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Power of brane-induced gravity
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We study the role of the brane-induced graviton kinetic term in theories with large extra dimensions. In five
dimensions, we construct a model with a TeV-scale fundamental Planck mass and aflat extra dimension the
size of which can be astronomically large. Four-dimensional~4D! gravity on the brane is mediated by a
massless zero mode, whereas the couplings of the heavy Kaluza-Klein modes to ordinary matter are sup-
pressed. The model can manifest itself through the predicted deviations from Einstein theory in long-distance
precision measurements of the planetary orbits. The bulk states can be a rather exotic form of dark matter,
which at subsolar distances interact via strong 5D gravitational force. We show that the induced term changes
dramatically the phenomenology of submillimeter extra dimensions. For instance, high-energy constraints from
star cooling or cosmology can be substantially relaxed.
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I. INTRODUCTION

It has been known for some time@1,2# that in theories
with large extra dimensions, the scale at which gravity
comes strong,M, can be much lower than the fou
dimensional Planck massM P . In this approach, the standar
hierarchy problem takes a different meaning since the fi
theory cutoff is lowered. Four-dimensional gravity is we
due to the fact that the gravitational flux spreads intoN extra
dimensions. The relation between fundamental and obse
Planck scales takes the form

M P
2 5M21NRN, ~1.1!

whereR is the circumference of the extra dimensions. In t
framework, the standard model particles are localized o
brane whereas gravity propagates in the bulk ofN new di-
mensions. Until now, it was assumed that ifM;few TeV,
the N51 case is ruled out by observations since it wou
requireR;1016 cm ~the solar system size!. As to the higher
codimensions, they allowR to be around a millimeter o
smaller. The purpose of the present paper is to argue tha
framework of compact flat extra dimensions can be dram
cally modified due to the presence of the brane-induced
netic term for a higher dimensional graviton@3,4#:

Sind}E d4xAudetḡuR̄~x!, ~1.2!

where ḡ is the higher-dimensional metric evaluated at t
position of the brane, andR̄(x) is the corresponding four
dimensional Ricci scalar. As a result of this term, the fl
extra dimension can be astronomically large, and many h
energy constraints can be lifted.
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In fact, in the approach of@3,4#, the extra dimension was
taken to be truly infinite. In spite of this, it was shown th
the model reproduces four-dimensional gravity due to
four-dimensional curvature term in the brane world-volum
theory.

To be more precise, let us consider five-dimensio
Minkowski space with a standard bulk gravitational actio

Sbulk 5E d411XAuGuL~GAB ,RABCD ,F!, ~1.3!

where the capital Latin indices run ove
D5(411)-dimensional space-time.GAB denotes the metric
of five-dimensional space-time,RABCD is the five-
dimensional Riemann tensor, andF collectively denotes
other fields. Suppose that there is a 3-brane in this space.
3-brane can be realized as a soliton of the corresponding
equations. We split the coordinates in five dimensions as
lows:

XA5~xm,y!, ~1.4!

where Greek indices run over the four-dimensional~4D!
brane world volume,m50,1,2,3, andy is the coordinate
transverse to the brane. In order to reduce our discussio
its main point, the brane will be taken to have zero width.1 In
this approximation, the brane action takes the form

S3-brane52TE d4xAudetḡu, ~1.5!

where T stands for the brane tension andḡmn

5]mXA ]nXBGAB denotes the induced metric on a brane.

1This is a good approximation when the mass of the field~pre-
sumably a scalar! out of which the brane is made is bigger than t
energy scale of the low-energy effective theory.
©2001 The American Physical Society04-1
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most of this work, unless otherwise stated, we neglect br
fluctuations. Therefore, the induced metric can be written
follows:

ḡmn~x!5Gmn~x,y50!. ~1.6!

In general, there could be localized matter fields on the br
world volume. These can be taken into account by writ
the following action for the brane:

S̃3-brane
matter 5S3-brane1E d4xAudetḡuL̃~f!, ~1.7!

where f collectively denotes all the localized fields fo
which the four-dimensional Lagrangian density isL̃. In the
classical theory, which we have been discussing so far,
4D Ricci scalar on the brane world volume is not prese
Thus, the localized particles separated at a distancer on a
brane interact via the (411)-dimensional gravitational force
law, that is,F;1/r 211. This holds as long as the classic
theory is concerned. However, in the full quantum theory,
4D Ricci scalar will be generated~along with other terms! on
the brane world volume. This is due to quantum loops of
matter fields which arelocalized on the brane@3,4#. As a
result, the following world-volume terms should be includ
when one considers the full quantum theory:

Sind5M̄2E d4xAudetḡu@L̄1R̄~x!1O~R̄2!#, ~1.8!

whereM̄2[r cM
3 is some parameter which depends on

details of the world-volume model@3,4#. L̄ in Eq. ~1.8! is an
induced four-dimensional cosmological constant. The role
this term is to renormalize the brane tension. Furtherm
R̄(x) is the four-dimensional Ricci scalar which is co
structed out of the induced metricḡmn(x) defined in Eq.
~1.6!. In five-dimensional Minkowski space, a brane wi
nonzero tension inflates@5,6#. Therefore, to avoid the world
volume inflation we fine-tune the brane tensionT and the
brane world-volume cosmological constantL̄ so that the net
tension is vanishing,

T8[T2L̄M̄250. ~1.9!

This is a usual fine tuning of the four-dimensional cosm
logical constant.

The graviton propagator resulting from such a system
quite peculiar. Ignoring the tensor structure for a moment,
obtain for the corresponding Green’s function the followi
expression:

G̃R~p,y!5
1

2M3p1M̄2p2
exp$2puyu%. ~1.10!

Here p2 is a four-dimensional Euclidean momentum andp
[Ap2. For sources which are localized on the braney
50), this propagator reduces to a massless four-dimensi
Green’s function,
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G̃R~p,y50!}
1

p2 , ~1.11!

provided thatp@1/r c . Thus, at distancesr !r c , we observe
the correct Newtonian behavior of the potential,

V~r !}
m1m2

rM̄ 2
. ~1.12!

At large distances,r @r c , however, the behavior of the
Green’s function changes,

G̃R~p,y50!}
1

p
. ~1.13!

