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General-relativistic free decay of magnetic fields in a spherically symmetric body
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The decay of a magnetic field penetrating a compact spherical electrically conducting body and continuing
in its nonconducting surroundings is systematically studied. The body, considered as a rough model of a
compact spherical star, is assumed to be nonrotating and showing no internal motion, and so the metric of the
spacetime is static and spherically symmetric. Starting from the absolute space formalism of curved-space
electrodynamics the initial value problem for the magnetic field is formulated. The concept of poloidal and
toroidal fields is used to reduce the equations describing this problem to equations for the defining scalars of
the magnetic field. By expansion of them in a series of spherical harmonics equations are derived for functions
of the radial and time coordinates. A solution of these equations for the outer space is given. For the case of
time-independent conductivity of the body, the equations for the interior of the body are reduced to ordinary
differential equations which pose eigenvalue problems of the Sturm-Liouville type. After these reductions the
solution of the initial value problem for the magnetic field is given as a superposition of magnetic field modes
decaying exponentially in time. The shape of the modes is determined by the eigenfunctions of the Sturm-
Liouville problems mentioned, and the decay rates by the corresponding eigenvalues. Explicit results, mainly
gained by solving the relevant equations numerically, are given for the simple extreme case of constant density
of the body. Their most striking feature is that all growth rates decrease with the growing compactness of the
body. Furthermore, some concentration of the magnetic field in the inner parts occurs for high compactness.
The consequences of our findings for the magnetic-field evolution in neutron stars are discussed as well as the
implications for dynamo models.
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[. INTRODUCTION allows us to represent arbitrary magnetic fields in the region
of the conducting body, in particular, solutions of the dy-
A magnetic field in an electrically conducting medium at namo equation§3].
rest is bound to decay. The magnetic energy is converted into In several astrophysical objects showing magnetic phe-
heat due to Ohmic dissipation of the electric currdifs In nomena the curvature of the spacetime can no longer be ne-
flat spacetime this so-called free decay of magnetic fieldglected. This applies, for example, for the primordial plasma
penetrating a finite conducting body and continuing in itsor for accretion disks around compact objects. We have a
nonconducting surroundings has been extensively studiegharticular interest in the neutron stars with their extremely
For the case of a spherical body with a constant conductivititrong magnetic fields. The comparison of observational re-
the general solution of the initial value problem of the rel-sults with theoretical findings on magnetic-field evolution
evant equations is available in analytical fofg3]. It is a  allows us to draw conclusions concerning the state of matter
superposition of magnetic-field modes each of which decayander extreme conditions.
exponentially in time. Knowledge of the solutions of the  So it seems very desirable to investigate the free decay of
free-decay problem is crucial as a background for undermagnetic fields in a curved spacetime. There are already a
standing the behavior of magnetic fields in cosmic bodiegew results concerning this issue. Geppetral. [9] derived
even in cases in which they do not decay but are maintainethe induction equation on a static spherically symmetric
or grow as a consequence of generation processes, for eackground geometry and on this basis studied the decay of
ample, by dynamo action of fluid motiori8,4] or thermo-  a dipolar magnetic field numerically in a constant-density
electric instabilitieg5-7]. In these cases not only the modes star model. The most remarkable result is that the decay
with large spatial scales and small decay rates but also thos®comes slower with increasing compactness of the star.
with small scales and high decay rates are important. In adPageet al. [10] considered more realistic models of neutron
dition study of the free-decay problem provides us withstars with compactness ratios between 0.3 and 0.5 but still
mathematical tools for the investigation of more complexwithout rotation, and presented numerical results for the de-
problems. The magnetic-field modes mentioned, taken at eay of dipolar magnetic fields resulting from electric currents
given time, constitute a complete set of vector fields whichin the crust. If a very soft equation of state applies for the
matter of the star the scales of a magnetic field in its interior
are much smaller than those for a star with the same mass but
*Email address: khraedler@aip.de a stiff equation of state. Thus, when ignoring relativistic ef-
"Email address: zannias@ginette.ifm.umich.mx fects, a rapid field decay can be interpreted as a hint of the
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validity of a soft equation of state. With increasing softnesspresent sectioZ andh; are arbitrary functions of the spatial

however, the compactness of the star increases and relativiseordinates consistent with spherical symmetry.

tic effects become more pronounced. So the situation is de- We start with the covariant form of Maxwell's equations:

termined by the competition between these two opposite ten-

dencies. For examples with very soft equations of state those

effects drastically decelerate the decay of the surface field

strengths so that they are larger by a factor of about 100 after

10'% yr compared to the values obtained by nonrelativistic ViaF 3,1=0. 3)

calculations. That is, the relativistic effects counteract those

of the softening of the equation of state. This makes concluHere F ., are the coordinate components of the Maxwell

sions concerning the state of matter inside neutron stars frotensor,J,, those of the four-current density, afdthe cova-

observational data on the magnetic-field evolution more dif+iant derivative operator; greek indices take the values 0, 1,

ficult. 2, and 3. Clearly, any electric or magnetic polarization of the
In this paper we give a systematic treatment of the probmatter is excluded.

lem of the free decay of a magnetic field on a static geometry We use in the following the absolute space formalism of

determined by a compact spherical body surrounded by freeurved-space electrodynamik2]. Once a solution of Egs.

space. This body is assumed to be nonrotating, that is, the) and(3) in the background ofl) has been specified, then

metric of the spacetime is assumed to be spherically symmeé Killing observer with a four-velocityJ“ defined byU*

ric. Although we call this body in the following for brevity a :e*q’ﬁg, Uu®U,=—1, measures an electric fiel and a

“star” and discuss the results with a view to neutron stars wemagnetic oneB defined by the physical components of the

do not claim to propose a model of such an object. In Sec. Itorresponding four-vectors with coordinate components

the induction equation in a static spherically symmetric

spacetime is derived applying the absolute space formalism, 8 > s

and in Sec. lll the free-decay problem is formulated as an Ea=FapU”  Bo=— §6aﬁF75U , (4)

initial value problem for a system of vector differential equa-

tions. To prepare its reduction to a system of equations foyheree,, . s stands for the four-dimensional Levi-Civiten-

scalar quantities, in Sec. IV the relevant aspects of the consor density. Likewise these observers measure an electric

Cept of pOIOidaI and toroidal vector fields are explained.current density] and Charge density which can be derived

Then in Sec. V the original equations are reduced to equarom the four-vectord,,. Then the covariant forn2),(3) of
tions for scalar functions of the radial coordinate and thehe Maxwell equations yields

time. After giving a solution for the outer space in Sec. VI, in

Sec. VIl the assumption of a time-independent conductivity V.-E=4mp, V-B=0, (5)
is introduced and the equations for the interior of the body

are further reduced to ordinary differential equations. They 1 JB T 1 JE

pose eigenvalue problems of the Sturm-Liouville type, the ~ VX(ZE)=—_ —, VX(ZB)=-~ZJ+ - —. (6
eigenfunctions and eigenvalues of which define the shape of

the decay modes of the magnetic field and their decay rateggre the symboV stands for the divergence and curl opera-
These modes are considered in more detail in Sec. VIII. They < formed out of the scale factans describing the geom-

constitute a complete set of vector fields in the sense that aMY%ry of the t=const spacelike hypersurfaces with the line
initial magnetic field and therefore any solution of the initial elementdé— h2(dxY)2+ h2(dx?)2+ h2(dx%)2. Explicit rep-
-1 2 3 .

