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General-relativistic free decay of magnetic fields in a spherically symmetric body
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The decay of a magnetic field penetrating a compact spherical electrically conducting body and continuing
in its nonconducting surroundings is systematically studied. The body, considered as a rough model of a
compact spherical star, is assumed to be nonrotating and showing no internal motion, and so the metric of the
spacetime is static and spherically symmetric. Starting from the absolute space formalism of curved-space
electrodynamics the initial value problem for the magnetic field is formulated. The concept of poloidal and
toroidal fields is used to reduce the equations describing this problem to equations for the defining scalars of
the magnetic field. By expansion of them in a series of spherical harmonics equations are derived for functions
of the radial and time coordinates. A solution of these equations for the outer space is given. For the case of
time-independent conductivity of the body, the equations for the interior of the body are reduced to ordinary
differential equations which pose eigenvalue problems of the Sturm-Liouville type. After these reductions the
solution of the initial value problem for the magnetic field is given as a superposition of magnetic field modes
decaying exponentially in time. The shape of the modes is determined by the eigenfunctions of the Sturm-
Liouville problems mentioned, and the decay rates by the corresponding eigenvalues. Explicit results, mainly
gained by solving the relevant equations numerically, are given for the simple extreme case of constant density
of the body. Their most striking feature is that all growth rates decrease with the growing compactness of the
body. Furthermore, some concentration of the magnetic field in the inner parts occurs for high compactness.
The consequences of our findings for the magnetic-field evolution in neutron stars are discussed as well as the
implications for dynamo models.
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I. INTRODUCTION

A magnetic field in an electrically conducting medium
rest is bound to decay. The magnetic energy is converted
heat due to Ohmic dissipation of the electric currents@1#. In
flat spacetime this so-called free decay of magnetic fie
penetrating a finite conducting body and continuing in
nonconducting surroundings has been extensively stud
For the case of a spherical body with a constant conducti
the general solution of the initial value problem of the r
evant equations is available in analytical form@2,3#. It is a
superposition of magnetic-field modes each of which dec
exponentially in time. Knowledge of the solutions of th
free-decay problem is crucial as a background for und
standing the behavior of magnetic fields in cosmic bod
even in cases in which they do not decay but are mainta
or grow as a consequence of generation processes, fo
ample, by dynamo action of fluid motions@3,4# or thermo-
electric instabilities@5–7#. In these cases not only the mod
with large spatial scales and small decay rates but also t
with small scales and high decay rates are important. In
dition study of the free-decay problem provides us w
mathematical tools for the investigation of more comp
problems. The magnetic-field modes mentioned, taken
given time, constitute a complete set of vector fields wh
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allows us to represent arbitrary magnetic fields in the reg
of the conducting body, in particular, solutions of the d
namo equations@8#.

In several astrophysical objects showing magnetic p
nomena the curvature of the spacetime can no longer be
glected. This applies, for example, for the primordial plas
or for accretion disks around compact objects. We hav
particular interest in the neutron stars with their extrem
strong magnetic fields. The comparison of observational
sults with theoretical findings on magnetic-field evolutio
allows us to draw conclusions concerning the state of ma
under extreme conditions.

So it seems very desirable to investigate the free deca
magnetic fields in a curved spacetime. There are alread
few results concerning this issue. Geppertet al. @9# derived
the induction equation on a static spherically symme
background geometry and on this basis studied the deca
a dipolar magnetic field numerically in a constant-dens
star model. The most remarkable result is that the de
becomes slower with increasing compactness of the s
Pageet al. @10# considered more realistic models of neutr
stars with compactness ratios between 0.3 and 0.5 but
without rotation, and presented numerical results for the
cay of dipolar magnetic fields resulting from electric curren
in the crust. If a very soft equation of state applies for t
matter of the star the scales of a magnetic field in its inte
are much smaller than those for a star with the same mass
a stiff equation of state. Thus, when ignoring relativistic e
fects, a rapid field decay can be interpreted as a hint of
©2001 The American Physical Society08-1
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validity of a soft equation of state. With increasing softne
however, the compactness of the star increases and rela
tic effects become more pronounced. So the situation is
termined by the competition between these two opposite
dencies. For examples with very soft equations of state th
effects drastically decelerate the decay of the surface fi
strengths so that they are larger by a factor of about 100 a
1010 yr compared to the values obtained by nonrelativis
calculations. That is, the relativistic effects counteract th
of the softening of the equation of state. This makes con
sions concerning the state of matter inside neutron stars f
observational data on the magnetic-field evolution more
ficult.

In this paper we give a systematic treatment of the pr
lem of the free decay of a magnetic field on a static geom
determined by a compact spherical body surrounded by
space. This body is assumed to be nonrotating, that is,
metric of the spacetime is assumed to be spherically symm
ric. Although we call this body in the following for brevity a
‘‘star’’ and discuss the results with a view to neutron stars
do not claim to propose a model of such an object. In Sec
the induction equation in a static spherically symmet
spacetime is derived applying the absolute space formal
and in Sec. III the free-decay problem is formulated as
initial value problem for a system of vector differential equ
tions. To prepare its reduction to a system of equations
scalar quantities, in Sec. IV the relevant aspects of the c
cept of poloidal and toroidal vector fields are explaine
Then in Sec. V the original equations are reduced to eq
tions for scalar functions of the radial coordinate and
time. After giving a solution for the outer space in Sec. VI,
Sec. VII the assumption of a time-independent conductiv
is introduced and the equations for the interior of the bo
are further reduced to ordinary differential equations. Th
pose eigenvalue problems of the Sturm-Liouville type,
eigenfunctions and eigenvalues of which define the shap
the decay modes of the magnetic field and their decay ra
These modes are considered in more detail in Sec. VIII. T
constitute a complete set of vector fields in the sense that
initial magnetic field and therefore any solution of the init
value problem for the magnetic field can be represented
superposition of such modes. In Sec. IX we give spec
results for the decay modes for a constant-density star ga
by numerical calculations. Finally in Sec. X we discuss so
implications of our results in view of cosmic objects and
mathematical tools for related problems.

II. INDUCTION EQUATION ON A STATIC SPACETIME

Let us first deal with the basic equations for the elect
magnetic field. We restrict our consideration to an arbitr
nonsingular, globally static, and spherically symmet
spacetime and write the line element in the form

ds252e2F~dx0!21h1
2~dx1!21h2

2~dx2!21h3
2~dx3!2;

~1!

see, e.g.,@11#. Herex05ct, andF is related to the redshif
factor Z via Z5eF. The scale factorshi , i 51,2,3, define
the spatial metric on thex05const hypersurfaces. For th
08300
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present sectionZ andhi are arbitrary functions of the spatia
coordinates consistent with spherical symmetry.

We start with the covariant form of Maxwell’s equation

¹aFab52
4p

c
Jb , ~2!

¹ [aFbg]50. ~3!

Here Fab are the coordinate components of the Maxw
tensor,Ja those of the four-current density, and¹ the cova-
riant derivative operator; greek indices take the values 0
2, and 3. Clearly, any electric or magnetic polarization of t
matter is excluded.

