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Damping scales of neutralino cold dark matter
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The lightest supersymmetric particle, most likely the neutralino, might account for a large fraction of dark
matter in the Universe. We show that the primordial spectrum of density fluctuations in neutralino cold dark
matter (CDM) has a sharp cutoff due to two damping mechanisms: collisional damping during the kinetic
decoupling of the neutralinos at about 30 M@V typical neutralino and sfermion masgesd free streaming
after the last scattering of neutralinos. The last scattering temperature is lower than the kinetic decoupling
temperature by one order of magnitude. The cutoff in the primordial spectrum defines a minimal mass for
CDM objects in hierarchical structure formation. For typical neutralino and sfermion masses the first gravita-
tionally bound neutralino clouds have to have masses abovéMlg.
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I. INTRODUCTION ture formation, i.e., small structures form first and grow to
larger structures later. A natural question obviously is the
Recent observations of cosmic microwave backgroundollowing: What is the smallest mass scéfg of CDM struc-
(CMB) anisotropies are consistent with a key prediction oftures?
inflationary cosmology: The universe appears to be spatially Since the nature of CDM is unknown, the answer to this
flat [1]. However, only a small percentage of the mass that igluestion will not be the same for different CDM candidates.
needed to account for the critical energy density of the uniNatural candidates are particles that are predicted by exten-
verse comes in the form of baryons. Recent observations @fions of the standard model of particle physics. A CDM can-
primordial deuterium and other light elements suggest thadidate should bemetgstable, (electrical and colgrneutral,
the baryonic mass density is,=0.019+0.0024[2], which ~ and heavy. The m|n|mal_ supersymmetric gtandarq model
implies that only about 5% of the mass in the universe isMSSM) with the assumption of conservétparity provides
baryonic. The remaining mass is assumed to be a mixture afn excellent candidate: the lightest neutralig§, which
different forms of yet unknown dark matter and dark energyprobably is the lightest supersymmetric partidl<SP) [8].
However, we do have evidence, mainly from the study of The time of kinetic decoupling of CDM depends on the
large scale structures, about the properties of dark matter. nature of CDM[9—-11]. During kinetic decoupling collisional
Cold dark matte(CDM) by definition has a nonrelativis- damping is the dominant mechanism. Once CDM is fully
tic equation of state at the beginning of structure formationrdecoupled from the radiation fluid, damping due to free
around the matter-radiation equaliy]. For successful struc- streaming happens. Interesting general considerations on
ture formation an important fraction of the dark mass has talamping mechanisms for CDM were recently published by
be cold dark matter. Although purely baryonic matter and hoBoehm, Fayet, and Schaeffiirl].
dark matter(relativistic equation of state at matter-radiation  After the neutralinos decouple chemicallgt aboutT 4
equality models were ruled out long agd], a model witha  ~M7/20) they remain in kinetic equilibrium due to frequent
cosmological constant and baryonic matter only provides &cattering with particles from the radiation fluid. After the
good fit to the recent CMB observatiofs. When combined cosmic QCD transitionat ~160 MeV) neutralino-lepton
with other cosmological observations it turns out that thescattering is the most important process. The neutralinos de-
small sound spee¢at photon decouplingof the baryonic  couple kinetically once the relaxation timebecomes com-
matter can only be compatible with the observed multipoleparable with the Hubble timg,=H !, which happens, de-
moments if the universe is clos¢@]. Moreover, this model pending on the parameters of the MSSM, between 10 MeV
does not provide enough power at small scales to explain thand a few 100 MeV. Once collisions of neutralinos with par-
observed distribution of galaxi¢§]. ticles from the radiation fluid cease, the equation of state
The most important feature of CDM is hierarchical struc-becomes nonrelativisticR~0) and neutralino matter starts
its life as cold dark mattel9,10,13.
In the present work we calculate the temperatures of ki-
*Email address: stehof@th.physik.uni-frankfurt.de netic decoupling and last scattering of neutralino CDM for
"Email address: dschwarz@hep.itp.tuwien.ac.at the case of a B-ino-like neutralino. A first estimate of the
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kinetic decoupling temperature, based on dimensional argu- Il. NEUTRALINOS
ments, was given by Schmid, Schwarz, and Widg®ilh and

&onﬂ_r mekd reli_ently dbéhmorelzdetzlled calculﬁtlons hby Ch?n\/ided by the experiments at CERN’s Large Electron Positron
amlonKowsKi, an ang12]. However, the authors o collider (LEP), M7>37 GeV for any tag and sfermion

Ref.[12] ignored the fact that the relevanttimescalethathaemls’,3 [17]. Reasonable assumptionguniversal soft

to be compared to the Hubble time is the relaxation timeg,nersymmetry-breaking scalar masses at some highej scale
rather than the collision time. It was shown explicitly that \yithin the MSSM(constrained MSSMand taking results of
photon-neutralino scattering is suppressed by several ordefge Higgs searches into account raises the lower limit to
of magnitudes, compared to lepton-neutralino scattering. ahout 50 Ge\[17,1§. Also incorporating constraints from
During the process of kinetic decoupling, collisional |, . s, decays and assuming that neutralino dark matter is
damping can smear out primordial fluctuations in neu”a"r‘ocosmologically interesting (0Lw~<0.3) a lower limit as
CDM below some mass scaldy. Free streaming gives rise pjgh asM;=>140 GeV can be derived8]. The cosmologi-
to additional damping belowl(t), which depends, in con- 4| ypper limit also gives rise to an upper limit on the neu-
trast toMy, on time. Both damping mechanisms togethery gjing mass. It is essential to include the effects of the next-
give rise to a sharp cutoff in the primordial power SpectruMig_lightest supersymmetric particles and coannihilations, as
of neutralino CDM, that typically lies &1 ~10" ‘Mo atthe  \ye|| as the contribution from poles and thresholds properly
time of matter-radiation equality. We presented prellmlnary[lg_zq_ A detailed analysis givesM~<600 GeV [18].
estimates in Ref10]. In Ref.[12] it was pointed out that the ~ Since many untested, although reasonable, assumptions go
estimate of induced damping found in REf1] is wrong by into these limits, we decided in this work to assume that
several orders of magnitude, mainly because the cross sefg~-~50 Gev.

tion for elastic scatterings of photons with neutralinos has “the neutralinos are linear combinations of the neutral

