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Attractors and isocurvature perturbations in quintessence models
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We investigate the evolution of cosmological perturbations in scenarios with a quintessence scalar field, both
analytically and numerically. In the tracking regime for quintessence, we find the long wavelength solutions for
the perturbations of the quintessence field. We discuss the possibility of isocurvature modes generated by the
quintessence sector.
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I INTRODUCTION overdot denotes a time derivative=p/p andc=p/p de-

) o o note respectively the equation of state and the speed of sound
Observational data seem to indicate that we live in any the total matter contentp,qq is the total non-adiabatic

accelerating Universgl]. As an alternative to the scenario ressure perturbation and we employ units such thaG8
where the acceleration is fueled by a cosmological constarﬁ

A, models with a scalar field capable of dominating recently
and of developing a negative pressure have been proposs%%
[2—4]. This scalar field which pervades our Universe ha

been dubbedjuintessence

This latter effect was studigd 3] in the context of axion
rturbations, anfl14] in the context of the baryon isocur-
vature model[15]. This effect is also responsible for the

Compared to the cosmological constant, quintessence h OW_th of super-Hupre adiabatic perturbations during pre-
two important differences. First, quintessence can be interl€ating[16]. Considering axions as cold dark matt@DM)
preted as a fluid with a time dependent equation of state.13]: @n isocurvature perturbation due to the angle misalign-
Therefore quintessence models may alleviate the so-callé@ent produced during inflation induces an adiabatic compo-
coincidence problem, which is the apparent cosmic collusiof€nt of comparable amplitude at the moment of reentry of
that the dark energy component is fine-tuned in a way that jthe perturbation inside the Hubble radius. This is due to the
is starting to dominate the energy density of the Universe justact that the CDM component is going to dominate about the
at the present time. And second, in contrast with the cosmdime of decoupling, and thus the integrated effect is almost

logical constant the quintessence field can fluctuafe-§|. completed by the time that mode reenters inside the Hubble
One interesting possibility is that the quintessence fieldadius. . o
Q(x,t) can, in combination with the other cosmic fluitta- However, the quintessence case is different from the ax-

diation, baryons, cold dark matter, iclead not only to ion or CDM since in most of the models quintessen_ce_ﬂuc-
adiabatic(curvaturé perturbations, but to a mixture which tuations are damped inside the Hubble radius. This is re-
includes an isocurvature component. Isocurvat(oe en- quwed_m order to minimize the impact of an ad_dltlonal
tropy) perturbations appear when the relative energy densit{fynamical degree of freedom on structure formation. The
and pressure perturbations of the different fluid species confitintessence and the axion/CDM differ also in either one of
bine to leave the overall curvature perturbations unchangedo ways:(i) Q was still a negligible component before the
In quintessence models, the presence of potentially relevafifne of decoupling, ofii) Q was comparable to normal mat-
isocurvature modes could be generic, just as in multi-field€". 2o=0(1), but in aso-calledtracking regime[2,3,5,17
inflationary modelg9]. Indeed, quintessence is constructedWhereby its equation of state/o=pq/pq was approxi-
is such a way that it is an unthermalized component supmately _that of dust.or radlatlon—whlchever was domlnat_lng
dominant for most of the history of the Universe. Since quin-at the time. In the first cagevhich happens, for example, in
tessence is uncoupled from the rest of matter because §te¢ pseudo Nambo-Goldstone bod6NGB) scenario[18]]
astrophysical and cosmological constraif2s3, 10, its fluc- |socurveiture perturbations are irrelevant simply because the
tuations may lead to an isocurvature component, whose ndield Q(x,t) is a negligible component until a redshift of at
ture will be preserved except for the known integrated feedleastz~10. In the second case the energy densitQineed
ing of the adiabatic component, expressed by the relationot be small, however due to the tracking of the quintessence
(11,12 field, perturbations in th&-fluid behaved similarly to the
perturbations in the background for most of the observable

_ 2 v2p 1 history of the Universe, and isocurvature perturbations are
= c? +=6 ; (1) therefore suppressed until the end of the tracking phase. In
$= 3R w)| % gz T2 Pna - S - :
a either case, a primordial isocurvature perturbation could still

be present, but it would not have had enough time to induce
where ¢ is the gauge-invariant curvature perturbation, anan adiabatic component.
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From an observational point of view, isocurvature pertur- 1 - 1
bations have a very distinctive imprint on the spectrum of the 0.75 i Y0.75
temperature anisotropy of the cosmic microwave background o 0.5 b 0.5
(CMB) [19-21]. With the accuracy that future CMB experi- & g 25 P 0.25
ments such as the Microwave Anisotropy PrdbAP) [22] o{:‘ 0 : : 0
and PlancK 23] will be able to reach, the constraints on the "= _5 15 ' ~0.25
ratio of uncorrelated isocurvature perturbations in CDM- & _; ¢ : : . Lo
radiation to the adiabatic component will be of the order of _0.75 P 20.75
percent§24,25. Recently the impact of generic isocurvature . L 1
modes on the estimation of cosmological parameters has 10-15 TN TS 1