value pro.bllem for the magnetic field can be repr(_esented as Asentations of the vector differential operations used here
superposition of such modes. In Sec. IX we give specific

> ._are given in Appendix A. We note that the tirnased here is
results f°F the decay modes'for a (lzonstant-dens[ty star galne[ﬁe universal time, that is, the time measured by an observer
by numerical calculations. Finally in Sec. X we discuss some,, infinity ’ ’

Hgﬁ%ﬂggiﬁfts&; rfisrurlsaltr;(;ne\r/gk;)ll;ri]ossmlc objects and of We suppose that inside the electrically conducting matter
P ' Ohm’s law relative to the Killing observers applies in the
simple form

41
VaFaﬁ:_T‘],B’ (2)

II. INDUCTION EQUATION ON A STATIC SPACETIME

Let us first deal with the basic equations for the electro- J=oE (@)

magnetic field. We restrict our consideration to an arbitrary

: . . “with o being the electric conductivity.
nonsingular, globally static, and spherically symmetric . o
; . : . Let us now assume that the electric conductivity of the
spacetime and write the line element in the form

matter is sufficiently high so that the displacement current
ds?= —e?®(dx%)2+ h2(dx) 2+ h3(dx?)2+h3(dx®)2; JE/dt in Ampére’s law, that is, the second equatit8), is
(1) negligible in comparison with the conduction curreht
Starting then from Faraday’s law, that is, the first equation
see, e.g.[11]. Herex®=ct, and® is related to the redshift (6), and using Ohm’s law7) as well as Ampee’s law with-
factor Z via Z=e®. The scale factord;, 1=1,2,3, define out displacement current we readily arrive at the induction
the spatial metric on th&®=const hypersurfaces. For the equation
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c? [B]=0 across r=R, (13

—+VX
v 4o

VX(ZB))=0. (8)
where][ - - - ] denotes the jump of a quantity across a surface,

As can be easily concluded with the help of Ohm’s law theand

ratio of the magnitudes of displacement and conduction cur-

rent terms in Ampee’s law is 4raZ T, whereT, is a char- B—0 as r—o. (14)

acteristic time scale of the variation & So the induction

equation(8) applies under the conditionArZT.<1. By the |5 aqdition we assume that the magnetic energy density is

way, if B is known and the neglect of the displacement cur-iite everywhere. The requirement for the normal compo-
rent is justified,J and E can be readily determined on the aont of B contained in Eq(13) follows from the fact that

basis of Ampee’s law and Ohm'’s law. V-B=0 has to apply everywhere. Those for the tangential
components oB can be obtained from Ed6) if surface
ll. FORMULATION OF THE FREE-DECAY PROBLEM currents are excluded, which is natural at least as long as
FOR A STATIC SPHERICAL STAR remains finite. The requiremefit4) excludes sources fd

at infinity and ensures together with E@.2) that the total
magnetic energy remains finite.

The equations and conditiond1)—(14) pose a mixed
boundary value problem fd. Note that the boundary in that

In what follows we deal with the behavior of a magnetic
field penetrating a static spherical electrically conducting
perfect-fluid body, which we call a “star,” and continuing in

the surrounding free space. Like all motions of the fluid . ] o
those due to electromagnetic forces are excluded; furthefSNSe Is at infinity, and the part .Of the bo_unda_ry condition is
more, so is any electric or magnetic polarization of the matSIMPIY played by Eq(14). We will deal with this problem

ter. Finally, the influence of the electromagnetic field on the/®" B in the following under the additional simplifying as-

metric is ignored. We specify the line elemef to be a sumption tha}t the magnetic diffusivity is spherically sym-
corresponding solution of Einstein's equations for a perfecfNetric, that is, may depend anandt but not ond or ¢.
fluid joining smoothly to an exterior Schwarzschild field. Us- Conseguences of deviations from this assumption will be
ing the familiar Schwarzschild coordinatesd, and ¢ and ~ Pointed out later.

denoting the corresponding scale factorshby h,,, andh,

we have IV. POLOIDAL AND TOROIDAL VECTOR FIELDS
h.=h(r), hy,=r, h,=rsing 9) For problems such as considered here in flat space it
proved to be useful to decompose vector fields like the mag-
with h given by netic field B into their poloidal and toroidal parts and to

utilize specific properties of these parts. Such a decomposi-
tion is rather simple in the case of axisymmetric fields but
can also be established in the general case of not necessarily
axisymmetric fields; see, e.§3,13—15. Moreover, it can be
whereM (r)=Gm(r)/c? with m(r) being the so-called mass extended to spherically symmetric metrics in curved spaces;
function that determines the total mass enclosed within agee[16].

SQ(3) sphere with the radius see, e.g[11]. M(r) takes the We explain this decomposition here with reference to the
value M (R) for all r=R, wherer =R defines the surface of metric defined by Eq(9) but consider solenoidal fields only
the star. Instead d¥1(R) we write simplyM in the follow-  and restrict ourselves to aspects that are important for the
ing. The redshift factoZ depends, of course, anonly. Spe-  reduction of Eqs(11)—(14). As for the explicit representa-
cific forms of the dependencies of and Z on r are not tion of the vector differential operations, etc., we recall again
needed in this section and will be introduced later. ExplicitAppendix A. By the way, it might be enlightening to consider
representations of vector differential operations, etc., irour explanations of solenoidal vector fields within the more
Schwarzschild coordinates used in the following are given irgeneral concepts applying to not necessarily solenoidal fields

ZM(r))—1/2 (10)

h(r)=(1—

Appendix A. that are sketched in Appendix C.
The magnetic fieldB is assumed to be governed by the Let us consider an arbitrary solenoidal vector field. Since
equations it will be specified in the next section to be the magnetic

field, we denote it already here, without adopting this speci-

ﬁB 1 1 . = 1
E+V><[77V><(ZB)]=O, V.B=0 in r<R, fication, byB. BecauseV -B=0 we may represer in the

form
(11)
: o B=VXA (15
where we have introduced the magnetic diffusivity
=c?/4mo, and , . .
with a vector potentialA. The latter, in turn, can be repre-
VX(ZB)=0, V-B=0 in r>R, (12 Sentedin the form
and to satisfy the conditions A=—-rXVS+rT+VU (16)
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with r=re, and e, being the radial basic unit vector in the
coordinate system used, with three scalar functigrg and

