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Stability of the scalar x?¢ interaction
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A scalar field theory with g¢Ty¢ interaction is known to be unstable. Yet it has been used frequently
without any sign of instability in standard textbook examples and research articles. In order to reconcile these
seemingly conflicting results, we show that the theory is stable if the Fock space of all intermediate states is
limited to afinite number of closedx; loops associated with a fielg that appears quadradically in the
interaction, and that instability arises only when intermediate states include these loops to all orders. In
particular, the quenched approximation is stable.
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Scalar field theories with "y ¢ interaction(which we  This simple estimate suggests that the theory is stable over a
will subsequently denote simply by?¢) have been used limited range of couplingsf the strength of they field is
frequently without any sign of instability, despite an argu-finite. In this article we develop this argument more pre-
ment in 1952 by Dysofil] suggesting instability, and a proof cisely, and show under what conditions it holds.
in 1959 by Bayn{2] showing that the theory is unstable. For  Before presenting new results, we lay a foundation using
example, it is easy to show that, for a limited range of cou-the variational principle. In the Heisenberg representation the
pling values G=g®<g?,,, the simple sum of bubble dia- fields are expanded in terms of creation and annihilation op-
grams for the propagation of a singleparticle leads to a erators that depend on time:
stable ground state, and it was shown in R&f.that a simi-
lar resglt a[so holds for thexactresult iq the “qyenphed” X(t,f)Zf dk[a(k)e **+bT(k)ek ],
approximation. However, if the scalgf ¢ interaction is un-
stable, then this instability should be observed even when the
coupling strengtly is vanishingly smallg?—0*, as pointed
out recently by Rosenfelder and Schreibéf (also see Ref.
[5]). Both the simple bubble summation and the quenched
calculations do not exhibit this behavior. Why do the simplewWherex={t,r} and
bubble summation and the exact quenched calculations pro- 3
duce stable results for a finite range of coupling values? dk.= d*k

A clue to the answer to this question is already provided m (2m)32E(K)
by the simplest semiclassical estimate of the ground state
energy. In this approximation the ground state energy is obwith E(k)=m?+k?. The equal-time commutation rela-
tained by minimizing tions are

¢(t,r)=j dk,[c(k)e " *+cT(k)e* ], (4

©)

[a(k),a’(k")]=(2m)°2E (k) 8*(k—k). (6)

1
E :mZ 2+ =242 2’ 1
O MXTH J P 00X @ The Lagrangian for thg?¢ theory is

wherem is the bare mass of the matter particles andhe
mass of the “exchanged” quanta, which we will refer to as
the mesonsThe minimum occurs at

1
L=x"[P=mP+gdlx+ 58— p2)p, (D

and the Hamiltoniafd is a normal ordered product of inter-

4 acting (or dresseflfields ¢4 and y4:
Eozmzxz_gz)(__ 2 2
2u? [ 439X 2, 2.2
Hl¢a.xa tl= | dri) | =] +(Vxa)“+mxg
This is identical to g¢* theory with a coupling of the wrong 1] dgby\ 2
sign, as discussed in Rg®b]. The ground state is therefore + o +(€¢d)2+ﬂz¢§}_9X§¢d]:-
stable(i.e., greater than zeygrovided 2[\ at
8
2m?u? . I .
2.2 =" (3y  This Hamiltonian conserves ttifferencebetween number
g gcrlt 2 .

of matter particles and the number of antimatter particles,
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which we denote by,. Eigenstates of the Hamiltonian will
therefore be denoted By, \), where\ represents the other
guantum numbers that define the state. Hence, allowing for

the fact that the eigenvalue may depend on the time,
Hl ba.xa,t1INo, ) =My, \()[ng,\). ©)

In the absence of an exact solution of Eg), we may esti-
mate it from the equation

Mno,)\(t):<n01)\|H[¢d ' Xd 7t]|n01)\>
:<n0,)\|U_l(t,O)H[¢,X,0]U(t,O)|no,)\>

=(Nno, N\, t[H[ ¢, x.,0][ng,\ 1), (10)

whereU(t,0) is the time translation operator which carries

the Hamiltonian from a timé=0 to a later timet. We have

also chosert=0 to be the time at which the interaction is
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\/( n0+ npair)-I r1pair! I

|n0!npaira|>5j
(14)

