PHYSICAL REVIEW D, VOLUME 64, 084004

Power of brane-induced gravity
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We study the role of the brane-induced graviton kinetic term in theories with large extra dimensions. In five
dimensions, we construct a model with a TeV-scale fundamental Planck massflahéxira dimension the
size of which can be astronomically large. Four-dimensigddl) gravity on the brane is mediated by a
massless zero mode, whereas the couplings of the heavy Kaluza-Klein modes to ordinary matter are sup-
pressed. The model can manifest itself through the predicted deviations from Einstein theory in long-distance
precision measurements of the planetary orbits. The bulk states can be a rather exotic form of dark matter,
which at subsolar distances interact via strong 5D gravitational force. We show that the induced term changes
dramatically the phenomenology of submillimeter extra dimensions. For instance, high-energy constraints from
star cooling or cosmology can be substantially relaxed.
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[. INTRODUCTION In fact, in the approach df3,4], the extra dimension was
taken to be truly infinite. In spite of this, it was shown that

It has been known for some timd,2] that in theories the model reproduces four-dimensional gravity due to the
with large extra dimensions, the scale at which gravity befour-dimensional curvature term in the brane world-volume
comes strong,M, can be much lower than the four- theory.
dimensional Planck masd . In this approach, the standard  To be more precise, let us consider five-dimensional
hierarchy problem takes a different meaning since the fieldMinkowski space with a standard bulk gravitational action,
theory cutoff is lowered. Four-dimensional gravity is weak
due to the fact that the gravitational flux spreads Ntextra
dimensions. The relation between fundamental and observed Sbulk:f d**IXV|G|L(Gag . Ragco. @), (1.9
Planck scales takes the form

M2=M2*NRN, (1.1 Where the capital Latin indices run  over
D=(4+1)-dimensional space-tim& g denotes the metric

whereR is the circumference of the extra dimensions. In thisof ~five-dimensional space-time,Ragcp is the five-
framework, the standard model particles are localized on gimensional Riemann tensor, anl collectively denotes
brane whereas gravity propagates in the bulNofiew di-  other fields. Suppose that there is a 3-brane in this space. The
mensions. Until now, it was assumed thatMf~few Tev, 3-brane can be realized as a soliton of the corresponding field
the N=1 case is ruled out by observations since it wouldequations. We split the coordinates in five dimensions as fol-
requireR~ 10 cm (the solar system sizeAs to the higher lows:
codimensions, they alloviR to be around a millimeter or
smaller. The purpose of the present paper is to argue that the XA=(x*y), (1.9
framework of compact flat extra dimensions can be dramati-
cally modified due to the presence of the brane-induced ki

: ; : ; ) where Greek indices run over the four-dimensio
netic term for a higher dimensional gravitf®,4]: 44D)

brane world volume,x=0,1,2,3, andy is the coordinate
. transverse to the brane. In order to reduce our discussion to
Sindocf d*x/|detg|R(x), (1.9  its main point, the brane will be taken to have zero witlth.

this approximation, the brane action takes the form

where g is the higher-dimensional metric evaluated at the

position of the brane, an&(x) is the corresponding four- S5 brane —Tf d*x\/|detg|, (1.5

dimensional Ricci scalar. As a result of this term, the flat

extra dimension can be astronomically large, and many high- o

energy constraints can be lifted. where T stands for the brane tension ang,,
=3,X*3,XBG g denotes the induced metric on a brane. In
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most of this work, unless otherwise stated, we neglect brane ~ 1
fluctuations. Therefore, the induced metric can be written as Gr(p,y=0) o7 (1.11
follows:
— _ B provided thatp>1/r.. Thus, at distances<r., we observe
9,u(X) =G, (x,y=0). (1.8 the correct Newtonian behavior of the potential,
In general, there could be localized matter fields on the brane m.m
. . 11Tl
world volume. These can be taken into account by writing V(r)«— (1.12
the following action for the brane: ™
~matter 4 = At large distancesy>r., however, the behavior of the
S3hrane= Sa-branet | d*xV|detg|L(¢), (1.7 Green’s function changes,

where ¢ collectively denotes all the localized fields for

which the four-dimensional Lagrangian densitydsIn the
classical theory, which we have been discussing so far, the
4D Ricci scalar on the brane world volume is not presentThis gives rise to a Newtonian potential which scales in ac-
Thus, the localized particles separated at a distanoe a  cordance with the laws of a five-dimensional thebry,
brane interact via the (#1)-dimensional gravitational force
law, that is,F~1/r?"1. This holds as long as the classical
theory is concerned. However, in the full quantum theory, the
4D Ricci scalar will be generatddlong with other termson
the brane world volume. This is due to quantum loops of theThis somewhat puzzling behavior can be understood in two
matter fields which ardocalizedon the brand3,4]. As a  equivalent ways, which we briefly discuss. First let us adopt
result, the following world-volume terms should be includedthe five-dimensional point of view. In this language, although
when one considers the full quantum theory: there is no localized massless patrticle, there exists a localized
resonance state in the spectrum. The lifetime of this reso-
vl N e ey = nance is~r.. The resonance decays into the continuum of
Sna=M f d’xVldeg|[A+R(x)+O(R9], (1.8 modes. Thics can be manifestly seen using thédleka
o Lehmann representation for the Green’s function,
whereM?=r M3 is some parameter which depends on the

details of the world-volume modgB,4]. A in Eq. (1.8) is an ~ 1 =p(s)ds
induced four-dimensional cosmological constant. The role of Gr(p.y=0)= 2M3p + M3r p? " Jo s+p2
this term is to renormalize the brane tension. Furthermore, ¢

R(x) is the four-dimensional Ricci scalar which is con- where the spectral density as a function of the Mandelstam
structed out of the induced metrig,,(x) defined in Eq. variables takes the form

(1.6). In five-dimensional Minkowski space, a brane with

nonzero tension inflatd$,6]. Therefore, to avoid the world- 1 Me

volume inflation we fine-tune the brane tensidrand the p(s OCE —. (1.16

— 4+sr?
brane world-volume cosmological constantso that the net ¢
tension is vanishing,

~ 1
GR(p,y=0)°<B- (1.13

1
V(I’)OCW. (1.14)

(1.15

As r.—x, the spectral density tends to the Dirac function
p(s)—consts(s) describing a stable massless gravittnis
corresponds to the limit when the bulk kinetic term can be
neglectegl Summarizing, at distances<r., the resonance
mimics the massless exchange, and therefore mediates the
S’L/r2 force. At larger distances, however, it decays into the
ontinuum, and as a result the force-law becomes that of a
ve-dimensional theory;- 1/r 3.

