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Oscillatory approach to the singularity in vacuum spacetimes withT2 isometry
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We use qualitative arguments combined with numerical simulations to argue that, in the approach to the
singularity in a vacuum solution of Einstein’s equations withT2 isometry, the evolution at a generic point in
space is an endless succession of Kasner epochs, punctuated by bounces in which either a curvature term or a
twist term becomes important in the evolution equations for a brief time. Both curvature bounces and twist
bounces may be understood within the context of local mixmaster dynamics although the latter have never
been seen before in spatially inhomogeneous cosmological spacetimes.
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I. INTRODUCTION

Thirty years ago, Misner@1# and Belinskii, Khalatnikov,
and Lifshitz ~BKL ! @2# noted that Bianchi type-IX spatially
homogeneous cosmological solutions of Einstein’s equat
seem to exhibit a sort of oscillatory behavior in the approa
to the singularity. This behavior, labeled ‘‘mixmaster’’@1#,
involves an infinite sequence of periods~or ‘‘epochs’’! dur-
ing which the solution evolves essentially as a Kasner sp
time @3,4#, with each Kasner epoch ended by a ‘‘bounce’’
short duration which changes the evolution from that of o
Kasner to that of another one. The sequence of Kas
epochs satisfies a rule, called the Kasner map, which ta
one Kasner epoch in the sequence to the next.1 This charac-
terization of the Bianchi type-IX singularity has recent
been made rigorous@5#. BKL also made the rather surprisin
claim @2,6# that in spatially inhomogeneous solutions
Einstein’s equations, timelike observers2 approaching a big
bang or big crunch singularity should generally see this
cillatory behavior, with the Kasner epoch seen by one
server differing from that seen by other neighboring obse
ers; however, the sequence of Kasner epochs for e

*Email address: berger@Oakland.edu
†Email address: jim@newton.uoregon.edu
‡Email address: weaver@aei-potsdam.mpg.de
1However, it is not necessarily expected that the evolution c

verges to a single such sequence of Kasner epochs. It may be
the evolution always eventually diverges from any one such
quence and another sequence, which again follows the Kasner
becomes a better approximation.

2In this paper, by the term ‘‘observer’’ we mean a timelike pa
with constant spatial coordinates. We assume that foliation
threading have been chosen. Whether results of the sort discu
here will be seen by inequivalent sets of observers is not yet g
erally known. However, this does seem to be true at least in ce
cases@7#.
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observer still satisfies the Kasner map.
Our previous study of the magnetic Gowdy family

spacetimes@8# provided firm support for BKL’s claim in a
spatially inhomogeneous setting. In that work, we nume
cally evolve spacetimes in the family using the standard a
~or ‘‘Gowdy’’ ! time foliation, and we find generic observe
see oscillatory behavior in the metric evolution. Moreov
our studies of the magnetic Gowdy spacetimes indicate
the sequence of Kasner epochs seen by each observer fo
the pattern of succession predicted by BKL@2,6#. Further,
these studies agree with the qualitative picture which
Grubišić-Moncrief method of consistent potentials~MCP!
suggests@9#.

Since this magnetic Gowdy work, numerical and MC
studies of two other families of cosmological spacetim
have been carried out: theT2 symmetric vacuum spacetime
and theU(1) symmetric vacuum spacetimes. Both stud
strongly support the BKL claim that the approach to the s
gularity is oscillatory. The results forU(1) symmetric solu-
tions have been reported elsewhere@10#. Here we discuss the
behavior near the singularity forT2 symmetric vacuum
spacetimes.

Since U(1) is a subgroup ofT25U(1)3U(1), the T2

symmetric vacuum spacetimes are a subfamily of theU(1)
symmetric vacuum spacetimes.3 One may then ask why it is
useful to study theT2 symmetric family directly. The reason
is that, since the equations for theT2 symmetric family are
considerably simpler@111 partial differential equations
~PDEs! rather than 211 PDEs# the numerical studies can b
done significantly more accurately. Hence the studies
more accurate for theT2 symmetric family, and the behavio
of the bounces seen by the observers can be monitored m
carefully. The MCP analysis has been carried out in gr
detail in this simpler case. We report this study here both
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3Note that in studies of the behavior near the singularity inU(1)
symmetric spacetimes, a restrictive assumption is made. This
striction is consistent with the full range ofT2 symmetric solutions.
©2001 The American Physical Society06-1
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BEVERLY K. BERGER, JAMES ISENBERG, AND MARSHA WEAVER PHYSICAL REVIEW D64 084006
present the detailed picture it gives of the dynamics in th
spacetimes, and also, we hope, as an aid to obtaining r
ous results about the dynamics.

We define theT2 symmetric family in Sec. II, noting the
relationship between this family and others, such as
Gowdy @11# and the Kasner spacetimes. Also in Sec. II,
discuss the areal function and coordinates, recalling res
which justify their use forT2 symmetric solutions and writ
ing out the field equations. In Sec. III, we set up the MC
treatment of the evolution equations for theT2 symmetric
spacetimes and use it to argue that oscillatory behavior
curs. We recall that in setting up the MCP form of a given
of evolution equations, one presumes that at each sp
point, the fields evolve to Kasner epoch values~not neces-
sarily at the same time for all spatial points!; one then sub-
stitutes these Kasner-like values of the fields into the ri
hand side of the evolution equations, and attempts to in
how the various terms in these equations should behav
time, and what the resulting behavior of the fields should
This analysis predicts that there should be three types
bounces inT2 symmetric spacetimes: curvature bounc
twist bounces, and kinetic bounces. A kinetic bounce is n
transition between two distinct Kasner epochs. Rather, it
curs within a Kasner epoch. However, in terms of the evo
tion of the metric functions, it is a bounce on a par with t
others and its occurrence is necessary for the oscillatory
havior to continue. In Appendix A we state the explicit ev
lution of the fields during each of the three bounces~ignoring
in each case terms in the evolution equations which
small! and discuss the qualitative nature of each in Sec.
We compare the MCP predictions for bounce behavior w
those of BKL. In Sec. III we also discuss the MCP argum
that, in these spacetimes, an observer following a time
path of constant spatial coordinate should see an unen
succession of bounces, a key ingredient of mixmaster
namics and the BKL claims.

MCP analysis provides useful predictions, but is limit
in that, in addition to being nonrigorous, it does not pred
whether generic initial data will evolve into a spacetime
which, along each appropriate timelike observer’s path
Kasner-like state is reached.~This, again, is a prerequisite fo
carrying out the MCP study.! To justify the MCP predictions,
we rely on numerical studies ofT2 symmetric solutions. For
representative sets of initial data, Kasner epoch values fo
fields are reached at each spatial point. Once the Ka
regime is reached at a given spatial point, the bounces o
as predicted by our MCP studies, as far as we are abl
carry out the evolution. A discussion of these results is p
sented in Sec. IV. These numerical studies do not prove
T2 symmetric solutions generically exhibit an oscillatory b
havior near the singularity, as predicted by BKL. They d
however, strongly support this contention.

In the magnetic Gowdy family of spacetimes, we ha
found that in a generic solution, conditions can occur at n
generic spatial points~e.g., the derivative of a metric com
ponent has a zero! with the result that at various points ne
this nongeneric point, there is only a finite number
bounces. While similar conditions occur at nongeneric s
tial points in a genericT2 symmetric solution, and while
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these conditions again appear to persist, there is as ye
evidence that the bounces stop at nearby points, in contra
the situation in a magnetic Gowdy solution. The occurren
of the exceptional points is observed in the numerical sim
lations, and the long time behavior is predicted by the M
analysis. We discuss and exhibit exceptional points in S
III and IV, but leave extensive discussion of these to futu
work @12#. We make concluding remarks in Sec. V.

II. T2 SYMMETRIC SPACETIMES

We define theT2 symmetric family of spacetimes to con
sist of globally hyperbolic solutions of the vacuum Einste
equations with compact Cauchy surfaces and with aT2 isom-
etry group acting spatially and without fixed points. Gen
ally for spacetimes in this family, at least one of the ‘‘twis
functions

K (X)ªemnrlXmYn¹rXl and K (Y)ªemnrlXmYn¹rYl

~1!

does not vanish.~Here X and Y are a pair of Killing fields
which generate theT2 isometry group.! If in fact both twist
functions do vanish, then one obtains the important subfa
ily of Gowdy spacetimes.

The Gowdy spacetimes have been extensively stud
and it is believed@9,13–19# that they are all asymptotically
velocity term dominated~AVTD !. Roughly speaking, this
means that as each observer in a given spacetime approa
the singularity, she sees at most a finite number of boun
and eventually settles into a final Kasner epoch4 which gen-
erally varies from point to point. Since the Gowdy spac
times are fairly well understood, and since they are a se
measure zero in the full family ofT2 symmetric spacetimes
we shall henceforth presume that one or both of the tw
functions is nonzero, in which case the only topology co
patible withT2 symmetric spacetimes isT33R 1.

