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Angular trispectrum of the cosmic microwave background

Wayne Hu
5640 South Ellis Avenue, University of Chicago, Chicago, Illinois 60637

~Received 23 April 2001; published 11 September 2001!

We study the general properties of the cosmic microwave background temperature four-point function,
specifically its harmonic analogue, the angular trispectrum, and illustrate its utility in finding optimal quadratic
statistics through the weak gravitational lensing effect. We determine the general form of the trispectrum, under
the assumptions of rotational, permutation, and parity invariance, its estimators on the sky, and their Gaussian
noise properties. The signal-to-noise in the trispectrum can be highly configuration dependent and any qua-
dratic statistic used to compress the information to a manageable two-point level must be carefully chosen.
Through a systematic study, we determine that for the case of lensing a specific statistic, the divergence of a
filtered temperature-weighted temperature-gradient map contains the maximal signal-to-noise and reduces the
variance of estimates of the large-scale convergence power spectrum by over an order of magnitude over
previous gradient-gradient techniques. The total signal-to-noise for lensing with the Planck satellite is of order
60 for a fiducial cold dark matter model with a cosmological constant (LCDM!.
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I. INTRODUCTION

The power spectra or two-point correlations of cosm
microwave background~CMB! temperature and polarizatio
anisotropies are widely recognized as a gold mine of inf
mation on cosmology. These spectra in fact contain all of
information embedded in the CMB if the underlying fluctu
tions are Gaussian distributed. Nonetheless even if the in
density fluctuations are Gaussian, non-Gaussianity in
CMB temperature fluctuations will be generated by no
linear processes. These generally are associated with the
ondary anisotropies that are imprinted as the photons pr
gate through the large-scale structure of the Universe f
the epoch of recombination.

Secondary signatures in the three-point correlation
temperature anisotropies have recently received much a
tion @1–3# following early pioneering work on intrinsic cor
relations in the initial conditions@4,5#. The four-point corre-
lation and its harmonic analogue, the trispectrum,
received considerably less attention despite the fact th
directly controls the noise properties of the estimators of
power spectrum. In particular, an all-sky treatment of
trispectrum that incorporates the full rotational symme
properties of the trispectrum has been lacking in the lite
ture ~cf. Ref. @6#!. Exploitation of the symmetry propertie
can assist in the isolation of the physical mechanisms un
lying the generation of the trispectrum, as we shall see.

In this paper, we establish the framework needed to st
the trispectrum on the full sky. We begin in Sec. II with
discussion of the symmetry properties of then-point function
on the sky, with an emphasis on the four-point function, a
their implications for the general form of the harmonic spe
tra. We consider estimators of the trispectrum and their no
properties in Sec. III, and the trispectrum-based power sp
tra of quadratic statistics in Sec. IV. Calculational techniqu
and relationships to the flat-sky formalism are given in t
Appendixes. In Sec. V, we consider the specific case of
trispectrum generated by weak gravitational lensing of CM
photons by the large-scale structure of the Universe
0556-2821/2001/64~8!/083005~15!/$20.00 64 0830
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show that there exists a quadratic statistic that optimally
covers the projected gravitational potential power spectr
~or convergence! on large scales. We conclude in Sec. VI.

II. SYMMETRIES

In this section, we derive the requirements that rotation
permutation, and parity symmetry impose on then5~two,
three, four!-point correlation functions on the sphere a
their spherical harmonic analogues: the power spectr
bispectrum, and trispectrum. We begin with general cons
erations for then-point function in Sec. II A, review the im-
plications for the power spectrum and bispectrum in S
II B, and derive the consequences for the trispectrum in S
II C. In Sec. II D, we show how to construct trispectra wi
the required symmetry properties.

A. General considerations

We begin by requiring statistical isotropy of then-point
correlation function on the sphere and its harmonic analog

^Q~ n̂1!•••Q~ n̂n!&5 (
l 1••• l n

(
m1•••mn

^Q l 1m1
•••Q l nmn

&

3Yl 1

m1~ n̂1!•••Yl n

mn~ n̂n!. ~1!

Statistical isotropy demands that then-point function is in-
variant under an arbitrary rotationR whose action on a
spherical harmonic is expressed in terms of the WigneD
function,

R@Yl
m~ n̂!#5(

m8
Dm8m

l
~a,b,g!Yl

m8~ n̂! , ~2!

wherea, b, andg are the Euler angles of the rotation. T
satisfy rotational invariance the harmonics must obey
relation
©2001 The American Physical Society05-1



as
o

en

he

t o

on
e

e
ties

the
o-

ed

f
hird
irs

WAYNE HU PHYSICAL REVIEW D 64 083005
^Q l 1m1
•••Q l nmn

&5 (
m18•••mn8

^Q l 1m
18
•••Q l nm

n8
&

3D
m1m

18

l 1
•••D

mnm
n8

l n , ~3!

for all a, b, andg. The reduction of this relation proceeds
follows. Each pair of rotation matrices may be coupled int
single rotation via the group multiplication property~or
equivalently the addition of angular momentum!,

D
m1m

18

l 1 D
m2m

28

l 2 5 (
LMM8

S l 1 l 2 L

m1 m2 2M D S l 1 l 2 L

m18 m28 2M 8
D

3~2L11!~21!M1M8DMM8
L . ~4!

When the product is reduced to a pair ofD matrices, one
seeks the form of the harmonicn-point function that reduces
the pair to the orthogonality condition for rotations

(
m

~21!m22mDm1m
l 1 D

2m22m
l 1 5dm1m2

, ~5!

which is valid for an arbitrary rotation. The indices can th
be permuted to find alternate orderings of the pairings.

Invariance under a parity transformation which takesn̂
→2n̂,

Yl
m→~21! lYl

m , ~6!

would require that

(
i 51

n

l i5even. ~7!

Reality of the underlyingQ field and the fact that

Yl
m* 5~21!mYl

2m , ~8!

requires that

Q l
m* 5~21!mQ l

2m . ~9!

B. Power spectrum and bispectrum

For the two-point function there is only one step. T
reduction of Eq.~5! requires the form

^Q l 1m1
Q l 2m2

&5d l 1l 2
dm12m2

~21!m1Cl 1
. ~10!

For the three-point function one first collapses one produc
rotation matrices leaving

^Q l 1m1
•••Q l 3m3

&5 (
m18•••m38

^Q l 1m
18
•••Q l 3m

38
& (

LMM8
~2L11!

3~21!M1M8S l 1 l 2 L

m1 m2 2M D
3S l 1 l 2 L

m18 m28 2M 8
DDMM8

L D
m3m

38

l 3 . ~11!
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In order to reduce this relation to the orthogonality conditi
Eq. ~5!, the sum overm8 of the three-point function must b
proportional todLl 3

dM82m
38
. Recalling the identity

(
m1m2

S l 1 l 2 L

m1 m2 M D S l 1 l 2 L8

m1 m2 M 8
D 5

dLL8dMM8
2L11

,

~12!

we can obtain the desired relation if them dependence of the
three-point function obeys

^Q l 1m1
•••Q l 3m3

&5S l 1 l 2 l 3

m1 m2 m3
DBl 1l 2l 3

. ~13!

C. Trispectrum

The form of the four-point function follows the sam
steps except that we use the group multiplication proper
to pair say (l 1 ,l 2) and (l 3 ,l 4) leading to the condition

^Q l 1m1
•••Q l 4m4

&5 (
m18•••m48

(
L12M12M128

~2L1211!

3~21!M121M128 S l 1 l 2 L12

m1 m2 2M12
D

3S l 1 l 2 L12

m18 m28 2M128
DD

M12M128

L12

3 (
L34M34M348

~2L3411!

3~21!M341M348 S l 3 l 4 L34

m3 m4 2M34
D

3S l 3 l 4 L34

m38 m48 2M348
DD

M34M348

L34

3^Q l 1m
18
•••Q l 4m

48
&. ~14!

