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Angular trispectrum of the cosmic microwave background
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We study the general properties of the cosmic microwave background temperature four-point function,
specifically its harmonic analogue, the angular trispectrum, and illustrate its utility in finding optimal quadratic
statistics through the weak gravitational lensing effect. We determine the general form of the trispectrum, under
the assumptions of rotational, permutation, and parity invariance, its estimators on the sky, and their Gaussian
noise properties. The signal-to-noise in the trispectrum can be highly configuration dependent and any qua-
dratic statistic used to compress the information to a manageable two-point level must be carefully chosen.
Through a systematic study, we determine that for the case of lensing a specific statistic, the divergence of a
filtered temperature-weighted temperature-gradient map contains the maximal signal-to-noise and reduces the
variance of estimates of the large-scale convergence power spectrum by over an order of magnitude over
previous gradient-gradient techniques. The total signal-to-noise for lensing with the Planck satellite is of order
60 for a fiducial cold dark matter model with a cosmological constAr€DM).
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I. INTRODUCTION show that there exists a quadratic statistic that optimally re-
covers the projected gravitational potential power spectrum
The power spectra or two-point correlations of cosmic(or convergenceon large scales. We conclude in Sec. VI.
microwave backgrounCMB) temperature and polarization
anisotropies are widely recognized as a gold mine of infor- Il. SYMMETRIES
mation on cosmology. These spectra in fact contain all of the
information embedded in the CMB if the underlying fluctua-  In this section, we derive the requirements that rotational,
tions are Gaussian distributed. Nonetheless even if the initigdermutation, and parity symmetry impose on fire (two,
density fluctuations are Gaussian, non-Gaussianity in théhree, fouy-point correlation functions on the sphere and
CMB temperature fluctuations will be generated by non-their spherical harmonic analogues: the power spectrum,
linear processes. These generally are associated with the ségspectrum, and trispectrum. We begin with general consid-
ondary anisotropies that are imprinted as the photons prop#&rations for thex-point function in Sec. Il A, review the im-
gate through the large-scale structure of the Universe fronplications for the power spectrum and bispectrum in Sec.
the epoch of recombination. Il B, and derive the consequences for the trispectrum in Sec.
Secondary signatures in the three-point correlation ofl C. In Sec. Il D, we show how to construct trispectra with

temperature anisotropies have recently received much atteide required symmetry properties.
tion [1-3] following early pioneering work on intrinsic cor-
relations in the initial conditionf4,5]. The four-point corre- A. General considerations
lation and its harmonic analogue, the trispectrum, has ) . o .
received considerably less attention despite the fact that it e begin by requiring statistical isotropy of timepoint
directly controls the noise properties of the estimators of th&orrelation function on the sphere and its harmonic analogue,

power spectrum. In particular, an all-sky treatment of the

trispectrum that incorporates the full rotational symmetry(@)(ﬁl). . .@(ﬁn)>: E Z <®'1m1' O )
properties of the trispectrum has been lacking in the litera- Iy o1y mg-omy e

ture (cf. Ref.[6]). Exploitation of the symmetry properties my, A m,, ~

can assist in the isolation of the physical mechanisms under- XYll (ny)-- 'Y|n (M) 1)

lying the generation of the trispectrum, as we shall see.

In this paper, we establish the framework needed to studgtatistical isotropy demands that thepoint function is in-
the trispectrum on the full sky. We begin in Sec. Il with a yariant under an arbitrary rotatioR whose action on a

discussion of the symmetry properties of thpoint function  spherical harmonic is expressed in terms of the Widher-
on the sky, with an emphasis on the four-point function, andynction,

their implications for the general form of the harmonic spec-

tra. We consider estimators of the trispectrum and their noise

properties in Sec. lll, and the trispectrum-based power spec- RIYM(N)]=2 D'rn,m(a,[g’,y)Y{"'(ﬁ) : (2

tra of quadratic statistics in Sec. IV. Calculational techniques m’

and relationships to the flat-sky formalism are given in two

Appendixes. In Sec. V, we consider the specific case of theherea, B, andy are the Euler angles of the rotation. To
trispectrum generated by weak gravitational lensing of CMBsatisfy rotational invariance the harmonics must obey the
photons by the large-scale structure of the Universe ancelation
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In order to reduce this relation to the orthogonality condition

(O1m, O )= 2 (Onmy O ) Eq. (5), the sum ovem’ of the three-point function must be
my---my proportional t05L|35M,_mé. Recalling the identity
XDll r"'DIn 7 (3)
mlml mnmn

R P! il L7 60 Bumr
for all @, B, andy. The reduction of this relation proceedsas i, \m; m, M/\m; m, M’/ 2L+1 '
follows. Each pair of rotation matrices may be coupled into a (12)
single rotation via the group multiplication propertpr

equivalently the addition of angular momengym we can obtain the desired relation if thedependence of the

’ ! Lo, L 1, L three-point function obeys
D! D2 =2

mim mom

m m, —M/Im; m; —M’

1 2 LMM' o o |1 |2 |3
X(2L+1)( 1)M+M/ MM" (4) < lgmy" " " I3m3>_ m, m, ms BI1I23 (13)
When the product is reduced to a pair Bf matrices, one _
seeks the form of the harmoniepoint function that reduces C. Trispectrum
the pair to the orthogonality condition for rotations The form of the four-point function follows the same
steps except that we use the group multiplication properties
2 (—1)me- lenlm mem = Omymy (5) to pair say (y,l,) and (3,l4) leading to the condition
2
which is valid for an arbitrary rotation. The indices can then <®'1m1' . 4m4 2 2 (2L45+ 1)
be permuted to find alternate orderings of the pairings. -emy LM goM o,
Invariance under a parity transformation which takes | | L
- Moot M/ 1 2 12
——n, X(—1)"12 12( )
mg m; —Mg
Y= (=D, (6)
I1 |2 I—12 Lo
would require that “Nmy mp =My, P
n
> li=even. (7 X2 (2latl)
=1 L3M3M3,
Reality of the underlying field and the fact that | | L
’ 3 4 34
mx my—m X(_l)M34+M34
:(_1) Y| ’ (8) m3 m4 _M34
requires that ( l3 ls Lag ) Las
®|m*:(_1)m|_m- (9) mé m:l _Mé4 34M:,>,4
><<I1mi"’®l4mz'1>- (14

