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We consider the four-dimensional discontinuity generated by two identical pieces of a five-dimensional
space pasted along their edge~that is a ‘‘brane’’ in a ‘‘Z2 symmetric’’ ‘‘bulk’’ !. Using a four plus one
decomposition of the Riemann tensor, we write the equations for gravity on the brane and recover in a simple
manner a number of known ‘‘brane world’’ scenarios. We study under which conditions these equations reduce,
exactly or approximately, to the four-dimensional Einstein equations. We conclude that if the bulk is imposed
to be only an Einstein space near the brane, Einstein’s equations can be recovered approximately on the brane,
but if it is imposed to be strictly anti–de Sitter space then the Einstein equations cannot hold, even approxi-
mately, on a quasi-Minkowskian brane, unless matter obeys a very contrived equation of state.
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I. INTRODUCTION

Since their covariant description by Israel~clarifying ear-
lier treatments by, e.g., Lanczos and Darmois! @1#, thin shells
have been intensively used as a model for matter in gen
relativity. However, a question is rarely asked when cons
ering a four-dimensional spacetime, to wit whether or n
matter on the shell obeys the three-dimensional Eins
equations, as there is no~experimental! reason why it should.

The situation changed recently with the increasing inte
in gravity theories within spacetimes with large extra dime
sions and the advent of the idea that our universe may
four dimensional singular hypersurface, or ‘‘brane,’’ in
five-dimensional spacetime, or ‘‘bulk’’@2#. Indeed, in this
new context, it becomes crucial to recover Einstein grav
for realistic matter on the brane, at least to some approxi
tion compatible with the present experiments.

The Randall Sundrum scenario@3#, where our universe is
a four-dimensional quasi-Minkowskian edge of a doub
sided perturbed anti–de Sitter spacetime, was the first
plicit model where the linearized Einstein equations w
claimed to hold on the brane. This claim was substantia
by further analyses and the corrections to Newton’s law c
culated@4#. Soon after followed the building of cosmologic
models, where the brane is taken to be a Robertson–Wa
spacetime, which can tend at late times to the standard
bang scenario@5,6#. The perturbations of the geometry an
matter content of these models, in the view of calculating
microwave background anisotropies, are currently be
studied@7#. More sophisticated models, including, e.g., tw
branes or curvature squared corrections in the bulk gra
equations are also being considered@8,9#.

In most papers the issue of whether or not Einste
equations can be recovered on the brane is slightly confu
for the following reason: some authors take a brane wo
point of view, that is they ignore the bulk as much as th
0556-2821/2001/64~8!/083515~8!/$20.00 64 0835
ral
-
t
in

st
-
a

y
a-

-
x-
e
d
l-

er
ig-

e
g

ty

s
ed
d
y

can, which shows up in the gravity equations on the brane
some extra radiation fluid or seeds; whereas other aut
impose a geometry for the bulk~to be, e.g., perturbed
anti–de Sitter spacetime! and see how this geometry influ
ences the equations for gravity in the brane. This divide
be seen in the techniques used; the first category of aut
tends to use Gaussian normal coordinates, which are
adapted to the brane, whereas the second tends to use
dinates adapted to the bulk~e.g., conformally Minkowskian
or Schwarzschild-like coordinates!. In this paper we shall
adopt the first point of view. We make the junction with th
bulk point of view in an accompanying paper@10#.

The issue, however, can be described in a coordinate
dependent way as follows. Start with an (N11)-dimensional
‘‘generating’’ spacetimeV(N11) ~that one can visualize as
surface embedded in a higher-dimensional space!. Assume
that V(N11) satisfies Einstein’s equations, i.e., that the E
stein tensor ofV(N11) is linearly related to some~smooth!
stress-energy tensorTAB . Consider in V(N11) an
N-dimensional hypersurfaceMN . Cut V(N11) along MN

into two parts,V(N11)
1 and V(N11)

2 , and keep, say,V(N11)
1 ,

which now has a boundaryMN . Then make a copy of
V(N11)

1 and paste these two identical pieces alongMN ; call
the new spacetime with a discontinuityM(N11) .