A direct lower limit for the neutralino maskl; is pro-

been overestimated. . _ __ gauginos and the two Higgsinos of the theory, i.e.,
We also show that bulk viscosity, besides shear viscosity;,
cannot be neglecteths done in Ref[11]) in the situation X1=Z11BO+ Z1 W3+ ZHY + 7, HY (1)

when a nonrelativistic component decouples from a radiation

fluid. At first sight this is a surprising result since bulk vis- expressed in terms of mass eigenstafgs,j €{1,2,3,4 are
cosity usually goes along with the transfer of energy to in-elements of a real orthogonal matrix which diagonalizes the
ternal degrees of freedom or with particle production. Noneneutralino mass matrix. In most of the parameter space of the
of these mechanisms is available here. However, CDM andgnstrained MSSM the LSP is B, We assumexd=Yy
radiation have to be treated as two separate fluids; the bulk =g

viscosity of the CDM fluid just reflects the energy dissipation
from the CDM fluid to the radiation fluid, which is a negli-
gible effect for the radiation fluid since the energy density of " s

the CDM fluid is tiny compared to the energy density of thefight-handed sfermioir_ g as

radiation fluid at kinetic decoupling. On the other hand the — - ~

heat conductiorfwhich was considered in Ref11]) can be Legy=— 29 F{beF Pr—ceFrP} +H.c., @

neglected for the CDM fluid. The reason is simple: the neu—Whereg is the electroweak coupling constant, &Rdg de-
tralinos are too slow. ,

The paper is organized as follows: A short summary Ofnotes the left and right chiral projection operator. The left

mass limits and our assumptions about the lightest neutralin%nd right chiral vertices are given by

is given in Sec. Il. Then we review the simplest calculation .

of chemical decoupling for pedagogical reasons, and com- bF=2117tan9W+ Z15T 3¢, 3
pare that with our detailed calculation of the kinetic decou-
pling and last scattering temperatur&ec. Il). In Sec. IV
we introduce CDM as an imperfect fluid, along the lines
described in Refs[lS—lﬂ The kinetic theory for the de- HereYg, T3 andQF are the weak hypercharge, isospin and
SCFiptiOﬂ of CDM is explained in Sec. V, and the COEﬁiCientSe|ectrica| Charge of the involved fermions.

of transport are calculated in Sec. VI. For this purpose we

generalize the program by Weinbef@5] and Straumann Ill. CHEMICAL AND KINETIC DECOUPLING

[16] to the situation of a nonrelativistic component that de-

couples from a relativistic fluidWeinberg and Straumann There is a large difference between the temperature of
treated the problem of decoupling of a relativistic componenthemical decoupling .4 and the temperature of kinetic de-
(photons from a nonrelativistic fluidbaryong]. This finally ~ coupling T,y of neutralino cold dark matter. This is a char-
allows us to calculate the damping scale from kinetic decouacteristic feature of weakly interacting massive particles
pling (Sec. VI and free streamin@Sec. VIIl). We conclude (WIMP’s). Chemical decouplingfreeze-ouk fixes the relic

with a short discussion of the implications of our findings. abundance of neutralinos and therefore the present value of
The relevant cross sections are calculated in Appendix AQcpuh?. Before kinetic decoupling the neutralinos are
and some useful thermodynamical relations can be found itightly coupled to radiation, after kinetic decoupling the neu-
Appendix B. tralinos acquire the properties of CDM. That is, the neutrali-

For a pure B-ino the interaction with a standard model
fermion F is given via the exchange of the related left- or

Cr=211Qftanby . 4
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nos interact with radiation only via gravity and their pressure 26
is negligible compared to their energy density well before
matter-radiation equality. 24

Let us first review the process of chemical decoupling,
which is a useful warmup for the kinetic decoupling that is

explained subsequently. We assume that the neutralino is the 22
B-ino, which reduces the number of free parameters to the
B-ino massM7 and to the universal sfermion malsk: . For 20
a more complete picture including Higgsino admixture,
thresholds, poles, and coannihilations, see R&f5,19,20Q. 18
At T>T.q neutralinos are kept in chemical equilibrium 200 400M, [(ggg] 800 1000
with all standard model fermions in the heat bath at tem- ¥
peratureT via annihilation processe§+}HF+E From FIG. 1. The chemical decoupling as a function of the sfermion

massM¢ for three values of the neutralino mags, =50, 100, and

Eq. (2) one can calculate the annihilation rate fot y—F
9.2 ot x— 150 GeV(increasing from the bottom to the top

+F [21]:
B ~ large compared to the bottom mass. In deriving &g.we
1ﬁann(T)_Z (voany (T)N3(T) 5 assumed equal masses for all sfermions. Exploring the pa-
rameter space of the MSSM we typically findy~25, cf.
2 GeM2 N\ Fg.1. o . .
=_ 2 —— (bF+CF)2mF The relic abundance of neutralinos is now easily obtained
T F \Mg+My asn;(To) =n(Tcd)S(To)/S(Teg), WhereTy=2.725 K ands
4 4 denotes the entropy density of the universe. It is a good
4. 4 MgtMpo | approximation to use the equilibrium distribution for the
+4(bF+CF)—(Mg+Mg)2MxT (M. (®  nhumber density alq, although in a more advanced treat-
F X ment the corresponding kinetic equation should be solved.

Here(- - -) denotes thermal averaging ands the Moeller- ~ From the2 number density;(To) we may easily compute
velocity. In order to obtain Eq(6) we expanded o, for ~ @%=£3h", which is plotted in Fig. 2 as a function &7 for
small me /M and smallv. More details can be found in typical values of the sfermion mass. _
Appendix A. Note that the first term in the square brackets Below T the neutralinos are kept in local thermal equi-
contributes practically only for top quark& &t). However, librium via elastic scattering processgs-F— x+F. After

we will assume below thaM;<m; such that the second the QCD phase transition only leptohsemain as scattering
term will be dominant in our estimate. We neglect annihila-partners for the neutralinos. We neglect scatterings with
tion of neutralinos into final states containing gauge andions, which is important foif >m_. only. It will turn out
Higgs bosons, such éis}H{WVV,ZZ,HH,HW,HZ}, since _that in most case%kdﬁmw. Scattering vv_ith nucleons is not
these channels are particularly important for Higgsino-likeimportant due to the tiny number density of baryons. From
and mixed-state neutralinos, but are subdominant when confzq. (2) one can calculate the rate of elastic scatteriggs
pared to the fermion-antifermion channels in the case that the- | .+ L [21]. We find

neutralino is mostly a gauginfl9]. Since we restrict our
attention to a pure B-ino, there is no contribution from dia-

grams withZ® exchange at tree level, and therefore #fe o
pole does not invalidate our estimate below. 0.8
As the universe expands the temperature eventually falls
below the neutralino madd; , and the number density; of 0.6
neutralinos decreases exponentially. Once the annihilation 3
ratel’,,, becomes comparable to the expansion katef the 0.4
universe neutralinos no longer find other neutralinos to anni-
hilate. We use the conditiohi,,=H to define the tempera- 0:2
ture of chemical decoupling.q. Solving this equation itera- 00
tively yields (x=M7/T) 50 75 100 125 150 175