A different but equivalent way to understand the above

T'=T-AM?=0. (1.9

This is a usual fine tuning of the four-dimensional cosmo-
logical constant.

The graviton propagator resulting from such a system i
quite peculiar. Ignoring the tensor structure for a moment, we’
obtain for the corresponding Green’s function the following

expression: . . . . .
result is to adopt the point of view of the four-dimensional
mode expansion. The analysis of the linearized equation for

éR(p,y)I exp{—ply[}. (1.10 the small fluctuations show(see the Appendixthat there is

2M3p + M?2p2

Here p? is a four-dimensional Euclidean momentum gnd  27ansition to five-dimensional regime at long distances is also a
=/p?. For sources which are localized on the braye ( characteristic feature of the models with “quasilocalized” gravity
=0), this propagator reduces to a massless four-dimensiongi—13. However, these models usually include negative norm
Green'’s function, stateq9—-11].
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a continuum of 4D massive states with wave-function pro- s R 5 i ==
files that, at the location of the brane, are suppressed by the S=M j d on dyVGR(s)+M fcj d*xv|g|R.
following factor: 2.1)

| pon :o)|2:; (1.17  As we mentioned before, the four-dimensional Planck mass
+more is set by the sum of the two distance scalgandR through

'Ehe relation(1.19. For the solution of the hierarchy problem

along the lines of Ref.1], we can puM < TeV. This sets the

largest of the two scale® andr,, to be larger than-10'®

cm or so. It is tempting to assume that the origins of these

The Newtonian force on the brane is mediated by the ex
change of all these Kaluza-KleifKK) modes. These give
rise to the expression

1 (= dm e ™ two scales are related. Some possible ideas along this direc-
V(r)e« V] R A (1.18  tion will be discussed later. For the time being, we shall take
0 c

them as the parameters of the theory.

We are interested in the Newtonian gravitational interac-
tion of the brane-localized sources. In this section, we will
ignore the tensor structure of the graviton propagator and
concentrate on its scalar part. A straightforward calculation
(see the Appendixleads to the following result for the Eu-
clidean two-point Green'’s function:

At any distance, the dominant contribution comes from the
modes lighter tham=1/r. The modes withm<1/r, have
unsuppressed wave functions on the brane. Therefore, for
>r., the interaction picture is similar to that of a five-
dimensional theory. In contrast, wher<r., the picture
changes since the modes witi> 1/r . have suppressed cou-
plings. Although the number of the modes which participate

in the exchange at a given distancer is the same as in A(p,0)= i
the five-dimensional picture, their contributions are sup- p?
pressed. Thus, the number of the light modes effectively con-

tributing to the exchange “freezes-out” and the resulting be-For r >R, this propagator exhibits pf behavior both for
havior of the potential is 1/ large and for small momenta,

As pointed out in[3], this model exhibits the van Dam—
Veltman—ZakharoyvDVZ) discontinuity[14,15 in the ten-
sor structure of the graviton propagafas would any flat
space ghost-free theory in which 4D gravity is mimicked by
the exchange ofa continuum of massive spin-2 particles
[9]]. Another disadvantage of this mpdel is the. low value of A(p,0)= i[l— E ., pR<1 (large distances
the crossover scale.=10' cm. This would imply that 2 le
Newtonian gravity is modified at this distance, which is cer-
tainly unacceptable. Therefore, the potential is four-dimensional both for large

In the present paper, we show that both aforementionednd for small distances. Note that the maximal deviation in
difficulties are circumvented if the fifth dimension is com- the coefficient of 132 is of orderR/r .
pactified on a circle of macroscopic sie We will argue Let us now turn to Minkowski space-time by rotatipg
that R can be of astronomical size. In this framework, the—ip,,. The propagator takes the form
four-dimensional Planck scale emerges as

1

1+(1/pre)2 tanipR/2) | (2.2

1 2
A(p,O)z—z[l——} pR>1 (short distances
P pre
(2.3

ME=M3(R+r,) (1.19 A - !
Ca ) . (Ppm,0)= (2.9

p2, [ 1+ (1pyre)2 tar(pyR/2) |
Gravity on the brane is dominated by a lowest-lying massless

KK zero mode, which has an unsuppressed wave functionlhis expression has polesrapy, = — 2 tanfpyR/2). In order

As a result, there is no vDVZ discontinuity problem. Contri- to understand better this result, let us turn to the KK expan-
butions from the massive KK modes give rise to small cor-sion. The mode decomposition is given in the Appendix. As
rections to Newtonian gravity. These corrections are mostlyne would expect, there is a discrete tower of KK states. For
constrained by the data on the motion of the inner planets,.<R, the KK masses approach the usual KK spectrum,
the Moon, and satellite experiments. We study constrainten,=2mn/R. Forr >R, all modes(except the zero mogle
coming both from astronomyplanetary motioh and from tend to the asymptotes of the tangent functiom=0m,
astrophysicgstar cooling, and show that the model is con- =(2n—1)#/R. This is in agreement with the pole structure

sistent with all the observations. of the propagatof2.4). Note that the level spacing for fixed
R does not change. For arbitrary, the mass of thath state
Il. THE MODEL is in the interval((2n—1)#/R,2nw/R).

