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Damping scales of neutralino cold dark matter
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The lightest supersymmetric particle, most likely the neutralino, might account for a large fraction of dark
matter in the Universe. We show that the primordial spectrum of density fluctuations in neutralino cold dark
matter ~CDM! has a sharp cutoff due to two damping mechanisms: collisional damping during the kinetic
decoupling of the neutralinos at about 30 MeV~for typical neutralino and sfermion masses! and free streaming
after the last scattering of neutralinos. The last scattering temperature is lower than the kinetic decoupling
temperature by one order of magnitude. The cutoff in the primordial spectrum defines a minimal mass for
CDM objects in hierarchical structure formation. For typical neutralino and sfermion masses the first gravita-
tionally bound neutralino clouds have to have masses above 1027M ( .

DOI: 10.1103/PhysRevD.64.083507 PACS number~s!: 95.35.1d, 14.80.Ly, 98.35.Ce, 98.80.Cq
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I. INTRODUCTION

Recent observations of cosmic microwave backgrou
~CMB! anisotropies are consistent with a key prediction
inflationary cosmology: The universe appears to be spati
flat @1#. However, only a small percentage of the mass tha
needed to account for the critical energy density of the u
verse comes in the form of baryons. Recent observation
primordial deuterium and other light elements suggest
the baryonic mass density isvb50.01960.0024@2#, which
implies that only about 5% of the mass in the universe
baryonic. The remaining mass is assumed to be a mixtur
different forms of yet unknown dark matter and dark ener
However, we do have evidence, mainly from the study
large scale structures, about the properties of dark matte

Cold dark matter~CDM! by definition has a nonrelativis
tic equation of state at the beginning of structure format
around the matter-radiation equality@3#. For successful struc
ture formation an important fraction of the dark mass has
be cold dark matter. Although purely baryonic matter and
dark matter~relativistic equation of state at matter-radiatio
equality! models were ruled out long ago@4#, a model with a
cosmological constant and baryonic matter only provide
good fit to the recent CMB observations@5#. When combined
with other cosmological observations it turns out that
small sound speed~at photon decoupling! of the baryonic
matter can only be compatible with the observed multip
moments if the universe is closed@6#. Moreover, this model
does not provide enough power at small scales to explain
observed distribution of galaxies@6#.

The most important feature of CDM is hierarchical stru
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ture formation, i.e., small structures form first and grow
larger structures later. A natural question obviously is
following: What is the smallest mass scale@7# of CDM struc-
tures?

Since the nature of CDM is unknown, the answer to t
question will not be the same for different CDM candidate
Natural candidates are particles that are predicted by ex
sions of the standard model of particle physics. A CDM ca
didate should be~meta!stable,~electrical and color! neutral,
and heavy. The minimal supersymmetric standard mo
~MSSM! with the assumption of conservedR parity provides
an excellent candidate: the lightest neutralinox̃1

0, which
probably is the lightest supersymmetric particle~LSP! @8#.

The time of kinetic decoupling of CDM depends on th
nature of CDM@9–11#. During kinetic decoupling collisiona
damping is the dominant mechanism. Once CDM is fu
decoupled from the radiation fluid, damping due to fr
streaming happens. Interesting general considerations
damping mechanisms for CDM were recently published
Boehm, Fayet, and Schaeffer@11#.

After the neutralinos decouple chemically~at aboutTcd
;M x̃/20) they remain in kinetic equilibrium due to freque
scattering with particles from the radiation fluid. After th
cosmic QCD transition~at ;160 MeV) neutralino-lepton
scattering is the most important process. The neutralinos
couple kinetically once the relaxation timet becomes com-
parable with the Hubble timetH[H21, which happens, de
pending on the parameters of the MSSM, between 10 M
and a few 100 MeV. Once collisions of neutralinos with pa
ticles from the radiation fluid cease, the equation of st
becomes nonrelativistic (P'0) and neutralino matter start
its life as cold dark matter@9,10,12#.

In the present work we calculate the temperatures of
netic decoupling and last scattering of neutralino CDM
the case of a B-ino-like neutralino. A first estimate of t
©2001 The American Physical Society07-1
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kinetic decoupling temperature, based on dimensional a
ments, was given by Schmid, Schwarz, and Widerin@9#, and
confirmed recently by more detailed calculations by Ch
Kamionkowski, and Zhang@12#. However, the authors o
Ref. @12# ignored the fact that the relevant time scale that
to be compared to the Hubble time is the relaxation ti
rather than the collision time. It was shown explicitly th
photon-neutralino scattering is suppressed by several or
of magnitudes, compared to lepton-neutralino scattering.

During the process of kinetic decoupling, collision
damping can smear out primordial fluctuations in neutral
CDM below some mass scaleMd . Free streaming gives ris
to additional damping belowM fs(t), which depends, in con
trast to Md , on time. Both damping mechanisms togeth
give rise to a sharp cutoff in the primordial power spectru
of neutralino CDM, that typically lies atM;1027M ( at the
time of matter-radiation equality. We presented prelimina
estimates in Ref.@10#. In Ref.@12# it was pointed out that the
estimate of induced damping found in Ref.@11# is wrong by
several orders of magnitude, mainly because the cross
tion for elastic scatterings of photons with neutralinos h
been overestimated.

We also show that bulk viscosity, besides shear viscos
cannot be neglected~as done in Ref.@11#! in the situation
when a nonrelativistic component decouples from a radia
fluid. At first sight this is a surprising result since bulk vi
cosity usually goes along with the transfer of energy to
ternal degrees of freedom or with particle production. No
of these mechanisms is available here. However, CDM
radiation have to be treated as two separate fluids; the
viscosity of the CDM fluid just reflects the energy dissipati
from the CDM fluid to the radiation fluid, which is a negl
gible effect for the radiation fluid since the energy density
the CDM fluid is tiny compared to the energy density of t
radiation fluid at kinetic decoupling. On the other hand t
heat conduction~which was considered in Ref.@11#! can be
neglected for the CDM fluid. The reason is simple: the n
tralinos are too slow.

