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Self-energy and self-force in the space-time of a thick cosmic string
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We calculate the self-energy and self-force for an electrically charged particle at rest in the background of
Gott-Hiscock cosmic string space-time. We find the general expression for the self-energy which is expressed
in terms of theS matrix of the scattering problem. The self-energy continuously falls down outward from the
string’s center with the maximum at the origin of the string. The self-force is repulsive for an arbitrary position
of the particle. It tends to zero in the string’s center and also far from the string and it has a maximum value
at the string’s surface. The plots of the numerical calculations of the self-energy and self-force are shown.
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[. INTRODUCTION no gravitational force on surrounding matter. Nevertheless,
there is interaction between the cosmic string and a particle

Topological defects may have been formed during the exdue to its own field. This effect is nonlocal and depends on
pansion of the Universe due to spontaneous symmetry breakhe deficit angle of the conical section of the cosmic string
ing [l] Among these defects, cosmic Strings seem to be O$pace-time. It was shown that even for a particle at rest, the
particular interesf2] due to their very intriguing properties €lectromagnetic force has only one radial component; it is
compared with those associated with a nonrelativistic lineafepulsive[8,9,11,12 and given by
distribution of matter.

A variety of models of strings has been proposed. The first
model corresponding to an infinitely thin cosmic string has
been considered by Vilenkin in R€f3]. This space-time is
chally flat but globally_|t is the .dlrect product of_the WOo- 11y the gravitational case it is attractiy&0] and has the fol-
dimensional Minkowski space-time and a two—dlmensmnalIOWing expression:
cone. The main geometrical peculiarity of this space-time is '
the deficit angle. The Riemann tensor is a delta function with 2
support on the string’s origif#]. F9'=— Lom—z- )

A more realistic model of a cosmic string with inner struc- 2r
ture has been considered by G[#{ and Hiscock[6]. The
interior of this string is a constant curvature space-time andHere,q andm are charge and mass of particle, respectively;
the exterior is a conical space-time as in the Vilenkin modelr is a distance from particle to string.

The deficit angle of the conical space is expressed in terms of The constant.y depends only on the deficit angle of the
the energy density of matter inside the string as we will seeonical section of the cosmic string space-time. It is zero for
in Sec. Il. There is no singularity at the origin of the string zero angle deficit but for a supermassive cosmic s{ihg2]
and the Riemann tensor is constant inside the string and zetbbecomes very strongL— «).

outside it. The metric functions af@® regular at the string’s As it is seen from Egs(l) and (2) the self-interaction
surface. force tends to infinity at the string’s origin, that is, as>0.

The space-time of a cosmic string in thelY gauge Obviously, real cosmic strings which may appear at phase
theory has been considered numerically by Garfinkle in Reftransitions in the early Universe have nonzero thickness. For
[7]. It was shown that this space-time smoothly tends to a@xample, cosmic strings that appeared in grand unified
conical space-time far from the string’s origin. theory(GUT) have radius ,~10 2° cm[2]. In this case the

The self-energy and the self-force for{@n)charged par- space-time inside the string is not flat and one may expect
ticle in infinitely thin cosmic string space-time has been in-some modification in the self-force that arises from this fact.
vestigated in Refs[8-12. The self-force on electric and This problem has been qualitatively discussed in Ri] in
magnetic linear sources in this space-time was also investthe context of the study of implications of cosmic string
gated in Ref[13] and extended to the case of multiple cos-catalysis in the process of baryon decay.
mic strings[14]. The purpose of this paper is to calculate the electromag-

It is well known[3] that a straight cosmic string produces netic self-energy and self-force for a charged particle at rest

in the background of Gott-Hiscock cosmic string space-time

presented in Ref$5,6]. In order to do the calculation we use
*Electronic address: nail@dtp.ksu.ras.ru the approach developed in Ref8,9]. In this method the
"Electronic address: valdir@fisica.ufpb.br self-potential® and self-energyJ are proportional to the
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coincidence limit at the particle positiog, of the renormal-  In this case the surface energy-momentum tensor is absent.
ized Green’s function of the three-dimensional Laplace op- The nonzero components of the Riemann and Ricci ten-

erator sors and scalar curvature are the following:
D (X,) =47qG"(X,|X,p), 3) € e 2
R pe=—, Ri=Re=—, R=—. ©)
1 Po Po Po
U =-qd , 4 : .
(Xp) 24 (Xp) @ The space-time described by E¢®). and(7) may be covered

by one map using the continuation of the radial coordimate

and the self-force is the minus gradient of self-energy into the inner domain of the string through the relation
F(%p) =~V UK. 5 €| _t

(Xp) X, (Xp) (5) sin p—p)z—siné. (10
(o] (o]

To renormalize the Green’s function we use standard proce-
dure[16,17] and subtract from that its singular part in Had- Therefore the line element can be written[8]
amard’s form.