Let us calculate the static potential between two objects
We would like to consider the simplest possible modelon the brane which are separated by a distan€er this we
with a single brane embedded in five-dimensional space witperform the KK decomposition of the corresponding 5D
one compact dimension. The action of our model takes théelds. This is done in the Appendix. The result can be sum-
form marized as follows:
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—mpr

o =
V(r):T°+n§l G, (2.5

r L
where for the case;>R we can usen,=(2n—1)x/R and
after some simplifications we fin@ee the Appendix

(2.9

1
reM3

R) 2
re/[(2n—1)m/2]?+ R/t ¢+ (R/r)?

2 R 1
772 rcl’12 .

Finally, we derive the potential

1
reM3

(2.7

G. R *° e—(2n—1)7rr/R
vin=-22(1+ =222 | 28
r 772 lcn=1 n2

PHYSICAL REVIEW D 64 084004

Ill. CONSTRAINTS

A. Tensor structure of the propagator

In the present model, 4D gravity on the brane is mediated
by the zero-mode graviton with an admixture of the tower of
massive KK states. The latter contribution is suppressed both
by the parameter=R/r. and by the KK numben?. In
order to determine the tensor structure of the graviton propa-
gator, let us compare how it changes when one turns from a
massless graviton to a massive one. In 4D space, the
momentum-independent part of the tensor structure takes the
form

1 1
5 (1 P ) =S P (3.9

This can be seen by using, for instance, the harmonic gauge
for the fluctuations of the massless gravitational field:

1
hi)=5a,hg". (3.2

The term in the parentheses in this expression changesn the other hand, for a massive graviton one finds

slowly with r and the magnitude of the change is of the order
R/r.. One could think of Eq.(2.8) as being the Newton
potential with an effective space-dependent Newton’s con-
stant. To estimate the variation of the effective gravitational
constant, we evaluate the difference of the potentials at twgn the latter case, the equations of motion for a massive
distinct points. For a given distancen the KK sum we can  graviton (we use the Pauli-Fierz mass tergive rise to the
neglect the modes witm>R/r (since these are exponen- following relation for the fluctuations:

tially suppressedand replace the exponential by 1 in the
remaining terms for whicm<<R/r. The variation of the
Newton constant for two points; andr, (r,>r») is evalu-
ated as follows:

1 1
SOy P Py ) =z g, (3.3

g*h(M=3,h(MP. (3.4
Using this condition in the Einstein equations naturally leads
to the tensor structure given i3.3.° Let us now see what

1 happens in the 5D model. Before compactification, one can

(2.9 : ; .
choose the harmonic gauge in the bulk space:

G(r)—G(r,) R 2

Goo rc n:R/rl nz'

Moreover, the potential can be evaluated exactly and the ex-
pression can be expanded for small and large valuesRf
Forr/R<1 andR<r, we find

1
aAhABzzthg. (3.5
This leads to the tensor structure of the fo(@3). Let us
consider what happens upon compactification. For the mas-

sive KK modesm#0, the{uv} components of the gauge
condition (3.5 will turn into the following expression:

v G. +R
M=~ \1+rir. 1,

1-|—4r |r+C
7RI"R

+0((R/rc)2,(r/R)2)} : (2.10 1
b =5(a,hg"P+a,hi"®), (3.6

where C= In(7/2e)=—0.54. Likewise, forr/R>1 andR
<r¢, the potential reads as follows: while the {55} component takes the form

G.| 1 4 R h{m&(x) =h{M3(x) (3.7

=~—|———+|—S—+ 2 2 5 : -
V(N r|1+R/lre |\ z2r¢ O(RIre) ))
xe ™Ry .| (2.1 ®Note that the condition3.4) would be an inconsistent gauge
choice for the massless gravitons. This is in contrast with the vector

field case, where the equation of motion for a massive vector field

The overall relative change in Newton’s constantifan the
interval [ 0,] is the ratioR/r.

A, (Proca field would require the relatiod”A,=0 and this latter
is also an acceptable gauge choice for a massless gauge field.
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Substituting Eq.(3.7) into Eq. (3.6), we derive Eq.(3.4). tain number of the massive KK modes. This is determined by
Using this, we obtain the following expression for the tensorthe distance of the object from the center of the potential. For
structure of massive KK gravitons: example, Pluto will effectively exchange fewer KK modes
than Mercury. This will be seen as an effective change of
Newton’s constant and will constrain the possible values of
R. In the present model, the total change in Newton’s con-
stant felt by an object falling from infinity towards the center
where T . T'#* are Fourier-transformed matter source Of the potential would b&/r.. From the expansions of the
uv . P .
energy-momentum tensors. Therefore, in the approximatioRotentials(2.10 and (2.11), it is obvious that most of the
R/r.<1, the expression for the propagator takes the fornfhange happens in the rangetf<R.

(the tensor structure of the zero-mode is that of a 4D theory ~Experimental bounds on the spatial variation of Newton's
constant over planetary distances are quite strong. They

RO, O e T, TSR (38
Mv(pl) y12% 3aB 1 ()

1 1 1 come from precise tracking of planetary orbits with the help
Gf{”“ﬁ(p)sz (E(r;f‘“n”ﬁnL By 3 7]“”7]“'8> — of radar beams and space probes. The results of those mea-
P surements are presented in the wéik] (an updated and
SR 1/1 detailed discussion can be found[it8]). The modification
+; > nzl —2(5(77’”77VB+ PP of Newton's potential assumed [A7] is
e—r/)\
1. 1 AV(r)=aG, _— (3.1)
_§7]/Lv7]al3 p2+m2 , (3.9
" wherea and\ are parameters that describe deviations from
where the standard potential. A nonzero value of these parameters
would result in deviations from Kepler’s third law and would
_ _ prp” induce anomalous precessions of the planets’ perihelia. The
=gttt precise measurements of orbits of the inner planets and sat-

ellites put bounds on the values @fand\ that are summa-

Thus the lowest massive KK modes are suppressed by tH&ed in Refs[17,18.
ratio R/r ;.= @. These contributions might be important. In- L&t us relate approximately the parameters of our model
deed, as shown if9], any ghost-free theory in which mas- with the parameters in E@3.11). For simplicity, we will use
sive spin-2 KK contribution to 4D gravity is essential should the following estimate:
suffer from a vDVZ-discontinuity probleni4,15. The rea-