B. Power spectrum and bispectrum

For the two-point function there is only one step. The

reduction of Eq{5) requires the form The same reasoning that led to the choice of the form of the

three-point function implies that the following form is a so-

(0., O1m) =811, 0m —m(—D™C, . (10 lution:
For the three-point function one first collapses one product of L1, L l3 1, L
rotation matrices leaving <®|1ml-~~®|4m4)=% (ml m, —M)(m3 m, M)
Oim O m)= 2 (OO ) X (2L+1) X (—1MQLA(L). (15
my...mj LMM’ 34
><(—1)M+'V"< U PR ) Geometrically,Q:;:j(L) represents a quadrilateral composed
m m; —M of sides with length ;- - -1,. The indexL represents one of
the diagonals of the quadrilateral and is also the shared third
o, L, _ : ; .
) } , DMM, . (1D side of the two triangles formed by the corresponding pairs
m m; —M of sides. The Wigner{8symbols in Eq{(15) ensure that the
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triangle inequalities are satisfied. For this reason we will of- |
ten refer to a setl(,l,,l3,1,,L) as a given “configuration” (O mO1,m)c= p 2

Lo, L)

of the quadrilateral. LM Pigal m my —M
The two other unique pairings of the indices; ,(3) and l, 1, L
(I1,14), yield alternate representations of the four-point func- X )(— DM+ (1,15)
tion. These are not independent since all three couplings mg my M
yield complete sets according to the theory of the addition of + (1), (21)

angular momenta. The alternate representations are con-

structed as linear combinations of thig ,(,) representation wherec denotes the fact that we have removed the Gaussian
with weights given by the Wignerj6recoupling coefficients piece of Eq.(20). The two latter pairings can be projected

(see Appendix A onto the (,1,) basis with the help of the Wigneii-&ymbol
to give
I, | !
lala )= NP 172 Il
QL) %‘4( 1)273(2L+1) I I L] FACRE 1lz(|_) PLA(L)+(2L+1) {(—l)I2+I3
3'4 L
: i 1 L I, I, L
QL= (-t n| P QAL i 2 P (-
o l3 I, L 34 ly 13 L'
(16)
wfir lz lacr) (22)
where we have used EGA4) to project one coupling scheme I3 1, L’ '3'2( '

onto another.
Symmetry with respect to the 41438 remaining permu-  Within the three unique pairings, there are four permutations
tations(two orderings of the pairs, four orderings within the of the ordering implying thaP is constructed as
pairg requires that 1'2(L) 741|2+ 1)%74'2:[11“_1)2@4'1:2
l1lo Ssun'2lir v 1 20l = A/3la
Q| (L) ( 1) UQ|3|4(L)_( 1) I'Q|4|3(|—) Q|1|2(|—(3]-17) +(_1)2U+2L7—:2:1_ (23)
4'3

The reduced functiof underlying the trispectrum is an ar-
bitrary function of its arguments except that it must be sym-
metric against exchange of its upper and lower indices

where3, ;=I,+1,+L andX, =I;+1,+L. If the four-point
function is parity invariant then

QAL =QEAL). a9 THHL=T240), 24

We shall show how to construct trispectra that obey thes@nd if parity invariant obeys
properties in the next section. 1|2 2|1
Finally it is useful to separate the contributions from the 7J (L) 7J (L) (25)
unconnected or Gaussian piece and the connected or trispec- ) )
trum piece This then completes the enforcing of the rotation, permuta-
tion and parity symmetries of the trispectrum.
112(L)=GL3(L) + T4 (L 19
QB =GB+ Tigi(b), (19 ll. ESTIMATORS AND SIGNAL-TO-NOISE
where We show in Sec. Il A that the fundamental estimator of
the trispectrum involves a weighted sum over the multipole
moments in a given quadruplet of harmonics. These estima-
tors have well defined noise properties as derived in Sec.
11l B which can be used to calculate the theoretical signal-to-
_1)latlgtL
+H(2L+1)C G l(=1)275708,1,61,, noise in the trispectrum. A nonvanishing trispectrum can on
the other hand decrease the signal-to-noise in the power
spectrum by introducing a covariance between its estimators
as shown in Sec. Il C.

GA(L)=(~1)1*1a(20,+ 1)(215+1)C; €1 811,611,500

D. Enforcing symmetries

The symmetries of the trispectrum described above may A. Estimators

be enforced by the following construction. First we describe From the orthogonality properties of the Wigngr</m-
the four-point function by a form that is explicitly symmetric bol, one can invert the relationship for the four-point spec-
in the three unique pairings, trum to form the estimator
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~ I [ L B PR 1 A
TraL)=2L+1) > (—1)“"( v ) (T2 (L)le,i(L )
e My MaM3MyM M m M tot~tot~tot tot:5LL'5§‘21+(2L,+1) (-1l
oL ) (2L+1)C,1C|2C|SC|4
. — G2
(26) Iy 13 L)%
. . . . I, I, L
where the estimator for the Gaussian piece is constructed out +(— 1)L+L’{ o2 ,] 5%4’
of those for the power spectrum. Note that for configurations lz 14 L
whosel sides are not equal in pairs, the Gaussian piece van- (30)
ishes and the sum oven’s of the spherical harmonic coef-
ficients is an unbiased estimator of the trispectrum. if no two I’s in the primed and unprimed sets are equal. Here
We can alternately form an estimator of particular con-
figurations of thg t_rispectrur_n di_rectly fro_m the sky map itself 623:[5|1|35|2|b+ (—1)%u 5I1Ib5|2|a][ 5'3%5'4'(1
without an explicit expansion in spherical harmonics. Fol-
lowing Spergel and Goldbel@], let us define a new set of +(=1)*8,, 8, ]+[a—c][b—d] (3D
3'd '4'c

sky maps weighted in rings centered around a pqint
accounts for the permutations within the three fundamental
R 2041 . . .. pairings. Recall thatt =I;+I,+L and 3 =l3+1,+L.
e(q)= 4—f dn®(n)P(n-q). (27)  The two terms involving the Wignerjésymbol reflect the
v .. . .
fact that alternate pairings of the indices supply redundant
information in both the signal and the noise.
If any two I's are equal, then the covariance has extra

terms associated with the internal pairings in the primed and
unprimed sets. Based on the fundamental relation

Expanding the Wigner{3symbols in terms of spherical har-
monics and using the addition theorem, we obtain

L 1, L
0 0 0

(|3 e L) Flal2 Ly + G2
0 o oft Tt ﬁ:i:i*(”?:i:i(u»

daa da ~ ~ ~ ’
=(2L+ 1)] Ef 4—7:e|1(qa)e|2(qa)e|3(qb) =(—1)"1"115 08 oV(21, + 1) (21 + D6,

|’
44

~ PN _1\2
X €,(d)PL(da Ap)- (28) +(=1)"61,,6,,1C,, Ci:C Cy (32)

Since the Wigner{3symbol vanishes if, + | ,+ L = odd, this qther pairings can be found through the permuta_tion proper-
expression can only be used to estimate even terms. jues ofQ (or T). No fundamentally new terms arellntr(_)duced