We use in the following the absolute space formalism
curved-space electrodynamics@12#. Once a solution of Eqs
~2! and~3! in the background of~1! has been specified, the
a Killing observer with a four-velocityUa defined byUa

5e2Fd0
a , UaUa521, measures an electric fieldE and a

magnetic oneB defined by the physical components of th
corresponding four-vectors with coordinate components

Ea5FabUb, Ba52
1

2
eab

gd FgdUb, ~4!

whereeabgd stands for the four-dimensional Levi-Civita` ten-
sor density. Likewise these observers measure an ele
current densityJ and charge densityr which can be derived
from the four-vectorJa . Then the covariant form~2!,~3! of
the Maxwell equations yields

“•E54pr, “•B50, ~5!

“3~ZE!52
1

c

]B

]t
, “3~ZB!5

4p

c
ZJ1

1

c

]E

]t
. ~6!

Here the symbol“ stands for the divergence and curl oper
tions formed out of the scale factorshi describing the geom-
etry of the t5const spacelike hypersurfaces with the li
elementds3

25h1
2(dx1)21h2

2(dx2)21h3
2(dx3)2. Explicit rep-

resentations of the vector differential operations used h
are given in Appendix A. We note that the timet used here is
the universal time, that is, the time measured by an obse
at infinity.

We suppose that inside the electrically conducting ma
Ohm’s law relative to the Killing observers applies in th
simple form

J5sE ~7!

with s being the electric conductivity.
Let us now assume that the electric conductivity of t

matter is sufficiently high so that the displacement curr
]E/]t in Ampère’s law, that is, the second equation~6!, is
negligible in comparison with the conduction currentJ.
Starting then from Faraday’s law, that is, the first equat
~6!, and using Ohm’s law~7! as well as Ampe`re’s law with-
out displacement current we readily arrive at the induct
equation
8-2
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GENERAL-RELATIVISTIC FREE DECAY OF MAGNETIC . . . PHYSICAL REVIEW D 64 083008
]B

]t
1“3S c2

4ps
“3~ZB! D50. ~8!

As can be easily concluded with the help of Ohm’s law t
ratio of the magnitudes of displacement and conduction c
rent terms in Ampe`re’s law is 4psZTc whereTc is a char-
acteristic time scale of the variation ofE. So the induction
equation~8! applies under the condition 4psZTc!1. By the
way, if B is known and the neglect of the displacement c
rent is justified,J and E can be readily determined on th
basis of Ampe`re’s law and Ohm’s law.

III. FORMULATION OF THE FREE-DECAY PROBLEM
FOR A STATIC SPHERICAL STAR

In what follows we deal with the behavior of a magne
field penetrating a static spherical electrically conduct
perfect-fluid body, which we call a ‘‘star,’’ and continuing i
the surrounding free space. Like all motions of the flu
those due to electromagnetic forces are excluded; furt
more, so is any electric or magnetic polarization of the m
ter. Finally, the influence of the electromagnetic field on
metric is ignored. We specify the line element~1! to be a
corresponding solution of Einstein’s equations for a perf
fluid joining smoothly to an exterior Schwarzschild field. U
ing the familiar Schwarzschild coordinatesr , u, andf and
denoting the corresponding scale factors byhr , hu , andhf ,
we have

hr5h~r !, hu5r , hf5r sinu ~9!

with h given by

h~r !5S 12
2M ~r !

r D 21/2

, ~10!

whereM (r )5Gm(r )/c2 with m(r ) being the so-called mas
function that determines the total mass enclosed within
SO~3! sphere with the radiusr; see, e.g.,@11#. M (r ) takes the
valueM (R) for all r>R, wherer 5R defines the surface o
the star. Instead ofM (R) we write simplyM in the follow-
ing. The redshift factorZ depends, of course, onr only. Spe-
cific forms of the dependencies ofm and Z on r are not
needed in this section and will be introduced later. Expl
representations of vector differential operations, etc.,
Schwarzschild coordinates used in the following are given
Appendix A.

The magnetic fieldB is assumed to be governed by th
equations

]B

]t
1“3@h“3~ZB!#50, “•B50 in r ,R,

~11!

where we have introduced the magnetic diffusivityh
5c2/4ps, and

“3~ZB!50, “•B50 in r .R, ~12!

and to satisfy the conditions
08300
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@B#50 across r 5R, ~13!

where@•••# denotes the jump of a quantity across a surfa
and

B→0 as r→`. ~14!

In addition we assume that the magnetic energy densit
finite everywhere. The requirement for the normal comp
nent of B contained in Eq.~13! follows from the fact that
“•B50 has to apply everywhere. Those for the tangen
components ofB can be obtained from Eq.~6! if surface
currents are excluded, which is natural at least as long ah
remains finite. The requirement~14! excludes sources forB
at infinity and ensures together with Eq.~12! that the total
magnetic energy remains finite.

The equations and conditions~11!–~14! pose a mixed
boundary value problem forB. Note that the boundary in tha
sense is at infinity, and the part of the boundary condition
simply played by Eq.~14!. We will deal with this problem
for B in the following under the additional simplifying as
sumption that the magnetic diffusivityh is spherically sym-
metric, that is, may depend onr and t but not onu or f.
Consequences of deviations from this assumption will
pointed out later.

IV. POLOIDAL AND TOROIDAL VECTOR FIELDS

For problems such as considered here in flat spac
proved to be useful to decompose vector fields like the m
netic field B into their poloidal and toroidal parts and t
utilize specific properties of these parts. Such a decomp
tion is rather simple in the case of axisymmetric fields b
can also be established in the general case of not necess
axisymmetric fields; see, e.g.,@3,13–15#. Moreover, it can be
extended to spherically symmetric metrics in curved spac
see@16#.

We explain this decomposition here with reference to
metric defined by Eq.~9! but consider solenoidal fields onl
and restrict ourselves to aspects that are important for
reduction of Eqs.~11!–~14!. As for the explicit representa
tion of the vector differential operations, etc., we recall ag
Appendix A. By the way, it might be enlightening to consid
our explanations of solenoidal vector fields within the mo
general concepts applying to not necessarily solenoidal fi
that are sketched in Appendix C.

Let us consider an arbitrary solenoidal vector field. Sin
it will be specified in the next section to be the magne
field, we denote it already here, without adopting this spe
fication, byB. Because“•B50 we may representB in the
form

B5“3A ~15!

with a vector potentialA. The latter, in turn, can be repre
sented in the form

A52r3“S1rT1“U ~16!
8-3
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with r5rer and er being the radial basic unit vector in th
coordinate system used, with three scalar functionsS, T, and
U. The representation~16! applies to arbitrary vector fields
it was used, e.g., in@15# and is explained in some detail i
Appendix B. When working with this representation it
useful to know vector relations like

“3~rF !52r3“F, ~17!

“3@“3~rF !#52“3~r3“F !

52DFr1“S 1

h

]~rF !

]r D , ~18!

“3$“3@“3~rF !#%52“3@“3~r3“F !#5r3“DF,
~19!

r3~r3“F !5
1

rh

]

]r
~r 2F !r2“~r 2F !, ~20!

where

DF5DF1
1

2r

d

dr S 1

h2D F5
1

rh

]

]r S 1

h

]

]r
~rF ! D1

LF

r 2 .

~21!

F is an arbitrary but suitably differentiable scalar field,D the
usual three-dimensional Laplacian andr 22L the two-
dimensional Laplacian on a surfacer 5const. As a conse
quence of Eq.~18! we have

r•@“3~r3“F !#5LF. ~22!