son is that in flat space any massive spin-2 states have five G.[ 2 R o e @Dk
izati izati AVIN=—| 5= X
polarizations. Three of these polarizations couple to the con- r\z2r. i1 n2
served stress energy tensor with the same strength and con-
tribute to the gravitational potential. This induces a finite 2R e 'R 2 R O e (@n-DLm/R
deviation from the predictions of Einstein gravity for arbi- == GxTJF—Zr— &2
trarily small masg14,15. Therefore, theories with massive e moens n
graviton exchange encounter phenomenological difficulties — 7R o
. . 2R e 1
and are severely constrained. We shall try to quantify the <——G. 1+, —
implications of this constraint in our model. T r n=2n
As we discussed above, the massive modes give rise to R e "R
the distinctive tensor structure in the propagator which alters =—G,—. (3.12
the predictions for light bending by the Sun and the preces- 3re r

sion of Mercury perihelion. Therefore, the massive KK ) )
modes must be adequately suppressed. The sum ifBEy. With this estimate we can relate the parameters of our model
is rapidly convergent. As a result, the dominant contributionWith the parameters in E¢3.11),
comes from a few of the lightest KK modes. Using the
present experimental daft&6], this gives the following con- _ E N
straint: e AR (313
: c

The bound orw is very stringent &<10° [17,18) for
the values of in the range from the Earth radius to the solar
system size. If we assumd ~TeV, we conclude that the
size of extra dimensiofR must be either smaller than the
Earth radius, or bigger than the solar system size.

We shall now examine the constraints on the size of the Let us discuss these two possibilities separately. We start
extra dimensiorR, coming from solar system dynamics. An with the case in whiclR is larger than the solar system size.
object orbiting in the gravitational field will exchange a cer- In this case, the estimat8.13 is actually not the most pre-

R
a=—<3X 104, (3.10

c

B. Planetary motion
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The second possibility is to take the size of the extra
dimension to be anywhere less than the Earth radiuso(
m), in order to satisfy constraints from Earth-Moon and ar-
tificial satellite experiments. This “regime” is much safer
and the bounds are very weak, as can be se¢h7ig. In
the caseR~ 10" m, r, can range from-10' m to ~ 10 m,
corresponding to a fundamental Planck scale~df0 TeV
down to 100 GeV, respectively. Of course the valu&kafan
be lowered at will, down to M, while keepingr . fixed in
order to generate the correct value for the four-dimensional
Planck scale from the “low” fundamental scalel TeV . To
point out the importance of our result in this regime, we
stress that our model makes possible the existence of a single
FIG. 1. The correction to Newton’s force for our modsblid ~ €xtra dimension of very large size without contradicting the
line, R/r,=10" %) and for the Yukawa-type correctiqdashed line, ~Present observations, while keeping the value of the funda-
a=10"*). The relative correctiorinormalized to the strength of mental Planck scale around the TeV.

0.8

0.6

0.4

02

Newton’s forcg is given in units of 104. Thex axis measures/R The mechanism of suppression of heavy modes in our

for our model and /) for the Yukawa correction. framework can relax the high-energy constraints on the mod-
els with submillimeter extra dimensions.

cise one. The bounds anand\ shown in[17] were derived To summarize, there are two windows of the parameter

using the spatial variation of Newton’s constant that appear§Pace in the present model. The first one, in which the extra
in the force, rather than in the potential. We can compare th@imension has an astronomic scale, is strongly constrained
correction to the force in our model and the same correctioy the solar system observations which foRee 10'° m (for

for the pure Yukawa-type modification, both shown in Fig. 1.R/Tc=10"%). In the second scenari® can be anywhere
We see that the force correction in our model is a mucHeelow the Earth radius andNl.

steeper function on small values i0fR.

The measured quantity is the paramefgrthat describes
deviations from Kepler’s third law. The ratio of semimajor
axis can be measure(axeaj and Compared to a prediction The most severe constraint on theories with low-scale
of Kepler's law (a,) . The following equation relates and gravity comes from astrophysics since a stellar object can

the value of Newton’s constant at the Earthg) and at the cool by radiating bulk gravitonf?]. Let us estimate the rate
planet's orbit G,): of star cooling in the present case. Let the temperature inside

the star bel. Then only the gravitons with masseg<T are
produced efficiently. The rate of emission of théh KK
GpMs)lls graviton is given by

C. Star cooling

ap

a?eas: v e ( GeMs

(3.14
r~T3G,. (3.19

Newton’s constant is the one that appears in the force IaV\(N N

: e have to sum over all states uprie- TR. This gives
andMg is the mass of the Sun. The bound on the parameters © ° P give
7 is of the order 10°—10"*° for the inner planets.

The most precise bound on the spatial variation of New- >R RT1 1R o4 T3
ton's constant f,) comes from the relation between the Ftota|(T)~7T2T3r§ 21: ?23M—3r§:§M_§,'

Earth and the inner planets, i.e., in the regime of sm/d,
for R greater than the solar system size. In that regime, the
change in force will be bigger for our model than for the
Yukawa-type correction and we have to compensate for tharhis is less than the rate of just zero-mode graviton produc-
effect by choosing somewhat larger valuesRadindr.. Nu-  tion, and is totally negligible. Note that the contribution com-
merical analysis shows that with the choiceR&10'** m  ing from the emission of a pair of KK gravitons via the
andR/r ;~10"4, the bounds can be safely satisfied. Since thevirtual zero-mode graviton exchange is of the same order,
Planck scale is roughly given M3, an increase of . by  and is practically insensitive to the valueRfandM. To see
some factor would lower the fundamental Planck scale for dhis, let us consider a scattering process on the brane with a
much milder value of a cubic root. With the new bound of virtual zero-mode graviton emission which subsequently de-
R>10' m andR/r.>10"4, the fundamental Planck scale is cays into a pair of KK gravitons. The example of such a
pushed to approximately 100 GeV. process can be a gravi-bremsstrahlung process, electron scat-
Similarly, we calculated the contribution to the anomaloustering in the field of nucleus and radiating gravitons. Let the
precession of Mercury and Mars in our model, and we foundypical energy in the process & For definiteness we take
that it can be within the accepted values if the above limitsE>M, in order to establish the strongest constraint. The rate
on R andR/r. are satisfied. of the process then becomes
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o EME (MR) e’ (3.17) dp TAT ol T) T (3.18
~ 7 TaTTT, . a7 -~ total ~ T,z a. .
Mp Mp dt evaporation M