The paper is organized as follows: A short summary
mass limits and our assumptions about the lightest neutra
is given in Sec. II. Then we review the simplest calculati
of chemical decoupling for pedagogical reasons, and c
pare that with our detailed calculation of the kinetic deco
pling and last scattering temperatures~Sec. III!. In Sec. IV
we introduce CDM as an imperfect fluid, along the lin
described in Refs.@13–15#. The kinetic theory for the de
scription of CDM is explained in Sec. V, and the coefficien
of transport are calculated in Sec. VI. For this purpose
generalize the program by Weinberg@15# and Straumann
@16# to the situation of a nonrelativistic component that d
couples from a relativistic fluid@Weinberg and Strauman
treated the problem of decoupling of a relativistic compon
~photons! from a nonrelativistic fluid~baryons!#. This finally
allows us to calculate the damping scale from kinetic dec
pling ~Sec. VII! and free streaming~Sec. VIII!. We conclude
with a short discussion of the implications of our finding
The relevant cross sections are calculated in Appendix
and some useful thermodynamical relations can be foun
Appendix B.
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II. NEUTRALINOS

A direct lower limit for the neutralino massM x̃ is pro-
vided by the experiments at CERN’s Large Electron Posit
collider ~LEP!, M x̃.37 GeV for any tanb and sfermion
mass @17#. Reasonable assumptions~universal soft
supersymmetry-breaking scalar masses at some higher s!
within the MSSM~constrained MSSM! and taking results of
the Higgs searches into account raises the lower limit
about 50 GeV@17,18#. Also incorporating constraints from
b→sg decays and assuming that neutralino dark matte
cosmologically interesting (0.1,vx̃,0.3) a lower limit as
high asM x̃>140 GeV can be derived@18#. The cosmologi-
cal upper limit also gives rise to an upper limit on the ne
tralino mass. It is essential to include the effects of the ne
to-lightest supersymmetric particles and coannihilations,
well as the contribution from poles and thresholds prope
@18–20#. A detailed analysis givesM x̃,600 GeV @18#.
Since many untested, although reasonable, assumption
into these limits, we decided in this work to assume th
M x̃.50 GeV.

The neutralinos are linear combinations of the neu
gauginos and the two Higgsinos of the theory, i.e.,

x̃1
05Z11B̃

01Z12W̃3
01Z13H̃1

01Z14H̃2
0 ~1!

expressed in terms of mass eigenstates.Z1 j , j P$1,2,3,4% are
elements of a real orthogonal matrix which diagonalizes
neutralino mass matrix. In most of the parameter space of
constrained MSSM the LSP is aB̃0. We assumex̃1

0[x̃

'B̃0.
For a pure B-ino the interaction with a standard mod

fermion F is given via the exchange of the related left-
right-handed sfermionF̃L,R as

LFF̃x̃52A2g F̄$bFF̃LPR2cFF̃RPL%1H.c., ~2!

whereg is the electroweak coupling constant, andPL,R de-
notes the left and right chiral projection operator. The l
and right chiral vertices are given by

bF5Z11

YF

2
tanuW1Z12T3F , ~3!

cF5Z11QFtanuW . ~4!

HereYF , T3F andQF are the weak hypercharge, isospin a
electrical charge of the involved fermions.

III. CHEMICAL AND KINETIC DECOUPLING

There is a large difference between the temperature
chemical decouplingTcd and the temperature of kinetic de
coupling Tkd of neutralino cold dark matter. This is a cha
acteristic feature of weakly interacting massive partic
~WIMP’s!. Chemical decoupling~freeze-out! fixes the relic
abundance of neutralinos and therefore the present valu
VCDMh2. Before kinetic decoupling the neutralinos a
tightly coupled to radiation, after kinetic decoupling the ne
tralinos acquire the properties of CDM. That is, the neutra
7-2
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DAMPING SCALES OF NEUTRALINO COLD DARK MATTER PHYSICAL REVIEW D64 083507
nos interact with radiation only via gravity and their pressu
is negligible compared to their energy density well befo
matter-radiation equality.

Let us first review the process of chemical decouplin
which is a useful warmup for the kinetic decoupling that
explained subsequently. We assume that the neutralino is
B-ino, which reduces the number of free parameters to
B-ino mass,M x̃ and to the universal sfermion massMF̃ . For
a more complete picture including Higgsino admixtu
thresholds, poles, and coannihilations, see Refs.@21,19,20#.

At T@Tcd neutralinos are kept in chemical equilibriu
with all standard model fermionsF in the heat bath at tem
peratureT via annihilation processesx̃1x̃↔F1F̄. From
Eq. ~2! one can calculate the annihilation rate forx̃1x̃→F

1F̄ @21#:

Gann~T!5(
F

^vsann&~T!nx̃~T! ~5!

5
2

p (
F

S GFMW
2

MF̃
2
1M x̃

2D 2F ~bF
21cF

2 !2mF
2

14~bF
41cF

4 !
MF̃

4
1M x̃

4

~MF̃
2
1M x̃

2
!2

M x̃TGnx̃~T!. ~6!

Here^•••& denotes thermal averaging andv is the Moeller-
velocity. In order to obtain Eq.~6! we expandedvsann for
small mF /M x̃ and smallv. More details can be found in
Appendix A. Note that the first term in the square brack
contributes practically only for top quarks (F5t). However,
we will assume below thatM x̃,mt such that the secon
term will be dominant in our estimate. We neglect annihi
tion of neutralinos into final states containing gauge a
Higgs bosons, such asx̃x̃↔$WW,ZZ,HH,HW,HZ%, since
these channels are particularly important for Higgsino-l
and mixed-state neutralinos, but are subdominant when c
pared to the fermion-antifermion channels in the case that
neutralino is mostly a gaugino@19#. Since we restrict our
attention to a pure B-ino, there is no contribution from d
grams withZ0 exchange at tree level, and therefore theZ0

pole does not invalidate our estimate below.
As the universe expands the temperature eventually

below the neutralino massM x̃ , and the number densitynx̃ of
neutralinos decreases exponentially. Once the annihila
rateGann becomes comparable to the expansion rateH of the
universe neutralinos no longer find other neutralinos to an
hilate. We use the conditionGann5H to define the tempera
ture of chemical decouplingTcd. Solving this equation itera
tively yields (x[M x̃ /T)

xcd
(0)5 lnF1.631024

MPl~MF̃
4
1M x̃

4
!M x̃

3

~MF̃
2
1M x̃

2
!4 G ,

xcd
(1)'xcd

(0)2
1

2
lnxcd

(0) , ~7!

as long as the B-ino mass is well below the top mass,
08350
e

,

he
e

,

s

-
d

m-
e

-

lls

n

i-

ut

large compared to the bottom mass. In deriving Eq.~7! we
assumed equal masses for all sfermions. Exploring the
rameter space of the MSSM we typically findxcd'25, cf.
Fig. 1.