To measure all configurations of the trispectrum is, needlf three or fourl’s are equal but each set of possible internal
less to say, a daunting task. Aside from the computationdp@irings in the primed and unprimed sets must be separately
expense, one must also treat complications associated wigifcounted for. _ _ _
estimators of harmonics on a fraction of the sky. Even for an 1he total signal-to-noise for eathin the four-point spec-
all-sky CMB experiment, the removal of galactic fore- rumis
grounds will limit the data to a smaller fraction of the sky S\2 .
oy (N) = > 3 (T W) [Cov TIALY)

hlalglal g 34 34
B. Signal-to-noise

’ LR

I3,

Returning to the estimator of E¢R6), one can calculate “E 2 (33)
the Gaussiamoisevariance of the estimator, T 1y>15515>1, 2L+ 1 clocltcloget”
1 2 3 4

Py =14l ’ tot~tot~tot~tot
<Tlili (L)Tlili(l‘ )>:(2L+1)5LL’C'1C'2C'3C'4 ' where “Cov 1" indicates the matrix inverse, with elements
(290 |abeled by their configuration {,!,,13,l4,L), of the covari-

ance in Eq(30). In the second line, the restricted sum elimi-
if no two I’s are equal. Her€[*" is the sum of all contribu- nates the 4+ 24 redundant permutations above and neglects
tions to the power spectrum including the intrinsic CMB the signal-to-noise contributed when the tfgeare equal. In
fluctuations, instrumental noise, and residual foregroundhe high signal-to-noise regime, one must also include the

contamination. sample variance of the signal. On a cut sky, the consider-
From the permutation properties @f (or T) in Eq. (16), ations of Appendix B imply that the overallS(N)? is re-
the full covariance of the estimators then becomes duced by a factor of .
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Note that if the sum in E(33) is not restricted the cova- (Sec. Il A) and continue through a discussion of filtéBec.
riance supplied by the alternate pair orderings in Ed) IV B) to a consideration of specific quadratic statistigsc.
necessarily contains off diagonal terms that rhixand L. IV C-IV H) and related cubic statisti¢Sec. IV ). The spe-
The covariance is distributed across mdry and can lead cific statistic and filter set that optimizes the signal-to-noise
to overestimates of the signal-to-noise in four-point relatedvill depend on the configuration dependence of the trispec-
statistics by a factor of/3. trum signal that is to be extracted.

C. Power spectrum covariance A. General definitions

The trispectrum can affect two-point or power spectrum To probe various aspects of the trispectrum, we can form
statistics by introducing a covariance between the estimatorghe two-point or power spectrum statistics of a quadratic
The covariance of power spectrum estimators averaged ovepmbination of the underlying field. To enhance the signal-

m is given by to-noise, we begin by filtering the fields before collapsing the
1 . configuration,
€ Cy=5—75 77 2 (O1,mOFnO,m0 ) . .
11 2|1+1 2|2+1 My, 1M 1ymy = lomy =om, ®a(n):|2m @Imff‘Ylm(n)' (37)
—(Ci %G1
where the indexa=1,4 to allow for four independent filters
1 1 RN on the fields. In general, the identification of points in pairs
= (—1)ht 2Q,1,X(0) implies that each pairab) involves a quadratic combination
V2l +1 V2l+1 22 of the filtered field which in turn involves a mode coupling
NP sum of the harmonic coefficients
—(C NGy (34)
The expression for the covariance can be further broken into X =(—1M> > X (LB m,O1m,
its Gaussian and non-Gaussian pieces fimy lomp 2
2L+1/ 1 I L
e 2 (~p'it R %
¢ & == C25 , + M/ (39)
(€€ = o1 71 o, J21,+1)(21,+ 1) Am img my M
where
x| TH0)+
22 (21 +1)(205+1) Xih (L) =FF P (21 + 1) 21+ Dx (L), (39

l1+15
X ;‘, (—1)LT:1:2(|_) , (35 and x|l|2(L) represents different weights for different statis-
L=ll=tol e tics x as specified below. The power spectra statistics relating
where recall thatZ is the reduced trispectrum of E@3). WO general quadratic statistizsandx may be separated into

The effect of covariance for the signal-to-noise for the estithe non-Gaussian signal and Gaussian noise as
mation of a set of underlying cosmological paramefgrsan

be calculated through the Fisher matrix (XX )= 8LLr Sum (C4 N, (40)
5C| &C| where
Fiyj=> ——[Cov']—, (36)
f, IPi p; 1 1
Co¥=—— X2 (33 (DT, (41
where “Cov™!” indicates the matrix inverse of the covari- L o4Am2L+1 '1?'3'4 112 (L)%, (L) '3'4( ) (4D

ance in Eq(35). In particular, if the only parameter of inter-
est is the overall amplitud& of a known template shape, and the Gaussian noise is
thenF o= (S/N)? (see Ref[3]).
~ 1 ~ ~
XX_ 12% 34 34 tot~tot
IV. POWER SPECTRA OF QUADRATIC STATISTICS N A % Xi gt (DX (L) x5 (DG

Measuring all of the configurations of the trispectrum or (42)

four-point function is a daunting challenge. In this section et will be useful in the following discussion of noise variance

consider statistics based on the identification of points in[0 also define the following two auxiliary power spectra:
pairs in the four-point function. These quadratic statistics '

may be optimized in signal-to-noise for their power spectra _ 1
by filtering the original temperature field. We begin with fo(12)24_ > X|112|’;(|_)[7(|112|2(|_)+§(|122|1(|_)]C|K1>1C|t2t,
general definitions for the quadratic fields in harmonic space T 141,
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~ becomes the familiar form for the variance of the power
fo(34) E Xps (L)X (L) +x (L)ICIC spectra of a set of Gaussian random fietds
(43) A comparison of the signal-to-noise in the full trispec-
trum, Eq.(33) and in a particular quadratic statisticEq.
The signal-to-noise ratio in this power spectrum statistic49), shows that the latter approaches the former if
can be calculated from Eq30) for the covariance of the
trispectrum, I3 4( L)

12 34
X, (L)X, (L) —w(L) clicricce! (49)
1 2 3 4

(EC )= g LV OV B0+ (NN,
(44) wherew(L) is an arbitrary function of.. To the extent that

the right-hand side is factorable i, a=1,4 the filter func-

2L+1

such that tions f{! can be chosen to construct this optimal statistic.
~ ~ Since the trispectrum is in general not factorable, we will
S\ 2 (Cfx)(cf'x/> next qonsiqer a wide range of choices for_ the qua}dr_atic
(N) ~ 2 T (45  statistic which can be used to construct optimal statistics for
Loo’x’ (CUCL ™) various types of trispectrum signals.

