very large new value
sure thew values in all the Kasner epochs. The next value isof w. Butw>1 produces numerical overflows in at least one
then predicted using all possible bounce laws. If the newexponential ternidepending on the sign of’) in the equa-
value ofw obeys any one of these, then the differehte| tions of motion(14)—(19). This is a “physical,” resolution-
between the actual and predicted values should be mudhdependent numerical instability. While possible ways to
smaller than those obtained by chance. For the indicated inresolve this problem involve checking the value ot 6)
tial data, at a typical spatial point, the first twist bounce is(and thus slowing the coglethere is no difficulty in principle
followed by a sequence of alternating kinetic and curvaturen either using arbitrary precision arithmetsee for example
bounces. Typically, a comparison of actual behavior toRef.[34]) or the MCP solutiorisee Appendix Afor the next
bounce law predictions improves asncreases. Typical data kinetic or curvature bounce. Figure 16 is constructed by us-
are shown in Fig. 5. At some spatial points, a second twising the twist bounce rule on the computed arvef®, 7) to
bounce occurs. Figure 6 shows the valuefAof| computed  obtainw’ (6, 7). Momentary(pointlike) large values ofw|
for all bounces using the twist bounce law. The small valuesrise during bounces when the KEA does not hold. The per-
are indicative of the actual twist bounces. Figure 7 shows thsistent large values dfv’| for 7=~75 indicate that danger-
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ously large values are likely to arise after the next bounce ate Institute for Geophysics and Planetary Physics at

some spatial points. Lawrence Livermore National Laboratory for hospitality.
M.W. would like to thank Alan Rendall for insightful re-
V. CONCLUSIONS marks. This work was supported in part by National Science

We have examined the approach to the singularitfin Foundation Grants_ No._ PHY9800193 and PHY9800732.
symmetric vacuum spacetimes. Numerical simulation proS0me of the numerical simulations discussed here were per-
vides strong support for the contention that these model&rmed at the National Center for Supercomputing Applica-
reach an asymptotic regime where the KEA holds. Given théions of the University of lllinois.

KEA, we then predict, using the MCP analysis, the rules

relating one Kasner epoch to the next. Again the numerical APPENDIX A: EXPLICIT SOLUTIONS
simulations show remarkable agreement with the MCP pre- FOR THE BOUNCES
dictions.

These spacetimes may be understood as another example!f the gravitational field at €o,7(4,)) satisfies the KEA,
family whose members exhibit local mixmaster dynamics inthen the local evolution of the gravitational field quantities
the vicinity of the singularity. However, the local mixmaster {P,Q, u,\,7p ,7mq,m\} takes the simple velocity dominated
dynamics shown here differs from that studied in magnetidorm, but at nonexceptional points at least one of the Hamil-
Gowdy models. In that case, the local MSS potential istonian potentials grows in time. To understand what happens
closed by a magnetic wall which replaces one of the curvaas one of the potentials becomes significant, we study the
ture walls that one would expect in a locally Bianchi type-IX eyolution of the fields for each of the three governing Hamil-

spacetime. IiT2 symmetric spacetimes, the essentially non-tonian densitiedd = Ho+Hyin, H=Ho+Hcy,, andH=H,
diagonal centrifu_gal wall cl_oses the potential. +H,e. Letting {ﬁyéyﬁ,x,%p,%qy%x} denote the data
Several questions remain open. First, we may ask Wheth‘?ffalues at 0, 7o), With 79—, , , in each case we obtain the
there are an infinite number of bounces. In the absence of " o e

exceptional points, one could start from any valuenodnd explicit'® general solution in a neighborhood 6.

apply the bounce rule€51)—(62) indefinitely. We have ar-

gued that the most common exceptional points Wit 1. Kinetic bounce

=0, 9,Q=0, or mo=0 do not cause the bounces to termi-
nate. However, we have seen that the number of exceptional
points increases as ever smaller scale spatial structure is pro-
duced by bounces which occur at different places at different 2. o 2
times. Any rigorous discussion of the asymptotic behavior of = E(WP’Le TQ)- (A1)
T2 symmetric models must deal with the exceptional points. »

We do not yet know the role, if any, played by exceptional  For a kinetic bounce to occur for some>7,, we need

points where higher derivatives also vanish. Detailed discus= & . - i
sions of exceptional points will be given elsewh§té]. mo#0 and we neetv=0, or equivalentlyrp=0. We pre