) o Note that this is smaller by a facter than the cooling rate
where we have cut off graviton momenta by Surprisingly,  gue to the production of the standard zero-mode graviton,

this rate is similar to the one of single KK production, dug t0and is totally negligible in comparison to the cooling rate
the suppression of the direct KK production rate. Most im-.5,sed by the cosmological expansion

portantly, it has no dependence on eitlieor M. Thus the
KK emission in high-energy processespriori places no dp
bound on either of these parameters. However, we do not at
expectM to be smaller than the inverse mm scale, due to no

observed deviation from Newtonian gravity on larger dis-
tances, which gives the upper limit on the size of extra di
mensionR~ «10°® cm. Thus the star cooling places no con-

T2

~—3Hp~-3

expansion

where H is the Hubble parameter. For instance, in the
radiation-dominated epoch(~T2/Mp), the ratio of the two

X . ; o rates is
straint on our scenario. It is useful to contrast this with the
scenario of 1]. There, the dominant contribution to the cool- dp
ing process comes from the production of heaviest modes, at
due to their high number. In the present case, however, the evaporation La (3.20
wave functions of the heavy modes are suppressed on the dp Mp ’

brane and therefore cannot be produced efficiently. This is a
generic property of the given framework with the induced
kinetic term: in a high-energy process on the brane, the lightThjs is a very small number even far~ TeV. The reason
est KK states are the ones produced most efficiently. Theor this suppression can again be understood from the “in-
extra dimension is more transparent for the softer modes. frared transparency” Of the theory: Since the heavier gravi_
tons’ wave functions are strongly suppressed on the brane,
their production is not efficient enough to affect the brane-
cooling process.

In this section, we will consider cosmological constraints  Qverclosure by gravitons
coming from the overproduction of bulk states. Not surpris- Due to their suppressed couplings, KK gravitons are
ingly, in analogy with star cooling, the cosmological con- harder to produce on the brane. Moreover, due to the same
straints turn out to be rather mild. In order to be as modelsuppression, the KK modes are more long-lived as well.
independent as possible, we shall discuss the followingrhus, we have to examine constraints coming from their pos-
initial conditions for the hot big bandi) The bulk is virtu-  sible overproduction.
ally empty; (i) the brane states are in thermal equilibrium at  The lifetime of a “cold” KK graviton of massm can be
some temperatur@ .. Which cannot be higher than the written as follows:
“normalcy” temperatureT , .

The normalcy temperature is defined as the temperature M%,(rCR)
below which the Universe expands as being effectively four- ™ T (3.2
dimensional. This requirement then automatically restricts
Torane< T4 . Obviously, we would likeT, to come out at This turns into the following relation upon using E4.19:
least as high as the nucleosynthesis temperature. As we shall
see below,T, could be much higher, even as high as the
cutoff scale [, ~M). This fact allows for the standard nu-
cleosynthesis scenario to proceed unaffected, and also to
implement one of the conventional baryogenesis mechanisnihus, even the gravitons as heavynas M are stable for all
for generating the baryon asymmetry of the Universe. practical purposes and can overclose the Universe if pro-

As discussed if2], in theories with large extra dimen- duced with a sufficiently large number density. This puts
sions the overproduction of bulk KK states can alter the stansome bound ofT, , which we shall estimate below. Assum-
dard cosmological expansion in two different ways. First, theng that all the produced KK gravitons are stable and do not
energy density on the brane changes due to the “evaporatlecay back to the brane, the energy density which is
tion” into the bulk states. Secondly, the produced bulk stateSpumped” into the bulk due to the brane evaporati@m the
may dominate the energy density and overclose the Uniprocess of the normal expansjas
verse. Let us consider constraints coming from these two

expansion

D. Cosmology

T™Tm™

MP)G o
M m (3.22

5
effects separately. 5o [t de At~ T dT~T—*
Cooling by evaporation into bulk states P= t, evanoration TegMP “« Mp «
As estimated above for star cooling at temperafjréhe P (3.23

evaporation rate into the bulk gravitons is given by Eq.
(3.16. The resulting change of the matter energy density orHere T~ €V is the standard crossover temperature and we
the brane due to evaporation is given by neglected the later period of matter domination as well as the
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order one factors in the integral. Most of the energy density — E\—
gets pumped in the bulk during one Hubble time after rane:sz d*xV|detg exn(m) R(X). 4.9
=t;,. Thus, soon after the initial time, the bulk becomes
populated by KK states with the energy density given by Eqone could assume that, due to some dynangiatevelops a
(3.23. Most of these particles are relativistic and their en-yacyum expectation value close to the sddleThis is in no
ergy density will redshift as radiatiop(-T%). However, ©0  contradiction with any fundamental principle, as longéds
make our bound most conservative, let us assume that mogbmewnhat lighter thaM. Shifting the fieldé—(£)+ ¢, we
of the energy density is stored in the cold KK modes thalgng yp with an exponentially large scalg=M ~te(&™M,
redshift as mat_terp(~T3). Even in this case, their energy Note that in the shifted vacuum, the theory is consistent up to
density at the time of standard crossover will be given by the energies of order M. Moreover, the perturbative treat-
) ment is valid since the emission gfquanta are suppressed
¥ 3 by the powers oM 1.
PrK™ M_PaTeq' (3.24 Although at first glance the fact that the VEV is larger
than the cutoff of the theory might seem a bit unnatural, we

the usual mattefat the same time=t,), which, by defini- exist many well-defined examples both in string theory as
tion, is pmanerNquN(lo eV) * we get the following bound well as in KK theories when this is the case. After all, the