The same reasoning that led to the choice of the form of
three-point function implies that the following form is a s
lution:

^Q l 1m1
•••Q l 4m4

&5(
LM

S l 1 l 2 L

m1 m2 2M D S l 3 l 4 L

m3 m4 M D
3~21!MQl 3l 4

l 1l 2~L !. ~15!

Geometrically,Ql 3l 4

l 1l 2(L) represents a quadrilateral compos

of sides with lengthl 1••• l 4. The indexL represents one o
the diagonals of the quadrilateral and is also the shared t
side of the two triangles formed by the corresponding pa
of sides. The Wigner-3j symbols in Eq.~15! ensure that the
5-2
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triangle inequalities are satisfied. For this reason we will
ten refer to a set (l 1 ,l 2 ,l 3 ,l 4 ,L) as a given ‘‘configuration’’
of the quadrilateral.

The two other unique pairings of the indices, (l 1 ,l 3) and
( l 1 ,l 4), yield alternate representations of the four-point fun
tion. These are not independent since all three coupli
yield complete sets according to the theory of the addition
angular momenta. The alternate representations are
structed as linear combinations of the (l 1 ,l 2) representation
with weights given by the Wigner-6j recoupling coefficients
~see Appendix A!,

Ql 2l 4

l 1l 3~L !5(
L8

~21! l 21 l 3~2L11!H l 1 l 2 L8

l 4 l 3 L J Ql 3l 4

l 1l 2~L8!,

Ql 3l 2

l 1l 4~L !5(
L8

~21!L1L8~2L11!H l 1 l 2 L8

l 3 l 4 L J Ql 3l 4

l 1l 2~L8!,

~16!

where we have used Eq.~A4! to project one coupling schem
onto another.

Symmetry with respect to the 4!/358 remaining permu-
tations~two orderings of the pairs, four orderings within th
pairs! requires that

Ql 3l 4

l 1l 2~L !5~21!SUQl 3l 4

l 2l 1~L !5~21!SLQl 4l 3

l 1l 2~L !5Ql 1l 2

l 3l 4~L !,

~17!

whereSU5 l 11 l 21L and SL5 l 31 l 41L. If the four-point
function is parity invariant then

Ql 3l 4

l 1l 2~L !5Ql 4l 3

l 2l 1~L !. ~18!

We shall show how to construct trispectra that obey th
properties in the next section.

Finally it is useful to separate the contributions from t
unconnected or Gaussian piece and the connected or tris
trum piece

Ql 3l 4

l 1l 2~L !5Gl 3l 4

l 1l 2~L !1Tl 3l 4

l 1l 2~L !, ~19!

where

Gl 3l 4

l 1l 2~L !5~21! l 11 l 3A~2l 111!~2l 311!Cl 1
Cl 3

d l 1l 2
d l 3l 4

dL0

1~2L11!Cl 1
Cl 2

@~21! l 21 l 31Ld l 1l 3
d l 2l 4

1d l 1l 4
d l 2l 3

#. ~20!

D. Enforcing symmetries

The symmetries of the trispectrum described above m
be enforced by the following construction. First we descr
the four-point function by a form that is explicitly symmetr
in the three unique pairings,
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^Q l 1m1
•••Q l 4m4

&c5(
LM

Pl 3l 4

l 1l 2~L !S l 1 l 2 L

m1 m2 2M D
3S l 3 l 4 L

m3 m4 M D ~21!M1~ l 2↔ l 3!

1~ l 2↔ l 4!, ~21!

wherec denotes the fact that we have removed the Gaus
piece of Eq.~20!. The two latter pairings can be projecte
onto the (l 1 ,l 2) basis with the help of the Wigner-6j symbol
to give

Tl 3l 4

l 1l 2~L !5Pl 3l 4

l 1l 2~L !1~2L11!(
L8

F ~21! l 21 l 3

3H l 1 l 2 L

l 4 l 3 L8
J Pl 2l 4

l 1l 3~L8!1~21!L1L8

3H l 1 l 2 L

l 3 l 4 L8
J Pl 3l 2

l 1l 4~L8!G . ~22!

Within the three unique pairings, there are four permutatio
of the ordering implying thatP is constructed as

Pl 3l 4

l 1l 2~L !5T l 3l 4

l 1l 21~21!SUT l 3l 4

l 2l 11~21!SLT l 4l 3

l 1l 2

1~21!SU1SLT l 4l 3

l 2l 1. ~23!

The reduced functionT underlying the trispectrum is an ar
bitrary function of its arguments except that it must be sy
metric against exchange of its upper and lower indices

T l 3l 4

l 1l 2~L !5T l 1l 2

l 3l 4~L !, ~24!

and if parity invariant obeys

T l 3l 4

l 1l 2~L !5T l 4l 3

l 2l 1~L !. ~25!

This then completes the enforcing of the rotation, permu
tion and parity symmetries of the trispectrum.

III. ESTIMATORS AND SIGNAL-TO-NOISE

We show in Sec. III A that the fundamental estimator
the trispectrum involves a weighted sum over the multip
moments in a given quadruplet of harmonics. These esti
tors have well defined noise properties as derived in S
III B which can be used to calculate the theoretical signal-
noise in the trispectrum. A nonvanishing trispectrum can
the other hand decrease the signal-to-noise in the po
spectrum by introducing a covariance between its estima
as shown in Sec. III C.

A. Estimators

From the orthogonality properties of the Wigner-3j sym-
bol, one can invert the relationship for the four-point spe
trum to form the estimator
5-3
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T̂l 3l 4

l 1l 2~L !5~2L11! (
m1m2m3m4M

~21!MS l 1 l 2 L

m1 m2 M D
3S l 3 l 4 L

m3 m4 2M D ^Q l 1m1
•••Q l 4m4

& 2Ĝl 3l 4

l 1l 2,

~26!

where the estimator for the Gaussian piece is constructed
of those for the power spectrum. Note that for configuratio
whosel sides are not equal in pairs, the Gaussian piece v
ishes and the sum overm’s of the spherical harmonic coef
ficients is an unbiased estimator of the trispectrum.

We can alternately form an estimator of particular co
figurations of the trispectrum directly from the sky map its
without an explicit expansion in spherical harmonics. F
lowing Spergel and Goldberg@8#, let us define a new set o
sky maps weighted in rings centered around a pointq̂:

el~ q̂!5A2l 11

4p E dn̂Q~ n̂!Pl~ n̂•q̂!. ~27!

Expanding the Wigner-3j symbols in terms of spherical ha
monics and using the addition theorem, we obtain

S l 1 l 2 L

0 0 0D S l 3 l 4 L

0 0 0D @ T̂l 3l 4

l 1l 2~L !1Ĝl 3l 4

l 1l 2~L !#

5~2L11!E dq̂a

4p E dq̂b

4p
el 1

~ q̂a!el 2
~ q̂a!el 3

~ q̂b!

3el 4
~ q̂b!PL~ q̂a•q̂b!. ~28!

Since the Wigner-3j symbol vanishes ifl 11 l 21L5odd, this
expression can only be used to estimate even terms.

To measure all configurations of the trispectrum is, ne
less to say, a daunting task. Aside from the computatio
expense, one must also treat complications associated
estimators of harmonics on a fraction of the sky. Even for
all-sky CMB experiment, the removal of galactic for
grounds will limit the data to a smaller fraction of the sk
f sky.

B. Signal-to-noise

Returning to the estimator of Eq.~26!, one can calculate
the Gaussiannoisevariance of the estimator,

^T̂l 3l 4

l 1l 2* ~L !T̂l 3l 4

l 1l 2~L8!&5~2L11!dLL8Cl 1
totCl 2

totCl 3
totCl 4

tot ,

~29!

if no two l ’s are equal. HereCl
tot is the sum of all contribu-

tions to the power spectrum including the intrinsic CM
fluctuations, instrumental noise, and residual foregrou
contamination.