With Ny =N+ Npair, Np=Npyir @nd
ng Ny |
f=fiHldkif<ki>JH1dq,—f(qplﬂldp.gml). 19

The particle masses idk and dp have been suppressed;
their values should be clear from the context. The normaliza-
tion of the functionsf(p) andg(p) is chosen to be

| dke0~ [ dpg?pr=1. (16

which leads to the normalization

turned on, ¢q4(t) =U~1(t,0)¢(0)U(t,0), and the last step <n6'”l;air’|'|”0'npair’|>:5né'“05"£,aw“pair§"v'<n0')"t|n0’)"t>

simplifies the discussion by permitting us to work with a

Hamiltonian constructed from tHesefields ¢ andy. [If the
interaction were turned on at some other titgewe would

obtain the same result by absorbing the additional phases

exp(xiEty) into the creation and annihilation operatdrs.
At t=0 the Hamiltonian in normal order reduces to

H[ ¢,x,0]1= f dknEm(K)No(k,k) + J dp,E,.(p)c’(p)c(p)

9 —dT(de(,mN(k k)[ct(k'—k)
2) wk—k)
+e(k—kN], (11)

where
No(k.k"y={aT(k)a(k’)+bT(k)b(k")},

Ni(k,k")=No(k,k")+{a'(k)bT(—k")+a(—k)b(k")},
(12

and w(k) = Ju?+k2. To evaluate the matrix elemefiEq.

(10 ] we express the eigenstates as a sum of free particle

states witty matter particlesn,;; pairs of)(;particles, and
| mesons:

[N, N, )=[ng, a(t), B(1))

1 oo oo
-3 S

01=0

y(1) Npair= (t)'B|(t)|n0*npair-|>a

r"pair

13

where y(t) is a normalization constaritefined beloy; the

=1, (17)
if y(t)=a(t)B(t), with
()= 2 af (D=a()-a(b),
Npair= ar
ﬁzngo B =B(1)- B(1). (18)

The expansion coefficien{sznpair(t)} and{g,(t)} are vectors

in infinite dimensional spaces.

In principle the scalar cubic interaction in four dimensions
requires an ultraviolet regularization. However the issue of
regularization and the question of stability are qualitatively
unrelated. For example, the cubic interaction is also unstable
in dimensions lower than four, where there is no need for
regularization. The ultraviolet regularization would have an
effect on the behavior of functiorf§p), andg(p), which are
left unspecified in this discussion except for their normaliza-
tion.

Matrix element(10) can now be evaluated. Assuming that
f(k)=f(—k) andg(k)=g(—k), it becomes

My a (D) ={ng+2L(H)} M+ G(t) = gV{no+2L(1)

+2L1(D)INVG(1), (19
where the constant®, 1, andV are
m= f dKEm(K)f2(k), = J dpPEL(P)g*(p),
dkndk, f(k)f(k")g(k—k’
Ve (K f(k")a( )’ 20

Vi (k)2

time dependence of the states is contained in the time depen-

dence of the coefficienta(t) and B(t), and

and the time dependent quantities are
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i npairaﬁpair(t) 2 | |(t) g2 _ 47Lﬁ1(ﬂo+ 2L) 27
L= 2 e ST & e I V2 (Yot Lt Lt JL)2— 1)
S T This interval is nonzero if the number of matter particles,
No~+ Npair npalra'npa"( )a npalr—l(t) — . s P . e
Ly(t)= 2 5 , and the average number gf pairs,L, is finite. In particular,
Npair=1 a(t) if there are no Zdiagrams arising from the matter particles

(21 and no closedry loops in the intermediate states, then the
ground state will be stable for a limited range of values of

JGi0- E VIBI()B-a(1) the coupling. Note that this also implies that the vacuum is

BA(1) ' stable in quenched approximation, since Adiagrams are
generated wheny=0.
Note thatL andG are theaveragenumbers of matter pairs This result also suggests strongly that the system is un-
and mesons, respectively, in the intermediate state. stable wheng?>gZ;, or whenL—c (implying that gZ;

The variational principle tells us that the correct mass—0). However, since Eq(26) is only a lower bound, our
must be equal to or larger than E49). This inequality may  argument does not provide a proof of these latter assertions.
be simplified by using the Schwarz inequality to place an To finish the argument we need a completely new tech-
upper limit on the quantitie; and G;. Introducing the nique. This is provided by the Feynman-Schwinger represen-

vectors tation (FSR), which provides us with the means to prove that
the ground state i€) stablewhenZ diagrams are included in
fi={a1 V2 az, ...} ={Vnay}, intermediate states, buii) unstablewhen matter loops are
included.
fo={\Vno+1lag,Vno+2ey, ...} The FSR is a path integral approach for finding the exact
B result for propagators in field theory. It replaces integrals
={\Vnp+na,_1}, (22) over fields by integrals over all possible covariant trajecto-
ries of the particle§7]. It was applied to tha?¢ interaction
h={B1.N2B,. .. . }={\1B}, in Refs.[3,8—11.