The relic abundance of neutralinos is now easily obtain
asnx̃(T0)5nx̃(Tcd)s(T0)/s(Tcd), whereT052.725 K ands
denotes the entropy density of the universe. It is a go
approximation to use the equilibrium distribution for th
number density atTcd, although in a more advanced trea
ment the corresponding kinetic equation should be solv
From the number densitynx̃(T0) we may easily compute
vx̃[Vx̃h2, which is plotted in Fig. 2 as a function ofM x̃ for
typical values of the sfermion mass.

Below Tcd the neutralinos are kept in local thermal equ
librium via elastic scattering processesx̃1F→x̃1F. After
the QCD phase transition only leptonsL remain as scattering
partners for the neutralinos. We neglect scatterings w
pions, which is important forT.mp only. It will turn out
that in most casesTkd!mp . Scattering with nucleons is no
important due to the tiny number density of baryons. Fro
Eq. ~2! one can calculate the rate of elastic scatteringsx̃

1L→x̃1L @21#. We find

FIG. 1. The chemical decoupling as a function of the sferm
massMF̃ for three values of the neutralino massM x̃550, 100, and
150 GeV~increasing from the bottom to the top!.

FIG. 2. The relic abundance of neutralinos expressed byvx̃

5Vx̃h2 as a function of the neutralino massM x̃ for different values
of the sfermion massMF̃5150, 200, 250, 300, and 400 GeV. Th
sfermion mass increases from the bottom to the top. The d
shaded region is excluded by the conservative assumptionsV<1
andh,0.8. The light shaded region indicates typical values ofv in
a LCDM model.
7-3
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Gel5(
L

^vsel~EL!&~T!nL~T! ~8!

5
288

p (
L

~bL
41cL

4!S GFMW
2

ML̃
2
2M x̃

2D 2

T2nL~T!. ~9!

EL denotes the energy andnL the number density of the
leptons. In deriving Eq.~9! we approximate the Mandelstam
variables'M x̃

2
12M x̃EL . Note that the Moeller velocity in

this case isv'1 to a very good approximation.
In analogy to the chemical decoupling the conditionGel

5H defines the temperature at the time the last elastic in
actions between neutralinos and the rest of the Universe
place. This last scattering temperature is given by

Tls5F8.731023
mPl

~ML̃
2
2M x̃

2
!2G21/3

. ~10!

Typical values are 1–10 MeV, e.g.,Tls52.3(2.5) MeV for
M x̃5100(150) GeV andML̃5200(250) GeV. However
this is not the temperature at which neutralinos decou
kinetically. The kinetic decoupling temperature is defin
through the relaxation timet rather than by the collision
time tcoll51/Gel . This can be easily understood by the fo
lowing argument.

The relaxation timet, i.e., the time neutralinos need t
return to local thermal equilibrium after a deviation from
can be estimated from the typical number of scatterings
is needed to change the momentum of the neutralino sig
cantly. The typical momentum transfer in a single elas
scattering event is tiny compared to the average momen
of the neutralinos. This is easily seen from the avera
Mandelstam variablet:

~Dpx̃ !2[2
1

sel
E dsel

dt
tdt52EL

2 . ~11!

The leptons are kept in local thermal equilibrium through
frequent interactions among themselves, and the equip
tion theorem givesEL53/2T. Comparing the rms momen
tum transfer with the typical neutralino momentumpx̃ we
find Dpx̃ /px̃5A3/2T/M x̃!1. This means that a huge num
berN(T) of elastic scatterings is needed to keep or to es
lish thermal equilibrium,N(T)5px̃ /Dpx̃5A3/2M x̃ /T. We
can now estimate the relaxation time as

t~T!'A2

3

M x̃

T
tcoll . ~12!

Note thatt(T);1/T6.
The kinetic decoupling of the neutralinos happens wh

the relaxation timet becomes comparable to the Hubb
time 1/H. We denote the corresponding temperature byTkd ,
which is given by

Tkd5F1.231022
mPl

M x̃~ML̃
2
2M x̃

2
!2G21/4

, ~13!
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where we assumed that all leptons except the tau are rel
istic, but we neglected the contribution of pions which a
important at temperatures of about 130 MeV. Above t
QCD phase transition at about 160 MeV much more inter
tion partners are available and our formula should be mo
fied. Exploring the parameter space of the MSSM we ty
cally find thatTkd is of the order 10–100 MeV, cf. Fig. 3. Fo
M x̃5100 (150) GeV andML̃5200 (250) GeV we find
Tkd528 (36) MeV, whereas the chemical decoupling f
the same set of parameters happens atTcd54.0 (5.9) GeV, a
difference of more than two orders of magnitude.

The large difference betweenTcd andTkd is mainly due to
the different target densities in the annihilation rate@Eq. ~5!#
and the elastic scattering rate@Eq. ~8!#. For annihilations the
target density is given by the number densitynx̃ of neutrali-
nos in the universe. The number density of neutralinos
suppressed by the Boltzmann factor at chemical decoupl
In contrast the target density for elastic scattering proces
is given by the number density of all relativistic leptons.

During the cooling fromTcd to Tkd the leptons behave a
a perfect radiation fluid which tries to keep the neutralinos
thermal equilibrium through elastic scattering processes.
neutralinos on the other hand may be described as a no
ativistic, imperfect fluid.

IV. CDM AS A FLUID

For temperaturesT.Tcd the particle content of the uni
verse may be described by a single radiation fluid which is
local thermal equilibrium. For temperaturesTkd,T,Tcd the
radiation fluid is tightly coupled to the CDM fluid. Henc
both fluids have the same temperature and velocity 4-vect
Around Tkd the CDM fluid starts to decouple kineticall
from the radiation fluid, and becomes an imperfect fluid. T
departure from local thermal equilibrium is generated by d
sipation, i.e. by shear and bulk viscosity~we show below that
the coefficient of heat conduction vanishes!. For tempera-
turesT,Tkd both fluids are decoupled and the CDM fluid
freely streaming. SinceVCDM5(a/aeq)V rad!V rad for T
@Teq, the radiation fluid remains in local thermal equilib
rium throughout the decoupling process.

