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Attractors and isocurvature perturbations in quintessence models
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We investigate the evolution of cosmological perturbations in scenarios with a quintessence scalar field, both
analytically and numerically. In the tracking regime for quintessence, we find the long wavelength solutions for
the perturbations of the quintessence field. We discuss the possibility of isocurvature modes generated by the
quintessence sector.
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I. INTRODUCTION

Observational data seem to indicate that we live in
accelerating Universe@1#. As an alternative to the scenar
where the acceleration is fueled by a cosmological cons
L, models with a scalar field capable of dominating recen
and of developing a negative pressure have been prop
@2–4#. This scalar field which pervades our Universe h
been dubbedquintessence.

Compared to the cosmological constant, quintessence
two important differences. First, quintessence can be in
preted as a fluid with a time dependent equation of st
Therefore quintessence models may alleviate the so-ca
coincidence problem, which is the apparent cosmic collus
that the dark energy component is fine-tuned in a way tha
is starting to dominate the energy density of the Universe
at the present time. And second, in contrast with the cos
logical constant, the quintessence field can fluctuate@2–8#.

One interesting possibility is that the quintessence fi
Q(xW ,t) can, in combination with the other cosmic fluids~ra-
diation, baryons, cold dark matter, etc.!, lead not only to
adiabatic~curvature! perturbations, but to a mixture whic
includes an isocurvature component. Isocurvature~or en-
tropy! perturbations appear when the relative energy den
and pressure perturbations of the different fluid species c
bine to leave the overall curvature perturbations unchang
In quintessence models, the presence of potentially rele
isocurvature modes could be generic, just as in multi-fi
inflationary models@9#. Indeed, quintessence is construct
is such a way that it is an unthermalized component s
dominant for most of the history of the Universe. Since qu
tessence is uncoupled from the rest of matter becaus
astrophysical and cosmological constraints@2,3,10#, its fluc-
tuations may lead to an isocurvature component, whose
ture will be preserved except for the known integrated fe
ing of the adiabatic component, expressed by the rela
@11,12#

ż5
2

3H~11w! Fcs
2 ¹2F

a2
1

1

2
dpnadG , ~1!

where z is the gauge-invariant curvature perturbation,
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overdot denotes a time derivative,w[p/r andcs
2[ ṗ/ ṙ de-

note respectively the equation of state and the speed of so
of the total matter content,pnad is the total non-adiabatic
pressure perturbation and we employ units such that 8pG
51.

This latter effect was studied@13# in the context of axion
perturbations, and@14# in the context of the baryon isocur
vature model@15#. This effect is also responsible for th
growth of super-Hubble adiabatic perturbations during p
heating@16#. Considering axions as cold dark matter~CDM!
@13#, an isocurvature perturbation due to the angle misali
ment produced during inflation induces an adiabatic com
nent of comparable amplitude at the moment of reentry
the perturbation inside the Hubble radius. This is due to
fact that the CDM component is going to dominate about
time of decoupling, and thus the integrated effect is alm
completed by the time that mode reenters inside the Hub
radius.

However, the quintessence case is different from the
ion or CDM since in most of the models quintessence fl
tuations are damped inside the Hubble radius. This is
quired in order to minimize the impact of an addition
dynamical degree of freedom on structure formation. T
quintessence and the axion/CDM differ also in either one
two ways:~i! Q was still a negligible component before th
time of decoupling, or~ii ! Q was comparable to normal ma
ter, VQ5O(1), but in aso-calledtracking regime@2,3,5,17#
whereby its equation of statewQ[pQ /rQ was approxi-
mately that of dust or radiation—whichever was dominati
at the time. In the first case@which happens, for example, i
the pseudo Nambo-Goldstone boson~PNGB! scenario@18##
isocurvature perturbations are irrelevant simply because
field Q(xW ,t) is a negligible component until a redshift of a
leastz;10. In the second case the energy density inQ need
not be small, however due to the tracking of the quintesse
field, perturbations in theQ-fluid behaved similarly to the
perturbations in the background for most of the observa
history of the Universe, and isocurvature perturbations
therefore suppressed until the end of the tracking phase
either case, a primordial isocurvature perturbation could s
be present, but it would not have had enough time to ind
an adiabatic component.
©2001 The American Physical Society13-1
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L. R. ABRAMO AND F. FINELLI PHYSICAL REVIEW D 64 083513
From an observational point of view, isocurvature pert
bations have a very distinctive imprint on the spectrum of
temperature anisotropy of the cosmic microwave backgro
~CMB! @19–21#. With the accuracy that future CMB exper
ments such as the Microwave Anisotropy Probe~MAP! @22#
and Planck@23# will be able to reach, the constraints on th
ratio of uncorrelated isocurvature perturbations in CD
radiation to the adiabatic component will be of the order
percents@24,25#. Recently the impact of generic isocurvatu
modes on the estimation of cosmological parameters
been also investigated@26#. Therefore it is important to un
derstand the evolution of isocurvature modes in quintesse
models where an unthermalized, uncoupled relic survi
until the present era, and dominates very recently. In mos
the literature a primordial adiabatic spectrum for quint
sence perturbations is assumed. If the notion of adiabat
among different components is related to their thermal eq
librium, then the weakly coupled nature of quintessen
could evade this condition. The primordial spectrum co
be generated during inflation and/or influenced through
evolution until the decoupling time.

