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Self-energy and self-force in the space-time of a thick cosmic string
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We calculate the self-energy and self-force for an electrically charged particle at rest in the background of
Gott-Hiscock cosmic string space-time. We find the general expression for the self-energy which is expressed
in terms of theS matrix of the scattering problem. The self-energy continuously falls down outward from the
string’s center with the maximum at the origin of the string. The self-force is repulsive for an arbitrary position
of the particle. It tends to zero in the string’s center and also far from the string and it has a maximum value
at the string’s surface. The plots of the numerical calculations of the self-energy and self-force are shown.
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I. INTRODUCTION

Topological defects may have been formed during the
pansion of the Universe due to spontaneous symmetry br
ing @1#. Among these defects, cosmic strings seem to be
particular interest@2# due to their very intriguing propertie
compared with those associated with a nonrelativistic lin
distribution of matter.

A variety of models of strings has been proposed. The fi
model corresponding to an infinitely thin cosmic string h
been considered by Vilenkin in Ref.@3#. This space-time is
locally flat but globally it is the direct product of the two
dimensional Minkowski space-time and a two-dimensio
cone. The main geometrical peculiarity of this space-time
the deficit angle. The Riemann tensor is a delta function w
support on the string’s origin@4#.

A more realistic model of a cosmic string with inner stru
ture has been considered by Gott@5# and Hiscock@6#. The
interior of this string is a constant curvature space-time
the exterior is a conical space-time as in the Vilenkin mod
The deficit angle of the conical space is expressed in term
the energy density of matter inside the string as we will
in Sec. II. There is no singularity at the origin of the strin
and the Riemann tensor is constant inside the string and
outside it. The metric functions areC1 regular at the string’s
surface.

The space-time of a cosmic string in the U~1! gauge
theory has been considered numerically by Garfinkle in R
@7#. It was shown that this space-time smoothly tends t
conical space-time far from the string’s origin.

The self-energy and the self-force for a~un!charged par-
ticle in infinitely thin cosmic string space-time has been
vestigated in Refs.@8–12#. The self-force on electric and
magnetic linear sources in this space-time was also inve
gated in Ref.@13# and extended to the case of multiple co
mic strings@14#.

It is well known @3# that a straight cosmic string produce
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no gravitational force on surrounding matter. Neverthele
there is interaction between the cosmic string and a part
due to its own field. This effect is nonlocal and depends
the deficit angle of the conical section of the cosmic str
space-time. It was shown that even for a particle at rest,
electromagnetic force has only one radial component; i
repulsive@8,9,11,12# and given by

Fr
el5L0

q2

2r 2 . ~1!

In the gravitational case it is attractive@10# and has the fol-
lowing expression:

Fr
gr52L0

m2

2r 2 . ~2!

Here,q andm are charge and mass of particle, respective
r is a distance from particle to string.

The constantL0 depends only on the deficit angle of th
conical section of the cosmic string space-time. It is zero
zero angle deficit but for a supermassive cosmic string@9,12#
it becomes very strong (L0→`).

As it is seen from Eqs.~1! and ~2! the self-interaction
force tends to infinity at the string’s origin, that is, asr→0.
Obviously, real cosmic strings which may appear at ph
transitions in the early Universe have nonzero thickness.
example, cosmic strings that appeared in grand uni
theory~GUT! have radiusr o;10229 cm @2#. In this case the
space-time inside the string is not flat and one may exp
some modification in the self-force that arises from this fa
This problem has been qualitatively discussed in Ref.@15# in
the context of the study of implications of cosmic strin
catalysis in the process of baryon decay.

The purpose of this paper is to calculate the electrom
netic self-energy and self-force for a charged particle at
in the background of Gott-Hiscock cosmic string space-ti
presented in Refs.@5,6#. In order to do the calculation we us
the approach developed in Refs.@8,9#. In this method the
self-potentialF and self-energyU are proportional to the
©2001 The American Physical Society06-1
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coincidence limit at the particle positionxW p of the renormal-
ized Green’s function of the three-dimensional Laplace
erator

F~xW p!54pqGren~xW puxW p!, ~3!

U~xW p!5
1

2
qF~xW p!, ~4!

and the self-force is the minus gradient of self-energy

FW ~xW p!52¹W xp
U~xW p!. ~5!

To renormalize the Green’s function we use standard pro
dure @16,17# and subtract from that its singular part in Ha
amard’s form.

The organization of this paper is as follows. In Sec. II w
introduce Gott-Hiscock space-time generated by a fin
thickness cosmic string space-time and describe all geom
cal characteristics we need. In Sec. III we obtain the gen
formulas for the self-potential for a particle at rest in th
background taking into account the contributions from inn
and outer parts of the string. In Sec. IV we analyze qual
tively and numerically the self-energy and self-force. We d
cuss our results in Sec. V. In the Appendix we obtain a u
form expansion for the self-energy and discuss the self-fo

Throughout this paper we use unitsc5G51.

II. THE SPACE-TIME

We consider the space-time of a straight infinite cosm
string with constant energy densityE corresponding to the
matter inside it. The solution of Einstein equations for th
case has been found by Gott@5# and Hiscock@6#. The space-
time may be divided by the surface of the string in two pa
interior and exterior domains. The latter is a flat conic
space-time described by the line element

dsout
2 52dt21dr21

r 2

n2 dw21dz2, ~6!

where wP@0,2p#, r P@r o ,`#, and the parameterr o is the
radius of the string.

