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Stability of the scalar x2f interaction
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A scalar field theory with ax†xf interaction is known to be unstable. Yet it has been used frequently
without any sign of instability in standard textbook examples and research articles. In order to reconcile these
seemingly conflicting results, we show that the theory is stable if the Fock space of all intermediate states is

limited to a finite number of closedxx̄ loops associated with a fieldx that appears quadradically in the
interaction, and that instability arises only when intermediate states include these loops to all orders. In
particular, the quenched approximation is stable.
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Scalar field theories with ax†xf interaction~which we
will subsequently denote simply byx2f) have been used
frequently without any sign of instability, despite an arg
ment in 1952 by Dyson@1# suggesting instability, and a proo
in 1959 by Baym@2# showing that the theory is unstable. F
example, it is easy to show that, for a limited range of co
pling values 0<g2<gcrit

2 , the simple sum of bubble dia
grams for the propagation of a singlex particle leads to a
stable ground state, and it was shown in Ref.@3# that a simi-
lar result also holds for theexact result in the ‘‘quenched’’
approximation. However, if the scalarx2f interaction is un-
stable, then this instability should be observed even when
coupling strengthg is vanishingly small,g2→01, as pointed
out recently by Rosenfelder and Schreiber@4# ~also see Ref.
@5#!. Both the simple bubble summation and the quenc
calculations do not exhibit this behavior. Why do the simp
bubble summation and the exact quenched calculations
duce stable results for a finite range of coupling values?

A clue to the answer to this question is already provid
by the simplest semiclassical estimate of the ground s
energy. In this approximation the ground state energy is
tained by minimizing

E05m2x21
1

2
m2f22gfx2, ~1!

wherem is the bare mass of the matter particles andm the
mass of the ‘‘exchanged’’ quanta, which we will refer to
the mesons. The minimum occurs at

E05m2x22g2
x4

2m2
. ~2!

This is identical to ax4 theory with a coupling of the wrong
sign, as discussed in Ref.@6#. The ground state is therefor
stable~i.e., greater than zero! provided

g2,gcrit
2 5

2m2m2

x2
. ~3!
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This simple estimate suggests that the theory is stable ov
limited range of couplingsif the strength of thex field is
finite. In this article we develop this argument more pr
cisely, and show under what conditions it holds.

Before presenting new results, we lay a foundation us
the variational principle. In the Heisenberg representation
fields are expanded in terms of creation and annihilation
erators that depend on time:

x~ t,r !5E dk̃m@a~k!e2 ik•x1b†~k!eik•x#,

f~ t,r !5E dk̃m@c~k!e2 ik•x1c†~k!eik•x#, ~4!

wherex5$t,r% and

dk̃m[
d3k

~2p!32Em~k!
, ~5!

with Em(k)5Am21k2. The equal-time commutation rela
tions are

@a~k!,a†~k8!#5~2p!32Em~k!d3~k2k8!. ~6!

The Lagrangian for thex2f theory is

L5x†@]22m21gf#x1
1

2
f~]22m2!f, ~7!

and the HamiltonianH is a normal ordered product of inter
acting ~or dressed! fields fd andxd :

H@fd ,xd ,t#5E d3r :H S ]xd

]t D 2

1~“xd!21m2xd
2

1
1

2 F S ]fd

]t D 2

1~¹W fd!21m2fd
2G2gxd

2fdJ :.

~8!

This Hamiltonian conserves thedifferencebetween number
of matter particles and the number of antimatter particl
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which we denote byn0. Eigenstates of the Hamiltonian wi
therefore be denoted byun0 ,l&, wherel represents the othe
quantum numbers that define the state. Hence, allowing
the fact that the eigenvalue may depend on the time,

H@fd ,xd ,t#un0 ,l&5Mn0 ,l~ t !un0 ,l&. ~9!

In the absence of an exact solution of Eq.~9!, we may esti-
mate it from the equation

Mn0 ,l~ t !5^n0 ,luH@fd ,xd ,t#un0 ,l&

5^n0 ,luU21~ t,0!H@f,x,0#U~ t,0!un0 ,l&

[^n0 ,l,tuH@f,x,0#un0 ,l,t&, ~10!

whereU(t,0) is the time translation operator which carri
the Hamiltonian from a timet50 to a later timet. We have
also chosent50 to be the time at which the interaction
turned on,fd(t)5U21(t,0)f(0)U(t,0), and the last step
simplifies the discussion by permitting us to work with
Hamiltonian constructed from thefreefieldsf andx. @If the
interaction were turned on at some other timet0, we would
obtain the same result by absorbing the additional pha
exp(6iEt0) into the creation and annihilation operators.#

At t50 the Hamiltonian in normal order reduces to

H@f,x,0#5E dk̃mEm~k!N0~k,k!1E dp̃mEm~p!c†~p!c~p!