This gives rise to a Newtonian potential which scales in
cordance with the laws of a five-dimensional theory,2

V~r !}
1

r 2M3 . ~1.14!

This somewhat puzzling behavior can be understood in
equivalent ways, which we briefly discuss. First let us ad
the five-dimensional point of view. In this language, althou
there is no localized massless particle, there exists a local
resonance state in the spectrum. The lifetime of this re
nance is;r c . The resonance decays into the continuum
modes. This can be manifestly seen using the Ka¨llen-
Lehmann representation for the Green’s function,

G̃R~p,y50!5
1

2M3p1M3r cp
2

5E
0

`r~s!ds

s1p2 , ~1.15!

where the spectral density as a function of the Mandels
variables takes the form

r~s!}
1

As

r c

41src
2 . ~1.16!

As r c→`, the spectral density tends to the Dirac functi
r(s)→constd(s) describing a stable massless graviton~this
corresponds to the limit when the bulk kinetic term can
neglected!. Summarizing, at distancesr ,r c , the resonance
mimics the massless exchange, and therefore mediates
1/r 2 force. At larger distances, however, it decays into t
continuum, and as a result the force-law becomes that
five-dimensional theory,;1/r 3.

A different but equivalent way to understand the abo
result is to adopt the point of view of the four-dimension
mode expansion. The analysis of the linearized equation
the small fluctuations shows~see the Appendix! that there is

2Transition to five-dimensional regime at long distances is als
characteristic feature of the models with ‘‘quasilocalized’’ grav
@7–13#. However, these models usually include negative no
states@9–11#.
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a continuum of 4D massive states with wave-function p
files that, at the location of the brane, are suppressed by
following factor:

ufm~y50!u25
1

41m2r c
2 . ~1.17!

The Newtonian force on the brane is mediated by the
change of all these Kaluza-Klein~KK ! modes. These give
rise to the expression

V~r !}
1

M3E
0

` dm

41m2r c
2

e2mr

r
. ~1.18!

At any distancer, the dominant contribution comes from th
modes lighter thanm51/r . The modes withm,1/r c have
unsuppressed wave functions on the brane. Therefore, fr
.r c , the interaction picture is similar to that of a five
dimensional theory. In contrast, whenr ,r c , the picture
changes since the modes withm.1/r c have suppressed cou
plings. Although the number of the modes which particip
in the exchange at a given distancer ,r c is the same as in
the five-dimensional picture, their contributions are su
pressed. Thus, the number of the light modes effectively c
tributing to the exchange ‘‘freezes-out’’ and the resulting b
havior of the potential is 1/r .

As pointed out in@3#, this model exhibits the van Dam
Veltman–Zakharov~vDVZ! discontinuity@14,15# in the ten-
sor structure of the graviton propagator@as would any flat
space ghost-free theory in which 4D gravity is mimicked
the exchange of~a continuum of! massive spin-2 particle
@9##. Another disadvantage of this model is the low value
the crossover scaler c.1016 cm. This would imply that
Newtonian gravity is modified at this distance, which is c
tainly unacceptable.

In the present paper, we show that both aforementio
difficulties are circumvented if the fifth dimension is com
pactified on a circle of macroscopic sizeR. We will argue
that R can be of astronomical size. In this framework, t
four-dimensional Planck scale emerges as

M P
2 5M3~R1r c !. ~1.19!

Gravity on the brane is dominated by a lowest-lying mass
KK zero mode, which has an unsuppressed wave funct
As a result, there is no vDVZ discontinuity problem. Cont
butions from the massive KK modes give rise to small c
rections to Newtonian gravity. These corrections are mo
constrained by the data on the motion of the inner plan
the Moon, and satellite experiments. We study constra
coming both from astronomy~planetary motion! and from
astrophysics~star cooling!, and show that the model is con
sistent with all the observations.

II. THE MODEL

We would like to consider the simplest possible mod
with a single brane embedded in five-dimensional space w
one compact dimension. The action of our model takes
form
08400
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S5M3E d4xE
0

R

dyAGR(5)1M3r cE d4xAuḡuR̄.

~2.1!

As we mentioned before, the four-dimensional Planck m
is set by the sum of the two distance scalesr c andR through
the relation~1.19!. For the solution of the hierarchy problem
along the lines of Ref.@1#, we can putM& TeV. This sets the
largest of the two scales,R and r c , to be larger than;1016

cm or so. It is tempting to assume that the origins of the
two scales are related. Some possible ideas along this d
tion will be discussed later. For the time being, we shall ta
them as the parameters of the theory.

We are interested in the Newtonian gravitational inter
tion of the brane-localized sources. In this section, we w
ignore the tensor structure of the graviton propagator
concentrate on its scalar part. A straightforward calculat
~see the Appendix! leads to the following result for the Eu
clidean two-point Green’s function:

D~p,0!5
1

p2 F 1

11~1/prc!2 tanh~pR/2!G . ~2.2!

For r c@R, this propagator exhibits 1/p2 behavior both for
large and for small momenta,

D~p,0!.
1

p2 F12
2

prc
G , pR@1 ~short distances!,

~2.3!

D~p,0!.
1

p2 F12
R

r c
G , pR!1 ~ large distances!.

Therefore, the potential is four-dimensional both for lar
and for small distances. Note that the maximal deviation
the coefficient of 1/p2 is of orderR/r c .

Let us now turn to Minkowski space-time by rotatingp
→ ipM . The propagator takes the form

D~pM ,0!52
1

pM
2 F 1

11~1/pMr c!2 tan~pMR/2!G . ~2.4!

This expression has poles atr cpM522 tan(pMR/2). In order
to understand better this result, let us turn to the KK exp
sion. The mode decomposition is given in the Appendix.
one would expect, there is a discrete tower of KK states.
r c!R, the KK masses approach the usual KK spectru
mn52pn/R. For r c@R, all modes~except the zero mode!
tend to the asymptotes of the tangent function:m050,mn
.(2n21)p/R. This is in agreement with the pole structu
of the propagator~2.4!. Note that the level spacing for fixe
R does not change. For arbitraryr c , the mass of thenth state
is in the interval„(2n21)p/R,2np/R….