This cutting, copying, and pasting procedure is the g
metrical expression of the so-calledZ2 symmetry.1 In brane
cosmology language,M(N11) is the bulk andMN is the
brane. SinceM(N11) has a deltalike curvature singularity a

1There are two distinct ways of pasting two identical pieces
gether along a cut: one into another~double-sided space! and one to
another~single-sided space!. There is no way to distinguish thes
two constructs by the intrinsic and extrinsic curvatures of their d
continuity because they are the same for double-sided or sin
sided spaces.
©2001 The American Physical Society15-1
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its edgeMN , it can satisfy Einstein’s equations only if
deltalike tensor is added toTAB . This new tensor~which can
be visualized as the ‘‘glue’’ necessary to paste the two cop
of V(N11)

1 ! is the stress-energy tensor of matter in the bra
MN . It is given by the integrated Einstein equations acr
MN , also called the Lanczos–Darmois–Israel equation,
is linearly related to the extrinsic curvature ofMN in the
generating spaceV(N11) .

A first remark is that any brane in any bulk cannot be k
as a candidate to represent our universe since condit
~such as energy conditions or an equation of state! must be
imposed on the stress-energy tensor of the brane,
through the Lanczos-Darmois-Israel equation, on its extrin
curvature.

The conditions on the bulk and the brane are even m
stringent if we impose that the braneMN itself satisfies Ein-
stein’s equations~or an approximate version of those! be-
cause this implies highly nontrivial relations between the
trinsic and intrinsic curvatures of the brane.

In this paper we show how the equations for gravity on
brane depend only on the geometry of the bulknear the
brane, but do so crucially~we shall be more precise abo
what we mean by ‘‘near’’ below!. We will first see that if the
geometry of the bulk can be chosen at will near the bra
then the Einstein equations can always be recovered on
brane, whatever the matter we choose on it. Second, we
see that if the bulk is imposed to be an Einstein space n
the brane then the Einstein equations can also be recov
on the brane, under the condition, however, that terms q
dratic in the stress-energy tensor of matter can be negle
~this result is already well-known in the context of bra
cosmologies@5,6#!; otherwise, matter must satisfy a ve
special equation of state~typically P52 1

3 r!. Finally, we
will see that if the bulk is imposed to be maximally symme
ric near the brane, then the Einstein equations cannot in
eral be recovered on the brane, even when terms quadra
the stress-energy tensor of matter can be neglected~an ex-
ception being the case when the brane is a Robertson-Wa
spacetime!. In particular, we will see that the linearized Ein
stein equations cannot hold on a quasi-Minkowskian bran
the edge of a strictly anti–de Sitter bulk, unless matter ob
a very contrived equation of state. Our approach, which
based on a four plus one decomposition of the bulk Riem
tensor and an identification of the extrinsic curvature of
brane with its stress-energy tensor~thanks to the Lanczos–
Darmois–Israel equations! is similar to that of Ref.@11# and
our results are an extension of those presented there.

The paper is organized as follows: in Sec. II we expre
in Gaussian normal coordinates, the metric near the bran
terms of the stress-energy tensor of matter on the brane
an extra, ‘‘seed’’ tensor. We also write the equations for gr
ity on the brane in terms of these two tensors and show
if the geometry of the bulk near the brane can be chose
will, then the exact Einstein equations can be recovered
the brane. In Sec. III we restrict our attention to bulks th
are Einstein spaces near the brane, and in Sec. IV to m
mally symmetric bulks. Section V draws a few conclusio
and we relegate to the Appendix the procedure to obtain
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iteration, the metric in the whole bulk, when matter in t
bulk is known everywhere, not only near the brane.

II. THE EQUATIONS FOR GRAVITY ON A BRANE

Consider an arbitrary smooth five-dimensional ‘‘gener
ing’’ spaceV5 that we foliate~at least locally! by a family of
timelike hypersurfacesSy . In Gaussian normal coordinate
the metric ofV5 reads

ds2[gABdxA dxB5dy21gmn~xr,y!dxm dxn, ~2.1!

wherexr are four coordinates~one timelike, three spacelike!
parametrizing the hypersurfacesSy and where x5[y
5const are the equations ofSy . We introduce the extrinsic
curvature of an hypersurfaceSy and its trace

Kmn[2
1

2

]gmn

]y
, K[grsKrs ~2.2!

as well as the Lanczos tensor

Lmn[Kmn2gmnK ~2.3!

that we decompose in terms of a ‘‘t tensor’’ as

Lmn[
1

2
lgmn1

k

2
tmn , ~2.4!

l being a ‘‘tension’’ andk a coupling constant.
We now single out the hypersurfaceS0[M4 . NearM4

the metric can be expanded in a Taylor series as

gmn~xr,y!5gmn~xr!1kmn~xr!y1 1
2 l mn~xr!y21O~y3!,

~2.5!

wheregmn is the metric onM4 . We write the expansion o
the t tensor as

tmn5Tmn~xr!1Umn~xr!y1O~y2!, ~2.6!