X . . sume that both of these conditions hold for the data at
A second open question concerns the relationship betwe 0.70)
2 . . . y .
;iaﬁzmr?;ggclfnrggt(ri:) issyg(?ritsrgedm?ndflesr'rnlé ?ﬁg;g?l Now let us define the following series of convenient
X ) : nstan Il ndin n th :
variables, all features observed up to now in genér{d) constants- [all depending upon the data e, 7o)]
models[10] may be explained in terms of local mixmaster

H=Ho+Hyin

dynamics[31]. It is not yet known whether analogs of the ﬁ,:é[%gjL e—Zﬁ’;Té]UZ' (A2)
twist bounce(a feature ofnondiagonal Bianchi type-IX 21y

models have been missed or suppressed in the existing

U(1) simulations. A detailed discussion of the relationship efﬁ’*ﬁfo%Q

between the two classes of spacetimes will be given else- (=, (A3)
where[35]. Tp— 2By

Even with these open questions, we have provided strong
support for the validity forT? symmetric spacetimes of the
BKL picture in its most generalocal, nondiagonal Bianchi ~ °In the case of the twist bounce, we use an implicitly defined
type-I1X) form. We have also provided yet another examplefunction.
of the power of the MCP in the analysis of the approach to HThese constants depend énand the solution will be a good
the singularity in inhomogeneous cosmologies. Finally, weapproximation of the evolution through the bounce on a neighbor-
have shown how this class of spacetimes allows accuraﬂéOOd of (). Knowledge of the solution on a spatial neighborhood

numerical simulations yet provides a highly nontrivial mani- is necessary to confirm that the exponential factors generically do,
festation of local mixmaster dynamics both before and after the boun¢and in the case of the neglected

potentials also during the boungceontrol the terms in which they
ACKNOWLEDGMENTS appear. It is also necessary for analysis of the exceptional points,
since the spatial derivatives play a crucial role. But here we are
B.K.B. and J.I. would like to thank the Albert Einstein discussing the field evolution in at a fixed point,, so we write
Institute (Golm) for hospitality. B.K.B. would like to thank the quantities as functions of time alone.
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els'*'BTO e_’s'"(zg_l)TO
=_— A4 Q= Al4
« 1+ gZeZBTO ( ) « 1+ §2e2ﬁ70 ( )
We note that the KEA, withmp<0, implies that 5~  We note that the KEA, with 2,—mp<0 implies thatg
—mp/2m,=—w. We also note that the KEA implies that ~—(2m,—mp)I2m,=(w—1) and that{ is very small.
is very small, andrq=0+¢=0. 9,Q=0<7=0. The solution takes the following forfi36]:

In terms of these constants, the solution governed by the
density[Eq. (Al1)] and matching the initial conditions a§ is

. 2,287
(for fixed 6o) [13-19 P(r)=P+(1+B)(7— 70)—|n<—~—+~g | (a15)
1+ %e?mo
. 1+ gZeZﬁT
P(T)—P—,B(T—TO)+|H m , (A5) )
Q(7)=Q, (A16)
- Pig g"eZBT
Q(n)=Q+fe "Fo— ————— (A6) ~2 2B
a(1+ 2e?P) - ~ 1+7%
)\(T)Z)\—(l'f'ﬁ)z(T— TO)+2 In m) ,
N7 =A—B1— 1), (A7) (A17)
~ [ 1= ~o T
=— - . - — BT
mp(7)=—2m\ B ( " gzezm) : (A8) mo(7) =27, + 2m3< Tizzﬁ—) , (A18)
WQ(T):;TQ, (Ag) R N — -
A WQ(T):WQ_eZ(PiTO){(ﬁea)g_0(5’05)
mnEm A0 2598 ot T2
2. Curvature bounce x[(363)2+'&((902)]}e2(l’—7)
H=Ho+Hcur, X{(dga){ —a(340) —2a(3sB) T
+ 2P (9p0) T+ @(9,D)1), (A19)
1 2 A2(P-1) 2
=4_7T}\(7TP+e (34Q)9). (A11)
m(T) =, (A20)

In this Hamiltonian, a spatial derivative term appears. How-

ever, sincerg does not appear, the general solution for fields  Note the appearance d®(r) in the exponent of Eq.

governed by Eq(A11l) is relatively straightforward to derive. (A19); one may substitute iR(7) from Eq.(A15) to obtain
This Hamiltonian is in fact related to Eqb\l) by a canonical an expression in terms of the initial data.

transformation. The similarity in structure can be seen in the
two explicit solutions, but we do not discuss this further
here.