Let us calculate the static potential between two obje
on the brane which are separated by a distancer. For this we
perform the KK decomposition of the corresponding 5
fields. This is done in the Appendix. The result can be su
marized as follows:
4-3
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V~r !.
G0

r
1 (

n51

`

Gn

e2mnr

r
, ~2.5!

where for the caser c@R we can usemn.(2n21)p/R and
after some simplifications we find~see the Appendix!

G05
1

M3

1

r c1R
.

1

r cM
3
[G` , ~2.6!

Gn5
1

r cM
3 S R

r c
D 2

@~2n21!p/2#21R/r c1~R/r c!
2

.
1

r cM
3 S 2

p2D S R

r c

1

n2D . ~2.7!

Finally, we derive the potential

V~r !.
G`

r S 11
2

p2

R

r c
(
n51

`
e2(2n21)pr /R

n2 D . ~2.8!

The term in the parentheses in this expression chan
slowly with r and the magnitude of the change is of the ord
R/r c . One could think of Eq.~2.8! as being the Newton
potential with an effective space-dependent Newton’s c
stant. To estimate the variation of the effective gravitatio
constant, we evaluate the difference of the potentials at
distinct points. For a given distancer in the KK sum we can
neglect the modes withn.R/r ~since these are exponen
tially suppressed! and replace the exponential by 1 in th
remaining terms for whichn,R/r . The variation of the
Newton constant for two pointsr 1 andr 2 (r 1.r 2) is evalu-
ated as follows:

G~r 1!2G~r 2!

G`
;

R

r c
(

n5R/r 1

R/r 2 1

n2
. ~2.9!

Moreover, the potential can be evaluated exactly and the
pression can be expanded for small and large values ofr /R.
For r /R!1 andR!r c , we find

V~r !.
G`

r H 1

11R/r c
1

R

r c
F11

4

p

r

R S ln
r

R
1CD

1O„~R/r c!
2,~r /R!2

…G J , ~2.10!

where C5 ln(p/2e).20.54. Likewise, forr /R@1 and R
!r c , the potential reads as follows:

V~r !.
G`

r F 1

11R/r c
1S 4

p2

R

r c
1O„~R/r c!

2
…D

3e2pr /R1•••G . ~2.11!

The overall relative change in Newton’s constant forr in the
interval @0,̀ # is the ratioR/r c .
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III. CONSTRAINTS

A. Tensor structure of the propagator

In the present model, 4D gravity on the brane is media
by the zero-mode graviton with an admixture of the tower
massive KK states. The latter contribution is suppressed b
by the parametera[R/r c and by the KK numbern2. In
order to determine the tensor structure of the graviton pro
gator, let us compare how it changes when one turns fro
massless graviton to a massive one. In 4D space,
momentum-independent part of the tensor structure takes
form

1

2
~hmahnb1hmbhna!2

1

2
hmnhab. ~3.1!

This can be seen by using, for instance, the harmonic ga
for the fluctuations of the massless gravitational field:

]mhmn
(0)5

1

2
]nhb

(0)b . ~3.2!

On the other hand, for a massive graviton one finds

1

2
~hmahnb1hmbhna!2

1

3
hmnhab. ~3.3!

In the latter case, the equations of motion for a mass
graviton ~we use the Pauli-Fierz mass term! give rise to the
following relation for the fluctuations:

]mhmn
(m)5]nhb

(m)b . ~3.4!

Using this condition in the Einstein equations naturally lea
to the tensor structure given in~3.3!.3 Let us now see wha
happens in the 5D model. Before compactification, one
choose the harmonic gauge in the bulk space:

]AhAB5
1

2
]BhC

C . ~3.5!

This leads to the tensor structure of the form~3.3!. Let us
consider what happens upon compactification. For the m
sive KK modes,mÞ0, the $mn% components of the gaug
condition ~3.5! will turn into the following expression:

]mhmn
(m)5

1

2
~]nhb

(m)b1]nh5
(m)5!, ~3.6!

while the$55% component takes the form

hm
(m)m~x!5h5

(m)5~x!. ~3.7!

3Note that the condition~3.4! would be an inconsistent gaug
choice for the massless gravitons. This is in contrast with the ve
field case, where the equation of motion for a massive vector fi
Am ~Proca field! would require the relation]mAm50 and this latter
is also an acceptable gauge choice for a massless gauge field
4-4
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Substituting Eq.~3.7! into Eq. ~3.6!, we derive Eq.~3.4!.
Using this, we obtain the following expression for the tens
structure of massive KK gravitons:

h̃mn
(n)~p,0!T̃8mn}H T̃mnT̃8mn2

1

3
T̃a

aT̃b8
bJ , ~3.8!

where T̃mn ,T̃8mn are Fourier-transformed matter sour
energy-momentum tensors. Therefore, in the approxima
R/r c!1, the expression for the propagator takes the fo
~the tensor structure of the zero-mode is that of a 4D theo!

G4
mnab~p!.G`F S 1

2
~hmahnb1hmbhna!2

1

2
hmnhabD 1

p2

1
2

p2

R

r c
(
n51

`
1

n2S 1

2
~ h̃mah̃nb1h̃mbh̃na!

2
1

3
h̃mnh̃abD 1

p21mn
2G , ~3.9!

where

h̃mn[h̃mn1
pmpn

m2 ,

Thus the lowest massive KK modes are suppressed by
ratio R/r c[a. These contributions might be important. I
deed, as shown in@9#, any ghost-free theory in which mas
sive spin-2 KK contribution to 4D gravity is essential shou
suffer from a vDVZ-discontinuity problem@14,15#. The rea-
son is that in flat space any massive spin-2 states have
polarizations. Three of these polarizations couple to the c
served stress energy tensor with the same strength and
tribute to the gravitational potential. This induces a fin
deviation from the predictions of Einstein gravity for arb
trarily small mass@14,15#. Therefore, theories with massiv
graviton exchange encounter phenomenological difficul
and are severely constrained. We shall try to quantify
implications of this constraint in our model.

As we discussed above, the massive modes give ris
the distinctive tensor structure in the propagator which al
the predictions for light bending by the Sun and the prec
sion of Mercury perihelion. Therefore, the massive K
modes must be adequately suppressed. The sum in Eq.~3.9!
is rapidly convergent. As a result, the dominant contribut
comes from a few of the lightest KK modes. Using t
present experimental data@16#, this gives the following con-
straint:

a[
R

r c
,331024. ~3.10!