The interior part of the string is a constant curvatu
space-time with line element given by

dsin
2 52dt21dr21

ro
2

e2
sin2S er

ro
Ddw21dz2, ~7!

where wP@0,2p# and rP@0,ro#. The inner radius of the
string isro and it is related with parametere by ro /r* 5e,
where r* 51/A8pE is the ‘‘energetic’’ inner radius of the
string. The matching conditions at the surface of the str
give the connection between inner (ro ,e) and outer (r o ,n)
parameters of the string, which reads as

r o

ro
5

tane

e
, n5

1

cose
. ~8!
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In this case the surface energy-momentum tensor is abs
The nonzero components of the Riemann and Ricci t

sors and scalar curvature are the following:

R
••

rw
rw5

e2

ro
2

, Rr
r5Rw

w5
e2

ro
2

, R5
2e2

ro
2

. ~9!

The space-time described by Eqs.~6! and~7! may be covered
by one map using the continuation of the radial coordinatr
into the inner domain of the string through the relation

sinS er

ro
D5

r

r o
sine. ~10!

Therefore the line element can be written as@18#

ds252dt21P2~r !dr21
r 2

n2 dw21dz2, ~11!

where the functionP(r ) is given by

P~r !5H S n21
r 2

r o
2 ~12n2!D 21/2

, r<r o

1, r>r o .

~12!

Sometimes we use the metric inside the string in the fo
given by Eq.~7! instead of Eq.~11!. Connection between
them is obtained from Eq.~10!.

III. THE SELF-ENERGY

The electromagnetic potentialAm in the Lorenz gauge for
a particle with trajectoryxm5xm(t) obeys the equations

gab¹a¹bAm1Rn
mAn524pJm~x!

524pqE um~t!d4@x2x~t!#
dt

A2g
.

~13!

It is possible, in principle, to obtain the self-force for a
arbitrary trajectory of the particle using the same proced
of Refs. @11,12#, but for simplicity we shall consider the
particle at the rest with trajectory

x0~t!5t, x1~t!5r p , x2~t!5w50, x3~t!5z50,
~14!

wherer p is the radial position of the particle. Let us consid
the equation for the zero component of the vector poten
Am. In the space-time of a cosmic string with metric~11!, it
reads

~2] t
21D!A0524pJ0, ~15!

whereD5gik¹ i¹k is the three-dimensional Laplacian. Fo
our space-time and trajectory given by Eq.~14! we get
6-2
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DA052
4pq

Ag(3)
d~r 2r p!d~w!d~z!, ~16!

where g(3)5r 2P2(r )/n2 is the determinant of the three
dimensional part of the metric. ThereforeA0 is the scalar
Green’s function of the three-dimensional Laplacian mu
plied by 4pq:

A0~x,w,z!54pqG~r ,w,zur p,0,0!. ~17!

The self-potentialF and self-energyU, according to Refs.
@8,9# are

F~r p!54pqGren~r p,0,0ur p,0,0!, ~18!

U~r p!5 1
2 qF~r p!, ~19!

whereGren is the renormalized Green’s function.
Since the self-energy depends only on the radial coo

nater, the self-force will have only a radial component give
by

Fr p
52

d

drp
U~r p!. ~20!

Now, let us find in a closed form the three-dimensional sca
Green’s functionG(x,x8)

DG~x,x8!52
1

Ag(3)
d~r 2r 8!d~w2w8!d~z2z8!.

~21!

In the space-time under consideration, Eq.~21! turns into

S 1

rP~r !

]

]r

r

P~r !

]

]r
1

n2

r 2

]2

]w2 1
]2

]z2DG~x,x8!

52
n

rP~r !
d~r 2r 8!d~w2w8!d~z2z8!. ~22!

Taking into account the cylindrical symmetry of the proble
we may represent the Green’s function in the following fo

G~x,x8!5
1

4p2E
2`

`

dkz eikz(z2z8) (
n52`

`

ein(w2w8)f~r ,r 8!,

~23!

where the radial part of Green’s function obeys the equa

S 1

rP~r !

]

]r

r

P~r !

]

]r
2

n2n2

r 2 2kz
2Df~r ,r 8!

52
n

rP~r !
d~r 2r 8!. ~24!

In order to calculate the radial Green’s function we use
standard approach and the following expression for it:

f~r ,r 8!5u~r 2r 8!c1~r !c2~r 8!1u~r 82r !c1~r 8!c2~r !,
~25!
08350
-
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where u is the step function andc1 ,c2 are two linearly
independent homogeneous solutions of Eq.~24!. The func-
tion c1(r ) falls down asr→` and c2(r ) is regular at the
origin. Integrating Eq.~24! over r around r 8 one has the
Wronskian normalization condition@18#

W~c2 ,c1!5c18~r !c2~r !2c1~r !c28~r !52
n

r
P~r !.

~26!

Both homogeneous solutions are regular at the string’s
face and they obey the set of equations

ck~r ! ur o1«5ck~r ! ur o2« , ~27a!

ck8~r ! ur o1«5ck8~r ! ur o2« , ~27b!

with «→0 andk51,2.
The homogeneous solutionsc yield Bessel’s equation

S 1

r

]

]r
r

]

]r
2

n2n2

r 2 2kz
2Dcout~r !50, ~28!

outside the string and Legendre’s equation

S 1

sinS er

ro
D

]

]r
sinS er

ro
D ]

]r
2

n2e2

r0
2 sin2S er

ro
D 2kz

2D c in~r!50,

~29!

inside it.
Therefore the homogeneous solutions with requi

boundary conditions are the following:

c15H N•pm
unu@x#1M•qm

unu@x#, r<r o

F•K unun@kr#, r>r o ,

c25H E•pm
unu@x#, r<r o

A•I unun@kr#1B•K unun@kr#, r>r o ,
~30!

wherek5ukzu and x5cos(er/ro)5@nP(r )#21; I nn and Knn

are modified Bessel functions. The functionspm
unu andqm

unu are
expressed in terms of the Legendre functions of first a
second kind by

pm
unu@x#5Pm

2unu@x#, ~31!

qm
unu@x#5

~21!n

2
~Qm

n @x#1Q2m21
n @x# !