U. The representatioiL6) applies to arbitrary vector fields;
it was used, e.g., if15] and is explained in some detail in

Appendix B. When working with this representation it is

useful to know vector relations like

VX(rF)=—=rxXVF, (17)
VX[VX(rF)]=—=VX(rxVF)
B (1 a(rF))
=—DFr+V h o | (18

VX{VX[VX(rF)]}=—VX[VX(rXVF)]=rx VDF,
(19

19
IX(rxVF)=— —

2 _ 2
h ar(r F)r—=V(r<F),

(20

where

_10’!1&':
“arnar T
@y

DF=AF L dit F
BT T

F is an arbitrary but suitably differentiable scalar fiedthe
usual three-dimensional Laplacian and?L the two-
dimensional Laplacian on a surface-const. As a conse-
qguence of Eq(18) we have
r-[Vx(rxVF)]=LF. (22
We note thal_.F=0 on a surface = const implies thaF is
independent ob and ¢.
Using Eqgs.(15 and(16) we now write
B=BP+BT (23
with two fields B and BT, which we call “poloidal” and
“toroidal,” given by
BP=-VX(rxvs), B'=-rxVT. (24)
With the help of Eq.(22) we conclude from Eqs(23) and
(24) that
LS=—-r-B, LT=-r-(VXB). (25
These equations determigandT for any givenB with the
exception of parts independent ®find ¢. Such terms, how-
ever, are without influence d” andB; see Eq(24). Con-
sequently,B” and BT are uniquely defined by the require-
ment that they allow representations in the form of Exf).
For later use we give them also in the more explicit form

PHYSICAL REVIEW B4 083008

BP_ LS +1 J( dJS N 1 0 0S
T S nlar\"50) ® " sine ar\"ag) )
(26)
1 0T JT

Tsing g 90¢

wheree, , €, ande,, are the basic orthonormal vectors asso-
ciated with the coordinate system.

Our definition of poloidal and toroidal fields implies prop-
erties of these fields, a few of which are listed here.

(i) If B=0 on a surface = const therB"=B"=0 on this
surface,

(i) both B and B™ are solenoidal, that isV-B=
V-B'=0,

(i) if f is a scalar independent of and ¢ then
V X (fBP) is toroidal andV x (fB") is poloidal,

(iv) if r-(VXBT)=0 on a surface = const thenB"=0
on this surface,

(v) BP andBT are orthogonal to each other in the sense of
(BP-BT)=0 where(---) means averaging over the solid
angle, that is{- - -)=(1/4=) [5"[5- - - sinddAd¢.

To explain statemerti) we refer to the uniqueness of the
decomposition oB. Statementii) applies since botB” and
BT are defined as curls. Concerning statem@nt we note
that V X (fBP) can be written with the help of EqéL8) and
(24) in the formrXx V- .-, and VX (fBT) with the help of
Eq. (24) in the formV X (rxXV-..). As far as statemertiv)
is concerned we conclude from E@5) thatLT=0. Hence
T is independent o# and ¢ and thereforeB™=0. Finally,
statement(v) can easily be verified by expressing the inte-
grand in{BP-BT) with the help of Eq(26) by derivatives of
SandT, carrying out integrations by parts, and considering
that because of the regularity &, which has to be re-
quired, dS/d¢ has to vanish where sthvanishes.

It is often useful to remove the ambiguity 8fandT. This
can be done by requiring
(S)=(T)=0. (27)
In this context it is of interest thdt.F)=0 for any scalafF.
As a consequence we have, for examplelr) =(DF)=0 as
soon asF)=0.

V. REDUCTIONS OF THE BASIC EQUATIONS

We return now to our basic equatioikl)—(14) for the
magnetic fieldB and represent it according to E@3) as a
sum of its poloidal and toroidal parB” andB" defined by
Eq. (24). Using the properties formulated in the statements
(i)—(iv) we can easily reduce Eggll) to

oBP

W-FVX[??VX(ZBP)]:O in r<R, (28@
BT _
7+V><[7,V><(ZBT)]=0 in r<R, (28b
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Egs.(12) to
Vx(zBP)=0, B'™=0 in r>R, (29
the conditiong13) to
[BP]=0 across r=R, B"™=0 at r=R, (30
and the conditior{14) to
BP—~0 asr—om. (3D

The problem forB formulated with Eqs(11)—(14) clearly
splits into two independent problems fBf andB'. By the
way, a dependence af on 6 or ¢ would lead to a coupling
betweenBP andB'.

Let us first deal with the problem f@". Expressingd”
according to Eq(24) by Sand using Eq(18) we can write
Eqg. (283 in the form

S
Vx{rxV ra ZDS+ e ar &r( S))H
(32)
According to Eq.(22) this implies L[---]=0, that is,

[---] does not depend oé and ¢. Using Eq.(27) we find
[---]=0, that is,

JS 1 d(Z 9
ot "rhoar\hor

z .
+— LS} 0 in r<R.
(33

—-(rS)

In an analogous way the first equati@9) can be reduced to
an equation forS in r>R. The Schwarzschild solution of
Einstein’s equations implies that thefe=h~*. So the result
can be simplified to

19

1
F&r(hzar(rs,)) 2LS=0 in >R (34

A look at Eq.(26) shows that the conditio(80) is satisfied if

=0 across r=R. (35

S
[S]=
Finally, Eq.(31) requires that

as)
—] —-0 as r—o,

LS 1 4
( ey
(36)

S 1 9
T oror

Y90 Ysing ar

It commends itself to expan& in a series of spherical
harmonics. More precisely, we considgas a sum of terms
S"(r,t)Y["(8,4), with the Y|" being the familiar spherical
harmonics in their real form. The summation runs ovel all
andm satisfyingl =1 and|m|=<I; because of Eq27) there
is no contribution with =0. We recall that the/|" constitute

a complete orthogonal set of functions on any spherical sur-

face and satisfiL Y{"=—I(1+1)Y". It can easily be seen

PHYSICAL REVIEW D 64 083008

that the system(33)—(36) implies no couplings between
terms differing inl or m. So we may put, without any loss of
generality,

S=S"(r,H)Y["(6,4). (37

As we will explain later in more detail,=1 corresponds to
magnetic-field modes of dipole typkes2 to those of quad-
rupole type,| =3 to those of octupole type, etc.

From Eqgs.(33)—(36) together with Eq(37) we obtain

S 1 a(z d m) ZI(1+1) |
F AT AR b
in r<Rr, (39)
1910 |\ 10+ .
Fa_r(ﬁza_r(rs )) —2—8I =0 in r>R, (39
sy
[Sm]z[y}zo across r=R, (40)
m IS
S —-—0 as r—e. (41)

Clearly these equations f&" do not contairm. Thus theS"
for a givenl but differentm differ only by factors indepen-
dent ofr, that is,

S'=C"s (42)
with C[" independent of. Of course, Eqs(38)—(41) apply
also with S replaced bys, .