It is very useful in studying the properties of the evolutio
in a given family of spacetimes to have available a univer
choice of spacetime foliation which exactly covers the ma
mal globally hyperbolic development of every spacetime
that family. As proven in Ref.@21#, the ‘‘areal foliation’’
~with corresponding areal coordinates! serves this purpose
for T2 symmetric solutions. We recall that the areal foliatio
chooses spacelike hypersurfaces which are invariant u
theT2 action~thereby containing complete orbits ofT2) with
each leaf of the foliation consisting of all orbits of a fixe
area. That is, if we letR:T33R 1→R 1 be the function
which assigns to a given spacetime point the area of theT2

orbit which contains that point, then the areal foliatio
chooses for its time function somet}R. In Ref. @21# ~also
see Ref.@22#!, it is shown that for everyT2 symmetric solu-
tion (T33R,g) of the vacuum Einstein equations,~i! such a
function t is indeed timelike; ~ii ! for every value of t
P(t0 ,`) with t0.0 (t0 fixed for each spacetime! the t leaf

4Asymptotically velocity term dominated behavior is define
more carefully in Refs.@16,20#.
6-2
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OSCILLATORY APPROACH TO THE SINGULARITY IN . . . PHYSICAL REVIEW D64 084006
is indeed aT3 Cauchy surface; and~iii ! the t hypersurfaces,
with tP(t0 ,`), collectively cover the maximal globally hy
perbolic region of (T33R,g). Hence the areal foliation pro
vides the desired universal choice of time for theT2 sym-
metric spacetimes. We note that for the Gowdy spacetimt
is the familiar Gowdy time.

If we use (x,y)PT2 as coordinates labeling points on th
T2 isometry group orbits, and useuPS1 as a coordinate
parametrizing distinct orbits, then (u,x,y,t) serve as univer-
sal coordinates for theT2 symmetric spacetimes, and we ma
write the generic metric for this family in the form

g5e2(n2U)~2adt21du2!

1se2U@dx1Ady1~G11AG2!du

1~M11AM2!dt#21se22Ut2

3@dy1G2du1M2dt#2, ~2!

whereU, A, n, a, G1 , G2 , M1, andM2 are functions ofu
and t ~independent ofx andy), ands is a positive constant
This form @Eq. ~2!# for the T2 symmetric metrics is used fo
the analysis in Ref.@21#. Here, to make it easier to compa
the present study ofT2 symmetric spacetimes with previou
similar studies of magnetic Gowdy spacetimes@8# and
Gowdy spacetimes@13–15,23#, it is useful to replace the
time functiont by t52 ln t ~one still has an areal type folia
tion! and the metric functionsU, A, n anda by the following
equivalent functions:

P52 U1t, ~3!

Q5A, ~4!

m522 lna, ~5!

l54n24U12 lna2t. ~6!

In terms of these variables, the metric takes the form

g52e(l23t)/2dt21e(l1m1t)/2du21seP2t@dx1Qdy

1~G11QG2!du1~M11QM2!~2e2tdt!#2

1se2P2t@dy1G2du1M2~2e2tdt!#2. ~7!

We note, for purposes of comparison, that the metric
magnetic Gowdy spacetimes is the same as Eq.~7! except
thatG1 , G2 , M1, andM2 vanish. If one relaxes the assum
tion of theT2 isometry to allow it to be a local isometry, the
other spatial topologies in addition toT3 are possible in the
magnetic case or the Gowdy case but not in the generaT2

symmetric case with nonvanishing twist. The topology
fects the spatial boundary conditions of the functionsP and
Q, but not the qualitative behavior of the evolution towa
the singularity@12,16,24#.

The Einstein vacuum field equations for theT2 symmetric
spacetimes@21# naturally divide themselves into four set
The first set,

]uK (X)50, ]tK (X)50, ]uK (Y)50, ]tK (Y)50 ~8!
08400
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simply tells us that the twist functions are constant in sp
and time~and hence are labeled the ‘‘twist constants’’!. For
any givenT2 symmetric spacetime, we may always replaceX
and Y by a linear combination of themselves and there
cause one or the other twist function to vanish~but not both!.
Hence, without loss of generality, we may further presu
that only one of the twist constants is nonzero. We label t
K.

The next two sets are the constraint equations and
evolution equations for the metric functions$P,Q,m,l%.
They involve the twist constantK, but are independent o
$G1 ,G2 ,M1 ,M2%. We discuss these equations below. T
last set of equations govern$G1 ,G2 ,M1 ,M2%. They take the
form

]tG152e2t]uM11Q e(m12l14P16t)/4K, ~9!

]tG252e2t]uM22e(m12l14P16t)/4K. ~10!

We see from these equations that, once$P,Q,m,l% have
been determined, one obtains$G1 ,G2 ,M1 ,M2% by choosing
M1(u,t) andM2(u,t) to be arbitrary functions ofu andt,
choosingĜ1(u) and Ĝ2(u) as arbitrary~initial data! func-
tions onS1, and then integrating Eqs.~9! and~10! over t to
obtain G1(u,t) and G2(u,t). Thus $G1 ,G2 ,M1 ,M2% are
nondynamical fields. They are essentially ‘‘shift functions
which determine how the coordinates (x,y) evolve int and
u. If K is nonvanishing,$G1 ,G2 ,M1 ,M2% cannot all vanish
everywhere in spacetime; the symmetry group does not
orthogonally transitively@25#.

The dynamics of the gravitational field inT2 symmetric
spacetimes lie in$P,Q,m,l%. To study these fields we find i
useful to work in Hamiltonian form. LettingpP , pQ , pm ,
and pl denote the momenta conjugate to these four fie
we find that pm may be eliminated, that the function
$P,Q,m,l,pP ,pQ ,pl% must satisfy the constraint equation

pl2
1

2
em/450, ~11!

pP]uP1pQ ]uQ1pl]ul50, ~12!

and that the evolution equations for$P,Q,l,pP ,pQ ,pl%
can be obtained by varying the Hamiltonian density5

H5
1

4pl
@pP

2 1e22PpQ
2 1e22t~]uP!21e2(P2t)~]uQ!2#

1sple(l12P13t)/2K2. ~13!

In particular we have

5Note thatH in Eq. ~13! is not a super-Hamiltonian, and isnot
required to vanish as a consequence of the constraints. It is a Ha
tonian~density! corresponding to the choice of time foliation mad
for these spacetimes.
6-3
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BEVERLY K. BERGER, JAMES ISENBERG, AND MARSHA WEAVER PHYSICAL REVIEW D64 084006
]tP5
pP

2pl
, ~14!

]tpP5
1

2pl
Fe22PpQ

2 1e22t]uuP2
e22t~]uP!~]upl!

2pl

2e2(P2t)~]uQ!2G2sple(l12P13t)/2K2, ~15!

]tQ5
e22PpQ

2pl
, ~16!

]tpQ5
e2(P2t)

2pl
F]uuQ2

~]uQ!~]upl!

pl
12~]uP!~]uQ!G ,

~17!

]tl52
1

~2pl!2
@pP

2 1e22PpQ
2 1e22t~]uP!2

1e2(P2t)~]uQ!2#1se(l12P13t)/2K2, ~18!

]tpl52
1

2
sple(l12P13t)/2K2. ~19!

The evolution for the remaining metric function,m, follows
from constraint~11!:

]tm522se(l12P13t)/2K2. ~20!

The constraint equations, the Hamiltonian and the evo
tion equations for the fields for magnetic Gowdy spacetim
are very similar to these; the main difference is that the tw
terms in the Hamiltonian density and in the evolution eq
tions are replaced by magnetic terms, with the exponen
coefficient for the magnetic terms,e(l1t)/2, differing from
that for the twist terms,e(l12P13t)/2. This difference leads to
interesting consequences, which we discuss in a future w
@12#.

We have already noted the relationship between the fa
iar Gowdy spacetimes and theT2 symmetric spacetimes dis
cussed here. The spatially homogeneous subfamily of
Gowdy spacetimes consists of the Kasner spacetimes.
spatially homogeneous subfamily of the genericT2 symmet-
ric spacetimes, with nonvanishing twist, consists of Kas
spacetimes as well. This may seem surprising since, for
standard Kasner Killing vectors, all the twist functions va
ish. However, one verifies that, in the homogeneous subf
ily, X andY ~with nonvanishing twist! are a linear combina
tion ~with constant coefficients! of the three Kasner Killing
vector fields. The coefficients are constant, but since
norms are changing in time, the angles between the two
of Killing vectors are changing in time. More specificall
consider two orthonormal spatial bases:Ei , made up of
eigenvectors of the extrinsic curvature~the Kasner direc-
tions!, andei , such that each vector in the frame is prop
tional to a Killing vector and such that two of the fram
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vectors are tangent to the isometry orbits generated byX and
Y. Then the relation between the two frames is a time dep
dent rotation.

Another subfamily of theT2 symmetric spacetimes i
worth noting. If one chooses initial data withQ(u,t0)50
andpQ(u,t0)50, thenQ(u,t)50 andpQ(u,t)50 for all
points in the spacetime development of this data.@See Eqs.
~16! and~17!.# Hence one can consider a subfamily, the ‘‘p
larized’’ T2 symmetric spacetimes, with the metric coef
cient Q—and the corresponding gravitational degree
freedom—turned off. The polarizedT2 symmetric space-
times have been studied using Fuchsian methods, and
finds@26# that there are full-parameter sets of these which
AVTD rather than oscillatory near the singularity. Thus a
though oscillatory behavior is expected to occur generica
in T2 symmetric spacetimes, it is not expected to occur
either the Gowdy or the polarized subfamilies.

III. MCP ARGUMENT FOR OSCILLATORY BEHAVIOR

The method of consistent potentials is a systematic
proximation scheme@27# for predicting the behavior of cos
mological solutions of Einstein’s equations in the neighb
hood of their singularities. It is based on a key assumpti
which in practice must be checked numerically. The con
quence of this assumption is a weighting of the influence
various terms in the Hamiltonian. To describe this, it is u
ful to split the Hamiltonian density@Eq. ~13!# as follows:

H5H01Hkin1Hsmall1Hcurv1Htwist , ~21!

where

H05
1

4pl
pP

2 , ~22!