52
p

2 sinpm
Pm

unu@2x#, ~32!

wherem52 1
2 1 1

2 A124k2r o
2/(n221).

On choosing these functions, they will be real for an
bitrary value ofx and the Wronskian of them will take th
simple form
6-3
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W~pm
unu ,qm

unu!5
1

12x2 . ~33!

The six constants in Eq.~30! can be found from Eqs.~26!
and ~27!. The Wronskian normalization condition Eq.~26!
gives two relations
T
:

un

b

08350
AF5n, ME51, ~34!

and the conditions of regularity on the surface of the str
given by Eq.~27! define the ratios
Sout@kro ,unu,n#5
defB

A
52

nS 12
1

n2D pm
unu8F1

nG I unun@kro#1kropm
unuF1

nG I unun8 @kro#

nS 12
1

n2D pm
unu8F1

nGK unun@kro#1kropm
unuF1

nGK unun8 @kro#

, ~35a!

Sin@kro ,unu,n#5
def N

M
52

nS 12
1

n2Dqm
unu8F1

nGK unun@kro#1kroqm
unuF1

nGK unun8 @kro#

nS 12
1

n2D pm
unu8F1

nGK unun@kro#1kro pm
unuF1

nGK unun8 @kro#

. ~35b!
is
These quantities characterize the scattering on the string.
S-matrix Sout may be represented in the following form
Sout5 f n* ( ik)/ f n( ik), wheref n( ik) is the Jost function of the
scattering problem on the imaginary axis. It has been fo
in Ref. @19# and obeys the relations

f n~ ik !52
1

An
S kro

An221
D nH nS 12

1

n2D pm
unu 8F1

nGK unun@kro#

1kro pm
unuF1

nGK unun8 @kro#J , ~36!
he

d

f n* ~ ik !51
1

An
S kro

An221
D nH nS 12

1

n2D pm
unu 8F1

nG I unun@kro#

1kro pm
unuF1

nG I unun8 @kro#J . ~37!

Therefore the radial Green’s function of our problem
the following (r .r 8)
f~r ,r 8!5H nK unun@kr8#~ I unun@kr#1Sout@kro ,unu,n#K unun@kr# !, r ,r 8>r o

pm
unu@x8#~qm

unu@x#1Sin@kro ,unu,n#pm
unu@x# !, r ,r 8<r o ,

~38!
d

e to
an
e

ust
, in
where x5cos(er/ro)5@nP(r )#21 and x85cos(er8/ro)
5@nP(r 8)#21. In the limit n→1 this function becomes

f~r ,r 8!5K unu@kr8#I unu@kr#, ~39!

as it should be in flat space-time.
Let us proceed now to calculate the self-energy given

Eq. ~19!. The zero component of the vector potentialA0 of a
particle with trajectory given by Eq.~14! and situated outside
the string is

A0~r ,w,z!5
qn

p E
2`

`

dkz eikzz (
n52`

`

einwK unun@krp#

3~ I unun@kr#1Sout@kro ,unu,n#K unun@kr# !.

~40!
y

Taking the coincidence limit in this expression for a fixe
value of the angular variable, for example,w50, and chang-
ing the integration variablekz→k5ukzu, one has

A0~r ,z!5
2qn

p E
0

`

dk cos~kz! (
n52`

`

K unun@krp#

3~ I unun@kr#1Sout@kro ,unu,n#K unun@kr# !. ~41!

This expression consists of two parts. The first one is du
the first term in brackets which is exactly the potential for
infinitely thin cosmic string. This term is divergent in th
coincidence limitz→0,r→r p . The second term is finite in
this limit and tends to zero asn→1 as well asr o→0. There-
fore to renormalize this potential we have to renormalize j
the first term. Because the exterior is a flat space-time
6-4
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order to do the renormalization we may subtract from it
potential in Minkowski space-time which corresponds ton
51. Therefore the self-potential has the following form:

F~r p!5 lim
z→0

2q

p E
0

`

dk cos~kz! (
n52`

`

~nK unun@krp#I unun@krp#

2K unu@krp#I unu@krp# !

1
2qn

p E
0

`

dk (
n52`

`

Sout@kro ,unu,n#K unun
2 @krp#.

~42!

The first contribution may be found in closed form@8,9#
using formulas 6.672~3! and 8.715~2! from Ref. @20# and we
arrive at the following expression for the self-potential for
particle in the exterior of the string (R5r p /r o):

F~r p!5
q

r p
L~n,R!, R>1, ~43!

where

L~n,R!5
1

pE0

`n coth~nx!2 cothx

sinhx
dx

1
2n

p E
0

`

dx (
n52`

`

SoutF x

R
,unu,nGK unun

2 @x#.

~44!

This formula represents an interesting relation between
self-potential with the scattering problem and the Jost fu
tion on this background. The first term is a well-known res
@8,9# for an infinitely thin string. The second term is th
contribution due to nonzero thickness of the string. It ten
to zero as the radius of the string goes to zero (r o→0).