As we will explain later in more detail, solutior®" or S
of Eq. (39) satisfying Eq.(41) are known. Since such a so-
lution is determined only up to a factor independent efe
write §=C,§, with C, being such a factor an8, an arbi-
trary special solution of E(39) satisfying Eq.(41), for ex-
ample, that witt§,=1 atr =R. The remaining problem con-
sists then in finding solutions of E@38) that satisfy the
conditions(40). We write these conditions now in the form

IS
Vor

IS

Sl|r:R70:CISI|r:R+Ov W

r=R-0 r=R+0

(43)

Eliminating C; we obtain a connection betwees|,_r_g
and (@S, /dr)|,-r_o. For reasons that will become clear later
we write it in the form

S i+ s o —R 44
o TU+DRS=0 at r= (44)
with a factorf, determined by§, ,
f,  d9 ~
(|+1)§:_W ISr=r+o0- (45

r=R+0
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Thus the problem foBP defined by Eqs(28)—(31) is
reduced to that of finding solutions of E(B8) that satisfy

the condition(44) with a factorf,, the value of which we
will determine soon. Before doing so, however, we consider
the problem foBT defined by Eqs(28)—(31). Proceeding as

in the case oBP and using, in particular, Eq&24) and(27),
we find first

dt  rhagrihar
(46)
and
T=0 for r=R (47
With
T=T(r,0Y[(6,¢) (48)
we further obtain
Tk o )
in r<Rr, (49)
T"=0 for r=R. (50
In the sense of Eq42) we put
T'=D"T, (51)

with D|" being independent af The problem foBT consists
in finding solutionsT|" or T, of Eq. (49) that continuously fit
to Eq. (50).

VI. THE SOLUTIONS FOR THE OUTER SPACE

Let us now return to the problem f&" and seel§" or S
for r>R, that is, solutions of Eq(39) satisfying Eq.(41),

PHYSICAL REVIEW B4 083008

It can easily be checked that

o0

s=cé' > a,¢

v=0

(54)

with an arbitrary factorc, independent of is a solution of
Eqg. (63 if

(I+v)2—1
ap,=1, aV=(2|+V—+1)VaV_1 for v=1. (55
Hence
C < 2M\”
5|:r|+1 ZO av(T (56)

with another arbitrary facto€, independent of anda, as
above is a solution of Eq39), and it satisfies Eq41).

With the result(56) we return now to Eq45). A straight-
forward calculation provides us with

ool v+l -
=2 T ) &

v=

(57)

with

(I+v)?—1

bo=1, b, =Gy, <Pt

for »=1 (58

wheree is the compactness ratio,
e=2M/R. (59

Clearly we haved =1 for e=0, andf, grows monotonically
with e.

VII. THE EIGENVALUE PROBLEMS FOR THE INTERIOR
OF THE BODY

So far we have reduced the problem Biposed by Egs.

from which the value of, in Eq. (44) can be calculated. The (11)—(14) to problems for the functionS™ and Tj" depend-

solution forl =1 was first given in a closed form by Ginz- ing onr andt defined by Eq(38) with the boundary condi-

burg and Oserno17]. For arbitraryl the S can be gained in  tion (44), which has to be completed by Ed§7)—(59), and

a closed form simply by differentiation from the solutions for Y EQ. (49) with the boundary conditioK50).

the magnetic scalar potential given by Anderson and Cohen We assume now thaj does not depend anThen we can

[18]. ask forB modes, that is, for solutior§" andT}" of Egs.(38)
Since it is easier to handle numerically we derive here @nd(49), that vary exponentially with. Before formulating

solutionS, of Eq. (39) in the form of a series of powers of the corresponding problems we introduce a dimensionless

1/r. For this purpose we first pu§=s,/r and 1h?=1  magnetic diffusivityz, a dimensionless radial variahfeand

—2M/r, whereM stands again foM(R). Then Eq.(39) a dimensionless time variableby

turns into

r=(R, t=7T T,=Rl5., (60

=177, s

r

d 2M\ d [(1+1
a[(l ) Sl}—(—z)ﬂzo (52)

r where 7. is a characteristic value of; we chooser.= 7 if

7 is constantT, will prove to be a characteristic time for the
decay of a magnetic field with a characteristic length sBale
We now put

or, with 2M/r =£, into

d ds
d—§(<1—g)gzd_§)_|(|+1)s|:o_ (53 s=8(0exp(—\Fr), T=T(Oexp(—\[7) (61)
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with dimensionless decay rata$ and\[ . Like S and T, be represented as a series of these functions. In the general
§(2) andT,(¢) as well as\[ and\[ are independent ah. ~ Case the situation is more complex insofar as we cannot rely
Then Eq.(38) for S turns into on known solutions of Eq(63). Nevertheless, the above

statements on eigenvalues and eigenfunctions can be proved,
pa too [24]. Multiplying both sides of Eq(62) by £?hS /7,
19=0 integrating over allZ in 0</<1, and considering Eq67)

~[1 d (Z d . ) ZI(I+1)A}
_—SI +
we can easily conclude that

LICERUETS Z

in (<1, (62 L
1.,h 1d({S)| Z 1.
or, which is the same, x:’f SZ:Edg:f ( ) —d§+l(l+1)J §zhd;
o 7y ol dZ / h 0
d | .zd§ d/(z\]. h.
|2z T .| = P2 VA
dg<f h dg) [Z“'(”” fdg(h STAE=S +[<|+1>f.—1](32—) . (68)
7 h/ .y
=0 in ¢<1. (63 ) _ b N o
Since f;=1 this means that al\, are positive, 8\;
Likewise, Eq.(49) for T[" turns into <AH<A<-.-. The S, are orthogonal in the sense that
- ~ 135,51 (h/m) £2d¢ is nonzero only ifn=n".
1 7 d - nZI(1+1). R . L=
haz\hac LZT) ——2T,+)\|TT|=0 Equation(65) can be understood as an equation Tor
¢h d¢ 4 4 =ZT,. Together with the boundary conditions
in (<1, (64) —=
T=0 at (=0 and at (=1 (69
or
resulting from Eqgs(66) and (50), it poses again an eigen-
d 277 dzT, _ d(7\| . value problem of Sturm-Liouville type with the eigenvalue
az On ran 7hi(l +1)—§d—§ A parameten . The above statements about g apply to
" the )\ﬂ‘, too, and like theS,, the eigenfunctiond,, as well
+)\IT§ZZZ-TI=0 in /<1. (65) as theT,, defined byT,,=ZT,, constitute a complete set of

functions which allows us to represent functions satisfying
boundary conditions of the typ@9). Multiplying both sides

If we exclude singularities of andT, at {=0, which would PN, . S
contradict our requirement of finite magnetic energy densityEgE%'g()G\;‘\'/)e?ng ZhT, integrating over/, and considering

we may conclude from Eq$62) and(64) that

5=0(¢), Ti=0(¢) fo 0. 66 1 id . \*7
This coincides with the conditions resulting from the require-
ment thatBP andBT, or Sand T, behave regularly at=0.