The organization of this paper is as follows. In Sec. Il we S ) r2 )
introduce Gott-Hiscock space-time generated by a finite ds’=—dt?+P*(r)dr +7d9° +d7Z, 11
thickness cosmic string space-time and describe all geometri-
cal characteristics we need. In Sec. Ill we obtain the generg{nere the functiorP(r) is given by
formulas for the self-potential for a particle at rest in this
background taking into account the contributions from inner r2 -1z
and outer parts of the string. In Sec. IV we analyze qualita- P+ —(1- VZ)) , I<r,
tively and numerically the self-energy and self-force. We dis- P(r)= rg
cuss our results in Sec. V. In the Appendix we obtain a uni- 1, r=r,.
form expansion for the self-energy and discuss the self-force.

Throughout this paper we use unds G=1. Sometimes we use the metric inside the string in the form

given by Eq.(7) instead of Eq.(11). Connection between
Il. THE SPACE-TIME them is obtained from Eq10).

(12

We consider the space-time of a straight infinite cosmic
string with constant energy densify corresponding to the

case has been found by G and HiscocK6]. The space- 4 particle with trajectorx”=x*(7) obeys the equations
time may be divided by the surface of the string in two parts:

interior and exterior domains. The latter is a flat conical 9PV V gA#+ REAY = — 4 J#(X)
space-time described by the line element

Ill. THE SELF-ENERGY

2 =—47qu W(n) S x—x(1)]
dsgy= —dt?+dri+ —de?+dZ, (6) NET]
(13
where ¢ €[0,277], re[r,,%], and the parameter, is the
radius of the string. It is possible, in principle, to obtain the self-force for an
The interior part of the string is a constant curvaturearbitrary trajectory of the particle using the same procedure
space-time with line element given by of Refs.[11,12, but for simplicity we shall consider the
particle at the rest with trajectory
2
Po . ,[ €
dsh=—dt*+dp?+ —Zsmz(—p>dgo2+dz2, (7 XA(n=71, x{n)=r,, X¥(1)=¢=0, x¥7)=z=0,
€ Po (14)

where ¢ €[0,2] and p[0,po]. The inner radius of the wherer , is the radial position of the particle. Let us consider
string isp, and it is related with parameterby p,/p, =€,  the equation for the zero component of the vector potential

where p, =1/{87¢E is the “energetic” inner radius of the A~ In the space-time of a cosmic string with metfid), it
string. The matching conditions at the surface of the stringeads

give the connection between inngs,(e) and outer (,,v)

parameters of the string, which reads as (— 02+ A)A%= — 472", (15)
fo_tane - 1 ®) where A=g'*V,V, is the three-dimensional Laplacian. For
Po €’ cose’ our space-time and trajectory given by Ef4) we get
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4mq where 6 is the step function and/,,¢, are two linearly
AA®=— =5 6(r = 1) 8(¢) 8(2), (16)  independent homogeneous solutions of Efl). The func-
Vgt ) tion 4(r) falls down asr—oo and i,(r) is regular at the

origin. Integrating Eq.(24) overr aroundr’ one has the

(3)_ r2p2 2 ; )
where ¢ r<P<(r)/v° is the determinant of the three Wronskian normalization conditiofis]

dimensional part of the metric. Therefor® is the scalar
Green'’s function of the three-dimensional Laplacian multi-

14
plied by 47q: W( i, h1) = (1) ha(1) = ha (1) hp(r) = — P(r).
A(x,0,2)=4mqG(r, 0,21 ;,0,0). (17 (26)
The self-potentiakb and self-energyl, according to Refs, BOth homogeneous solutions are regular at the string’s sur-
face and they obey the set of equations
[8,9] are
®(r,) =4mqG®"(r,0,0r,,0,0), (19) PO jr e = U)o (273
U(rp)=2qd(ry), (19) (D e = PN —e s (270
whereG'®" is the renormalized Green’s function. with e —0 andk=1,2.

Since the self-energy depends only on the radial coordi- The homogeneous solutiogsyield Bessel’s equation
nater, the self-force will have only a radial component given

by 19 0 n%? , )
d (Fﬁrﬁ r2 K | ¥out(r)=0, (28)
Frp: B d—er(rp). 20 outside the string and Legendre’s equation
Now, let us find in a closed form the three-dimensional scalar 1 P ep| o 22

ERSC=E

n— Po S|n2 —
AG( ) 1 5 )5 )50 ) Po R 20

X X' )= — —=8(r—1")8(o— ") 8(z—2').
g 3
(21)  inside it.