From the permutation properties ofQ ~or T) in Eq. ~16!,
the full covariance of the estimators then becomes
08300
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^T̂l 3l 4

l 1l 2* ~L !T̂
l
38 l

48

l 18 l 28~L8!&

~2L11!Cl 1
totCl 2

totCl 3
totCl 4

tot
5dLL8d34

121~2L811!F ~21! l 21 l 3

3H l 1 l 2 L

l 4 l 3 L8
J d24

13

1~21!L1L8H l 1 l 2 L

l 3 l 4 L8
J d32

14G ,
~30!

if no two l ’s in the primed and unprimed sets are equal. H

dcd
ab5@d l 1l a

d l 2l b
1~21!SUd l 1l b

d l 2l a
#@d l 3l c

d l 4l d

1~21!SLd l 3l d
d l 4l c

#1@a↔c#@b↔d# ~31!

accounts for the permutations within the three fundame
pairings. Recall thatSU5 l 11 l 21L and SL5 l 31 l 41L.
The two terms involving the Wigner-6j symbol reflect the
fact that alternate pairings of the indices supply redund
information in both the signal and the noise.

If any two l ’s are equal, then the covariance has ex
terms associated with the internal pairings in the primed
unprimed sets. Based on the fundamental relation

^T̂l 3l 4

l 1l 1* ~L !T̂
l
38 l

48

l 18 l 18~L8!&

5~21! l 11 l 18dL0dL80A~2l 111!~2l 1811!@d l 3l
38
d l 4l

48

1~21!SLd l 3l
48
d l 4l

38
#Cl 1

Cl
18
Cl 3

Cl 4
, ~32!

other pairings can be found through the permutation prop
ties ofQ ~or T). No fundamentally new terms are introduce
if three or fourl ’s are equal but each set of possible intern
pairings in the primed and unprimed sets must be separa
accounted for.

The total signal-to-noise for eachL in the four-point spec-
trum is

S S

ND 2

[ (
l 1l 2l 3l 4L

(
l 18 l 28 l 38 l 48L8

^T̂l 3l 4

l 1l 2* ~L !& @Cov21#^T̂
l
38 l

48

l 18 l 28~L8!&

'(
L

(
l 1. l 2. l 3. l 4

1

2L11

uT̂l 3l 4

l 1l 2~L !u2

Cl 1
totCl 2

totCl 3
totCl 4

tot
, ~33!

where ‘‘Cov21’’ indicates the matrix inverse, with element
labeled by their configuration (l 1 ,l 2 ,l 3 ,l 4 ,L), of the covari-
ance in Eq.~30!. In the second line, the restricted sum elim
nates the 4!524 redundant permutations above and negle
the signal-to-noise contributed when the thel ’s are equal. In
the high signal-to-noise regime, one must also include
sample variance of the signal. On a cut sky, the consid
ations of Appendix B imply that the overall (S/N)2 is re-
duced by a factor off sky.
5-4



-

te

m
to
ov

in

st

i-
-
,

o
w

i
ic
tr
th
ac

ise
ec-

rm
tic
al-
he

irs
n
g

s-
ting

e

ANGULAR TRISPECTRUM OF THE COSMIC MICROWAVE . . . PHYSICAL REVIEW D 64 083005
Note that if the sum in Eq.~33! is not restricted the cova
riance supplied by the alternate pair orderings in Eq.~16!
necessarily contains off diagonal terms that mixL and L8.
The covariance is distributed across manyL ’s and can lead
to overestimates of the signal-to-noise in four-point rela
statistics by a factor ofA3.

C. Power spectrum covariance

The trispectrum can affect two-point or power spectru
statistics by introducing a covariance between the estima
The covariance of power spectrum estimators averaged
m is given by

^Ĉl 1
Ĉl 2

&5
1

2l 111

1

2l 211 (
m1m2

^Q l 1m1
Q l 1m1

* Q l 2m2
Q l 2m2

* &

2^Ĉl 1
&^Ĉl 2

&

5
1

A2l 111

1

A2l 211
~21! l 11 l 2Ql 2l 2

l 1l 1~0!

2^Ĉl 1
&^Ĉl 2

&. ~34!

The expression for the covariance can be further broken
its Gaussian and non-Gaussian pieces

^Ĉl 1
Ĉl 2

&5
2

2l 111
Cl 1

2 d l 1l 2
1

~21! l 11 l 2

A~2l 111!~2l 211!

3FT l 2l 2

l 1l 1~0!1
2

A~2l 111!~2l 211!

3 (
L5u l 12 l 2u

l 11 l 2

~21!LT l 1l 2

l 1l 2~L !G , ~35!

where recall thatT is the reduced trispectrum of Eq.~23!.
The effect of covariance for the signal-to-noise for the e
mation of a set of underlying cosmological parameterspi can
be calculated through the Fisher matrix

Fi j 5(
l 1l 2

]Cl 1

]pi
@Cov21#

]Cl 2

]pj
, ~36!

where ‘‘Cov21’’ indicates the matrix inverse of the covar
ance in Eq.~35!. In particular, if the only parameter of inter
est is the overall amplitudeA of a known template shape
thenFAA5(S/N)2 ~see Ref.@3#!.

IV. POWER SPECTRA OF QUADRATIC STATISTICS

Measuring all of the configurations of the trispectrum
four-point function is a daunting challenge. In this section
consider statistics based on the identification of points
pairs in the four-point function. These quadratic statist
may be optimized in signal-to-noise for their power spec
by filtering the original temperature field. We begin wi
general definitions for the quadratic fields in harmonic sp
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~Sec. II A! and continue through a discussion of filters~Sec.
IV B ! to a consideration of specific quadratic statistics~Sec.
IV C–IV H ! and related cubic statistics~Sec. IV I!. The spe-
cific statistic and filter set that optimizes the signal-to-no
will depend on the configuration dependence of the trisp
trum signal that is to be extracted.

A. General definitions

To probe various aspects of the trispectrum, we can fo
the two-point or power spectrum statistics of a quadra
combination of the underlying field. To enhance the sign
to-noise, we begin by filtering the fields before collapsing t
configuration,

Qa~ n̂!5(
lm

Q lmf l
aYl

m~ n̂!, ~37!

where the indexa51,4 to allow for four independent filters
on the fields. In general, the identification of points in pa
implies that each pair (ab) involves a quadratic combinatio
of the filtered field which in turn involves a mode couplin
sum of the harmonic coefficients

xLM
ab 5~21!M (

l 1m1
(
l 2m2

xl 1l 2
ab ~L !Q l 1m1

Q l 2m2

3A2L11

4p S l 1 l 2 L

m1 m2 2M D , ~38!

where

xl 1l 2
ab ~L !5 f l 1

a f l 2
b A~2l 111!~2l 211!xl 1l 2

~L !, ~39!

andxl 1l 2
(L) represents different weights for different stati

tics x as specified below. The power spectra statistics rela
two general quadratic statisticsx andx̃ may be separated into
the non-Gaussian signal and Gaussian noise as

^xLM
12* x̃L8M8

34 &5dLL8dMM8~CL
xx̃1NL

xx̃!, ~40!

where

CL
xx̃5

1

4p

1

2L11 (
l 1l 2l 3l 4

xl 1l 2
12* ~L !x̃l 3l 4

34 ~L !Tl 3l 4

l 1l 2~L !, ~41!

and the Gaussian noise is

NL
xx̃5

1

4p (
l 1l 2

xl 1l 2
12* ~L !@ x̃l 1l 2

34 ~L !1 x̃l 2l 1
34 ~L !#Cl 1

totCl 2
tot .

~42!

It will be useful in the following discussion of noise varianc
to also define the following two auxiliary power spectra:

VL
xx̃(12)5

1

4p (
l 1l 2

xl 1l 2
12* ~L !@ x̃l 1l 2

12 ~L !1 x̃l 2l 1
12 ~L !#Cl 1

totCl 2
tot ,
5-5
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VL
xx̃(34) 1

4p(
l 1l 2

xl 1l 2
34* ~L !@ x̃l 1l 2

34 ~L !1 x̃l 2l 1
34 ~L !#Cl 1

totCl 2
tot .