The covariant trajectory(r) of the particle is param-

we may write . . .
y etrized as a function of the proper timeln y?¢ theory the

) [f2,Ne2 1y FSR expression for the one-body propagator for a dregsed
Ly(t)= fa(®)- f5(1 < QLFON JLO{ng+ 1+ LD}, particle in a quenched approximation in Euclidean space is
a?(t) a@?(t) given by
h(t)-A(t) _ VhZ(1)BA(D) N
JG,(t)= 0 < PO =JG( (23) G(X,y)= f R .H d*zexp —K[z,s]
Hence, suppressing explicit reference to the time dependence —Viz,sl}, (28)

of L andG, Eq. (19) can be written ) ) ) ) )
where the integrations are over all possible particle trajecto-

L(D=(ng+2L)m+G & ries (discretized intdN segments witiN— 1 variablesz; and
o boundary conditiong,=X, andzy=y) and the kinetic and

—gV{(Vng+1+L+\L)2-1}/G. (24)  self energy terms are

N

Minimization of the ground state energy with respect to the _ , N )
average number of meso@soccurs at Klzs]=m"s+ 241 (zi=zi-1)% (29
gVv N
Go=—={(Vyno+1+L+L)?—1}. 2 g’s
VG, ZM{( 0 JL)2-1} (25) V[Z1S]:_W|JE=1 A(zj 1), (30)

At this minimum point the ground state energy is bounded by
where A(z,u) is the Euclidean propagator of the meson

Mno,x(t)Z{noJrZL}ﬁ]—MGo- (26) (suitably regularized 6z;; = Hz+z_,— Zj—z;_4), and

If we continue with the minimization process we would ob- _ s S

. - S = = . (3D
tain Mnom(t)—>—oc as L—o, providing no lower bound, R(s,S0) 1+ (s—50)%T?
and hence suggesting that the state is unstable. Howe\er, if
is finite, this result shows that the ground state is stable foThe substitutiors—s, does not alter the results, but is nec-
couplings in the interval & g?< ggm with essary to correctly transform the original integral from
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straight trajectory: continuous deformation:
Xo—eo—o—9o—0o o o0 Yy
0o 1 z(1) n . y
1 g 2 n
folded trajectory: Zf(‘l:)
X o—o—@—o—o |
0 1 0 n y :_> X
nt o . °
f : Q/; n ¥

FIG. 1. It is possible to create particle-antiparticle pairs using /
folded trajectories. However folded trajectories are suppressed by Zf(T)
the kinematics.

FIG. 2. A folded trajectory at the end point of the path, and a

Minkowski space to Euclidean space, where it can be nusimilar one withz, closer toz,.
merically evaluated. For a detailed discussion of this techni-
cal point, see Ref3].) V[z;,s]=V[z,s]. (34

In preparation for a discussion of the effects DHfdia-
grams and loops, we first discuss the stability of E28) ~ However, according to Eq29), the kinetic energy of the
when neitheiZ diagrams nor loops are present. To make thefolded trajectory is larger than the kinetic energy of the
discussion explicit, consider the one body propagator in (traight trajectory,
+1 dimensions. Since the integrals converge, we make the
crude approximation that eachintegral is approximated by
onepoint(since we are excluding diagrams, the points may
lie along the classical trajectoryif the boundary conditions
arezy=0 andzy=T the points along the classical trajectory
arez;=iT/N, and

K[z ,s]>K]z,s], (35

because it includes some terms with larger values zf (
—z;_4)2. Since the kinetic energy term is always positive,
the folded trajectory Z graph is always suppressethas a

larger exponentcompared with a corresponding unfolded

N ) trajectory(provided, of course, thaj®< gﬁm).
K[z,s]=m?s+ ﬂ E (z—7_,)2=mPs+ T_ (32) This argument holds iny for cases where the trajectory
4s =1 4s doesnot double back to timesefore 2=0 or after z,=T.