The outline of the paper is as follows. In Sec. II we gi
necessary notions of the background evolution of quin
sence models. In Sec. III we study the evolution of cosm
logical perturbations and we identify the attractor soluti
for quintessence perturbations during the tracking regime
Sec. IV we study the evolution of isocurvature perturbatio
and their feedback on the adiabatic component. In Sec. V
discuss the initial condition for quintessence perturbati
after nucleosynthesis. We conclude in Sec. VI.

II. BACKGROUND EVOLUTION WITH QUINTESSENCE

For simplicity we consider only radiation, pressurele
matter and quintessence, and ignore the neutrinos as we
the distinction between baryons and CDM. Each compon
i ( i 5r ,m,Q) has an energy densityr i and pressurepi . The
sum of the energy densities determines the Hubble param
via the usual Einstein equation, 3H25r5( ir i . The equa-
tion of statewi[pi /r i is 1/3 and zero in the case of radiatio
and matter, respectively. The background energy density
the pressure of the quintessence field are

rQ5
1

2
Q̇21V~Q!, pQ5

1

2
Q̇22V~Q!, ~2!

where the background scalar fieldQ(t) obeys the equation
Q̈13HQ̇1V,Q50. This means thatwQ is in general time-
dependent.

The main requirement of quintessence is that it starts
dominate the energy density of the Universe only at
present time, with an equation of statewQ(z50)[wQ0,0.
Conservative phenomenology dictates thatrQ0 /r05VQ0
,0.8—to allow time for galaxy formation—and thatwQ0
,20.5—to accommodate the SNIa data@27#. In addition,
nucleosynthesis demands thatVQ,0.2 atz.109.

Model building should obtain these values and still ma
age to solve~or at least alleviate! the coincidence problem
without too much fine tuning~see, e.g.,@28#!. The main
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problem seems to be that in order to solve the coincide
problem one needs a period of tracking, but it is hard to
a period of tracking and still obtainwQ0,20.5. It is cer-
tainly possible to construct potentials which implement bo
conditions@8#, however we prefer to look at simpler poten
tials which contain features which are generic to most of
models. As it turns out, the relevant features of the cosm
logical perturbations do not depend on the specific form
the potential, but only on its generic phenomenology.

In a typical scenario, nicely reviewed in@8#, the scalar
field starts out subdominant deep in the radiation era, i
kineticphase with an equation of statewQ511 ~see Fig. 1!.
The kinetic energy1

2 Q̇2 eventually decays, leaving only th
quintessence potential energy, which is nearly constant
as a resultwQ→21 ~of course, the quintessence field cou
also start already in the potential-energy dominated regim!.
This is the so calledpotentialphase. WhenVQ becomes of
order unity, the quintessence field undergoes a transi
which puts it into atracking regime, where it follows ap-
proximately the equation of state of the background. Fina
at some point late in the matter eraQ starts to dominate and
the Universe begins the accelerated expansion phase tha
observe today~the Q-dominated phase.!

As long as we keep away from the time of equal mat
and radiation (zeq.104 in our flat models with H0
565 km s21 Mpc21), one of the two barotropic fluids~ra-
diation or matter! can be neglected The equation of state
the total matter content then reads

w[
p

r
5wF1~wQ2wF!VQ , ~3!

where the subscriptF stands for either radiation, whent
!teq , or matter, whent@teq . The total speed of soundcs

2

has a simple expression as well:

cs
2[

ṗ

ṙ
5wF1

Q̇2

r1p
~cQ

2 2wF!, ~4!

wherecQ
2 [ ṗQ / ṙQ . It is useful to note that

FIG. 1. Densities of radiation~solid line! and matter~dotted
line!, and the equation of state for the scalar field~dashed line!, as
a function of redshift for a model with potentialV(Q)5M4ef /Q. In
this plot M4510270M pl

4 and f 51 M pl ~with 8pG5M pl
22).
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cQ
2 511

2V,Q

3HQ̇
5wQ2

ẇQ

3H~11wQ!
. ~5!

WhencQ
2 5const, thenQ̇}V,Q /H. Taking the time derivative

of cQ
2 we also obtain:

2V,QQ

3H2
5

1

H

d

dt
cQ

2 1~cQ
2 21!F11

Ḣ

H2
2

1

2
~3cQ

2 15!G .

~6!

WhenwQ is approximately constant, then from Eq.~5! cQ
2 is

constant as well. By using the background relationḢ/H2.
23(11wF)/2 we obtain

V,QQ.
9

4
H2~12cQ

2 !~wF1cQ
2 12![aH2. ~7!

We observe that quintessence fluctuations are effecti
massless (VQQ.0) during the kinetic phase (cQ

2 51) and the
potential phase (cQ

2 5222wF @8#!.
A good quantity to measure how closely the quintesse

field Q tracks the background is the quantityg
[V,QQV/(V,Q

2 )—which was namedG in @4#. When wQ is
approximately constant in time, then:

g.11
wF2wQ

2~11wQ!
. ~8!