whereTmn andUmn can be expressed in terms ofkmn andl mn

~see the Appendix!. Converselykmn andl mn can be expressed
in terms ofTmn andUmn so that the metric near the brane c
be written as Eq.~1! with

gmn5gmn~11 1
3 ly1 1

18 l2y2!2ky~11 1
6 ly!~Tmn2 1

3 Tgmn!

2 1
2 ky2@~Umn2 1

3 Ugmn!2 1
3 k~gmnTrsTrs2TTmn!#

1O~y3! ~2.7!

traces being defined by means ofgmn.
We now assume thatV5 satisfies the five-dimensional Ein

stein equations

GAB5 1
6 l2gAB1kTAB , ~2.8!

whereGAB is its Einstein tensor, andTAB a smooth stress
energy tensor. If we use the standard four plus one dec
position of the five dimensional Riemann tensorRABCD ,
5-2
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GRAVITY ON BRANES PHYSICAL REVIEW D64 083515
Rymyn5
]

]y
Kmn1KrmKn

r ,

Rymnr5¹nKmr2¹rKmn , ~2.9!

Rmnrs54Rmnrs1KmsKnr2KmrKns ,

where¹m and 4Rmnrs are the covariant derivative and Rie
mann tensor associated with the metricgmn(xr,y)uy5const,
we can rewrite the five-dimensional Einstein equations~8! in
terms of the quantities introduced previously, at zeroth or
in y, i.e., onM4 , as

Gmn52
kl

6
Tmn2

k

2
Umn2

k2

2 FTmrTn
r2

1

6
TTmn

1
gmn

4 S TrsTrs2
1

3
T2D G1kTmnuy50 , ~2.10a!

DnTm
n 522T5muy50 , ~2.10b!

2R52
kl

6
T1

k2

4 S TrsTrs2
1

3
T2D12kT55uy50 ,

~2.10c!

whereGmn is the Einstein tensor of the metricgmn ,(2R) its
trace, andDm the covariant derivative associated withgmn .
A consequence of Eq.~10! is

U22Tr
r14T555kS 2

5

2
TrsTrs1

2

3
T2D . ~2.11!

Equations~10! can be seen as an ‘‘initial value’’ problem
~with inverted commas becauseM4 is a timelike hypersur-
face! given a metric and its first derivative iny on M4 , i.e.,
with the notations used here, given a metricgmn on M4 and
a tensorTmn , satisfying the constraints~10b! and~10c!, then
Eq. ~10a! gives Umn , that is the secondy derivative of the
metric on the hypersurface. One then knows the metric
its first derivative on a neighboring hypersurfacey5e and,
by iteration, one can get, in principle, the metric in the who
spacetime ifTAB is known everywhere~see the Appendix for
an illustration of such a procedure!.

The reason for decomposing the five-dimensional Eins
equations~8! in terms ofTmn rather than the extrinsic curva
ture ofM4 as is usual, is that, in brane cosmology,Tmn is the
stress-energy tensor of ordinary matter on the brane. Ind
as recalled in the Introduction, the bulkM5 is obtained by
cutting V5 into two pieces alongM4 , by making a copy of
the y>0 piece, say, and pasting it alongM4 , which hence
becomes a singular hypersurface, or ‘‘brane.’’ The metric
M5 is continuous acrossM4 and reads

ḡAB5gAB~xr,y! for y>0,
~2.12!

ḡAB5gAB~xr,2y! for y<0.

The stress-energy tensorT̄AB is defined similarly. The extrin-
sic curvature ofM4 in M5 is 2(kmn/2) wheny→01 and
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1(kmn/2) wheny→02 . The Einstein tensor ofM5 there-
fore exhibits a deltalike singularity atM4 and satisfies the
following equations:

ḠAB5 1
6 l2ḡAB1kT̄AB1kT̄ABd~y!, ~2.13!

whereT̄AB is the stress-energy tensor of matter on the bra
Integrating Eq.~13! @using Eq.~9!# acrossy50, yields the
Lanczos-Darmois-Israel equations@1#

T̄A550, kT̄mn52Lmnuy505lgmn1kTmn , ~2.14!

which amounts to identifying the tensorTmn , which we in-
troduced with the stress-energy tensor of ordinary matter
the brane. Equations~10! therefore, become the equations f
gravity in the brane.