An example of such a trajectory is shown in Fig(uper
If the interaction is zero, this has a stationary pointsat pane). Here we compare this folded trajectory to another

=s,=T/(2m), giving folded trajectoryz; , with pointz, closerto the starting point
Zo (lower panel of Fig. 2 This new folded trajectory has
K[z,s]=Ko=mT, (33  points spaced closer together, so that the kinetic energy is

smaller and the potential energy is larger; therefore,
yielding the expected free particle mass[Note thathalf of

this result comes from the sum ovex € z;_;)2.] The poten- K[z ,8]—V[z;,8]>K[z; ;5] V[z ,8]. (36)
tial term [Eg. (30)] may be similarly evaluated; it gives a . o i
negative contribution that reduces the mass. It is clear that the larger the folding in the trajectory, the less

We now turn to a discussion of the effect Didiagrams. _energgtically favorable the path, and the most favo_rable path
For a simple estimate of the kinetic enerf§q. (32)], we is again an unfolded trajectory with no points outside of the
chose integration pointg=iT/N uniformly spaced along a MitS Zo<z<2zy. o
line. The classical trajectory connects these points without, WWhile these arguments have been stated +nlOdimen-
doubling back, so that they increase monotonically withSIons for simplicity, they are not dependent on the number of
proper time,r. However, since the integration over eaghs dlmer?5|ons! and can bg extended of the realistic case of 1
independent, there also exist trajectories wherdoes not ~+3 dimensions. This will be discussed in REf2]. _
increase monotonically with. In fact, for every choice of We conclude that a calculation in the quenched approxi-
integration pointg; there exist trajectories with monotonic mation, where the creation of particle-antiparticle pairs can
in 7 and trajectories witlz; nonmonotonic inr. The latter ~ ONly come fromZ graphs, must benore stable (produce a
double back in time, and descriti diagrams in the path larger massthan a similar calculation withowny x x pairs.
integral formalism. Two such trajectories that pass througiThe quencheg/*¢ theory therefore is bounded by the same
the samepointsz, are shown in Fig. 1. These two trajectories limits given in Eq. (27). This conclusion supports, and is
contain the same pointg, but ordered in different ways, supported by, the results of Refs,10,1] which show, in
and both occur in the path integral. the quenched approximation, that thé¢ interaction is

Now, since the total self energy is the sum of potentialStable for a finite range of coupling strengths.
contributionsV([z,s] from all (z,z) pairs, irrespective of It is now clear that the instability of?¢ theory must be
how these coordinates are ordered, it must be the same féti€ to eithei) the possibility of creating an infinite number
the straight trajectory(7) and the folded trajectorg;(7): of closedy x loops or (ii) the presence of an infinite number
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of matter particlesas in an infinite medium Indeed, the gument cannot be easily extended to symmetricheories,

original proof given by Baym used the possibility of loop where it is impossible to make a clear distinction betwZen

creation from the vacuum to prove that the vacuum was undiagrams and loops.

stable. In fact, the FS representation can be used to show

explicitly that the critical couplingg§rit decreases as 11/

whereL is the number of closed loops, in agreement with the  This work was supported in part by the U.S. Department

estimate of Eq(27) [12]. of Energy under Grant No. DE-FG02-97ER41032. The
These results provide justification for the stability of rela- Southeastern Universities Research Associat®inRA) op-

tivistic one boson exchange models that usually exclude magrates the Thomas Jefferson National Accelerator Facility un-

ter loops but may includ@ diagrams of all orders. Our ar- der DOE Contract No. DE-AC05-84ER40150.

[1] F. Dyson, Phys. Re85, 631 (1952. [7] Yu. A. Simonov and J. A. Tjon, Ann. PhygN.Y.) 228 1

[2] G. Baym, Phys. Revl17, 886 (1959. (1993.

[3] C. Savkli, J. A. Tjon, and F. Gross, Phys. Rev.60, 055210 [8] T. Nieuwenhuis and J. A. Tjon, Phys. Rev. Left7, 814
(1999. (1996.

[4] R. Rosenfelder and A. W. Schreiber, Phys. Rev5® 3337 [9] T. Nieuwenhuis, Ph.D. thesis, University of Utrecht,
(1996; 53, 3354(1996; hep-ph/9911484. 1995.

[5] B. Ding and J. Darewych, J. Phys. Z8, 907 (2000. [10] ¢. Savkli, Czech. J. Phy$1 (Suppl. B, 71(2002.

[6] J. Zinn-JustinQuantum Field Theory and Critical Phenomena [11] C. Savkli, Comput. Phys. Commui35, 312 (2001).
(Oxford University Press, Oxford, 1996 [12] C Savkli, F. Gross, and J. A. Tjofunpublishegl

076008-5