Hkin5
1

4pl
e22PpQ

2 , ~23!

Hsmall5
1

4pl
e22t~]uP!2, ~24!

Hcurv5
1

4pl
e2(P2t)~]uQ!2, ~25!

Htwist5sple(l12P13t)/2K2. ~26!

The assumption, for a fixedT2 symmetric vacuum solution
(T33R,g) with the singularity att→`,6 concerns the mo-
mentary values of the fields for larget.

6While the long time existence result@21# does not show thatt
→`, this is expected to be the case generically in this family.
needt→` to obtain the prediction of an unending sequence
bounces since each~local! Kasner epoch has a finite duration int.
6-4
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Kasner epoch assumption (KEA): For eachuPS1, there
exists a timet (u) such that

2t (u)!0, ~27!

2P~u,t (u)!!0, ~28!

P~u,t (u)!2t (u)!0, ~29!

l~u,t (u)!12P~u,t (u)!13t (u)!0, ~30!

such that

H0@Hkin , ~31!

H0@Hsmall , ~32!

H0@Hcurv , ~33!

H0@Htwist , ~34!

and such that the terms in the evolution equations due to0
dominate the terms in the evolution equations due to Hkin ,
Hsmall , Hcurv and Htwist .

Explicitly, this assumption says that for eachu-labeled
observer in the spacetime, there is a timet (u) such that all of
the exponential factors in the Hamiltonian density at (u,t (u))
are very small.~The same factors also appear in the evo
tion equations.! This follows from conditions~27!–~30!.7 In
addition, this assumption states that at this time the fie
$P,Q,l,pP ,pQ ,pl% have developed in such a way that t
exponential factors control the relative size of the vario
terms in the Hamiltonian density and also in the evolut
equations.8

The intent of the KEA is to imply that, in any of thes
spacetimes, the evolution proceeds in such a way that ea
the u5const observers will, at some timet (u) ~generally
varying from point to point! reach a Kasner epoch. This fo
lows immediately from the evolution equations under t
conditions assumed. One might worry that it is too restrict
to require thatH0 dominate the other terms in the Ham
tonian density, because it is possible thatH0 vanishes during
a Kasner epoch, but then the prediction of the MCP anal
is thatH0 will dominate the other terms in the next Kasn
epoch occurring at that value ofu, so the KEA will thus be
satisfied in this next Kasner epoch.

A consequence of the KEA, combined with the MC
analysis, is that generally~the exceptions are briefly dis
cussed later in this section! the fields evolve in such a wa
that they do not counteract any explicit exponential decay
growth of Hkin , Hcurv or Htwist , or that of terms in the

7Note that the assumption doesnot say that conditions~27!–~30!
hold for all t.t (u) at u.

8The dominance of the exponential factors is discussed in Ref.@8#,
and assumed in ‘‘Assumption A.’’ There we failed to note that the
are exceptional situations in which exponential dominance does
hold. We address those cases briefly in this paper and in more d
in Ref. @12#.
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evolution equations~14! derived fromHkin , Hcurv or Htwist .
That is, besides dominating the relative size of the vario
terms in the Hamiltonian density~13! and in the evolution
equations~14!–~19!, the exponential terms dominate th
changesin relative size of the terms. So, for example,
l(u,t (u))12P(u,t (u))13t (u)!0 and (d/dt)(l(u,t (u))
12P(u,t (u))13t (u))u(u,t(u))

.0, then it follows from the

KEA that Htwist is small relative toH0 at (u,t (u)), and it
follows from this assumption combined with the evolutio
equations thatHtwist is growing int.

Numerical results, which we discuss in Sec. IV, indica
that the KEA holds forT2 symmetric solutions.

We now consider what happens to the gravitational fie
along a fixedu observer path after a Kasner epoch has be
at some timet (u) . We presume a fixed spacetime, and w
assume the KEA discussed above. Examining the evolu
equations~14!–~19!, we find that the right hand sides of a
but Eqs.~14! and ~18! are extremely small. Hence the var
ables$Q,m,pP ,pQ ,pl% are essentially constant. The var
ablesP andl are not constant; however, if we set

wª

pP

2pl
, ~35!

we have

]tP5w ~36!

and

]tl52w21O, ~37!

where O indicates terms which, as a consequence of
KEA, can be neglected. The functionw is essentially con-
stant, soP and l evolve linearly with t. Since all four
Hamiltonian potentials,$Hkin ,Hsmall ,Hcurv ,Htwist% are neg-
ligible, we call the evolution ‘‘velocity dominated’’ when~a!
the KEA holds,~b! $Q,m,pP ,pQ ,pl% are essentially con-
stant ~note that this implies thatw is essentially constant!,
and ~c! ]tl'2(]tP)252w2. To reiterate, part~a! implies
parts~b! and ~c!, that is, the KEA implies that the evolutio
is velocity dominated att (u) .

This predicted pattern of evolution for the variabl
$P,Q,l,m,pP ,pQ ,pl% and their spatial derivatives, non
increasing or decreasing faster than linearly, is consis
with the KEA. The conditions in the assumption continue
hold so long as the Hamiltonian potentials stay small relat
to H0.9 To see whether or not these potentials do indeed s
small for t.t (u) at u, we need to examine the time deriva
tives of the exponential quantities in expressions~22! for
Hkin , Hsmall , Hcurv , andHtwist . We have

]t~22P!522w, ~38!

]t~22t!522, ~39!

ot
tail9Hence the name for this analysis: the ‘‘method of consistent
tentials.’’
6-5
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TABLE I. Behavior of potentials when the KEA holds.

Condition Potentials that grow Potentials that do not gr

w<21 and pQÞ0 Hkin Hsmall Hcurv Htwist

21<w,0 and pQÞ0 Hkin Htwist Hsmall Hcurv

0<w<1 Htwist Hkin Hsmall Hcurv

1,w,3 and ]uQÞ0 Hcurv Htwist Hkin Hsmall

3<w and ]uQÞ0 Hcurv Hkin Hsmall Htwist
o-

le

-
d
lo

t,
o

el

tia

al
ur
n-
a

at
B.

con-

ons
nts.
ly a
the
s-

ts

as-
mes

ch
]t~2P22t!52~w21!, ~40!

]tF1

2
~l12P13t!G52

1

2
w21w1

3

2
, ~41!

with w approximately constant int. Clearly the value of the
quantityw is crucial in determining whether each of the p
tentials grows or not. In particular, we have, at fixed (u,t (u)),

Hkin grows if w,0 ~andpQÞ0!, ~42!

Hsmall decays ~ if ]uPÞ0!, ~43!

Hcurv grows if w.0 ~and]uQÞ0!, ~44!

Htwist grows if 21,w,3. ~45!

Stating this another way, we have the results listed in Tab
Note that the conditions within the parentheses in Eqs.~42!–
~44! ensure ‘‘generic’’ behavior.

It doesnot follow from Table I that if the KEA holds there
must be at least one growing potential at (u,t (u)). To argue
this, we need to assume that bothpQ and]uQ are nonzero at
(u,t (u)). Since generally these smooth functions,pQ and
]uQ, are nonzero at a given (u,t), we define (u,t (u)) to be
generic if neither vanishes, andexceptionalif one of them
does vanish. Exceptional behavior~of a different type, to be
discussed later! also occurs ifw51. Our subsequent discus
sion presumes that (u,t (u)) is generic unless explicitly state
otherwise; we discuss the exceptional cases briefly be
and in more detail in Ref.@12#.

Assuming genericity, it does follow from Table I tha
during velocity dominated evolution, at least one of the p
tentials is growing. Indeed, the growth is exponential int. To
see what affect this has, we need to consider how the fi
evolve with one or more of the potentialsHkin , Hcurv and
Htwist turned on and hence added toH0.

In discussing what happens when some of the poten
become significant, it is useful to keep track of thegeneral-
ized Kasner exponents. These are defined to be the eigenv
ues of the extrinsic curvature, divided by the mean curvat
It follows from the definition that the sum of the three ge
eralized Kasner exponents is equal to 1. Defining the qu
tity @9,13–15#

vª
1

2pl
~pP

2 1e22PpQ
2 !1/2, ~46!
08400
I.
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the generalized Kasner exponents for aT2 symmetric solu-
tion are

k15
v221

v213
1O, k25

222v
v213

1O, k35
212v
v213

1O.

~47!

As before, O indicates terms which can be neglected
(u,t (u)) when the KEA is satisfied, as shown in Appendix
Note that the KEA impliesv'upPu/2pl5uwu, and therefore
that the generalized Kasner exponents are essentially
stant in time. Furthermore, considering expressions~47!, we
see that, in addition tok11k21k351 which always is sat-
isfied, when the KEA holds it is also the case thatk1

21k2
2

1k3
2'1. These are the necessary and sufficient conditi

that a set of three numbers be a set of Kasner expone
Thus the generalized Kasner exponents are approximate
set of Kasner exponents when the KEA holds, and so
KEA does indeed imply that the evolution is essentially Ka
ner at (u,t (u)).

We recall that the BKL parameter ‘‘u’’ summarizes the
information in a set of Kasner exponents@2,6#. Except for
the case$0,0,1%, there always exists au>1 such that

kmin5
2u

11u1u2 , kmid5
11u

11u1u2 , kmax5
u~11u!

11u1u2 ,

~48!

where kmin is the smallest of a set of Kasner exponen
$kmin ,kmid ,kmax%, kmax is the largest value, andkmid is the
middle value. For expressions~47!, the relative magnitude
depends on the value ofv: for v,1, one hask1,k2,k3;
for 1,v,3, one hask2,k1,k3; and for 3,v one has
k2,k3,k1. For these different ranges of values ofv, we
obtain different expressions foru: for example, if 3<v, one
has u5(v21)/2. The expressions foru for each range of
values ofv are given in Table II.