) ) ) ) Therefore the homogeneous solutions with required
In the space-time under consideration, E2{l) turns into boundary conditions are the following:
N-pll[x]+M-qllfx], r=r,

1 9 r a+v2a2+aze ,
TP(r) ot P(r) ar T 12 ag2 T a2 X 1=[

F'K|n‘v[kl’], r=rg,,
14
o o 2 A1 KI T+ B K Lkr], =1,
Taking into account the cylindrical symmetry of the problem (30)

we may represent the Green'’s function in the following form
. wherek=1k,| andx=cosp/po)=[vP(r)]" % I, anld Kny
1 (= i , i / are modified Bessel functions. The functi andq'™ are
A ik, (z—2") in(e—o") ’
GOxx') 4W2f_wdkze n;_m € o(r.r'), expressed in terms of the Legendre functions o#first and
(23) second kind by

where the radial part of Green'’s function obeys the equation p‘:'[x]z P;'”'[x], (32
1 9 r 9 n%? ) , (—1)"
rP(r) ar P(r) ar  r? —k | Brr) qu]: 5 (QuIx1+Q ,_4[x])
(-1 (24
=- r—r’). 7T
=— Il _
rP(r) Zsirn-r,uP“[ x], (32
In order to calculate the radial Green’s function we use the - ——
standard approach and the following expression for it: whereu=—3+31-4krg/(1*-1).
On choosing these functions, they will be real for an ar-
d(r,r")y=0(r—r" )y (r)o(r' )+ 6(r" —r)ihy(r") (1), bitrary value ofx and the Wronskian of them will take the

(25 simple form
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il gl 1 AF=v», ME=1, (34)
W(p,'.q,")= 152 (33

The six constants in E¢30) can be found from Eqg26) - ) )
and (27). The Wronskian normalization condition E6) and the conditions of regularity on the surface of the string

-

gives two relations given by Eq.(27) define the ratios
|
v 1—i plol| = | Kol +kropl! 1 1K ]
defg 12 [n] »| Il %o
Souf Ko, n|,V]:K: - 1 1 :1: ) (353
— —_|pls Inl| Z k!
V(l V2)pn V}Klnv[kro]'ipkropn _V_K\n|y[kro]
! gl 1 | L]
def N vl 1— 7 » K|n\ [kr ]+kr0q ; K|n|v[kro]
Silkro,[n|,v]==— — : (35h)
e M (1 ) ) -
14

=Kol krol +kropll| =

tm|,_\

> | KjnpuLkrol

These quantities characterize the scattering on the string. The 1 Kr n 1

Smatrix Sy, may be represented in the following form: f,’;(ik)=+T \/_20_ {v( )p'” }Imv[kro]

Sour= f (ik)/f,(ik), wheref ,(ik) is the Jost function of the viyri-1

scattering problem on the imaginary axis. It has been found

in Ref.[19] and obeys the relations Tkr p\n| 1 ‘ LIkr ]] (37)
(o] n [0)

}Kmv[kro]

_ 1 krp |" 1)
ruik= - | =] o] 1 o)l

1 Therefore the radial Green’s function of our problem is
5 K|’n|y[kro]], (36) | netion o ot proviem !

In
TKropy the following (r>r")

VK o LK T LKP T+ Soul Kro, [N, v IK g LKD), 1r ' =1

¢;(r,r'):[ \“‘[x ](q'”‘[x]+Sm[kro,|n| y]p'”'[x]), rr'<r,, (38

where x=cosp/p,)=[vP(r)]"! and x’'=cosp’'/p,) Taking the coincidence limit in this expression for a fixed
=[vP(r")] L. In the limit v—1 this function becomes value of the angular variable, for examples 0, and chang-

ing the integration variablé,—k=k,|, one has
#(r,r") =K [kr' ]1pkr], (39

as it should be in flat space-time.

Let us proceed now to calculate the self-energy given by
Eq. (19). The zero component of the vector poten#&lof a
particle with trajectory given by Eq14) and situated outside X (1 LKr T+ Soul Kros n], IK o [KP]). (42)
the string is

2qv (= -
A%r,2)= Tfo dkcos(kz)n;_w KoL Krp]

This expression consists of two parts. The first one is due to

L [ o the first term in brackets which is exactly the potential for an
A%r,p,2)= q_f dk, e'kz? 2 ei““’K‘nw[krp] infinitely thin cosmic string. This term is divergent in the
T )= n=-—o coincidence limitz—0\—r,. The second term is finite in
this limit and tends to zero as—1 as well ag ,—0. There-
X(||n\y[kr]+sout[kr01|n| V]K|n|v[kr])- °

fore to renormalize this potential we have to renormalize just
(40 the first term. Because the exterior is a flat space-time, in