We note thatLF50 on a surfacer 5const implies thatF is
independent ofu andf.

Using Eqs.~15! and ~16! we now write

B5BP1BT ~23!

with two fields BP and BT, which we call ‘‘poloidal’’ and
‘‘toroidal,’’ given by

BP52“3~r3“S!, BT52r3“T. ~24!

With the help of Eq.~22! we conclude from Eqs.~23! and
~24! that

LS52r•B, LT52r•~“3B!. ~25!

These equations determineS andT for any givenB with the
exception of parts independent ofu andf. Such terms, how-
ever, are without influence onBP andBT; see Eq.~24!. Con-
sequently,BP and BT are uniquely defined by the require
ment that they allow representations in the form of Eq.~24!.
For later use we give them also in the more explicit form
08300
BP52
LS

r
er1

1

rh F ]

]r S r
]S

]u D eu1
1

sinu

]

]r S r
]S

]f D efG ,
~26!

BT5
1

sinu

]T

]f
eu2

]T

]u
ef

whereer , eu , andef are the basic orthonormal vectors ass
ciated with the coordinate system.

Our definition of poloidal and toroidal fields implies prop
erties of these fields, a few of which are listed here.

~i! If B50 on a surfacer 5const thenBP5BT50 on this
surface,

~ii ! both BP and BT are solenoidal, that is,“•BP5
“•BT50,

~iii ! if f is a scalar independent ofu and f then
“3( f BP) is toroidal and“3( f BT) is poloidal,

~iv! if r•(“3BT)50 on a surfacer 5const thenBT50
on this surface,

~v! BP andBT are orthogonal to each other in the sense
^BP

•BT&50 where ^•••& means averaging over the sol
angle, that is,̂ •••&5(1/4p)*0

2p*0
p
••• sinu du df.

To explain statement~i! we refer to the uniqueness of th
decomposition ofB. Statement~ii ! applies since bothBP and
BT are defined as curls. Concerning statement~iii ! we note
that“3( f BP) can be written with the help of Eqs.~18! and
~24! in the form r3“•••, and“3( f BT) with the help of
Eq. ~24! in the form“3(r3¹•••). As far as statement~iv!
is concerned we conclude from Eq.~25! that LT50. Hence
T is independent ofu and f and thereforeBT50. Finally,
statement~v! can easily be verified by expressing the int
grand in^BP

•BT& with the help of Eq.~26! by derivatives of
S andT, carrying out integrations by parts, and consideri
that because of the regularity ofBP, which has to be re-
quired,]S/]f has to vanish where sinu vanishes.

It is often useful to remove the ambiguity ofSandT. This
can be done by requiring

^S&5^T&50. ~27!

In this context it is of interest that^LF&50 for any scalarF.
As a consequence we have, for example,^DF&5^DF&50 as
soon aŝ F&50.

V. REDUCTIONS OF THE BASIC EQUATIONS

We return now to our basic equations~11!–~14! for the
magnetic fieldB and represent it according to Eq.~23! as a
sum of its poloidal and toroidal partsBP andBT defined by
Eq. ~24!. Using the properties formulated in the stateme
~i!–~iv! we can easily reduce Eqs.~11! to

]BP

]t
1“3@h¹3~ZBP!#50 in r ,R, ~28a!

]BT

]t
1“3@h“3~ZBT!#50 in r ,R, ~28b!
8-4
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Eqs.~12! to

“3~ZBP!50, BT50 in r .R, ~29!

the conditions~13! to

@BP#50 across r 5R, BT50 at r 5R, ~30!

and the condition~14! to

BP→0 asr→`. ~31!

The problem forB formulated with Eqs.~11!–~14! clearly
splits into two independent problems forBP andBT. By the
way, a dependence ofh on u or f would lead to a coupling
betweenBP andBT.

Let us first deal with the problem forBP. ExpressingBP

according to Eq.~24! by S and using Eq.~18! we can write
Eq. ~28a! in the form

“3H r3“F ]S

]t
2hS ZDS1

1

rh2

dZ

dr

]

]r
~rS!D G J 50.

~32!

According to Eq. ~22! this implies L@•••#50, that is,
@•••# does not depend onu andf. Using Eq.~27! we find
@•••#50, that is,

]S

]t
2hF 1

rh

]

]r S Z

h

]

]r
~rS! D1

Z

r 2 LSG50 in r ,R.

~33!

In an analogous way the first equation~29! can be reduced to
an equation forS in r .R. The Schwarzschild solution o
Einstein’s equations implies that thereZ5h21. So the result
can be simplified to

1

r

]

]r S 1

h2

]

]r
~rS! D1

1

r 2 LS50 in r .R. ~34!

A look at Eq.~26! shows that the condition~30! is satisfied if

@S#5F]S

]r G50 across r 5R. ~35!

Finally, Eq. ~31! requires that

LS

r
,

1

r

]

]r S r
]S

]u D ,
1

r sinu

]

]r S r
]S

]f D →0 as r→`.

~36!

It commends itself to expandS in a series of spherica
harmonics. More precisely, we considerS as a sum of terms
Sl

m(r ,t)Yl
m(u,f), with the Yl

m being the familiar spherica
harmonics in their real form. The summation runs over al
andm satisfyingl>1 andumu< l ; because of Eq.~27! there
is no contribution withl 50. We recall that theYl

m constitute
a complete orthogonal set of functions on any spherical
face and satisfyLYl

m52 l ( l 11)Yl
m . It can easily be seen
08300
r-

that the system~33!–~36! implies no couplings between
terms differing inl or m. So we may put, without any loss o
generality,

S5Sl
m~r ,t !Yl

m~u,f!. ~37!

As we will explain later in more detail,l 51 corresponds to
magnetic-field modes of dipole type,l 52 to those of quad-
rupole type,l 53 to those of octupole type, etc.

From Eqs.~33!–~36! together with Eq.~37! we obtain

]Sl
m

]t
2hF 1

rh

]

]r S Z

h

]

]r
~rSl

m! D2
Zl~ l 11!

r 2 Sl
mG50

in r ,R, ~38!

1

r

]

]r S 1

h2

]

]r
~rSl

m! D2
l ~ l 11!

r 2 Sl
m50 in r .R, ~39!

@Sl
m#5F]Sl

m

]r G50 across r 5R, ~40!

Sl
m ,

]Sl
m

]r
→0 as r→`. ~41!

Clearly these equations forSl
m do not containm. Thus theSl

m

for a given l but differentm differ only by factors indepen-
dent of r, that is,

Sl
m5Cl

mSl ~42!

with Cl
m independent ofr. Of course, Eqs.~38!–~41! apply

also withSl
m replaced bySl .

As we will explain later in more detail, solutionsSl
m or Sl

of Eq. ~39! satisfying Eq.~41! are known. Since such a so
lution is determined only up to a factor independent ofr we
write Sl5ClS̃l with Cl being such a factor andS̃l an arbi-
trary special solution of Eq.~39! satisfying Eq.~41!, for ex-
ample, that withS̃l51 at r 5R. The remaining problem con
sists then in finding solutions of Eq.~38! that satisfy the
conditions~40!. We write these conditions now in the form

Sl ur 5R205ClS̃l ur 5R10 ,
]Sl

]r U
r 5R20

5Cl

]S̃l

]r
U

r 5R10

.