To understand what happens to the fields when, as a K
ner epoch progresses, one or more of the potentials beco
significant, one can look at the evolution of the fields forH
5H01Hkin , H5H01Hkin1Htwist , etc. According to the
MCP results summarized in Table I, there are five su

TABLE II. Calculation of the BKL parameteru.

Range ofv 0<v,1 1,v<3 3<v

Value of u u5
11v
12v

u5
2

v21
u5

v21
2

6-6
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OSCILLATORY APPROACH TO THE SINGULARITY IN . . . PHYSICAL REVIEW D64 084006
Hamiltonian densities which in principle must be consider
H5H01Hkin , H5H01Hcurv , H5H01Htwist , H5H0
1Hkin1Htwist , and H5H01Hcurv1Htwist . In fact, for
both Hkin and Htwist , or both Hcurv and Htwist , to
become significant simultaneously, some fine tun
is needed. For example, if the KEA holds at (u0 ,t (u0))

with 1,w,3, then we have~for constantsA@0 and
B@0) Hcurv /H0;e2A1(2w22)(t2t(u0)) and Htwist /H0

;e2B1(2w212w13)(t2t(u0))/2, so they are both growing
Then, for the givenA,B,t (u0) , and the timet8 of the next
bounce, there is some value ofw such that the two potential
are equal att8. A similar argument may be made for21
,w,0 andHkin /H0 andHtwist /H0. We find ~see Sec. IV!
in our numerical simulations that simultaneous growth a
action of two potentials, though rare, does indeed occur.

A. Derivation of the bounce rules

If a T2 symmetric spacetime satisfies the KEA with
particular value ofw, and if it approaches one of the fiv
types of bounces (H01Hkin , H01Hcurve , H01Htwist , H0
1Hkin1Htwist , andH01Hcurv1Htwist!, one would like to
determine what the MCP predicts for the value ofw after the
bounce is over. One way to do this is to follow the evoluti
of the fields through each type of bounce~with appropriate
Hamiltonian! into the post-bounce Kasner epoch, and cal
late the change inw directly. The explicit bounce solution
given in Appendix A facilitate this approach. Another a
proach, which we use here, is based on energy and mom
tum conservation during the bounces. That is, using the
evant Hamiltonian density for each type of bounce, a
noting that its conservation requires certain quantitites to
of the same magnitude—but opposite sign—after the bou
as compared to before, we can determine howw changes.
Note that in carrying out this approach, it is convenient
considert(t) to be a dynamical variable, dependent on
new time coordinatet. It follows thatpt52H, and we can
work in terms of a Hamiltonian constraint densityC0 rather
thanH, and treat the former as a super-Hamiltonian~for unit
lapse!. For example, forH5H01Hkin , the Hamiltonian for
a kinetic bounce, we have

C05052pt pl1
1

2
~pP

2 1 pQ
2 e22P!. ~49!

For a kinetic bounce,pt and pl are constants of the
motion, whilepP changes sign. If we then form the quanti

w5
pP

2pl
, ~50!

we immediately obtain the bounce law for kinetic bounc
~where unprimed quantities are evaluated in the Kasner
och before the bounce and primed quantities after
bounce!

w852w. ~51!
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We next consider the dynamics for a curvature boun
determined by

C05052pt pl1
1

2
@pP

2 1~]uQ!2 e2(P2t)#. ~52!

Again, pl is a constant of the motion. If we define

z5P2t, ~53!

then

] t z5pP22pl ~54!

~since the variation ofC0 yields ] t t52pl). Now ] t z must
change sign during the bounce so that

~pP22pl!852~pP22pl!. ~55!

Dividing both sides by the constant 2pl and solving forw8
yields the bounce law

w8522w. ~56!

We now consider the twist bounce governed byH5H0
1Htwist . In this case, we have

C05052pt pl1
1

2
pP

2 12s pl
2k2e(l12P13t)/2. ~57!

If we evaluate the time derivative of the argument of t
exponential in the twist potential using the equations of m
tion obtained from the variation of Eq.~57!, we find that

] tS l

2
1P1

3t

2 D53pl1pP2
pP

2

4pl
1splk2e(l12P13t)/2.

~58!

Asymptotically ~i.e., when the twist potential may be ne
glected!, 3pl1pP2pP

2 /(4pl) is the momentum associate
with the time derivative~i.e. the growth rate! on the left hand
side of Eq.~58!. Thus it must change sign during the bounc

S 3pl1pP 2
pP

2

4pl
D 8

52S 3pl1pP 2
pP

2

4pl
D . ~59!

To find a rule forw, we must also recognize~from the equa-
tions of motion! that pP22pl is conserved in a twist
bounce, so that

~pP22pl!85~pP22pl!. ~60!

If we write both sides of Eqs.~59! and~60! so that factors of
pl and 2pl , respectively, are shown explicitly, divide Eq
~59! by Eq. ~60! to cancel thepl’s on each side~not the
same of course since the left hand side is after and the r
hand side before the bounce!, and identifyw, we find that

S 312w2w2

w21 D 8
52S 312w2w2

w21 D . ~61!
6-7
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TABLE III. Summary of bounce rules.

Bounce type Kinetic Curvature Twist Curvature twist Kinetic twi

Bounce rule w852w w8522w w85
w13
w21

w85
w25
w21

w85
32w

w11
t

e
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ed
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Equation~61! has the solution~there are two solutions bu
one is trivial!

w85S w13

w21D . ~62!

Note that 1,w<3 maps intow8>3 while 21<w,1 maps
into w8<21. Thus the former will always yield a curvatur
bounce after the twist bounce while the latter will yield
kinetic bounce after the twist bounce.

Before deriving the bounce rules for the combin
bounces—those with eitherH5H01Hkin1Htwist or H
5H01Hcurv1Htwist—we wish to make two observations
We first note that the quantitypP22pl picks out a direction
in local minisuperspace which is orthogonal to the twist,
its evolution is essentially unaffected by the presence or
sence of the twist potential. Second, we note that the tw
bounce rule@Eq. ~62!# may be obtained in a way differen
from that used above. Specifically, we find that the evolut
generated byH5H01Htwist conserves the ‘‘energy’’

E5S pP
2

4pl
1splk2e(l12P13t)/213plD 8

5S pP
2

4pl
1splk2e(l12P13t)/213plD . ~63!

Then, if we factor outpl appropriately from Eq.~63!, and if
we divide on the left and right hand sides by the left a
right hand sides of Eq.~60!, we derive

S w213

w21 D 8
5S w213

w21 D . ~64!

The nontrivial solution of Eq.~64! yields Eq.~62!.
We now consider the curvature-twist bounce. Analogou

to Eq. ~63!, the evolution generated byH5H01Hcurv
1Htwist conserves the energy quantity

E5
pP

2

4pl
1

~]uQ!2e2(P2t)

4pl
1splk2e(l12P13t)/22pP

15pl . ~65!

The quantitypP22pl is now not conserved. However, a
noted above, the behavior ofpP2pl during a curvature-
twist bounce should match its behavior during a curvat
bounce; so we have Eq.~55! ~as can be verified by consid
ering conserved and monotonic quantities!. If we now com-
bine Eqs.~55! and~65!, as we have described above for Eq
~60! and ~63!, we derive
08400
o
b-
st

n

y

e

.

S w222w15

w21 D 8
5S w222w15

12w D . ~66!

This in turn gives the bounce rule

w85S w25

w21D . ~67!

Note that Eq.~67! maps the region 1,w,3 into w,21, so
that the combined bounce will always be followed by a
netic bounce.

The previous analysis must be modified for the combin
kinetic-twist bounce because successive kinetic and tw
bounces do not bringw into the range leading to a curvatur
bounce. To do this, three bounces are required—ei
kinetic-twist-kinetic or twist-kinetic-twist. Either choice
leads to the same rule:

w85S 2w13

w11 D . ~68!

To avoid any implicit assumption regarding the number
bounces which form the combined bounce, we consider o
conserved quantities. The energy quantity conserved bH
5H01Hkin1Htwist is

E5
pP

2

4pl
1

e22PpQ
2

4pl
1s pl e(l12P13t)/2K2 1 3pl .

~69!