solution of the hierarchy problem irl] can also be under-

onT,: . .
* stood in this way. Indeed, the large value of the Planck scale
M 1010 is generated by the size of the extra dimension, or equiva-
Ti<7pev= — Ge\~2. (3.25 lently, by the VEV of the four-dimensional scalar field, the

radion, which has an expectation value exceeding by many
orders of magnitude the cutoff of the theory.
This bound can be easily satisfied evenTor~M. Another well-known example of this kind can be found in
In conclusion, we see that in contrast with the scenario oD branes. It is well known that in the BPS limit the separa-
[1], there are no essential cosmological constraints fronion of two parallel D branes can be understood as the Higgs
overproduction of bulk states due to the brane cooling. Wesffect in the brane world volume gauge theory. The expecta-
have to stress, however, that this analysis cannot captutton value of the canonically normalized Higgs field is re-
more model-dependent possibilities. For instance, if the KKlated to the string scaléfls, as
states are produced by some other means in the early Uni-
verse, they could either overclose the Universe or serve as (&)~rM3, 4.2
unusual(and interesting dark matter candidates. To avoid
the overproduction, we have to assume that there was a peterer is the interbrane separation. This latter can be much
riod of the inflation that diluted the bulk and reheated onlylarger than M. In fact, the limitr>Mg?' is well defined
the brané' perturbatively and corresponds to the infrared limit for the
bulk gravity. Although the world volume scalar field acquires
an expectation value that is much larger than the fundamen-
tal scale, the theory is well defined. The two-brane system
In this section, we shall discuss a possible origin of thebecomes populated with states of mass\i 3 that are much
large distance scalg,. The goal is to explain the large co- heavier than the string scaleorresponding to the stretched
efficient in front of the four-dimensional curvature term in string modes in the original theorylt may not be impossible
Eq. (1.8). As already noted, in the effective field theory pic- that in a suitable framework like this, the brane separation
ture this term is not constrained by any symmetry and caman set the large coefficient of the brane-induced curvature
emerge with ara priori unrestricted coefficient. However, it term.
is desirable to have a better understanding of this issue. As
suggested i3,4], this term is induced due to quantum 100PS \, \\PLICATIONS FOR SUBMILLIMETER DIMENSIONS
of the states, which are localized on the brane and which
interact with high-dimensional gravity. The resulting strength  So far we have been studying the dom&irr.. As we
depends on the number of such states as well as their masdesve shown, in such a caBecan be of astronomical size. In
[4]. Thus, the large mass hierarchy could be obtained due tfact, it can be arbitrarily largéf r is taken to be large In
the large multiplicity of states propagating in matter loops onthis section, we shall study the opposite regiRer.. The
the brane. However, there can be other effects that may sigaseR— o with one extra dimension was already discussed
nificantly contribute to the magnitude of this term. One pos-in [3]. In this case, the massive KK states which are lighter
sibility is to consider a brane-scalar figddvhich is nonmini-  than r. have unsuppressed wave functions on the brane.
mally coupled to gravity, Thus, they couple to the brane matter with a strength com-
parable to that of the zero-mode graviton. As was empha-
sized above, this creates a problem due to the extra polariza-
“The inflationary solutions in the limit oft= were studied in  tion of massive spin-2 states. Therefore, the masses of the
[21]. KK modes must be large enough in order to avoid unaccept-

IV. ON THE ORIGIN OF THE CROSSOVER SCALE
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able deviations from Einstein’s gravity. Precision measuredimension defines the value of the four-dimensional Planck
ments of light-bending and the precession of Mercury perinass[see Eq(1.19].
helion exclude the range of masses at the inverse There are two phenomenologically interesting regimes.
astronomical scale. The first one is achieved whéR<r.=10' m. In this case,
The shorter ranges are constrained by the precision me#ghe four-dimensional gravity on the brane is mediated by a
surements o5 discussed above. These constraints fRétn  singlenonlocalizedzero-mode graviton, both at large and at
be somewhere around the inverse mm range. In fact, accorg@hort distances. The mass spacing of the KK modes is similar
ing to recent measuremerjts9], m~1>250u or so. In such to that of an ordinary flat compact dimension. However, the
a regime, planetary dynamics is insensitive to extra dimenwave functions of heavy KK modes are suppressed on the
sions, just like in the original scenario ff]. However, the brane by the ratid?/r.. This gives rise to the effect of “in-
other predictions of this framework are dramatically modi-frared transparency[4] of the extra space. We studied the
fied. The situation is somewhat peculiar fof~1<r <R. constraints imposed by precision gravitational measurements
On the one hand, the predictions|df for table-top gravita- at all scales, as well as restrictions due to various astrophysi-
tional experiment§20] are unaffected. On the other hand, all cal and cosmological effects. We found that the model is
the current cosmological and astrophysical constraints areompatible with all those data. A crucial experimental test of
lifted, and the collider signatures are dramatically modified.this scenario could arise by observing deviations from New-
This happens due to the suppression of heavy KK productiotonian and Einstein’s gravity practically at any scale. This
at high-energy colliders. includes precision studies of both relativistic and nonrelativ-
In order to explicitly demonstrate this, let us consider theistic effects. In the present framework, the states that live in
star-cooling process. This process puts the most stringetihe bulk can be a rather exotic source of dark matter. At
constraint on the scenario ] for the submillimeter dimen- distances >R, their interaction is that of an ordinary dark
sions. For a given temperatufe the production rate of the matter. However, for <R they interact via much stronger

nth KK state inside the star is suppressed as gravitational potential which scales asr2/ Furthermore,
these states interact with the observable matter by much
o3 RT 1 weaker gravitational force.
I~ 2 (5.1 Another interesting limit iR>r . andN=2. In this case,

2 2 2"
M5 T 1+n*(7rc/R) the compactification radiuR is constrained to be in a sub-