2
g

2E dk̃mdk̃8m

v~k2k8!
N1~k,k8!@c†~k82k!

1c~k2k8!#, ~11!

where

N0~k,k8!5$a†~k!a~k8!1b†~k!b~k8!%,

N1~k,k8!5N0~k,k8!1$a†~k!b†~2k8!1a~2k!b~k8!%,

~12!

and v(k)5Am21k2. To evaluate the matrix element@Eq.
~10!# we express the eigenstates as a sum of free par
states withn0 matter particles,npair pairs ofxx̄ particles, and
l mesons:

un0 ,l,t&[un0 ,a~ t !,b~ t !&

5
1

g~ t ! (
npair50

`

(
l 50

`

anpair
~ t !b l~ t !un0 ,npair,l &,

~13!

whereg(t) is a normalization constant~defined below!, the
time dependence of the states is contained in the time de
dence of the coefficientsa(t) andb(t), and
07600
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un0 ,npair,l &[E uk1 , . . . ,kn1
;q1 , . . . ,qn2

;p1 , . . . ,pl&

A~n01npair!!npair! l !
~14!

with n15n01npair, n25npair and

E 5E )
i 51

n1

dk̃i f ~ki !)
j 51

n2

dq̃j f ~qj !)
l 51

l

d p̃lg~pl !. ~15!

The particle masses indk̃ and dp̃ have been suppresse
their values should be clear from the context. The normali
tion of the functionsf (p) andg(p) is chosen to be

E dk̃f 2~k!5E dp̃g2~p![1, ~16!

which leads to the normalization

^n08 ,npair8 ,l 8un0 ,npair,l &5dn
08 ,n0

dn
pair8 ,npair

d l 8,l^n0 ,l,tun0 ,l,t&

51, ~17!

if g(t)5a(t)b(t), with

a2~ t !5 (
npair50

`

anpair

2 ~ t !5a~ t !•a~ t !,

b2~ t !5(
l 50

`

b l
2~ t !5b~ t !•b~ t !. ~18!

The expansion coefficients$anpair
(t)% and$b l(t)% are vectors

in infinite dimensional spaces.
In principle the scalar cubic interaction in four dimensio

requires an ultraviolet regularization. However the issue
regularization and the question of stability are qualitative
unrelated. For example, the cubic interaction is also unsta
in dimensions lower than four, where there is no need
regularization. The ultraviolet regularization would have
effect on the behavior of functionsf (p), andg(p), which are
left unspecified in this discussion except for their normaliz
tion.

Matrix element~10! can now be evaluated. Assuming th
f (k)5 f (2k) andg(k)5g(2k), it becomes

Mn0 ,l~ t !5$n012L~ t !%m̃1G~ t !m̃2gV$n012L~ t !

12L1~ t !%AG1~ t !, ~19!

where the constantsm̃, m̃, andV are

m̃[E dk̃Em~k! f 2~k!, m̃[E dp̃Em~p!g2~p!,

V[E dk̃mdk̃m8 f ~k! f ~k8!g~k2k8!

Am21~k2k8!2
, ~20!

and the time dependent quantities are
8-2
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STABILITY OF THE SCALAR x2f INTERACTION PHYSICAL REVIEW D 64 076008
L~ t !5 (
npair50

` npairanpair

2 ~ t !

a2~ t !
, G~ t !5(

l 50

` lb l
2~ t !

b2~ t !
,

L1~ t !5 (
npair51

` An01npairAnpairanpair
~ t !anpair21~ t !

a2~ t !
,

~21!

AG1~ t !5(
l 51

` Alb l~ t !b l 21~ t !

b2~ t !
.

Note thatL andG are theaveragenumbers of matter pairs
and mesons, respectively, in the intermediate state.