been also investigatd@6]. Therefore it is important to un-
derstand the evolution of isocurvature modes in quintessence
models where an unthermalized, uncoupled relic survives gig. 1. pensities of radiatiorsolid line) and matter(dotted
until the present era, and dominates very recently. In most Qfne), and the equation of state for the scalar fiddshed ling as
the literature a primordial adiabatic spectrum for quintes-a function of redshift for a model with potentisl( Q) = M%e"/<. In
sence perturbations is assumed. If the notion of adiabaticityhis |o|ot|\/|4:10*70|\/|;4)I andf=1M, (with 877(3:|v|5|2)_
among different components is related to their thermal equi-

librium, then the weakly coupled nature of quintessenceyroblem seems to be that in order to solve the coincidence
could evade this condition. The primordial spectrum couldprob|em one needs a period of tracking, but it is hard to get
be generated during inflation and/or influenced through ity period of tracking and still obtaimge< —0.5. It is cer-
evolution until the decoupling time. ~tainly possible to construct potentials which implement both
The outline of the paper is as follows. In Sec. Il we give conditions[8], however we prefer to look at simpler poten-
necessary notions of the background evolution of quintestals which contain features which are generic to most of the
sence models. In Sec. lll we study the evolution of cosmomggels. As it turns out, the relevant features of the cosmo-
logical perturbations and we identify the attractor solutionjogical perturbations do not depend on the specific form of
for quintessence perturbations during the tracking regime. Ithe potential, but only on its generic phenomenology.
Sec. IV we study the evolution of isocurvature perturbations | 5 typical scenario, nicely reviewed [8], the scalar
and their feedback on the adiabatic component. In Sec. V Wfe|d starts out subdominant deep in the radiation era, in a
discuss the initial condition for quintessence perturbationskineticphase with an equation of statg,= + 1 (see Fig. 1

after nucleosynthesis. We conclude in Sec. VI. The kinetic energyt Q? eventually decays, leaving only the
quintessence potential energy, which is nearly constant and
Il. BACKGROUND EVOLUTION WITH QUINTESSENCE as a resultvg— — 1 (of course, the quintessence field could

For simplicity we consider only radiation, pressurelessalso start already in the potential-energy dominated regime

matter and quintessence, and ignore the neutrinos as well 4 s is th'e so calleqpotential Pha$e- Wherl, becomes Of. .
the distinction between baryons and CDM. Each componen?rd_er unlty,_the quintessence .ﬂeld underg_oes a transition
i (i=r,m,Q) has an energy densify and pressurg; . The which puts it into atracking regime, where it follows ap-

sum of the energy densities determines the Hubble parametQFOX'mately. the equation of state of the backgroqnd. Finally,
via the usual Einstein equationH3=p=3,p,. The equa- at some point late in the matter e@astarts to dominate and

tion of statew;=p; /p; is 1/3 and zero in the case of radiation the Universe begins the accelerated expansion phase that we

and matter, respectively. The background energy density an(gpserve todaythe Q-dominated phase. .
the pressure of the quintessence field are As long as we keep away from the time of equal matter

and radiation Zeq~= 10* in our flat models with Hg

1 1 =65 kms! Mpc 1), one of the two barotropic fluidga-

pQ=§Q2+V(Q), szzQZ—V(Q), (2)  diation or matter can be neglected The equation of state of
the total matter content then reads

1+z

where the background scalar fie@(t) obeys the equation
Q+3HQ+V'Q=O. This means thatvg is in general time- w=
dependent.
The main requirement of quintessence is that it starts to
dominate the energy density of the Universe only at thévhere the subscripF stands for either radiation, when
present time, with an equation of statg(z=0)=wge<0.  <teq, OF matter, whert>tcy. The total speed of sounct
Conservative phenomenology dictates thagy/po=Qq, has a simple expression as well:
<0.8—to allow time for galaxy formation—and thatq,
< —0.5—to accommodate the SNla dd@v]. In addition,
nucleosynthesis demands tha}<<0.2 atz= 10°. c
Model building should obtain these values and still man-
age to solve(or at least alleviatethe coincidence problem o
without too much fine tuningsee, e.g.[28]). The main Whel’eCéEpQ/pQ. It is useful to note that

=We+ (Wo—Wg)Qq, 3

© | T

_p_ L9,
=;—Wp+m(CQ WE), (4)
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2V W,
Q Q
Rol4 QMo (5)
Q™ 3HO Q- 3H(1+wg)

Whean const, therQocV .o/H. Taking the time derivative
of cQ we also obtain:

Voo
3H?