The current density and the energy-momentum tenso
the radiation fluid~R! are given by

FIG. 3. The temperature of kinetic decoupling of neutralin
from radiation as a function of the sfermion mass forM x̃550, 100,
and 200 GeV~from the bottom to the top!.
7-4
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JR
m5nRVm, ~14!

TR
mn5rRVmVn2PRhmn. ~15!

Here nR, rR, and PR are the number density, the energ
density, and the pressure of the radiation fluid, respectiv
V is the velocity 4-vector withV251. hmn5gmn2VmVn is
the projection operator on the plane perpendicular toV. The
radiation fluid variables only depend on the temperature
radiationTR since there are no relevant conserved quan
numbers besides R parity, which is taken into account in
CDM fluid.

The current density and the energy-momentum tenso
the imperfect CDM fluid can be written as@13–15#

Jm5nUm1J(1)m, ~16!

Tmn5r~T,n!UmUn2P~T,n!hmn1T(1)mn. ~17!

n, U, r(T,n), and P(T,n) are the number density
4-velocity, energy density, and pressure of the CDM flu
respectively. We omit the subscriptx̃ for the CDM compo-
nent in Secs. IV, V, and VI, since the results of these secti
hold true for more general forms of the WIMP CDM. Th
projection h is orthogonal toU here. We do not introduce
two different symbols in the following, because it is alwa
clear from the context to which velocityh refers. For the
CDM fluid T and n are independent variables, since the
parity, i.e., the number of neutralinos, is conserved.T is not
necessarily identical toTR, although this is the case whe
both fluids are in thermal equilibrium. In the adiabatic lim
all space-time gradients are negligible, i.e.,J(1)50, T(1)50,
and the CDM fluid has the same temperature and the s
velocity as the radiation fluid,U5V.

For an imperfect fluid described by Eqs.~16! and ~17!
number density, energy density and velocity are not defi
uniquely. To fix this ambiguity we define the number a
energy density by

n[UmJm, ~18!

r~T,n![UmUnTmn, ~19!

such that the hydrodynamic and thermodynamic definiti
of n andr coincide. The velocity is fixed to be the comovin
velocity of the CDM particles

Um[~JlJl!21/2Jm. ~20!

This choice of the velocity corresponds to the one of Eck
@13#, and was applied to relativistic fluids by Weinberg@15#.
An alternative would be the choice of Landau and Lifsch
@14#, where the velocity was fixed to coincide with the v
locity of the energy-momentum flow. In other words Eq.~18!
requiresJ(1) to be perpendicular toU. In the same sense Eq
~19! requiresT(1) to project on the plane perpendicular toU.
Condition ~20! means thatJ(1) has to vanish. With this
choice,

Jm5nUm, ~21!
08350
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Tmn5r~T,n!UmUn2P~T,n!hmn1T(1)mn. ~22!

The construction ofT(1) from a first-order formalism is given
in Ref. @15#. The starting point is thatT(1) has to be ex-
pressed in the equilibrium variables and their gradients. T
basic observation is that the variation of the entropy per p
ticle s along the adiabatic flow is generated by the change
T(1) in the same space-time direction, i.e.,

nTṡ52UmT,n
(1)mn , ~23!

where the dot denotes the hydrodynamic derivative,˙

[Um() ,m . Equivalently for the entropy current 4-vector w
may writeSm[nsUm11/TUlT(1)lm ~as can be easily see
in the comoving frame,S05ns5s is indeed the entropy
density andTSi5T(1)0i is the nonadiabatic contribution t
the energy-momentum flow, which is the heat flow!

T2S,l
l 52~UmT,n2TUm,n!T(1)mn. ~24!

As a consequence only space-time derivatives ofT andU can
occur inT(1) in order to keep the rate of entropy productio
positive for all fluid configurations.

The perturbed energy-momentum tensor may be
pressed in terms of the heat-flow vector

Qm5T,m2TU̇m ~25!

and the traceless shear tensor

Wmn5Um,n1Un,m2
2

3
gmnU ,l

l . ~26!

With these abbreviations we write@15#

T(1)mn5zhmnU ,l
l 1hhmrhnsWrs2x~hlmUn1hlnUm!Ql ,

~27!

where z, h and x are the coefficients for bulk viscosity
shear viscosity and heat conduction. These parameters
to be calculated in the framework of a nonequilibrium theo

V. KINETIC DESCRIPTION OF CDM

In this section and Sec. VI we generalize the method
Straumann@16# to calculate the coefficients of transport for
species of massive particles that decouple kinetically. In R
@16# the problem of the decoupling of radiation quanta w
treated.

Let F(p,x) be the distribution function of neutralinos
F(p,x) is normalized in such a way thatF(p,x) d3pd3x
gives the number of quanta in the volume d3x centered at the
space-time pointx and the 3-momentum within d3p. We as-
sume that the neutralinos are close to thermal equilibri
and make the ansatz

F5F (0)1F (1) with uF (1)u!F (0), ~28!

where
7-5
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F (0)~p,x!5
g

~2p!3

1

expS p•V

TR
2a D61

. ~29!

HereTR is the local temperature of the radiation fluid anda
is the local pseudochemical potential of the neutralino.
first order in the collision time,F (1) is a solution of the
kinetic equation

~p•]!F (0)5L@F (1)#. ~30!

L is supposed to be a linear functional inF (1). In the linear
regime one often usesL@F (1)#52vt21F (1) as a realistic
model for the collision integral.

In consideration of Eckarts´ approach to the hydrodynam
ics of imperfect fluids@13# we introduce a 4-vector perpen
dicular toV,

nm5upW u21~pm2vVm!, ~31!

with v5p•V such thatF (1) can be considered as a functio
of v, n andx or equivalent as a function of the projection
p in the direction ofV and perpendicular to it.

Following Ref. @22# we may now expandFP
(1)(v,n,x)

into polynomials inn:

F (1)~v,n,x!5A~v,x!1Bm~v,x!nm

1Cmn~v,x!S nmnn1
1

3
hmnD1•••. ~32!