The second conserved quantity arises in the event thatHkin
5Htwist . In this case,pP12pl is conserved since its time
derivative is proportional toHkin2Htwist . This leads~using
the previous procedures! to

S w213

w11 D 8
5S w213

w11 D ~70!

which has the nontrivial solution Eq.~68!. Since it is un-
likely that Hkin5Htwist for any extended time~this would
require both the growth rates and coefficients to be equ!,
one would not expect the generic behavior to inclu
bounces of this type. In fact, none were seen in the numer
simulations. The bounce rules are summarized in Table

Using the bounce laws@Eqs. ~51!, ~56!, and ~62!# and
Table II for the BKL parameteru in terms of v5uwu, the
change inu during each type of bounce may be foun
Clearly, Eq.~51! yields u85u for any kinetic bounce, since
the change in sign ofw does not changev. In a curvature
bounce, the initial rangew>1 yields two possible relation
ships betweenv and u while the final w8 can involve all
three. The possibilities are shown in Fig. 1~a!. All possibili-
6-8
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OSCILLATORY APPROACH TO THE SINGULARITY IN . . . PHYSICAL REVIEW D64 084006
ties yield the standard BKL map foru: i.e. u85u21 if u
>2 andu851/(u21) if 1<u<2. A similar construction for
the twist bounce is shown in Fig. 1~b!. Here we see thatu8
5u results for all initial values ofw. The rule foru is the
same in a twist bounce, or in a combination twist-kine
bounce, as in a kinetic bounce. Furthermore, since a solu
to any of the three sub-HamiltoniansH01Hkin , H0
1Htwist , or H01Hkin1Htwist is a one parameter family o
Kasner spacetimes, it follows that the generalized Kas
exponents are~approximately! constant in time when any
one of these subhamiltonians essentially governs the ev
tion, and thereforeu is ~approximately! constant. The kinetic
and twist potentials are each, at any spatial point, a cent

FIG. 1. Relations betweenw, w8, u, and u8. ~a! Curvature-
bounce: Initially,w.1, so thatv5w. The dashed line showsv8
5uw8u5u22wu. Table II is used to computeu for v.1 andu8 for
0<v8. The horizontal lines show 1<u, u8<2. ~b! Twist bounce:
Initially, 21<w<3. The correspondingu, v, w8, u8, andv8 are
shown. Note that the curves foru andu85u are superposed. Tabl
II is used to computeu from v.
08400
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gal wall. This means@28,29# that the identity of the principa
axis associated with the growing cosmological scale fac
changes during the bounce. However, the natures of
bounces are quite different. During a twist bounce or a co
bined kinetic twist bounce at a point in space, the rotation
the principal axes is such that one of them is orthogona
the T2 symmetry orbits before the bounce and tangent af
while another principal direction is tangent before t
bounce and orthogonal to the symmetry orbits after. Durin
kinetic bounce the rotation of the principal directions is
the symmetry plane. One principal direction is orthogona
the symmetry orbit throughout the bounce. In Appendix B
comparison is made between the dynamics near the sing
ity at a spatial point and the dynamics of tilted Bianc
type-II models studied in@30#.

In Sec. IV, we shall examine the validity of the KEA an
the bounce laws in numerical simulations. However, expl
solutions through the kinetic, curvature, and twist boun
are known. These may be used to generate further pre
tions which can in turn be explored in numerical simulation
We leave these for future research. The explicit bounce
lutions are given in Appendix A.

B. Exceptional points

In a genericT2 symmetric spacetime there are nongene
points at which the gravitational field doesnot evolve away
from an era of velocity dominated evolution in the mann
that we have described thus far. There are three case
which this happens:w51 during a Kasner epoch,]uQ50
during a Kasner epoch withw.1, andpQ50 during a Kas-
ner epoch withw,0. In each case, one can give rough a
guments which indicate that bounces are likely to occur.
state these here.

We first consider the casew51. The twist bounce solu-
tion given in Appendix A isnot defined forw51. One can, it
turns out, write down a solution generated byH5H0
1Htwist explicitly in terms oft in this case. It blows up a
finite t. It is a Kasner spacetime with]uP50, with a non-
vanishing twist constantK, and with w51. However, we
claim that this is not a good approximation to the dynam
at a w51 exceptional point in a generic spacetime. Gen
ally it will not be the case that]uP vanishes. This leads to
situation in which the exponential factors do not control t
terms they appear in. In the solution that blows up,pl→0.
However, if pl is small enough, 1/4pl wrests control of
Hsmall from e22t and Hsmall becomes relevant. The sub
Hamiltonian that governs the evolution in this case isH
5H01Hsmall1Htwist . This has~after a canonical transfor
mation! the same structure as the Hamiltonian for a polariz
magnetic Bianchi type-VI0 model, in which case there ar
rigorous results which show that the solution does not bl
up in finite time, and which predict the bounce rule. One a
notes that thet dependence of the argument of the expon
tial in Hcurv vanishes ifw51. This means that, generically
Hcurv contributes a constant~not an exponentially decaying!
term to Eq.~15! for ]tpP . But w51 yields gªpP22pl

50 for the quantity which is conserved in the twist bounc
6-9
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BEVERLY K. BERGER, JAMES ISENBERG, AND MARSHA WEAVER PHYSICAL REVIEW D64 084006
The change ing due to the term fromHcurv will remove the
exceptional point condition.

We next consider the case that]uQ crosses zero at som
u0 during a Kasner epoch withw.1. The curvature bounce
is suppressed in a neighborhood ofu0. The closer to the
exceptional point, the longer the bounce is suppressed.w
,2 there will be a twist bounce which sendsw→w8.3. As
the neighborhood on which the curvature bounce is s
pressed becomes smaller and smaller,]uuP and pQ grow
exponentially ifw.2 @13# ~as can be seen in the curvatu
bounce solution@Eq. ~A15!# by considering the case thatz
crosses zero!. This wrests control ofHkin and terms in the
evolution equations derived fromHcurv from the exponential
factors, and causesw to decrease until it is again less than
in which case the twist potential begins to grow again,
bounces will continue. In the case thatpQ crosses zero dur
ing a Kasner epoch withw,0 a similar mechanism~here
]uuP and ]uQ grow exponentially ifw,21) ~Ref. @13#;
also see Appendix A! causesw to become greater than21,
in which case the twist potential starts growing, so boun
will continue.

These arguments suggest that there continue to be o
lations even at or near exceptional points. The behavio
the gravitational field at an exceptional point is delica
however. It may, for example, be the case that higher or
terms play an important role. Further study of exceptio
points is needed, and is now underway.

C. Minisuperspace picture and twist bounces

One of the more useful~and most pictorial! ways to study
the dynamics of spatially homogeneous cosmological s
tions of Einstein’s equations is via the minisuperspace~MSS!
picture. We would like to relate our discussion thus far
local oscillatory behavior and bounces inT2 symmetric so-

FIG. 2. The local MSS in theb6 /uVu plane. The triangle rep-
resents the Bianchi type-IX MSS potential. Scaling the anisotr
variablesb6 by the logarithmic volumeuVu (V→2` is the sin-
gularity! keeps the bounce locations fixed. The Gowdy models
gin generically with the wallsC and C8, which disappear as the
spacetime becomes AVTD. In magnetic Gowdy models, a th
curvature-like wallM is created by a magnetic field. InT2 symmet-
ric models, a centrifugal wallT closes off the potential. Here th
kinetic ‘‘wall’’ is understood to mapC8 ontoC, so that the dynam-
ics is confined to the shaded region.
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lutions to the MSS approach. In particular, we wish to s
how the local twist bounces appear in the MSS picture.

We recall that the MSS approach represents spatially
mogeneous spacetimes as follows: For each choice of
spatial isometry groupG ~e.g., G5R 3↔ Bianchi type I,
G5SU(2)↔ Bianchi type IX! one chooses a fixed grou
invariant frame, and then one can parametrize the se
3-geometries invariant underG using the MSS variablesV
~volume!, b6 ~anisotropy! andm i ~if the metric is not diag-
onal!. Using a simple choice of lapse and shift, one can r
resent a spacetime by a trajectory in the MSS configura
space@V(t),b1(t),b2(t)#, with them i(t) playing a subsid-
iary role. It follows from Einstein’s equations, adapted to t
spatial homogeneity, that the trajectories corresponding
solutions evolve via Hamilton’s equations, with the Ham
tonian potential proportional to the scalar curvatu
3R(b1 ,b2 ,V).

For Bianchi type-I spacetimes,3R50, so that the trajec-
tories are straight lines. For the diagonal Bianchi type-
solutions, the potential may be represented by triangu
walls, as in Fig. 2.~Note that, in this figure, the dynamics ha
been projected onto the anisotropy plane and resc
(b1 /uVu,b2 /uVu) so that the location of the potential wal
is independent ofV.) The dynamics then consists of straig
line segments~effectively Kasner intervals! punctuated by
intermittent reflections off one or the other of the walls~these
are the bounces!. The Kasner map describes the sequence
bounces, and relates the parameters of the Kasner inte
after the bounce to those of the Kasner interval before
bounce. The MCP prediction that an infinite sequence
bounces should occur follows from the closed nature of
region in MSS configuration space which is bounded by
walls.

Before tying this picture to the local behavior ofT2 sym-
metric solutions, we note what happens to the MSS desc
tion of Bianchi type-IX spacetimes if the metric is not dia
onal. In this case, additional~‘‘centrifugal’’ ! walls appear,
bisecting the angles of the triangle. One or more may
present, depending on the orientation of the rotational a

y

-

d
FIG. 3. Typical behavior ofw(t) at representative values ofu.

The upper points are offset by 20 and 40 respectively for disp
convenience. The flat regions characterize the Kasner epochs.
6-10
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FIG. 4. Onset and recurrence of the KEA, as monitored byw.
~a! w(t,u0) for fixed u0. Flat regions indicate the KEA.~b! and~c!
Detailed closeups ofw(t,u0) at early~b! and later~c! times. At the
later time,w is flatter during the Kasner epoch.
08400
relative to the principal axes in the spacetime. The centr
gal walls do affect the bounces; however, a very sligh
modified Kasner map allows one to predict the effect of th
bounces on the Kasner interval transitions.

To obtain a MSS type picture for the local dynamics ofT2

symmetric solutions, it is useful to first do so for certa
subfamilies. For the Gowdy subfamily~twist equal to zero!,
we compare the Bianchi type-I spatial metric

g I5e2V24b1du21e2V12b112A3b2dx2

1e2V12b122A3b2dy2 ~71!

with the polarized~and diagonal! Gowdy spatial metric

gPG5e(l1t)/2du21e2t1Pdx21e2t2Pdy2, ~72!

to find the following relations between the MSS variabl
(V,b1 ,b2) and the Gowdy metric components

P52A3b2 , l56~V2b1!, t522~V1b1!. ~73!