As for the seed tensorUmn , which is related to they
derivative of the extrinsic curvature ofM4 , it encapsulates
the influence of the geometry of the bulk near~rather than
on! the brane, and can be expressed in terms of the W
CABCD tensor as in Ref.@11#. @More precisely we haveUmn

5(2/k)Emn2(k/2)(TmrTv
r1gmnTrsTrs2 1

3 T2gmn), where
Emn[C5m5v .#

Now, it is clear that, if the geometry of the bulk near th
brane can be chosen at will, then the four-dimensional E
stein equations

Gmn58pGNTmn ~2.15a!

with

8pGN[2 1
6 kl, ~2.15b!

GN being Newton’s constant, can be exactly recovered on
brane. Indeed one simply has to impose

T5muy5050, ~2.16a!

8T55uy505k~ 1
3 T22TrsTrs!, ~2.16b!

2Tmnuy502Umn5kFTmrTn
r2 1

6 TTmn

1
gmn

4
~TrsTrs2 1

3 T2!G . ~2.16c!

If one wishes, however, thatTAB describes some ‘‘realistic’’
matter, then conditions~16! may not be fulfilled for a realis-
tic Tmn . Indeed, consider, e.g., the case when matter in
bulk is a massless scalar fieldF and the brane is a
Robertson-Walker spacetime. Equation~16b! then reads

c21ḟ252
k

6
r~r13P!, ~2.17!

wherec[]F/]yuy50 , ḟ[]F/]tuy50 ~t being cosmic time!,
and wherer and P are the energy density and pressure
matter in the brane. For the matter satisfyingP.2r/3 ~and
kr.0! Eq. ~17! has no solution. ~Defining 8pGN[
5-3
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2(a/6)kl,a being an arbitrary constant, does not relax t
constraint—nor the others we shall encounter.!

Let us summarize this section: the metric near the bran
given in terms of the metric of the brane, the stress-ene
tensor of its matter content and a seed tensor by Eq.~7!;
gravity on the brane is described by Eqs.~10!, TAB being the
stress-energy tensor of matter in the bulk; these equat
reduce to the four dimensional Einstein equations if con
tions ~16! are satisfied.

III. THE CASE OF AN EINSTEIN BULK

WhenTABuy5050 the bulk is an Einstein space near t
brane. Introducing the seed tensor

Smn[Umn1kFTmrTn
r2

1

6
TTmn1

gmn

4 S TrsTrs2
1

3
T2D G ,

~3.1!

Eqs.~2.10! for gravity in the brane are then equivalent to

Gmn58pGNTmn2
k

2
Smn ~3.2a!

with the seed tensorSmn restricted to satisfy

S5
k

2 S 1

3
T22TrsTrsD , ~3.2b!

DmSn
m50. ~3.2c!

Note that Eqs.~2b! and~2c! defineSmn ~and henceUmn! up
to a conserved and traceless~i.e., radiationlike! tensor. As for
the metric near the brane, it is given by Eq.~2.7!, the tensor
Umn being constrained to satisfy conditions~2b! and ~2c!
@with the definition~1!#.

The Einstein equations will hold on the brane if, first

Smn50⇔Umn52kFTmrTn
r2

1

6
TTmn1

gmn

4 S TrsTrs

2
1

3
T2D G , ~3.3!

and if matter on the brane satisfies the constraint

1
3 T22TrsTrs50. ~3.4!

Outside matter,Tmn50. Constraint~4! is hence satisfied
so that the Einstein equations can hold on the brane if
chooseUmn50. The bulk metric near the brane is then giv
by Eq. ~2.7! with Tmn5Umn50, i.e.,

gmn5gmn@11 1
3 ly1 1

18 l2y21O~y3!# ~3.5!

with gmn a Ricci flat metric. We recognize in Eq.~5! the
expansion ofgmn5gmn exply/3, the metric studied in Ref
@12#, which is obtained by iteration of Eqs.~2.8! whenTAB is
imposed to be zero everywhere, and not only on the br
~see the Appendix!.
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Inside matter,TmnÞ0. However, at linear order inTmn ,
constraint~4! is still approximately satisfied. Einstein’s equ
tions can therefore still hold approximately on the brane
we chooseUmn50. The bulk metric near the brane is give
in that case by Eq.~2.7! with Umn50 and the terms that ar
quadratic inTmn are neglected.

Now, if terms that are quadratic in the stress-energy ten
cannot be neglected, then Eq.~4! becomes a restriction on
the matter allowed on the brane. In the case of a perfect fl
Tmn5(r1P)umun1Pgmn Eq. ~4! yields

P52 1
3 r. ~3.6!