It is clear from the kinetic equation~30! that we need to
know how the functionalL operates onF (1). In order to
solve this problem we note thatF is defined to be invarian
under Lorentz transformations. LetGx be the group of all
Lorentz transformations leavingV(x) invariant at every
space-time pointx, i.e. Gx is the little group with respect to
V. Gx is isomorphic to the Lie groupSO(3). Since F is
invariant underGx at every space-time pointx, F (1) is invari-
ant, and Eq.~32! is an expansion into irreducible polynom
als with respect toGx . From Eq. ~30! it follows that the
linear functionalL is a scalar with respect toGx . Therefore
it operates on the irreducible subspace spanned by the p
nomials in Eq.~32! as a multiple of the identity. Thus we ca
write

L@F (1)#52vFk0A1k1Bmnm1k2CmnS nmnn1
1

3
hmnD G

1•••, ~33!

wherek j ( j P$0,1,2%) are functions ofv and x only. Note
that in the case of the model for the collision integral d
cussed abovek j5t21 for all j P$1,2,3%.

Next we derive expressions forA, Bm andCmn in terms of
V, TR, a andk j using the kinetic equation~30!. In order to
do this we have to define a measure dVV on the two dimen-
sional surfaceS5$p:p25M2,p0.0 and v5const%. dVV
is normalized such that
08350
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1

4pES
dVV51. ~34!

The irreducible polynomials in Eq.~30! are orthogonal with
respect to dVV and are normalized as follows:

1

4pES
dVVnmnn52

1

3
hmn, ~35!

1

4pES
dVVS nmnn1

1

3
hmnD S nanb1

1

3
habD

5
1

15
h$mnhab%2

1

9
hmnhab. ~36!

Now it is possible to project out every tensor in the expa
sion of L@F (1)# @Eq. ~32!#. Taking moments of Eq.~30! and
using Eq.~32! we obtain

A5
1

k0

vF8

TR
F ṪR

TR
1

1

3 S 12
m2

v2D 2

V,l
l 1

TR

v
ȧG , ~37!

Bm5
1

k1

vF8

TR
S 12

m2

v2D
1
2

hm
l F 1

TR
Ql1

TR

v
a ,lG , ~38!

Cmn52
1

k2

vF8

TR

1

2 S 12
m2

v2D 2

hm
l hn

gWlg . ~39!

Here F8(v/TR2a) denotes the external derivativ
of F (0)(v,x). In calculating the integrals we replace
(p•])TR with v(V•])TR and pb(p•])Vb with
upW u2nb(n•])Vb.

Coefficients~37! and~38! depend on the variations ofTR
anda along the adiabatic flow and the directional derivati
of a in the plane perpendicular to the adiabatic flow. In ord
to make sure that the rate of entropy production along
adiabatic flow is positive for all kinematical configuration
these derivatives need to be proportional to space-time
dients ofTR andV. Using the adiabatic relations derived
Appendix B we find

A52
1

k0

vF8

TR
3F S ]P

]r D
n

2
1

3 S 12
m2

v2D 2

1v21S ]P

]n D
r
GV,l

l , ~40!

Bm5
1

k1

vF8

TR
S 12

m2

v2D
1
2F v

TR
2

w

nTR
Ghm

l Ql ,

~41!

Cmn52
1

k2

vF8

TR

1

2 S 12
m2

v2D 2

hm
l hn

gWlg , ~42!

with the enthalpyw5r1P.
7-6
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A. Current density

In kinetic theory the current density of neutralinos
given by

Jk m5E d3p

p0
pmF~v,n,x!. ~43!

Considering our ansatz@Eq. ~28!#, we may write

Jk m5Jk(0)m1Jk(1)m, ~44!

with the definitions

Jk(0)m [E d3p

p0
pmF (0)~v,x!5nkVm, ~45!

nk54pE
M

`

dv~v22M2!1/2vF, ~46!

and

Jk(1)m [E d3p

p0
pmF (1)~v,n,x!5DnVm1Jdiff

m . ~47!

Dn is generated by the coefficientA, whereasJdiff is gener-
ated byB:

Dn54pE
M

`

dv~v22M2!1/2vA, ~48!

Jdiff
m 52

4p

3 E
M

`

dv~v22M2!Bm. ~49!

Let us rewrite the above expressions with help of the follo
ing notation:

f a
( i , j )~TR,a;x![24pE

M

`

dv~v22M2! i /2v j
F8

TRka
.

~50!

Note that the mass dimension off a
( i , j ) is simply i 1 j . In

terms of these functions we obtain

Dn5F f 0
(1,2)S ]P

]r D
n

2 f 0
(3,0)1

3
1 f 0

(1,1)S ]P

]n D
r
GV,l

l , ~51!

Jdiff
m 5

1

3TR
F f 1

(3,0)2 f 1
(3,21) w

n GhmlQl . ~52!

B. Energy-momentum tensor

The energy-momentum tensor of neutralino CDM is giv
by

Tk mn5E d3p

p0
pmpnF~v,n,x!. ~53!

Again, in consideration of our ansatz we may write
08350
-

Tk mn5Tk(0)mn1Tk(1)mn, ~54!

with the definitions

Tk(0) mn[E d3p

p0
pmpnF (0)~v,x!

5rkVmVn2Pkhmn, ~55!

rk54pE
M

`

dv~v22M2!1/2v2F, ~56!

Pk5
4p

3 E
M

`

dv~v22M2!3/2F ~57!

and

Tk(1)mn[TA
(1)mn1TB

(1)mn1TC
(1)mn1•••. ~58!

The labelsA, B, and C indicate which tensor in expansio
~32! gives rise to the extra contribution. From Eqs.~32! and
~40!–~42! we find

TA
(1)mn5DrVmVn2DP hmn, ~59!

TB
(1)mn5

1

3TR
F f 1

(3,1)2 f 1
(3,0)w

n GV$mhn%lQl , ~60!

TC
(1)mn5

1

15
f 2

(5,21)hmlhngWlg , ~61!

with

Dr5F f 0
(1,3)S ]P

]r D
n

2 f 0
(3,1)1

3
1 f 0

(1,2)S ]P

]n D
r
GV,l

l , ~62!

DP5
1

3 F f 0
(3,1)S ]P

]r D
n

2 f 0
(5,21) 1

3
1 f 0

(3,0)S ]P

]n D
r
GV,l

l .

~63!