If tracking isexact~as is the case in the exponential potent
models!, wF5wQ , theng51 andV,QQ /V,Q5V,Q /V.

If wQ is approximately constant, then the kinetic and p
tential energies of the scalar fieldQ must be proportional to
each other. Taking the time derivative ofrQ}Q̇2}V we ob-
tain that during a tracking phase:

V,Q

V
523~11wQ!

H

Q̇
.const, ~9!

where we have used the fact thatQ̇2}a23(11wQ) to find
H/Q̇}a23(wF2wQ)} constant, ifwQ.wF .

We note that during the phases in whichwQ is constant
VQ goes as:

VQ[
rQ

rTOT
5a3(wTOT2wQ). ~10!

Therefore in the radiation epochVQ redshifts asa22 during
its kinetic phase, and it grows asa4 during its potential
phase. During the tracking regimeVQ is approximately con-
stant~depending on how accurate is the tracking! and in the
Q-dominated regime it is evidently constant@since VQ
→O(1) whenQ dominates#.

III. EVOLUTION OF PERTURBATIONS

We compute the evolution of the cosmological perturb
tions in longitudinal~or conformal-Newtonian! gauge@11#:
08351
ly

e

l

-

-

ds25~112F!dt22a2~ t !~122F!dx2. ~11!

In the matter sector, the perturbed energy density and p
sure of quintessence are, as usual,

drQ5Q̇dQ̇2Q̇2F1V,QdQ, ~12!

dpQ5Q̇dQ̇2Q̇2F2V,QdQ, ~13!

where the Fourier transforms of the scalar field fluctuatio
obey the equation:

dQ̈13HdQ̇1
k2

a2
dQ1V,QQdQ514Q̇Ḟ22V,QF.

~14!

The density fluctuations in radiation and matter, on the ot
hand, obey the conservation equations for the density c
trastsdF[drF /rF :

ḋF23~11wF!Ḟ5~11wF!
k

a~ t !
VF , ~15!

whereVF is the fluid velocity. In the long wavelength limi
(k!aH) this equation is extremely useful, since it reads:

dF23~11wF!F5const5d F
i 23~11wF!F i , ~16!

where the superscripti indicates that the fluctuations hav
been evaluated at some initial timet i . The equation for the
fluid velocity is the following:

V̇F1H~123wF!VF52
k

a~ t ! S wF

11wF
dF1F D . ~17!

We consider now the evolution of the quintessence fi
perturbations. At first, let us neglect the metric perturbatio
i.e. take Eq.~14! without its right-hand side. By using th
rescaled variablesdQ̃5a1/2dQ, Eq. ~14! can be rewritten as

dQ̃91HdQ̃81Fk21a2V,QQ2
a9

2a
2

H 2

4 GdQ̃50, ~18!

where H5a8/a5aH and a prime denotes derivative wit
respect to conformal timeh @d/dh[a(t)d/dt#.

In a radiation dominated Universea}h and the term pro-
portional to the second time derivative of the scale fac
vanishes; when Eq.~7! holds, then the solutions for the fiel
perturbations in rigid space-times are

dQ;h21/23H Junu~kh!

J2unu~kh!,

where

n25
1

4
2a. ~19!

If aÞ0 both the solutions decay in time. Ifa→0 then there
is a constant mode.
3-3
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L. R. ABRAMO AND F. FINELLI PHYSICAL REVIEW D 64 083513
The argument above holds for a matter dominated U
verse as well: ifa50 there is a constant mode, otherwi
both the solutions decay in time~for a matter dominated
Universe the appropriate rescaled variable isdQ̃5a3/4dQ!.

The inclusion of gravitational fluctuations in Eq.~14!
leads to a constant solution for the quintessence pertu
tions in the long-wavelength limit. From Eq.~14! we imme-
diately see that in this limit there areconstantsolutions
F(t)→Fc anddQ(t)→dQc:

dQc.22
V,Q

V,QQ
Fc, ~20!

as long asV,Q /V,QQ is approximately constant. But this i
precisely what happens during the tracking regime: fr
Eqs.~9! and~8! we see thatV,Q /V,QQ.V/V,Q.const in the
tracking period. We stress that the type of solution~20! does
not hold in the kinetic and potential phases, since in th
casesV,QQ→0.

We can use the 020 component of the Einstein equation
to relate the Newtonian potential to the energy densities
other fluids

26H2F26HḞ22
k2

a2
F5dr r1drm1drQ . ~21!

In the long wavelength limit, assuming thatF is stationary
and ignoring the subdominant barotropic fluid we obtain:

22F.VFdF1VQdQ . ~22!

In the regime described by the attractor in Eq.~20! the per-
turbed energy density for quintessence, defined in Eq.~12!,
reduces to

drQ
c .22S 12

V,QV,QQQ

V,QQ
2 D Q̇2Fc22FcS Q̇2

2
1

V

g
D

.22 FcFrQ2~Q̇21V!
g21

g
1O~ ġ !G . ~23!

and the perturbed pressure defined in Eq.~13! is:

dpQ522 pQF12F~Q̇22V!
g21

g
1O~ ġ !. ~24!