For a curvature bounce to occur for somte 7y, we need

3. Twist bounce

9,Q+0 and we needv<1, or equivalentlymp<21, . We H=Ho+Huwist
presume that both of these conditions hold for the specified
data at @g, 79)- )
A . . . _ (N+2P+37)/2p¢ 2
To explicitly write the general solution fdi in Eq. (A11), T 4, TPTOME K= (A21)
it is again useful to first define a set of constafulspending
on the data aty) For a twist bounce to occur for some> 75, we need

—1<w<3; that is, —1<mp/2m,<3. We presume this
Bi= 1 [(2%}\_%P)2+ez(ﬁ>—ro)((90©)z]1/z (A12) condition holds. Note that, by assumptidf# 0; and note

27y that it follows from constrainf11) that 7, >0. HenceH,ist
is always positive. While we can find the solution to Eq.
_ en‘:—(1+Za)Toa0Q B (A11) for all values of initial data witlw € (—1,3), one finds
(i=——————(1—P), (A13)  thatifw=+1, the solution blows up in finite timd 2]. (See
mp— 27Ty Sec. lll) We thus presume thate (—1,1)U(1,3).
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As for the other two bounces, in writing out the solution APPENDIX B: GENERALIZED KASNER EXPONENTS

for the twist bounce it is useful to define a few constants \yhen the quantitye=— ,u/2 is small the generalized

(depending on the initial dafe Kasner exponents are approximately
§:2ﬂ0+ﬂtwist_%P+5;T}\i (A22) B %(?T)\—ZE-F]. e 2(v—1) e -2(v+1)
P"on—2e—3" "2 gN—2e-3" "3 gN—-2e-3"
¢‘:|:|twistv (A23) B
It follows directly from the evolution equations that the de-
V:=[§2_4(%P_2%)\)2]1/2- (A24) nominator appearing in Eq&B1) is bounded above by 3.

The «’s are exactly the generalized Kasner exponents if the
twist constanK =0. To derive Eqs(B1), we first define the

We also find it necessary to work with an implicitly defined .
orthonormal spatial frame

time: we define the variabl€ via the implicit equation

U,=e M0, — Gy 0,— G, dy), (B2)
1 8m —¢& . ET
7(T)— 79=— =In| cosi{vT) — sinh(vT) |+ —=. el=P+n/2
2 v 2 Uy=—"=0,, (B3)
(A25) Jo
L~ (P+7)/2
Note that for the case we are excluding=1, 7(T)— 7o e
. : . . Uz=—=—(dy—Qdy). (B4)
=0. But if w#1, we verify that7(T) is smooth and is a Jo

strictly increasing function of, o ) )
The components of the extrinsic curvature in this frame are

:_;:477%_ . (9N—2e+1)/2 0 —Je
kabZEe(f>\+3f)/4 0 w—1 €9,Q
Hence, it is invertible, and we can solve fo(7) in prin- — e e”9.Q —-w-1
ciple.[In the numerical calculations which use the symplec- (BS)
tic algonthm we use a rootfinder to fin(7).] In this frame the twist bounce and kinetic bounce both occur
If we define as bounces off centrifugal potentials. It is convenient to com-
pare the oscillatory dynamics of tHE? symmetric space-
S(T) = sinh(vT) (A26) times to that of the tilted Bianchi type-ll models studied in
v Cost{vT) — (87, — £)sin(»T) Ref.[30] using this frame, because the form of the extrinsic

curvature is the same in the two cases, and the off-diagonal
components of EqB5) are significant during a twist bounce
and a kinetic bounce, in turn. The spatially homogeneous
R R R models studied in Ref{30] have a tilted perfect fluid as
P(7)=P+ 71— 719+ (mp—2m\)T(7), (A27) source. Note that, without the source, the constraints rule out
the possibility of oscillatory dynamics in those models, while
2 in the spatially inhomogeneou§? symmetric spacetimes

the expressions for the solution are the follow[i3§]:

Q(1=Q, (A28) similar dynamics are obtained in vacuum. Figure Il in Ref.
R A [30] depicts the oscillatory dynamics which we see at a ge-
N71)=N—2IncosivT)— (8 — &)sin(vT)/v] neric spatial point. Figure (i) in that reference depicts the
L curvature bounce solutiongn our languagge Figure I1iii)
—41IN1-2¢pS(T) ]|+ (27— 7mp—28)T, depicts the kinetic bounce solutions, and Fidiiill depicts

the twist bounce solutions. The identification is fixed by set-

(A29) ting w=0 at the poinQs in their figure, withw increasing in
. . the clockwise direction around the Kasner cirale-¢ =« at
mp(7)=mp+4m\ dS(T), (A30)  the pointTs). The authors of Ref30] consider an orthonor-
mal framee,, and the variables¥, ,%_). Lete;=U,, e,
mo(7)= %Q, (A31) =Uj3 and e3=U;. While the con_dit_ions placed in Rdi30] _
on the spatial frame are not satisfied here, they are approxi-
. mately satisfied at generic spatial points near the singularity.
m(7)=m[1-2¢3(T)]. (A32)  Setting
_1(6w—¢97)\+25—3
2The twist bounce solution can be obtained by a canonical trans- T2 —9N+2e+3 )
formation of the magnetic bounce solution in the magnetic Gowdy
case. That solution is given in the context of magnetic Bianchi type- s - \/§ 2w+ Jd,N—2€+3 B6)
VI, spacetimes in Ref37]. V2l —9N+2e+3 [
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we obtain Fig. Il from Ref.[30] by noting that> _ /(2
—3 ) is constant in a curvature bounce solutian,,
— /33 _ is constant in a kinetic bounce solution, aBd is
constant in a twist bounce solution.

To continue the derivation of Eq§B1) we next defing
=\v—w and

(1 if ,Q=0 and 4,P=0
0 if 9,Q=0 and 4,P<0
a= B7
e",Q . B9
otherwise,
|TV2o
0 if 9,Q=0 and o,P=0
= B
b —— otherwise. (B8)
2v
Note thata®+ b?=
V:I.:Ul! (Bg)
e(—P+n)2
V,=———=—{(a—be’Q)s,+bea}, (B10)
Vo
e(P+7)/2
V3= {—(aQ+be P +as,}. (B11)
Jo
The components of the extrinsic curvature in this frame ar
(IN—2€e+1)/2 —be —aye
1
kabzze(_)\+37)/4 _b\/; v—1 0
—aye 0 -v—1
(B12)

If the twist constanK vanishegso the spacetime is Gowgly

PHYSICAL REVIEW D64 084006

frame, and Eqg(B1) follow. If the twist constanK does not
vanish, the off diagonal components of the extrinsic curva-
ture are small except during a twist bounce.

The eigenvalueg; and eigenvector®V; of the extrinsic
curvature are the solutions kf W= & h, WP . Perturbation
theory for linear operator38] shows that, wher is small
at some point in space, the difference between the eigenval-
ues and the diagonal components and the angles between the
eigenvectors and the frame vectors are both bounded in
terms ofe at that point in space. This gives a bound,/s0
the magnitude of the error in Eq&1). This bound is not
sharp, and holds whether or not the diagonal components of
the extrinsic curvature are well separated from each other.

The eigenvectors of the extrinsic curvature are called the
Kasner directions, or the principal axes. Wheis small, the
Kasner directions are essentially given by the frame vectors
V;, in that the angle between each frame vector and one of
the Kasner directions is small. In the solutions of the sub-
HamiltonianHy+ H,ist, € grows and decays again. We can

1. Consider the orthonormal spatial frame expjicitly compute the rotation of the Kasner directions with

respect to the orthonormal framé in the solutions to this
sub-Hamiltonian. Note that, is orthogonal to thd? isom-

etry orbits and that the other two frame vectors are tangent to
the isometry orbits. We find that in each possible twist
bounce one of the Kasner directions rotates from tangent to
orthogonal, and another rotates from orthogonal to tangent.
Note that each solution tély+Hy,is; IS @ one parameter
family of Kasner spacetimes. In this case we can verify di-
rectly that the generalized Kasner exponents reduce to a one
eparameter family of Kasner exponents, constant in time.
Since each solution to the sub-Hamiltonigdg+H,,
+Huist IS also a one parameter family of Kasner epochs, it
must also be the case that during the evolution governed by
this sub-Hamiltonian the generalized Kasner exponents re-
duce to a one parameter family of Kasner exponents, con-
stant in time. Bounce rul€’0), shows that in this case one of
the Kasner directions rotates from being tangent to the isom-
etry orbits to being orthogonal, and another Kasner direction

thene vanishes, so the extrinsic curvature is diagonal in thigotates from being orthogonal to being tangent.
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