~43!

The signal-to-noise ratio in this power spectrum statis
can be calculated from Eq.~30! for the covariance of the
trispectrum,

^ĈL
xx̃ĈL

x8x̃8&'
1

2L11
@^VL

xx8(12)&^VL
x̃x̃8(34)&1^NL

xx̃8&^NL
x̃x8&#,

~44!

such that

S S

ND 2

' (
Lxx̃x8x̃8

^CL
xx̃&^CL

x8x̃8&

^ĈL
xx̃ĈL

x8x̃8&
. ~45!

Strictly speaking, this is an inequality since we have n
glected the covariance betweenL ’s dictated by the trispec
trum covariance, Eq.~30!. Since the trispectrum covarianc
is distributed broadly in the allowedL ’s, this signal-to-noise
estimate is reasonable if we restrict the range of interestL
to a small fraction of the allowed range. The covariance
at most reduce the total signal-to-noise by a factor ofA3 for
the three unique pairings in the trispectrum.

B. Filters

The filters and specific form of the statisticx can be cho-
sen to eliminate Gaussian noise bias and/or maximize
signal-to-noise. If (f l

1 , f l
2) and (f l

3 , f l
4) do not overlap inl,

then the Gaussian noise bias of Eq.~42! vanishes. Further-
more, trispectrum covariance between differingL ’s is iden-
tically zero and Eq.~45! becomes a strict equality.

For example the two filters may be band limited in mu
ally exclusive bands or parity limited,

Qe~ n̂![
1

2
@Q~ n̂!1Q~2n̂!#,

f l
15 f l

2[H 1, l 5even,

0, l 5odd,
~46!

Qo~ n̂![
1

2
@Q~ n̂!2Q~2n̂!#,

f l
35 f l

4[H 0, l 5even,

l , l 5odd.
~47!

This choice does not eliminate the auxiliary variance pow
spectra in Eq.~43! and more generally does not maximiz
the total signal-to-noise. Only if the filters are equal in pa
f l

15 f l
3 and f l

25 f l
4 are the noise and auxiliary variance pow

spectra equal such that

^ĈL
xx̃ĈL

x8x̃8&'
1

2L11
~^NL

xx8&^NL
x̃x̃8&1^NL

xx̃8&^NL
x̃x8&!, ~48!
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becomes the familiar form for the variance of the pow
spectra of a set of Gaussian random fieldsx.

A comparison of the signal-to-noise in the full trispe
trum, Eq. ~33! and in a particular quadratic statisticx Eq.
~45!, shows that the latter approaches the former if

xl 1l 2
12 ~L !xl 3l 4

34 ~L !→w~L !
Tl 3l 4

l 1l 2~L !

Cl 1
totCl 2

totCl 3
totCl 4

tot
, ~49!

wherew(L) is an arbitrary function ofL. To the extent that
the right-hand side is factorable inl a , a51,4 the filter func-
tions f l

a can be chosen to construct this optimal statis
Since the trispectrum is in general not factorable, we w
next consider a wide range of choices for the quadratix
statistic which can be used to construct optimal statistics
various types of trispectrum signals.

C. Temperature-temperature

The simplest quadratic statistic that we can form is
product of the filtered temperature field itself,

Qa~ n̂!Qb~ n̂![sab~ n̂!5(
LM

sLM
ab YL

M~ n̂!, ~50!

wheresLM
ab is given by the general prescription of Eq.~38!

with x5s and the weighting

sl 1l 2
~L !5S l 1 l 2 L

0 0 0D even. ~51!

‘‘Even’’ denotes the fact thats selects outl 11 l 21L5even
by virtue of the Wigner-3j symbol. The non-Gaussian powe
spectrumCL

ss is then given by Eq.~41! in terms of the
trispectrum. The total signal-to-noise of this statistic can
estimated by retaining just thex5x85 x̃5 x̃85s terms in Eq.
~45!.

D. Temperature-gradient

The product of the filtered temperature field and the g
dient of the filtered temperature field probes another asp
the trispectrum. This product is a vector field on the sky a
may be broken up into components as

Qa~ n̂!¹ iQ
b~ n̂![(

6

1

A2
@a16 ia2#ab~ n̂!

1

A2
~ êf7êu! i .

~52!

The componentsa16 ia2 are spin-1 objects that can be d
composed in the spin-1 spherical harmonics@9#,

@a16 ia2#ab~ n̂!5(
LM

~c6 ig !LM
ab

61YL
M~ n̂!, ~53!

wherec and g are the multipole analogues of the curl an
gradient pieces. These quadratic statistics again follow
general form of Eq.~38! with x5c,g and weightings
5-6
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cl 1l 2
~L ![2Al 2~ l 211!S l 1 l 2 L

0 21 1D odd ~54!

gl 1l 2
~L ![ iAl 2~ l 211!S l 1 l 2 L

0 21 1D even.

~55!

Here and below ‘‘even’’~‘‘odd’’ ! denotes the fact that th
expression holds forl 11 l 21L5even ~odd! and vanishes
otherwise. If the trispectrum is parity invariant~zero if l 1

1 l 21 l 31 l 45odd!, the cross power spectraCL
gc505CL

sc

vanish. The remaining power spectra and their covaria
are described by the general forms of Eqs.~41!, ~42!, and
~44!.

E. Gradient-gradient

The product of temperature gradients can in genera
decomposed into three quadratic statistics,

@¹ iQa~ n̂!# @¹ jQb~ n̂!#[tab~ n̂!gi j ~ n̂!1(
6

@q6 iu#ab~ n̂!

3s i j
6~ n̂!1v~ n̂!e i j ~ n̂!, ~56!

wheregi j is the metric on the two-sphere,

s i j
6~ n̂!5

1

2
~ êu7êf! i~ êu7êf! j , ~57!

gives the basis for a trace-free symmetric tensor field on
sky, and

e i j ~ n̂!5~eu! j~ef! i2~eu! i~ef! j ~58!

gives the basis for a trace-free antisymmetric tensor field
the sky. The flat-sky versions of these statistics were fi
employed in Ref.@10# for CMB lensing and note thatq, u, v
are analogous to the similarly named Stokes parameters
polarization.

As is the case for the CMB polarization, these three fie
may be decomposed into multipole moments of the spher
harmonics and spin-2 spherical harmonics@9#,

tab~ n̂!5(
LM

tLM
ab YL

M~ n̂!,

vab~ n̂!5(
LM

vLM
ab YL

M~ n̂!,

@q6 iu#ab~ n̂!5(
LM

~e6 ib !LM
ab

62YL
M~ n̂!,

~59!

where the moments follow the general prescription of E
~38! with x5t,e,b,v and weights

t l 1l 2
~L ![2

1

2
Al 1~ l 111!Al 2~ l 211!S l 1 l 2 L

21 1 0D even,
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v l 1l 2
~L ![

i

2
Al 1~ l 111!Al 2~ l 211!S l 1 l 2 L

21 1 0D odd,

el 1l 2
~L ![

1

2
Al 1~ l 111!Al 2~ l 211!S l 1 l 2 L

21 21 2D even,

bl 1l 2
~L ![2

i

2
Al 1~ l 111!Al 2~ l 211!

3S l 1 l 2 L

21 21 2D odd. ~60!

If the trispectrum is parity invariant, cross power spec
exist only among (t,e,g,s) and (b,v,c). These power spec
tra and their covariance again are described by the gen
forms of Eqs.~41!, ~42!, and~44!.

F. Temperature-Hessian

Similarly to the gradient-gradient case, the product of
temperature and the second derivatives or Hessian of
temperature field can be decomposed into three quad
statistics,

Qa~ n̂!¹ i¹ jQ
b~ n̂![hab~ n̂!gi j ~ n̂!