Strictly speaking, this is an inequality since we have ne-
glected the covariance betweérs dictated by the trispec-
trum covariance, Eq(30). Since the trispectrum covariance ~ The simplest quadratic statistic that we can form is the
is distributed broadly in the allowed's, this signal-to-noise ~Product of the filtered temperature field itself,

estimate is reasonable if we restrict the range of interekst in

to a small fraction of the allowed range. The covariance can 03(n)O°(n)=s(n)=> s yMn), (50)

at most reduce the total signal-to-noise by a factog/®ffor L

the three unique pairings in the trispectrum.

C. Temperature-temperature

wheres‘,i",i,I is given by the general prescription of E@8)
with x=s and the weighting

B. Filters
The filters and specific form of the statistiaccan be cho- b 1, L
sen to eliminate Gaussian noise bias and/or maximize the sb=ly o o even (51)

signal-to-noise. If {!,f?) and (?,f{) do not overlap inl,
then the Gaussian noise bias of B42) vanishes. Further- «gyan” denotes the fact thas selects oul,;+1,+L=even

more, trispectrum covariance between differlng is iden-  y yirte of the Wigner- symbol. The non-Gaussian power
tically zero and Eq(45) becomes a strict equality. spectrumCSS is then given by Eq(41) in terms of the

all nggﬁzwé’lﬁézgg\ﬁ? f'gﬁ? Irinrr?i)tlet()je band limited in mUtu'trispectrum. The total signal-to-noise of this statistic can be
y partty ’ estimated by retaining just the=x’ =x=x'=s terms in Eq.

-1 R R (45).
Oc(n)=5[0(M+6(—-n)],
D. Temperature-gradient
1 2 1, I=even, The product of the filtered temperature field and the gra-
fi=ti= 0, I=odd, (46) dient of the filtered temperature field probes another aspect
the trispectrum. This product is a vector field on the sky and
1 A A may be broken up into components as
0o(nN=5[0(n)-0(-n)], L
O(n)Vi0°(n)=2 f[alrlaz]a (n)\/—(e¢+ea)
(3 g 0, I=even, (52
1, 1=odd. @

The components; *ia, are spin-1 objects that can be de-

This choice does not eliminate the auxiliary variance poweicomposed in the spin-1 spherical harmorjigs
spectra in Eq(43) and more generally does not maximize
the total signal-to-noise. Only if the filters are equal in pairs b
fi=f3 andf?=f} are the noise and auxiliary variance power [a1=ia,]2°(n) E (cxig)im =1Y'(n), (53
spectra equal such that

1 wherec and g are the multipole analogues of the curl and

AXXAX X\ XX\ 7 N XX XX\ /N xx gradient pieces. These quadratic statistics again follow the

(CoC™) 2L+1(<'\IL HNC)HINCTXNTT ), (48) general form of Eq(38) with x=c,g and weightings
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l, 1 L [ [, 1, L
Ci,(L)==Vla(l2+1) 0 -1 1 odd (54 U|1|2(|-)Ez\/|1(|1+1)\/|2(|2+1)k_1 1 0 odd,
b 1, L 1 [ I L
0= D] 1) even. e,llz(L)E§¢|1(|1+1)¢|2(|2+1)k_11 _21 2) even,
(55)
Here and below “even”(“odd” ) denotes the fact that the p, (L=- _\/| L+ D)\ 1,(1,+ 1)
expression holds fot;+I1,+L=even (odd) and vanishes
otherwise. If the trispectrum is parity invariafgero if | | | L
+1,+13+1,=0dd, the cross power spectr@f°=0=C;* ( ! 2 ) odd. (60)
vanish. The remaining power spectra and their covariance -1 -1 2

are described by the general forms of E@&l), (42), and _ _ I .
(44). If the trispectrum is parity invariant, cross power spectra

exist only among f(,e,g,s) and (8,v,c). These power spec-
tra and their covariance again are described by the general
forms of Eqgs.(41), (42), and(44).

The product of temperature gradients can in general be
decomposed into three quadratic statistics,

E. Gradient-gradient

F. Temperature-Hessian

Similarly to the gradient-gradient case, the product of the

[Vi@)a(”)][Vj®b(n)]ztab(”)gij(”)+2 [a=iu]*(n) temperature and the second derivatives or Hessian of the
N temperature field can be decomposed into three quadratic
X aij (N)+v(N)e;(n), (56) ~ statistics,
whereg;; is the metric on the two-sphere, 03(n)V,V;0°(n)=h"(n)g;;(n)
oy (n)= (eg+e¢) (847 €4); (57) +§ [7=i7212°(N)aij (N),

gives the basis for a trace-free symmetric tensor field on the (61)

sky, and which themselves may be decomposed into multipole mo-

- ments of the spherical harmonics and spin-2 spherical har-
eij(n):(eo)j(eqb)i_(ea)i(e¢)j (59 monics,

gives the basis for a trace-free antisymmetric tensor field on

the sky. The flat-sky versions of these statistics were first ha(n)= > h3 YM(n),
employed in Ref[10] for CMB lensing and note that, u, v LM

are analogous to the similarly named Stokes parameters for

polarization.

P ab/ A\ — + myab M/ A
As is the case for the CMB polarization, these three fields L1132 () = % (eXiB)im =2YC (),
may be decomposed into multipole moments of the spherical (62)

harmonics and spin-2 spherical harmor{ig
where the moments follow the general prescription of Eq.

. - 38) with x=h, e, d weight
tab(n)szl\;,tf',fAY["(n), (38) with x=h, e, 8 and weights

b (L) 1I (1,+1) Iy 1 L)
. Il|2 E_E 2 2+ even,
vab(n)=2 ULMYL(n) 000
LM
1I (I,+1)
- A —5lall2 Sy, 1,
[q=iu]*(n)= >, (exib)ipy .2Y!'(M), 2 v
LM
(59 1 [+l 1 L
- €, ,(L=5 —20lo —2 2/ even
where the moments follow the general prescription of Eq. 2
(38) with x=t,e,b,v and weights
B (L)= i (I,+2)! |1 I, L dd
1 ER P 11,00 = L,—2lo —2 2/ 0%
t|1|2(|-)5_5\/'1('14'1)\/'2('24'1) 11 O) even, 2 63
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Again parity invariance requires that power spectra exist
only between [, ¢,t,e,s) and (3,b,v,c). Likewise the gen-

PHYSICAL REVIEW D 64 083005

|. Cubic statistics

Finally the cross correlation of cubic statistics with linear

eral formula for power spectra and their covariance agaiRyistics are also related to the quadratic statistics introduced

apply.