B. Planetary motion

We shall now examine the constraints on the size of
extra dimensionR, coming from solar system dynamics. A
object orbiting in the gravitational field will exchange a ce
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tain number of the massive KK modes. This is determined
the distance of the object from the center of the potential.
example, Pluto will effectively exchange fewer KK mode
than Mercury. This will be seen as an effective change
Newton’s constant and will constrain the possible values
R. In the present model, the total change in Newton’s c
stant felt by an object falling from infinity towards the cent
of the potential would beR/r c . From the expansions of th
potentials~2.10! and ~2.11!, it is obvious that most of the
change happens in the range 0,r ,R.

Experimental bounds on the spatial variation of Newto
constant over planetary distances are quite strong. T
come from precise tracking of planetary orbits with the he
of radar beams and space probes. The results of those
surements are presented in the work@17# ~an updated and
detailed discussion can be found in@18#!. The modification
of Newton’s potential assumed in@17# is

DV~r !5aG`

e2r /l

r
, ~3.11!

wherea andl are parameters that describe deviations fr
the standard potential. A nonzero value of these parame
would result in deviations from Kepler’s third law and wou
induce anomalous precessions of the planets’ perihelia.
precise measurements of orbits of the inner planets and
ellites put bounds on the values ofa andl that are summa-
rized in Refs.@17,18#.

Let us relate approximately the parameters of our mo
with the parameters in Eq.~3.11!. For simplicity, we will use
the following estimate:

DV~r !.
G`

r S 2

p2

R

r c
(
n51

`
e2(2n21)pr /R

n2 D
5

2R

p2r c

G`

e2rp/R

r
1

2

p2

R

r c
(
n52

`
e2(2n21)pr /R

n2

,
2R

p2r c

G`

e2pr /R

r S 11 (
n52

`
1

n2D
5

R

3r c
G`

e2pr /R

r
. ~3.12!

With this estimate we can relate the parameters of our mo
with the parameters in Eq.~3.11!,

a;
R

r c
, l;R. ~3.13!

The bound ona is very stringent (a<1029 @17,18#! for
the values ofl in the range from the Earth radius to the so
system size. If we assumeM;TeV, we conclude that the
size of extra dimensionR must be either smaller than th
Earth radius, or bigger than the solar system size.

Let us discuss these two possibilities separately. We s
with the case in whichR is larger than the solar system siz
In this case, the estimate~3.13! is actually not the most pre
4-5
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cise one. The bounds ona andl shown in@17# were derived
using the spatial variation of Newton’s constant that appe
in the force, rather than in the potential. We can compare
correction to the force in our model and the same correc
for the pure Yukawa-type modification, both shown in Fig.
We see that the force correction in our model is a mu
steeper function on small values ofr /R.

The measured quantity is the parameterhp that describes
deviations from Kepler’s third law. The ratio of semimaj
axis can be measured (ap

meas) and compared to a predictio
of Kepler’s law (ap) . The following equation relatesh and
the value of Newton’s constant at the Earth (GE) and at the
planet’s orbit (Gp):

ap

ap
meas

511hp5S GpMs

GEMs
D 1/3

. ~3.14!

Newton’s constant is the one that appears in the force
andMs is the mass of the Sun. The bound on the parame
hp is of the order 1029210210 for the inner planets.

The most precise bound on the spatial variation of Ne
ton’s constant (hp) comes from the relation between th
Earth and the inner planets, i.e., in the regime of smallr /R,
for R greater than the solar system size. In that regime,
change in force will be bigger for our model than for th
Yukawa-type correction and we have to compensate for
effect by choosing somewhat larger values ofR andr c . Nu-
merical analysis shows that with the choice ofR'1016 m
andR/r c'1024, the bounds can be safely satisfied. Since
Planck scale is roughly given byr cM

3, an increase ofr c by
some factor would lower the fundamental Planck scale fo
much milder value of a cubic root. With the new bound
R.1016 m andR/r c.1024, the fundamental Planck scale
pushed to approximately 100 GeV.

Similarly, we calculated the contribution to the anomalo
precession of Mercury and Mars in our model, and we fou
that it can be within the accepted values if the above lim
on R andR/r c are satisfied.

FIG. 1. The correction to Newton’s force for our model~solid
line, R/r c51024) and for the Yukawa-type correction~dashed line,
a51024). The relative correction~normalized to the strength o
Newton’s force! is given in units of 1024. Thex axis measuresr /R
for our model andr /l for the Yukawa correction.
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The second possibility is to take the size of the ex
dimension to be anywhere less than the Earth radius (;107

m!, in order to satisfy constraints from Earth-Moon and
tificial satellite experiments. This ‘‘regime’’ is much safe
and the bounds are very weak, as can be seen in@17,18#. In
the caseR;107 m, r c can range from;1011 m to ;1019 m,
corresponding to a fundamental Planck scale of;10 TeV
down to 100 GeV, respectively. Of course the value ofR can
be lowered at will, down to 1/M , while keepingr c fixed in
order to generate the correct value for the four-dimensio
Planck scale from the ‘‘low’’ fundamental scale;1 TeV . To
point out the importance of our result in this regime, w
stress that our model makes possible the existence of a s
extra dimension of very large size without contradicting t
present observations, while keeping the value of the fun
mental Planck scale around the TeV.

The mechanism of suppression of heavy modes in
framework can relax the high-energy constraints on the m
els with submillimeter extra dimensions.

To summarize, there are two windows of the parame
space in the present model. The first one, in which the e
dimension has an astronomic scale, is strongly constra
by the solar system observations which forceR>1016 m ~for
R/r c.1024). In the second scenario,R can be anywhere
below the Earth radius and 1/M .

C. Star cooling

The most severe constraint on theories with low-sc
gravity comes from astrophysics since a stellar object
cool by radiating bulk gravitons@2#. Let us estimate the rate
of star cooling in the present case. Let the temperature in
the star beT. Then only the gravitons with massesmn,T are
produced efficiently. The rate of emission of thenth KK
graviton is given by

Gn;T3Gn . ~3.15!

We have to sum over all states up ton;TR. This gives

G total~T!;
2T3R

p2M3r c
2 (

1

RT
1

n2.
T3R

3M3r c
2 .

a

3

T3

M P
2 .

~3.16!