1(
6

@h16 ih2#ab~ n̂!s i j
6~ n̂!,

~61!

which themselves may be decomposed into multipole m
ments of the spherical harmonics and spin-2 spherical
monics,

hab~ n̂!5(
LM

hLM
ab YL

M~ n̂!,

@h16 ih2#ab~ n̂!5(
LM

~e6 ib!LM
ab

62YL
M~ n̂!,

~62!

where the moments follow the general prescription of E
~38! with x5h,e, b and weights

hl 1l 2
~L ![2

1

2
l 2~ l 211!S l 1 l 2 L

0 0 0D even,

52
1

2
l 2~ l 211!sl 1l 2

,

e l 1l 2
~L ![

1

2
A~ l 212!!

~ l 222!! S l 1 l 2 L

0 22 2D even,

b l 1l 2
~L ![2

i

2
A~ l 212!!

~ l 222!! S l 1 l 2 L

0 22 2D odd.

~63!
5-7
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Again parity invariance requires that power spectra e
only between (h,e,t,e,s) and (b,b,v,c). Likewise the gen-
eral formula for power spectra and their covariance ag
apply.

G. Temperature-temperature Hessian

Auxiliary two-point statistics can be formed from the fu
damental ones above. For example

¹ i¹ j@Qa~ n̂!Qb~ n̂!#[ t̃ ab~ n̂!gi j ~ n̂!

1(
6

@ q̃6 i ũ#ab~ n̂!s i j
6~ n̂!, ~64!

and

t̃ ab~ n̂!5(
LM

t̃ LM
ab YL

M~ n̂!,

@ q̃1 i ũ#ab~ n̂!5(
LM

~ ẽ1 i b̃ !LM
ab

62YL
M~ n̂!

~65!

imply that

t̃ l 1l 2
5t l 1l 2

1t l 2l 1
1hl 1l 2

1hl 2l 1
52

L~L11!

2 S l 1 l 2 L

0 0 0D ,

ẽl 1l 2
5el 1l 2

1el 2l 1
1e l 1l 2

1e l 2l 1

5
1

2
A~L12!!

~L22!! S l 1 l 2 L

0 0 0D ,

b̃l 1l 2
5bl 1l 2

1bl 2l 1
1b l 1l 2

1b l 2l 1
50.

Again power spectra follow from the general relations.

H. Temperature-gradient divergence

The divergence of the temperature-gradient field of S
IV D is also an auxiliary statistic

¹ i@Qa~ n̂!¹ iQ
b~ n̂!#[dab~ n̂!YL

M~ n̂!, ~66!

with

dab~ n̂!5(
LM

dLM
ab YL

M~ n̂!. ~67!

The weights are related to the others as

dl 1l 2
5AL~L11!l 2~ l 211!S l 1 l 2 L

0 21 1D even,

52 iAL~L11!gl 1l 2
52t l 1l 2

12hl 1l 2
. ~68!

Again power spectra follow from the general relations.
08300
t

in

c.

I. Cubic statistics

Finally the cross correlation of cubic statistics with line
statistics are also related to the quadratic statistics introdu
above. For example

^Q1~ n̂1!Q2~ n̂1!Q3~ n̂1! Q4~ n̂2!&

5(
lm

~21!m@Cl
ss(3)1Nl

ss(3)#Yl
2m~ n̂1!Yl

m~ n̂2! .

~69!

More generally, the cubic power spectra corresponding to
variousx statistics are given by

Cl
xx̃(3)5 (

l 1l 2l 3L

1

4p

1

2L11
xl 1l 2

12* ~L !x̃l 3l
34~L !Tl 3l

l 1l 2~L !, ~70!

with Gaussian noise bias

Nl
xx̃(3)5

1

4p (
l 1L

xl 1l 2
12* ~L !@ x̃l 1l

34~L !1 x̃l l 1

34~L !#Cl 1
totCl

tot ,

~71!

and auxiliary noise variance

Vl
xx̃(3,12)5

1

4p (
l 1L

xl 1l 2
12* ~L !@ x̃l 1l

12~L !1 x̃l l 1

12~L !#Cl 1
totCl

tot ,

Vl
xx̃(3,34)5

1

4p (
l 1L

xl 1l 2
34* ~L !@ x̃l 1l

34~L !1 x̃l l 1

34~L !#Cl 1
totCl

tot ,

~72!

i.e., the multipole index of the power spectra is no longer
diagonal of the trispectrum configuration but rather one of
sides. These cubic statistics thus probe a different projec
of the trispectrum information but are based on the same
of filters and employ the same statistical formalism.

V. CMB LENSING

In this section, we consider the trispectrum signal gen
ated by the weak gravitational lensing of the CMB tempe
ture anisotropies by the large-scale structure in the Unive
In Sec. V A we derive the full trispectrum for lensing an
relate it to the underlying deflection~or convergence! power
spectrum. Zaldarriaga@6# previously considered the lensin
trispectrum in the small-scale or flat-sky approximation. T
gravitational lensing effect is known to be dominated by p
tential fluctuations on the largest scales where an all-
treatment of the trispectrum is desirable@7#. In Sec. V B, we
show that the signal-to-noise in the trispectrum is both la
and highly configuration dependent for experiments that
resolve multipole momentsl *1000. The divergence statisti
introduced in Sec. IV H is shown in Sec. V C to be optim
for measuring the underlying deflection power spectrum
its peak at low multipoles. It benefits from substantia
higher signal-to-noise as compared with the gradie
gradient quadratic statistics introduced by Zaldarriaga
Seljak @10#. Finally we consider tests for the robustness
5-8
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the divergence statistic with differing filter sets in Sec. V
and the degradation in power spectrum estimation from le
ing covariance in Sec. V E.

A. General trispectrum

We begin by briefly reviewing the effect of gravitation
lensing on the harmonics of the CMB temperature field a
refer the reader to Ref.@7# for details of its calculation in a
given cosmology. For reference, we employ the same c
dark matter model with a cosmological constant (LCDM!
used there, with parametersVm50.35, VL50.65, h
50.65, n51, anddH54.231025.

Weak lensing of the CMB remaps the primary anisotro
according to the deflection angle¹f(n̂),

Q~ n̂!5Q̃~ n̂1¹f!

5Q̃~ n̂!1¹ if~ n̂!¹ iQ̃~ n̂!1•••, ~73!
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where the tilde represents the unlensed field and••• repre-
sents higher order terms in the Taylor expansion. The lens
potential fieldf(n̂) is a lensing-probability weighted projec
tion of the Newtonian potential along the line of sight@see
Ref. @7#, Eq. ~21!#.

The spherical harmonic coefficients of the lensed CM
temperature field become

Q lm'Q̃ lm1E dn̂Yl
m* ~ n̂!¹ if~ n̂!¹ iQ̃~ n̂!1•••

5Q̃ lm1(
LM

(
l 8m8

fLMQ̃ l 8m8~21!m

3S l l 8 L

m 2m8 2M DFlLl 81•••, ~74!

where
A 4p

~2l 11!~2l 811!~2L11!
FlLl 85

1

2
@L~L11!1 l 8~ l 811!2 l ~ l 11!#S l l 8 L

0 0 0D ,

52AL~L11!l 8~ l 811!S l l 8 L

0 21 1D even, ~75!
e to
l-

s.

u-

nds

ec-
red
where recall that ‘‘even’’ denotes the fact that onlyl 1 l 8
1L5even is nonvanishing. Gravitational lensing generate
change in the power spectrum that has been well stu
@11–13,7#. It produces two changes to the four-point fun
tion. The first is that the unlensedC̃l in the Gaussian four-
point contribution must be replaced with the lensedCl . The
second is that it generates a trispectrum with an underly
reduced form@see Eq.~23!# of

T l 3l 4

l 1l 2~L !5CL
ffC̃l 2

C̃l 4
Fl 1Ll 2

Fl 3Ll 4
. ~76!