1 2
- 5(3c3+5)|.
(6)

Whenw, is approximately constant, then from E§) Cé is

constant as well. By using the background relatitfH?=
—3(1+wg)/2 we obtain

Ld 24(c3—1) 1+
“hHacetce b

V =gH2(1—cz)(w +c3+2)=aH? 7)
QQT 4 QWWFT % s
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ds?=(1+2d)dt?>—a?(t)(1—2d)dx? (11

In the matter sector, the perturbed energy density and pres-
sure of quintessence are, as usual,

Spo=Q38Q—Q*®+V 46Q, (12)

8po=Q6Q— Q%P -V 45Q, (13

where the Fourier transforms of the scalar field fluctuations
obey the equation:
. .k .
6Q+3Hs+ —25Q+V 000Q=+4Qd -2V .
a , ,
(14)

The density fluctuations in radiation and matter, on the other
hand, obey the conservation equations for the density con-

We observe that quintessence fluctuations are eﬁectivelVaSts‘SFE&p Flpr:

massless\('QQ—O) during the kinetic phase:é 1) and the
potential phasedQ —2—wg [8]).

A good guantity to measure how closely the quintessence

field Q tracks the background is the quantity
=V QQV/(V )—which was named’ in [4]. Whenwg, is
apprOX|mater constant in time, then:

Wg—Wq

=1+
Y 2(1+wo)

8

k
3(1+W,:)(I) (1+W|:)a(t)

(15
whereV¢ is the fluid velocity. In the long wavelength limit
(k<aH) this equation is extremely useful, since it reads:
—3(1+wg)P=const§-—3(1+wp)d',  (16)
where the superscriptindicates that the fluctuations have
been evaluated at some initial tinhe The equation for the

If tracking isexact(as is the case in the exponential potentialfluid velocity is the following:

models, We=wq, theny=1 andV qq/V o=V o/V.

If wq is approximately constant, then the kinetic and po-

tential energies of the scalar fie@ must be proportional to

each other. Taking the time derivative m{,ocszV we ob-
tain that during a tracking phase:

Vo_ 34 H 9
v - ( +WQ)6—const, 9

where we have used the fact th@feca 31*%o) to find
H/Qoa *WF~"dx constant, ifwg=Wg .

We note that during the phases in whiak is constant
Q¢ goes as:

QQE Po = g3WroT—Wq)

(10
pToT

Therefore in the radiation epodh redshifts asa 2 during
its kinetic phase, and it grows a* during its potential
phase. During the tracking regintg, is approximately con-
stant(depending on how accurate is the trackiagd in the
Q-dominated regime it is evidently constafgince (g
— (1) whenQ dominate

IIl. EVOLUTION OF PERTURBATIONS

k

a(t)

We

Ve+H(1-3wg)Ve=— Trwe

5F+c1>) (17)

We consider now the evolution of the quintessence field
perturbations. At first, let us neglect the metric perturbations,
i.e. take Eq.(14) without its right-hand side. By using the

rescaled variabledQ=a?5Q, Eq.(14) can be rewritten as:
” H 2

2 2
k+a V,QQ_ E - T

5Q"+HSQ' + 5Q=0, (18
where H=a’'/a=aH and a prime denotes derivative with
respect to conformal time [d/dn=a(t)d/dt].

In a radiation dominated Universex  and the term pro-
portional to the second time derivative of the scale factor
vanishes; when Ed7) holds, then the solutions for the field
perturbations in rigid space-times are

Jpy (k)
50~ 71/2X
QT X k),
where
1
v2=Z—a (19

We compute the evolution of the cosmological perturba-f «+# 0 both the solutions decay in time.df—0 then there

tions in longitudinal(or conformal-Newtoniangauge[11]:

is a constant mode.
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The argument above holds for a matter dominated Uni-
verse as well: ifa=0 there is a constant mode, otherwise
both the solutions decay in timgor a matter dominated

Universe the appropriate rescaled variablé@=a%*5Q).

The inclusion of gravitational fluctuations in E¢l14)
leads to a constant solution for the quintessence perturba-
tions in the long-wavelength limit. From E¢l4) we imme-
diately see that in this limit there areonstantsolutions
®(t)—P° and 5Q(t) — 6Q°:

18QI, 12(V'/V")P|

e Y0 40 '
Q%= —2V—¢) , (20 ’,’"‘\‘ 10°
QQ ! i
as long asv o/V oq is approximately constant. But this is — i\ 16°
precisely what happens during the tracking regime: from € Lo .
Egs.(9) and(8) we see thaV o/V oo=V/V o=const in the - T 10
tracking period. We stress that the type of soluti@f) does o { ‘ \/ § »
not hold in the kinetic and potential phases, since in these 10
casesV go—0. ‘ »
We can use the 80 component of the Einstein equations B 10
to relate the Newtonian potential to the energy densities of e 150 -
other fluids 1
I+z
2
—6H2d>—6H<i>—2k—CI>= Sp,+ Spm+Spo. (21 FIG. 2. Quintessence field fluctuatioA® (panel A and quin-
a’ Q tessence energy density contradts (panel B for two different

o ) . . initial conditions for6Q and 5Q (solid and dashed lingsWe have
In the long wavelength limit, assuming thdt is stationary  chosen initial conditions such thd=10"5 at zy.= 10°. In panel A
and ignoring the subdominant barotropic fluid we obtain:  the quintessence fluctuatiofgashed and solid lingsre compared
with the attractor—2®V o/V oq (thin line). Notice that even after
_2®ZQF5F+QQ5Q' (22 the tracking phase ends the analytic approximation of(E0). re-
mains very good. In panel B the quintessence energy density con-
trasts(solid and dashed lingsre compared with-2® (thin line),
verifying the second approximation, E(R5). The approximation