Let us now consider a particle situated in the interior
the string. In this case the zero component of the vec
potential reads

A0~r ,w,z!5
2q

p E
0

`

dk coskz (
n52`

`

einwpm
unu@x8#

3~qm
unu@x#1Sin@kro ,unu,n#pm

unu@x# !. ~45!

To renormalize this expression we have to subtract from it
divergences in the Hadamard form@16#. The structure of
divergences of Green’s function for odd-dimensional spa
is more simple than for the even-dimensional case becau
the former case there is no logarithmic singularity@17#. The
singular part of the Green’s function in three dimensions
@17#

Gsing~x,x8!5
D1/2

4p

1

A2s
. ~46!

Taking the coincidence limit for angular variablew we get
08350
e

e
-
t

s

f
r
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s
in

s

Gsing~r,zur8,z8!5
D1/2

4p

1

A~r2r8!21~z2z8!2
, ~47!

where

D1/2511
1

12

e2

ro
2 ~r2r8!21

1

160

e4

ro
4 ~r2r8!41•••,

~48!

and 2s5(r2r8)21(z2z8)2. Let us represent the singula
part of Green’s function~47! in the following integral form:

Gsing~r,zur8,z8!5
D1/2

2p2E0

`

dk cosk~z2z8!

3 (
n52`

`

K unu@kr#I unu@kr8#. ~49!

To renormalize the self-potential we subtract from Eq.~45!
the above expression multiplied by 4pq and take the coin-
cidence limitr5r85rp ,z5z8. So, we arrive at the result

F~r p!5
2q

p E
0

`

dk (
n52`

`

$pm
unu@xp#~qm

unu@xp#

1Sin@kro ,unu,n#pm
unu@xp# !2K unu@krp#I unu@krp#%,

~50!

where

m52
1

2
1

1

2
A12

4k2r o
2

n221
52

1

2
1

1

2
A12

4k2ro
2

e2
,

~51!

xp5@nP~r p!#215cosS erp

ro
D , kro5kro

tane

e
.

~52!

Note that we can easily show that

lim
z→z8

lim
r→r8

lim
r→r 8

E
0

`

dk cosk~z2z8!

3 (
n52`

`

$K unu@kr#I unu@kr8#2K unu@kr#I unu@kr8#%

5E
0

`

dk (
n52`

`

$K unu@kr#I unu@kr#2K unu@kr#I unu@kr#%50.

~53!

This is due to the fact that the singular part of Green’s fu
tion given by Eqs.~47! and ~49! in the coincidence limit
r85r does not depend onr. It is simply given by 1/4puz
2z8u. For this reason we may changerp and r p in the last
term in Eq.~50! and the self-potentialF given by Eqs.~43!
and ~50! is continuous at the string’s surface.
6-5
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IV. DISCUSSION

From previous results we have the following expressio
for the self-energy of charged particles at the pointR
5r p /r o in the thick cosmic string space-time:

U~r p!5
q2

2r o
H 1

R
L~n,R!, R>1

H~n,R!, R<1,

~54!

where

L~n,R!

5
1

pE0

`n coth~nx!2cothx

sinhx
dx

1
2n

p E
0

`

dx (
n52`

`

SoutF x

R
,unu,nGK unun

2 @x#, ~55!

H~n,R!

5
2

pE0

`

dx (
n52`

`

$pmx

unu@xR#~qmx

unu@xR#

1Sin@x,unu,n#pmx

unu@xR# !2K unu@xR#I unu@xR#%, ~56!

Sout@x,unu,n#

52

nS 12
1

n2D pmx

unu 8F1

nG I unun@x#1xpmx

unuF1

nG I unun8 @x#

nS 12
1

n2D pmx

unu 8F1

nGK unun@x#1xpmx

unuF1

nGK unun8 @x#

,

~57!

Sin@x,unu,n#

52

nS 12
1

n2Dqmx

unu 8F1

nGK unun@x#1xqmx

unu 8F1

nGK unun8 @x#

nS 12
1

n2D pmx

unu 8F1

nGK unun@x#1xpmx

unuF1

nGK unun8 @x#

,

~58!

and we have introduced the following notations:

mx52
1

2
1

1

2
A12

4x2

n221
, ~59!

xR5@nP~r p!#215A12R2S 12
1

n2D . ~60!

Let us analyze qualitatively the above expressions
self-energy. First of all let us consider the particle situa
outside the string. The functionL(n,R) defined by Eqs.~54!
and ~55! can be separated into two parts according to
~55! as

L~n,R!5L0~n!1L1~n,R!, ~61!

where
08350
s

r
d

.

L0~n!5
1

pE0

`n coth~nx!2cothx

sinhx
dx ~62!

is the contribution to the self-energy due to the infinitely th
cosmic string@8,9#. The second term,

L1~n,R!5
2n

p E
0

`

dx (
n52`

`

SoutF x

R
,unu,nGK unun

2 @x#, ~63!

is the contribution from the structure of the string.
The functionSout@x/R,unu,n# is positive for arbitrary an-

gular momentumn. For this reason the additional contribu
tion to self-energy due to nonzero thickness of the string
positive, too. Changing the variable of integrationx→z such
that x5nnz ~except n50) we can represent the functio
L1(n,R) as

L1~n,R!5E
0

`

dz F0~z,R!12(
n51

` E
0

`

dz Fn~z,R!, ~64!

where

F0~z,R!5
2n

p
SoutF z

R
,0,nGK0

2@z#, ~65!