~These identifications are not unique, since we have sing
out one direction,]/]u, in the Bianchi type-I spacetime to
identify with the direction of spatial dependence in t

FIG. 5. Typical behavior and accuracy of the bounce laws
three adjacent spatial points. Each point represents the smalles
ference between predicted and measured values ofw using all of the
bounce rules. This shows that each sequence starts with a
bounce and is followed by alternating kinetic and curvatu
bounces. As the simulation evolves, the accuracy of the bounce
prediction improves. The data were obtained by measuringw for all
bounces over a symmetric region~of lengthp) in the simulations.
The bounces are numbered consecutively~N! following bounces at
increasingt at a given point, and then moving to the sequence
bounces at the next point. The vertical lines divide the bounces
given spatial point from those at the next point.
6-11
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Gowdy spacetime.! Then if we rotate in thex-y plane by an
anglej and make identifications,t andl are unchanged bu
we have

eP5e2A3b2cos2j1e22A3b2sin2j ~74!

FIG. 6. Twist bounces identified by the difference between
measured and predicted values ofw. All bounces at all spatial points
in the considered interval had their preceding and subsequent v
of w measured and then computed according to the twist bou
rule. Where the difference between the measured and predicted
ues is large, it means that the bounce was not a twist bounce.
twist bounces early in the simulation agree with the bounce
with rather low accuracy because the KEA is not yet complet
valid. The highest accuracy agreement with predictions indica
second twist bounces later in the simulation. Clustering of the m
accurate twist bounces just indicates that similar behavior is oc
ring at nearby spatial points.

FIG. 7. Behavior ofP at twist bounces. Since in a Kasner epoc
]tP5w, the piecewise constantw implies a piecewise linearP. The
twist bounces are indicated by the arrows. Ifw0.1, thenw8.3
and the next bounce will be a curvature bounce. Ifw0,1, then
w8,21 and the next bounce is kinetic.
08400
and

Q5
sinj cosj~e2V12b112A3b22e2V24b1!

e2V24b1cos2j1e2V12b112A3b2sin2j
. ~75!

Now adding the spatial dependence onu to the Kasner solu-
tion obtained by the rotation throughj yields a generic
Gowdy spacetime where we recall that the Gowdy spa
times may be obtained fromT2 symmetric spacetimes b

e

es
ce
al-
he
le
y
s

re
r-

,

FIG. 8. Combined curvature and twist bounces. This graph
generated as in Fig. 6 but using the rule for combined bounces.
actual combined bounces haveuDwu'1026.

FIG. 9. Structure of a combined bounce. The combin
bounce’sw(t) at u0 is shown as a solid line. The segment after t
bounce hasw,21 so a kinetic bounce will follow;w(t) for a
point with u slightly less thanu0 is shown by the dotted line. Here
the final pre-kinetic bounce segment~K! is preceded by pre-twis
~T! and pre-curvature~C! segments. The dot-dashed line show
w(t) for u slightly greater thanu0. Here first a pre-curvature
bounce and then a pre-twist bounce segment precede the fina
kinetic bounce segment.
6-12
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setting the twist constantk to zero andpl to 1/2. Unpolar-
ized Gowdy spacetimes have two nonvanishing potent
Hkin and Hcurv ~specialized to the Gowdy case!. It follows
from Eq. ~74! that the Gowdy potentialHcurv will be of
order unity on the lines labeledC and C8 in Fig. 2 if that
diagram is assumed to depict a local MSS picture fo
Gowdy spacetime. Similarly,Hkin will be of order unity on
the line labeledK in Fig. 2 when the distances from th
system point toC andC8 are equal.

In a similar fashion, a rotation through an anglev(t) in
the u-y plane leads to new identifications which correspo

FIG. 10. Spatial resolution dependence. The evolution@for
w(u,t)# is shown at three representative values ofu ~offset by 15
and 30, respectively! for 1024 ~solid line! and 2048~dotted line
with circles! spatial grid points. The dependence on spatial reso
tion increases with the value ofuwu which follows the initial twist
bounce.

FIG. 11. uDwu for a sequence of bounces at the same value ou
for different spatial resolutions. The difference between the m
sured and predicted values ofw is shown.
08400
ls

a

d

to those appropriate to a polarizedT2 symmetric spacetime
The identifications are based on the metric@Eq. ~7!# with Q
andG1 set to zero in the spatial metric. We find

e22P5e24A3b2cos2v1e22A3b226b1sin2v, ~76!

e22t5e4b114V cos2v1e2A3b222b114V sin2v,
~77!

and the twist potential combination

e(l12P13t)/25~e3b12A3b2cos2v1e23b11A3b2sin2v!21.
~78!

Each of these identifications contains two exponential te
on the right hand side, only one of which can be large a
given time. If we choose one of these to represent the c
trifugal wall ~e.g., the one consistent with the original Kasn
identifications forP andt), we find that the centrifugal wal
is of order unity along the line labeledT in Fig. 2.

We claim that in the generalT2 symmetric models, the
walls C, C8, K, and T, and the walls allowed by alternat
identifications~e.g., T8 in Fig. 2! are present in the loca
MSS picture. In this case, the local dynamics is confined
the shaded region in Fig. 2. A twist producing rotation yiel
a termpv

2 /sinh2(6b122A3b2) in the Kasner or mixmaste
Hamiltonian@28#. Identification of the exponentials from th
metric is not the same as constructing the relev
potential—hence, the absence of a minus sign in the deno
nator of Eq.~78!. However, if only one of the two exponen
tials in the denominator is large, such a sign cannot be
tected. Presumably, an analysis such as that in Ref.@31#

-

a-

FIG. 12. Resolution dependence of wave forms. As noted in
evolution of U(1) symmetric cosmologies@10#, narrowing spiky
features@15# cause the simulations to yield resolution depend
results where the functions are not smooth. The choice of in
data made here yields an especially spiky wave form forP. A rep-
resentative portion is shown.
6-13
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should demonstrate the equivalence between the twist po
tial and the Kasner centrifugal potential in the local MS
picture.

IV. NUMERICAL RESULTS

MCP arguments give a qualitative prediction of what b
havior one might see in solutions of Einstein’s equatio
They are, however, neither rigorous nor complete. Thus
important to compare the solution behavior predicted
MCP arguments with the behavior observed in numer
studies ofT2 symmetric spacetimes. As we discuss here,
agreement is remarkable.

Equations~14!–~19! are solved numerically using a se
ond order iterative Cranck-Nicholson~CN! method~see for
example Ref.@32#!. Symplectic methods used in our prev
ous studies@15,27# fail for these models. Apparently, th
operator splitting used in the symplectic algorithm allows
pathological behavior inpl which is suppressed by othe
~more standard! methods. The CN algorithm can be shown

FIG. 13. Exceptional points. Exceptional points with]uQ50
and]uP50 are associated with the peaks inP while pQ50 causes
apparent discontinuities inQ @15,13#. Zero crossings of all three
functions are shown at a latet value for a portion of theu axis.
08400
n-

-
.

is
y
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e

FIG. 14. The number of exceptional points vst. The growth in
the number of exceptional points vst is shown. WhileN appears to
level off, this could just reflect the exponential increase of Kas
epoch duration characteristic of mixmaster dynamics.N(t) is not a
power law.

FIG. 15. P(u,t) ~top!, Q(u,t) ~middle!, andl(u,t) ~bottom!
are shown for the full simulation~with arbitrary scales for their
values!. The left hand column uses 1024 spatial grid points and
right hand column 2048 spatial grid points. In each frame, the h
zontal axis is2p/5<u<9p/5 and the vertical axis is 0<t<76.
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be more stable but less accurate than symplectic meth
prior to blow-up of the latter.

In our numerical studies, we have examined the evolut
of the gravitational field for a wide variety of sets of initia
data. We obtain qualitatively similar results in all cases. T
graphical results displayed and discussed here are prim
based on the representative choice of initial data withP
50, pP55 cos(u1p/5), Q5cos(u1p/5), pQ50, l50,
and pl51/2, and withs51 andk51024. This particular
choice of data is useful in that it leads to early onset of tw
bounces.

A crucial feature of BKL~or AVTD! behavior is that the
evolving fields satisfy the KEA within finite time at eac
spatial pointu. To check for the onset~and later, the recur-
rence! of field evolution consistent with the KEA, we mon
tor w5pP /(2pl) at every spatial point. Typical behavior~at
three spactial points! is shown in Fig. 3. The analysis of Se
III predicts that w(u) should be asymptotically piecewis
constant. This is seen to be the case. Careful examinatio~in
Fig. 4! shows that the constancy ofw(u) becomes an eve
better approximation ast→`.

To study the validity of the MCP predictions for th
change of the value ofw(u) following a bounce, given its
value before@Eqs.~51!, ~56!, ~62!, ~67!, and~68!#, we mea-
sure thew values in all the Kasner epochs. The next value
then predicted using all possible bounce laws. If the n
value ofw obeys any one of these, then the differenceuDwu
between the actual and predicted values should be m
smaller than those obtained by chance. For the indicated
tial data, at a typical spatial point, the first twist bounce
followed by a sequence of alternating kinetic and curvat
bounces. Typically, a comparison of actual behavior
bounce law predictions improves ast increases. Typical data
are shown in Fig. 5. At some spatial points, a second tw
bounce occurs. Figure 6 shows the values ofuDwu computed
for all bounces using the twist bounce law. The small valu
are indicative of the actual twist bounces. Figure 7 shows

FIG. 16. Limits on the simulation. The plot showsw8(u,t)
computed from the simulationsw(u,t) using the twist bounce rule
The scale is set so that values.100 (,2100) appear white
~black!. The white and black lines which extend to the end of t
simulation indicateu values which are destined to have dangerou
large values ofw after the next twist bounce. Only a portion of th
u axis is shown.
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behavior ofP at spatial points with a second twist boun
havingw.1 andw,1.