In the regime described by the attractor in E20) the per-
turbed energy density for quintessence, defined in(E2),

reduces to becomes worse as the tracking ends. In both plots the wavelengths
. of the modes cross the Hubble radiuszat0.
V.aV.0Q0| A2 Q?
Spo=—2| 1—— Q°PC—2P°| —+— . . . .
Q V2Q o 2 v for quintessence perturbations has also been conjectured in
' [8]. As we have shown, the approximate solutid®8) and
] y—1 ) (25) hold for any potential, just as long as there is tracking,
=-2 (I)C[pQ—(QZ-i-V) —+0(y)|. (23)  and, of course, they exist in any gauge.
Y We can also combine Eq&5) and(16) to obtain a rela-
and the perturbed pressure defined in 8@ is: tionshi.p between the initial and final values of the Newtonian
potential:
P — 2 pad+20(Q2-V) L1 0(y). (24 1
T e y D=~ (8~ 40, (26)

Using now the background identitiesH3=p and Qo~1 : _ o N o
— Q¢ in Eq. (23), we obtain the density contrasts as func- where§; and®' are initial conditions for the radiation den-

tions of the Newtonian potentia| in the tracking regime: Sity contrast and the Newtonian potential respectively. Notice
that these initial conditions can be specified even at a time
gzéﬁz—ZCI)c. (250  when quintessence is dominating, and even if the radiation
contrast and the Newtonian potential are initially not con-
Notice that during tracking, quintessence and the dominargtant.

fluid species are in effect indistinguishabléf:(z5,cz), con- We have numerically verified formula®0), (23), (25)
sequently we expect isocurvature perturbations to be sumnd(26) for several scenarios and initial conditions. Take for
pressed during that period. example the scenario whose background appeared in our Fig.

A solution corresponding to Eq20)—though in the syn- 1. Two typical initial conditions for the field perturbations
chronous gauge—was first obtained in the case of exponeme plotted in Figs. 2A and 2Bsolid and dashed lingsto-
tial potentials, for which tracking is exa€b]. An attractor  gether with the attractor solutiorighin lines: as the scalar
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IV. EVOLUTION OF ISOCURVATURE PERTURBATIONS

Cosmological fluctuations are often characterized in terms
of the gauge-invariant curvature perturbation on comoving
hypersurfaces, defined gl]:

2 d/H+D

=3 1rw ¢ @

The time variation of the intrinsic curvatuigis given, on

5Q large scales, by the non-adiabatic pressure or, equivalently,
by the amplitude of the isocurvature perturbations—see Eq.

FIG. 3. Phase diagram for quintessence fluctuations with twq1). Therefore, if the non-adiabatic pressure vanishes then

different initial conditions. The attractor point-Q®V 5/V 50,0) is constant.

is a transient attractor, valid only for long wavelength modes. As  The pressure perturbations can be split into adiabatic and

soon as the tracking regime of the figlilterminates, the attractor non-adiabatic components:

disappears and the field perturbations start to ev(dtraight line.

-5107°

However, by the time tracking is over, most long-wavelength solu- op op
tions have already converged to the same value, and thereafter their op= 3 op+ T or’, (28
evolution is almost indistinguishable. or=0 9p=0

where we define the entropy perturbatiéhi as[29]:

field starts to approach the tracking regimezat10'?, the
perturbations start to converge around the attractor solution. ST = @ _ @ (29
As seen in Fig. 2A for the field perturbatiod®, the attrac- P p
tor of Eqg. (20) is a very good approximation even after the
tracking phase has ended—that is, E2Q) is a very good As a consequence we have that the adiabatic pressure pertur-
approximation during the quintessence-domination period aBation is given by
well, even thoughsQ is not constant anymore. Figure 2B
shows how the quintessence density contrasts converge to
—2®. In fact, for a wide range of initial values the scalar
field perturbations end up at the same soluti@@° after
tracking. and the non-adiabatic pressure is given by the second term in

This can be also seen in Fig. 3, which is the phase diathe right-hand side of the definitioi28):
gram for the perturbations with different initial conditions