G. Temperature-temperature Hessian

Auxiliary two-point statistics can be formed from the fun-

damental ones above. For example

ViV,[03n)0°(n)]=12"(n)g;;(n)

+2 [g=iul®(mejn), (64

and
) =2, T (),
[a+iu]*(n) =2 (e+ib)fy ~oY'(n)
LM
(65)

imply that
- L(L+1)(1, 1, L
b=ttty Fhy == ——— 0 0 o

e =e e +te, e,
1'2 1'2 2'1 1'2 2'1
1 eyl I L
2 V(L-2)! ’

0 0 O
by, =bi g, by By, + B, =0

Again power spectra follow from the general relations.

H. Temperature-gradient divergence

The divergence of the temperature-gradient field of Sec.

IV D is also an auxiliary statistic

VI[®%(n)V,0°(n)]=d2>(n)YM(n), (66)
with
d”(ﬁ):% a2 YM(n). (67)

The weights are related to the others as

o1, L
d|1|2=¢L(L+1>|2<|2+1)k0 Cy ) even.
=—iyL(L+1)g,,,=2t,,,+2h . (68)

Again power spectra follow from the general relations.

above. For example

(®(n))®%(n;)O3%(ny) O%(ny))
=% (=DM CPXB+NPEDTY M(ny) Y(ny) -

(69

More generally, the cubic power spectra corresponding to the
variousx statistics are given by

. 11 -
= ;L 1 s D (LX(LTAL), (70
1'2'3

with Gaussian noise bias

~ 1 ~ ~
NI= 2 & Xiata (DL H(LICTCE,

l12

(71)

and auxiliary noise variance

l12

- 1 ~ ~
ViTeH= 1 & X (DKL) +XI(LICCE,

= 1 ~ ~
V= — |§lL) X (LIXCH(L) x5 (L) SIS,
(72)

i.e., the multipole index of the power spectra is no longer the
diagonal of the trispectrum configuration but rather one of its
sides. These cubic statistics thus probe a different projection
of the trispectrum information but are based on the same set
of filters and employ the same statistical formalism.

V. CMB LENSING

In this section, we consider the trispectrum signal gener-
ated by the weak gravitational lensing of the CMB tempera-
ture anisotropies by the large-scale structure in the Universe.
In Sec. V A we derive the full trispectrum for lensing and
relate it to the underlying deflectidior convergencepower
spectrum. Zaldarriaggb] previously considered the lensing
trispectrum in the small-scale or flat-sky approximation. The
gravitational lensing effect is known to be dominated by po-
tential fluctuations on the largest scales where an all-sky
treatment of the trispectrum is desirabf. In Sec. V B, we
show that the signal-to-noise in the trispectrum is both large
and highly configuration dependent for experiments that can
resolve multipole moments= 1000. The divergence statistic
introduced in Sec. IV H is shown in Sec. V C to be optimal
for measuring the underlying deflection power spectrum at
its peak at low multipoles. It benefits from substantially
higher signal-to-noise as compared with the gradient-
gradient quadratic statistics introduced by Zaldarriaga and
Seljak[10]. Finally we consider tests for the robustness of
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the divergence statistic with differing filter sets in Sec. V D where the tilde represents the unlensed field andrepre-
and the degradation in power spectrum estimation from lenssents higher order terms in the Taylor expansion. The lensing

ing covariance in Sec. V E. potential field(n) is a lensing-probability weighted projec-
tion of the Newtonian potential along the line of sidkee
A. General trispectrum Ref.[7], Eq. (21)].

We begin by briefly reviewing the effect of gravitational The spherical harmonic coefficients of the lensed CMB

lensing on the harmonics of the CMB temperature field andemperature field become

refer the reader to Ref7] for details of its calculation in a

given cosmology. For reference, we employ the same cold ®Im“~’@lm+f dnY™ (N)V; (N VO (n)+ - - -
dark matter model with a cosmological constantGDM)

used there, with parameter§},,=0.35, Q,=0.65, h
=0.65,n=1, andéy=4.2x10"°,

Weak lensing of the CMB remaps the primary anisotropy = O+ & dmOrm (=1)
according to the deflection angieg(n), D .
=0(n)+V,p(n)VOMN)+---, (73 where
|
\/ - = TR TRTIEIS B L)
Foo==[L(L+D)+I"(I"'+D)—=I(+1 ,
(21+1)(21' +1)(2L+1) DDA DI g
J — I” L
=—yL(L+D)I'(I"+1) 0 -1 1 even, (75
|
where recall that “even” denotes the fact that orly-1’ noise have been calculated in R] (see also Appendix B

+L=even is nonvanishing. Gravitational lensing generates dhe all-sky expressions are cumbersome to calculate due to
change in the power spectrum that has been well studiethe presence of the Wignej-8ymbol that expresses the al-
[11-13,7. It produces two changes to the four-point func- ternate recouplings of the trispectrdrs. We use the recur-
tion. The first is that the unlensed) in the Gaussian four- Sion technique outlined in Appendix A for these calculations.
point contribution must be replaced with the len€ad The
second is that it generates a trispectrum with an underlying
reduced forn{see Eq.(23)] of

—
[¢)]

(x1077)

T:;:i(l‘):CI?¢EIZEI4FI1LI2FI3LI4- (76)

Note the geometric interpretation: the lensing generates ¢
trispectrum or quadrilateral configuration bf- - -1, where
one of the diagonals is supported by the lensing potential
power spectrunC{?. Note that the power spectrum of the
deflection field is given by (L+1)C{? and is the funda-
mental quantity of interest. It is plotted in Fig. 1 for the
fiducial ACDM model. It is important to note that most of
the power in the deflections is coming from a rather large 0
scale or low multipold_~50. We contrast this with the more
familiar  convergence power spectrumC“=[L(L
+ 1)/2]Zcf‘f’ which peaks at much smaller angular scales. FIG. 1. The power spectrum of the deflection angle in the fidu-
cial ACDM model. Error boxes represent ther lerrors from
Gaussian noise on the divergence statistic binned in the bands
shown. The divergence estimator of E¢80) and (81) is optimal
From the considerations of Sec. Ill B, we can calculatefor the low multipoles and reduces the variance in the power spec-
the total signal-to-noise in the trispectrum for lensing in thetrum estimation by more than an order of magnitude as compared
full-sky formalism. Flat-sky estimates of the total signal-to- with the gradient-gradient statistics of Rgf0].