1
- +1(1+ T)2 7
Equation(63) for S, together with the boundary conditions Il l)fo (ZT))" ghdf (70)

S dA c T . T T T
S=0 at (=0, —S+(|+1)f|s.:o at =1 and concludeAthat alk,, are posmv_e, BEN<NL<N\ 5
4 <.... The T, are orthogonal in the sense that
TinTin Zhg is nonzero only in=n".
©7) 1%, T.zhe?de v ifn

that result from Eqs(66) and(44), pose an eigenvalue prob-
lem of Sturm-Liouville type with the eigenvalue parameter Viil. THE FREE-DECAY MODES AND THE GENERAL
)\,P [19]. Unfortunately, since the coefficietitZ/h occurring SOLUTION OF THE FREE-DECAY PROBLEM

with the derivative ofS in Eq. (63) is zero at{=0, the Let us now return to the original problem for the magnetic
problem has to be classified as singular. For the flat case, that 4 B defined by Eqs(11)—(14) and formulate our results

is, Z=h=1, the solutions of EC_‘(63) are well known. They 4 this level. For this purpose we first define magnetic fields
are spherical Bessel functions; see also Sec. IX. Despite t Inm(xk) depending on the space coordinates only, where

singularity we can then easily conclude from known theo.'stands forP or T, by

rems[23] that there is a countable set of discrete single ei-

genvalues, which we denote by, , n=1,2,3 ... , sothat Pm kv - m

A1<A[, <A\3<---, and that the corresponding eigenfunc- By (X)=—=VX{rxV[S(r)Y"(6,¢)]}, (72)
tions Sn constitute a complete set of functions in the sense Tk . "

that any function satisfying the boundary conditi¢63) can Bin (X)=—=rXV[T|(r)Y;(6,¢)] (72
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whereS,(r) andT,(r) mean$,(¢) andT,(¢) with ¢ replaced  the proof of Eq(75) are given in Appendix D. Of course the
by r/R. Then the modes B; can be normalized so that,=1.

Specifying Eq.(74) to the initial timet=0 we have
B(x*,t)=B{"(X*)exp( = Mt/ T,) (73
are solutions of Eqg11)—(14). B(xk,0)=2 GiB;(x1). (76)
For each giverA, |, andn there are 2+1 modes differ-
ing in m. The poloidal modesA=P, with |=1 are dipole  Because of the completeness of Bjeany B(x*,0) satisfying
fields, those withl =2 quadrupole fields, those with=3 Eqgs.(12)—(14) can be represented in the fo(i6). With Eq.
octupole fields, etc. We rely here on a definition of the mul-(75) we obtain from Eq(76) that
tipole nature of poloidal fields on the basis of their variation
with the anglesy and ¢ and not that withr. As can be seen 1 ‘ ‘
from Eq. (56) in contrast to the situation in flat space, a Ci:ﬁiJ;B(X ,0)-Bi(x*) Zdv. (77)
dipole field in that sense outside the star does not vary with
r simply as 1f°, a quadrupole or octupole field not simply as Equation(74) together with Eq.(77) is the solution of the
1/r* or 1/r®, etc. _ _ problem defined by Eqs(11)—(14) for an arbitrary initial
Among the three dipole mode$=1, belonging to a fig|q B(xX,0).

given n each one can be generated by rotating one of the | the limit of larget only the contributions of the modes
others. Likewise, each of the three toroidal modes; T, B, to the sum(74) with the smallest values of; are of

with | =1 and a givem can be obtained by rotating one of jnterest. That is why we will pay particular attention to such
the others. This applies no longer, however, for poloidal ofnodes.

toroidal modes with>1. Then among thel2-1 modes for Obviously, the validity of Eq.(75) allows us to assign
givenn andl| are some that differ in their geometrical struc- syjtably defined energies to the individual modes
tures so that it is no longer possible to bring them to coinci. B, (xk)exp(-\; t/T,) the sum of which is equal to the cor-
dence by rotating one of them. In these cases, of course, th@spondingly defined total energy of the figlt). The en-
coincidence of thej, for differentmis by no means trivial. ergy definition suitable for this to hold is just the one of
For givenA, |, andm the radial variation of the magnetic redshiftedenergy (..B?Z dv)/8, that is, the redshifted en-
field in the interior of the bodyy <R, becomes more com- ergies of the modes behave additively. According to this we
plex with growingn. In outer space; >R, poloidal modes give all energy quantities including local energy densities, in
with given| andm but differentn have the same structure, the following, as redshifted quantities.

that is, they differ there only by factors independent of the

space C.Oor?'”a:]es' on by writing. instead oBA™ and IX. SPECIFIC RESULTS FOR A
We simp |fyAt e nota}t!on ywntu;@i.lnstea ofBj," an CONSTANT-DENSITY STAR
\; instead of\, wherei is a collective index covering, |,
m, andn. Of course the\; are the same for ailthat agree in We restrict our attention now to a star with constant mass

A, 1, andn but differ in m. With this notation Eq(73) reads  density and constant magnetic diffusivity. So we specify the
simply B(x*,t)=B;(x")exp(~\;t/T,). Together with Eq. €igenvalue problems formulated by E¢82)—(65) by
(73), every superposition of such modes

h:(l_eé/Z)—l/Z' 222(1_6)1/2_%(1_6§2)1/2,
B(xX,)=2 ¢;Bi(x)exg —\; t/T,) (74)

n=1. (78
with arbitrary constants; is a solution of Eqs(11)—(14).

According to our construction thig; form a complete set The form of the scale factdris a direct consequence of Eq.
of vector functions which allows us to represent vector fieldg10). As for the redshift factoZ we refer to general repre-
B, which are arbitrarily defined but solenoidal irkR and  sentationg11]. Assuming that the geometry is nonsingular
continue according to Eq§l2)—(14) in r=R. We recall here e have to require thaZ >0, which implies that the com-
the completeness properties of ﬁieand'?, discussed above pactness rati@ is constrained by & e<3%.
and the completeness properties of 8. Using the or- The special case=0, that is,h=Z=1, corresponds to
thogonality properties of poloidal and toroidal fields, of theflat space. In this case the eigenvalue problems formulated
S, andT,,, and of theY]", it can be shown that thB; are  Nere can be solved analytically; see, e[g@} or [3]. For
orthogonal in the sense of the eigenfunctionsS,, and T,, we have then S,
=Cinji(z1-1,n0) and Tiy=Dynji(z1n{) where C,, and Dy,
are arbitrary constantg, spherical Bessel functions of the
first kind, andz,, their zeros,j;(z,) =0, ordered according
to 0<z,<z,<---. The eigenvalues are simply given by
where the integral is over all spacef.---dv =2z, ,and\[ =z, . Some values ok}, and\/, are
=10l 5=0J5 0 - hr?singdrdgde. Hints concerning given in Table I.