Sp="sp, (30
sT=0 Y

op
OPad= Cg op= 5_P

shown in Fig. 2. During tracking the solutions spiral down to 5pnad:@ sT=pér

the attractoksolid and dashed lingswWhen tracking ends the ol 5p=0

attractor disappears, but by that time most modes have

settled down to the same value, and their evolution is hence- _ Sp—c2s :2 5o — 250,

forth the samésee the thin line in Fig. 3 which springs from —OoPTCsop= 2 (9p; = Cspi).

the attractor point We note that this attractor occurs gener- (32)

ally only during tracking and for long wavelengths: when the
wavelength becomes importa(df the order of the inverse We now give an analytic description of the time evolution
effective masY, there is a sensitivity with respect to the of isocurvature perturbations for long wavelengths. We work
initial conditions of the quintessence perturbations. perturbatively assuming constant, and compute the nona-
Summarizing the results of this section: in the kinetic anddiabatic pressurp 5I': when the integrated effect is large, it
potential phases there is a constant long wavelength solutiofeans that isocurvature perturbations cannot be neglected.
which is a linear combination of the initial field fluctuations The results of this analysis confirm the methods of the pre-
and of the gravitational potential, as one can see from th@jous section(where ® was assumed constarand are in
initial evolution in Fig. 2A. In the tracking period the quin- agreement with the numerical analysis.

tessence perturbation stabilizes at the attractor solf#on Using Eq.(31) we find that the non-adiabatic pressure is
and it remains at that constant value until the perturbatioyiven by

reenters the Hubble radius, or until quintessence starts to
dominate the background. SPnacd= (W, — C3) 8p, + dpo—C58pq - (32

By using Eqgs.(3) and(4) in Eq. (32) one can check that in
Uif the effective mass is of the order of the Hubble radius, thisgeneral
occurs when the perturbations reenter inside the Hubble radius. It 5p
occurs at the same time if the effective mass vanighsshappens nad__ OO X(S5+ 6 33
during the kinetic and potential phages p+p (D)X (8 + ). (33
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FIG. 4. Background evolution in a quintessence scenario with
the Ratra-Peebles potenti#l(Q)=M*"*Q~ ¢, where «=6 and
M=10%%15 Plotted are the densities of radiatitsolid line) and
matter (dotted ling, and the equation of state for the scalar field
(dashed ling as a function of redshift.

FIG. 5. Newtonian potentiglower curve$ and gauge-invariant
curvature{ (upper curves normalized by the condition thab
=5x10"% atz=10°. The solid lines are a fiducial CDM model.
The remaining lines correspond to different initial conditions for the

Therefore. when the quintessence contribution to the tot fluctuations of the radiation, matter and quintessence components.
T q - . .The long-dashed lines correspond to the case where there is no
energy density is very subdominant, the isocurvature contri-,

bution i Il H . he | buti Isocurvature component betwe€hand radiation, but there is an
ution is small. However, since the isocurvature contri Utlor1nitial isocurvature component between radiation and CDM. The

to { is an integrated effect~t&p,ag, We should study the short-dashed line corresponds to the case of pure adiabatic initial

time evolution of each term which enters into the definitionconditions(AIC). The dotted lines correspond to the casesqf

of the non-adiabatic pressu(@2). =103, 6Q=0 initially (QIC). All modes cross the Hubble radius
The first term in the right-hand side of E@2) is propor-  atz=0.

tional to p, 6, and leads at most to a logarithmic increase of

{

5 and 6. During the transition from the potential phase to the

Among the contributions from the pressure and the enerngacking phase, we can habeth (., non-negligible andthe

density of the scalar field we neglect the first term in the . . .
) . . equation of state and speed of sound of quintessence differ
right-hand sides of both Eqel2) and(13). The termQ“® is  gypstantially from those of the background fluid. If the quin-

suppressgd during the kine'tic phase, but 'Ieads toa grthh @ssence density contrast is of the same order of the matter
a’*3Wmor in the left-hand side of Eq(33) in the potential  density contrast at decoupling tinzg.~ 10°, the isocurva-
regime. During the tracking regim@? gives approximately

a constant contribution to E¢33). The termV,46Q depends "
explicitly on the quintessence fluctuations: it decays during 10
the kinetic phase and it grows less rapidly tf@f® during S A
the potential regime. However, it leads to a growth as _ wEowS Ve 1677
a®2(1*wron) during the tracking regime. I

It is clear from Eq(31) that for two barotropic fluids with & S N, ot
the same equation of state and the same density contrast the \*‘-m---““ N
non-adiabatic pressure should be zero. Thereforeekarct Ny \‘165'6
tracking, quintessence and radiation equilibrate to give zero AN
non-adiabatic pressure. We can also compute the non- \\ -5.8
adiabatic pressure in the tracking regime by using E3@®, o = 7 \110
(4) and (8): 10 g 10

1+z
Q2 2 FIG. 6. Newtonian potentiglower curve$ and gauge-invariant
OPnad p+p(wr €Q)(prdr=2®po) + OL(y = L)pg®]. curvature/ (upper curF\)/e)s fo(;( a Wavelength Wr?ichgcrosses the

(34 Hubble radius at decoupling time between matter and radiation. The
) . . normalizations and the initial conditions are the same as in Fig. 5.