4 4
Mp|(M"E+ M")‘()M")‘(

x((:g)ZIn 1.6x10°4 5 5 , FIG. 2. The relic abundance of neutralinos expressedvhy
(Mz+M5) = Q;h? as a function of the neutralino malsk; for different values

of the sfermion masdz=150, 200, 250, 300, and 400 GeV. The
sfermion mass increases from the bottom to the top. The dark
shaded region is excluded by the conservative assumpfiorg
andh<0.8. The light shaded region indicates typical values ai

as long as the B-ino mass is well below the top mass, bua ACDM model.

1
x(H~x@— megg) , (7
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200
Fe= 2 (voe(E))(TIN(T) ® 175
150
2 >
288 GeMZ, % 125
= 2 (bf+Cﬁ)(m T2n (T). © Z 100
L x & -
E, denotes the energy amy the number density of the 50
leptons. In deriving Eq(9) we approximate the Mandelstam 25
variables~l\/|—2);+ 2M3E_ . Note that the Moeller velocity in 200 400 600 800 1000
this case im»~1 to a very good approximation. Mg, [GeV]
In analogy to the chemical decoupling the conditiog FIG. 3. The temperature of kinetic decoupling of neutralinos

=H defines the temperature at the time the last elastic intef, radiation as a function of the sfermion mass by =50, 100
actions between neutralinos and the rest of the Universe takg,q 200 GeMfrom the bottom to the top
place. This last scattering temperature is given by

m ~1/3 where we assumed that all leptons except the tau are relativ-
T=|8.7x 10732—'3'2 ) (100  istic, but we neglected the contribution of pions which are
ME—M})z important at temperatures of about 130 MeV. Above the

QCD phase transition at about 160 MeV much more interac-

Typical values are 1-10 MeV, e.dl,s=2.3(2.5) MeV for tion partners are available and our formula should be modi-
M5 =100(150) GeV andMi=200(250) GeV. However, fied. Exploring the parameter space of the MSSM we typi-
this is not the temperature at which neutralinos decouplecally find thatT q is of the order 10—100 MeV, cf. Fig. 3. For
kinetically. The kinetic decoupling temperature is definedM}=1oo (150) GeV andVi; =200 (250) GeV we find
through the relaxation time- rather than by the collision T,,=28 (36) MeV, whereas the chemical decoupling for
time 7¢q=1/M¢. This can be easily understood by the fol- the same set of parameters happerkat 4.0 (5.9) GeV, a
lowing argument. difference of more than two orders of magnitude.

The relaxation timer, i.e., the time neutralinos need to  The large difference betwedn, andT,4 is mainly due to
return to local thermal equilibrium after a deviation from it, the different target densities in the annihilation rige. (5)]
can be estimated from the typical number of scatterings thadnd the elastic scattering rdteq. (8)]. For annihilations the
is needed to change the momentum of the neutralino signifitarget density is given by the number densityof neutrali-
cantly. The typical momentum transfer in a single elasticnos in the universe. The number density of neutralinos is
scattering event is tiny compared to the average momentuuppressed by the Boltzmann factor at chemical decoupling.
of the neutralinos. This is easily seen from the averagegh contrast the target density for elastic scattering processes

Mandelstam variablé is given by the number density of all relativistic leptons.
1rd During the cooling fromT . to T,y the leptons behave as
2 = | 9%l o 52 a perfect radiation fluid which tries to keep the neutralinos in
(Apy) tdt=2EZ. (11 - . ,
o) dt thermal equilibrium through elastic scattering processes. The

. I neutralinos on the other hand may be described as a nonrel-
The leptons are kept in local thermal equilibrium through the

X , . " Tativistic, imperfect fluid.

frequent interactions among themselves, and the equiparti-

tion theorem give€ =3/2T. Comparing the rms momen-

tum transfer with the typical neutralino momentym we IV. CDM AS A FLUID
find Apy/p;=3/2T/M5<1. This means that a huge num- . .
berN(T) of elastic scafterings is needed to keep or to estab- O temperature3>Tc, the particle content of the uni-

; T . . - be described by a single radiation fluid which is in
lish thermal equilibrium,N(T) =p}/Ap;= \/me/T- We Verse may crib
can now estimate the relaxation time as local thermal equilibrium. For temperaturég,<T<T.q the

radiation fluid is tightly coupled to the CDM fluid. Hence
2 M-~ both fluids have the same temperature and velocity 4-vectors.
(T)~ \/;?X Teoll - (12 Around T,y the CDM fluid starts to decouple kinetically
from the radiation fluid, and becomes an imperfect fluid. The
Note thatr(T)~ 1/T®. departure from local thermal equilibrium is generated by dis-

The kinetic decoupling of the neutralinos happens wherpiPation, i.e. by shear and bulk viscositye show below that

the relaxation timer becomes comparable to the Hubble the coefficient of heat conduction vanisheBor tempera-

time 1H. We denote the corresponding temperaturel by, turesT<T,q both fluids are decoupled and the CDM fluid is
which is given by freely streaming. Since)cpy=(a/aeq) Qrag<Qag for T

>Teq, the radiation fluid remains in local thermal equilib-

Me —la rium throughout the decoupling process.
Ta=11.2X 10*2~2—22 , (13 The current density and the energy-momentum tensor of
M3(M¢— M}) the radiation fluid(R) are given by
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JE=ngV*, (14) TE=p(T,n)UAU"—P(T,n)h#"+ TMwr, (22