In conclusion, when the bulk is an Einstein space in
vicinity of the brane, the Einstein equations can be recove
on the brane, at least at linear order inTmn , by choosing
Umn50, whatever the equation of state for the matter. Ho
ever, when quadratic corrections are taken into account,
equations for gravity on the brane differ from Einstein
unless matter satisfies condition~4! ~or 6!.

These results generalize known results that can be fo
in the literature when the brane is taken to be a spatially
Robertson–Walker spacetime@5,6#. Indeed, in that case th
metric gmn and the stress-energy tensorTmn are supposed to
be of the form

gtt521, gti50, gi j 5a2~ t !d i j ,
~3.7!

Ttt5r~ t !, Tti50, Ti j 5a2P~ t !d i j .

The solution of the equations for gravity on the brane
obtained by integrating either Eqs.~3.2!, or Eqs.~2.10! with
TAB50. Equation~2.10b!, e.g., is the standard conservatio
law

ṙ13
ȧ

a
~r1P!50. ~3.8!

As for Eq. ~2.10c! it reads

ä

a
1

ȧ2

a2 52
kl

36
~r23P!2

k2r

36
~r13P!, ~3.9!

which is equivalent, whatever the equation of state, to

ȧ2

a2 5
k

36
r~kr22l!1

c

a4 ~3.10!

with c a constant of integration. We recognize in Eq.~10! the
evolution equation for the scale factora first obtained in Ref.
@5#. Finally Eq.~2.10a! gives the seed tensorUmn @and hence
the bulk metric near the brane to second order iny, see Eq.
~2.7!# as

U005
kr

6
~5r16P!2

6c

ka4 ,

~3.11!

U i j 52a2d i j Fk6 ~3P216Pr12r2!1
2c

ka4G .

5-4



a

y

ua
n
fa
ef

a

is

o
,

t

he
es
y
e
.

w

vity

ker

der
of
tes

rs
be-
or

the
d,
d-
r

to

ua-
that

ua-
us

tein
on-

for-
qs.

t the

ne is
e of
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First, in order for these equations to reduce to the stand
Friedmann equation, conditions~2.16! ~with TAB50! must
be fulfilled: Eq. ~2.16b! implies that, as we have alread
seen,P52r/3 @which renders Eq.~9! linear in r#; hencer
}a22; Eq. ~2.16c!, together with Eq.~11! then imposes
c/a452k2r2/36 @which renders Eq.~10! equivalent to the
Friedmann equation#.

Second, when terms that are quadratic inTmn can be ne-
glected, that is at late time, and whenUmn'0, i.e., for c
50, then Eq.~10! tends, as expected, to the Friedmann eq
tion. The observational consequences, in particular on
cleosynthesis, of the nonstandard evolution of the scale
tor at early times have been thoroughly analyzed in R
@7–9#.

IV. THE CASE OF AN ANTI –DE SITTER BULK

Suppose now that the bulk is maximally symmetric ne
the brane, i.e., that its Riemann tensorRABCD is such that

RABCDuy5052
l2

36
~gACgBD2gADgBC!uy50 . ~4.1!

Using again the standard four plus one decomposition@see
Eq. ~2.9!# as well as the quantities introduced in Sec. II, th
equation can be rewritten as

Umn52
k

2 FTmrTn
r1gmnS TrsTrs2

1

3
T2D G , ~4.2a!

05DnTmr2DrTmn2 1
3 ~gmr]nT2gmn]rT!, ~4.2b!

Rmnrs52
kT

36
~2l1kT!~gmsgnr2gmrgns!2

k2

4
~TmsTnr

2TmrTns!1
k

12
~l1kT!~gmsTnr2gmrTns

1Tmsgnr2Tmrgns!, ~4.2c!

whereRmnrs is the Riemann tensor of the brane metricgmn .
These equations that describe gravity on the brane are m
constraining than Eqs.~3.2!. For example, they imply that
outside matter (Tmn50): Rmnrs50, which means that the
brane is necessarily flat@and not only a solution of Eq.~3.2!
with Tmn50 as is the case when the bulk is only imposed
be an Einstein space#. Outside matter, we also haveUmn

50, so that the metric near the brane is, see Eq.~2.7!

gmn5hmnF11
l

3
y1

l2

18
y21O~y3!G , ~4.3!

which is nothing but the lower-order expansion of t
anti–de Sitter metric in the Randall-Sundrum coordinat
ds25dy21hmn exp(ly/3), a metric that can be obtained b
iteration of Eqs.~2! when the bulk is imposed to be anti–d
Sitter spacetime everywhere and not only near the brane

Inside matter, Eq.~2a! givesUmn in terms of the metric of
the brane and its matter content; Eq.~2b! is a constraint on
the matter on the brane~which includes the conservation la
08351
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m50, but is in general more constraining than that! and

Eq. ~2c! replaces the Einstein equations and describes gra
on the brane.