Fn~z,R!5
2nn2

p
SoutF z

R
nn,n,nGKnn

2 @znn#. ~66!

In order to estimate the behavior ofFn as a function ofz we
use the uniform asymptotic expansion for great indexn of
Bessel’s functions in Ref.@21# and Legendre’s function in
Refs.@22,23#. With the help of those expansions one obta
the following main term of the uniform expansion forFn :

Fn~z,R!;
n221

8pnn2R2

z2

A11z2S 11
z2

R2D 2

3expH 22nnS h@z#2hF z

RG D J , ~67!

where

h@z#5 ln
z

A11z211
1A11z2. ~68!

The function in Eq.~67! tends to zero asz2 for z→0 and it
tends to zero as exp$22nnz@12(1/R2)#%/z3 for z→`. For
this reason the functionL1(n,R) exponentially falls down a
great distance from the stringR5r p /r o@1 and it tends to a
positive constant at the surface of the string atR51. There-
fore the self-energy tends to that value for an infinitely th
cosmic string far from it. The main difference appears n
the surface of the string where one has an additional pos
contribution.

The self-energy at the string’s origin may be analyzed
formulas~54! and~56!. Taking the limitR→0 and using the
6-6
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behavior of Legendre’s function in the neighborhood of u
@24# one has the following expression for the self-energy
the origin

Umax5
q2

2r o

2

pE0

`

dxH Sin@x,0,n#1
1

2
ln

x2

n221

2C@mx11#2
p

2
cotpmxJ , ~69!

which is, in fact, the height of the potential barrier. HereC is
the logarithmic derivative of the gamma function and

Sin@x,0,n#

52
An221

x

xK1@x#qmx

0 F1

nG2An221K0@x#qmx

1 F1

nG
An221K1@x#pmx

0 F1

nG1xK0@x#pmx

1 F1

nG .

~70!

As it can be seen from the uniform expansion Eq.~67!,
the dependence of the self-energy on the metric coeffic
n51/cose is given mainly by the expression (n21/n). For
this reason we represent the self-energyU and the height of
the barrierUmax as

U5
q2

2r o

n221

n
U~n,R!, ~71!

Umax5
q2

2r o

n221

n
Umax~n!, ~72!

where

Umax~n!5
n

n221

2

pE0

`

dxH Sin@x,0,n#1
1

2
ln

x2

n221

2C@mx11#2
p

2
cotpmxJ . ~73!

The dependence ofU on n is weak forn close to unit and
it does not depend, in fact, onn for e<0.1. In Fig. 1,
Umax(n) is displayed as a function ofn.

Therefore for a small deficit angle we obtain the follow
ing formula for the height of the barrier

Umax'0.39
q2

2r o
S n2

1

n D . ~74!

The numerical calculation ofU(n,R) as a function ofR
5r p /r o for e50.1 is depicted in Fig. 2~see the Appendix for
details!.

Let us now compare the self-energy in the thick cosm
string space-time with that in the infinitely thin cosmic strin
space-time in the limit of zero thickness of the string (r o
→0). We have to compare the self-energy in two differe
space-times for a particle situated at the same proper dist
from the string. In the infinitely thin cosmic string back
08350
t

nt

c

t
ce

ground the distance from the stringd coincides with the co-
ordinate of the particle, that is,d5r p5r oR. In the Gott-
Hiscock cosmic string space-time the distance from
string to a particle is

d5H r oS R211
e

tane D , R>1

r o

arcsin~R sine!

tane
, R<1.

~75!

Taking into account the above expression and Eqs.~54! and
~55! we get for a particle situated outside the string (D
5d/r o) the following relation:

U thick

U inf. thin
5

D

D112
e

tane

H 11

L1S n,D112
e

tane D
L0~n!

J .

~76!

FIG. 1. The self-energy at the string’s origin~height of the po-
tential barrier! is represented asUmax5(q2/2r o)(n

221)/nUmax(n).
Shown here is the plot of the dimensionless self-energyUmax as a
function of e. The cone parametern51/cose. For e<0.1, Umax

'0.39.

FIG. 2. The self-energyU(n,R)5(q2/2r o)(n
221)/nU(n,R).

This is the plot of a dimensionless self-energyU as a function of the
particle positionR5r p /r o for e50.1.
6-7
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In the limit of zero thicknessr o→0 (D→`) we obtain unit
in the right-hand side and the self-energy in the Gott-Hisc
space-time tends to the same result obtained in the infin
thin cosmic string space-time. In this case the barrier’s he
Umax given by Eq.~72! tends to infinity;1/r o .

In Fig. 3 we display the numerical calculation of the se
energyU given by Eq.~71! for a particle in the Gott-Hiscock
space-time and in an infinitely thin cosmic string space-ti
Uinf. thin defined below,

U inf. thin5
q2

2r o

n221

n
Uinf. thin ,

~77!

Uinf. thin5
n

n221

1

R
L0~n!,

as a function of distance from the string’s originD5d/r o .
For an infinitely thin cosmic string space-timeR5D and

for the Gott-Hiscock space-time we have

R5H D112
e

tane
, R>1

sin~D tane!

sine
, R<1.

~78!

The self-force, according to Eq.~20!, is minus the deriva-
tive of the self-energy given by Eq.~54! with respect to the
particle position. It is zero in the string’s origin and it ten
to zero such as in the infinitely thin cosmic string space-ti
far away from the string. In the neighborhood of the strin
surface, foruR21u!1, it tends to infinity logarithmically
according to~see the Appendix!