Note the geometric interpretation: the lensing generate
trispectrum or quadrilateral configuration ofl 1••• l 4 where
one of the diagonals is supported by the lensing poten
power spectrumCL

ff . Note that the power spectrum of th
deflection field is given byL(L11)CL

ff and is the funda-
mental quantity of interest. It is plotted in Fig. 1 for th
fiducial LCDM model. It is important to note that most o
the power in the deflections is coming from a rather la
scale or low multipoleL'50. We contrast this with the mor
familiar convergence power spectrumCL

kk5@L(L
11)/2#2CL

ff which peaks at much smaller angular scales

B. Total signal-to-noise

From the considerations of Sec. III B, we can calcul
the total signal-to-noise in the trispectrum for lensing in t
full-sky formalism. Flat-sky estimates of the total signal-t
a
d

g

a

al

e

e

noise have been calculated in Ref.@6# ~see also Appendix B!.
The all-sky expressions are cumbersome to calculate du
the presence of the Wigner-6j symbol that expresses the a
ternate recouplings of the trispectruml ’s. We use the recur-
sion technique outlined in Appendix A for these calculation

FIG. 1. The power spectrum of the deflection angle in the fid
cial LCDM model. Error boxes represent the 1s errors from
Gaussian noise on the divergence statistic binned in the ba
shown. The divergence estimator of Eqs.~80! and ~81! is optimal
for the low multipoles and reduces the variance in the power sp
trum estimation by more than an order of magnitude as compa
with the gradient-gradient statistics of Ref.@10#.
5-9
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In Fig. 2, we show the signal-to-noise contributions in
given mode L550 of the trispectrum from a givenl 1

~summed overl 2 ,l 3 ,l 4) assuming an ideal experimentCl
tot

5Cl . The signal-to-noise is quite high and approaches u
per l 1 mode andL mode atl 1'2000. Moreover, the contri
butions as a function ofl 1 show striking features. These fea
tures can be understood by approximating the trispectrum
its fundamental pairing (l 1 ,l 2),(l 3 ,l 4) in Eq. ~23!,

Tl 3l 4

l 1l 2~L !'Pl 3l 4

l 1l 25CL
ff~C̃l 2

Fl 1Ll 2
1C̃l 1

Fl 2Ll 1
!~C̃l 4

Fl 3Ll 4

1C̃l 3
Fl 4Ll 3

!. ~77!

Figure 2~dashed lines! verifies that this is a very good ap
proximation for the range of interestl 1@L. The reason is
that these configurations represent flattened quadrilate
where one diagonal is much greater than the other. S
lensing effects peak at lowL, the other pairings are corre
spondingly suppressed. These properties are hidden in
real-space four-point function and highlight the benefit
considering harmonic-space statistics.

To the extent thatC̃l is constant, the two terms within
each set of parentheses in Eq.~77! cancel. Thus, the trispec
trum picks out features in the underlying unlensed pow
spectrum, specifically those due to the acoustic peaks in
power spectrum. Note that the effects on the power spect
itself exhibit the same effect: lensing acts to smooth
acoustic features in the spectrum. This structure implies
optimizing thel range of filters in the quadratic statistics
important for maximizing the signal-to-noise.

The cumulative signal-to-noise integrating out tol 1
5 l max as a function ofL in an ideal experiment is shown i
Fig. 3. The approximation of Eq.~77! begins to break down
asL approachesl max but always in the sense that itunderes-
timatesthe total signal-to-noise~dashed lines vs points!. This

FIG. 2. Contributions to the (S/N)2 from trispectra configura-
tions with a fixed diagonalL and maximum side lengthl 1, summed
over the remaining three sides. Solid lines represent the full ca
lation of the trispectrum terms; dashed lines represent the pair
approximation of Eq.~77!. The signal-to-noise in the low,L trispec-
trum is highly dependent on the configuration.
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breakdown occurs since the two diagonals of a trispectr
quadrilateral become comparable and either can be suppo
by the lensing power in Eq.~76!. We also show in Fig. 3
~solid lines! the cumulative signal-to-noise for the Planc
satellite@14# with Cl

tot taken from Ref.@3#. Planck approxi-
mates an ideal experiment withl max'1600.

Finally, under the approximation of Eq.~77! which
slightly underestimates the total signal-to-noise, we can p
the cumulative signal-to-noise summed over allL as a func-
tion of l max ~see Fig. 4!. Again anl max'1600 approximates
the Planck experiment whose total (S/N)2'3100.

C. Divergence statistic

The structure in the signal-to-noise curves implies tha
is important to select a quadratic statistic that captures

u-
se

FIG. 3. Cumulative signal-to-noise in the trispectra configu
tions with the diagonalL summed overl 1••• l 4. Dashed lines rep-
resent an ideal experiment whereCl5Cl

tot out to a maximuml
5 l max; solid lines represent the Planck experiment. Lines repres
the approximation of Eq.~77!; points represent the calculation usin
the full trispectrum for an ideal experiment.

FIG. 4. Approximate total (S/N)2 in the trispectrum for an idea
experiment out tol 5 l max and the Planck experiment. The Planc
experiment approximates an ideal experiment ofl'1600 with a
(S/N)2;3100.
5-10
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structure. Following the considerations of Sec. IV A, we c
search for the quadratic statistic that optimizes the signa
noise ratio in the power spectrum of the deflection. Rec
that in general the multipole moments of the quadratic s
tistic with filters f l

a and f l
b ,

xLM
ab 5~21!M (

l 1m1
(
l 2m2

xl 1l 2
ab ~L !Q l 1m1

Q l 2m2

3A2L11

4p S l 1 l 2 L

m1 m2 2M D , ~78!

are defined in terms of the weight functionxl 1l 2
ab . Under the

approximation for the trispectrum of Eq.~77!, Eq. ~49! gives
the optimal weights as

xl 1l 2
12 }

C̃l 2
Fl 1Ll 2

1C̃l 1
Fl 2Ll 1

Cl 1
totCl 2

tot
. ~79!

Since the lensing trispectrum is symmetric inl 1↔ l 2, the
temperature-gradient divergence statistic whose weights

xl 1l 2
12 5

1

2
~dl 1l 2

12 1dl 2l 1
12 !,

dl 1l 2
12 5 f l 1

1 f l 2
2 Fl 1Ll 2

A 4p

2L11
~80!

is optimal if the underlying temperature field is first filtere
with

f l
15 f l

352
A

Cl
tot

,

f l
25 f l

45
C̃l

Cl
tot

. ~81!

We choose the proportionality constant to return the pr
erly normalized deflection power spectrum

A5AL~L11!~2L11!F(
l 1l 2

~C̃l 2
Fl 1Ll 2

1C̃l 1
Fl 2Ll 1

!2

2Cl 1
totCl 2

tot G21

.

~82!

The signal-to-noise in this statistic is maximal under the
sumption that the trispectrum can be approximated as
~77! as is the case forL&several hundred. The total signa
to-noise as calculated from Eq.~45! for Planck is formally
(S/N)2'4050. Compare this with the gradient-gradient s
tistic of Ref. @10#; for the unfiltered eab(n̂)[E(n̂) the
(S/N)2'135.

The total signal-to-noise is allowed to exceed the ma
mum estimate of the previous section since the latte
strictly a lower limit. However the underlying approximatio
that the estimates at allL ’s are independent breaks dow
08300
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when integrating over a wide range inL causing a small
reduction in the number of independent modes~see Sec.
IV A !.

The divergence statistic may also be used as a direct
timator of the deflection~or equivalently the convergence!
field itself. Generalizing the argument of Ref.@10#, one can
think of the quadratic statisticx in Eq. ~78! as averaging over
many independent~high-l or small-scale! realizations of the
unlensed CMB field with a fixed realization of the larg
scale deflection field

^xLM
ab &CMB5fLMA 1

4p~2L11!(l 1l 2
xl 1l 2

ab ~C̃l 1
Fl 2Ll 1

1C̃l 2
Fl 1Ll 2

! ~L.0!. ~83!

For the divergence statistic filtered as in Eq.~81! all contri-
butions add coherently so that,

^dLM
ab &CMB5

fLM

~2L11! (
l 1l 2

A

2Cl
totCl

tot ~C̃l 1
Fl 2Ll 1

1C̃l 2
Fl 1Ll 2

!2

5AL~L11!fLM . ~84!