As an example, consider a spatially flat Robertson-Wal
brane, where the metricgmn and the stress-energy tensorTmn

are given by Eq.~3.7!. For such an ansatz, Eq.~2b! turns out
to be equivalent to the conservation law~3.8!. As for Eq.~2c!
it is equivalent to Eq.~3.10! with

c50. ~4.4!

Finally, Eq. ~2a! gives Umn as Eq. ~3.11! with c50, or,
equivalently, the bulk metric near the brane to second or
in y, which turns out to be the expansion at leading orders
the anti–de Sitter metric in the Gaussian normal coordina
introduced in Ref. @5#. Therefore, when one conside
Robertson-Walker branes, the difference is quite tenuous
tween imposing the bulk to be just an Einstein space
maximally symmetric near the brane; in the latter case
constantc must be zero, in the former it is arbitrary an
whenP52r/3, can be chosen in such a way that the Frie
mann equations hold exactly. And in both cases, i.e., foc
50 or c arbitrary, the terms that are quadratic inTmn become
negligible at late time and the evolution of the brane tends
Friedmann’s.

For less symmetric branes, however, the Einstein eq
tions cannot, in general, be recovered, even when terms
are quadratic inTmn are negligible, as we shall now see.

In order to compare and contrast the brane gravity eq
tions ~2! with the four-dimensional Einstein equations, let
compute the brane Einstein tensor from Eq.~2c!. We obtain

Gmn52
kl

6
Tmn1

k2

4 F2TmrTn
r1

1

3
TTmn1

1

2
gmnS TrnTrs

2
1

3
T2D G , ~4.5!

which, inside matter, can never exactly reduce to the Eins
equations~as we already saw in the case of a Roberst
Walker brane!. Now, at linear order inTmn , and with the
identification 8pGN52kl/6, Eqs.~5! reduce to the four-
dimensional Einstein equations. However, one must not
get that they are not equivalent to the linear version of E
~2!, i.e.,

Umn'0, ~4.6a!

0'DnTmr2DrTmn2 1
3 ~gmr]nT2gmn]rT!, ~4.6b!

Rmnrs'2
kl

18
T~gmsgnr2gmrgns!1

kl

12
~gmsTnr2gmrTns

1Tmsgns2Tmrgns! ~4.6c!

but only a consequence of those, and one must check tha
chosen solution of Einstein’s equations satisfies all Eqs.~6!.
This is the case, as we have already seen, when the bra
a Robertson-Walker spacetime. But consider now the cas
an almost flat brane.
5-5
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At zeroth order inTmn , the brane must be flat and th
metric can be taken to begmn5hmn . We decompose the
stress-energy tensor at first order, as is usual, into

T005r, T0i52] iv2v i ,
~4.7!

Ti j 5d i j ~P2 1
3 DP!1] i j P1] iP j1] jP i1P i j ,

where ] iv
i5] iP

i5] iP
i j 5P i

i50, and where all compo
nents tend to zero at spatial infinity and att→6`. Equa-
tions ~6b! then read

0'] i~ v̇1 2
3 r1P!1 v̇ i ,

0' 1
3 d i j ~ ṙ2DṖ!1] i j ~Ṗ1v !1] iṖ j1] jṖ i1] jv i1Ṗ i j ,

~4.8!
0'] iv j2] jv i ,

0' 1
3 d jk] i~r2DP!2 1

3 d j i ]k~r2DP!1] j~] iPk2]kP i !

1] iP jk2]kP i j ,

which include the conservation laws]mTn
m'0, i.e.,

ṙ1Dv'0, v̇1P1 2
3 DP'0, v̇ i1DP i'0 ~4.9!

but also impose matter to obey the following, very contrive
equation of state:

r'DP, v'2Ṗ, P'P̈2 2
3 DP, v i'P i'P i j '0.

~4.10!

Matter being described solely in terms of the anisotro
stressP by Eqs.~9! and ~10!, Eq. ~6c! gives the Riemann
tensor of the brane as

Rmnrs'
kl

12
~hms]nr

2 1hnr]ms
2 2hmr]ns

2 2hns]mr
2 !P,

~4.11!

which defines uniquely the geometry of the brane as the c
formally flat metric

gmn'~11 1
6 klP!hmn . ~4.12!