Fr'2
q2

2r o
2

n221

8
lnuR21u. ~79!

FIG. 3. The dimensionless self-energyU ~thick line! for a par-
ticle in a thick cosmic string space-time and for a particle in
infinitely thin cosmic string space-timeUthin ~thin line! as a function
of the proper distanceD5d/r o numerically calculated fore50.1.
08350
k
ly
ht

e

e

This divergence is rather formal. The function lnx is an in-
tegrable function atx50. For this reason the work again
this self-force is finite and equal to the height of the barr
Umax given by Eq.~72!.

Because the self-potentialU has the structure given in Eq
~71! we represent the self-force in the same way as

Fr5
q2

2r o
2

n221

n
Fr~n,R!. ~80!

The numerical simulation of the functionFr is displayed in
Fig. 4.

V. CONCLUSIONS

The aim of the paper is to calculate the self-energy a
self-force for a charged particle at rest in the space-time
an infinitely long, straight cosmic string with a nontrivia
internal structure. The relevance of this calculation is to cl
up the role of the nonzero thickness of the string. It is we
known that for a particle at rest in the infinitely thin cosm
string space-time, the self-energy and self-force fall down
from the string and tend to infinity at the string’s core@8,9#.
Obviously the origin of these singularities is associated w
the delta-like model of the string’s interior.

In the proceeding sections we considered the self-ene
and the self-force of charged particles at rest in the cos
string space-time with simplest nontrivial interior, sugges
by Gott @5# and Hiscock@6#. This model of string is an exac
solution of the Einstein equations and it corresponds to
cylindrical distribution of matter of constant energy dens
inside it. The exterior of the string is the flat conical spac
time and the interior is the constant curvature space-ti
The model is usually named the ‘‘ballpoint pen’’ model@18#.
It is suitable for our goal because this model contains a
mensional parameter, the radius of stringr o , with respect to
which we may analyze our problem. Let us summarize
main results in what follows.

To calculate the self-energy and self-force we used
approach of Refs.@8,9# in which the quantities under consid

FIG. 4. The self-forceFr(n,R)5(q2/2r o)(n
221)/nFr(n,R).

Shown here is the plot of the dimensionless self-force for a part
in a thick cosmic string space-timeFr as a function ofR5r p /r o for
e50.1.
6-8
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eration are expressed in terms of the renormalized Gre
function of the three-dimensional Laplace operator.

We analyzed the self-energy and self-force for differe
positionsr p of the particle. The self-energy falls down ou
side the string and tends to the same result obtained in
case of an infinitely thin cosmic string space-time far fro
the string’s surface. Namely, the self-energy has the follo
ing structure:

U~r p!5
q2

2r p
FL0~n!1L1S n,

r p

r o
D G , ~81!

where the functionL1 exponentially tends to zero far awa
from the string and the functionL0 is the same one tha
corresponds to the case of an infinitely thin cosmic str
space-time. The additional contribution to the self-energy
expressed as momentum expansion in terms of theS matrix
of the scattering problem in the imaginary axis.

Inside the string the self-energy grows up and tends t
constant in the string’s origin, which is, in fact, the height
the potential barrier. For a cosmic string which is cons
ered in grand unified theory withn21'1026 and
r o'10229 cm, the height of the energy barrier
2.83105 GeV.

In the limit of zero radius of the string (r o→0), the self-
potential tends to the same value corresponding to a par
in the infinitely thin cosmic string space-time and the ma
mum of the self-energy tends to infinity as 1/r o .

The self-force, which is the minus gradient of the se
energy has only a radial component and it is repulsive
any position of the particle. It is zero in the string’s orig
and tends to the self-force in the infinitely thin cosmic stri
space-time. In the surface of the string it has a maxim
value. In the framework of Gott-Hiscock thick cosmic strin
space-time the self-force tends to infinity logarithmical
This is an integrable divergence and the total work aga
the self-force is finite and equal to the maximum of the se
energy at the center of the string.

Therefore the nonzero radius of the string drastica
changes the behavior of self-energy and self-force clos
the string’s core. Outside the string’s surface the additio
contributions due to the string’s radius exponentially f
down. The self-energy and self-force are equal, in fact
that in an infinitely thin cosmic string space-time starti
from the distance of two radii of the string. We expect th
this behavior of self-energy and self-force will be, in gener
the same for a cosmic string in the Abelian-Higgs mod
considered in@7#.
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APPENDIX

In this appendix we discuss the numerical analysis of
self-potential given by Eq.~54!. Using Eq.~53! we can rep-
resent the self-potential in the following form:

U~r p!5
q2

2r o
H 1

R
L~n,R!, R>1

H~n,R!, R<1,

~A1!

where

L~n,R!5
2

pE0

`

dx (
n52`

1` H nK unun@x#I unun@x#2K unuF x

nG I unuF x

nG
1nSoutF x

R
,UnU,nGK unun

2 @x#J , ~A2!

H~n,R!5
2

pE0

`

dx (
n52`

` H pmx

unu@xR#~qmx

unu@xR#

1Sin@x,unu,n#pmx

unu@xR# !2K unuFxR

n G I unuFxR

n G J ,

~A3!

Sout@x,unu,n#

52

nS 12
1

n2D pmx

unu 8F1

nG I unun@x#1xpmx

unuF1

nG I unun8 @x#

nS 12
1

n2D pmx

unu 8F1

nGK unun@x#1xpmx

unuF1

nGK unun8 @x#

,

~A4!