The variational principle tells us that the correct ma
must be equal to or larger than Eq.~19!. This inequality may
be simplified by using the Schwarz inequality to place
upper limit on the quantitiesL1 and G1. Introducing the
vectors

f 15$a1 ,A2 a2 , . . . %5$Anan%,

f 25$An011a0 ,An012a1 , . . . %

5$An01nan21%, ~22!

h5$b1 ,A2b2 , . . . %5$Alb l%,

we may write

L1~ t !5
f 1~ t !• f 2~ t !

a2~ t !
<

Af 1
2~ t ! f 2

2~ t !

a2~ t !
5AL~ t !$n0111L~ t !%,

AG1~ t !5
h~ t !•b~ t !

b2~ t !
<

Ah2~ t !b2~ t !

b2~ t !
5AG~ t !. ~23!

Hence, suppressing explicit reference to the time depend
of L andG, Eq. ~19! can be written

Mn0 ,l~ t !>~n012L !m̃1G m̃

2gV$~An0111L1AL !221%AG. ~24!

Minimization of the ground state energy with respect to
average number of mesonsG occurs at

AG05
gV

2m̃
$~An0111L1AL !221%. ~25!

At this minimum point the ground state energy is bounded

Mn0 ,l~ t !>$n012L%m̃2mG0 . ~26!

If we continue with the minimization process we would o
tain Mn0 ,l(t)→2` as L→`, providing no lower bound,
and hence suggesting that the state is unstable. HoweverL
is finite, this result shows that the ground state is stable
couplings in the interval 0,g2,gcrit

2 with
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2 [

4m̃m̃~n012L !

V2$~An0111L1AL !221%2
. ~27!

This interval is nonzero if the number of matter particles,n0,
and the average number ofxx̄ pairs,L, is finite. In particular,
if there are no Zdiagrams arising from the matter particle
and no closedxx̄ loops in the intermediate states, then t
ground state will be stable for a limited range of values
the coupling. Note that this also implies that the vacuum
stable in quenched approximation, since noZ diagrams are
generated whenn050.

This result also suggests strongly that the system is
stable wheng2.gcrit

2 , or when L→` ~implying that gcrit
2

→0). However, since Eq.~26! is only a lower bound, our
argument does not provide a proof of these latter asserti

To finish the argument we need a completely new te
nique. This is provided by the Feynman-Schwinger repres
tation ~FSR!, which provides us with the means to prove th
the ground state is~i! stablewhenZ diagrams are included in
intermediate states, but~ii ! unstablewhen matter loops are
included.

The FSR is a path integral approach for finding the ex
result for propagators in field theory. It replaces integr
over fields by integrals over all possible covariant trajec
ries of the particles@7#. It was applied to thex2f interaction
in Refs.@3,8–11#.

The covariant trajectoryz(t) of the particle is param-
etrized as a function of the proper timet. In x2f theory the
FSR expression for the one-body propagator for a dressex
particle in a quenched approximation in Euclidean spac
given by

G~x,y!5E
0

`

dsF N

4psG
2N

)
i 51

N21 E d4ziexp$2K@z,s#

2V@z,sr #%, ~28!

where the integrations are over all possible particle trajec
ries ~discretized intoN segments withN21 variableszi and
boundary conditionsz05x, andzN5y) and the kinetic and
self energy terms are

K@z,s#5m2s1
N

4s (
i 51

N

~zi2zi 21!2, ~29!

V@z,s#52
g2s2

2N2 (
i , j 51

N

D~dzi j ,m!, ~30!

where D(z,m) is the Euclidean propagator of the mes
~suitably regularized!, dzi j 5

1
2 (zi1zi 212zj2zj 21), and

sr[
s

R~s,s0!
5

s

11~s2s0!2/G2
. ~31!

~The substitutions→sr does not alter the results, but is ne
essary to correctly transform the original integral fro
8-3
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Minkowski space to Euclidean space, where it can be
merically evaluated. For a detailed discussion of this tech
cal point, see Ref.@3#.!

In preparation for a discussion of the effects ofZ dia-
grams and loops, we first discuss the stability of Eq.~28!
when neitherZ diagrams nor loops are present. To make
discussion explicit, consider the one body propagator in
11 dimensions. Since the integrals converge, we make
crude approximation that eachzi integral is approximated by
onepoint ~since we are excludingZ diagrams, the points ma
lie along the classical trajectory!. If the boundary conditions
arez050 andzN5T the points along the classical trajecto
arezi5 iT/N, and

K@z,s#5m2s1
N

4s (
i 51

N

~zi2zi 21!25m2s1
T2

4s
. ~32!