From the multipole moments one can reconstruct the defl
tion or convergence map@15#. Of course the fact that we
average over only a finite number of independent modes
the primary anisotropy means that the resulting map will
noisy, with noise properties given by the Gaussian no
power spectra.

D. Robustness tests

The divergence statistic contains enough signal-to-no
for Planck that the data may be further subdivided to ch
for robustness of the statistic. Especially worrisome is
possibility that galactic and extragalactic foregrounds a
systematic effects might generate a false signal. Even if th
contaminants contribute only Gaussian noise, one must
tract out the noise bias from the power spectrum estima
with the filters defined in Eq.~81!.

Recalling the discussion of the filters in Sec. IV B, we c
eliminate Gaussian noise bias as well as noise-correla
between differingL by defining nonoverlapping filters set
( f l

1 , f l
2) and (f l

3 , f l
4). The resulting estimates of the deflectio

field dLM
12 anddLM

34 would then have statistically independe
Gaussian noise properties such that the noise bias is e
nated in their cross correlation. Furthermore, if the signa
really due to lensing the various estimates of the deflec
power spectrum must agree within their errors.

The price of dividing up the sample in this way is a r
duction of the signal-to-noise in any given set. For examp
by bandlimiting the filters of Eq.~81! to 500, l ,1400 for
the ~12! set andl .1400 for the~34! set, the total signal-to-
noise is reduced by;A2 and correspondingly the errors i
Fig. 1 are increased by;A2. Note that in this case, th
underlying filtered temperature maps contain no power in
multipoles of interestL;100. Such a scheme would sti
yield a highly significant detection and help protect agai
5-11
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contaminants. Filtered versions of other quadratic statis
can also serve as consistency checks. For example, eve
simple temperature-temperatures statistic of Sec. IV C
yields a (S/N)2;200 once it is is filtered according to th
peaks in Fig. 2.

E. Power spectrum covariance

One might worry that the high signal-to-noise in th
trispectrum for lensing comes at the expense of degra
signal-to-noise in the power spectrum due to covariance
tween the estimators. Fortunately this is not the case in
l &1000 regime of the acoustic peaks. From Eqs.~34!–~36!,
we can calculate the degradation in the total (S/N)2. This
degradation is shown in Fig. 5 for the Planck satellite and
ideal experiment out tol max.

VI. DISCUSSION

We have provided a systematic study of the angu
trispectrum or four-point function of the CMB temperatu
field. Symmetry considerations dictate the fundamental fo
of the trispectrum and govern the Gaussian noise prope
of its estimators. The large number of independent confi
rations of the trispectrum imply that even subtle physi
effects may be detectable when all of the information in
trispectrum is brought to bear.

In practice, extracting all of the information in the trispe
trum will be a difficult computational task. We have thus al
conducted a systematic study of the power spectra of q
dratic statistics which probes different aspects of the trisp
trum. Techniques developed for extracting power spectr
statistics from large data sets can then be brought to bea
the four-point function. The drawback is that this compre
sion of information is in general a lossy procedure. We ha
therefore examined a wide range of quadratic statistics
prefiltering schemes. Given a target form for the trispectr
signal, these statistics can be optimized in their signal
noise for the power spectra.

FIG. 5. Degradation in the total (S/N)2 in the power spectrum
due to covariance from gravitational lensing. The degradation
minimal for the Planck experiment or any that is cosmic varian
limited only out tol;2000.
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As an example, we have reconsidered the four-point c
relation generated by weak lensing of the primary aniso
pies by the large-scale structure in the Universe as a me
of recovering the power spectrum of the deflection angles
convergence@10#. CMB weak lensing provides a uniqu
probe of the large-scale properties of the convergence fi
We identify a specific quadratic statistic, the divergence
the temperature-weighted gradient field, that achieves
maximal signal-to-noise in this limit. For the Planck satelli
the total (S/N)2'4000 and represents a reduction in t
noise variance on the convergence power spectrum by
an order of magnitude as compared with the gradie
gradient estimators of Ref.@10#. There is sufficient signal-to-
noise to conduct filtering tests to eliminate noise bias a
check for consistency between multipole subsets of the d
We plan to explore further the properties of these estima
and their use in extracting cosmological parameters in
separate work.

The lensing example illustrates the importance of exa
ining the configuration properties of the trispectrum wh
designing statistical estimators based on the four-point fu
tion. Extracting the wealth of information potentially burie
in the trispectrum will be a rich field for future studies.
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APPENDIX A: WIGNER-6 j SYMBOL

1. Useful properties

The Wigner-6j symbol expresses the relationship betwe
two distinct couplings of three angular momenta,

Jd5Ja1Jb1Jc

5Je1Jc

5Ja1Jf, ~A1!

such that the eigenstates of the (ec) coupling are related to
the eigenstates of the (a f) coupling as

u~ec!dg&5u~a f !dg&A~2e11!~2 f 11!~21!SH a b e

c d fJ ,

~A2!

whereS[a1b1c1d. Geometrically, the Wigner 6j repre-
sents a quadrilateral with sides (a,b,c,d) whose diagonals
form the triangles (a,d, f ), (b,c, f ), (c,d,e), and (a,b,e) or
the three dimensional tetrahedron composed of these
triangles. It vanishes if the any of the triplets fail to satis
the triangle rule. The symmetries are related to rotations
the tetrahedron that interchange the vertices. The resu
that the symbol is invariant under the interchange of any t
columns and under the interchange of the upper and lo
arguments in any two columns.

is
e
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The Wigner-6j symbol can thus be used to permute t
pairings in a set of Wigner-3j symbols

(
f

~2 f 11!~21!S1 f 2e2a2gH a b e

c d fJ S b c f

b g 2f D
3S a f d

a f 2d D 5S a b e

a b 2e D S e c d

e g 2d D ,

~A3!

or equivalently by the orthogonality relation of the Wigne
3 j symbols

H a b e

c d fJ 5 (
abg

(
def

~21!e1 f 1e1fS a b e

a b e D
3S c d e

g d 2e D S a d f

a d 2f D S c b f

g b f D .

~A4!

Finally, the Wigner-6j symbol obeys

(
e

~2e11!H a b e

c d fJ H a b e

c d gJ 5
d f g

2 f 11
, ~A5!

and

(
e

~21!e1 f 1g~2e11!H a b e

c d fJ H a b e

d c gJ
5H a c g

h d fJ . ~A6!

2. Evaluation

Closed form expressions exist for special cases of the
guments. For example,

H a b e

c d 0J 5
~21!a1b1e

A~2a11!~2b11!
da,ddb,c . ~A7!

More generally, they may be computed efficiently by a
cursive algorithm introduced in Ref.@16#. Let us define

h~ j 1!5H j 1 j 2 j 3

l 1 l 2 l 3
J . ~A8!

The h( j 1) satisfy the recursion

j 1E~ j 111!h~ j 111!1F~ j 1!h~ j 1!1~ j 111!E~ j 1!h~ j 121!

50, ~A9!

where

E~ j 1!5$@ j 1
22~ j 22 j 3!2#@~ j 2

21 j 3
211!22 j 1

2#@ j 1
22~ l 22 l 3!2#

3@~ l 21 l 311!22 j 1
2#%1/2,
08300
r-

-

F~ j 1!5~2 j 111!$ j 1~ j 111!@2 j 1~ j 111!1 j 2~ j 211!

1 j 3~ j 311!#1 l 2~ l 211!@ j 1~ j 111!1 j 2~ j 211!

2 j 3~ j 311!#2 l 3~ l 311!@ j 1~ j 111!2 j 2~ j 211!

1 j 3~ j 311!#22 j 1~ j 111!l 1~ l 111!%. ~A10!

For a stable recursion, one begins at both of the two e
j 1min5max(uj22j3u,ul22l3u) j 1max5min(j21j3,l21l3) with the
boundary conditionsE( j 1min)50 and E( j 1max11)50 and
matches the two in the middle.