¢ /2

Bea

2C

0.5

[(¢+1)]

Y A N N

10 100 1000
{

B. Total signal-to-noise
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FIG. 3. Cumulative signal-to-noise in the trispectra configura-

FIG. 2. Contributions to the§/N)? from trispectra configura- tions with the diagonal. summed ovet;- - -1,. Dashed lines rep-
tions with a fixed diagonal and maximum side length, summed  resent an ideal experiment whe@=C{® out to a maximuml
over the remaining three sides. Solid lines represent the full calcu=1,,,; solid lines represent the Planck experiment. Lines represent
lation of the trispectrum terms; dashed lines represent the pairwisthe approximation of Eq77); points represent the calculation using
approximation of Eq(77). The signal-to-noise in the low, trispec-  the full trispectrum for an ideal experiment.
trum is highly dependent on the configuration.
breakdown occurs since the two diagonals of a trispectrum

In Fig. 2, we show the signal-to-noise contributions in aquadrilateral become comparable and either can be supported
given modeL=50 of the trispectrum from a giveh, by the lensing power in Eq(76). We also show in Fig. 3
(summed ovet,,l3,l,) assuming an ideal experime@®{ (solid lineg the cumulative signal-to-noise for the Planck
=C,. The signal-to-noise is quite high and approaches unitpatellite[14] with ci* taken from Ref[3]. Planck approxi-
perl; mode and_ mode atl ;~2000. Moreover, the contri- Mates an ideal experiment with.,~1600. _
butions as a function df, show striking features. These fea- _ Finally, under the approximation of Eq77) which
tures can be understood by approximating the trispectrum b§lightly underestimates the total signal-to-noise, we can plot

its fundamental pairingl¢,l,),(l5,14) in Eq. (23), the cumulative signal-to-noise summed overlaiis a func-
tion of I, (see Fig. 4. Again anl,,,~1600 approximates
Il Il = = = ; 2
Tlili(l‘)~Pliljzcﬁ)([)(C'zFllL'z—i_ Ci,Fi,u)(Ci,Fiu, the Planck experiment whose tota&/{)“~3100.
+6I3FI4LI3)- (77) C. Divergence statistic

The structure in the signal-to-noise curves implies that it
Figure 2(dashed linesverifies that this is a very good ap- iS important to select a quadratic statistic that captures this
proximation for the range of interes{>L. The reason is
that these configurations represent flattened quadrilateral
where one diagonal is much greater than the other. Since
lensing effects peak at low, the other pairings are corre- 10
spondingly suppressed. These properties are hidden in th
real-space four-point function and highlight the benefit of  10¢
considering harmonic-space statistics. «

To the extent thaC, is constant, the two terms within £ 103
each set of parentheses in E@7) cancel. Thus, the trispec- £
trum picks out features in the underlying unlensed power .,
spectrum, specifically those due to the acoustic peaks in the
power spectrum. Note that the effects on the power spectrun
itself exhibit the same effect; lensing acts to smooth the
acoustic features in the spectrum. This structure implies tha
optimizing thel range of filters in the quadratic statistics is 100 ——
important for maximizing the signal-to-noise.

The cumulative signal-to-noise integrating out te
=l max as a function oL in an ideal experiment is shown in FIG. 4. Approximate total$/N)? in the trispectrum for an ideal
Fig. 3. The approximation of Eq77) begins to break down experiment out td =1, and the Planck experiment. The Planck
asL approaches,,o, but always in the sense thatuhderes-  experiment approximates an ideal experimentl 1600 with a
timatesthe total signal-to-noisédashed lines vs pointsThis  (S/N)2~3100.

Ideal

Planck

10t
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structure. Following the considerations of Sec. IV A, we canwhen integrating over a wide range Incausing a small
search for the quadratic statistic that optimizes the signal-toreduction in the number of independent modsse Sec.
noise ratio in the power spectrum of the deflection. RecallV A).

that in general the multipole moments of the quadratic sta- The divergence statistic may also be used as a direct es-
tistic with filters f* and f°, timator of the deflectionor equivalently the convergence
field itself. Generalizing the argument of R¢10], one can
think of the quadratic statisticin Eq.(78) as averaging over
many independerthigh4 or small-scalgrealizations of the
unlensed CMB field with a fixed realization of the large-
scale deflection field

XE?A:(—].)ME 2 XI 4 (L)®I1ml Iom;

Iamy Iom;
» [2L+1
4
are defined in terms of the weight functiaﬁlﬁ’z. Under the

approximation for the trispectrum of E((7), Eq. (49) gives
the optimal weights as

[ P L
m m, —M

(79

(Xt ome=BLm 417(2L+1)E ||(C|:L oLly

+C,Fiu,) (L>0). (83

For the divergence statistic filtered as in Eg§1) all contri-

C +C .
12 C'ZF'lL'z 1Py 79~ butions add coherently so that,
Xy, tot~tot (79
Ci.Cj, s
LM
Fi.u.+C.F
Since the lensing trispectrum is symmetric lip—1,, the (dZ)eve= (2L+1) £ 2 CtotCtot( 1P CF,)®
temperature-gradient divergence statistic whose weights are
=VL(L+1)pm- (84)
12 _ =
X, = (dll I2 '2'1 From the multipole moments one can reconstruct the deflec-
tion or convergence mafl5]. Of course the fact that we
4 average over only a finite number of independent modes of
dIl|2 f f F, Vo1 (80 the primary anisotropy means that the resulting map will be

noisy, with noise properties given by the Gaussian noise

is optimal if the underlying temperature field is first filtered power spectra.

with
D. Robustness tests
A The divergence statistic contains enough signal-to-noise
~tot for Planck that the data may be further subdivided to check
for robustness of the statistic. Especially worrisome is the
~ possibility that galactic and extragalactic foregrounds and
f2_f4_ G systematic effects might generate a false signal. Even if these
=f/=—. (81 ; : : . -
contaminants contribute only Gaussian noise, one must sub
tract out the noise bias from the power spectrum estimators

We choose the proportionality constant to return the propWith the filters defined in E(81).

erly normalized deflection power spectrum Recalling the discussion of the filters in Sec. IV B, we can
eliminate Gaussian noise bias as well as noise-correlation
(CLF L+C Fi)? -1 between differingL by defining nonoverlapping filters sets
A=JL(L+1)(2L+1)| D —2 ) (fi,f2) and (f3, I) The resulting estimates of the deflection
P 2cic? field di3, andd>}, would then have statistically independent