~43!

Eliminating Cl we obtain a connection betweenSl ur 5R20
and (]Sl /]r )ur 5R20. For reasons that will become clear lat
we write it in the form

]Sl

]r
1~ l 11!

f l

R
Sl50 at r 5R ~44!

with a factor f l determined byS̃l ,

~ l 11!
f l

R
52

]S̃l

]r
U

r 5R10

/S̃l ur 5R10 . ~45!
8-5
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Thus the problem forBP defined by Eqs.~28!–~31! is
reduced to that of finding solutions of Eq.~38! that satisfy
the condition~44! with a factor f l , the value of which we
will determine soon. Before doing so, however, we consi
the problem forBT defined by Eqs.~28!–~31!. Proceeding as
in the case ofBP and using, in particular, Eqs.~24! and~27!,
we find first

]T

]t
2

1

rh

]

]r S h

h

]

]r
~rZT! D2

hZ

r 2 LT50 in r ,R

~46!

and

T50 for r>R. ~47!

With

T5Tl
m~r ,t !Yl

m~u,f! ~48!

we further obtain

]Tl
m

]t
2

1

rh

]

]r S h

h

]

]r
~rZTl

m! D1
hZl~ l 11!

r 2 Tl
m50

in r ,R, ~49!

Tl
m50 for r>R. ~50!

In the sense of Eq.~42! we put

Tl
m5Dl

mTl ~51!

with Dl
m being independent ofr. The problem forBT consists

in finding solutionsTl
m or Tl of Eq. ~49! that continuously fit

to Eq. ~50!.

VI. THE SOLUTIONS FOR THE OUTER SPACE

Let us now return to the problem forBP and seekSl
m or Sl

for r .R, that is, solutions of Eq.~39! satisfying Eq.~41!,
from which the value off l in Eq. ~44! can be calculated. The
solution for l 51 was first given in a closed form by Ginz
burg and Osernoy@17#. For arbitraryl theSl can be gained in
a closed form simply by differentiation from the solutions f
the magnetic scalar potential given by Anderson and Co
@18#.

Since it is easier to handle numerically we derive her
solutionSl of Eq. ~39! in the form of a series of powers o
1/r . For this purpose we first putSl5sl /r and 1/h251
22M /r , where M stands again forM (R). Then Eq.~39!
turns into

d

dr F S 12
2M

r D dsl

dr G2
l ~ l 11!

r 2 sl50 ~52!

or, with 2M /r 5j, into

d

dj S ~12j!j2
dsl

dj D2 l ~ l 11!sl50. ~53!
08300
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It can easily be checked that

sl5clj
l (
n50

`

anjn ~54!

with an arbitrary factorcl independent ofj is a solution of
Eq. ~53! if

a051, an5
~ l 1n!221

~2l 1n11!n
an21 for n>1. ~55!

Hence

Sl5
Cl

r l 11 (
n50

`

anS 2M

r D n

~56!

with another arbitrary factorCl independent ofr and an as
above is a solution of Eq.~39!, and it satisfies Eq.~41!.

With the result~56! we return now to Eq.~45!. A straight-
forward calculation provides us with

f l5 (
n50

`
l 1n11

l 11
bn Y (

n50

`

bn ~57!

with

b051, bn5
~ l 1n!221

~2l 1n11!n
e bn21 for n>1 ~58!

wheree is the compactness ratio,

e52M /R. ~59!

Clearly we havef l51 for e50, andf l grows monotonically
with e.

VII. THE EIGENVALUE PROBLEMS FOR THE INTERIOR
OF THE BODY

So far we have reduced the problem forB posed by Eqs.
~11!–~14! to problems for the functionsSl

m andTl
m depend-

ing on r and t defined by Eq.~38! with the boundary condi-
tion ~44!, which has to be completed by Eqs.~57!–~59!, and
by Eq. ~49! with the boundary condition~50!.

We assume now thath does not depend ont. Then we can
ask forB modes, that is, for solutionsSl

m andTl
m of Eqs.~38!

and ~49!, that vary exponentially witht. Before formulating
the corresponding problems we introduce a dimension
magnetic diffusivityh̃, a dimensionless radial variablez, and
a dimensionless time variablet by

h5h̃ hc , r 5z R, t5t Th , Th5R2/hc , ~60!

wherehc is a characteristic value ofh; we choosehc5h if
h is constant.Th will prove to be a characteristic time for th
decay of a magnetic field with a characteristic length scaleR.
We now put

Sl5Ŝl~z!exp~2l l
Pt!, Tl5T̂l~z!exp~2l l

Tt! ~61!
8-6
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with dimensionless decay ratesl l
P andl l

T . Like Sl andTl ,

Ŝl(z) andT̂l(z) as well asl l
P andl l

T are independent ofm.
Then Eq.~38! for Sl

m turns into

h̃F 1

zh

d

dz S Z

h

d

dz
~zŜl ! D2

Zl~ l 11!

z2 Ŝl G1l l
PŜl50

in z,1, ~62!

or, which is the same,

d

d z
S z2

Z

h

dŜl

dz
D 2FZhl~ l 11!2z

d

d zS Z

hD G Ŝl1l l
Pz2

h

h̃
Ŝl

50 in z,1. ~63!

Likewise, Eq.~49! for Tl
m turns into

1

zh

d

dz
S h̃

h

d

dz
~zZT̂l ! D 2

h̃Zl~ l 11!

z2 T̂l1l l
TT̂l50

in z,1, ~64!

or

d

dz
S z2

h̃

h

dZT̂l

dz
D 2F h̃hl~ l 11!2z

d

dz
S h̃

h
D GZT̂l

1l l
Tz2

h

Z
ZT̂l50 in z,1. ~65!

If we exclude singularities ofSl andTl at z50, which would
contradict our requirement of finite magnetic energy dens
we may conclude from Eqs.~62! and ~64! that

Ŝl5O~z l !, T̂l5O~z l ! for z→0. ~66!

This coincides with the conditions resulting from the requi
ment thatBP andBT, or S andT, behave regularly atr 50.
Equation~63! for Ŝl together with the boundary conditions

Ŝl50 at z50,
dŜl

dz
1~ l 11! f l Ŝl50 at z51

~67!

that result from Eqs.~66! and~44!, pose an eigenvalue prob
lem of Sturm-Liouville type with the eigenvalue parame
l l

P @19#. Unfortunately, since the coefficientz2Z/h occurring

with the derivative ofŜl in Eq. ~63! is zero atz50, the
problem has to be classified as singular. For the flat case,
is, Z5h51, the solutions of Eq.~63! are well known. They
are spherical Bessel functions; see also Sec. IX. Despite
singularity we can then easily conclude from known the
rems@23# that there is a countable set of discrete single
genvalues, which we denote byl ln

P , n51,2,3, . . . , sothat
l l1

P ,l l2
P ,l l3

P ,••• , and that the corresponding eigenfun

tions Ŝln constitute a complete set of functions in the sen
that any function satisfying the boundary conditions~67! can
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be represented as a series of these functions. In the ge
case the situation is more complex insofar as we cannot
on known solutions of Eq.~63!. Nevertheless, the abov
statements on eigenvalues and eigenfunctions can be pro
too @24#. Multiplying both sides of Eq.~62! by z2hŜl /h̃,
integrating over allz in 0<z<1, and considering Eq.~67!
we can easily conclude that

l l
PE

0

1

Ŝl
2 h

h̃
z2 dz5E

0

1S d ~zŜl !

dz
D 2

Z

h
dz1 l ~ l 11!E

0

1

Ŝl
2 Zh dz

1@~ l 11! f l21#S Ŝl
2 Z

hD
z51

. ~68!