_ o millimeter domain. Although this seems to be similar to the
Assuming thar ;> 1/T, we can evaluate the contribution of gcenario of1], nevertheless the framework is modified dra-
the KK modes withm<1/r; and m> 1érc separately and  matically due to the graviton kinetic term on the brane. For
show that these are both of ordBfR/Mpr. Using the re-  jnstance, ifM~*<r <R, the table-top predictions of sce-

lation M3~M?R, we can bring the total contribution to the nario [1] are unaffected and one should still expect devia-

form tions from Newton’s law at scales~R. However, produc-
tion of heavy KK gravitons is strongly suppressed. This lifts
I T (5.2 all the high-energy constraints. We have explicitly demon-
|V|3(ch) ) : strated this fact by reevaluating the constraints coming from

the process of star cooling. Our analysis demonstrates the
Notice that there is an extra suppression faet@iir,) with ~ crucial importance of the brane-induced graviton kinetic
respect to the standard case[ai. This indicates that for term for the phenomenological studies.
sufficiently larger ., all the bounds can be avoided. Suppres- Note addedAfter this work was completed, Ref22]
sion of the bulk gra\/iton production in other high-energy appeared, which discusses the role of a brane-induced kinetic
processes can be analyzed in a similar way. The peculiariti€§rm on compact dimensions in an example of a scalar grav-
of the spectrum of the model indicate that many of the exty-
perimental constraints on theories with large extra dimen-
sions must be reconsidered in light of the present discussion. ACKNOWLEDGMENTS
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a singleflat extra dimension the size of which can be either
smaller than 16m or larger than 18 m. o _ APPENDIX

The crucial role in generating usual 4D Einstein gravity
on the brane is played by the brane-induced graviton kinetic In this appendix, we derive the expression for the force
term of Ref.[3]. The strength of this term is governed by a mediated by a scalar field in five-dimensional space-time
distance scale., which together with the size of the extra with one compact dimension and an induced kinetic term on

VI. CONCLUSIONS
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a 3-brane. We denote the coordinatés= (x*,y),y e[O,R]. 0
Our starting point is the following five-dimensional Lagrang-
ian: -25

L=M3AD 9, ®+M28(y) oD 9,®, (A1)

where ®(x”) has dimension OM is the fundamental five- ]
dimensional mass scale, aM? is the scale dynamically

generated by the interaction with matter that lives on the~123 \
brane[3] . If we absorb the factoM®? into the redefinition s | N~
of the field, then® becomes a canonically normalized 5D . . ‘ ‘ .
scalar. The ratio .= M?/M?3 appears in the field equation as 2 4 6 8 o 12 4
follows:

FIG. 2. Nonlinear condition for the mass spectr(&¥). The x
axis is given in units omR/2. The functions shown are tan and the
lines with slopes—-r./R=-10,—-1,0. Forr./R=0, the spectrum
is the standard Kaluza-Klein spectrum,=2n/R, while for large

PP +1.8(y)9*9,P=0. (A2)

Let us decompose the fiel#t into the following modes®d e
=Em¢n(y)an([>)<“). on(x*) satisfy the four?dimensional f/Ritis given bym,=(2n—1)m/R.

Klein-Gordon equation 43, + mﬁ)an=0, where them,’s r ImR mR

are to be determined. The functiogg(y) set the profiles of — —C( =tar< —) (A7)
the field in the fifth dimension. From E@¢A2) (with the use 2

A _ 2 “ A H ”
of 9"dp=9"d,—dy) we get the “Schrdinger equation”for  thg nonlinear equatiofA7) is solved by the graphical
#(y), method as shown in Fig. 2.
We see that for <R, the masses approach the usual
2 2 2 _ c
(@y+m+rem5(y))(y) =0. (A3)  Kaluza-Klein spectrumm,=2mn/R. Forr >R, all modes

. . . . : (except the zero modlepproach the asymptotes of the tan-
This equation is to be considered on a circle of lerfigthith gens:me=0m. ~(2n— 1)=/R. The level spacing for fixed

the _per|od|C|ty conditiong(y+R) = d?(y). The p_ro.bl_em 'S Rdoes not change. For arbitrary, the mass of thath state
equivalent to that of a wave equation for an infinite space

with an array of 6-function-type potentials located at '~ in the intervall (2n—1)a/R,2nw/R]. o

“nR N=—0+1+2 with the identificationy=y+ R Let us now study the behavior of profiles in the fifth di-
' PP . X ? ’ mension. First we have to normalizg,(y) to unity. This

The procedure for finding the solutions is standard: We solv%xes the coefficient

the equation in two neighboring regions=[—R,0], Il n

=[0,R], match the wave function and its derivative at the 1 1
boundary, and then identify the two regions by imposing the A= , h#0,
periodicity condition ¢, (y—R)=¢,,(y). The solutions in V2R ro/R
each region are -
_ _ 1+r2m2/4
() (y)=Ae™+Be "™, (A8)
_ _ (A4) A 1
— imy —imy —
() ¢u(y)=Ce™+De ™, PN

where the coefficientd,B,C,D are to be determined by the For r.>R, the coefficientA depends very weakly on the

following _conditic_ms:(a) _peri_odicity; (b) continuity aty=0; mass of the state and can be approximated R§R1for all
(c) matching of first derivatives gt=0: the modes. In Fig. 3, we show the modulus squared of the
wave function for the zero mod@onstant and the lowest
three modes for the choige /R=10.

The quantity that determines the coupling of the KK
modes to the brane matter is the modulus squared of the
wave function aty=0:

(a) AMU~R 4 Be IMy-Ri=Ccegm+pe M,
(b) A+B=C+D,  (A5)

(c) C—D—-A(1+irim)+B(1—ir,m)=0.
| $a(0)|2=|A+B|?=|A]?|1+e™"™F|?