As expected, the non-adiabatic pressure vanishes for exag in Fig. 5, the short-dashed lines correspond to the case of pure
tracking (y=1), otherwise it is small, but not vanishing, adiabatic initial conditions and the dotted lines correspond to the
during tracklng._ In generabp,,q is proportional topg, case of6Q=10"3, 5Q=0 initially. Even for smaller scales, the
therefore small in many models. effect of an isocurvature component is a transient effect. For wave-

There is however still one possibility that allows for sig- |engths larger than the Hubble radius, the attractor was responsible
nificant isocurvature fluctuations from quintessence: thigor explaining the transiency, while for smaller scales the explana-
happens when the tracking phase starts only at a relativelyon is the decay of quintessence fluctuations inside the Hubble
late redshiftz~10°— 10° (see also the next section, Figs. 4, radius.
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ture perturbations can leave an imprint on the CMBR. Later,

L. 1) V,
as tracking forces the field perturbations to the attractor, the 60Q=Q cD+Z’ 3+ 2
isocurvature fluctuations are temporarily depressed, at least
until Q starts to dominate a~0 [30]. _
Q ViQ
V. INITIAL CONDITIONS: ADIABATIC OR MIXED? =m0 (4D

In this section we address the issue of how initial condi-
tions of quintessence perturbations can be used as tools
CMBFAST [31]. These initial conditions are set after nucleo- - )
synthesis, az~10°. In most of the literature, the initial con- Th_e condltl_ons(40), (4_1) s_,hould be compared with the
ditions for the quintessence fluctuations are set up by requigoutions during the kinetic and potential phase¥)
ing adiabaticity with the other componeii&. However, the = const andéQ=0, or with the attractor solution E¢20)
notion of a purely adiabatic perturbatidas well as for a which applies during the tracking phase:
purely isocurvature oneis an instantaneous notion for a

here the second line of E¢41) holds only if radiation is
the dominant component.

multifluid system. Moreover, because of the unthermalized 5Q:—2h¢> 42)
nature of quintessence, the adiabatic condition for this com- V.00
ponent is even less justified.
The adiabatic conditior}6,7] is usually defined as the _ _ aRY;
vanishing of the relative entropy and its time derivative: 6Q=-2Q @( 1- %3) . (43
QQ

_ It is not hard to see from E@43) that in the tracking regime
Sio=0, (36)  8Q—0, sinceV o/V o0=V 0o/V.0oo- Using this fact to-
gether with Eq(9), we also obtain that Eq§40) and(42) are

which reduces, in a longitudinal gauge, to: similar during the tracking regime. Therefore, as expected, if

K2 O 1 sy KV the scalar field is tracking normal matter, then the adiabatic
—-H2 = _ZnQ r condition is approximately satisfied.
a? 6H 4HQ 6aH We illustrate the previous discussion in Figs. 4, 5 and 6.
The background model is plotted in Fig. 4, and in Figs. 5 and
o k2 Q -1 k2 (3 6 we present possible scenarios for the perturbations, as well
5Q=0Q? Vio— = ] - Z(Sr+<1>> as a comparison with the cosmological perturbations in the
a 6a"™H cold dark matter model with a cosmological constant
85 kv, (ACDM).
+V,o| @ < _ 2T (39) The upper(thin) curves of Fig. 5 plot the gauge-invariant
4HQ 6aH curvature/, defined in Eq.(27). The lower curves are the

Newtonian potentiadb. All plots in Fig. 5 have been normal-
The relative entropy between the radiation and the quinteszed so thatd=5x10"° at z=10°, and the wavelengths

sence components is defined as correspond to modes which are crossing the Hubble radius at
the present timez=0.)
So= S _ 9q _ (39) The solid lines of Fig. 5 correspond to the cosmological
1+w, 1+wg perturbations of a fiduciah CDM scenario with adiabatic

. . ) initial conditions. Notice that, as usual, sinceéemains con-
From the above relation we immediately understand thagiant & has to change by 9/10 afteg,= 10°.
Sio=0 in the case oéxacttracking. Indeed, two fluids with  The |ong-dashed lines of Fig. 5 are the perturbations in a
the same equation of state and the same density contrast &fgenario(ICDM) where, in addition to the adiabatic mode,
indistinguishable. For long wavelengths, relatid83), (38)  cpMm and radiation have an initial relative isocurvature of

reduce to Sicom=23D/2.
. . The short-dashed lines are the perturbations in the case of
5Q=— Q, Q4 (40  adiabatic initial conditionAIC) between all components at
4H " 2H z~10°.The dotted lines are the perturbations in the case

where we choose zero isocurvature between radiation and

CDM, and 6Q=10"3, §Q=0 initially (QIC). This last set

2Notice that the definitiorf39) of entropy is different from the”  Of initial conditions(QIC) is motivated by the fact that the
introduced in Eq(29). We consider this more standard definition field perturbations are constant during the kinetic and the