Since f l>1 this means that alll ln
P are positive, 0,l l1

P

,l l2
P ,l l3

P ,•••. The Ŝln are orthogonal in the sense th

*0
1ŜlnŜln8(h/h̃) z2 dz is nonzero only ifn5n8.

Equation ~65! can be understood as an equation forT̄l

5ZT̂l . Together with the boundary conditions

T̄l50 at z50 and at z51 ~69!

resulting from Eqs.~66! and ~50!, it poses again an eigen
value problem of Sturm-Liouville type with the eigenvalu
parameterl l

T . The above statements about thel ln
P apply to

the l ln
T , too, and like theŜnl the eigenfunctionsT̄nl as well

as theT̂nl defined byT̄nl5ZT̂nl constitute a complete set o
functions which allows us to represent functions satisfy
boundary conditions of the type~69!. Multiplying both sides
of Eq. ~64! by z2ZhT̂l , integrating overz, and considering
Eq. ~69! we find

l l
TE

0

1

T̂l
2 Zhz2dz5E

0

1S d

dz
~zZT̂l ! D 2 h̃

h
dz

1 l ~ l 11!E
0

1

~ZT̂l !
2 h̃h dz ~70!

and conclude that alll ln
T are positive, 0,l l1

T ,l l2
T ,l l3

T

,•••. The T̂l are orthogonal in the sense th
*0

1T̂lnT̂ln8Zhz2 dz is nonzero only ifn5n8.

VIII. THE FREE-DECAY MODES AND THE GENERAL
SOLUTION OF THE FREE-DECAY PROBLEM

Let us now return to the original problem for the magne
field B defined by Eqs.~11!–~14! and formulate our results
on this level. For this purpose we first define magnetic fie
Bln

Am(xk) depending on the space coordinates only, wherA
stands forP or T, by

Bln
Pm~xk!52“3$r3“@Ŝl~r !Yl

m~u,f!#%, ~71!

Bln
Tm~xk!52r3“@ T̂l~r !Yl

m~u,f!# ~72!
8-7
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whereŜl(r ) andT̂l(r ) meanŜl(z) andT̂l(z) with z replaced
by r /R. Then the modes

B~xk,t !5Bln
Am~xk!exp~2l ln

A t/Th! ~73!

are solutions of Eqs.~11!–~14!.
For each givenA, l , andn there are 2l 11 modes differ-

ing in m. The poloidal modes,A5P, with l 51 are dipole
fields, those withl 52 quadrupole fields, those withl 53
octupole fields, etc. We rely here on a definition of the m
tipole nature of poloidal fields on the basis of their variati
with the anglesu andf and not that withr. As can be seen
from Eq. ~56! in contrast to the situation in flat space,
dipole field in that sense outside the star does not vary w
r simply as 1/r 3, a quadrupole or octupole field not simply a
1/r 4 or 1/r 5, etc.

Among the three dipole modes,l 51, belonging to a
given n each one can be generated by rotating one of
others. Likewise, each of the three toroidal modes,A5T,
with l 51 and a givenn can be obtained by rotating one o
the others. This applies no longer, however, for poloidal
toroidal modes withl .1. Then among the 2l 11 modes for
given n and l are some that differ in their geometrical stru
tures so that it is no longer possible to bring them to coin
dence by rotating one of them. In these cases, of course
coincidence of thel ln

A for differentm is by no means trivial.
For givenA, l , and m the radial variation of the magneti
field in the interior of the body,r ,R, becomes more com
plex with growingn. In outer space,r .R, poloidal modes
with given l and m but differentn have the same structure
that is, they differ there only by factors independent of t
space coordinates.

We simplify the notation by writingBi instead ofBln
Am and

l i instead ofl ln
A wherei is a collective index coveringA, l ,

m, andn. Of course thel i are the same for alli that agree in
A, l , andn but differ in m. With this notation Eq.~73! reads
simply B(xk,t)5Bi(x

k)exp(2li t/Th). Together with Eq.
~73!, every superposition of such modes

B~xk,t !5(
i

ciBi~xk!exp~2l i t/Th! ~74!

with arbitrary constantsci is a solution of Eqs.~11!–~14!.
According to our construction theBi form a complete se

of vector functions which allows us to represent vector fie
B, which are arbitrarily defined but solenoidal inr ,R and
continue according to Eqs.~12!–~14! in r>R. We recall here
the completeness properties of theŜl andT̂l discussed above
and the completeness properties of theYl

m . Using the or-
thogonality properties of poloidal and toroidal fields, of t
Ŝln and T̂ln , and of theYl

m , it can be shown that theBi are
orthogonal in the sense of

È Bi~xk!•Bj~xk! Z dv5Ni
2 d i j , ~75!

where the integral is over all space,*`••• dv
5* r 50

` *u50
p *f50

2p
••• h r2 sinu dr du df. Hints concerning
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the proof of Eq.~75! are given in Appendix D. Of course th
Bi can be normalized so thatNi51.

Specifying Eq.~74! to the initial timet50 we have

B~xk,0!5(
i

ciBi~xk!. ~76!

Because of the completeness of theBi anyB(xk,0) satisfying
Eqs.~12!–~14! can be represented in the form~76!. With Eq.
~75! we obtain from Eq.~76! that

ci5
1

Ni
È B~xk,0!•Bi~xk! Z dv. ~77!

Equation~74! together with Eq.~77! is the solution of the
problem defined by Eqs.~11!–~14! for an arbitrary initial
field B(xk,0).

In the limit of larget only the contributions of the mode
Bi to the sum~74! with the smallest values ofl i are of
interest. That is why we will pay particular attention to su
modes.

Obviously, the validity of Eq.~75! allows us to assign
suitably defined energies to the individual mod
ciBi(x

k)exp(2li t/Th) the sum of which is equal to the cor
respondingly defined total energy of the field~74!. The en-
ergy definition suitable for this to hold is just the one
redshiftedenergy (*`B2 Z dv)/8p, that is, the redshifted en
ergies of the modes behave additively. According to this
give all energy quantities including local energy densities
the following, as redshifted quantities.

IX. SPECIFIC RESULTS FOR A
CONSTANT-DENSITY STAR

We restrict our attention now to a star with constant m
density and constant magnetic diffusivity. So we specify
eigenvalue problems formulated by Eqs.~62!–~65! by

h5~12ez2!21/2, Z5
3

2
~12e!1/22

1

2
~12ez2!1/2,

h̃51. ~78!