Interestingly, we find in our numerical simulations a num
ber of spatial points where a combined curvature-tw
bounce has occurred. This is shown in the plot of combin
bounce ruleuDwus shown in Fig. 8. Figure 9 showsw(t) at
such a spatial point with the same quantity at nearby spa
points. At the latter, it is clear that the combined bounce
split into separate curvature and twist bounces.

As illustrated in Fig. 10, for small values ofw after the
first twist bounce, the evolution changes very little if w
change the spatial resolution. This indicates convergence~in
the computational analysis sense! at such spatial points. Ifw
is large after the first twist bounce, then the evolution do
appear to be somewhat spatial-resolution dependent~as is
also illustrated in Fig. 10!. This reflects some sensitivity to
initial conditions at the first twist bounce where a subtract
appears in the denominator of the bounce law. Howe
within a given trajectory, the agreement with bounce laws
more convergent with increasing spatial resolution as see
Fig. 11. The wave forms att561.66 are shown for differen
spatial resolutions in Fig. 12. Inclusion of adaptive me
refinement in these codes is in progress@33#.

In Fig. 13, a section of the spatial axis is shown for grap
of ]uQ, ]uP, andpQ vs u at a late value oft. If any of these
quantities vanish at someu0, exceptional behavior result
there. The zero crossings are shown. For the given in
data, the density of exceptional points increases rapidly w
time as shown in Fig. 14. Since such points are generate
evolving small scale spatial structure, one could argue
exceptional points should become a dense set~of measure
zero! as t→`. This means that any rigorous statemen
about the nature of these solutions must include consi
ation of the behavior at exceptional points.

At a few points, there are anomalies where the bou
laws are violated. This seems to be a consequence of i
equate resolution since the effect disappears at higher sp
resolution. The data forP, Q, andl ~at two spatial resolu-
tions! for the results discussed in this section are shown
Fig. 15.

The simulations illustrated here cannot be run sign
cantly beyondt'75 ~as indicated in various figures!. The
reason becomes clear from examination of the values ofw at
t'75. At several values ofu, w(u) is very close to~and less
than! unity. From Eq. ~62!, it is then clear that the nex
bounce should be a twist bounce with a very large new va
of w. But w@1 produces numerical overflows in at least o
exponential term~depending on the sign ofw8) in the equa-
tions of motion~14!–~19!. This is a ‘‘physical,’’ resolution-
independent numerical instability. While possible ways
resolve this problem involve checking the value ofw(u)
~and thus slowing the code!, there is no difficulty in principle
in either using arbitrary precision arithmetic~see for example
Ref. @34#! or the MCP solution~see Appendix A! for the next
kinetic or curvature bounce. Figure 16 is constructed by
ing the twist bounce rule on the computed arrayw(u,t) to
obtain w8(u,t). Momentary~pointlike! large values ofuwu
arise during bounces when the KEA does not hold. The p
sistent large values ofuw8u for t'75 indicate that danger

y
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ously large values are likely to arise after the next bounc
some spatial points.

V. CONCLUSIONS

We have examined the approach to the singularity inT2

symmetric vacuum spacetimes. Numerical simulation p
vides strong support for the contention that these mod
reach an asymptotic regime where the KEA holds. Given
KEA, we then predict, using the MCP analysis, the ru
relating one Kasner epoch to the next. Again the numer
simulations show remarkable agreement with the MCP p
dictions.

These spacetimes may be understood as another exa
family whose members exhibit local mixmaster dynamics
the vicinity of the singularity. However, the local mixmast
dynamics shown here differs from that studied in magne
Gowdy models. In that case, the local MSS potential
closed by a magnetic wall which replaces one of the cur
ture walls that one would expect in a locally Bianchi type-
spacetime. InT2 symmetric spacetimes, the essentially no
diagonal centrifugal wall closes the potential.

Several questions remain open. First, we may ask whe
there are an infinite number of bounces. In the absenc
exceptional points, one could start from any value ofw and
apply the bounce rules~51!–~62! indefinitely. We have ar-
gued that the most common exceptional points with]uP
50, ]uQ50, or pQ50 do not cause the bounces to term
nate. However, we have seen that the number of excepti
points increases as ever smaller scale spatial structure is
duced by bounces which occur at different places at differ
times. Any rigorous discussion of the asymptotic behavior
T2 symmetric models must deal with the exceptional poin
We do not yet know the role, if any, played by exception
points where higher derivatives also vanish. Detailed disc
sions of exceptional points will be given elsewhere@12#.

A second open question concerns the relationship betw
T2 symmetric andU(1) symmetric models. If adiagonal
Bianchi type-IX metric is expressed in terms of theU(1)
variables, all features observed up to now in genericU(1)
models@10# may be explained in terms of local mixmast
dynamics@31#. It is not yet known whether analogs of th
twist bounce ~a feature ofnondiagonal Bianchi type-IX
models! have been missed or suppressed in the exis
U(1) simulations. A detailed discussion of the relationsh
between the two classes of spacetimes will be given e
where@35#.

Even with these open questions, we have provided str
support for the validity forT2 symmetric spacetimes of th
BKL picture in its most general~local, nondiagonal Bianch
type-IX! form. We have also provided yet another exam
of the power of the MCP in the analysis of the approach
the singularity in inhomogeneous cosmologies. Finally,
have shown how this class of spacetimes allows accu
numerical simulations yet provides a highly nontrivial ma
festation of local mixmaster dynamics.
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APPENDIX A: EXPLICIT SOLUTIONS
FOR THE BOUNCES

If the gravitational field at (u0 ,t (u0)) satisfies the KEA,
then the local evolution of the gravitational field quantiti
$P,Q,m,l,pP ,pQ ,pl% takes the simple velocity dominate
form, but at nonexceptional points at least one of the Ham
tonian potentials grows in time. To understand what happ
as one of the potentials becomes significant, we study
evolution of the fields for each of the three governing Ham
tonian densitiesH5H01Hkin , H5H01Hcurv and H5H0

1Htwist . Letting $P̂,Q̂,m̂,l̂,p̂P ,p̂Q ,p̂l% denote the data
values at (u0 ,t0), with t05t (u0) , in each case we obtain th

explicit10 general solution in a neighborhood ofu0.

1. Kinetic bounce

H5H01Hkin

5
1

4pl
~pP

2 1e22PpQ
2 !. ~A1!

For a kinetic bounce to occur for somet.t0, we need
p̂QÞ0 and we needŵ,0, or equivalently,p̂P,0. We pre-
sume that both of these conditions hold for the data
(u0 ,t0).

Now let us define the following series of convenie
constants11 @all depending upon the data at (u0 ,t0)]:

bª
1

2p̂l

@p̂P
2 1e22P̂p̂Q

2 #1/2, ~A2!

zª
e2 P̂2bt0p̂Q

p̂P22bp̂l

, ~A3!

10In the case of the twist bounce, we use an implicitly defin
function.

11These constants depend onu, and the solution will be a good
approximation of the evolution through the bounce on a neighb
hood of (u0). Knowledge of the solution on a spatial neighborho
is necessary to confirm that the exponential factors generically
both before and after the bounce~and in the case of the neglecte
potentials also during the bounce!, control the terms in which they
appear. It is also necessary for analysis of the exceptional po
since the spatial derivatives play a crucial role. But here we
discussing the field evolution int at a fixed pointu0, so we write
the quantities as functions of time alone.
6-16
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aª
eP̂1bt0

11z2e2bt0
. ~A4!

We note that the KEA, withp̂P,0, implies that b'

2p̂P /2p̂l52w. We also note that the KEA implies thatz

is very small, andp̂Q50⇔z50.
In terms of these constants, the solution governed by

density@Eq. ~A1!# and matching the initial conditions att0 is
~for fixed u0) @13–15#

P~t!5 P̂2b ~t2t0!1 lnS 11z2e2bt

11z2e2bt0
D , ~A5!

Q~t!5Q̂1z e2 P̂1bt02
z e2bt

a~11z2e2bt!
, ~A6!

l~t!5l̂2b2~t2t0!, ~A7!

pP~t!522 p̂l bS 12z2e2bt

11z2e2btD , ~A8!

pQ~t!5p̂Q , ~A9!

pl~t!5p̂l . ~A10!

2. Curvature bounce

H5H01Hcurv

5
1

4pl
„pP

2 1e2(P2t)~]uQ!2
…. ~A11!

In this Hamiltonian, a spatial derivative term appears. Ho
ever, sincepQ does not appear, the general solution for fie
governed by Eq.~A11! is relatively straightforward to derive
This Hamiltonian is in fact related to Eq.~A1! by a canonical
transformation. The similarity in structure can be seen in
two explicit solutions, but we do not discuss this furth
here.

For a curvature bounce to occur for somet.t0, we need
]uQÞ0 and we needŵ,1, or equivalently,p̂P,2p̂l . We
presume that both of these conditions hold for the speci
data at (u0 ,t0).

To explicitly write the general solution forH in Eq. ~A11!,
it is again useful to first define a set of constants~depending
on the data att0)

b̃ª
1

2p̂l

@~2p̂l2p̂P!21e2(P̂2t0)~]uQ̂!2#1/2, ~A12!

z̃ª2
eP̂2(11b̃)t0]uQ

p̂P22p̂l

~12b̃ !, ~A13!
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ãª
e2 P̂1(b̃21)t0

11 z̃2e2b̃t0
. ~A14!