f Bi(x¥)- B;(x*) Z dv=N? 5,

ijs (75)
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TABLE |. Dimensionless decay rates,, and A, of poloidal

and toroidal magnetic modes for the flat space, that=s0. AL
n N N2n=MIn N5n=AZ Nan=\3,

1 a2 20.1907 33.2175 48.8312

2 4q? 59.6795 82.7192 108.5164

3 972 118.8999 151.8549 187.6358

A numerical procedure has been developed for the deter-

mination of theS,, andT,, and thex|, andA[, for arbitrary
e satisfying O<e<Z. A few results for\{, and\ |, are de-
picted in Figs. 1 and 2. We recall that all statements on
variations with the timet and so the values off, and A/,
given there refer to an observer at infinity. ) ) ]

Clearly all decay rates decrease with growing compact- /G- 2. Same as Fig. 1, but dimensionless decay rafesf
ness ratice. This can be understood as a consequence of twfroidal magnetic modes.
effects of the spacetime curvature acting in the same direc-
tion. First, for an observer at a point inside the body the timenodes coincide but foe>0 those of the toroidal modes are
runs slower compared to the timehat would be measured smaller than those of the poloidal ones. Table Il gives the
by the clock of an observer at infinity. The decay of thedecay rates for the three groups of modes mentioned for
magnetic field in the neighborhood of this point inside theseveral values ok. As indicated by crossings of lines in
body proceeds, of course, according to this local time so thdtigs. 1 and 2 the sequence of the higher modes depenels on
it occurs delayed for the observer at infinity. Secondly, an In the evolution of a magnetic field the slowest-decaying
observer inside the body sees a larger distance between tvwaodes will dominate after a sufficiently long time. The time
points in his neighborhood given by their coordinates,  needed for reaching a certain dominance is, even if we mea-
and ¢ than an observer at infinity. Since the time scale for asure it in units of the decay time of the slowest mode, longer
change of magnetic structure is proportional to the square dbr higher e. More precisely, when starting from a given
its length scale, this corresponds again to a delay of th&ixture of modes at some initial time and comparing their
magnetic-field decay. Investigating the slowest-decaying dimagnitudes, for example, after oreefolding time of the
pole mode, Geppest al.[9] found that in this case the first slowest-decaying mode we find that the dominance of the
effect is bigger than the second one. slowest modes is less pronounced for higher

Independently of the compactness ratithe smallest de- Figure 3 shows magnetic-field lines for some poloidal
cay rate occurs with the poloidal modes witan=1, that modes and isolines of the azimuthal field strength in toroidal
is, with the simplest dipole modes. Sorted according to growmodes. In Figs. 4—-6 the average of the redshifted magnetic
ing decay rates the next are the toroidal modes Witm  energy densityB%/8m over surfaces=const is depicted for
=1, that is, the simplest modes with beltlike field structures@ few modes. These figures show a tendency toward a con-
and the poloidal modes with=2 andn=1, the simplest centration of the magnetic field in the central parts of the star
quadrupole modes. Far=0 the decay rates of these latter for large values of the compactness ratiowWe recall here

the two effects responsible for decelerating the decay of the

[ o — T ' magnetic field discussed above. The concentration of the
AZ 1O net ] field in the central region of the star becomes plausible if we
consider that the time lapse is large just in this region.

Finally, in Fig. 7 the redshifted magnetic energies stored
inside and outside the conducting body are shown for poloi-
dal modes witH=n=1 in dependence oa. These energies
are defined by integral§(ZB?)/8x dv, with dv again under-
stood as in Eq(75), over the region covered by the body or
the outer space, respectively. However, they are measured

TABLE II. Three lowest dimensionless decay rai$ for sev-
eral compactness ratias

Modes €=0.0 e=05 €=0.8 €=0.888

A=P,I=1,n=1 9.8696 5.5975 2.4009 0.7545
FIG. 1. Dependence of the dimensionless decay rafgsnf A=T,I=1,n=1 20.1907 10.2847  3.6592 0.8196
poloidal magnetic modes on the compactness ratibhe numbers  A=P,|=2n=1 20.1907 11.7121 5.2039 1.8346
on the curves givé; the different types of line refer to different
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FIG. 3. Magnetic-field lines of
the simplest dipole and quadru-
pole modes(left and middle col-
umng and isolines of the azi-
muthal component of the simplest
toroidal modes (right column;
solid lines, flux out of, and broken
lines, flux into the paper plane
First rowe=0 (flat spacg second
row e€=0.8, third row e=0.888.
In these rows the distance(r)
=[gh(r')dr’ is used as the radial
coordinate and the Schwarzschild
coordinated as the angle with re-
spect to the vertical axis. Fourth
row: same as second row, but with
the Schwarzschild coordinate
used as radial coordinate.

here in units of the energy inside the body provided that the
energy density is there everywhere equal to its average in the
above sense at the surface. The redshifted magnetic energy
inside the body is for some range of smalklightly lower

than its value fore=0, but for largee drastically higher.

X. DISCUSSION

The results obtained by the above considerations general- T Y =00
ize the findings about the effects of general relativity on the F ToTnezos 1
decay of a dipolar magnetic field in a nonrotating conducting il T 3 —m1 ¢ = 0,888

sphere presented [8] insofar as the general solution for the
free decay as an initial value problem is given. Qualitatively,
the compactness of the body affects the spatial structure and
the temporal behavior of the smaller-scale field modes in a
manner similar to its effect on the fundamental dipolar one. FIG. 4. Redshifted magnetic energy density averaged over sur-

Let us apply our findings to neutron stars. Of course, thiSacesr = const, in units of its maximum value, for the dipole modes,
has to be done with care for several reasons. In particular=1, with n=1 for differente.

1.5 2

1
r/R

083008-10
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E
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01F 3
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€

FIG. 7. Redshifted magnetic energiésandE, inside and out-
side the conducting body in dependenceeorrhese energies are
measured in units of the energy defined as the product of the energy