The form of the scale factorh is a direct consequence of Eq
~10!. As for the redshift factorZ we refer to general repre
sentations@11#. Assuming that the geometry is nonsingul
we have to require thatZ.0, which implies that the com-
pactness ratioe is constrained by 0<e, 8

9 .
The special casee50, that is,h5Z51, corresponds to

flat space. In this case the eigenvalue problems formula
here can be solved analytically; see, e.g.,@2# or @3#. For
the eigenfunctions Ŝln and T̂ln we have then Ŝln

5Cln j l(zl 21, nz) and T̂ln5Dln j l(zlnz) where Cln and Dln
are arbitrary constants,j l spherical Bessel functions of th
first kind, andzln their zeros,j l(zln)50, ordered according
to 0,zl1,zl2,••• . The eigenvalues are simply given b
l ln

P 5zl 21, n
2 and l ln

T 5zln
2 . Some values ofl ln

P and l ln
T are

given in Table I.
8-8
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A numerical procedure has been developed for the de
mination of theŜln andT̂ln and thel ln

P andl ln
T for arbitrary

e satisfying 0<e, 8
9 . A few results forl ln

P andl ln
T are de-

picted in Figs. 1 and 2. We recall that all statements
variations with the timet and so the values ofl ln

P and l ln
T

given there refer to an observer at infinity.
Clearly all decay rates decrease with growing compa

ness ratioe. This can be understood as a consequence of
effects of the spacetime curvature acting in the same di
tion. First, for an observer at a point inside the body the ti
runs slower compared to the timet that would be measure
by the clock of an observer at infinity. The decay of t
magnetic field in the neighborhood of this point inside t
body proceeds, of course, according to this local time so
it occurs delayed for the observer at infinity. Secondly,
observer inside the body sees a larger distance between
points in his neighborhood given by their coordinatesr , u,
andf than an observer at infinity. Since the time scale fo
change of magnetic structure is proportional to the squar
its length scale, this corresponds again to a delay of
magnetic-field decay. Investigating the slowest-decaying
pole mode, Geppertet al. @9# found that in this case the firs
effect is bigger than the second one.

Independently of the compactness ratioe the smallest de-
cay rate occurs with the poloidal modes withl 5n51, that
is, with the simplest dipole modes. Sorted according to gro
ing decay rates the next are the toroidal modes withl 5n
51, that is, the simplest modes with beltlike field structur
and the poloidal modes withl 52 and n51, the simplest
quadrupole modes. Fore50 the decay rates of these latt

TABLE I. Dimensionless decay ratesl ln
P and l ln

T of poloidal
and toroidal magnetic modes for the flat space, that is,e50.

n l1n
P l2n

P 5l1n
T l3n

P 5l2n
T l4n

P 5l3n
T

1 p2 20.1907 33.2175 48.8312
2 4p2 59.6795 82.7192 108.5164
3 9p2 118.8999 151.8549 187.6358

FIG. 1. Dependence of the dimensionless decay ratesl ln
P of

poloidal magnetic modes on the compactness ratioe. The numbers
on the curves givel; the different types of line refer to differentn.
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modes coincide but fore.0 those of the toroidal modes ar
smaller than those of the poloidal ones. Table II gives
decay rates for the three groups of modes mentioned
several values ofe. As indicated by crossings of lines i
Figs. 1 and 2 the sequence of the higher modes dependse.

In the evolution of a magnetic field the slowest-decayi
modes will dominate after a sufficiently long time. The tim
needed for reaching a certain dominance is, even if we m
sure it in units of the decay time of the slowest mode, lon
for higher e. More precisely, when starting from a give
mixture of modes at some initial time and comparing th
magnitudes, for example, after onee-folding time of the
slowest-decaying mode we find that the dominance of
slowest modes is less pronounced for highere.

Figure 3 shows magnetic-field lines for some poloid
modes and isolines of the azimuthal field strength in toroi
modes. In Figs. 4–6 the average of the redshifted magn
energy densityZB2/8p over surfacesr 5const is depicted for
a few modes. These figures show a tendency toward a
centration of the magnetic field in the central parts of the s
for large values of the compactness ratioe. We recall here
the two effects responsible for decelerating the decay of
magnetic field discussed above. The concentration of
field in the central region of the star becomes plausible if
consider that the time lapse is large just in this region.

Finally, in Fig. 7 the redshifted magnetic energies sto
inside and outside the conducting body are shown for po
dal modes withl 5n51 in dependence one. These energies
are defined by integrals*(ZB2)/8p dv, with dv again under-
stood as in Eq.~75!, over the region covered by the body o
the outer space, respectively. However, they are meas

TABLE II. Three lowest dimensionless decay ratesl ln
A for sev-

eral compactness ratiose.

Modes e50.0 e50.5 e50.8 e50.888

A5P, l 51,n51 9.8696 5.5975 2.4009 0.7545
A5T, l 51,n51 20.1907 10.2847 3.6592 0.8196
A5P, l 52,n51 20.1907 11.7121 5.2039 1.8346

FIG. 2. Same as Fig. 1, but dimensionless decay ratesl ln
T of

toroidal magnetic modes.
8-9
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FIG. 3. Magnetic-field lines of
the simplest dipole and quadru
pole modes~left and middle col-
umns! and isolines of the azi-
muthal component of the simples
toroidal modes ~right column;
solid lines, flux out of, and broken
lines, flux into the paper plane!.
First rowe50 ~flat space!, second
row e50.8, third row e50.888.
In these rows the distanced(r )
5*0

r h(r 8)dr8 is used as the radia
coordinate and the Schwarzschi
coordinateu as the angle with re-
spect to the vertical axis. Fourth
row: same as second row, but wit
the Schwarzschild coordinater
used as radial coordinate.
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sur-
s,
here in units of the energy inside the body provided that
energy density is there everywhere equal to its average in
above sense at the surface. The redshifted magnetic en
inside the body is for some range of smalle slightly lower
than its value fore50, but for largee drastically higher.

X. DISCUSSION

The results obtained by the above considerations gen
ize the findings about the effects of general relativity on
decay of a dipolar magnetic field in a nonrotating conduct
sphere presented in@9# insofar as the general solution for th
free decay as an initial value problem is given. Qualitative
the compactness of the body affects the spatial structure
the temporal behavior of the smaller-scale field modes i
manner similar to its effect on the fundamental dipolar o

Let us apply our findings to neutron stars. Of course, t
has to be done with care for several reasons. In particu
08300
e
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rgy
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e
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a
.
s
r,

FIG. 4. Redshifted magnetic energy density averaged over
facesr 5const, in units of its maximum value, for the dipole mode
l 51, with n51 for differente.
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any rotation of the body has been ignored in our consid
ations. In addition the specific results reported in Sec.
apply only under the problematic assumption of const
density and constant conductivity inside the star.

A reasonable assumption for the electric conductivity
the interior of a neutron star iss51025 s21, and so for the
magnetic diffusivityh57.231026 cm2 s21. Taking for the
radiusR510 km we haveTh54.43109 yr. The decay time
Tdecay, understood ase-folding time, for the simplest dipole
mode isTdecay5Th /l11

P . For flat spacetime,e50, we have
then Tdecay54.53108 yr; for curved spacetime with the
compactness ratiose50.3 or e50.5, however, Tdecay
55.93108 yr or Tdecay57.93108 yr, respectively.

When considering stars with equal masses instead
equal radii we get a different picture. If we assume, e
M* 51.4M ( and a constant conductivity equal to th
above, it turns out that with growing compactness the de
times decrease. Fore50.3 we getTdecay51.23109 yr and
for e50.5 onlyTdecay55.63108 yr. That is, the acceleration
of the decay due to the decrease in the length scales o
field now dominates the decelerating effect of the curvatu

For comparison, decay times have been calculated for
flat space case, too, using radii that result from the total m

FIG. 5. Same as Fig. 4, but for the toroidal modes withl 5n
51.