083506-4



SELF-ENERGY AND SELF-FORCE IN THE SPAGE. . PHYSICAL REVIEW D 64 083506

order to do the renormalization we may subtract from it the A2 1
potential in Minkowski space-time which correspondsito Gsing(p.2lp' 2" )= 5= (47)
_ i i : 41 (p—p)?+(z=2)%
=1. Therefore the self-potential has the following form: p—p
> o where
. 2q (=
P(rp)= nm?f0 dkcos(kz)nZ (VK LKT ] K] L 2 .
—0 =—% €
’ T LT 4<p p')+
- K\n|[krp]||n|[krp])
(48)
2qv (= - 2 .
—f dk > Soul Kro, N, vIK o LK b1 and 20=(p—p')?+(z—2')?. Let us represent the singular
mJo = part of Green'’s functiori47) in the following integral form:
(42)
1/2
The first contribution may be found in closed forf8,9] Gsing(P,Z|P’,Z')=ﬁJO dkcosk(z—z")

using formulas 6.673) and 8.7182) from Ref.[20] and we

arrive at the following expression for the self-potential for a %
particle in the exterior of the stringR=r,/r,): xn;w Kinlke1ljnlkp']. (49
D(rp) = rgL(v,R), R=1, (43 To renormalize the self-potential we subtract from E&p)
P the above expression multiplied byr4 and take the coin-
where cidence limitp=p'=p,,z=2". So, we arrive at the result
1 (= — coth 29
L R1= & [ 100~ oot B0 S (mslaln
7)o sinhx
PO « ) +Su[Kro,In], 11 %p]) = K [Kpp ]l Kpp]}
+ ?JO an;w Sou{§,|n|,v K\nlv[x]' (50)
(44)  where
This formula represents an interesting relation between the 1 1 4k2 2 1 1 4k2
self-potential with the scattering problem and the Jost func- u=-— 5 > = - 5 >
tion on this background. The first term is a well-known result -
[8,9] for an infinitely thin string. The second term is the (51)
contribution due to nonzero thickness of the string. It tends
to zero as the radius of the string goes to zerg—<0). 1_ €Pp _ tane
; . ) . A Xp=[vP(r,)] "=co . kro=kp, .
Let us now consider a particle situated in the interior of o €
the string. In this case the zero component of the vector (52

potential reads i
Note that we can easily show that

©

2q (> .
0 — [nlpy 7 o
Ahe=— Jo dkcoskz 2 €"*p;[x'] im lim lim f dkcosk(z—2')
i i e
X(d,; [X]+ Silkro,[n|,v]p,[x]). (45) *
X M ’
To renormalize this expression we have to subtract from it all n;_m {Kjnlkp ] il kp" 1=K k1 mCkr" T}
divergences in the Hadamard forfia6]. The structure of
divergences of Green's function for odd-dimensional spaces B
is more simple than for the even-dimensional case because in  — fo dkn;m Kjnilkp1lnLkp] =KLk ] Ckr]}=0.
the former case there is no logarithmic singulafity]. The

singular part of the Green'’s function in three dimensions is (53)
[17] This is due to the fact that the singular part of Green'’s func-
2 4 tion given by Egs.(47) and (49) in the coincidence limit
singX,X )= —— —=. (46) p'=p does not depend op. It is simply given by 1/4r|z
47 20 —Z'|. For this reason we may changg andr, in the last

term in Eq.(50) and the self-potentiab given by Eqs(43)
Taking the coincidence limit for angular variabtewe get and(50) is continuous at the string’s surface.
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IV. DISCUSSION

From previous results we have the following expressions
for the self-energy of charged particles at the poit

=r,/r, in the thick cosmic string space-time:

1
2| =-L(»,R), R=1
U(rp)=2q—r rHR (54)
°lH(»,R), R<1,
where
L(v,R)
1J'°°vcotr( vX) — cothx
=— . X
7)o sinhx
2v (= ” X
2
+ ;fo dx Sou{§,|n|,v KfyIx], (55)
H(»,R)
_2 ("4 i nlr s 10
7)o Xn:ﬂc {pMX[XR](qMX[XR]
+ S0, #1p [ XR]) — K|n[XRIl5[ xR}, (56)
SOU{X,|H|,V]
1 [n| s 1 [n| 1 ’
V| 1= 2z Py | 5| NinleX I+ X P ey [X]
j— 1_i |n"EK + |n|}K, H
v 2Py | 5| Kinp[XT X Py — 1K, [X]
Sm[X,|n|,V]
1_1 |n|’EK + \nl/EK/
V| 1= 2] Oy | 5 [ KinpXTHX0, | 2 (K o [X]
. 1_1 W'EK + In\EK/ ’
V| 1= 22 Py | 5| Kinp X1+ X0y, - 1K [X]
(58)
and we have introduced the following notations:
1 1 4x?
=TI 9

/ 1
Xg=[vP(r,)] = 1—R2<1—7). (60)

Let us analyze qualitatively the above expressions foflliS reason the functioh

PHYSICAL REVIEW D64 083506

1 (= —coth
Lo(V)=;f v coth vx) — cothx 62

0 sinhx

is the contribution to the self-energy due to the infinitely thin
cosmic string 8,9]. The second term,

v|KfI[x], (63

2v (= - X
Ly(v,R)= 7JO dx Sou{ﬁ,ln

is the contribution from the structure of the string.