This is less than the rate of just zero-mode graviton prod
tion, and is totally negligible. Note that the contribution com
ing from the emission of a pair of KK gravitons via th
virtual zero-mode graviton exchange is of the same ord
and is practically insensitive to the value ofR andM. To see
this, let us consider a scattering process on the brane w
virtual zero-mode graviton emission which subsequently
cays into a pair of KK gravitons. The example of such
process can be a gravi-bremsstrahlung process, electron
tering in the field of nucleus and radiating gravitons. Let t
typical energy in the process beE. For definiteness we take
E.M , in order to establish the strongest constraint. The r
of the process then becomes
4-6
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G;
E3M2

M P
4 ~MR!;a

E3

M P
2 , ~3.17!

where we have cut off graviton momenta byM. Surprisingly,
this rate is similar to the one of single KK production, due
the suppression of the direct KK production rate. Most i
portantly, it has no dependence on eitherR or M. Thus the
KK emission in high-energy processesa priori places no
bound on either of these parameters. However, we do
expectM to be smaller than the inverse mm scale, due to
observed deviation from Newtonian gravity on larger d
tances, which gives the upper limit on the size of extra
mensionR;a1063 cm. Thus the star cooling places no co
straint on our scenario. It is useful to contrast this with t
scenario of@1#. There, the dominant contribution to the coo
ing process comes from the production of heaviest mod
due to their high number. In the present case, however,
wave functions of the heavy modes are suppressed on
brane and therefore cannot be produced efficiently. This
generic property of the given framework with the induc
kinetic term: in a high-energy process on the brane, the lig
est KK states are the ones produced most efficiently.
extra dimension is more transparent for the softer modes

D. Cosmology

In this section, we will consider cosmological constrain
coming from the overproduction of bulk states. Not surpr
ingly, in analogy with star cooling, the cosmological co
straints turn out to be rather mild. In order to be as mod
independent as possible, we shall discuss the follow
initial conditions for the hot big bang:~i! The bulk is virtu-
ally empty;~ii ! the brane states are in thermal equilibrium
some temperatureTbrane, which cannot be higher than th
‘‘normalcy’’ temperatureT* .

The normalcy temperature is defined as the tempera
below which the Universe expands as being effectively fo
dimensional. This requirement then automatically restr
Tbrane,T* . Obviously, we would likeT* to come out at
least as high as the nucleosynthesis temperature. As we
see below,T* could be much higher, even as high as t
cutoff scale (T* ;M ). This fact allows for the standard nu
cleosynthesis scenario to proceed unaffected, and als
implement one of the conventional baryogenesis mechan
for generating the baryon asymmetry of the Universe.

As discussed in@2#, in theories with large extra dimen
sions the overproduction of bulk KK states can alter the st
dard cosmological expansion in two different ways. First,
energy density on the brane changes due to the ‘‘evap
tion’’ into the bulk states. Secondly, the produced bulk sta
may dominate the energy density and overclose the U
verse. Let us consider constraints coming from these
effects separately.

Cooling by evaporation into bulk states
As estimated above for star cooling at temperatureT, the

evaporation rate into the bulk gravitons is given by E
~3.16!. The resulting change of the matter energy density
the brane due to evaporation is given by
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dr

dt U
evaporation

;2T4G total~T!;2
T7

M P
2 a. ~3.18!

Note that this is smaller by a factora than the cooling rate
due to the production of the standard zero-mode gravit
and is totally negligible in comparison to the cooling ra
caused by the cosmological expansion,

dr

dt U
expansion

;23Hr;23
T2

M P
r, ~3.19!

where H is the Hubble parameter. For instance, in t
radiation-dominated epoch (H;T2/M P), the ratio of the two
rates is

dr

dt U
evaporation

dr

dt U
expansion

;
T

M P
a. ~3.20!

This is a very small number even forT; TeV. The reason
for this suppression can again be understood from the ‘
frared transparency’’ of the theory: since the heavier gra
tons’ wave functions are strongly suppressed on the bra
their production is not efficient enough to affect the bran
cooling process.

Overclosure by gravitons
Due to their suppressed couplings, KK gravitons a

harder to produce on the brane. Moreover, due to the s
suppression, the KK modes are more long-lived as w
Thus, we have to examine constraints coming from their p
sible overproduction.

The lifetime of a ‘‘cold’’ KK graviton of massm can be
written as follows:

tm;
M P

2 ~r cR!

m
. ~3.21!

This turns into the following relation upon using Eq.~1.19!:

tm;S M P

M D 6 a

m
. ~3.22!

Thus, even the gravitons as heavy asm;M are stable for all
practical purposes and can overclose the Universe if p
duced with a sufficiently large number density. This pu
some bound onT* , which we shall estimate below. Assum
ing that all the produced KK gravitons are stable and do
decay back to the brane, the energy density which
‘‘pumped’’ into the bulk due to the brane evaporation~in the
process of the normal expansion! is

dr5E
t in

teq dr

dtU
evaporation

dt;E
Teq

T
* T4

M P
adT;

T
*
5

M P
a.

~3.23!

HereTeq; eV is the standard crossover temperature and
neglected the later period of matter domination as well as
4-7
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order one factors in the integral. Most of the energy den
gets pumped in the bulk during one Hubble time aftet
5t in . Thus, soon after the initial time, the bulk becom
populated by KK states with the energy density given by E
~3.23!. Most of these particles are relativistic and their e
ergy density will redshift as radiation (r;T4). However, to
make our bound most conservative, let us assume that m
of the energy density is stored in the cold KK modes t
redshift as matter (r;T3). Even in this case, their energ
density at the time of standard crossover will be given b

rKK;
T

*
2

M P
aTeq

3 . ~3.24!

Requiring that this be much smaller than the energy store
the usual matter~at the same timet5teq), which, by defini-
tion, is rmatter;Teq

4 ;(10 eV),4 we get the following bound
on T* :

T
*
2 ,

M P

a
eV5

1010

a
GeV2. ~3.25!