Finally Eq. ~2.7!, together with Eqs.~6a! and Eqs.~9! and
~10! gives the metric near the brane as

gmn'hmn~11 1
3 ly1 1

18 l2y2!2ky~11 1
6 ly!]mnP1O~y3!.

~4.13!

This metric describes, by construction, a strictly anti–de S
ter bulk near the brane, and can, therefore, be cast into
form ~3! by a mere change of coordinates. However, t
change of coordinates changes the equation giving the p
tion of the brane that is no longer given byy50. The last
term hence describes, in Gaussian normal coordinates
so-called ‘‘brane-bending’’ effect~see also Ref.@13#!.

V. CONCLUSIONS

The main result of this paper is that the question
whether or not Einstein’s equations are recovered on a b
08351
,

c

n-

t-
he
s
si-

he

f
ne

depends crucially on the geometry of the bulk near the bra
If the bulk is an Einstein space near the brane, then
Einstein equations, at least at linear order in the stress-en
tensorTmn , can be recovered,whateverthe equation of state
of the matter on the brane. However, when quadratic term
Tmn cannot be neglected, Einstein’s equations hold only
the equation of state for matter isP52r/3 ~for a perfect
fluid!. If, now, the bulk is imposed to be strictly anti–d
Sitter space near the brane, then the branemustbe flat out-
side matter. Moreover the Einstein equations can neve
recovered when terms quadratic inTmn are important. Fi-
nally, when terms quadratic inTmn can be neglected, the
linearized Einstein equations can hold on a qua
Minkowskian brane, but only for very contrived matter.

This last result does not by any means imply that
linearized Einstein equations cannot be recovered in
Randall-Sundrum scenario. Indeed, in that scenario, the b
is a perturbedanti–de Sitter space, i.e., an Einstein spa
The results of Sec. III then tell us that if we choose, at zer
order inlTmn andUmn the flat solution of the brane equatio
for gravity ~3.2a!, then, at linear order, the gravity on th
brane is governed by the equation

G̃mn'8pGNTmn2
k

2
Umn , ~5.1!

where G̃mn is the Einstein tensor of the metricgmn5hmn

1hmn at linear order inhmn and wherekUmn describes a
radiationlike fluid which,a priori, can contribute as much a
GNTmn to G̃mn , but which can also be chosen to be ze
Finally the metric near the brane reads

gmn'~hmn1hmn!~11 1
3 ly1 1

18 l2y2!2ky~11 1
6 ly!~Tmn

2 1
3 Thmn!2 1

2 ky2~Umn2 1
3 Uhmn!1O~y3!, ~5.2!

which is not simply, as in Eq.~4.13!, anti–de Sitter metric in
disguise.

We leave to another work@10# the comparison of the
‘‘brane world’’ point of view developed here with the bul
point of view, where the bulk is imposed to be a perturb
anti–de Sitter spaceeverywhereand not only near the brane
and where the perturbations are imposed to satisfy boun
conditions that may restrictUmn and/orTmn .

We also leave to further study the following, delicat
issue that would allow observational tests outside the re
of cosmology. Suppose the bulk is an Einstein space w
known boundary conditions that determineUmn . How much
does gravity differ from Einstein’s in a realistic situatio
when strong fields are present as in, e.g., a collapsing s
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APPENDIX

Consider a five-dimensional spacetimeV5 in Gaussian
normal coordinatesxA5(xr,y),
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ds25gABdxA dxB5e dy21gmn~xr,y!dxm dxn, ~A1!

with e561 and expand the metric coefficientsgmn(xr,y)
near the surfacey50 as

gmn~xr,y!5gmn~xr!1kmn~r!y1 1
2 l mn~xr!y21 1

6 mmn~xr!y3

1O~y4!. ~A2!

The extrinsic curvature of the surfacey5const and itsy
derivative are given by

Kmn[2
1

2

]gmn

]y
52

1

2 S kmn1 l mny1
1

2
mmny2D1O~y3!,

~A3!
]Kmn

]y
52

1

2
~ l mn1mmny!1O~y2!.

The Riemann tensor of the metric~A1! reads

Rymyn5
]

]y
Kmn1KrmKn

r ,

Rymnr5“nKmr2“rKmn , ~A4!