The normalization is fixed by

(
j 1

~2 j 111!~2l 111!@h~ j 1!#251,

sign@h~ j 1max!#5~21! j 21 j 31 l 21 l 3,
~A11!

which follow from Eq.~A5!.

APPENDIX B: FLAT-SKY APPROXIMATION

In the flat-sky approximation, one decomposes the te
perature field into Fourier harmonics

^Q~ n̂1!•••Q~ n̂n!&5E d2l 1

~2p!2 •••E d2l n

~2p!2^Q~ l1!•••

Q~ ln!&ei l•n̂1 . . . ei l•n̂2. ~B1!

Statistical isotropy is enforced by demanding that the co
lation function be invariant under an arbitrary translation a
rotation in the plane. Parity invariance is enforced by d
manding symmetry under inversion of the coordinates or
flection across one of the coordinate axes.

As usual translational symmetryn̂i→n̂i1C, whereC is a
constant vector, is enforced by the closure condition that
n-point function is proportional to

~2p!2d~ l11•••1 ln!. ~B2!

The wave vectorsl i thus form a geometric figure ofn, pos-
sibly intersecting, sides. Rotational invariance for the tw
point function and rotational and parity invariance for t
three-point function imply that the corresponding harmo
spectra are functions only of the lengths of the sides:

^Q~ l1!Q~ l2!&5~2p!2d~ l12!C( l 1) ,

~B3!

^Q~ l1!Q~ l2!Q~ l3!&5~2p!2d~ l123!B( l 1 ,l 2 ,l 3) ,

wherel i ••• j[ l i1•••1 l j andB should be symmetric agains
permutations of its arguments. For the four-point functio
rotational and parity invariance implies that the quadrilate
formed by the four wave vectors is a function of the leng
of the sides and the lengths of the two diagonals,
5-13
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^Q~ l1!•••Q~ l4!&5~2p!4@d~ l12!d~ l34!Cl 1
Cl 2

1d~ l13!d~ l24!Cl 1
Cl 3

1d~ l14!d~ l23!Cl 1
Cl 4

#

1~2p!2d~ l1234!T( l 3 ,l 4)
( l 1 ,l 2)

~ l 12,l 13!.

~B4!

To parallel our treatment of the all-sky four-point functio
let us breakQ into its three distinct pairings and deman
symmetry with respect to permutation of the arguments,

T( l 3 ,l 4)
( l 1 ,l 2)

5P( l 3 ,l 4)
( l 1 ,l 2)

~ l 12!1P( l 2 ,l 4)
( l 1 ,l 3)

~ l 13!1P( l 3 ,l 2)
( l 1 ,l 4)

~ l 14!. ~B5!

Note thatl 14 is a function of the other two diagonals.P is
symmetric under interchange of its upper and lower ar
ments as well as ordering within them.

The relationship between the all-sky and flat sky spec
can be obtained by noting that@7#

Q lm5 i mA2l 11

4p E df l

2p
eimf lQ~ l!,

d~ l i . . . j !5E dn̂

~2p!2
ei li ••• j •n̂,

ei l•n̂5A2p

l (
m

i mYl
m~ n̂!eimf l, ~B6!

wheref l is the polar angle ofl. It is a straightforward exer-
cise to show that

Cl5C( l ) ,

Bl 1l 2l 3
5S l 1 l 2 l 3

0 0 0D
3A~2l 111!~2l 211!~2l 311!

4p
B( l 1 ,l 2 ,l 3) .

~B7!

For the trispectrum, we begin with the general corresp
dence

^Q l 1m1
•••Q l 4m4

&c5S )
i 51,4

A l 1

2pE
df li

2p
e2 imif l i D

3~2p!2d~ l1234!T( l 3 ,l 4)
( l 1 ,l 2)

~ l 12!, ~B8!

where ‘‘c’’ denotes the subtraction of the Gaussian piece
Eq. ~B4!. We then exploit the pair symmetry of the trispe
trum exhibited in Eq.~B5! by breaking the delta function
into the corresponding pairs. For the~12!, ~34! pairing,

d~ l1234!5E d2Ld~ l11 l21L !d~ l31 l42L !, ~B9!
08300
-

a

-

n

such thatL5 l 12. Expanding the delta functions in spheric
harmonics,

d~ l1234!5
1

~2p!2 (
m1•••m4

(
LM

S )
i 51,4

A2p

l i
eimif l i D 2L11

4p

3A~2l 111!•••~2l 411!S l 1 l 2 L

0 0 0D
3S l 3 l 4 L

0 0 0D ~21!MS l 1 l 2 L

m1 m2 M D
3S l 3 l 4 L

m3 m4 2M D . ~B10!

Substituting back in and integrating over the polar angles,
obtain the general correspondence

Pl 3l 4

l 1l 2~L !5
2L11

4p
A~2l 111!•••~2l 411!S l 1 l 2 L

0 0 0D
3S l 3 l 4 L

0 0 0D P( l 3 ,l 4)
( l 1 ,l 2)

~L !, ~B11!

from which we can construct the relation forTl 3l 4

l 1l 2.

We can now also make the correspondence between
signal-to-noise in the all-sky and flat-sky formalisms. T
weighting of four-point terms that maximizes the signal-t
noise is@6#

S S

ND
tot

2

5
f sky

p

1

24

1

~2p!4E d2l1E d2l2E d2l3E d2l4d~ l1234!

3
uT( l 3 ,l 4)

( l 1 ,l 2)u2

Cl 1
totCl 2

totCl 3
totCl 4

tot
, ~B12!

where f sky is the fraction of sky covered by the sample.
The square ofT in this expression contains cross terms

the P pairings,

S S

ND
tot

2

5S S

ND
(12,12)

2

1S S

ND
(13,13)

2

1S S

ND
(14,14)

2

12S S

ND
(12,13)

2

12S S

ND
(12,14)

2

12S S

ND
(13,14)

2

. ~B13!

The correspondence with the all-sky expression, Eq.~33!,
can be established by considering the terms pair by pair.
5-14
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example for the~12!, ~13! term, one expands the delta fun
tion in the ~12!, ~34! pairing as above and inserts an ad
tional delta function

pd~ l1234!5pE d2L13d~ l11 l32L13!d~ l21 l41L13!,

~B14!

with the understanding thatd(0)5V/(2p)251/p. Expand-
ing the delta functions in spherical harmonics we can in
grate over azimuthal angles to obtain

S S

ND
(12,13)

2

5
f sky

24 (
l 1m1••• l 4m4

(
L12M12

(
L13M13

~21!M121M13

3S l 1 l 2 L12

m1 m2 M12
D S l 3 l 4 L12

m3 m4 2M12
D

3S l 1 l 3 L13

m1 m3 M13
D S l 2 l 4 L13

m2 m4 2M13
D

3

P
l 3l 4

l 1l 2* ~L12!Pl 2l 4

l 1l 3~L13!

Cl 1
totCl 2

totCl 3
totCl 4

tot
,

ett
t.
S.

08300
-

5
f sky

24 (
l 1••• l 4

(
L12L13

~21! l 21 l 3H l 1 l 2 L12

l 4 l 3 L13
J

Pl 3l 4

l 1l 2* ~L12!Pl 2l 4

l 1l 3~L13!

Cl 1
totCl 2

totCl 3
totCl 4

tot
, ~B15!

where we have used Eq.~A4! to rewrite the sum over the
Wigner-3j symbols in terms of the 6j -symbol. Proceeding
similarly for all terms in the signal-to-noise expression, w
obtain

S S

ND
tot

2

5
f sky

24 (
L

(
l 1l 2l 3l 4

1

2L11

uTl 3l 4

l 1l 2~L !u2

Cl 1
totCl 2

totCl 3
totCl 4

tot
, ~B16!

where we have employed Eq.~A6! to reexpress the~13!, ~14!
term. The factor of 24 comes from the 4! permutations
each quadruplet in the all-sky expression. Thef sky term is the
reduction in signal-to-noise due to incomplete skycovera
we
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