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Lensing at cosmological scales: A test of higher dimensional gravity
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Recent developments in gravitational lensing astronomy have paved the way to genuine mappings of the
gravitational potential at cosmological scales. We stress that comparing these data with traditional large-scale
structure surveys will provide us with a test of gravity at such scales. These constraints could be of great
importance in the framework of higher dimensional cosmological models.
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Recent phenomenological developments in cosmology In most high dimensional spacetime models, matter is
have been inspired by the introduction of branes in the coneonfined to a 3-brane and gravity can propagate in all dimen-
text of superstring theoriegl,2]. It leads to concepts of sions. The law of gravity takes its standard four-dimensional
higher dimensional spacetimes in which the interactiorform for distances larger than a given length sdaleorder
gauge fields are localized on a 3-brafiee., a (3+1)- of the compactification radii$10], but at smaller distances,
dimension spacetimjevhereas gravity propagates in all di- the effect of the extra dimensions starts to dominate, imply-
mensions. In any of such string-inspired models, one expecisg a deviation with respect to the Newtonian gravity. These
the existence of Kaluza-Klein gravitons implying a non- models were extended to noncompact extra dimendibhs
standard gravity on small scales and of light bosons, whichwhere the bulk spacetime is described by an anti—de Sitter
can manifest themselves as a new fundamental small-scaf@ace. Testing gravity at small scales offers the possibility to
force. Moreover, it seems quite generic that there also exidfivestigate these structurétor a description of gravity at
neighboring branes; the interbrane distance then appears a§®all distances in these models see, ¢1i]). Recently, it
new scale(exponentially large compared to the small dis-Was proposed in the framework of higher dimensional mod-
tance scalgabove which gravity is also nonstand&4]. In els that gravity can deviate from its Newton form also on
this paper, we investigate how cosmological observationi2de scaleg3,4]. In the Gregoryet al. model[3], a Randall-
can test gravity at large distances, thus providing constrain%undrum(RS? “like SOll.Jt'on 1S conslde(ed but with three
on this new scale. ranes in which space is anti—de Sitter in between the brane

During the past 20 years, there has been a large amount Byt not in the outer parts; this solution does not possess a

activity in the search for a deviation from Newtonian gravit normalizable zero mode. The graviton is shown to be un-
Y . o 9 Y stable and its decay implies a modification of gravity on
[5,6] in the form of looking for a violation of the weak

! i . large scales. Kogamt al. [4] proposed a model where the
equivalence principle or of the inverse square law. It has, o dimensions are compact and large distance effects ap-
been pointed out in particular that little was known aboutyear que to the existence of very light Kaluza—Klein states.
gravity on submillimeter scalg3]. On the other hand, inthe apq it was pointed out by Dubovskgt al. [12] that when
weak-field limit, tests in the solar systefperihelion ad-  gne tries to give masses to a localized scalar, a potential with
vance, bending and delay of electromagnetic waves, lasgjower-law behavior at large scales appears due to the exis-
ranging of the Moopand the bounds on the variation of the tence of quasilocalized states.

constants of nature have put severe constraints on the post- Constraints on the size of large extra dimensions coming
Newtonian parametef$,8]. However, results of a confron- from astrophysical systems can be appli@d] but they do
tation between standard gravity and alternative theories aiot test directly the gravity law. The goal of this paper is
cosmological scales are sparse and no systematic studipsecisely to point out that some relevant cosmological ob-
have been performe@mainly because no general scheme,servables potentially exist that enable us to test gravity on
such as the parametrized post-Newtonian formalism, hasosmological scales.

been devised ygtMoreover, cosmological observations en- It has already been argudd4] that if the gravitational
tangle gravity and many other astrophysical processes, whighotential differs from its Newtonian form on large scales, it
renders such cosmological tesispriori less robust than affects the evolution of cosmological density perturbations.
those in, e.g., the solar system. Nevertheless, comparisofi$ie authors claim that it can be visible on the cosmic micro-
between x-ray emissivity and gravitational lensing, which iswave backgroundCMB) anisotropy spectrum. It should be
an indirect test of the Newton law through the equation ofnoted, however, that a more detailed implementation of these
hydrostatic equilibrium, show no dramatic discrepancy be+esults may turn out not to be so easy to achieve mainly
low 2 Mpc [9]. On larger scales, there is no other test onbecause the deviation from the Newton gravity has to be
gravity than the mechanism of structure formation througtrecast into a covariant cosmological form to treat the evolu-
gravitational instability, which is the subject of this paper. tion of superhorizon modes.
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In what follows, we assume that the background space- 1
time can be described by a Friedmann-Léneaspacetime. 8-;
As long as we are dealing with subhorizon scales, we can 0'3
take the metric to be of the form folkty) 02
0.15
ds?=—(1-2®)dt?>+a?(1+2®)[dx?+q?(x)dQ?], o1
()
wheret is the cosmic timea(t) the scale factory the co- 0.050.1 0.5 1 5 10
moving radial coordinatedQ? the unit solid angle, and kr