Rmnrs54Rmnrs1e~KmsKnr2KmrKns!,

where“m and 4Rmnrs are the covariant derivative and Rie
mann tensor associated with the metricgmn(xr,y)uy5const.
Expanding Eq.~A4! to first order iny, it is a straightforward
calculation to obtain the Einstein tensor of the metric~A1! as

Gyy52
e

2
R1

1

8
~k22k.k!1

1

4
y@2e~hk2D.k1k.R!1kl

2k.l 2k~k.k!1k.k.k#1O~y2!, ~A5a!

whereR andD are the scalar curvature and covariant deri
tive of the metricgmn , the traces are defined by means
gmn, h[DrDr, anda.b[amnbmn, a.b.c[amnbnrcr

m ;

Gym5 1
2 ~Dnkm

n 2]mk!2 1
2 y@]ml 2Dnl m

n 2 1
2 km

n ]nk

1Dn~knrkrm!2 3
4 ]m~k.k!#1O~y2!. ~A5b!

Finally

Gmn5Gmn1
e

2 Fgmnl 2 l mn1km
r krn2

1

2
kkmn1

1

4
gmn~k2

23k.k!G1
e

2
yFmgmn2mmn1kmrl n

r1knrl m
r 2klmn

2
1

2
lkmn1

1

2
gmn~kl22k.l !G2

e

2
yH kmrkrlkln

1
1

4
~k.k2k2!kmn1

1

2
@k~k.k!23k.k.k#J

1
1

2
y@Drmkn

r1Drnkm
r 2hkmn2Dmnk2gmn~D.k

2hk2k.R!2Rkmn#, ~A5c!
08351
-
f

whereGmn is the Einstein tensor of the metricgmn .
If V5 is now imposed to be an Einstein space,GAB

5LgAB , not only on the brane as in the main text but
linear order iny, then

Gyy5eL, Gym50, Gmn5L~gmn1ykmn!1O~y2!.
~A6!

Suppose now that we are given a metric and itsy deriva-
tive at y50, i.e., that we knowgmn and kmn satisfying the
constraints

Dnkm
n 2]mk50, 2eR1 1

4 ~k22k.k!52eL. ~A7!

Then Eqs.~A5a! and ~A5b! with Eq. ~A6! are satisfied at
zeroth order iny, and Eq.~A5c! @with Eq. ~A6!# gives l mn in
terms ofgmn andkmn as

l mn2gmnl 52eGmn1km
r krn2 1

2 kkmn1 1
4 gmn~k223k.k!

22eLgmn . ~A8!

Hence the zeroth-order Einstein equations give us the me
near the brane at quadratic order iny.

It is then straightforward to see that Eqs.~A5a! and~A5b!
together with Eq.~A6! are satisfied at linear order iny. As for
Eq. ~A5c! together with Eq.~A6! it gives mmn , and hence
the metric at cubic order iny.

Iterating this procedure, assuming thatV5 is an Einstein
space up to higher and higher order iny, should give the
metric of V5 everywhere~or at least in a finite region nea
y50!.

To make the connection with the main text, first takee
511 andL5l2/6 and introduce the ‘‘t’’ tensor

k

2
tmn[Kmn2gmnK2

1

2
lgmn ~A9!

and expand it as

tmn5Tmn1yUmn1 1
2 y2Hmn1O~y3!. ~A10!

Using Eq.~A2! we have

k

2
Tmn52

1

2
@kmn1~l2k!gmn#,

k

2
Umn52

1

2
@ l mn1~l2k!kmn2~ l 2k.k!gmn#,

~A11!

k

2
Hmn52

1

2
@mmn1~l2k!l mn22~ l 2k.k!kmn2~m23k.l

12k.k.k!gmn#.

Consider now the particularly simple example where,
stead of knowinggmn andkmn , ~or equivalentlyTmn! we are
given
5-7
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Tmn5Umn50. ~A12!

Then we first get from Eq.~A11!,

kmn5
l

3
gmn and l mn5

l2

9
gmn . ~A13!

Equations~A5! together with~A6! then give, at zeroth orde
in y,

Gmn50 ~A14!

and, at linear order iny,
li,
.

s
J.

s.

s

,

08351
mmn5
l3

27
gmn and Hmn50. ~A15!

The metric near the brane is then the expansion, up to c
order iny of the metricgmn5gmn exp(ly/3), with gmn being
a Ricci flat metric. We also have thattmn is zero up to qua-
dratic order iny. Iterating the procedure, with the conditio
thatV5 is an Einstein space everywhere would yield~at least
in a finite region neary50!

Gmn50, gmn5gmn exp~ly/3!, tmn50, ~A16!

i.e., the metric discussed in Ref.@12#.
s,
,
,
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