The functionS,,{ x/R,|n|,] is positive for arbitrary an-
gular momentumm. For this reason the additional contribu-
tion to self-energy due to nonzero thickness of the string is
positive, too. Changing the variable of integration z such
that x=nv»z (exceptn=0) we can represent the function
L.(v,R) as

Ll(v,R)=J dzFy(z,R)+2> | dzF,(zR), (64
0 n=1J0
where

K[z, (65)

2v Z
FO(Z, R) = ?Sou ﬁ,O,V

nvzs z
—nv,n,v
T ou

F.(z,R)= =

K2 [znv]. (66)

In order to estimate the behavior Bf, as a function oz we
use the uniform asymptotic expansion for great indeaf
Bessel's functions in Refl21] and Legendre’s function in
Refs.[22,23. With the help of those expansions one obtains
the following main term of the uniform expansion fBy, :

’—1 z
mvn°R2

Fn(Z;R)NB
1+2°

><exp{ —2nv

z
1+ =

%4—4%DL 7

where

+4/1+ 2z (68)

4
Z]=In—x—
il Vi+z2+1

The function in Eq(67) tends to zero as?® for z—0 and it
tends to zero as exp2nv1—(1/R?)]}/z% for z—o=. For
1(v,R) exponentially falls down a

self-energy. First of all let us consider the particle situatecdr€at distance from the strirg=r,,/r,>1 and it tends to a

outside the string. The functidn(»,R) defined by Eqs(54) positive constant at the surface of the strindRat1. There-

and (55) can be separated into two parts according to quore the self-energy tends to that value for an infinitely thin

cosmic string far from it. The main difference appears near

55) as
®9 the surface of the string where one has an additional positive
L(»,R)=Lo(»)+Ly(¥,R), (61)  contribution.
The self-energy at the string’s origin may be analyzed by
where formulas(54) and(56). Taking the limitR—0 and using the
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behavior of Legendre’s function in the neighborhood of unit  Upyax
[24] one has the following expression for the self-energy in
the origin

2 0.55

U 9’ szd 0 1| X
max_z_r(); 0 X) Sin[ X, ,V]‘f’z nV2—1

0.5
a
—Wluxt1]— ECOtﬂ-Mx} : (69)
0.45
which is, in fact, the height of the potential barrier. Hdras
the logarithmic derivative of the gamma function and
0.4
Sm[X,OJ/] 0.2 0.4 0.6 0.8 1 e
1 N 1 FIG. 1. The self-energy at the string’s origiheight of the po-
=1 xKl[x]qzX -l N~ 1Kol x]d,, > tential barriey is represented ad .= (04%/2r o) (v>— 1)/vihp 0 V).
- _ Shown here is the plot of the dimensionless self-enéfgy, as a
1 ' function of e. The cone parameter=1/cose. For e<0.1, U,
vvz—lKl[X]pﬂx > +XKO[X]p;le > ~0.39. e

(70 ground the distance from the strirlgcoincides with the co-
As it can be seen from the uniform expansion E&f), or_dinate of thg part.icle, that is;zrp=roR._ In the Gott-
the dependence of the self-energy on the metric coefficierfdiScock cosmic string space-time the distance from the
»=1/cose is given mainly by the expression ¢ 1/v). For  String to a particle is
this reason we represent the self-eneldggnd the height of

the barrierU .4 as r| R—1+ , ~1
qz 21 " tane 75
U=— Uur,R), (71 arcsifR sine)
2rg v r———, RsL
tane
q2 V2_1
Umax= 5, =~ Umal V), (72)  Taking into account the above expression and E5#. and
° (55 we get for a particle situated outside the strilg (
where =d/r,) the following relation:
Ul = 525 = | [3[ 0u1+ Sin
V)= — X x,0,v]+ =1In _
ma vi—1m 0 n 2 v—-1 Uthick D Ll V!D+l tane
= 1+
T Uint. thin Di1- < Lo(»)
-Vl +1]— ECOtﬂT/.LX . (73 tane
(76)
The dependence &f on v is weak forv close to unit and
it does not depend, in fact, om for e<0.1. In Fig. 1, U
Unax(v) is displayed as a function of. 0.4
Therefore for a small deficit angle we obtain the follow- , ..
ing formula for the height of the barrier
0.3
2
q 1 0.25
Umax~0.39270( v=—| (74
0.2
The numerical calculation of/(v,R) as a function ofR 0.15
= rp(rofor €=0.1is depicted in Fig. 2see the Appendix for
detaily.
Let us now compare the self-energy in the thick cosmic?-°5
string space-time with that in the infinitely thin cosmic string —— - —— . —— 1 R

space-time in the limit of zero thickness of the string, (
—0). We have to compare the self-energy in two different FIG. 2. The self-energyJ(v,R)=(q%2r,)(v>—1)/vid(v,R).
space-times for a particle situated at the same proper distangis is the plot of a dimensionless self-enetggs a function of the
from the string. In the infinitely thin cosmic string back- particle positionR=r,/r, for e=0.1.
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. D R

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

FIG. 3. The dimensionless self-energy(thick line) for a par- FIG. 4. The self-forceF,(»,R)=(q%2r)(v>*— 1)vF (v,R).
ticle in a thick cosmic string space-time and for a particle in anShown here is the plot of the dimensionless self-force for a patrticle
infinitely thin cosmic string space-tinigy,, (thin line) as a function  in a thick cosmic string space-tinig as a function oR=r/r, for
of the proper distancB® =d/r, numerically calculated foe=0.1. e=0.1.