Using now the background identities 3H25r and VQ.1
2VF in Eq. ~23!, we obtain the density contrasts as fun
tions of the Newtonian potential in the tracking regime:

d Q
c .d F

c .22Fc. ~25!

Notice that during tracking, quintessence and the domin
fluid species are in effect indistinguishable (d Q

c .d F
c ), con-

sequently we expect isocurvature perturbations to be s
pressed during that period.

A solution corresponding to Eq.~20!—though in the syn-
chronous gauge—was first obtained in the case of expo
tial potentials, for which tracking is exact@5#. An attractor
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for quintessence perturbations has also been conjecture
@8#. As we have shown, the approximate solutions~20! and
~25! hold for any potential, just as long as there is trackin
and, of course, they exist in any gauge.

We can also combine Eqs.~25! and ~16! to obtain a rela-
tionship between the initial and final values of the Newton
potential:

Fc.2
1

6
~d r

i 24F i !, ~26!

whered r
i andF i are initial conditions for the radiation den

sity contrast and the Newtonian potential respectively. Not
that these initial conditions can be specified even at a t
when quintessence is dominating, and even if the radia
contrast and the Newtonian potential are initially not co
stant.

We have numerically verified formulas~20!, ~23!, ~25!
and~26! for several scenarios and initial conditions. Take f
example the scenario whose background appeared in our
1. Two typical initial conditions for the field perturbation
are plotted in Figs. 2A and 2B~solid and dashed lines!, to-
gether with the attractor solutions~thin lines!: as the scalar

FIG. 2. Quintessence field fluctuationsdQ ~panel A! and quin-
tessence energy density contrastsdQ ~panel B! for two different

initial conditions fordQ anddQ̇ ~solid and dashed lines!. We have
chosen initial conditions such thatF.1025 at zdec5103. In panel A
the quintessence fluctuations~dashed and solid lines! are compared
with the attractor22FV,Q /V,QQ ~thin line!. Notice that even after
the tracking phase ends the analytic approximation of Eq.~20! re-
mains very good. In panel B the quintessence energy density
trasts~solid and dashed lines! are compared with22F ~thin line!,
verifying the second approximation, Eq.~25!. The approximation
becomes worse as the tracking ends. In both plots the wavelen
of the modes cross the Hubble radius atz50.
3-4
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ATTRACTORS AND ISOCURVATURE PERTURBATIONS . . . PHYSICAL REVIEW D 64 083513
field starts to approach the tracking regime atz.1012, the
perturbations start to converge around the attractor solut
As seen in Fig. 2A for the field perturbationsdQ, the attrac-
tor of Eq. ~20! is a very good approximation even after th
tracking phase has ended—that is, Eq.~20! is a very good
approximation during the quintessence-domination period
well, even thoughdQ is not constant anymore. Figure 2
shows how the quintessence density contrasts converg
22F. In fact, for a wide range of initial values the scal
field perturbations end up at the same solutiondQc after
tracking.

This can be also seen in Fig. 3, which is the phase
gram for the perturbations with different initial condition
shown in Fig. 2. During tracking the solutions spiral down
the attractor~solid and dashed lines!. When tracking ends the
attractor disappears, but by that time most modes h
settled down to the same value, and their evolution is hen
forth the same~see the thin line in Fig. 3 which springs from
the attractor point!. We note that this attractor occurs gene
ally only during tracking and for long wavelengths: when t
wavelength becomes important~of the order of the inverse
effective mass1!, there is a sensitivity with respect to th
initial conditions of the quintessence perturbations.

Summarizing the results of this section: in the kinetic a
potential phases there is a constant long wavelength solu
which is a linear combination of the initial field fluctuation
and of the gravitational potential, as one can see from
initial evolution in Fig. 2A. In the tracking period the quin
tessence perturbation stabilizes at the attractor solution~20!
and it remains at that constant value until the perturba
reenters the Hubble radius, or until quintessence start
dominate the background.

1If the effective mass is of the order of the Hubble radius, t
occurs when the perturbations reenter inside the Hubble radiu
occurs at the same time if the effective mass vanishes~as happens
during the kinetic and potential phases!.

FIG. 3. Phase diagram for quintessence fluctuations with
different initial conditions. The attractor point (22FV,Q /V,QQ,0)
is a transient attractor, valid only for long wavelength modes.
soon as the tracking regime of the fieldQ terminates, the attracto
disappears and the field perturbations start to evolve~straight line!.
However, by the time tracking is over, most long-wavelength so
tions have already converged to the same value, and thereafter
evolution is almost indistinguishable.
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IV. EVOLUTION OF ISOCURVATURE PERTURBATIONS

Cosmological fluctuations are often characterized in ter
of the gauge-invariant curvature perturbation on comov
hypersurfaces, defined as@11#:

z[
2

3

Ḟ/H1F

11w
1F. ~27!