We note that the KEA, with 2p̂l2p̂P,0 implies thatb
'2(2p̂l2p̂P)/2p̂l5(w21) and that z̃ is very small.
]uQ̂50⇔ z̃50. The solution takes the following form@36#:

P~t!5 P̂1~11b̃ !~t2t0!2 lnS 11 z̃2e2b̃t

11 z̃2e2b̃t0
D , ~A15!

Q~t!5Q̂, ~A16!

l~t!5l̂2~11b̃ !2~t2t0!12 lnS 11 z̃2e2b̃t

11 z̃2e2b̃t0
D ,

~A17!

pP~t!52p̂l12p̂lb̃S 12 z̃2e2b̃t

11 z̃2e2b̃tD , ~A18!

pQ~t!5p̂Q2e2(P̂2t0)$~]uã !z̃2ã~]uz̃ !

22ã~]ub̃ !z̃t01 z̃2e2b̃t0

3@~]uã !z̃1ã~]uz̃ !#%e2(P2t)

3$~]uã !z̃2ã~]uz̃ !22ã~]ub̃ !z̃t

1 z̃2e2b̃t@~]uã !z̃1ã~]uz̃ !#%, ~A19!

pl~t!5p̂l . ~A20!

Note the appearance ofP(t) in the exponent of Eq.
~A19!; one may substitute inP(t) from Eq. ~A15! to obtain
an expression in terms of the initial data.

3. Twist bounce

H5H01Htwist

5
1

4pl
pP

2 1sple(l12P13t)/2K2. ~A21!

For a twist bounce to occur for somet.t0, we need
21,ŵ,3; that is, 21,p̂P /2p̂l,3. We presume this
condition holds. Note that, by assumption,KÞ0; and note
that it follows from constraint~11! thatpl.0. HenceHtwist
is always positive. While we can find the solution to E
~A11! for all values of initial data withwP(21,3), one finds
that if w511, the solution blows up in finite time@12#. ~See
Sec. III.! We thus presume thatwP(21,1)ø(1,3).
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As for the other two bounces, in writing out the solutio
for the twist bounce it is useful to define a few consta
~depending on the initial data!12

jªĤ01Ĥtwist2p̂P15p̂l, ~A22!

fªĤtwist , ~A23!

nª@j224~p̂P22p̂l!2#1/2. ~A24!

We also find it necessary to work with an implicitly define
time: we define the variableT via the implicit equation

t~T!2t052
1

2
lnFcosh~nT!2

8p̂l2j

n
sinh~nT!G1

jT

2
.

~A25!

Note that for the case we are excluding,ŵ51, t(T)2t0

50. But if ŵÞ1, we verify thatt(T) is smooth and is a
strictly increasing function ofT,

dt

dT
54pl .

Hence, it is invertible, and we can solve forT(t) in prin-
ciple. @In the numerical calculations which use the symple
tic algorithm we use a rootfinder to findT(t).#

If we define

S~T!ª
sinh~nT!

n cosh~nT!2~8p̂l2j!sinh~nT!
, ~A26!

the expressions for the solution are the following@36#:

P~t!5 P̂1t2t01~p̂P22p̂l!T~t!, ~A27!

Q~t!5Q̂, ~A28!

l~t!5l̂22 ln@cosh~nT!2~8p̂l2j!sinh~nT!/n#

24 ln@122fS~T!#1~2p̂l2p̂P22j!T,

~A29!

pP~t!5p̂P14p̂lfS~T!, ~A30!

pQ~t!5p̂Q , ~A31!

pl~t!5p̂l@122fS~T!#. ~A32!

12The twist bounce solution can be obtained by a canonical tra
formation of the magnetic bounce solution in the magnetic Gow
case. That solution is given in the context of magnetic Bianchi ty
VI0 spacetimes in Ref.@37#.
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s

-

APPENDIX B: GENERALIZED KASNER EXPONENTS

When the quantitye52]tm/2 is small the generalized
Kasner exponents are approximately

k1'
]tl22e11

]tl22e23
, k2'

2 ~v21!

]tl22e23
, k3'

22 ~v11!

]tl22e23
.

~B1!

It follows directly from the evolution equations that the d
nominator appearing in Eqs.~B1! is bounded above by23.
The k ’s are exactly the generalized Kasner exponents if
twist constantK50. To derive Eqs.~B1!, we first define the
orthonormal spatial frame

U15e2(l1m1t)/4~]u2G1 ]x2G2 ]y!, ~B2!

U25
e(2P1t)/2

As
]x , ~B3!

U35
e(P1t)/2

As
~]y2Q]x!. ~B4!

The components of the extrinsic curvature in this frame a

kab5
1

2
e(2l13t)/4S ~]tl22e11!/2 0 2Ae

0 w21 eP]tQ

2Ae eP]tQ 2w21
D .

~B5!

In this frame the twist bounce and kinetic bounce both oc
as bounces off centrifugal potentials. It is convenient to co
pare the oscillatory dynamics of theT2 symmetric space-
times to that of the tilted Bianchi type-II models studied
Ref. @30# using this frame, because the form of the extrin
curvature is the same in the two cases, and the off-diago
components of Eq.~B5! are significant during a twist bounc
and a kinetic bounce, in turn. The spatially homogene
models studied in Ref.@30# have a tilted perfect fluid as
source. Note that, without the source, the constraints rule
the possibility of oscillatory dynamics in those models, wh
in the spatially inhomogeneousT2 symmetric spacetimes
similar dynamics are obtained in vacuum. Figure II in R
@30# depicts the oscillatory dynamics which we see at a
neric spatial point. Figure II~i! in that reference depicts th
curvature bounce solutions~in our language!. Figure II~ii !
depicts the kinetic bounce solutions, and Fig. II~iii ! depicts
the twist bounce solutions. The identification is fixed by s
ting w50 at the pointQ3 in their figure, withw increasing in
the clockwise direction around the Kasner circle (w→6` at
the pointT3). The authors of Ref.@30# consider an orthonor-
mal frameea , and the variables (S1 ,S2). Let e15U2 , e2
5U3 ande35U1. While the conditions placed in Ref.@30#
on the spatial frame are not satisfied here, they are appr
mately satisfied at generic spatial points near the singula
Setting

S15
1

2 S 6w2]tl12e23

2]tl12e13 D ,

S25A3

2S 2w1]tl22e13

2]tl12e13 D , ~B6!
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we obtain Fig. II from Ref.@30# by noting that S2 /(2
2S1) is constant in a curvature bounce solution,S1

2A3S2 is constant in a kinetic bounce solution, andS1 is
constant in a twist bounce solution.

To continue the derivation of Eqs.~B1! we next definer
5Av2w and

a55
1 if ]tQ50 and ]tP>0

0 if ]tQ50 and ]tP,0

UeP]tQ

rA2v
U otherwise,

~B7!

b5H 0 if ]tQ50 and ]tP50

r

A2v
otherwise.

~B8!

Note thata21b251. Consider the orthonormal spatial fram

V15U1 , ~B9!

V25
e(2P1t)/2

As
$~a2bePQ!]x1beP]y%, ~B10!

V35
e(P1t)/2

As
$2~aQ1be2P!]x1a]y%. ~B11!

The components of the extrinsic curvature in this frame

kab5
1

2
e(2l13t)/4S ~]tl22e11!/2 2bAe 2aAe

2bAe v21 0

2aAe 0 2v21
D .

~B12!

If the twist constantK vanishes~so the spacetime is Gowdy!
thene vanishes, so the extrinsic curvature is diagonal in t
08400
e

s

frame, and Eqs.~B1! follow. If the twist constantK does not
vanish, the off diagonal components of the extrinsic cur
ture are small except during a twist bounce.

The eigenvaluesj i and eigenvectorsWi of the extrinsic
curvature are the solutions ofkabWi

b5j ihabWi
b . Perturbation

theory for linear operators@38# shows that, whene is small
at some point in space, the difference between the eigen
ues and the diagonal components and the angles betwee
eigenvectors and the frame vectors are both bounded
terms ofe at that point in space. This gives a bound, 50Ae,
the magnitude of the error in Eqs.~B1!. This bound is not
sharp, and holds whether or not the diagonal component
the extrinsic curvature are well separated from each othe

The eigenvectors of the extrinsic curvature are called
Kasner directions, or the principal axes. Whene is small, the
Kasner directions are essentially given by the frame vec
Vi , in that the angle between each frame vector and on
the Kasner directions is small. In the solutions of the su
HamiltonianH01Htwist , e grows and decays again. We ca
explicitly compute the rotation of the Kasner directions w
respect to the orthonormal frameVi in the solutions to this
sub-Hamiltonian. Note thatV1 is orthogonal to theT2 isom-
etry orbits and that the other two frame vectors are tangen
the isometry orbits. We find that in each possible tw
bounce one of the Kasner directions rotates from tangen
orthogonal, and another rotates from orthogonal to tang
Note that each solution toH01Htwist is a one paramete
family of Kasner spacetimes. In this case we can verify
rectly that the generalized Kasner exponents reduce to a
parameter family of Kasner exponents, constant in tim
Since each solution to the sub-HamiltonianH01Hkin
1Htwist is also a one parameter family of Kasner epochs
must also be the case that during the evolution governed
this sub-Hamiltonian the generalized Kasner exponents
duce to a one parameter family of Kasner exponents, c
stant in time. Bounce rule~70!, shows that in this case one o
the Kasner directions rotates from being tangent to the is
etry orbits to being orthogonal, and another Kasner direct
rotates from being orthogonal to being tangent.
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