. . . ., density averaged across the surface and the volume.
any rotation of the body has been ignored in our consider- v g

ations. In addition the specific results reported in Sec. IX
apply only under the problematic assumption of constanand the(constantdensity. They read gecay=8.7X 108 yr for
density and constant conductivity inside the star. the density corresponding toe=0.3 and Tgecay
A reasonable assumption for the electric conductivity of=3.5x 18 yr for that corresponding te=0.5. The differ-
the interior of a neutron star is=10* s™*, and so for the ence from the values above elucidates the amount of decel-
magnetic diffusivityp=7.2x10 % cn?s *. Taking for the  eration due to curvature.
radiusR=10 km we haveT ,=4.4x 10’ yr. The decay time When taking into account the growth of the conductivity
Tgecay Understood as-folding time, for the simplest dipole with growing density, however, it is no longer cleats initio
mode isTdecasz,]/)\lpl. For flat spacetimee=0, we have whether the accelerating or decelerating effect is the over-
then T gecay=4.5X 10® yr; for curved spacetime with the whelming one.
compactness ratioss=0.3 or €=0.5, however, Tyecay For the generation of magnetic fields self-excited dyna-
=5.9x10° yr or Tdecay= 7-9% 10° yr, respectively. mos are of great interest. The dynamo action of fluid motions
When considering stars with equal masses instead dias been extensively studied in flat spacetime; see, e.g.,
equal radii we get a different picture. If we assume, e.g.[21,22. Our findings on the decelerating effect of the curva-
M, =14M, and a constant conductivity equal to that ture on the decay of magnetic fields suggest that the require-
above, it turns out that with growing compactness the decaynents concerning the intensity of the motions in kinematic
times decrease. Far=0.3 we getT yecay= 1.2X¥ 10° yr and  dynamo models may be lower compared to the flat case.
for €=0.5 only T gecay=5.6X 1% yr. That is, the acceleration An interesting side product of our investigation is the con-
of the decay due to the decrease in the length scales of trstruction of a complete orthogonal set of vector functiBns
field now dominates the decelerating effect of the curvatureallowing the representation of magnetic fieBlghat are ar-
For comparison, decay times have been calculated for thieitrary inr <R and continue im =R according to Eqs(12)—

flat space case, too, using radii that result from the total masd4). This might be of importance also beyond the free-decay
problem. In the flat-space case, in which this set can be given

analytically, it has been used, for example, for the reduction
of the induction equation with convection terms to a system
of ordinary differential equations for functions a@fonly,

FIG. 5. Same as Fig. 4, but for the toroidal modes withn

1.0 Bl

€=0.000 —

0.8 . . . .
Ll €=0.500 . which can be solved numerically. In this way spherical dy-
[ eTos0 ] namo models have been studied; see, ¢8]., Analogous
0.6 - applications in curved-space cases seem possible.
ﬂ)é ]
~
o
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APPENDIX A whereA is the usual three-dimensional Laplacian andL

We give here representations of the three—dimensionaqqe two-dimensional Laplacian on a surface const.
vector differential operators with respect to a coordinate sys-
tem defined by the line elemefit) specified to a=const

spacelike hypersurface, that igls;=hi(dx")*+h3(dx*) We want to show here that the representatith) applies

+h3(dx®)%. For arbitrary but suitably differentiable scalar to an arbitrary vector fieldA. Consider first the two-
fields F or vector fieldsF on a three-dimensional space, we dimensional field on a surfage= const that coincides with

APPENDIX B

have

1 oF 1 oF 1 oF

the fieldA* =A—(A-¢g)g on this surface. It is known that
any two-dimensional field can be represented as a sum
—rXV'S+V'U with a stream functiois and a potential,

F= h o h, 2% R, S AD " \yhereV’ means the two-dimensional versionf Suppose
now thatS and U are known for arbitrary values af and
P P replaceV' in this sum byV. Then the sum represents a
V~F=—{—1(h2h3Fl)+ —(hihsF3) three-dimensional field which in general differs frofnin
hahzhs| gx X the radial component, and it agrees wihafter adding a
P termrT with a properT.
+ —3(h1h2F3)l' (A2)
Ix APPENDIX C
Our explanations given above on the decomposition of a
VXF= 1 [d(hsFs) _ 9(haF2) e+ 1 [a(hiFy) solenoidal vector field into poloidal and toroidal parts are
hohg | %2 ox3 Yohihs| ax3 sufficient for the reduction of our basic equations but show

CahaFy)| 1 (ﬁ(thz) ~a(hyFy)
axt hihy | oxt ax? '
(A3)

some strange aspects otherwise. In particular, for any sole-
noidal fieldB such parts are well defined but not fidd with

a scalarf depending on the space coordinates, since such a
field is in general no longer solenoidal. Therefore it is useful
to look at the decomposition of a solenoidal field from a
level on which a decomposition is defined for arbitrary, not

where thee are the basic orthonormal vectors associatethecessarily solenoidal fields.

with the coordinate system arkg the physical components

of F.
In spherical Schwarzschild coordinatesd, and ¢ speci-
fied by Eq.(9) we have, in particular,

10F 109F 1 oF

With this in mind let us consider an arbitrary vector field
F with the component representation

with respect to a spherical coordinate system¥(®). We

V=&t T 20%  rang 9 % (A4)  \rite it as a sum of a poloidal field” and a toroidal field=T,
F=FP+FT, c2
Vo= o (2R )+ (a_0F+aF¢) “
P o (TRt reng| gg(SNoFa T 55 which we will define in the following.
(A5) In the case of an axisymmetric vector fiekdwe may
choose the coordinate system so that the comporfents
— 1 (0 oE dF, F,, andF , do not depend om. Then we defind=" andF'
XF=sing| 79 SN0 Fo) T )& simply by
1 oF, 1 9 FP=F,e+F,e,, F'=F e,. (C3)
+ === —(IF )| & aTTeS ¢
rsind d¢ hror L b T . b
Clearly F=0 implies F"=F'=0 and vice versa, andF
19 1 0F, and fFT with any axisymmetric scalaf are again poloidal
iy ar("Fo =755 € (AB)  and toroidal, respectively. Moreover, our definition implies,
for example, thaWV-F'=0 and thatV X FP and VX FT are
We add that toroidal and poloidal, respectively. These propertiesFBf
andFT can easily be concluded on the basis of EAS) and
1 a0(r2oF| 1 (AB). . o
AF=V.VF=— —|——|+ =LF, (A7) Turning now to the general, that is, not necessarily axi-
hr<ogr\ h ar r . . )
symmetric, case we first note that an arbitrary vector field
) can always be represented in the form
LF_1a _03F+1&F A8
“sin0 30> 0) TSt 6 9¢? (A8) F=rxVU+rv+VWw, (C4)
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with r=re,, by three scalard, V, andW depending om, 6, one partial differential equation on this surface, and it gives
and ¢. us thenF” andF" on the whole surface.

This is the same statement as mentioned with(E). and Our definition implies several interesting propertied6f
explained in Appendix B. The component representatiof of andF' a few of which are listed here.

that corresponds to EC4) reads
(i) If, on a surfacer =const, F=0 then F°’=F'=0 on

10w 1 U 1W this surface and vice versa.
F=(rV+ h 7) er+( “Sindap t a6 (i) If fis a scalar independent & and ¢ then fF” is
poloidal andfFT is toroidal.
. &jL 1w . c5) (i) erP is toroidal andr X FT poloidal.
30 rsing ap| ¢ (iv) FT is solenoidal, that isy - FT=0.

(v) VXFP is toroidal andV X FT poloidal.

We recall here the vector relatiofis7)—(20). (vi) If, on a surfacer=const, r-(VXF')=0, then

The determination of the scalats, V, andW that occur  ET=( on this surface.
in Eq. (C4) for a given vector field= requires in general the (vii) F? and FT are orthogonal in the sense ¢f°-FT)
integration of partial differential equations. Starting from Eq. = where(- - -) means the average over the solid angle, that
(C4) and using Eqs(17)—(19) we find is, (- -y=(1/4m) [27[ T - -sin@dode.