In the limit of zero thickness,—0 (D— ) we obtain unit  This divergence is rather formal. The functionxlis an in-

in the right-hand side and the self-energy in the Gott-Hiscockegrable function ak=0. For this reason the work against

space-time tends to the same result obtained in the infinitef{pis self-force is finite and equal to the height of the barrier

thin cosmic string space-time. In this case the barrier’s height) max given by Eq.(72).

Umax given by Eq.(72) tends to infinity~ 1/r . Because the self-potentilll has the structure given in Eq.
In Fig. 3 we display the numerical calculation of the self- (71) we represent the self-force in the same way as

energyl{ given by Eq.(71) for a particle in the Gott-Hiscock

. ) S ) . - . 2 2
R R vo—1
space tlmg and in an infinitely thin cosmic string space-time FrZQ_ F(uR). (80)
Uins. tnin defined below, 2r2 v
P P-1 The numerical simulation of the functiaf, is displayed in
Uinf. thin= 2r. — Uit thin, Fig. 4.
(77 V. CONCLUSIONS
v 1
Uint. thin= —2—= gLo(¥), The aim of the paper is to calculate the self-energy and
v’ —1R . . 4
self-force for a charged particle at rest in the space-time of
an infinitely long, straight cosmic string with a nontrivial
as a function of distance from the string’s orighn=d/r . internal structure. The relevance of this calculation is to clear
For an infinitely thin cosmic string space-tifke=D and  up the role of the nonzero thickness of the string. It is well-
for the Gott-Hiscock space-time we have known that for a particle at rest in the infinitely thin cosmic

string space-time, the self-energy and self-force fall down far
E from the string and tend to infinity at the string’s cdB9].
D+1-——, R=1 Obviously the origin of these singularities is associated with
_ tane the delta-like model of the string’s interior.
= . (79 . ; :
sin(D tane) In the proceeding sections we considered the self-energy
T sine ! R<1. and the self-force of charged particles at rest in the cosmic
string space-time with simplest nontrivial interior, suggested
] o ] by Gott[5] and HiscocK 6]. This model of string is an exact
~ The self-force, according to E€0), is minus the deriva-  go|ytion of the Einstein equations and it corresponds to the
tive of the self-energy given by E¢54) with respect to the  ¢yjindrical distribution of matter of constant energy density
particle position. It is zero in the string's origin and it tends jnside it. The exterior of the string is the flat conical space-
to zero such as in the infinitely thin cosmic string space-tim&jme and the interior is the constant curvature space-time.
far away from the string. In the neighborhood of the string’sThe model is usually named the “ballpoint pen” mod&B].

surface, for|[R—1|<1, it tends to infinity logarithmically |t is suitable for our goal because this model contains a di-

according to(see the Appendix mensional parameter, the radius of string with respect to
which we may analyze our problem. Let us summarize the
q? 1P—1 main results in what follows.
"~ .3 8 In|R—1]. (79 To calculate the self-energy and self-force we used the
2rg approach of Ref4.8,9] in which the quantities under consid-
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eration are expressed in terms of the renormalized Green'’s APPENDIX
function of the three-dimensional Laplace operator.

. In this appendix we discuss the numerical analysis of the
We analyzed the self-energy and self-force for different U .
positionsr, of the particle. The self-energy falls down out- self-potential given by Eq(54). Using Eq.(53) we can rep-

side the string and tends to the same result obtained in thréasent the self-potential in the following form:

case of an infinitely thin cosmic string space-time far from

the string’s surface. Namely, the self-energy has the follow- 9 lL(v R), R=1
ing structure: U(rp)=5- R (A1)
¢ r *lHwR), R=L,
U(r,)==—|Lg(v)+L v,—p”, 81
(s 2ry| ° Jth Mo 6D where