VI. COEFFICIENTS OF TRANSPORT

In the following we calculate the coefficients of bulk an
shear viscosity and the coefficient of heat conduction
neutralino CDM starting from the kinetic description. In Se
III we introduced Eckart’s approach to describe imperfe
fluids @13#. The number density and the energy density of
CDM fluid coincide with the corresponding quantities in th
adiabatic limit@see Eqs.~18! and ~19!#, and the velocity of
the CDM fluid is fixed via the particle current@see Eq.~20!#.
These definitions, together with the required space-time s
metries and the second law of thermodynamics, determ
the most general structure ofJ(1) andT(1) ~see Ref.@15#!, as
given in Eq.~27!.

To compare the kinetic description from Sec. V with th
approach of Eckart it is necessary that the conditions~18!–
~20! are fulfilled. Instead for the kinetic description we fin

VmJk m5nk1Dn, ~64!
7-7
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VmVnTk mn5rk1Dr, ~65!

hmlJl5Jdiff
m . ~66!

Due to the nonequilibrium dynamics, the kinetic numb
density and energy density do not coincide with Ecka
definitions, and Eqs.~64! and ~65! are in conflict with Eqs.
~18! and ~19!. Equation~66! shows the existence of a diffu
sion current in the plane perpendicular toV. As a conse-
quence the current density 4-vector does not point to
space-time direction that is required by the approach of E
art @Eq. ~20!#. In the following we consider the temperatu
and the number density to be the independent thermo
namical variables.

Let us first establish the link between the current in
kinetic and hydrodynamic descriptions. As a first step
make a transformation of the velocity, such that the diffus
current vanishes,

V→U2~nk1Dn!21Jdiff , ~67!

which allows us to write

Jm5~nk1Dn!Um5nUm, ~68!

from comparison with Eq.~18!.
Let us now turn to the energy-momentum tensor. Tra

formation~67! with n5nk1Dn generates an extra contribu
tion to the heat conduction since

rkVmVn5rkUmUn2
rk

n
UmJdiff

n 2
rk

n
Jdiff

m Un1O~Jdiff
2 !.

~69!

It remains to find the relation between the kinetic@Eq. ~65!#
and hydrodynamic@Eq. ~19!# definitions of the energy den
sity. The point is that the definitions of temperature in t
approach of Eckart and in the kinetic theory under consid
ation are different@15#. In kinetic theory there is a uniqu
way to define temperature as the temperature of the lep
and photons which stay in thermal equilibrium during a
after the kinetic decoupling of the neutralinos. In the a
proach of Eckart the temperature was chosen such tha
energy density agrees with the one in the adiabatic lim
Thus it is clear that the difference in the definitions should
generated byDr. Since we are only interested in effec
linear in the collision time we may expandDr in a first order
Taylor expansion. Solving this expansion for the differen
in the temperatures,

TR5T1S ]r

]TD
n

21F S ]r

]nD
T

Dn2DrG . ~70!

Let us now rewrite the energy-momentum tensor as ca
lated in the kinetic theory in terms ofT, n andU:
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Tk mn~T,n!5r~T,n!UmUn2P~T,n!hmn

1F S ]P

]n D
r

Dn1S ]P

]r D
n

Dr2DPGhmn

1TB
(1)mn~T,n!1

w

n
UmJdiff

n ~T,n!

1
w

n
Jdiff

m ~T,n!Un1TC
(1)mn~T,n!. ~71!

This expression can be compared to Eq.~27! and the
transport coefficients can be extracted. We express them
terms of the functionsf a

( i , j ) :

z5 f 0
(1,3)S ]P

]r D
n

2

1 f 0
(1,1)S ]P

]n D
r

2

2
2

3
f 0

(3,1)S ]P

]r D
n

1
1

9
f 0

(5,21)

12 f 0
(1,2)S ]P

]r D
n
S ]P

]n D
r

2
2

3
f 0

(3,0)S ]P

]n D
r

, ~72!

h5
1

15
f 2

(5,21) , ~73!

Tx5
1

3 F f 1
(3,1)22

w

n
f 1

(3,0)1S w

n D 2

f 1
(3,21)G . ~74!

Instead of equating the collision integral to our expans
~33! and solving for the unknown functionska(v,x) (a
P$0,1,2%) we give a qualitative correct estimate. This can
achieved by using the following model for the collision in
tegral:

L@F (1)#'2v t21F (1) ~75!

which corresponds toka(v,x)5t21 for all (aP$0,1,2%).
This model reflects the linear dependence onF (1) and gen-
erates the variation ofF (0) in the direction of the adiabatic
motion through the rate of elastic scatterings. Furtherm
since neutralinos are nonrelativistic at kinetic decoupling
use the approximation

f a
( i , j )' f ( i , j )' i !! ~MT!( i 23)/2M jnt ~76!

for odd i, and

n'
g

~2p!3/2
~MT!3/2expS a2

M

T D . ~77!

In this caseDr and DP depend linearly onDn: Dr
'MDn,DP'5/3TDn. At any time stepDt the variation of
the number density due to nonequilibrium processes is gi
by the number of collisions duringDt, i.e., Dn5ṅt.

In O(t), and up to orderT/M , we find

h'nTt, z'
5

3
nTt, x'0. ~78!
7-8
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It is interesting to note thatx'0 at this order since the
contribution of transformation~67! to the energy momentum
tensor cancelsTB

(1) .
At first sight it might be surprising that the heat condu

tion vanishes and the bulk viscosity is nonvanishing. T
mentioned cancellation betweenTB

(1) and Jdiff indicates that
the only possible mechanism to transport heat in the n
tralino fluid is convection. Since the neutralinos are ve
slow and very sparse, heat can be neither radiated nor
ducted. We decided to use a frame that is comoving with
neutralinos~Eckart’s approach@13#!; thus there is no hea
conduction here. In a single fluid bulk viscosity goes alo
with internal degrees of freedoms or with particle product
or decay. In our situation the number of neutralinos is c
served and they do not have any internal degrees of free
which can dissipate energy. Nevertheless, the bulk visco
is nonzero, the reasons being that we are dealing with
fluids and that the bulk viscosity describes the energy di
pation to the radiation fluid. There should be a correspond
term for the radiation fluid; however, we can neglect th
term sincerR@nT at kinetic decoupling. The authors of Re
@11# incorrectly assumed thatxÞ0 andz50 in their work.
Let us note that our result (x50 andzÞ0) holds in general
for any kind of WIMP-like CDM.