The time variation of the intrinsic curvaturez is given, on
large scales, by the non-adiabatic pressure or, equivale
by the amplitude of the isocurvature perturbations—see
~1!. Therefore, if the non-adiabatic pressure vanishes thez
is constant.

The pressure perturbations can be split into adiabatic
non-adiabatic components:

dp5
dp

dr U
dG50

dr1
dp

dGU
dr50

dG, ~28!

where we define the entropy perturbationdG as @29#:

dG[
dp

ṗ
2

dr

ṙ
. ~29!

As a consequence we have that the adiabatic pressure pe
bation is given by

dpad5cs
2dr[

dp

dr U
dG50

dr5
ṗ

ṙ
dr, ~30!

and the non-adiabatic pressure is given by the second ter
the right-hand side of the definition~28!:

dpnad5
dp

dG U
dr50

dG5 ṗ dG

5dp2cs
2dr[(

i
~dpi2cs

2dr i !.

~31!

We now give an analytic description of the time evolutio
of isocurvature perturbations for long wavelengths. We wo
perturbatively assumingz constant, and compute the non
diabatic pressureṗ dG: when the integrated effect is large,
means that isocurvature perturbations cannot be neglec
The results of this analysis confirm the methods of the p
vious section~where F was assumed constant! and are in
agreement with the numerical analysis.

Using Eq.~31! we find that the non-adiabatic pressure
given by

dpnad5~wr2cs
2!dr r1dpQ2cs

2drQ . ~32!

By using Eqs.~3! and ~4! in Eq. ~32! one can check that in
general

dpnad

r1p
5O~VQ!3~d r1dQ!. ~33!
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L. R. ABRAMO AND F. FINELLI PHYSICAL REVIEW D 64 083513
Therefore, when the quintessence contribution to the t
energy density is very subdominant, the isocurvature con
bution is small. However, since the isocurvature contribut
to z is an integrated effect,ż;tdpnad, we should study the
time evolution of each term which enters into the definiti
of the non-adiabatic pressure~32!.

The first term in the right-hand side of Eq.~32! is propor-
tional to r rd r and leads at most to a logarithmic increase
z.

Among the contributions from the pressure and the ene
density of the scalar field we neglect the first term in t
right-hand sides of both Eqs.~12! and~13!. The termQ̇2F is
suppressed during the kinetic phase, but leads to a grow
a713wTOT in the left-hand side of Eq.~33! in the potential
regime. During the tracking regimeQ̇2 gives approximately
a constant contribution to Eq.~33!. The termV,QdQ depends
explicitly on the quintessence fluctuations: it decays dur
the kinetic phase and it grows less rapidly thanQ̇2F during
the potential regime. However, it leads to a growth
a3/2(11wTOT) during the tracking regime.

It is clear from Eq.~31! that for two barotropic fluids with
the same equation of state and the same density contras
non-adiabatic pressure should be zero. Therefore forexact
tracking, quintessence and radiation equilibrate to give z
non-adiabatic pressure. We can also compute the n
adiabatic pressure in the tracking regime by using Eqs.~32!,
~4! and ~8!:

dpnad.
Q̇2

r1p
~wr2cQ

2 !~r rd r22FrQ!1O@~g21!rQF#.

~34!

As expected, the non-adiabatic pressure vanishes for e
tracking (g51), otherwise it is small, but not vanishing
during tracking. In generaldpnad is proportional torQ ,
therefore small in many models.

There is however still one possibility that allows for si
nificant isocurvature fluctuations from quintessence: t
happens when the tracking phase starts only at a relati
late redshift,z;1052103 ~see also the next section, Figs.

FIG. 4. Background evolution in a quintessence scenario w
the Ratra-Peebles potentialV(Q)5M41aQ2a, where a56 and
M51026315. Plotted are the densities of radiation~solid line! and
matter ~dotted line!, and the equation of state for the scalar fie
~dashed line!, as a function of redshift.
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5 and 6!. During the transition from the potential phase to t
tracking phase, we can havebothVQ non-negligible,and the
equation of state and speed of sound of quintessence d
substantially from those of the background fluid. If the qu
tessence density contrast is of the same order of the m
density contrast at decoupling timezdec;103, the isocurva-

h

FIG. 5. Newtonian potential~lower curves! and gauge-invariant
curvaturez ~upper curves!, normalized by the condition thatF
5531026 at z5109. The solid lines are a fiducialLCDM model.
The remaining lines correspond to different initial conditions for t
fluctuations of the radiation, matter and quintessence compon
The long-dashed lines correspond to the case where there i
isocurvature component betweenQ and radiation, but there is an
initial isocurvature component between radiation and CDM. T
short-dashed line corresponds to the case of pure adiabatic in
conditions~AIC!. The dotted lines correspond to the case ofdQ

51023, dQ̇50 initially ~QIC!. All modes cross the Hubble radiu
at z50.