Solving these algebraic equations, we determine the coeffi-

cientsB,C,D in terms ofA. This latter can in turn be found

_| |2

from the normalization condition o, 1+tarf(m,R/2)
D=A, B=C=Ae ™R (AB)
- N =|AP—F . (A9)
amended by the quantization condition for the masses, 1+remy/4

084004-10



POWER OF BRANE-INDUCED GRAVITY PHYSICAL REVIEW D64 084004

25 ‘ ‘ - brane. For this purpose we add a source term to(Ed),
with a coupling to the fieldP proportional to/Gg=M %72,
2 | Decomposing the five dimensional field in four dimen-
sional modes® =X, &, (y) o,(x*), and integrating EqAL)
Ls | over the extra compact dimension we obtain the following
’ effective four dimensional Lagrangian:
1 oo

(9'“(Tm(9,u0'n JdY¢m¢n) (omon)

£4:n;=0 -
X(fdyay(ﬁm&yd)n)+rc(¢m(0)¢’n(o))(9'u0'm‘9,u0'n
0.25 0.5 0.75

FIG. 3. Moduli squared of the wave functions for the zero mode S #n(0) oop
and the three lowest modes. The fifth coordinate is shown om the mno\psz
axis and the units arg/2 (i.e., the whole range of the extra dimen-

sion is coverell The modulus squared is plotted on thexis and  Doing integrals with respect to the compact coordindye
the units are R (i.e., the modulus of the zero mode is equal o 1 one should take into account that the functiafs are not

The dependence is shown for the zero mddenstant and the  orthogonal. Nevertheless, we can proceed as follows: The
lowest three modes far. /R=10. The position of the brane at the fig|d equation forg,, can be written as

origin is figuratively sketched as the thin “barrier.”

N M
5

-0.75 -0. -0.25 0

—_

. (A1)

bl 05+ Mi+ 1M 8(Y) ] bp=0. (A12)
Here, in the last line we used the conditioh7). From Eq.
(A9), we deduce that higher KK modes are suppressed on tHén the other hand,
brane compared to the zero mode. The suppression factor is —_ 5
exactly the same as in theories with infinite volume extra Gl 05+ M +rcmi8(y) ] dm=0. (A13)
dimension9]. The mass of thath mode is of order Zn/R,

so we can rewrite EqA9) in terms of our initial parameters Nteégrating both equations with respectyt@nd subtracting
R, them, we obtain

| 6a(0)[? 1 A0 0=<mﬁ—m%)f dy[1+1c8(Y)1dndm.  (Al4)
|6o(0)2 1+n2(mr/R)2

This implies that the integral on the right-hand side vanishes
unlessm=n. Using this fact, we obtain
Forr >R, this suppression is substantial even for the lowest

massive KK states. In Fig. 4, we show the modulus squared y o
of the three lowest massive modes near the origirr {dR f dy @én dypm=mg | dY dndm[ 1+ ()]
=10.
2
Let us now compute the potential due to the exchange of =MpSmd 1+1¢[4n(0)[?].  (A15)

all the modes between two static sources located on the . . .
Furthermore, inserting EGA15) in Eq. (All), we get

0.03 0

005 Lo=2 | [+ ¢a(0)I[(3* o) >+ mi(or)?]

g n=0

0.02 $4(0)

+ Wanp) . (A16)

0.015

0.01 In order to normalize canonically the kinetic terms, we ab-

sorb the factof1+r | ¢,(0)|2]¥? into the redefinition of the

0.005 fields. Thus, the low-energy Lagrangian becomes

-0.04 -0.02 0 0.02 0.04 £4: EO ( (aMO'n)Z‘f' mﬁ( Un)z
n—=

FIG. 4. The same as Fig. 3. The small portion of space near the
origin is shown in order to notice the suppression of the first three

massive modes on the brane. The zero mode has value 1, which is + ! n(0) onp . (A17)
well out of they axis range shown in the figure. V1+ron(0)]? yM3
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From Eq.(A17), we can read off the couplings of the various e
modes to four-dimensional matter. In the case ofR, we ay)=5 >, el@mRy, (A24)
can approximatem,,=(2n—1)«/R. Using this and some n=-=

simplifying algebra, we derive As a result, one finds

1 1 1
Gy=———==——>=G,,, (A18) 1 1
M3Tc+R M3 D=0 ————. (A25)
o7 e "R p2+ (27n/R)?
_ 1 (E) 2 To calculate the force between sources localized on the
"o M3\ e/ [(2n—1)7/2)2+ RIr o+ (Rit )2 brane, we need to evaluate the propagatgr-a0. Using the
expression

1 2\[R 1 (A19)
~ _ — — . + o

reM3\ 72/ \ e n?

1 |pR PR
D(D,O)ZHZE_OO Dn(p):pZ_R 7C0t|'<7”. (A26)

An equivalent way to extract the information about the
potential is to compute the propagator of the fi®drom the  \ye derive
Lagrangian(Al). For this we have to solve the following
equation(for simplicity we work in Euclidean spage 1r, (pRI2)coth pR/2)

1 APO= R T+ (1. /R (pR2)cotN pR2)
r—&Af9A+ 8(y)a*a, |A(xy)=—58"x)8(y), (A20)
¢ 1 1
. . L =— . (A27)
where A has dimension 2. The procedure is similar to that p2|1+(1/pre)2 tanipR/2)

used in[3] with the only difference being that the fifth di-

mension is now compact. We turn to four-dimensional mo-The propagator never deviates substantially frop? ver
mentum space, the whole range op. The largep and smallp behavior are,
respectively,

1 2 2
r—c(&y—p)—5()')p A(p.y)=-4ly), (A21)

1 2
A(p,O)z—z[l——} pR>1 (short distances
and take the ansat¥(p,y)=D(p,y)B(p), with D(p,y) sat- p Pre

isfying (A28)

1
(35— p?)D(p.y)=—(y). (A22) A(p,0)=— ,  pR<1 (large distances
p

R
1_ J—

rC
This gives

The maximal deviation in the coefficient ofgf/ is of order
R/r, as before. If we continue this expression to

— —C . . .
B(p)= 1+ p2D(p,0)’ (A23)  Minkowskian space»—ipy, the propagator becomes
Equation(A22) can be solved in the compact space by ex- A(p.O)= — 1 1 (A29)
panding both sides in Fourier modes, (p.0)= p2, 1+ (1/pwrc)2 tar(puR/2) '
+ o0
D(p,y)= i2m/R)yp ’ The poles in this propagator are located atpy
(P.y) an—oo © n(P) =—2tanpyR/2), in agreement with EqA7).
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