VII. COLLISIONAL DAMPING OF ACOUSTIC
PERTURBATIONS

The viscosity coefficients and the coefficient for heat co
duction enter into the decay rate of acoustic perturbatio
which we will study now. Following Weinberg@15# let us
start with a static homogeneous fluid with

U5~1,0W !, r,P,n,T5const. ~79!

This fluid should leave the adiabatic limit but stay close
thermal equilibrium. As a consequence small perturbati
will occur with the space-time dependence

d~r,P,n,T,kW•UW !5~r (1),P(1),n(1),T(1),kW•UW (1)!

3exp~ ivt !exp~2 ikW•xW !. ~80!

Note that the perturbation of the zeroth component ofU
should vanish in order to guarantee the normalization co
tion.

Inserting Eq.~80! into the conservation laws for the num
ber density, energy density and momentum we obtain a
tem of three linear algebraic equations

A~z,h!~dT,dn,kW•dUW !T50W , ~81!

where we usedx[0 and the matrixA(z,h) given in Ref.
@15#. The dispersion relation is provided by the requirem

detA~z,h!50, ~82!

which to first order in the collision time (k[ukW u) yields

Rev5kvs , Im v52L@z,h#k2[2G@z,h#. ~83!
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The square of the isentropic sound speed,vs , is given by

vs
2[S ]P

]r D
s

5
T

r1P S ]P

]T D
n
S ]P

]r D
n

1
n

r1P S ]P

]n D
T

'
5

3

T

M x̃

, ~84!

and the characteristic lengthL for absorption reads

L@z,h#'

z1
4

3
h

2r
'

3

2

T

M x̃

t. ~85!

Note that the length scale of collisional damping is prop
tional to the relaxation time. The authors of Ref.@11# as-
sumed instead that the characteristic scale for acoustic
sorption is given by the collision time. This is correct only
acoustic perturbations are smeared out after a single con
with the heat bath. In Sec. III we already proved that, in t
case under consideration, a huge number of contacts with
heat bath is needed to establish equilibrium.

Since the parameters of the fluid are slowly varying d
ing the cooling toTkd , the amplitude of an acoustic pertu
bation behaves like a WKB solution. The damping of dens
perturbations is given by

d~k!5expS 2E
0

t(Tkd)

G~ t !dt D ,

5expS 2
3

10

Tkd

M x̃
S kphys

H D
T5Tkd

2 D . ~86!

We integrate over the time interval@0,tkd#, during which the
fluid is close to thermal equilibrium and CDM density pe
turbations evolve like~damped! sound waves. In principletkd
is a function ofk; however, we find that for modes of intere
we can taketk to be independent ofk. This follows as
Re(v)t5vskphyst,1 is easily fulfilled for the subhorizon
scales (kphys/H)(Tkd),1/vs;104 for typical MSSM masses
including all modes of interest.

From Eq.~86! we can read off a typical wavelength fo
collisional damping,

l d~Tkd!5
2p

A10
vkdRH~Tkd!, ~87!

wherevkd5A3Tkd /M x̃ andRH[1/H denotes the Hubble ra
dius. We find l d'0.06(0.05)RH(Tkd) for M x̃

5100(150) GeV andML̃5200(250) GeV.
Instead of characterizing acoustic perturbations by th

wavelength or wave numberkphys;a21;t1/2 it is more con-
venient to work with a constant in time—the rest massM of
neutralinos within a sphere of radius 2p/kphys:
7-9
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M[
4

3
p~2p/kphys!

3nx̃M x̃ . ~88!

Using the definition ofM we can write Eq.~86! as

d~M !5exp@2~Md /M !2/3#, ~89!

where the mass scale of damping,Md , is given by

Md5
24p4

5 S 3

10D
1/2S Tkd

M x̃
D 3/2

M x̃nx̃~Tkd!RH
3 ~Tkd!

'2.631028
~1 GeV!3

~M x̃Tkd!
3/2

vx̃M ( . ~90!

Exploring the parameter space of the MSSM we typica
find MD'1029M ( ; cf. Fig. 4.

VIII. FREE STREAMING

For temperaturesT,Tls the neutralinos are collisionles
so that the viscosity coefficients vanish. Each neutral
moves along a geodesic in space-time. This geodesic mo
of neutralinos provides a second damping mechanism:
streaming@23#. If the proper distancel fs(t) which a neu-
tralino can travel along a geodesic in timet is larger than the
proper wavelengthlphys[2p/kphys of a perturbation att any
structure will be wiped out since the neutralinos will prop
gate from an overdense region to an underdense region.
proper distance of free streaming for a neutralino at timt
P@ t ls ,teq# is given by

l fs~a!5
als

a
v lslnS a

als
DRH~a!, ~91!

whereals denotes the expansion factor andv ls5A3Tls /M x̃

the average neutralino velocity at last scattering. Explor
the parameter space of the MSSM at equality we typica

FIG. 4. The damping scaleMd in solar masses as a function o
the neutralino massM x̃ for different values of the slepton mas
ML̃5150, 200, 300, and 400 GeV. The slepton mass increases
the bottom to the top.
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find l fs(aeq)'1028RH(aeq), which corresponds to 5
31024 pc today. This length scale contains a mass ofM fs
'1027M ( ; cf. Fig. 5.

Let us compare the scales of the two distinct damp
mechanism at equality, the time when structures begin
grow ~before equality CDM perturbations grow logarithm
cally!. For a@als we find

l fs

l d
5

A10

2p
lnS a

als
D , ~92!

which givesl fs / l d'6 ~or M fs /Md'220) at equality.

IX. CONCLUSIONS

In this paper we have shown that kinetic decoupling
neutralino dark matter leads to collisional damping at
scale 1029M ( . This scale could be larger for certain regio
in the MSSM parameter space, e.g., when the neutra
mass and one of the slepton masses~probably the stau! are
nearly degenerate. In this case our tree-level expressions
come singular, and are not applicable. We have pointed
that it is important to distinguish between the collision tim
and the relaxation time of neutralino CDM. The correspon
ing temperatures differ by about an order of magnitu
which can lead to a difference of several orders of magnit
in the corresponding mass scales of damping.