FIG. 6. Newtonian potential~lower curves! and gauge-invariant
curvaturez ~upper curves!, for a wavelength which crosses th
Hubble radius at decoupling time between matter and radiation.
normalizations and the initial conditions are the same as in Fig
As in Fig. 5, the short-dashed lines correspond to the case of
adiabatic initial conditions and the dotted lines correspond to

case ofdQ51023, dQ̇50 initially. Even for smaller scales, the
effect of an isocurvature component is a transient effect. For wa
lengths larger than the Hubble radius, the attractor was respon
for explaining the transiency, while for smaller scales the expla
tion is the decay of quintessence fluctuations inside the Hub
radius.
3-6
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ture perturbations can leave an imprint on the CMBR. La
as tracking forces the field perturbations to the attractor,
isocurvature fluctuations are temporarily depressed, at l
until Q starts to dominate atz;0 @30#.

V. INITIAL CONDITIONS: ADIABATIC OR MIXED?

In this section we address the issue of how initial con
tions of quintessence perturbations can be used as too
CMBFAST @31#. These initial conditions are set after nucle
synthesis, atz;109. In most of the literature, the initial con
ditions for the quintessence fluctuations are set up by req
ing adiabaticity with the other components@6#. However, the
notion of a purely adiabatic perturbation~as well as for a
purely isocurvature one! is an instantaneous notion for
multifluid system. Moreover, because of the unthermaliz
nature of quintessence, the adiabatic condition for this co
ponent is even less justified.

The adiabatic condition@6,7# is usually defined as the
vanishing of the relative entropy and its time derivative:

SrQ50, ~35!

ṠrQ50, ~36!

which reduces, in a longitudinal gauge, to:

dQ5Q̇2S V,Q2
k2

a2

Q̇

6H D 21S 2
d rV,Q

4HQ̇
1

kVr

6aHD , ~37!

dQ̇5Q̇2S V,Q2
k2

a2

Q̇

6H D 21F2
k2

6a2H
S 3

4
d r1F D

1V,QS F2
Q̈d r

4HQ̇
2

kVr

6aHD G . ~38!

The relative entropy between the radiation and the quin
sence components is defined as2

SrQ[
d r

11wr
2

dQ

11wQ
. ~39!

From the above relation we immediately understand t
SrQ50 in the case ofexacttracking. Indeed, two fluids with
the same equation of state and the same density contras
indistinguishable. For long wavelengths, relations~37!, ~38!
reduce to

dQ.2
Q̇

4H
d r.

Q̇

2H
F ~40!

2Notice that the definition~39! of entropy is different from thedG
introduced in Eq.~29!. We consider this more standard definitio
SrQ as well since it is this quantity which is used in much of t
literature to define the adiabatic conditions, and we want to sh
directly the difference between the initial conditions~37! and ~38!
and the ones defined by the attractor or by some previous dynam
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dQ̇.Q̇FF1
d r

4 S 31
V,Q

HQ̇
D G

.2
Q̇

2
FS 11

V,Q

HQ̇
D ~41!

where the second line of Eq.~41! holds only if radiation is
the dominant component.

The conditions~40!, ~41! should be compared with th
solutions during the kinetic and potential phases,dQ

5const anddQ̇50, or with the attractor solution Eq.~20!
which applies during the tracking phase:

dQ.22
V,Q

V,QQ
F ~42!

dQ̇.22Q̇ FS 12
V,QV,QQQ

V,QQ
2 D . ~43!

It is not hard to see from Eq.~43! that in the tracking regime
dQ̇→0, sinceV,Q /V,QQ.V,QQ /V,QQQ . Using this fact to-
gether with Eq.~9!, we also obtain that Eqs.~40! and~42! are
similar during the tracking regime. Therefore, as expected
the scalar field is tracking normal matter, then the adiab
condition is approximately satisfied.

We illustrate the previous discussion in Figs. 4, 5 and
The background model is plotted in Fig. 4, and in Figs. 5 a
6 we present possible scenarios for the perturbations, as
as a comparison with the cosmological perturbations in
cold dark matter model with a cosmological consta
(LCDM!.

The upper~thin! curves of Fig. 5 plot the gauge-invarian
curvaturez, defined in Eq.~27!. The lower curves are the
Newtonian potentialF. All plots in Fig. 5 have been normal
ized so thatF5531026 at z5109, and the wavelengths
correspond to modes which are crossing the Hubble radiu
the present time (z50.)

The solid lines of Fig. 5 correspond to the cosmologic
perturbations of a fiducialLCDM scenario with adiabatic
initial conditions. Notice that, as usual, sincez remains con-
stant,F has to change by 9/10 afterzeq5104.

The long-dashed lines of Fig. 5 are the perturbations i
scenario~ICDM! where, in addition to the adiabatic mod
CDM and radiation have an initial relative isocurvature
SrCDM53F/2.

The short-dashed lines are the perturbations in the cas
adiabatic initial conditions~AIC! between all components a
z;109.The dotted lines are the perturbations in the ca
where we choose zero isocurvature between radiation
CDM, anddQ51023, dQ̇50 initially ~QIC!. This last set
of initial conditions~QIC! is motivated by the fact that the
field perturbations are constant during the kinetic and
potential phases—see, e.g., Fig. 2A.