(82 Gaussmn noise propertles such that the noise bias is elimi-
nated in their cross correlation. Furthermore, if the signal is
The signal-to-noise in this statistic is maximal under the asreally due to lensing the various estimates of the deflection
sumption that the trispectrum can be approximated as Egower spectrum must agree within their errors.
(77) as is the case fdr<several hundred. The total signal-  The price of dividing up the sample in this way is a re-
to-noise as calculated from E®5) for Planck is formally  duction of the signal-to-noise in any given set. For example,
(S/N)?~4050. Compare this with the gradient-gradient sta-by bandlimiting the filters of Eq(81) to 500<1<1400 for
tistic of Ref. [10]; for the unfiltered eab(ﬁ)sg(ﬁ) the the(12) set and > 1400 for the(34) set, the total signal-to-
(SIN)2~135. noise is reduced by- 2 and correspondingly the errors in
The total signal-to-noise is allowed to exceed the maxiFig. 1 are increased by- J2. Note that in this case, the
mum estimate of the previous section since the latter isinderlying filtered temperature maps contain no power in the
strictly a lower limit. However the underlying approximation multipoles of interest.~100. Such a scheme would still
that the estimates at all’s are independent breaks down yield a highly significant detection and help protect against
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" S S B L L B As an example, we have reconsidered the four-point cor-
relation generated by weak lensing of the primary anisotro-
pies by the large-scale structure in the Universe as a means
of recovering the power spectrum of the deflection angles or
convergenceg10]. CMB weak lensing provides a unique
probe of the large-scale properties of the convergence field.
We identify a specific quadratic statistic, the divergence of
the temperature-weighted gradient field, that achieves the
maximal signal-to-noise in this limit. For the Planck satellite,
the total &/N)?~4000 and represents a reduction in the
noise variance on the convergence power spectrum by over
an order of magnitude as compared with the gradient-
gradient estimators of Ref10]. There is sufficient signal-to-
noise to conduct filtering tests to eliminate noise bias and
1000 2000 3000 4000 check for consistency between multipole subsets of the data.
bnax We plan to explore further the properties of these estimators
FIG. 5. Degradation in the total(N)? in the power spectrum and their use in extracting cosmological parameters in a
separate work.

due to covariance from gravitational lensing. The degradation is . . .

minimal for the Planck experiment or any that is cosmic variance, _The Iensmg example |Ilustra_tes the |mpqrtance of exam-

limited only out tol ~2000. ining the conf_|gL_1rat|0n_propert|es of the trispectrum when
designing statistical estimators based on the four-point func-

contaminants. Filtered versions of other quadratic statisticon. Extracting the wealth of information potentially buried

can also serve as consistency checks. For example, even timethe trispectrum will be a rich field for future studies.

simple temperature-temperature statistic of Sec. IV C

yields a §/N)?~200 once it is is filtered according to the ACKNOWLEDGMENTS

peaks in Fig. 2.
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One might worry that the high signal-to-noise in the

trispectrum for lensing comes at the expense of degraded
signal-to-noise in the power spectrum due to covariance be-
tween the estimators. Fortunately this is not the case in the 1. Useful properties
<1000 regime of the acoustic peaks. From HG4)—(36),
we can calculate the degradation in the tot8IN)2. This
degradation is shown in Fig. 5 for the Planck satellite and a

ideal experiment out tb,,. Jg=3Ja+Jp+ I

APPENDIX A: WIGNER-6 j SYMBOL

The Wigner-§ symbol expresses the relationship between
r'%wo distinct couplings of three angular momenta,

V1. DISCUSSION =3t de

We have provided a systematic study of the angular
trispectrum or four-point function of the CMB temperature
field. Symmetry considerations dictate the fundamental form ) )
of the trispectrum and govern the Gaussian noise propertiei!Ch that the eigenstates of thec) coupling are related to
of its estimators. The large number of independent configuth® eigenstates of thef) coupling as
rations of the trispectrum imply that even subtle physical Qb e
ter1i‘fsepcet(s:t$$/il;eb:joeﬁgﬁiatké)leb(\;v;r.en all of the information in the|(ec)dy>=|(af)dy) (2e+ 1)(2f+1)(—1)2| o f]’

In practice, extracting all of the information in the trispec- (A2)
trum will be a difficult computational task. We have thus also
conducted a systematic study of the power spectra of quawhereX=a+b+c+d. Geometrically, the Wigner j6repre-
dratic statistics which probes different aspects of the trispecsents a quadrilateral with sides,b,c,d) whose diagonals
trum. Techniques developed for extracting power spectrunfiorm the triangles 4,d,f), (b,c,f), (c,d,e), and @,b,e) or
statistics from large data sets can then be brought to bear dhe three dimensional tetrahedron composed of these four
the four-point function. The drawback is that this compres-triangles. It vanishes if the any of the triplets fail to satisfy
sion of information is in general a lossy procedure. We havehe triangle rule. The symmetries are related to rotations of
therefore examined a wide range of quadratic statistics anthe tetrahedron that interchange the vertices. The result is
prefiltering schemes. Given a target form for the trispectrunthat the symbol is invariant under the interchange of any two
signal, these statistics can be optimized in their signal-toeolumns and under the interchange of the upper and lower
noise for the power spectra. arguments in any two columns.

= Ja+ Jf, (Al)
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The Wigner-§ symbol can thus be used to permute the F(j,)=(2j,+1){j1(ji+1)[—j1(j1+ 1) +ja(jo+1)

pairings in a set of Wigner{3symbols o o o
+is(Jst D]+ la(l+ Dlja(jat D +ja(j2+1)

a b e/b c f I oo oo
> (2f+1)(—1)2+fe“7[ q f](,@ ¢) —Jalizt D ]=ls(ls+ Dj1(ja+ 1) —ja(j2+1)
f ¢ Y - oo oo
+ia(Ja+1]=2j1(j1+ DI1(11+ 1)} (A10)
a f d a b e)\le c d
X a ¢ -6 o B —€l\e y =6 For a stable recursion, one begins at both of the two ends

(A3) J1min=max(jz—jgl,[l2=l3) Jj1macminGa+is l2+l3) with the
boundary conditionsE(j1min)=0 and E(j1mat1)=0 and
or equivalently by the orthogonality relation of the Wigner- matches the two in the middle.