T = prVAVY — Pgh#”. (15) The construction oT () from a first-order formalism is given
in Ref. [15]. The starting point is thaT® has to be ex-
Here ng, pr, and Pg are the number density, the energy pressed in the equilibrium variables and their gradients. The
density, and the pressure of the radiation fluid, respectivelybasic observation is that the variation of the entropy per par-
V is the velocity 4-vector withv>=1. h#*’=g#”"—V*V” is ticle ¢ along the adiabatic flow is generated by the change of
the projection operator on the plane perpendiculav.tdhe T in the same space-time direction, i.e.,
radiation fluid variables only depend on the temperature of

radiation Ty since there are no relevant conserved quantum nTo= —U#T,(i)‘”, (23
numbers besides R parity, which is taken into account in the
CDM fluid. _ where the dot denotes the hydrodynamic derivative, ()
The current density and the energy-momentum tensor of \«() ... Equivalently for the entropy current 4-vector we
the imperfect CDM fluid can be written §$3-15 may Whtesﬂznauﬂﬂnuﬂ(l)w (as can be easily seen
. . O_ _ - -
B Ut JDu in th(_a comoving frame_s =no=sis md(_eed the_ entropy
JE=nUR+ I, (16) density andTS=TWMY is the nonadiabatic contribution to
TMV:p(T,n)U’U'U v__ P(T,n)hp,v_’_ T(l)p,y. (17) the energy-momentum ﬂOW, which is the heat ﬂOW
2ch _ Dupv
n, U, p(T,n), and P(T,n) are the number density, T2S\==(U,T,=TU,,) T (24)

4-velocity, energy density, and pressure of the CDM fluid,

respectively. We omit the subscrigt for the CDM compo-
nentin Secs. IV, V, and VI, since the results of these section
hold true for more general forms of the WIMP CDM. The
projectionh is orthogonal toU here. We do not introduce
two different symbols in the following, because it is always
clear from the context to which velocitly refers. For the
CDM fluid T and n are independent variables, since the R
parity, i.e., the number of neutralinos, is conserveds not
necessarily identical td@ g, although this is the case when
both fluids are in thermal equilibrium. In the adiabatic limit >
all space-time gradients are negligible, i} =0, T®=0, W,,=U, ,+U, ,— =g, U\. (26)
and the CDM fluid has the same temperature and the same a . SR
velocity as the radiation fluid) =V. _ _ .

For an imperfect fluid described by Eqe6) and (17)  With these abbreviations we wrifa 5]
number density, energy density and velocity are not define o o vy
uniquely. To fix this ambiguity we define the number anddT(l)M =¢h* U,kAJ’ nh**h Wpa_X(hMU +hMU9)Q,,

As a consequence only space-time derivativeB afdU can
accur inT in order to keep the rate of entropy production
Bositive for all fluid configurations.

The perturbed energy-momentum tensor may be ex-
pressed in terms of the heat-flow vector

Q,=T,-TU, (25)

and the traceless shear tensor

energy density by (27)
n=U J* (18) where {, n» and y are the coefficients for bulk viscosity,
we shear viscosity and heat conduction. These parameters need
p(T,n)=U,U,TH (19) to be calculated in the framework of a nonequilibrium theory.
L 'U, v b
such that the hydrodynamic and thermodynamic definitions V. KINETIC DESCRIPTION OF CDM

of nandp coincide. The velocity is fixed to be the comoving

velocity of the CDM particles In this section and Sec. VI we generalize the method of

Straumanni16] to calculate the coefficients of transport for a
Ur=(J,IN) Y23~ (200  species of massive particles that decouple kinetically. In Ref.
[16] the problem of the decoupling of radiation quanta was
This choice of the velocity corresponds to the one of Eckartreated.
[13], and was applied to relativistic fluids by Weinb¢ . Let F(p,x) be the distribution function of neutralinos.
An alternative would be the choice of Landau and LifschitzF(p,x) is normalized in such a way thd(p,x) d*pdx
[14], where the velocity was fixed to coincide with the ve- gives the number of quanta in the volunix dentered at the
locity of the energy-momentum flow. In other words Eb8)  space-time poink and the 3-momentum within®g. We as-
requires)™™ to be perpendicular tb. In the same sense Eq. sume that the neutralinos are close to thermal equilibrium
(19) requiresT™ to project on the plane perpendicularo ~ and make the ansatz

Condition (20) means thatJ*) has to vanish. With this
choice, F=FO+F® with |[FO|<FO), (28)

JE=nUH*, (21 where
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1
FO(px)= 2 ! . (29 Efsdﬂ\’: 1. (34)

3 RY;
(2m) exp(p_l_— =1
R

-

The irreducible polynomials in E430) are orthogonal with

HereTg is the local temperature of the radiation fluid amd respect to &y and are normalized as follows:

is the local pseudochemical potential of the neutralino. To 1
first order in the collision timeF® is a solution of the Efsdﬂvﬂ”n”=—§h“”, (35
kinetic equation

1 1 1
. 0)= (1) MAV 4 MY anfB _haB
(p-9)FO=L[F®)], (30 4std9v(n n’+zh )(n nf+3h )

L is supposed to be a linear functionalf®). In the linear 1 1
regime one often uses[FM]=—w7r IF® as a realistic — —_hiuvheBl— Z hrvpes, (36)
model for the collision integral. 15 9

In consideration of Eckartapproach to the hydrodynam-

ics of imperfect fluidd 13] we introduce a 4-vector perpen- Now it is possible to project out every tensor in the expan-

sion of L[F(M] [Eq. (32)]. Taking moments of Eq:30) and

dicular toV, using Eq.(32) we obtain
n#=p| ~H(p*— wV*), (31) 100 [Tg 1/ m\?  Ta
Tk Te |Te 3\ 1Tz VAt G0
with w=p-V such thatr®) can be considered as a function o 'R[IR
of w, nandx or equivalent as a function of the projection of 1
p in the d.irection ofV and perpendicular to it. ) 1 od’ m2\ 2 1 o
Following Ref.[22] we may now expand-&)(w,n,x) B.=— -] Mt —an|. (9
into polynomials inn: 1 'R @ R
FO(w,n,)=A(w,X)+B,(@,x)n* 1od 1) m\?
M CMV:_K_ZT_RE 1—; thZW)\y (39)

+.... (32

u V+1h/w
n~n §

+C, . (w,X
@) Here ®'(w/Tg—a) denotes the external derivative
of FO(w,x). In calculating the integrals we replaced
(p-d)Tr with (V-9)Tg and pg(p-d)V#  with
|pZng(n- 9)VA.