Sin@x,unu,n#

52

nS 12
1

n2Dqmx

unu 8F1

nGK unun@x#1xqmx

unuF1

nGK unun8 @x#

nS 12
1

n2D pmx

unu 8F1

nGK unun@x#1xpmx

unuF1

nGK unun8 @x#

.

~A5!

In the last term in Eq.~A3! we used Eq.~53! and changed
the argument of the Bessel functions fromxR to xR/n. By
construction, the self-energy is aC1 regular function at the
surface of the string because Green’s function is expresse
terms of the functions given in Eq.~30!. The renormalization
is done by subtracting the same function in the regions o
side and inside the string. Therefore the expression gi
previously which corresponds to the self-potential is aC1

regular function at the string’s surface mode by mode, wh
is more suitable for numerical simulations.

First of all let us consider the self-energy for a partic
situated outside the string withR>1. In the neighborhood of
the string’s surface the series converges very slowly. To s
plify numerical calculations we represent it in the followin
form:
6-9
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1

R
L~n,R!5

2

pRE0

`

dxH nK0@x#I 0@x#2K0F x

nG I 0F x

nG
1nSoutF x

R
,0,nGK0

2@x#J
1

4

pR (
n51

N

nE
0

`

dxH nKnn@nx#I nn@nx#

2KnFnx

n G I nFnx

n G1nSoutFnx

R
,n,nGKnn

2 @nx#J
1

4

pR (
n5N11

1`

nE
0

`

dxH nKnn@nx#I nn@nx#

2KnFnx

n G I nFnx

n G1nSoutFnx

R
,n,nGKnn

2 @nx#J .

~A6!

In the last term of the previous equation, let us use~for
sufficiently greatN) the uniform expansion for Bessel func
tions @21#

Kp@pz#'Apt

2p
e2ph(

k50

`

~2p!2kuk@ t#,

I p@pz#'A t

2pp
eph(

k50

`

p2kuk@ t#,

~A7!

Kp8@pz#'2A p

2ptz2e2ph(
k50

`

~2p!2kūk@ t#,

I p8@pz#'A 1

2pptz2eph(
k50

`

p2kūk@ t#,

where

t@z#5
1

A11z2
, h@z#5A11z21 ln

z

11A11z2
,

uk@ t#5
1

2
t2~12t2!uk218 @ t#

1
1

8E0

t

~125t2!uk21@ t#dt, u0@ t#51,

ūk@ t#5uk@ t#1t~ t221!H 1

2
uk21@ t#1tuk218 @ t#J ,

~A8!
ū0@ t#51,

and the uniform expansion of Legendre’s functions found
Ref. @23# which have the form

pm
n @z#5

1

n! F11g2v2

11g2 G1/4

enS(
k50

`

n2kPk@v#,
08350
n

qm
n @z#5

~n21!!

2 F11g2v2

11g2 G1/4

e2nS(
k50

`

~2n!2kPk@v#,

1

n

d

dz
pm

n 52
1

n! F11g2v2

11g2 G3/411g2

12v2 enS(
k50

`

n2kP̄k@v#,

~A9!

1

n

d

dz
qm

n 5
~n21!!

2 F11g2v2

11g2 G3/411g2

12v2 e2nS

3 (
k50

`

~2n!2kP̄k@v#,

where

m52
1

2
1

1

2
A12S 2nx

tane D 2

, v5
z

A11g2~12z2!
,

g5
x

tane
,

S5
1

2
lnF12v

11v
1

11g2G2g~arctan@gv#2arctan@g#!,

Pk11@v#

5
12v2

2

11g2v2

11g2 Pk8@v#2
g2

8~11g2!

3E
1

v
dv8H 5v821

1

g2 212
11g2

g2~11g2v82!
J

3Pk@v8#, P0@v#51,

~A10!

P̄k@v#5Pk@v#2
g2v~12v2!

2~11g2!
Pk21@v#

2
~12v2!~11g2v2!

11g2 Pk218 @v#, P̄0@v#51.

Then, taking into account these previous formulas we h
the following expression for the last term in Eq.~A6!:

4

pR (
n5N11

1`

nE
0

`

dxH nKnn@nx#I nn@nx#2KnFnx

n G I nFnx

n G
1nSoutFnx

R
,n,nGKnn

2 @nx#J
'

n221

4pnR (
n5N11

`
1

n2E
0

`

dzH 2z2t@z#5~125t@z#2!

1
z2

R2 t@z#tF z

RG4

e22nn(h[z] 2h[z/R]) J , ~A11!

which may be expressed in terms of the function
6-10
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F~z,s,v !5 (
n50

`

~v1z!2szn. ~A12!

Using integral representation for this function@24# we ob-
tain, finally, the following expression for this term in Eq
~A6!:

4

pR (
n5N11

1`

nE
0

`

dxH nKnn@nx#I nn@nx#2KnFnx

n G I nFnx

n G
1nSoutFnx

R
,n,nGKnn

2 @nx#J
'

n221

4pnR H 1

3
zH@2,N11#1

1

R2E
0

`

dz z2t@z#tF z

RG4

3E
0

`

dyy
e2N[ y12n(h[z] 2h[z/R])]

ey12n(h[z] 2h[z/R])21
J , ~A13!

which is suitable for numerical calculations.
We use the same approach for the functionH(n,R) and

obtain the following result for the series corresponding to
function H(n,R):

4

p (
n5N11

1`

nE
0

`

dxH pmx

n @xR#~qmx

n @xR#1Sin@x,n,n#pmx

n @xR# !