This bound can be easily satisfied even forT* ;M .
In conclusion, we see that in contrast with the scenario

@1#, there are no essential cosmological constraints fr
overproduction of bulk states due to the brane cooling.
have to stress, however, that this analysis cannot cap
more model-dependent possibilities. For instance, if the
states are produced by some other means in the early
verse, they could either overclose the Universe or serve
unusual~and interesting! dark matter candidates. To avo
the overproduction, we have to assume that there was a
riod of the inflation that diluted the bulk and reheated on
the brane.4

IV. ON THE ORIGIN OF THE CROSSOVER SCALE

In this section, we shall discuss a possible origin of
large distance scaler c . The goal is to explain the large co
efficient in front of the four-dimensional curvature term
Eq. ~1.8!. As already noted, in the effective field theory pi
ture this term is not constrained by any symmetry and
emerge with ana priori unrestricted coefficient. However,
is desirable to have a better understanding of this issue
suggested in@3,4#, this term is induced due to quantum loo
of the states, which are localized on the brane and wh
interact with high-dimensional gravity. The resulting streng
depends on the number of such states as well as their ma
@4#. Thus, the large mass hierarchy could be obtained du
the large multiplicity of states propagating in matter loops
the brane. However, there can be other effects that may
nificantly contribute to the magnitude of this term. One po
sibility is to consider a brane-scalar fieldj which is nonmini-
mally coupled to gravity,

4The inflationary solutions in the limit ofa5` were studied in
@21#.
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Sbrane5M2E d4xAudetḡu expS j

M D R̄~x!. ~4.1!

One could assume that, due to some dynamics,j develops a
vacuum expectation value close to the scaleM. This is in no
contradiction with any fundamental principle, as long asj is
somewhat lighter thanM. Shifting the fieldj→^j&1j, we
end up with an exponentially large scaler c5M 21e^j&/M.
Note that in the shifted vacuum, the theory is consistent u
the energies of order;M . Moreover, the perturbative trea
ment is valid since the emission ofj quanta are suppresse
by the powers ofM 21.

Although at first glance the fact that the VEV is larg
than the cutoff of the theory might seem a bit unnatural,
should stress that there is nothing unusual in this fact. Th
exist many well-defined examples both in string theory
well as in KK theories when this is the case. After all, t
solution of the hierarchy problem in@1# can also be under
stood in this way. Indeed, the large value of the Planck sc
is generated by the size of the extra dimension, or equ
lently, by the VEV of the four-dimensional scalar field, th
radion, which has an expectation value exceeding by m
orders of magnitude the cutoff of the theory.

Another well-known example of this kind can be found
D branes. It is well known that in the BPS limit the separ
tion of two parallel D branes can be understood as the Hi
effect in the brane world volume gauge theory. The expec
tion value of the canonically normalized Higgs field is r
lated to the string scale,MS , as

^j&;rM S
2 , ~4.2!

wherer is the interbrane separation. This latter can be mu
larger than 1/MS . In fact, the limit r @MS

21 is well defined
perturbatively and corresponds to the infrared limit for t
bulk gravity. Although the world volume scalar field acquir
an expectation value that is much larger than the fundam
tal scale, the theory is well defined. The two-brane syst
becomes populated with states of mass;rM S

2 that are much
heavier than the string scale~corresponding to the stretche
string modes in the original theory!. It may not be impossible
that in a suitable framework like this, the brane separat
can set the large coefficient of the brane-induced curva
term.

V. IMPLICATIONS FOR SUBMILLIMETER DIMENSIONS

So far we have been studying the domainR,r c . As we
have shown, in such a caseR can be of astronomical size. I
fact, it can be arbitrarily large~if r c is taken to be large!. In
this section, we shall study the opposite regimeR.r c . The
caseR→` with one extra dimension was already discuss
in @3#. In this case, the massive KK states which are ligh
than r c have unsuppressed wave functions on the bra
Thus, they couple to the brane matter with a strength co
parable to that of the zero-mode graviton. As was emp
sized above, this creates a problem due to the extra pola
tion of massive spin-2 states. Therefore, the masses of
KK modes must be large enough in order to avoid unacce
4-8
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able deviations from Einstein’s gravity. Precision measu
ments of light-bending and the precession of Mercury p
helion exclude the range of masses at the inve
astronomical scale.

The shorter ranges are constrained by the precision m
surements ofG discussed above. These constraints pushR to
be somewhere around the inverse mm range. In fact, acc
ing to recent measurements@19#, m21.250m or so. In such
a regime, planetary dynamics is insensitive to extra dim
sions, just like in the original scenario of@1#. However, the
other predictions of this framework are dramatically mo
fied. The situation is somewhat peculiar forM 21!r c!R.
On the one hand, the predictions of@1# for table-top gravita-
tional experiments@20# are unaffected. On the other hand,
the current cosmological and astrophysical constraints
lifted, and the collider signatures are dramatically modifi
This happens due to the suppression of heavy KK produc
at high-energy colliders.

In order to explicitly demonstrate this, let us consider t
star-cooling process. This process puts the most strin
constraint on the scenario of@1# for the submillimeter dimen-
sions. For a given temperatureT, the production rate of the
nth KK state inside the star is suppressed as

G;
2T3

M P
2 (

1

RT
1

11n2~pr c /R!2
. ~5.1!

Assuming thatr c@1/T, we can evaluate the contribution o
the KK modes withm,1/r c and m.1/r c separately and
show that these are both of orderT3R/M P

2 r c . Using the re-
lation M P

3;M3R, we can bring the total contribution to th
form

G;
T4

M3~Trc!
. ~5.2!

Notice that there is an extra suppression factor;(Trc) with
respect to the standard case of@1#. This indicates that for
sufficiently larger c , all the bounds can be avoided. Suppre
sion of the bulk graviton production in other high-ener
processes can be analyzed in a similar way. The peculiar
of the spectrum of the model indicate that many of the
perimental constraints on theories with large extra dim
sions must be reconsidered in light of the present discuss

VI. CONCLUSIONS

In this paper, we studied the scenario of Ref.@3# with a
graviton kinetic term on the brane with one extra comp
dimension. We showed that the existence of the graviton
netic term on the brane allows for a novel framework w
the high-dimensional fundamental Planck scaleM&TeV, and
a singleflat extra dimension the size of which can be eith
smaller than 107 m or larger than 1016 m.

The crucial role in generating usual 4D Einstein grav
on the brane is played by the brane-induced graviton kin
term of Ref.@3#. The strength of this term is governed by
distance scaler c , which together with the size of the extr
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dimension defines the value of the four-dimensional Pla
mass@see Eq.~1.19!#.