If the interaction is zero, this has a stationary point as
5s05T/(2m), giving

K@z,s#5K05mT, ~33!

yielding the expected free particle massm. @Note thathalf of
this result comes from the sum over (zi2zi 21)2.# The poten-
tial term @Eq. ~30!# may be similarly evaluated; it gives
negative contribution that reduces the mass.

We now turn to a discussion of the effect ofZ diagrams.
For a simple estimate of the kinetic energy@Eq. ~32!#, we
chose integration pointszi5 iT/N uniformly spaced along a
line. The classical trajectory connects these points with
doubling back, so that they increase monotonically w
proper time,t. However, since the integration over eachzi is
independent, there also exist trajectories wherezi does not
increase monotonically witht. In fact, for every choice of
integration pointszi there exist trajectories withzi monotonic
in t and trajectories withzi nonmonotonic int. The latter
double back in time, and describeZ diagrams in the path
integral formalism. Two such trajectories that pass throu
thesamepointszi are shown in Fig. 1. These two trajectori
contain the same pointszi , but ordered in different ways
and both occur in the path integral.

Now, since the total self energy is the sum of poten
contributionsV@z,s# from all (zi ,zj ) pairs, irrespective of
how these coordinates are ordered, it must be the sam
the straight trajectoryz(t) and the folded trajectoryzf(t):

FIG. 1. It is possible to create particle-antiparticle pairs us
folded trajectories. However folded trajectories are suppresse
the kinematics.
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V@zf ,s#5V@z,s#. ~34!

However, according to Eq.~29!, the kinetic energy of the
folded trajectory is larger than the kinetic energy of t
straight trajectory,

K@zf ,s#.K@z,s#, ~35!

because it includes some terms with larger values ofzi
2zi 21)2. Since the kinetic energy term is always positiv
the folded trajectory (Z graph! is always suppressed~has a
larger exponent! compared with a corresponding unfolde
trajectory~provided, of course, thatg2,gcrit

2 ).
This argument holds only for cases where the traject

doesnot double back to timesbefore z050 or after zN5T.
An example of such a trajectory is shown in Fig. 2~upper
panel!. Here we compare this folded trajectory to anoth
folded trajectoryzf8 , with pointz1 closerto the starting point
z0 ~lower panel of Fig. 2!. This new folded trajectory has
points spaced closer together, so that the kinetic energ
smaller and the potential energy is larger; therefore,

K@zf ,s#2V@zf ,s#.K@zf8 ,s#2V@zf8 ,s#. ~36!

It is clear that the larger the folding in the trajectory, the le
energetically favorable the path, and the most favorable p
is again an unfolded trajectory with no points outside of t
limits z0,zi,zN .

While these arguments have been stated in 011 dimen-
sions for simplicity, they are not dependent on the numbe
dimensions, and can be extended of the realistic case
13 dimensions. This will be discussed in Ref.@12#.

We conclude that a calculation in the quenched appro
mation, where the creation of particle-antiparticle pairs c
only come fromZ graphs, must bemore stable~produce a
larger mass! than a similar calculation withoutanyxx̄ pairs.
The quenchedx2f theory therefore is bounded by the sam
limits given in Eq. ~27!. This conclusion supports, and
supported by, the results of Refs.@3,10,11# which show, in
the quenched approximation, that thex2f interaction is
stable for a finite range of coupling strengths.

It is now clear that the instability ofx2f theory must be
due to either~i! the possibility of creating an infinite numbe
of closedxx̄ loops, or ~ii ! the presence of an infinite numbe

g
by

FIG. 2. A folded trajectory at the end point of the path, and
similar one withz1 closer toz0.
8-4
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of matter particles~as in an infinite medium!. Indeed, the
original proof given by Baym used the possibility of loo
creation from the vacuum to prove that the vacuum was
stable. In fact, the FS representation can be used to s
explicitly that the critical couplinggcrit

2 decreases as 1/L,
whereL is the number of closed loops, in agreement with
estimate of Eq.~27! @12#.

These results provide justification for the stability of re
tivistic one boson exchange models that usually exclude m
ter loops but may includeZ diagrams of all orders. Our ar
a
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gument cannot be easily extended to symmetricf3 theories,
where it is impossible to make a clear distinction betweeZ
diagrams and loops.
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