S.o as well since it is this quantity which is used in much of the Potential phases—see, e.g., Fig. 2A. _
literature to define the adiabatic conditions, and we want to show Notice the identical late isocurvature effect in AIC and

directly the difference between the initial conditiofg?) and(38)  QIC. The signal of this effect is the extra growth of the
and the ones defined by the attractor or by some previous dynamicBardeen parametef at late times(compare the dotted and
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short-dashed lines with the solid line in the intervakd We have discussed the assumption of adiabaticity in the
<10 in Fig. 5. This effect is independent of the initial con- context of the setting of initial conditions used in numerical
ditions for the quintessence fluctuations. In fact, as alreadgodes such asMBFAST. As already emphasized, because of
emphasized, the notion of adiabaticifps well as pure the lack of thermal equilibrium, this assumption is not justi-
isocurvaturg is an instantaneous one, imposed at an initiaffied for quintessence. However, in the tracking case, the con-
time, and it does not persist in a multi-fluid system. We stresgjitions set by the attractor solution are in most cases quanti-
that this effect is distinct from the change of the Newtonianatively indistinguishable from the adiabatic conditions.
potential® which is due to thg late change in the equation O_flndeed, tracking seems a gravitational mechanism—
state of the background, which can be seen in pure form igiemative to thermal equilibrium—which tends to reduce

the ACDM case(solid line in Fig. 5. A similar change inP  jsocrvature modes between quintessence and the back-
takes place also aky~10" (the transition between radiation ground fluid. For models with a tracking phase which starts

an?qg:iitée;ggTﬁgaggﬂ;’vgfcgrf,zménsef?ggtsitﬁ?ﬁe olc casE2TlY in time, we expect a weak dependence on the initial
o : - . conditions for the quintessence fluctuations. In the stages
(oscillations of the dotted lines in Fig.).5This means that q 9

there is a substantial non-adiabatic pressure, and henceprior to the tracking phase the "initial conditiongunder-

. . : . . Csfbod as the values of the field perturbation and its time
large i rvatur rturbation, in thi nario. As we dis-, " . . .
arge isocurvature perturbation, s scenario. As we dis rivative at a redshift of~10%) depend on the conditions

cussed at the end of the previous section, the reason W)‘gﬁ . i . . .
isocurvature fluctuations can become important is that th€€t Py inflation, and could be different from the adiabatic
“tracking regime” of the background model only starts rela- °©"€S: L _

tively late, atz~ 10°. But the quintessence field perturbations e have identified a late isocurvature effect for long
need some time to converge to the attractor solution. Duringvavelengths due to quintessence. Of course, this is due to the
this time {2, becomes non-negligible, and since Qeom- act that Q dominates at late times, and it is qualitatively
ponent still behaves quite differently from the dominantindependent of the model considered. Therefore, the theoret-
background fluid, there can be substantial isocurvature pefcal explanation of the long wavelength evolution of the
turbations for wavelengths which cross the Hubble radius aNewtonian potential in Q models is a superposition of two
z~0. A similar transient effect occurs also for smaller scalesgffects: the change of the equation of state and the growth of
as shown in Fig. 6, for a wavelength which crosses the on super-Hubble scales. This late isocurvature effect could
Hubble radius at the decoupling time. An isocurvature combe useful in order to distinguish a cosmological constant
ponent from the quintessence field leads only to a transienhodel from the models with a quintessence component.
effect, since quintessence fluctuations converge to an attrac- The observational relevance of isocurvature modes gener-
tor for long wavelengths, and decay in time inside theated by quintessence is weakened by the decay in time of
Hubble radius. However, this early transient isocurvature efyuintessence perturbations inside the Hubble radius. For this
fect can leave an imprint in the spectrum of the CMBRreason the isocurvature mode in tieradiation sector is

anisotropies. very different from that in CDM radiation. This effect was
also very appealing in order to minimize the effects of the
VI. DISCUSSION AND CONCLUSIONS inclusion of this extra component on structure formation. In

) . ) the models examined here, the suppressiofl gfduring the
~ We have studied the evolution of cosmological perturbaginetic phase plays also a crucial role in order to weaken the
tions in quintessence models, with particular attention paid tffect of some initial isocurvature modes generated by quin-

isocurvature modes generated by quintessence. We haygssence. Even if the upper bound during nucleosynthesis for
shown that these isocurvature modes are generic for lon is ~0.2, the kinetic regime suppressék, down to

wavelength, with the exception of the case in which quintes 0 %5~ 10" 2in the models which we have analyzed. There-

sence mimicsxactly radiation. This occurs in the tracking fore our considerations may be more relevant for models in
x{hich Qg is closer to the upper limit, as, for instance, in the

phase of models with exponential potentifl§. However,
odels with a modified exponential potentigP)].