2KnFxR

n G I nFxR

n G J
'

n221

4pn H RzH@2,N11#2E
0

`

dz z2t@zR#t@z#4

3E
0

`

dyy
e2N[ y12(h̃[z,1]2h̃[z,R])]

ey12(h̃[z,1]2h̃[z,R])21
J , ~A14!

where

h̃@z,R#5 ln
zR

A11z2R21A12R2 sin2 e

2
z

sine Farctan
zA12R2 sin2 e

sineA11z2R2
2arctan

z

sineG ,

~A15!

h@z#5A11z21 ln
z

11A11z2
, ~A16!

and zH(s,x) is the Hurwitz zeta function. At the surface o
the stringR51, and expressions given by Eqs.~A13! and
~A14! coincide and are equal to

n221

n

zH@2,N11#

6p
. ~A17!
08350
e

Therefore the self-energy is continuous at the string’s s
face. For numerical simulations we used previous formu
for N50.

In order to analyze the self-force near the string’s surfa
let us consider more carefully the self-energy for a parti
outside the string. ForN50 we have

1

R
L~n,R!5

2

pRE0

`

dxH nK0@x#I 0@x#2K0F x

nG I 0F x

nG
1nSoutF x

R
,0,nGK0

2@x#J 1
p

72

n221

nR

1
n221

4pn E
0

`

dz z2t@zR#t@z#4

3E
0

`

dy
y

ey12n(h[zR] 2h[z])21
. ~A18!

The last term will give a logarithmic divergence at th
string’s surface. In order to see this let us represent it in
form

E
0

` y dy

ey12np21
5E

2np

` y dy

ey21
12np ln~12e22np!,

~A19!

where

p5h@zR#2h@z#5 ln R

1 ln
A11z211

A11z2R211
1A11z2R22A11z2. ~A20!

The derivative of the integral in the right-hand side wi
respect toR is finite at the pointR51, but the derivative of
the second term in the right-hand side gives a logarithm
divergence atR51 because

dp

dR
5

A11z2R2

R
~A21!

is finite at the string’s surface.
Taking into account previous formulas, we obtain the f

lowing results which are divergent atR51:

1

R
L~n,R!5

n221

8
~R21!ln~R21!1 l ~n,R!, R.1,

~A22!

H~n,R!52
n221

8
~12R!ln~12R!1h~n,R!, R,1.

~A23!

The functionsl (n,R) andh(n,R) and their first derivatives
with respect toR are finite atR51.
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Taking the derivative of the above expressions inside
outside the string we find that the divergence at the strin
surface is given by Eq.~79!. This expression does not depen
on the numberN because this divergence appears associ
r
e,

at

o

08350
d
’s

ed

with small y, but for smally the integrand does not depen
on N. Therefore each term in the expression for the self-fo
is finite and continuous at the string surface but the sum
the series is logarithmically divergent.
ss.

,

l
.,

s

@1# T.W.B. Kibble, J. Phys. A9, 1387~1976!.
@2# A. Vilenkin and E.P.S. Shellard,Cosmic Strings and Othe

Topological Defects~Cambridge University Press, Cambridg
England, 1994!.

@3# A. Vilenkin, Phys. Rev. D23, 852 ~1981!.
@4# D.D. Sokolov and A.A. Starobinskii, Sov. Phys. Dokl.22, 312

~1977!.
@5# J.R. Gott, Astrophys. J.288, 422 ~1985!.
@6# W.A. Hiscock, Phys. Rev. D31, 3288~1985!.
@7# D. Garfinkle, Phys. Rev. D32, 1323~1985!.
@8# B. Linet, Phys. Rev. D33, 1833~1986!.
@9# A. G. Smith, inFormation and Evolution of Cosmic Strings,

edited by G.W. Gibbons, S.W. Hawking, and T. Vachasp
~Cambridge University Press, Cambridge, England, 1990!.

@10# D.V. Gal’tsov, Fortschr. Phys.38, 945 ~1990!.
@11# N.R. Khusnutdinov, Class. Quantum Grav.11, 1807~1994!.
@12# N.R. Khusnutdinov, Theor. Math. Phys.103, 603 ~1995!.
@13# E.R. Bezerra de Mello, V.B. Bezerra, C. Furtado, and F. M
i

-

raes, Phys. Rev. D51, 7140~1995!.
@14# E.R. Bezerra de Mello, V.B. Bezerra, and Yu. Grats, Cla

Quantum Grav.15, 1915~1998!.
@15# W.B. Perkins and A.C. Davis, Nucl. Phys.B349, 207 ~1991!.
@16# M.R. Brown and A.C. Ottewill, Phys. Rev. D34, 1776~1986!.
@17# S.M. Christensen, Phys. Rev. D17, 946 ~1978!.
@18# B. Allen and A.C. Ottewill, Phys. Rev. D42, 2669~1990!.
@19# N.R. Khusnutdinov and M. Bordag, Phys. Rev. D59, 064017

~1999!.
@20# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series

and Products~Academic, New York, 1980!.
@21# M. Abramowitz and I.A. Stegun,Handbook of Mathematica

Functions~National Bureau of Standards, Washington, D.C
1964!.

@22# R.C. Thorne, Philos. Trans. R. Soc. London249, 597 ~1957!.
@23# M. Bordag and N.R. Khusnutdinov~unpublished!.
@24# H. Bateman and A. Erde´lyi, Higher Transcendental Function

~McGraw-Hill, New York, 1953!, Vol. 1.
6-12