Notice the identical late isocurvature effect in AIC an
QIC. The signal of this effect is the extra growth of th
Bardeen parameterz at late times~compare the dotted an

w

cs.
3-7



-
ad

tia
es
ian
o

n

s

ce
is
w
th
a-
ns
rin

n
pe
s
es
th
m
ie
tra
he
e
R

ba
d
ha
lon
es
g

ic
n

re

m
uc
d
ic
n

lso
p

in

the
al
of
ti-
on-
nti-
s.
—

ce
ack-
rts
itial
ges

me
s
tic

ng
the
ly
ret-
e
o

h of
uld

ant

ner-
e of
this

s
he
In

the
in-
for

e-
in
e

a-
ical
-
ct
a

ner-
the

ion.

ure

be-

L. R. ABRAMO AND F. FINELLI PHYSICAL REVIEW D 64 083513
short-dashed lines with the solid line in the interval 0,z
,10 in Fig. 5!. This effect is independent of the initial con
ditions for the quintessence fluctuations. In fact, as alre
emphasized, the notion of adiabaticity~as well as pure
isocurvature! is an instantaneous one, imposed at an ini
time, and it does not persist in a multi-fluid system. We str
that this effect is distinct from the change of the Newton
potentialF which is due to the late change in the equation
state of the background, which can be seen in pure form
theLCDM case~solid line in Fig. 5!. A similar change inF
takes place also atzeq.104 ~the transition between radiatio
and matter domination!, while z remains constant.

Notice also the early isocurvature effect in the QIC ca
~oscillations of the dotted lines in Fig. 5!. This means that
there is a substantial non-adiabatic pressure, and hen
large isocurvature perturbation, in this scenario. As we d
cussed at the end of the previous section, the reason
isocurvature fluctuations can become important is that
‘‘tracking regime’’ of the background model only starts rel
tively late, atz;105. But the quintessence field perturbatio
need some time to converge to the attractor solution. Du
this timeVQ becomes non-negligible, and since theQ com-
ponent still behaves quite differently from the domina
background fluid, there can be substantial isocurvature
turbations for wavelengths which cross the Hubble radiu
z;0. A similar transient effect occurs also for smaller scal
as shown in Fig. 6, for a wavelength which crosses
Hubble radius at the decoupling time. An isocurvature co
ponent from the quintessence field leads only to a trans
effect, since quintessence fluctuations converge to an at
tor for long wavelengths, and decay in time inside t
Hubble radius. However, this early transient isocurvature
fect can leave an imprint in the spectrum of the CMB
anisotropies.

VI. DISCUSSION AND CONCLUSIONS

We have studied the evolution of cosmological pertur
tions in quintessence models, with particular attention pai
isocurvature modes generated by quintessence. We
shown that these isocurvature modes are generic for
wavelength, with the exception of the case in which quint
sence mimicsexactly radiation. This occurs in the trackin
phase of models with exponential potentials@5#. However,
these models are unappealing from the phenomenolog
point of view because their equation of state for quintesse
is not negative at the present time.

When tracking isnot exact, then isocurvature modes a
non-vanishing. We found anattractor solution for long
wavelength quintessence fluctuations in the tracking regi
This allows an estimation of the amount of isocurvature fl
tuations in the tracking regime for any quintessence mo
that displays a tracking period. In the other phases wh
usually occur in models with quintessence—the kinetic a
potential phases—the quintessence fluctuations have a
constant mode, whose actual value is determined by the
vious evolution ~including inflation!. The contribution of
isocurvature fluctuation to the adiabatic mode grows dur
the potential, tracking andQ-domination phases.
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We have discussed the assumption of adiabaticity in
context of the setting of initial conditions used in numeric
codes such asCMBFAST. As already emphasized, because
the lack of thermal equilibrium, this assumption is not jus
fied for quintessence. However, in the tracking case, the c
ditions set by the attractor solution are in most cases qua
tatively indistinguishable from the adiabatic condition
Indeed, tracking seems a gravitational mechanism
alternative to thermal equilibrium—which tends to redu
isocurvature modes between quintessence and the b
ground fluid. For models with a tracking phase which sta
early in time, we expect a weak dependence on the in
conditions for the quintessence fluctuations. In the sta
prior to the tracking phase the ‘‘initial conditions’’~under-
stood as the values of the field perturbation and its ti
derivative at a redshift ofz;109) depend on the condition
set by inflation, and could be different from the adiaba
ones.

We have identified a late isocurvature effect for lo
wavelengths due to quintessence. Of course, this is due to
fact that Q dominates at late times, and it is qualitative
independent of the model considered. Therefore, the theo
ical explanation of the long wavelength evolution of th
Newtonian potential in Q models is a superposition of tw
effects: the change of the equation of state and the growt
z on super-Hubble scales. This late isocurvature effect co
be useful in order to distinguish a cosmological const
model from the models with a quintessence component.