3j symbols The normalization is fixed by
a b e a b e . -
e d T 2 (mpyErerd 2 i+ )@+ DR =1,
afy Sedp a B € J1
(¢ 9 eyfad Tie bty SigrN(jsman] = (—1)j2 T2+ 71
Yy 6 —€/\a & —¢/\y B ¢ (A11)
(A4) " \vhich follow from Eq.(A5).
Finally, the Wigner-¢ symbol obeys
APPENDIX B: FLAT-SKY APPROXIMATION
a b efa b e Sig o
E (2e+1) =5t , (A5) In the flat-sky approximation, one decomposes the tem-
e c d fllc d g 2f+1 perature field into Fourier harmonics
" (O(ny)---O(ny)) f Ty f A, (O(1)
n o e n = o e .« ..
a b efa b e ! " (2m)° (2m®
2 (—1)°79(2e+1) B
e c d fjld c g (1))l .. el (B1)
a c g . . :
:: ] (AB) Statistical isotropy is enforced by demanding that the corre-
h d f lation function be invariant under an arbitrary translation and

rotation in the plane. Parity invariance is enforced by de-
2. Evaluation manding symmetry under inversion of the coordinates or re-

. . . flection across one of the coordinate axes.
Closed form expressions exist for special cases of the ar-

guments. For example, As usual translational symmetry—n;+C, whereC is a

constant vector, is enforced by the closure condition that the
a b e (—1)atbte n-point function is proportional to
|c d 0} ~ZarDbrD e AD
(2m)28(14+ - - - +1,). (B2)
More generally, they may be computed efficiently by a re- L

cursive algorithm introduced in Ref16]. Let us define The wave vector$; thus form a geometric figure of, pos-
sibly intersecting, sides. Rotational invariance for the two-
{11 is js] point function and rotational and parity invariance for the
h(j1)= . (A8)  three-point function imply that the corresponding harmonic

FRNPINE spectra are functions only of the lengths of the sides:

The h(j,) satisfy the recursion <®(|1)®(|2)>=(277)25(|12)C(|1),
J1B(J1+Dh(j+ D) +F(j)h() +(J1+DE()h(j1—1) (B3)
-0, (A9) (0(1)0(1)0(13)) = (2m)28(1129B, 1, 1) »

where wherel;...;=l;+ - - - +1; andB should be symmetric against
permutations of its arguments. For the four-point function,
E(j0)={lif—(j2=ia)2(j5+i5+1)*~jil[iT—(12—15)%]  rotational and parity invariance implies that the quadrilateral
s oip formed by the four wave vectors is a function of the lengths
X[(Ia+13+1)"= 7]} of the sides and the lengths of the two diagonals,
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(O(1)---0())=(27) 4 8(11) 8(I34) C,.C, such that.=1,,. Expanding the delta functions in spherical
toe harmonics,
+8(119) 8129 C Cy,

+8(114) 6(129)Cy, Cy ] / iy 2L+1
2 (1.1 o120 = (2m )2 2m4 Y .H 4
+(2m) 5('1234)T(|1 |2)(|12-|13)- oL
1 2
(B4) X\(213+1) - (21,+1) 0 0 O)
To parallel our treatment of the all-sky four-point function, L | L
let us breakQ into its three distinct pairings and demand ( 3 4 ) ~1) ( v )
symmetry with respect to permutation of the arguments, 0 0 O m m; M
(I1.12) _ p(11.l2) (I1.13) (11,10 | I L
T(I;,li) (3 |2)(|12)+P(| ‘|i)(|13)+ P(|;|g)(|14)- (B5) % m3 r: —M) ) (B10)
3 4

Note thatl,, is a function of the other two diagonalB.is

symmetric under interchange of its upper and lower argu-

ments as well as ordering within them. Substituting back in and integrating over the polar angles, we
The relationship between the all-sky and flat sky spectrabtain the general correspondence

can be obtained by noting thgt]

21+1 [ dg . | 2L+1 [l 1, L
B, —imL [~ | Z1aime 12 E—
O™\ e | SoemO0), YL =" @D @ D] o g
- I3 1, L
dn i x(3 TRl (B11)
— li. -
‘5('i---1')‘f<2w)ze' " 0o o o Pt
o /2 a i i 1l2
N le imY{“(n)e'm¢', (B6) from which we can construct the relation ﬁitu.
m

We can now also make the correspondence between the
signal-to-noise in the all-sky and flat-sky formalisms. The

where ¢, is the polar angle of. It is a straightforward exer- \yeighting of four-point terms that maximizes the signal-to-

cise to show that

noise is[6]
C|=C(|),
5 (Il P |3> (§)2 - foy 1 Jdl fd2| fdzl fdzl (11230
w=le o o N T 24(2 ) 1 2 3 123
\/<2|1+1)(2|2+1)<2|3+1>D(I . ITas3)?

(B7)

For the trispectrum, we begin with the general COfreSpO”Wherefsky is the fraction of sky covered by the sample.

dence The square oT in this expression contains cross terms in
I the P pairings,
[ 11 | _
<®|1m1..-®|4m4>cz J’ im; ¢|)
) (1.0 S 2 S 2 S 2 S 2 S 2
X(2m)?8(1128d T2 (112), (BS) e I ) B~ (P
tot (12,12) (13,13) (14,14) (12,13)
where “c” denotes the subtraction of the Gaussian piece in S\ 2 S\ 2
Eq. (B4). We then exploit the pair symmetry of the trispec- +2(N) +2(N) (B13)
trum exhibited in Eq.(B5) by breaking the delta function (12,14) (13.14)

into the corresponding pairs. For th&2), (34) pairing,

The correspondence with the all-sky expression, B3),

— 2 _
5(|1234)_J’ d°La(li+lo+ L) 8(ls+1,—L), (B9 can be established by considering the terms pair by pair. For
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example for thg12), (13) term, one expands the delta func- f | L
. . s . . _ 'sky Il 1 12 12
tion in the (12), (34) pairing as above and inserts an addi- =24 > > (-1 S{I oL
tional delta function l1--lg Lagkis 4 13 Lig

1q15% 141
P|;|i (LlZ) P|;|Z( L13)
Cltitclttz)lcltztc Itit

775('1234):77'] d?L 13011+ 13— L13) (1o + 14+ L), , (B15)

(B14)

with the understanding that(0) =V/(2)?=1/7. Expand-
ing the delta functions in spherical harmonics we can intewhere we have used E@¢A4) to rewrite the sum over the

grate over azimuthal angles to obtain Wigner-3j symbols in terms of the jssymbol. Proceeding
S\ 2 f similarly for all terms in the signal-to-noise expression, we
—) = S E E (—1)M2t M3 obtain
N (12,13) 24 lgmy---lgmy LioMyp LigMy3
[ I L I | L
X( 1 2 12)( 3 4 12 ) S 5 k 1 |T|34 L)|2
My My Myjimg My —Myp (_) =—a 2 tot~tot~tot~tot’ (B16)
Njoe 24 T gy, 2L+1 Ci,Ci,C,Ci

><( i 13 |—13>< o 14 E )
mg mz Mg/ \im; my —Mys
where we have employed EGA6) to reexpress theld), (14)
P'l 2(L.) P31 -
1, (L1 P (L) term. The factor of 24 comes from the 4! permutations of
colCoCoor each q_uad_rup_let in the aI_I-sky expre_ssion. Thgtermis the
ETg P It F- gV reduction in signal-to-noise due to incomplete skycoverage.
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