FIG. 6. Same as Fig. 4, but for the quadrupole modes,l 52,
with n51.
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and the~constant! density. They readTdecay58.73108 yr for
the density corresponding to e50.3 and Tdecay

53.53108 yr for that corresponding toe50.5. The differ-
ence from the values above elucidates the amount of de
eration due to curvature.

When taking into account the growth of the conductiv
with growing density, however, it is no longer clearab initio
whether the accelerating or decelerating effect is the ov
whelming one.

For the generation of magnetic fields self-excited dyn
mos are of great interest. The dynamo action of fluid motio
has been extensively studied in flat spacetime; see,
@21,22#. Our findings on the decelerating effect of the curv
ture on the decay of magnetic fields suggest that the requ
ments concerning the intensity of the motions in kinema
dynamo models may be lower compared to the flat case

An interesting side product of our investigation is the co
struction of a complete orthogonal set of vector functionsBi
allowing the representation of magnetic fieldsB that are ar-
bitrary in r ,R and continue inr>R according to Eqs.~12!–
~14!. This might be of importance also beyond the free-dec
problem. In the flat-space case, in which this set can be g
analytically, it has been used, for example, for the reduct
of the induction equation with convection terms to a syst
of ordinary differential equations for functions oft only,
which can be solved numerically. In this way spherical d
namo models have been studied; see, e.g.,@8#. Analogous
applications in curved-space cases seem possible.
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APPENDIX A

We give here representations of the three-dimensio
vector differential operators with respect to a coordinate s
tem defined by the line element~1! specified to at5const
spacelike hypersurface, that is,ds3

25h1
2(dx1)21h2

2(dx2)2

1h3
2(dx3)2. For arbitrary but suitably differentiable scala

fields F or vector fieldsF on a three-dimensional space, w
have

“F5
1

h1

]F

]x1 e11
1

h2

]F

]x2 e21
1

h3

]F

]x3 e3 , ~A1!

“•F5
1

h1h2h3
F ]

]x1
~h2h3F1!1

]

]x2
~h1h3F2!

1
]

]x3
~h1h2F3!G , ~A2!

“3F5
1

h2h3
S ]~h3F3!

]x2
2

]~h2F2!

]x3 D e11
1

h1h3
S ]~h1F1!

]x3

2
]~h3F3!

]x1 D e21
1

h1h2
S ]~h2F2!

]x1
2

]~h1F1!

]x2 D e3 ,

~A3!

where theei are the basic orthonormal vectors associa
with the coordinate system andFi the physical component
of F.

In spherical Schwarzschild coordinatesr , u, andf speci-
fied by Eq.~9! we have, in particular,

“F5
1

h

]F

]r
er1

1

r

]F

]u
eu1

1

r sinu

]F

]f
ef , ~A4!

“•F5
1

hr2

]

]r
~r 2Fr !1

1

r sinu S ]

]u
~sinuFu!1

]Ff

]f D ,

~A5!

“3F5
1

r sinu S ]

]u
~sinu Ff! 2

]Fu

]f D er

1S 1

r sinu

]Fr

]f
2

1

hr

]

]r
~rF f! D eu

1S 1

hr

]

]r
~rF u!2

1

r

]Fr

]u D ef . ~A6!

We add that

DF5“•“F5
1

hr2

]

]r S r 2

h

]F

]r D1
1

r 2 LF, ~A7!

LF5
1

sinu

]

]u S sinu
]F

]u D1
1

sin2 u

]2F

]f2 ~A8!
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whereD is the usual three-dimensional Laplacian andr 22L
the two-dimensional Laplacian on a surfacer 5const.

APPENDIX B

We want to show here that the representation~16! applies
to an arbitrary vector fieldA. Consider first the two-
dimensional field on a surfacer 5const that coincides with
the fieldA* 5A2(A•er)er on this surface. It is known tha
any two-dimensional field can be represented as a s
2r3“8S1“8U with a stream functionSand a potentialU,
where“8 means the two-dimensional version of“. Suppose
now thatS and U are known for arbitrary values ofr and
replace“8 in this sum by“. Then the sum represents
three-dimensional field which in general differs fromA in
the radial component, and it agrees withA after adding a
term rT with a properT.

APPENDIX C

Our explanations given above on the decomposition o
solenoidal vector field into poloidal and toroidal parts a
sufficient for the reduction of our basic equations but sh
some strange aspects otherwise. In particular, for any s
noidal fieldB such parts are well defined but not forf B with
a scalarf depending on the space coordinates, since suc
field is in general no longer solenoidal. Therefore it is use
to look at the decomposition of a solenoidal field from
level on which a decomposition is defined for arbitrary, n
necessarily solenoidal fields.

With this in mind let us consider an arbitrary vector fie
F with the component representation

F5Fr er1Fu eu1Ff ef ~C1!

with respect to a spherical coordinate system (r ,u,f). We
write it as a sum of a poloidal fieldFP and a toroidal fieldFT,

F5FP1FT, ~C2!

which we will define in the following.
In the case of an axisymmetric vector fieldF we may

choose the coordinate system so that the componentsFr ,
Fu , andFf do not depend onf. Then we defineFP andFT

simply by

FP5Fr er1Fu eu , FT5Ff ef . ~C3!

Clearly F50 implies FP5FT50 and vice versa, andf FP

and f FT with any axisymmetric scalarf are again poloidal
and toroidal, respectively. Moreover, our definition implie
for example, that“•FT50 and that“3FP and“3FT are
toroidal and poloidal, respectively. These properties ofFP

andFT can easily be concluded on the basis of Eqs.~A5! and
~A6!.

Turning now to the general, that is, not necessarily a
symmetric, case we first note that an arbitrary vector fieldF
can always be represented in the form

F5r3“U1rV1“W, ~C4!
8-12
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with r5rer , by three scalarsU, V, andW depending onr , u,
andf.

This is the same statement as mentioned with Eq.~16! and
explained in Appendix B. The component representation oF
that corresponds to Eq.~C4! reads

F5S rV1
1

h

]W

]r D er1S 2
1

sinu

]U

]f
1

1

r

]W

]u D eu

1S ]U

]u
1

1

r sinu

]W

]f D ef . ~C5!

We recall here the vector relations~17!–~20!.
The determination of the scalarsU, V, andW that occur

in Eq. ~C4! for a given vector fieldF requires in general the
integration of partial differential equations. Starting from E
~C4! and using Eqs.~17!–~19! we find

LU5r•~“3F!, LW5r•@“3~r3F!#, ~C6!

rV1
1

h

]W

]r
5r•F. ~C7!

If then the components ofF lying in a spherical surfacer
5const are given, the integration of the first two independ
partial differential equations with respect tou and f pro-
vides usU andW in this surface. IfW is known for somer
interval, V can be calculated in this interval from the rad
component ofF using the last equation.

ObviouslyF in Eq. ~C4! is invariant under certain gaug
transformationsU→U1u, V→V1v, and W→W1w. We
conclude from Eqs.~C6! and ~C7! that all possible transfor
mations are given byLu5Lw50, which means thatu andw
cannot depend onu and f, and byrv1(1/h)(]w/]r )50.
Remarkably enough, these transformations leave not onF
unchanged but also its partsr3“U and rV1“W.