Coefficients(37) and(38) depend on the variations diz
and « along the adiabatic flow and the directional derivative
of « in the plane perpendicular to the adiabatic flow. In order
to make sure that the rate of entropy production along the
adiabatic flow is positive for all kinematical configurations
these derivatives need to be proportional to space-time gra-
dients of Tg andV. Using the adiabatic relations derived in
Appendix B we find

It is clear from the kinetic equatiof30) that we need to
know how the functionalL operates orF"). In order to
solve this problem we note thé&tis defined to be invariant
under Lorentz transformations. L&, be the group of all
Lorentz transformations leaviny(x) invariant at every
space-time poink, i.e. G, is the little group with respect to
V. G, is isomorphic to the Lie grousQ(3). SinceF is
invariant undeiG, at every space-time point F!) is invari-
ant, and Eq(32) is an expansion into irreducible polynomi-
als with respect taG,. From Eq.(30) it follows that the
linear functionall is a scalar with respect @, . Therefore

it operates on the irreducible subspace spanned by the poly- 1 od p 1 2\ 2
nomials in Eq(32) as a multiple of the identity. Thus we can A=— — ® % (&_) ~Zl1= m
write ko Tr pl, 3 w?
1= " BV 1 mv -1 il A
LIF*™]=—w| kopA+ k1B, n*+k,C,,| n*n +§h +w o ) Vs, (40

+..., (33)

w w

Tg nTg

where x; (j €{0,1,2) are functions ofw andx only. Note
that in the case of the model for the collision integral dis-
cussed above;= 7' for all j e{1,2,3}.
Next we derive expressions fé¢ B, andC,,, in terms of 1 0d 1 )\ 2
V, Tg, d ; using the kineti tio(80). In order t @ m
R, @ andk; using the kinetic equatio(80). In order to cC ——— _( __) h/ﬁhZWM, (42)

N
2 h.Qu.

1
B 1 w(I)’( m2)7

o= _
k1 Tgr

(41)

do this we have to define a measuf@,don the two dimen- Yk, TR 2 w2
sional surfaceS={p:p?=M?,p°>0 and w=cons}. dQ,

is normalized such that with the enthalpyw=p+P.
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A. Current density

In kinetic theory the current density of neutralinos is
given by

Jkr= f—p“F(w n,Xx). (43
Considering our ansaf£q. (28)], we may write
K IL:Jk(O)M+Jk(1)M, (44)
with the definitions
e [ TP o ‘
KO = [ —— prFO)( @, x)=nkVH, (45)
Po
nk=477f do(w?—M?)Y2ud, (46)
M
and
‘ &’p
J “”‘EJp—p”F(l)(w,n,x)=AnV”+J{,‘iﬁ. 47
0

An is generated by the coefficie®& whereasly is gener-
ated byB:

An:47rf dw(w?—M?)Y2uA, (48)
M
A (=
Jir=— 3| dw(w®~M?)B". (49)
M

Let us rewrite the above expressions with help of the follow-

ing notation:

!

(i.J) = _ _ i12 ]
R (Tr,a;x)= 47Tf do(w?—M?) Tors’

(50

Note that the mass dimension 6 is simply i+j. In
terms of these functions we obtain

aP 1

P
An f<12>( ap) — 03+ f<“>< (m) VA, (5D
n
JH = i f(30) f<3,—1)ﬂ h“*\Q (52
diff — 3TR n N

B. Energy-momentum tensor

PHYSICAL REVIEW D64 083507

Tk [LV:Tk(O)/LV+ Tk(l);u)' (54)
with the definitions
d3
Tk(o) MV = f _p p,upVF(o)(w,X)
Po
= pXVAVY— Pkp#Y, (55)
pk=47rf do(w?—M?) Y202, (56)
M
4 (=
= —f dw(w?—M?)%2p (57
3 Jm
and
Tk(l)/LVET(Al)/LV+ Tél)p.v_’_ Tg:l)MV'F (58)

The labelsA, B, and C indicate which tensor in expansion
(32) gives rise to the extra contribution. From E¢32) and
(40)—(42) we find

TR = ApVEVY— AP i, (59
Tgl)””:— f(ls,l) f(30) VikhhQ, | (60)
3TR
1 _
T(Cl)MV: l_5f55’ 1)h’U“}\thW)\y, (61)
with
P 1 i
@3 | _f@D 4 p@)) T A
Ap=|fgy (‘9P>n fo 3 fo (an>p Vi 62
1 P 1 il
(3,1) _s(5-1) " (3,0) A
o= ) o5l v
(63

VI. COEFFICIENTS OF TRANSPORT

In the following we calculate the coefficients of bulk and
shear viscosity and the coefficient of heat conduction for
neutralino CDM starting from the kinetic description. In Sec.
Il we introduced Eckart's approach to describe imperfect
fluids[13]. The number density and the energy density of the
CDM fluid coincide with the corresponding quantities in the
adiabatic limit[see Eqs(18) and (19)], and the velocity of
the CDM fluid is fixed via the particle currefsee Eq(20)].
These definitions, together with the required space-time sym-
metries and the second law of thermodynamics, determine

The energy-momentum tensor of neutralino CDM is giventhe most general structure 3" andT(*) (see Ref[15]), as

by
" d’p
T ’”zf 0 p*p’F(w,n,X). (53
0

Again, in consideration of our ansatz we may write

given in Eq.(27).

To compare the kinetic description from Sec. V with the
approach of Eckart it is necessary that the conditidr&—
(20) are fulfilled. Instead for the kinetic description we find

V, Ik r=nk+ An, (64)
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V,V, TE# = pkt Ap, (65) TKAY(T,n)=p(T,n)U*U"—P(T,n)h*"
. P P »
h# J)\:\]giff- (66) + % pAn+ % nAp—AP h

Due to the nonequilibrium dynamics, the kinetic number
density and energy density do not coincide with Eckart's
definitions, and Eqs(64) and (65) are in conflict with Egs.
(18) and (19). Equation(66) shows the existence of a diffu-
sion current in the plane perpendicular ¥o As a conse-
guence the current density 4-vector does not point to the
space-time direction that is required by the approach of Eck- This expression can be compared to E#7) and the
art[Eq. (20)]. In the following we consider the temperature transport coefficients can be extracted. We express them in
and the number density to be the independent thermodyterms of the functiong{"):
namical variables. ,

Let us first establish the link between the current in the (113)(3_P) el 1)<¢9P) 2 s, 1)(aP) N 1

n p n

FTEORT )+ o URIl(T,0)
B ’ n diff\ ! s

d,ﬁ(T nU”+TEH#(Tn). (72)