The observational relevance of isocurvature modes ge
ated by quintessence is weakened by the decay in tim
quintessence perturbations inside the Hubble radius. For
reason the isocurvature mode in theQ-radiation sector is
very different from that in CDM radiation. This effect wa
also very appealing in order to minimize the effects of t
inclusion of this extra component on structure formation.
the models examined here, the suppression ofVQ during the
kinetic phase plays also a crucial role in order to weaken
effect of some initial isocurvature modes generated by qu
tessence. Even if the upper bound during nucleosynthesis
VQ is ;0.2, the kinetic regime suppressesVQ down to
10215210220 in the models which we have analyzed. Ther
fore our considerations may be more relevant for models
which VQ is closer to the upper limit, as, for instance, in th
models with a modified exponential potential@32#.

It is therefore interesting to study the impact of isocurv
ture fluctuations in quintessence models using numer
tools such asCMBFAST @31# in which quintessence perturba
tions are included. In particular, it is possible to constru
models whereVQ is not so suppressed or in which there is
late tracking phase, in which case isocurvature modes ge
ated by quintessence could lead to observable effects in
temperature anisotropies of the cosmic background radiat

Note added.We observe that the definition in Eq.~39! is
not unique. One could also define the relative isocurvat
perturbation with the comoving energy densities, as in@33#,
for example. In this case the relative comoving entropy
tween the radiation and the quintessence component is:
3-8
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SrQ
(c)5SrQ13H

a

k
~Vr2VQ!, ~44!

where the quintessence velocity is so defined:

VQ52
k

a

Q̇dQ

rQ1pQ
52

k

a

dQ

Q̇
. ~45!

The long wavelength solution forVr is given by solving Eq.
~17!, which leads to

Vr.2
k

aH

F

2
. ~46!

By inserting the attractor solution~20! in Eq. ~45!, and by
assuming exact tracking@g51 and Eq.~9!#, it is easy to
verify that the quintessence velocityVQ is equal to the ex-
pression~46!. Therefore, during exact tracking there are
isocurvature perturbations to the leading order generate
velocities, as already verified for the energy densities in
~23!.

After our paper was submitted, we received a draft of R
@34#. The analysis of the case with an exponential poten
@5# ~i.e. exact tracking! presented in@34# agrees with our
results for long wavelength, that is, up to terms of ord
O(k/aH)2.
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APPENDIX A

Here we present the equations that were evolved num
cally. Combining the 020 andi 2 i Einstein field equations
we can eliminate the radiation perturbations, and obtain
following equation for the quintessence and matter pertur
tions ~as explained in the text, we work with units such th
8pG51, and we have ignored the distinction between ba
ons and CDM!:

3F̈115HḞ1S 12H21
k2

a2D F52
1

2
dmrm1Q̇dQ̇2Q̇2F

22V,QdQ. ~A1!

The equation of motion for the scalar field perturbations
given in Eq.~14!. The matter density contrast obeys the e
ergy conservation equation:
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ḋm23Ḟ2
k

a
Vm50, ~A2!

whereVm is the matter fluid velocity, which itself satisfie
the momentum conservation equation:

V̇m1HVm1
k

a
F50. ~A3!

APPENDIX B

Here we present the evolution of pure isocurvature mo
generated by the quintessence sector. Consider contribu
from quintessence and another componentX to the metric
perturbation, which cause a vanishing contribution toF and
Ḟ @11# at some fixed initial time in the energy and mome
tum constraint. This requires that:

VQdQ52VXdX ~B1!

Q̇dQ52
4

3
vXrX , ~B2!

which identifies an isocurvature density mode~B1! and an
isocurvature velocity mode~B2! @20#. The third componentY
is the only one which leads to a curvature perturbation@for
long wavelengths22F5GYdY , as follows from Eq.~22!#.
The componentsX and Y are related by adiabaticity (SXY
50). Therefore, the quintessence density contrast at fi
initial time is:

dQ52dX

VX

VQ
52FS 11wX

11wY
D VX

VYVQ
. ~B3!

In Fig. 7 we show the evolution of the Bardeen parame
z for initial pure Q-CDM (X5CDM, solid line! and
Q-radiation (X5radiation, dashed line! isocurvature initial
conditions atz5109 for the model of Fig. 4. At the initial
time the Newtonian potential is so small in order to ens

FIG. 7. Gauge-invariant curvaturez for Q-CDM isocurvature
~solid lines! and Q-radiation~dashed lines! initial conditions for a
wavelength which crosses the Hubble radius atz50. The normal-
ization is made in such a way that the amplitude of the Newton
potential is roughly 1025 when the growth saturates.
3-9
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dQ<1. However, in both cases—but in particular for t
Q-radiation isocurvature initial conditions—Eqs.~B1! and
~B2! force Q fluctuations to very large values, both initial
and in the subsequent evolution. The evolution of Q fluct
tions for these types of initial conditions isnot described by
the attractor~20!—i.e. the inhomogeneous solution to th
ys

et

08351
-

differential equation for the quintessence fluctuations—
by the homogeneous solution to Eq.~14!. Indeed, in Fig. 7
the growth of the Bardeen parameter saturates roughly w
tracking starts in Fig. 4, i.e. when the homogeneous solu
for quintessence fluctuations starts to decay, as describe
Eqs.~19! and ~20! with aÞ0.
tt.
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