There are two phenomenologically interesting regim
The first one is achieved whenR!r c>1016 m. In this case,
the four-dimensional gravity on the brane is mediated b
singlenonlocalizedzero-mode graviton, both at large and
short distances. The mass spacing of the KK modes is sim
to that of an ordinary flat compact dimension. However,
wave functions of heavy KK modes are suppressed on
brane by the ratioR/r c . This gives rise to the effect of ‘‘in-
frared transparency’’@4# of the extra space. We studied th
constraints imposed by precision gravitational measurem
at all scales, as well as restrictions due to various astroph
cal and cosmological effects. We found that the mode
compatible with all those data. A crucial experimental test
this scenario could arise by observing deviations from Ne
tonian and Einstein’s gravity practically at any scale. Th
includes precision studies of both relativistic and nonrela
istic effects. In the present framework, the states that live
the bulk can be a rather exotic source of dark matter.
distancesr @R, their interaction is that of an ordinary dar
matter. However, forr !R they interact via much stronge
gravitational potential which scales as 1/r 2. Furthermore,
these states interact with the observable matter by m
weaker gravitational force.

Another interesting limit isR.r c andN>2. In this case,
the compactification radiusR is constrained to be in a sub
millimeter domain. Although this seems to be similar to t
scenario of@1#, nevertheless the framework is modified dr
matically due to the graviton kinetic term on the brane. F
instance, ifM 21,r c,R, the table-top predictions of sce
nario @1# are unaffected and one should still expect dev
tions from Newton’s law at scalesr;R. However, produc-
tion of heavy KK gravitons is strongly suppressed. This li
all the high-energy constraints. We have explicitly demo
strated this fact by reevaluating the constraints coming fr
the process of star cooling. Our analysis demonstrates
crucial importance of the brane-induced graviton kine
term for the phenomenological studies.

Note added.After this work was completed, Ref.@22#
appeared, which discusses the role of a brane-induced kin
term on compact dimensions in an example of a scalar g
ity.
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APPENDIX

In this appendix, we derive the expression for the for
mediated by a scalar field in five-dimensional space-ti
with one compact dimension and an induced kinetic term
4-9
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a 3-brane. We denote the coordinatesxA[(xm,y),yP@0,R#.
Our starting point is the following five-dimensional Lagran
ian:

L5M3]AF ]AF1M̄2d~y!]mF ]mF, ~A1!

whereF(xA) has dimension 0,M is the fundamental five-
dimensional mass scale, andM̄2 is the scale dynamically
generated by the interaction with matter that lives on
brane@3# . If we absorb the factorM3/2 into the redefinition
of the field, thenF becomes a canonically normalized 5
scalar. The ratior c5M̄2/M3 appears in the field equation a
follows:

]A]AF1r cd~y!]m]mF50. ~A2!

Let us decompose the fieldF into the following modes:F
5(mfn(y)sn(xm). sn(xm) satisfy the four-dimensiona
Klein-Gordon equation (]m]m1mn

2)sn50, where themn’s
are to be determined. The functionsfn(y) set the profiles of
the field in the fifth dimension. From Eq.~A2! ~with the use
of ]A]A5]m]m2]y

2) we get the ‘‘Schro¨dinger equation’’ for
f(y),

„]y
21m21r cm

2d~y!…f~y!50. ~A3!

This equation is to be considered on a circle of lengthR with
the periodicity conditionf(y1R)5f(y). The problem is
equivalent to that of a wave equation for an infinite spa
with an array of d-function-type potentials located aty
5nR, n520,61,62, . . . ,with the identificationy[y1R.
The procedure for finding the solutions is standard: We so
the equation in two neighboring regionsI[@2R,0#, II
[@0,R#, match the wave function and its derivative at t
boundary, and then identify the two regions by imposing
periodicity condition f I(y2R)5f II (y). The solutions in
each region are

~ I! f I~y!5Aeimy1Be2 imy,
~A4!

~ II ! f II ~y!5Ceimy1De2 imy,

where the coefficientsA,B,C,D are to be determined by th
following conditions:~a! periodicity; ~b! continuity aty50;
~c! matching of first derivatives aty50:

~a! Aeim(y2R)1Be2 im(y2R)5Ceimy1De2 imy,

~b! A1B5C1D, ~A5!

~c! C2D2A~11 ir cm!1B~12 ir cm!50.

Solving these algebraic equations, we determine the co
cientsB,C,D in terms ofA. This latter can in turn be found
from the normalization condition onf,

D5A, B5C5Ae2 imR, ~A6!

amended by the quantization condition for the masses,
08400
e

e

e

e

fi-

2
r c

R S mR

2 D5tanS mR

2 D . ~A7!

The nonlinear equation~A7! is solved by the graphica
method as shown in Fig. 2.

We see that forr c!R, the masses approach the usu
Kaluza-Klein spectrum,mn52pn/R. For r c@R, all modes
~except the zero mode! approach the asymptotes of the ta
gens:m050,mn.(2n21)p/R. The level spacing for fixed
R does not change. For arbitraryr c, the mass of thenth state
is in the interval@(2n21)p/R,2np/R#.

Let us now study the behavior of profiles in the fifth d
mension. First we have to normalizefn(y) to unity. This
fixes the coefficientAn ,

An5
1

A2R

1

A12
r c /R

11r c
2mn

2/4

, nÞ0,

~A8!

A05
1

2AR
.

For r c@R, the coefficientA depends very weakly on th
mass of the state and can be approximated by 1/AR for all
the modes. In Fig. 3, we show the modulus squared of
wave function for the zero mode~constant! and the lowest
three modes for the choicer c /R510.

The quantity that determines the coupling of the K
modes to the brane matter is the modulus squared of
wave function aty50:

ufn~0!u25uA1Bu25uAu2u11e2 imnRu2

5uAu2
4

11tan2~mnR/2!

5uAu2
4

11r c
2mn

2/4
. ~A9!