Y . e ’ 5-1
kinetic and hydrodynamic descriptions. As a first step we an 3’0 ap §f3 )
make a transformation of the velocity, such that the diffusion

current vanishes, IP\ [aP 2 IP
(12) (3,0)
2T (G sl
V—)U_(nk+An)7leiﬁ, (67) P g
which allows us to write n= 15f(5 Y, (73
Jt=(nk+An)U#=nU*, (68) 1
ng[f(f'” f(3°)+(n 30 (74)

from comparison with Eq(18).
Let us now turn to the energy-momentum tensor. Transinstead of equating the collision integral to our expansion
formation (67) with n=n*+ An generates an extra contribu- (33) and solving for the unknown functiong,(w,x) (a

tion to the heat conduction since €{0,1,2}) we give a qualitative correct estimate. This can be
achieved by using the following model for the collision in-
P P tegral:
PAVIVY = pRUHUY — —UH I — — I U "+ O(JGi).-
n n 69 LIFV]~—w 7 IF® (75

which corresponds toc,(w,x)=7"1 for all (ac{0,1,2).
It remains to find the relation between the kindtim. (65]  This model reflects the linear dependenceFdh and gen-
and hydrodynami¢Eq. (19)] definitions of the energy den- erates the variation df(?) in the direction of the adiabatic
sity. The point is that the definitions of temperature in themotion through the rate of elastic scatterings. Furthermore
approach of Eckart and in the kinetic theory under considersince neutralinos are nonrelativistic at kinetic decoupling we
ation are differen{15]. In kinetic theory there is a unique use the approximation
way to define temperature as the temperature of the leptons
and photons which stay in thermal equilibrium during and fUD~f0D<in(MT)(-32Mins (76)
after the kinetic decoupling of the neutralinos. In the ap-
proach of Eckart the temperature was chosen such that ther oddi, and
energy density agrees with the one in the adiabatic limit.
Thus it is clear that the difference in the definitions should be g M
generated byAp. Since we are only interested in effects n~ 3/2(MT)3lzeXp<a— ?). (77)
linear in the collision time we may expauip in a first order (27)

Taylor expansion. Solving this expansion for the difference ) i
in the temperatures, In this caseAp and AP depend linearly onAn: Ap

~MAN,AP~5/3TAn. At any time stepAt the variation of
a0\~ 3p the number density due to nonequilibrium processes is given
TR:T+(<9_$') ((9 ) An—Ap]|. (70 by the number of collisions duringt, i.e., An=nr.
n
n
Let us now rewrite the energy-momentum tensor as calcu-
lated in the kinetic theory in terms @f, n and U:

In O(7), and up to ordefl/M, we find
5
n~=~nTr, §’~V§HTT, x~0. (79
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It is interesting to note thajy~0 at this order since the The square of the isentropic sound speed, is given by

contribution of transformatiof67) to the energy momentum

tensor cancel3{" . »2 (ﬁ)
At first sight it might be surprising that the heat conduc- * \dp/,

tion vanishes and the bulk viscosity is nonvanishing. The

mentioned cancellation betweér@l) and Jgi indicates that T [P\ [P n [P

the only possible mechanism to transport heat in the neu- - p+PlaT) \ap * p+P\an

tralino fluid is convection. Since the neutralinos are very n n T

slow and very sparse, heat can be neither radiated nor con- 5 T

ducted. We decided to use a frame that is comoving with the ~ (84)
neutralinos(Eckart’s approact13]); thus there is no heat 3 M7y

conduction here. In a single fluid bulk viscosity goes along o )

with internal degrees of freedoms or with particle productionand the characteristic lengthfor absorption reads
or decay. In our situation the number of neutralinos is con-

served and they do not have any internal degrees of freedom i+ =
which can dissipate energy. Nevertheless, the bulk viscosity L[¢,n]~ IO (85)
is nonzero, the reasons being that we are dealing with two 7 2p '

fluids and that the bulk viscosity describes the energy dissi-
pation to the radiation fluid. There should be a correspondingote that the length scale of collisional damping is propor-
term for the radiation fluid; however, we can neglect thistional to the relaxation time. The authors of REfl] as-

term sincepg>nT at kinetic decoupling. The authors of Ref. sumed instead that the characteristic scale for acoustic ab-
[11] incorrectly assumed that#0 and{=0 in their work.  sorption is given by the collision time. This is correct only if
Let us note that our resuliy=0 and{#0) holds in general acoustic perturbations are smeared out after a single contact

for any kind of WIMP-like CDM. with the heat bath. In Sec. Il we already proved that, in the
case under consideration, a huge number of contacts with the
VIl. COLLISIONAL DAMPING OF ACOUSTIC heat bath is needed to establish equilibrium.
PERTURBATIONS Since the parameters of the fluid are slowly varying dur-

ing the cooling toT,4, the amplitude of an acoustic pertur-

The viscosity coefficients and the coefficient for heat confation behaves like a WKB solution. The damping of density
duction enter into the decay rate of acoustic perturbationsperturbations is given by

which we will study now. Following Weinberfl5] let us

start with a static homogeneous fluid with (Tia)
s(k)=exp — I(t)dt|,
U=(1,0), p,P,n,T=const. (79
2
This fluid should leave the adiabatic limit but stay close to coxd - = T kphys) .
thermal equilibrium. As a consequence small perturbations 10m;\ H =Ty

will occur with the space-time dependence
We integrate over the time intervgdt,4], during which the

8(p,P,n,T,k-U)=(pD, P n@® T k.G fluid is close to thermal equilibrium and CDM density per-
_ . turbations evolve likédamped sound waves. In principlgg
X exp(iwt)exp(—ik-x). (80) s a function ofk; however, we find that for modes of interest

i we can taket, to be independent ok. This follows as
Note that the perturbation of the zeroth componentUof Re(w) 7=vkpnyer<1 is easily fulfilled for the subhorizon

should vanish in order to guarantee the normalization condig.gjes Kphys/H) (Tia) <o~ 10" for typical MSSM masses

tion. including all modes of interest.