With the last finding in mind we define now the fieldsFP

andFT simply by requiring that they allow representations
the form

FP5rV1“W, FT5r3“U ~C8!

or, which is the same,

FP5S rV1
1

h

]W

]r D er1
1

r

]W

]u
eu1

1

r sinu

]W

]f
ef ,

~C9!

FT52
1

sinu

]U

]f
eu1

]U

]u
ef ~C10!

with scalar functionsU, V, andW. This definition essentially
includes that given for the axisymmetric case. However,
specific definition given for the axisymmetric case is local
the sense that, ifF is given only at a point or, which is the
same, on a circle defined by one value ofr and one ofu, then
it immediately determinesFP and FT at this point irrespec-
tive of the situation at other points. In contrast to this, o
general definition is nonlocal. It works only if we knowF at
least on a surfacer 5const, it requires the solution of at lea
08300
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f

e

r

one partial differential equation on this surface, and it giv
us thenFP andFT on the whole surface.

Our definition implies several interesting properties ofFP

andFT a few of which are listed here.

~i! If, on a surfacer 5const, F50 then FP5FT50 on
this surface and vice versa.

~ii ! If f is a scalar independent ofu and f then f FP is
poloidal andf FT is toroidal.

~iii ! r3FP is toroidal andr3FT poloidal.
~iv! FT is solenoidal, that is,“•FT50.
~v! “3FP is toroidal and“3FT poloidal.
~vi! If, on a surface r 5const, r•(“3FT)50, then

FT50 on this surface.
~vii ! FP and FT are orthogonal in the sense of^FP

•FT&
50 where^•••& means the average over the solid angle, t
is, ^•••&5(1/4p)*0

2p*0
p
•••sinu du df.

Statement~i! can easily be proved on the basis of Eq
~C6! and~C7!. The validity of ~ii ! to ~v! becomes clear with
a look at Eqs. ~17!–~20!. As for ~vi! we note that
r•(“3FT)50 is according to Eq.~22! equivalent toLU
50. This implies thatU is independent ofu and f, which
leads immediately toFT50. The proof of~vii ! can easily be
given by expressinĝFP

•FT& according to Eqs.~C9! and
~C10! by an integral over some combination of derivatives
U andW, carrying out integrations by parts, and consideri
that the regularity ofF requires that]U/]f and ]W/]f
vanish at points where sinu does.

It is often useful to remove the ambiguity of the scala
U, V, and W. We may use the mentioned possibilities
gauge transformations and fixu andw so that

^U&5^W&50. ~C11!

With the condition~C11! all three scalarsU, V, andW are
uniquely fixed. In this context it is of interest that^LF&50
for any scalarF. As a consequence we have, for examp
^DF&5^DF&50 as soon aŝF&50.

Let us now assume thatF is solenoidal, that is,“•F50.
Then in addition toFT, which according to~iv! is solenoidal
anyway,FP has to be solenoidal, too. Thus we may putFP

5“3G with some vector potentialG. According to~v! the
poloidal part ofG cannot contribute toFP, and so we may
put without loss of generalityG5r3“Û with a scalar po-
tential Û. In this way we arrive at a justification of Eq.~24!.

APPENDIX D

Let us sketch here the essential ideas for a proof of
orthogonality relation~75!. Recall first that the indexi is a
collective index coveringA, l , m, andn. According to state-
ment~v! of Sec. IV the integral on the right hand side can
nonzero only ifA5A8. Consider then firstA5A85P and
express the integrand according to Eq.~71! by

Ŝln , Ŝl 8n8 , Yl
m , andYl 8

m8 . Carrying out proper integrations b
parts and usingL Yl

m52 l ( l 11) Yl
m , the integrand can be

brought into a form in which theYl
m andYl 8

m8 occur only as
8-13
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their productYl
m Yl 8

m8 . From the orthogonality of theYl
m it

follows then that the integral is nonzero only ifl 5 l 8 and
m5m8. In this case it reads, apart from a factor,

E
0

`S 1

h2

d

d z
~zŜln!

d

d z
~zŜln8!1 l ~ l 11!Ŝln Ŝln8D Zh dz

~D1!

where the variabler is again replaced byz5r /R. Split this
integral into two, *0

1
••• dz and *1

`
••• dz. Carrying out

proper integrations by parts and using Eq.~62! we find for
the first one

l ln
P E

0

1

Ŝln Ŝln8

h

h̃
z2 dz1S Z

h

d

d z
~zŜln! Ŝln8D

z5120

.

~D2!

Analogously with Eq.~39!, rewritten by replacingSl
m by

Ŝln , and considering thatZh51 for z>1 we find for the
second one

2S Z

h

d

dz
~zŜln! Ŝln8D

z5110

. ~D3!

Since Ŝln and dŜln /dz are continuous atz51 the integral
~D1! is equal to

l ln
P E

0

1

Ŝln Ŝln8

h

h̃
z2 dz. ~D4!

Because of the orthogonality relation for theŜln mentioned
in Sec. VII this integral is nonzero only ifn5n8. For A
5A85T we can proceed in the same way, but it is simp
since the integral that occurs instead of Eq.~D1! is from the
very beginning of the type*0

1
••• dz. As a result the integra

on the right hand side of Eq.~75! is indeed nonzero only if
A5A8, l 5 l 8, m5m8, andn5n8.

Another possibility for proving the orthogonality relatio
~75! consists in generalizing a method used by Rheinha
for the flat-space case@20#. Consider in addition to the
magnetic-field modesBi also the corresponding electric-fie
modesEi . Then Faraday’s law contained in Eq.~6! gives
-
n-

-

ot.

.

08300
r

dt

l iBi52cTh“3~ZEi ! ~D5!

and, hence,

l i È Bi•Bj Z dv5cTh È @“3~ZEi !#•Bj Z dv. ~D6!

With standard manipulations, considering that the tangen
components ofBi and Ei have to be continuous across th
surfacer 5R, we find

l i È Bi•Bj Z dv5cThE
V
Ei•@“3~ZBj !# Z dv, ~D7!

whereV means the spherer<R. Using Ohm’s law~7! and
Ampere’s law contained in~6! with the displacement curren
neglected, we find further

l i È Bi•Bj Z dv5R2E
V
@“3~ZBi !#•@“3~ZBj !# h̃ dv.

~D8!

Like Eqs. ~D5!–~D7! this relation applies also withi and j
interchanged. Hence we have

~l i2l j ! È Bi•Bj Z dv50. ~D9!

This proves the orthogonality of theBi belonging to different
l i . The remaining orthogonalities can be concluded
above from the orthogonality of poloidal and toroidal fiel
and the orthogonality of the spherical harmonics.

An interesting side product of this proof is the orthog
nality of the“3(ZBi) in the sense of

E
V
@“3~ZBi !#•@“3~ZBj !# h̃ dv5

l i

R2 Ni
2d i j ,

~D10!

which can be immediately concluded from Eqs.~75! and
~D8!.

The flat-space versions of Eqs.~75! and ~D10! play an
important part in the theory of a numerical code for solvi
the equations governing spherical dynamo models@8#.
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