LU=r-(VXF), LW=r-[VX(rxF)],  (C§ Statement(i) can easily be proved on the basis of Egs.

1 9w (C6) and(C7). The validity of(ii) to (v) becomes clear with
+ - —r.E (C7) a look at Egs.(17)—(20). As for (vi) we note that

h or r-(VXFT)=0 is according to Eq(22) equivalent toLU

If then the components df lying in a spherical surface EO' This implies that) is independent o and ¢, which

rv

: X ) . | eads immediately t&"=0. The proof of(vii) can easily be
=const are given, the integration of the first two independent ; P T :
partial differential equations with respect tband ¢ pro- lven by expressing"- ') according to Egs(C9) and

vid U andW in thi of W is known for som (C10 by an integral over some combination of derivatives of
int er?/z;JISV aan be cal lsjlztjeda?::.this irfterv(;l fro% tsh0 ridial U andW, carrying out integrations by parts, and considering

erval, v ¢ caic . € that the regularity ofF requires thatoU/d¢ and dW/d¢
component of- using the last equation.

ObviouslyF in Eq. (C4) is invariant under certain gauge vanls_h at points where sfdoes. Lo
; : It is often useful to remove the ambiguity of the scalars
transformationd) U +u, V>V+v, andW—-WHw. We — “y/ " ohqw we may use the mentioned possibilities of
conplude from Eqs(C6) and(C7) tha_lt all possible transfor- gauge transformations and fixandw so that
mations are given byu=Lw=0, which means that andw

cannot depend o and ¢, and byrv+(1/h)(ow/dr)=0. (UY=(W)=0 (C11)
Remarkably enough, these transformations leave not Bnly '
unchanged but also its pants VU andrV+VW. With the condition(C11) all three scalars), V, andW are

With the last finding in mind we define now the fielB8

uniquely fixed. In this context it is of interest thdiF)=0
andFT simply by requiring that they allow representations of que’y CuF)

for any scalar-. As a consequence we have, for example,

the form (AF)=(DF)=0 as soon a¢F)=0.

FP=rV+VW, F'=rxvu (C9) Let. us now assurpe th'ﬁt is solenpidal,'tha.t isV~F='O.

Then in addition td=', which according tdiv) is solenoidal

or, which is the same, anyway,F” has to be solenoidal, too. Thus we may Pt
=V X G with some vector potentiab. According to(v) the

b 1w 1 oW 1 oW poloidal part ofG cannot contribute t¢&", and so we may

FP=(rv+ o — e+ = —et—— 6, ) : ~
h or r de rsing d¢ put without loss of generalitgs=rxX VU with a scalar po-

(€9 tential U. In this way we arrive at a justification of E¢R4).

1 U 7V,

T_
- — eyt —
sind d¢p ° 90

€y (C10 APPENDIX D

) ) ) o ) Let us sketch here the essential ideas for a proof of the
with scalar functiondJ, V, andW. This definition essentially  orthogonality relation75). Recall first that the indek is a
includes that given for the axisymmetric case. However, thgq|iective index covering\, |, m, andn. According to state-
specific definition given for the axisymmetric case is local inment(v) of Sec. IV the integral on the right hand side can be

the sense that, i is given only at a point or, which is the onzero only ifA=A’. Consider then firsA=A’=P and
same, on a circle defined by one value @ind one of, then  eypress the integrand according to Eq71) by

it immediately determine§” andF' at this point irrespec- . = - m m’ : . :
tive of the situation at other points. In contrast to this, ourSln » S Yi7, andY), . Carrying out proper integrations by

general definition is nonlocal. It works only if we kndwat ~ Parts and usind. Y"=—I(I+1) Y[", the in’tegrand can be
least on a surface= const, it requires the solution of at least brought into a form in which th&{" and Yln? occur only as
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their productY|" Y,m From the orthogonality of ther[" it
follows then that the integral is nonzero onlylil’ and
m=m’. In this case it reads, apart from a factor,

(1 d . d . A a
fo (pd—g(éﬁn)d—g(ﬁnr)ﬂ(l+1)5|n5|nr Zhdg
(D1)
where the variable is again replaced by=r/R. Split this
integral into two,fé"-dg and [7---d{. Carrying out

proper integrations by parts and using E62) we find for
the first one

o [~ - D zd . . )
)\In fo SIn Sln'~_7~7§2d§+ Hd_g(gsln) Sln’

g=170.
(D2)
Analogously with Eq.(39), rewritten by replacingS" by

S,,, and considering thaZh=1 for =1 we find for the
second one

zd . .
_<_ (gsln) Sln’) (D3)
h dg 1o

Since S, anddS,,/d{ are continuous at=1 the integral
(D1) is equal to

1. . h
A.Pnf Sin Sy = £2de (D4)
0 n

Because of the orthogonality relation for t&ﬁ, mentioned
in Sec. VIl this integral is nonzero only ifi=n’. For A

PHYSICAL REVIEW B4 083008

)\iBi:_CTnVX(ZEi) (DS)

and, hence,

With standard manipulations, considering that the tangential
components oB; and E; have to be continuous across the
surfacer =R, we find

AifwBi . BJ Z dU:CT”fVEi [VX(ZB])] Z dv, (D?)

whereV means the sphemre<R. Using Ohm’s law(7) and
Ampere’s law contained i6) with the displacement current
neglected, we find further

)\if Bi.BjZdv=R2f [VX(ZB)]-[Vx(ZB))] 7 dv.
o0 V
(D8)

Like Egs. (D5)—(D7) this relation applies also withand|
interchanged. Hence we have

()\l_)\J)melBJZdU:O (Dg)

This proves the orthogonality of th#& belonging to different
N\i. The remaining orthogonalities can be concluded as
above from the orthogonality of poloidal and toroidal fields
and the orthogonality of the spherical harmonics.

An interesting side product of this proof is the orthogo-
nality of the VX (ZB;) in the sense of

=A’=T we can proceed in the same way, but it is simpler

since the integral that occurs instead of Hgl) is from the

very beginning of the typé%~ -+ d{. As a result the integral
on the right hand side of Eq75) is indeed nonzero only if

A=A’ 1=, m=m’, andn=n".

f[V><<ZBi>]'[V><<ZBj>]7;dv=%N?&j,
\%

(D10)

Another possibility for proving the orthogonality relation which can be immediately concluded from Edg5) and
(75 consists in generalizing a method used by Rheinhard(D8).

for the flat-space casg20]. Consider in addition to the

The flat-space versions of Eq&5) and (D10) play an

magnetic-field modeB; also the corresponding electric-field important part in the theory of a numerical code for solving

modesE; . Then Faraday’s law contained in E®) gives

the equations governing spherical dynamo moge]s
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