Inserting Eq.(80) into the conservation laws for the num- g4 Eq.(86) we can read off a typical wavelength for
ber density, energy density and momentum we obtain a sy jiisional damping

tem of three linear algebraic equations

I . 2
A(¢,m)(5T, 8,k 50)T=0, (81) lo(Tia) = J—llovdeHmd), (87)

where we usegy=0 and the matrixA(Z,n) given in Ref.
[15]. The dispersion relation is provided by the requirementWheréviq=v3T /M7 andR,=1/H denotes the Hubble ra-
dius. We find 14~0.06(0.05Ry(Tyy) for My

detd({,7)=0, (820  =100(150) GeV andt=200(250) GeV.
Instead of characterizing acoustic perturbations by their
which to first order in the collision timek&|k|) yields wavelength or wave numbég,,.<~a ™~ '~t"?it is more con-

venient to work with a constant in time—the rest m&sof
Rew=kvs, Imw=—L[{,5]k®=-T[¢,7]. (83 neutralinos within a sphere of radiusr2p, .
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FIG. 4. The damping scal®l 4 in solar masses as a function of FIG. 5. The free streaming mabt; at matter-radiation equality
the neutralino mas#y;, for different values of the slepton mass in solar masses as a function of the neutralino midsdor different
M1 =150, 200, 300, and 400 GeV. The slepton mass increases fromalues of the slepton masst; =150, 200, 300, and 400 GeV. The

the bottom to the top. slepton mass increases from the bottom to the top.
4 3 find Ifs(aeo)wlongH(aeo), which corresponds to 5
M= 3 m(2m/Kpnyd MM, - (88)  x10°4 pc today. This length scale contains a masvigf
~10 "M ; cf. Fig. 5.
Using the definition oM we can write Eq(86) as Let us compare the scales of the two distinct damping
mechanism at equality, the time when structures begin to
S(M)=exg — (M 4/M)2?], (89) grow (before equality CDM perturbations grow logarithmi-
cally). Fora>a,; we find
where the mass scale of dampimdy, is given by I /10 [ a
2 —=—1In| —/, (92
247T4 3 1/2 de 5 ld 2 g
My= 5 (f) - M3 (Tia) RAG(Tia)
X which givesl/l 4=~6 (or M/My=220) at equality.
2 ex10-8t Gev® (90) IX. CONCLUSIONS

(M..T )3/2(1)} 2k
X 'kd In this paper we have shown that kinetic decoupling of

neutralino dark matter leads to collisional damping at the
scale 10°M, . This scale could be larger for certain regions

in the MSSM parameter space, e.g., when the neutralino
mass and one of the slepton masga®bably the stauare

VIIIl. FREE STREAMING nearly degenerate. In this case our tree-level expressions be-
. .- come singular, and are not applicable. We have pointed out
For temperature3 <T the neutralinos are collisioniess that it is i?nportant to distinguig% between the collipsion time

so that the viscosity coefficients vanish. Each neutralmoand the relaxation time of neutralino CDM. The correspond-

moves along a geodesic in space-time. This geodesic motioln temperatures differ by about an order of maanitude
of neutralinos provides a second damping mechanism: frel'd b y 9 '

) . . which can lead to a difference of several orders of magnitude
streaming[23]. If the proper distancés(t) which a neu- . . :
. A in the corresponding mass scales of damping.
tralino can travel along a geodesic in timis larger than the

roper wavelenath . =2a/k . of a perturbation at an The process of collisional damping has been described by
prop 9t phys= 27 Kpnys P y imperfect fluids, and we calculated the transport coefficients

gS;te:;Jethl:(;(renV\glrlm g?/g;’é%iigl:égsgﬁ;gi Z?\lg;?ggﬁzewrlgg%%p?r from_ kinetic the_ory by generglizing the method of Straumann
proper distance of free streaming for a neutralino at ttrﬁe Iﬁﬁl |n.order to include massive particles. We found that .bulkl
o viscosity cannot be neglected, whereas heat conduction is
& [tis:tegl Is given by negligible in the process of kinetic decoupling of neutralinos.
After kinetic decoupling free streaming starts to smear out
Ry(a), (92) rgmaining perturbations on scales belowfm@ by the
time of equality. Both scales are quite close, which shows
that both mechanisms have to be considered in the calcula-
where a;s denotes the expansion factor and= y3Ts/M7, tion of the resulting power spectra for cold dark matter. We
the average neutralino velocity at last scattering. Exploringvill present the corresponding transfer functions and power
the parameter space of the MSSM at equality we typicallyspectra elsewhel@4].

Exploring the parameter space of the MSSM we typically
find Mp~10 °Mg, ; cf. Fig. 4.

l(a) s, nf 2
a)=—vEn| —
fs( a s a
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These damping mechanisms provide a stiagponential m Mz 2
cutoff in the power spectrum of CDM objects. Such a cutoff T(s)Tl(s)= 1694(chL)2( L 2) ,
sets the scale for the very first objects that form in hierarchi- s— Mz
cal structure formation. Although this might be impossible to
observe directly, it might have implications on the substruc- ZmEMé—mft
ture of galactic halos and on the structure of CDM in void T(u)TI(s)=4g*(b c,)? 5 5=
regions, where some of the first CDM clouds might have a (U=Mp)(s—Mp)
chance to survive. The cosmological and astrophysical con- ) _ .
sequences of this cutoff will be investigated in a forthcoming>UMmming up the squared and interference terms yields

ublication[24].
P [24] s—MZ-m?\? [u-ME-m?\?
|T12=4g"(b{+cf) = —
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L L L
APPENDIX A: CROSS SECTIONS 2m_ Mg 2 (2m Mg)?—2m?t

2 2 2
This appendix contains the exact scattering amplitudes at u—Mg (s—=M{)(u=Mg)

tree level for elastic scattering and annihilation processes and )
simplified formulas for the related cross sections. Let us beSincem, denotes the mass of a standard model fermion we

gin with the squared transition matrix elemé®t > (summed usem; ~0. Furthermore the binos are nonrelativistic so that
T z ; o :

over final and averaged over initial spinfor B+{L,L} =~ S~Mg+2MgE_ to a very good approximation. Using the

—B+{L,L} expressed as a function of the usual Mandel-2P0ve-mentioned simplifications we find

stam variables. Our notation is as follow&(u) is the scat- 5\ 2
tering amplitude which describes the exchange of a left- |T|2—256(b4+c4)( GeMyy
- L L

handed slep;cjon in the channel and so on. For the squared M%_MEB 4EE ’
terms we fin
2 o2 and for the elastic cross section the simplified formula
u—Mz—m
B L
|T|(U)|2=4(gbL)“( v 24, [ GeME |7,
L UeI(EL):?(bL—'—CL) ——— | EL.
s—MZ—m?\? L
L
|7/(s)|?=4(gb,)* = 5 , The squared transition matrix eleméatimmed over final
L and averaged over initial spinfor B+B—F+F may be
2 2\ 2 found from |7 |? for elastic scattering processes by making
u—Mg—mg the following modificationss—u, t—s andu—t. Expand-