FIG. 2. Nonlinear condition for the mass spectrum~A7!. Thex
axis is given in units ofmR/2. The functions shown are tan and th
lines with slopes2r c /R5210,21,0. For r c /R50, the spectrum
is the standard Kaluza-Klein spectrummn52np/R, while for large
r c /R it is given bymn.(2n21)p/R.
4-10
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POWER OF BRANE-INDUCED GRAVITY PHYSICAL REVIEW D64 084004
Here, in the last line we used the condition~A7!. From Eq.
~A9!, we deduce that higher KK modes are suppressed on
brane compared to the zero mode. The suppression fact
exactly the same as in theories with infinite volume ex
dimension@9#. The mass of thenth mode is of order 2pn/R,
so we can rewrite Eq.~A9! in terms of our initial parameter
R,r c ,

ufn~0!u2

uf0~0!u2
.

1

11n2~pr c /R!2
. ~A10!

For r c@R, this suppression is substantial even for the low
massive KK states. In Fig. 4, we show the modulus squa
of the three lowest massive modes near the origin forr c /R
510.

Let us now compute the potential due to the exchange
all the modes between two static sources located on

FIG. 3. Moduli squared of the wave functions for the zero mo
and the three lowest modes. The fifth coordinate is shown on tx
axis and the units areR/2 ~i.e., the whole range of the extra dimen
sion is covered!. The modulus squared is plotted on they axis and
the units are 1/R ~i.e., the modulus of the zero mode is equal to!.
The dependence is shown for the zero mode~constant! and the
lowest three modes forr c /R510. The position of the brane at th
origin is figuratively sketched as the thin ‘‘barrier.’’

FIG. 4. The same as Fig. 3. The small portion of space near
origin is shown in order to notice the suppression of the first th
massive modes on the brane. The zero mode has value 1, wh
well out of they axis range shown in the figure.
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brane. For this purpose we add a source term to Eq.~A1!,
with a coupling to the fieldF proportional toAG55M 23/2.

Decomposing the five dimensional field in four dime
sional modes,F5(nfn(y)sn(xm), and integrating Eq.~A1!
over the extra compact dimension we obtain the followi
effective four dimensional Lagrangian:

L45 (
n,m50

` F ]msm ]msnS E dyfmfnD1~smsn!

3S E dy ]yfm ]yfnD1r c„fm~0!fn~0!…]msm ]msn

1dmn

fn~0!

M3/2
snrG . ~A11!

Doing integrals with respect to the compact coordinatedy,
one should take into account that the functionsfn are not
orthogonal. Nevertheless, we can proceed as follows:
field equation forfm can be written as

fm@]y
21mn

21r cmn
2d~y!#fn50. ~A12!

On the other hand,

fn@]y
21mm

2 1r cmm
2 d~y!#fm50. ~A13!

Integrating both equations with respect toy and subtracting
them, we obtain

05~mn
22mm

2 !E dy@11r cd~y!#fnfm . ~A14!

This implies that the integral on the right-hand side vanis
unlessm5n. Using this fact, we obtain

E dy ]yfn ]yfm5mn
2E dy fnfm@11d~y!r c#

5mn
2dmn@11r cufn~0!u2#. ~A15!

Furthermore, inserting Eq.~A15! in Eq. ~A11!, we get

L45 (
n50

` S @11r cufn~0!u2#@~]msn!21mn
2~sn!2#

1
fn~0!

M3/2
snr D . ~A16!

In order to normalize canonically the kinetic terms, we a
sorb the factor@11r cufn(0)u2#1/2 into the redefinition of the
fields. Thus, the low-energy Lagrangian becomes

L45 (
n50

` S ~]msn!21mn
2~sn!2

1
1

A11r cufn~0!u2

fn~0!

AM3
snr D . ~A17!

e

e
e
is
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From Eq.~A17!, we can read off the couplings of the variou
modes to four-dimensional matter. In the case ofr c@R, we
can approximatemn.(2n21)p/R. Using this and some
simplifying algebra, we derive

G05
1

M3

1

r c1R
.

1

r cM
3
[G` , ~A18!

Gn5
1

r cM
3 S R

r c
D 2

@~2n21!p/2#21R/r c1~R/r c!
2

.
1

r cM
3 S 2

p2D S R

r c

1

n2D . ~A19!

An equivalent way to extract the information about t
potential is to compute the propagator of the fieldF from the
Lagrangian~A1!. For this we have to solve the followin
equation~for simplicity we work in Euclidean space!:

F 1

r c
]A]A1d~y!]m]mGD~x,y!52d4~x!d~y!, ~A20!

whereD has dimension 2. The procedure is similar to th
used in@3# with the only difference being that the fifth d
mension is now compact. We turn to four-dimensional m
mentum space,

F 1

r c
~]y

22p2!2d~y!p2GD~p,y!52d~y!, ~A21!

and take the ansatzD(p,y)5D(p,y)B(p), with D(p,y) sat-
isfying

~]y
22p2!D~p,y!52d~y!. ~A22!

This gives

B~p!5
r c

11p2D~p,0!
. ~A23!

Equation~A22! can be solved in the compact space by e
panding both sides in Fourier modes,

D~p,y!5 (
n52`

1`

ei (2pn/R)yDn~p!,
B

D

08400
t

-

-

d~y!5
1

R (
n52`

1`

ei (2pn/R)y. ~A24!

As a result, one finds

Dn5
1

R

1

p21~2pn/R!2
. ~A25!

To calculate the force between sources localized on
brane, we need to evaluate the propagator aty50. Using the
expression

D~p,0!5 (
n52`

1`

Dn~p!5
1

p2R
FpR

2
cothS pR

2 D G , ~A26!

we derive

D~p,0!5
1

p2

r c

R

~pR/2!coth~pR/2!

11~r c /R!~pR/2!coth~pR/2!

5
1

p2 F 1

11~1/prc!2 tanh~pR/2!G . ~A27!

The propagator never deviates substantially from 1/p2 over
the whole range ofp. The large-p and small-p behavior are,
respectively,

D~p,0!.
1

p2 F12
2

prc
G , pR@1 ~short distances!,

~A28!

D~p,0!.
1

p2 F12
R

r c
G , pR!1 ~ large distances!.

The maximal deviation in the coefficient of 1/p2 is of order
R/r c as before. If we continue this expression
Minkowskian spacep→ ipM , the propagator becomes

D~p,0!52
1

pM
2 F 1

11~1/pMr c!2 tan~pMR/2!G . ~A29!

The poles in this propagator are located atr cpM
522 tan(pMR/2), in agreement with Eq.~A7!.
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