where the functiorL, exponentially tends to zero far away 2 (n 17 X X
from the string and the functioh, is the same one that L(v,R)=—j dx > [,,Klny[xynv[x]_Klm[_}”n{_}
corresponds to the case of an infinitely thin cosmic string mJo n=-= v v
space-time. The additional contribution to the self-energy is
expressed as momentum expansion in terms ofStheatrix + VSow{i
of the scattering problem in the imaginary axis. R’
Inside the string the self-energy grows up and tends to a
constant in the string’s origin, which is, in fact, the height of 2 (o %
the potential barrier. For a cosmic string which is consid-H(v,R)= —f dx >, {p;"[xR](qu[xR]
ered in grand unified theory withv—1~10"® and mJo  n=-e 00X *
ro~10"2° cm, the height of the energy barrier is <R
2.8<10° GeV. , +sn[x,|nl,v]p',fx'[xR]>—Kn|Hln ]
In the limit of zero radius of the string {—0), the self- v
potential tends to the same value corresponding to a particle (A3)
in the infinitely thin cosmic string space-time and the maxi-
mum of the self-energy tends to infinity ag 1/ Soul %[0, 7]
The self-force, which is the minus gradient of the self- " """
energy has only a radial component and it is repulsive for v(l— . )plnl/
any position of the particle. It is zero in the string’s origin 2] P
and tends to the self-force in the infinitely thin cosmic string 1
space-time. In the surface of the string it has a maximum v(l— 7) p‘,fx"
value. In the framework of Gott-Hiscock thick cosmic string v
space-time the self-force tends to infinity logarithmically.
This is an integrable divergence and the total work against
the self-force is finite and equal to the maximum of the seIf—Sin[Xv|n|'V]
energy at the center of the string.
Therefore the nonzero radius of the string drastically V(
changes the behavior of self-energy and self-force close to =— (

nl,v

Kfny[x]} , (A2)

xR

14

1 1]
> 2| VinX]

}'|n|y[x]+xp,?xl

o1 KinalX]

(Ad)

EK [x]+xpl"
o Sinly P,

[

14

1 !
K [X]

14

1
1= ol 3K 0

[

nf 1
Kinp[X1+Xp, [ =

the string’s core. Outside the string’s surface the additional v
Myl p

1 .
ine - STING's : 1- _2) pil’ }K’np[x]

contributions due to the string’s radius exponentially fall v X

down. The self-energy and self-force are equal, in fact, to (A5)

that in an infinitely thin cosmic string space-time starting

from the distance of two radii of the string. We expect that In the last term in Eq(A3) we used Eq(53) and changed

this behavior of self-energy and self-force will be, in general,the argument of the Bessel functions frofR to xR/v. By

the same for a cosmic string in the Abelian-Higgs model,construction, the self-energy is@ regular function at the

considered i 7]. surface of the string because Green’s function is expressed in

terms of the functions given in EG30). The renormalization

is done by subtracting the same function in the regions out-

side and inside the string. Therefore the expression given
We would like to thank Dr. M. Bordag for a critical read- previously which corresponds to the self-potential i€a

ing of this paper. N.K. is grateful to Departamento dsi¢a, regular function at the string's surface mode by mode, which

Universidade Federal da Pavai(Brazil) where this work is more suitable for numerical simulations.

was done, for their hospitality. This work was supported in  First of all let us consider the self-energy for a particle

part by CAPES and in part by the Russian Foundation foisituated outside the string witR=1. In the neighborhood of

Basic Research, Grant No. 99-02-17941. V.B.B. would alsdhe string’s surface the series converges very slowly. To sim-

like to thank Conselho Nacional de Desenvolvimento Cienplify numerical calculations we represent it in the following

tifico e Tecnolgico (CNPg for partial financial support. form:
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1 2 (= X (n—1)! 1+yzvz 1/4 o
ﬁL(V,R):ﬁJO dx VKo[X]Io[X]_Ko[; IO ; q;l[z] 5 1+ ~ *HSZ ( n) ka[U]
X
+vsou{—,o,u Kg[x]] 1d 114922341442
R N | B ns —Kk7T
ndzPT T nl| 112 | 1-02° & 2 ],
4 (A9)
+— f dxi vKg, [ nx]l,,[nX]
7R =1 2 273/4
1d , (n=1)! 1+yv 1+'y S
__q —
nx| |nx nx ndz™ 2 1+ 1-v°
— K| — |1 — +usou{ﬁ,n,v Kﬁ,,[nx]] ‘ Y
4 (e x 2 (=n) ML v],
— > f dx: vK o, [nx]1,,[NX] k=0
TR R4 Jo . "’
where
nx| |nx nx 5
=K — 11, — [+ vSy, E,n,u Ky, [nx] . 1+ 1 L ) .
(AB) 2 2 tane Vi+y2(1-2%)°
In the last term of the previous equation, let us W@ X
sufficiently greatN) the uniform expansion for Bessel func- y= ,
tions[21] tane
) . 1I 1-v 1
KelpZl~ \/ e "2 (—p)~Hudt], =5 Ty 1352 Y@rctaiy]-arcaiy)),
t Hy4[v]
l[pz]~ —eMZ P utl, 1L .
. (A7) "2 WTETE
a _
Kpzl=—1/ e P7 —p) kut], v 1 1+ 42
pLPZ] 2pt7Z kzo( P) udt] xf dv'{5v'2+ —2—1——7 (A10)
1 4 Y(1+y%'?)
1 - _
! ~ p7 -k XI[v'], Tlv]=1,
1)PZ~ \ 5oz 2 P udtl, 0
— Yo (1—0v?)
where Hv]=1L[v]~ mnk ilv]
1 z 2 2 2
- - - 1+2+ I (1=v9)(1+y29) _, —
Uzl= = =1+ e, — 1372 I ,[v], Tv]=1.
1= Etz 1-t2yu! [t Then, taking into account these previous formulas we have
u t]= 2 ( JUk-alt] the following expression for the last term in E#6):
1t +o0
2 _ 4 » nx| |nx
+§f0(1_5t JU-[t]dt,  uo[t]=1, R nf dX( VK LX), [nX] = Ky —|1n| —
n=N+1 0
™ 2 1 / nx 2
uftl=uft]+t(t°—1) Euk,l[t]thuk,l[t] , +vSy, E,n,v K7, [nx]
_ (A8)
uolt]=1, v2—1