these models are unappealing from the phenomenologic
point of view because their equation of state for quintessenc@ - X ) i i
is not negative at the present time. Itis theref_ore mteres_tlng to study the |mpacft of isocurva-
When tracking isnot exact, then isocurvature modes areture fluctuations in quintessence models using numerical
non-vanishing. We found amttractor solution for long tools such a£mBFAST [31] in which quintessence perturba-
wavelength quintessence fluctuations in the tracking regimeions are included. In particular, it is possible to construct
This allows an estimation of the amount of isocurvature fluc-models wherd) is not so suppressed or in which there is a
tuations in the tracking regime for any quintessence modédgte tracking phase, in which case isocurvature modes gener-
that displays a tracking period. In the other phases whiclated by quintessence could lead to observable effects in the
usually occur in models with quintessence—the kinetic andemperature anisotropies of the cosmic background radiation.
potential phases—the quintessence fluctuations have also a Note addedWe observe that the definition in E@9) is
constant mode, whose actual value is determined by the pr&ot unique. One could also define the relative isocurvature
vious evolution (including inflation. The contribution of perturbation with the comoving energy densities, ag3i8l,
isocurvature fluctuation to the adiabatic mode grows durindgor example. In this case the relative comoving entropy be-
the potential, tracking an@-domination phases. tween the radiation and the quintessence component is:
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a
S =Sigt3H (V= V), (44)

where the quintessence velocity is so defined:

&l

k Q6Q k 5Q

o=~ 7% 4
°" apgtpq aaqQ 49

The long wavelength solution fdf, is given by solving Eq.
(17), which leads to g =

8 -4 -
10 10 10 10° 1

1
FIG. 7. Gauge-invariant curvaturg for Q-CDM isocurvature
(solid lineg and Q-radiationdashed linesinitial conditions for a
wavelength which crosses the Hubble radiug-a0. The normal-
ization is made in such a way that the amplitude of the Newtonian
potential is roughly 10° when the growth saturates.

v k &
" aH 2

By inserting the attractor solutio(20) in Eq. (45), and by

assuming exact trackingy=1 and Eq.(9)], it is easy to

verify that the quintessence velocity, is equal to the ex-

pression(46). Therefore, during exact tracking there are no

isocurvature perturbations to the leading order generated by

\(/;é())cities, as already verified for the energy densities in Eq. Sy— 30— Evm=0, (A2)
After our paper was submitted, we received a draft of Ref. ) ) ) o o

[34]. The analysis of the case with an exponential potentiaVVhereVm is the matter flqld velocr[_y, which itself satisfies

[5] (i.e. exact tracking presented if34] agrees with our the momentum conservation equation:

results for long wavelength, that is, up to terms of order

. k
O(k/aH)?. Vot HV et ~0=0. (A3)
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APPENDIX A QIQ="3vxpx: !

Here we present the equations that were evolved numeriyhich identifies an isocurvature density mo@d) and an
cally. Combining the 6-0 andi—i Einstein field equations isocurvature velocity modé2) [20]. The third componenY
we can eliminate the radiation perturbations, and obtain thg the only one which leads to a curvature perturbafion
following equation for the quintessence and matter perturbalong wavelengths-2® =TI\ 8y, as follows from Eq(22)].
tions (as explained in the text, we work with units such thatThe component and Y are related by adiabaticitySfy
87G=1, and we have ignored the distinction between bary—0). Therefore, the quintessence density contrast at fixed

ons and CDM: initial time is:
. : , K2 1 e s s e 1+wy) Qx 53
30+ 1SHD+| 12H+— | & == 7 Supnt QIQ-Q°® QT 0o T 14wy 0400 (B3)
—2V q46Q. (A1) In Fig. 7 we show the evolution of the Bardeen parameter

¢ for initial pure Q-CDM (X=CDM, solid line and
The equation of motion for the scalar field perturbations isQ-radiation K=radiation, dashed lineisocurvature initial
given in Eq.(14). The matter density contrast obeys the en-conditions atz=10° for the model of Fig. 4. At the initial
ergy conservation equation: time the Newtonian potential is so small in order to ensure
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dg=1. However, in both cases—but in particular for the differential equation for the quintessence fluctuations—but
Q-radiation isocurvature initial conditions—Eq&81) and by the homogeneous solution to Ed4). Indeed, in Fig. 7
(B2) force Q fluctuations to very large values, both initially the growth of the Bardeen parameter saturates roughly when
and in the subsequent evolution. The evolution of Q fluctuatracking starts in Fig. 4, i.e. when the homogeneous solution
tions for these types of initial conditions ot described by for quintessence fluctuations starts to decay, as described by
the attractor(20)—i.e. the inhomogeneous solution to the Egs.(19) and(20) with a#0.
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