q(X):(.SmX’X’Sth) accqrdlng to the curvgtu_re of the spa- FIG. 1. Functionf.(k rs) as a function ofk rg for f(x)=1/(1
tial sections. In a Newtonian theory of gravily,is the New- %)

tonian potentiakb determined by the Poisson equation
ADy=47Gpa?s, 2 £(r)=(5(0)4(r)), ©)

whereG is the Newton constant amkl the three-dimensional where the brackets refer here to a spatial average. It leads to
Laplacian in comoving coordinates,is the background en- a measure of

ergy density, andd=6p/p is the density contrast. If the

Newton law is violated above a given scale then we have

to change Eq(2), and the force between two masses sepa- Ps(k)= —f &(r)
rated by a distance af derives from® =df(r/r), where
f(x)— 1 whenx<1. This encompasses, for instance, the po-
tential considered if3,14] for which f(x)=21/(1+x) (in
that casef«1/x and 5D gravity is recovered at large dis-
tance. Using Eq.(2) it leads, withr=ax, to

smkr

(10

On the other hand, weak lensing surveys offer a novel and
independent window on the large-scale structures. The bend-
ing of light by a matter distribution is intrinsically a relativ-
istic effect, which enables us to test gravity at extragalactic
scales. Weak lensing measurements are based on the detec-
®(x) = —Gpa? fds , 0X) f(|x X |>’ (3) tion of coherent shape di§tortions _of background galaxies
[x—x']| Xs due to the large-scale gravitational tidal forces. The apparent

angular positiond, of a lensed image can be related to the
one, és, of the sourcgat radial distances) by [15,16]

which, making use ofA[f(x)/x]=—4m&3(x)+ f4(x/Xs)
with f(x/xs)=(d2f)/x, gives

- -  Dlxs—x) -
A<D=Ac1>N—Gpa2f A3 (X" +x)f(X'Ixs). (4 6= 0st Dixy © (11

For any stochastic fiel, we define its power spectrum whereD is the comoving angular diameter distari¢é]. «,
Px by the deflection angle, depends on the gravitational potential

A int ted al the i f sight
(XOORE (K')y=(2) 32Dy (k) 5P (k—K'), ) integrated along the line of sig

where 5®) is the Dirac distributionX the Fourier transform a= %fxsdxvxq)_ (12)
of X, and the brackets refer to an ensemble avefagg If c-Jo

the Poisson equation is satisfied, then
The deformation of a light bundle is obtained by differenti-

Paa, (K)=(47Gpa®)?Ps(k). (6)  ating Eq.(1),
In Fourier space, Eq4) reads 1—k—1v, - des
. i Ab=( L ]™ —. (13
— k2D (k)= 47Gpa2d(k)f(kre) 7 Y2 TKTYi de,
from which we deduce that x and y are, respectively, the convergence and the shear of
_ 22 9 the amplification matrixA,,. The shear can be measured
Paaw(k)=(47Gpa’) Ps(k)felkrs), ® from galaxy ellipticitieq17] from which one can reconstruct

k. The convergence is generated by the cumulative effect of

—1_9-2 i i
where fo(krg)=1-2mTy(krs), fs(krs) being the Fourier large-scale structures along the line of sidh6,16. In

transform off4(r/rg) (see Fig. 1 A way to test the validity N
of the Newton law is thus to test the validity of Eeg),  directioné, it reads
which is possible if one can measuf@nd® independently. B

From galaxy catalogs, one can extract a measure of the k()= JX(Zix)g(X)Az‘P(D(X) 5,X)dx, (14)
two-point correlation function of the cosmic density, 0
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whereA, is the two-dimensional Laplacian in the plane per- 10
pendicular to the line of sight; the functi@ndepends on the 5
distance distribution of the sourcey,ys), by 2
1
) fx(z:oc)d ( )D(XS— x)D(x) 15 D.@) g5
= nN(xs)————.
g(x . XsN(Xs Dixo) 02
0.1
K(E’) is a function on the celestial sphere that can be decom- 0.1 1 10 100 1000
posed, in the small-angle approximation, in Fourier modes, expansion parameter, a
d26 ) FIG. 2. Growth factorD. (a) as a function ofa in an
,}(|): f —«( é)e”-f’ (16) Einstein—de Sitter universe férrg=1 (thick line) compared with
2m the standard growth rat® , c«a (thin line).

so that, using the expressidh4) and the definition of the

angular power spectrum of k as (x()x*(I"))
=(2m) P.()52(1-1"), we obtain

where a dot refers to a derivative with respect. td=a/a is

the Hubble parameter. The equation of evolution of the den-
sity contrast,d,, taking advantage of the fact that the rela-
tion betweens and® is local in Fourier spacksee Eq(7)],