The process of collisional damping has been described
imperfect fluids, and we calculated the transport coefficie
from kinetic theory by generalizing the method of Strauma
@16# in order to include massive particles. We found that bu
viscosity cannot be neglected, whereas heat conductio
negligible in the process of kinetic decoupling of neutralino

After kinetic decoupling free streaming starts to smear
remaining perturbations on scales below 1027M ( by the
time of equality. Both scales are quite close, which sho
that both mechanisms have to be considered in the calc
tion of the resulting power spectra for cold dark matter. W
will present the corresponding transfer functions and pow
spectra elsewhere@24#.

m

FIG. 5. The free streaming massM fs at matter-radiation equality
in solar masses as a function of the neutralino massM x̃ for different
values of the slepton mass:ML̃5150, 200, 300, and 400 GeV. Th
slepton mass increases from the bottom to the top.
7-10
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DAMPING SCALES OF NEUTRALINO COLD DARK MATTER PHYSICAL REVIEW D64 083507
These damping mechanisms provide a sharp~exponential!
cutoff in the power spectrum of CDM objects. Such a cut
sets the scale for the very first objects that form in hierarc
cal structure formation. Although this might be impossible
observe directly, it might have implications on the substr
ture of galactic halos and on the structure of CDM in vo
regions, where some of the first CDM clouds might hav
chance to survive. The cosmological and astrophysical c
sequences of this cutoff will be investigated in a forthcom
publication@24#.
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APPENDIX A: CROSS SECTIONS

This appendix contains the exact scattering amplitude
tree level for elastic scattering and annihilation processes
simplified formulas for the related cross sections. Let us
gin with the squared transition matrix elementuT u2 ~summed
over final and averaged over initial spins! for B̃1$L,L̄%
→B̃1$L,L̄% expressed as a function of the usual Mand
stam variables. Our notation is as follows:Tl(u) is the scat-
tering amplitude which describes the exchange of a l
handed slepton in theu channel and so on. For the squar
terms we find

uTl~u!u254~gbL!4S u2MB̃
2
2mL

2

u2ML̃
2 D 2

,

uTl~s!u254~gbL!4S s2MB̃
2
2mL

2

s2ML̃
2 D 2

,

uTr~u!u254~gcL!4S u2MB̃
2
2mL

2

u2ML̃
2 D 2

,

uTr~s!u254~gcL!4S s2MB̃
2
2mL

2

s2ML̃
2 D 2

,

where we assumed for simplicity that the masses of the
and right-handed sleptons are equal.

For the different interference terms we find

Tl~u!T l
†~s!54~gbL!4

2mL
2MB̃

2
2MB̃

2
t

~u2ML̃
2
!~s2ML̃

2
!
,

Tr~u!T r
†~s!54~gcL!4

2mL
2MB̃

2
2MB̃

2
t

~u2ML̃
2
!~s2ML̃

2
!
,

Tl~u!T r
†~u!516g4~bLcL!2S mLMB̃

u2ML̃
2D 2

,

08350
f
i-

-

a
n-

-
n
t.

at
nd
-

-

t-

t-

Tl~s!T r
†~s!516g4~bLcL!2S mLMB̃

s2ML̃
2D 2

,

Tl~u!T r
†~s!54g4~bLcL!2

2mL
2MB̃

2
2mL

2t

~u2ML̃
2
!~s2ML̃

2
!
.

Summing up the squared and interference terms yields

uT u254g4~bL
41cL

4!F S s2MB̃
2
2mL

2

s2M l̃
2 D 2

1S u2MB̃
2
2mL

2

u2M l̃
2 D 2

1
~2mLMB̃!222MB̃

2
t

~s2ML̃
2
!~u2ML̃

2
!
G18g4~bLcL!2F S 2mLMB̃

s2ML̃
2 D 2

1S 2mLMB̃

u2ML̃
2 D 2

1
~2mLMB̃!222mL

2t

~s2ML̃
2
!~u2ML̃

2
!
G .

SincemL denotes the mass of a standard model fermion
usemL'0. Furthermore the binos are nonrelativistic so th
s'MB̃

2
12MB̃EL to a very good approximation. Using th

above-mentioned simplifications we find

uT u25256~bL
41cL

4!S GFMW
2

ML̃
2
2MB̃

2 D 2S 12
t

4EL
2D ,

and for the elastic cross section the simplified formula

sel~EL!5
24

p
~bL

41cL
4!S GFMW

2

ML̃
2
2MB̃

2 D 2

EL
2 .

The squared transition matrix element~summed over final
and averaged over initial spins! for B̃1B̃→F̄1F may be
found from uT u2 for elastic scattering processes by maki
the following modifications:s→u, t→s andu→t. Expand-
ing in mF /MB̃ and in the Lorentz invariant relative velocit
v up to second order yields

vsann5
2

p S GFMW
2

MF̃
2
1MB̃

2 D 2F ~bF
21cF

2 !2mF
2

1
2

3
~bF

41cF
4 !

MF̃
4
1MB̃

4

~MF̃
2
1MB̃

2
!2

~MB̃v !2G ,

wherev is given by (v/2)2512(2MB̃)2/s.

APPENDIX B: ADIABATIC RELATIONS

In this appendix we show howṪ and space-time gradient
of a are related toU ,l

l andQm . The second law of thermo
dynamics gives the variation in the entropy per particles as

nTds5dr2
w

n
dn. ~B1!
7-11



do

-

e
ur-
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Since ds must be a perfect differential,

TS ]P

]T D
n

5w2nS ]r

]nD
T

~B2!

follows. For adiabatic motion,

05nTṡ ~B3!

5S ]r

]TD
n

Ṫ2
T

n S ]P

]T D
n

ṅ,

or, using the conservation law d(nU)50,

Ṫ52TS ]P

]r D
n

U ,l
l . ~B4!

The Gibbs-Duhem relation gives the variation of the pseu
chemical potentiala5m/T as
v.
.

-

vi
th
ity

s

08350
-

da5
dP

nT
2

w

nT

dT

T
. ~B5!

For adiabatic motion and using Eqs.~B2! and ~B4!, this
yields

Tȧ52S ]P

]n D
r

U ,l
l . ~B6!

Using Eq.~B5! and the relativistic generalization of the Eu
ler equation, we find

Thmla ,l52
w

Tn
hmlQl . ~B7!

Thus the variation ofa in the plane perpendicular to th
adiabatic flow is generated by the projection of the heat c
rent on this plane.
-

D

d

ppl.
.
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