2_ 4
| T(W)[*=4(ge) ' ing in mg /Mg and in the Lorentz invariant relative velocity

— M._
- v up to second order yields
2_ 2
s—M5z—m 2
B L 2
|7;(S)|2:4(gCL)4 _Mg ) vo :E GFMW (b2+C2)2m2
S T ann— M_'zz_’_ Mé F F F
where we assumed for simplicity that the masses of the left- Me+ M
and right-handed sleptons are equal. n z(b4+c4) F B (Mzp)2
For the different interference terms we find 3VF (M"2,5+ M%)Z B
282 2
2m Mg — Mgt wherev is given by ¢/2)%=1-(2Mg)¥s.

|( |( ) (g L ( Mi)( MZL)

2m2M2 — M2t . . . . .
LB B In this appendix we show hoW and space-time gradients
(u— M%)(s— M%) ’ of « are related tdJ’\ andQ,,. The second law of thermo-
dynamics gives the variation in the entropy per particlas

T(u) T} (s)=4(gc)*

2
m Mg

7/(u) T} (u)=16g%b c,)?

L

W
' nTdo=dp— _dn. (B1)
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Since d&r must be a perfect differential,

) ~wen
n

follows. For adiabatic motion,

P
aT

dp

T on

(B2)

T

0=nTo

-5l

or, using the conservation lawml{J) =0,

RER

(B3)
-

n

aP
aT

ap
aT

T

ap

(B4)
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(B5)

For adiabatic motion and using Eq&2) and (B4), this
yields

aP

Jan

Ta=— (B6)

) U\
P

Using Eq.(B5) and the relativistic generalization of the Eu-
ler equation, we find

Th*ra = — ﬂh“"Qh. (B7)
: Tn

Thus the variation ofe in the plane perpendicular to the

The Gibbs-Duhem relation gives the variation of the pseudoadiabatic flow is generated by the projection of the heat cur-

chemical potentiabk= /T as

rent on this plane.

[1] P. de Bernardist al., Nature (London 404, 955 (2000; S.
Hananyet al,, Astrophys. J. Lett545 L5 (2000; A.H. Jaffe
et al, Phys. Rev. Lett86, 3475(2001).

[2] D. Tytler, et al,, Phys. ScrT85, 12 (2000.

[3] P.J.E. Peebles, Astrophys. J. Le#64, L1 (1982; G.R. Blu-
menthalet al, Nature(London 311, 517 (1984.

[4] A.G. Doroshkevich, Y.B. Zel'dovich, and R.A. Syunyaev, Sov.
Astron.22, 523(1978; M.L. Wilson and J. Silk, Astrophys. J.
243 14 (1981); N. Kaiser, Mon. Not. R. Astron. So02
1169 (1983; S.D.M. White, C. Frenk, and M. Davis, Astro-
phys. J. Lett274, L1 (1983.

[5] S.S. McGaugh, Astrophys. J. Le&41, L33 (2000.

[6] L.M. Griffiths, A. Melchiorri, and J. Silk, astro-ph/0101413.

[7] The scale invariance of hierarchical structure formation obvi-
ously has to be broken at some small scale, otherwise th
contribution of density fluctuations to the local energy density
would be ultraviolet singular.

[8] See, e.g., G. Jungmann, M. Kaminokowski, and K. Griest,
Phys. Rep267, 195(1996.

[9] C. Schmid, D.J. Schwarz, and P. Widerin, Phys. Re\6®)
043517(1999.

[10] D.J. Schwarz and S. Hofmann, Nucl. Phys(Boc. Supp).
87, 93 (2000.

[11] C. Boehm, P. Fayet, and R. Schaeffer, astro-ph/0012504.

[12] X. Chen, M. Kamionkowski, and X. Zhang, Phys. Rev6)
021302(2001.

[13] C. Eckart, Phys. Rew8, 919(1940.

[14] L. D. Landau and E. M. LifschitzHydrodynamik(Akademie
Verlag, Berlin, 1991

[15] S. Weinberg, Astrophys. 168 175(1971).

[16] N. Straumann, Helv. Phys. Ac#, 269 (1976.

[17] ALEPH Collaboration, R. Baratet al, Phys. Lett. B499, 67
(2001.

[18] J. Ellis, T. Falk, K.A. Olive, and M. Schmitt, Phys. Lett. B
413 355 (1997; J. Ellis et al, Phys. Rev. D58, 095002
(1998; J. Ellis, T. Falk, and K.A. Olive, Phys. Lett. 844, 367
(1998; J. Ellis, T. Falk, K.A. Olive, and M. Srednicki, Astro-
part. Phys13, 181(2000; J. Ellis, T. Falk, G. Ganis, and K.A.
Olive, Phys. Rev. D62, 075010(2000; J. Ellis et al,, Phys.
Lett. B 510, 236 (2001).

[19] K. Griest, M. Kamionkowski, and M.S. Turner, Phys. Rev. D
41, 3565(1990.

&o] K. Griest and D. Seckel, Phys. Rev. 48, 3191 (1992); P.
Gondolo and G. Gelmini, Nucl. Phy8360, 145 (1991); M.
Drees and M.M. Nojiri, Phys. Rev. B7, 376(1993; H. Baer
and M. Brhlik, ibid. 53, 597 (1996); V. Barger and C. Kao,
ibid. 57, 3131 (1999; A.B. Lahanas, D.V. Nanopoulos, and
V.C. Spanos, Phys. Lett. B64, 213(1999; Phys. Rev. D62,
023515(2000.

[21] K. Griest, Phys. Rev. [38, 2357(1988; 39, 3802E) (1989.

[22] H. Sato, T. Mabuda, and H. Takeda, Prog. Theor. Phys. Suppl.
49, 11 (1971, Appendix G; I. Masaki, Publ. Astron. Soc. Jpn.
23, 425(1971).

[23] J.R. Bond and A.S. Szalay, Astrophys274, 443(1983.

[24] S. Hofmann and D. J. Schwatanpublished

083507-12