2
9°(x) | ) is then
- [ EDp, L)
) XDZ()() AD D(x) 7
. . re
It clearly appears that cosmic shear measurements are a di- &= 2H 6~ EHZQ(t)fc< k_a(t)) 6=0. (20)

rect probe of the gravitational potential. So far cosmic shear
signals have been detected up to a scale of abbut'2Mpc
[17] (h being the Hubble constant in units of
100 km/s/Mpc). This method is in principle applicable to
any scale up to 1001 Mpc. With galaxy surveys such as
SDSS that will measur@®; up to 50ch~* Mpc [18], it en-
ables comparisons dPs and P,q at cosmological scales,

Looking for a growing mode ag,>t”+® in an Einstein—de
Sitter matter-dominated univers€)&1, H=2/3t) gives a
growing solution such thatv,(k)—3 for kxg>1 and
v, (k)—0 for kxs<<1. At large scales, the fluctuations stop

growing mainly because gravity becomes weaker and

thus enabling direct tests of the aravity la weaker. In Fig. 2, we depict the numerical integration of Eq.
uTo iIIustIragtJe tlhis discrepanc 9\]/vevtl:gnsivdg/ér the growth of(zo) and the resulting power spectrum in Fig. 3 assuming
. pancy, 9 tpat f(x)=1/(1+x). Note that sincex; and the comoving
the perturbations on scales from ten to some hundreds

. o . : Worizon, respectively, scale as~! and Ja (in an
Mpc in a modified gravity scenario. For that purpose, we_. . ) ] v
P 9 y purp -instein—de Sitter univergexs enters the horizon at about

assume that the standard behavior of the scale factor is r 21 P v .

covered(i.e., we have the standard Friedmann equajions 00h . Mpc if fls— St?lh MIFIJC' tThhus, agl trlegggtljel\s/lwnh

Note that it has not been proven that in the RS scenarios t pmoving wavelengins smatler than abou pC
eel the modified law of gravity only when they are subho-

localization of gravity was compulsory to recover the stan- . L )
dard Friedmann equation, but a heuristic argument can brézon.As a consequence, it is well justified for all the observ-

- 71 -
given. In the RS models, one recovers a Minkowski space"—’1ble modesi.e., up to 500 * Mpc) to consider the effect

time on the brane with Newtonian gravity at large scales onI)Pf the non-Newtonian gravity in the subhorizon regime only.

if a special condition between the brane and bulk cosmologi!:Or larger wavelengthgnot relevant here but required for

cal constants hold§l]. It can be thought from the naive CMB calculation), a reformulation of the relativistic cosmo-
Newtonian derivatiorf19] that Friedmann equations should
also hold(at least in a matter-dominated universat first
glance, the Friedmann equations turn out to be nonstandard
[2] and reduce to the standard ones only if a relation similar
to the RS condition ensuring localization of gravity holds 01
[20]. The effect of the existence of extra branes on the Fried-  pg) 0.0
mann equations has not been investigated yet.

In the weak-field limit,§ and the peculiar velocity obey 0.02
(for a pressureless fluidhe continuity and Euler equations 0.01
[21]

’
'
’

0.0050.01 0.05 0.1 05 1

. 1 1 k!
5+ -V [(1+5)V]=0, (18) wavelength, /b Mpe)

FIG. 3. Expected mattefthick line) power and gravitational

1 1 potential Laplaciandashed ling power spectra as functions &f

V+ = (V- V)V+Hy= — Vo, 19 compared to the standard cosmology céhé line). We have as-
( ) a (19 sumed a CDM-like scenariwith I'=0.25) andr,=50h"! Mpc.
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logical perturbation theory in the context of higher dimen-Poisson equation. Even if our method is more restricted in
sional gravity would be needed. terms of tested length scales than a method based on CMB
Let us emphasize that, in Fig. 3, the deviation from theobservation14], it is worth stressing that comparison with
standard behavior of the matter power spectrum is modelCMB data involves many more parametdosmological
dependentit depends in particular on the cosmological pa-Parameters, initial power spectrum, gtdGenerically it is
rametery but the discrepancy between the matter and gravithus difficult to identify unambiguously the origin of a given
tational potential Laplacian power spectra is a directfeature in the CMB angular power spectries an illustra-
signature of a modified law of gravity. Note that the uncer-tion, see the various propositiofi83] to explain the “low”
tainties in the source distributiar( ) (that indeed could be second acoustic peak of recent CMB daihe method pro-
quite large would mainly affect the normalization of the P2S€d in this paper does not rely on a yet undetermined

measured power spectrum, not its shape. Biasing mech%r_lodel of structure formatiofand on an initial power spec-
f X rum) and obviously applies in a far more general context

nisms (ie., the fact 'that galaxies do not necessanly traC‘?han the theoretical motivations from which models of higher
faithfully the matter field cannot be a way to evade this test fiimensional gravity have emerged
i )

either since bias has been found to have no significant sca
dependence at such scal@g]. We thank Pierre Birteuy, Christophe Grojean, and Yan-

Large-scale structure and gravitational lensing offer a newiick Mellier for discussions and I'Institut d’Astrophysique
window for testing gravity, particularly the validity of the de Paris, where part of this work was carried out.
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