~ > J dz[ —~ 2 Z](1-5[2]?)

. . , . 4mvR nZ N+1
and the uniform expansion of Legendre’s functions found in

H 2 4
Ref. [23] which have the form . ZTt[z]t z e—2nv(17[z]—77[ﬂR])], (ALD)
171+ ,)/2 211/4 * R R
pulz]= || €52 nTMIfv], . . |
# ntf 1+y k=0 which may be expressed in terms of the function
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d(z,5,0)= ZO (v+2) 52", (A12)

Using integral representation for this functi¢®4] we ob-

tain, finally, the following expression for this term in Eqg.

(A6):
4 § J‘ood K | K nxl nx
7R e, " 9 KXl [nxX] =Ky 25y
nx )
+vSy, ﬁ.n,v K5, [nx]
V2—l 1 2N+1+1fwd 2 Z4
~ amoR| 3N o2 | dzZUz]0 5
e~ NIy+2v(5[Z] - n[2/R])]
J’ dyy ev+2v(nld—alzR) _q |’ (A13)

which is suitable for numerical calculations.
We use the same approach for the functidfw,R) and

PHYSICAL REVIEW D 64 083506

Therefore the self-energy is continuous at the string’s sur-
face. For numerical simulations we used previous formulas
for N=0.

In order to analyze the self-force near the string’s surface
let us consider more carefully the self-energy for a particle
outside the string. FON=0 we have

1 2 (= X[ |X
ﬁL(V,R)Z ﬁfo dX( VKO[X]IO[X]_KO[;}IO[;}

2 o v’—1
KO[X] +7_2 VR

X
+ VSOU‘{ﬁ,O,V

y
>< /-
fo A S 2R

(A18)

The last term will give a logarithmic divergence at the
string’s surface. In order to see this let us represent it in the
form

obtain the following result for the series corresponding to the

functionH(v,R):

4
; n= N+1 f dX[ p,u [XR](q# [XR]+Sin[X n, V]p,u [XR])
xR| [XR
n 7 n 7
2 ©
~ ” [RgH[Z,N+1]—f dz Zt[zR]t[z]*
0
N[y+2(nlz.1]- 7[zR))]
f dyyey+2(7][21 ﬂ[Z’R])_l ’ (A14)
where
7z R]=I zR
Z! - n
’ V1+Z°R*+ J1-R%sirf e
2| RSP 2
sine * alls'nfm “ine
(A15)
z
nz]1=J1+Z2+In , (A16)
1+J1+z

and ¢y(s,x) is the Hurwitz zeta function. At the surface of

the stringR=1, and expressions given by Eq#13) and
(A14) coincide and are equal to

v2—1 fy[2N+1]

v 6

(A7)

= ydy (= ydy —2up
fo eY+2VP—1_Jzypey—1+21}pln(l e ),
(A19)

where

p=n[zR]—-n[z]=InR

Ji+Z2+1
\/1+22R2+1

The derivative of the integral in the right-hand side with
respect taR is finite at the poinR=1, but the derivative of
the second term in the right-hand side gives a logarithmic
divergence aR=1 because

+VJ1+2°R>—1+7°. (A20)

dp V1+2z°R?
SRR (A21)

is finite at the string’s surface.
Taking into account previous formulas, we obtain the fol-
lowing results which are divergent R=1

2

%L(V,R)Z —~(R-1)IN(R-1)+I(»,R), R>1,
(A22)
VZ_
H(»,R)=~ —5—(1-RIN(1-R)+h(»R), R<L.
(A23)

The functionsl (v,R) andh(»,R) and their first derivatives
with respect toR are finite atR=1.
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Taking the derivative of the above expressions inside anavith smally, but for smally the integrand does not depend
outside the string we find that the divergence at the string'®n N. Therefore each term in the expression for the self-force
surface is given by Eq79). This expression does not depend is finite and continuous at the string surface but the sum of
on the numbeN because this divergence appears associatetihe series is logarithmically divergent.
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