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Charge and color breaking conditions associated with the top quark Yukawa coupling
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In the minimal supersymmetric extension of the standard model, the charge and color breaking~CCB!

vacuum in the plane (H2 , t̃ L , t̃ R) typically deviates largely from allD-flat directions, due to the large effects
induced by the presence of the top quark Yukawa coupling. As a result, the critical CCB bound on the trilinear
soft term At becomes more restrictive than theD-flat boundAt

2<3(mt̃ L

2
1mt̃ R

2
1m2

2). For large tanb, we

consider the effect of a splitting between the soft squark massesmt̃ L
,mt̃ R

on this optimal CCB bound and give
a useful approximation for it, accurate within 1% in all interesting phenomenological cases. The physical
implications on the top squark mass spectrum and the one-loop upper bound on the lightestCP-even Higgs
boson mass are also discussed in a model-independent way.

DOI: 10.1103/PhysRevD.64.075009 PACS number~s!: 12.60.Jv, 11.30.Qc, 14.80.Cp, 14.80.Ly
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I. INTRODUCTION

In the minimal supersymmetric standard model~MSSM!,
spontaneous symmetry breaking may occur into a dange
charge and color breaking~CCB! vacuum, therefore, desta
bilizing the realistic physical electroweak~EW! vacuum
@1,2#. To avoid this danger, CCB conditions must be impos
on the soft supersymmetry~SUSY! breaking terms which
enter the scalar potential of the MSSM. Such conditions
their physical consequences have been extensively discu
in the literature in a large variety of directions in the MSS
scalar field space@see, e.g.,@1–3# and references therein#.
CCB vacua associated with the top quark Yukawa coup
represent a special class of dangerous vacua in the sens
they typically deviate largely fromD-flat directions and can
furthermore develop in the close vicinity of the EW vacuu
Such features were first investigated in Ref.@2# in the field
direction (H1 ,H2 , t̃ L , t̃ R ,ñL), neglecting possible deviation
from the SU(3)c D-flat direction. In@3#, we considered the
restricted plane (H2 , t̃ L , t̃ R) and proposed a new method
evaluate analytically, in a fully model-independent way, t
vacuum expectation values~VEV’s! of the CCB vacuum@3#.
We showed that the effect of deviations from the SU(3c
D-flat direction, typically small in minimal supergravit
~MSUGRA! models~as considered in Ref.@2#!, cannot be
neglected in a model-independent way and tend to m
more restrictive the CCB condition on the trilinear soft te
At . This new feature appears in models with a large splitt
at the EW scale between the soft squark massesmt̃ L

,mt̃ R
, as

occurs for instance in some string effective field theor
@4,5#. For large tanb andmA0@mZ0, it was also pointed ou
that the one-loop Higgs maximal mixing for the top squa
masses is largely ruled out by CCB considerations@3#, as-
suming a common soft squark massMSUSY5mt̃ L

5mt̃ R
, and

taking furthermore a simplified value for the Higgs maxim
mixing At5A6mt̃ , which is accurate only for mt̃

[AMSUSY
2 1mt

2@mt @6,7#.

*Electronic address: lemouel@physics.auth.gr
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In the present paper, we first summarize our method
evaluate the optimal CCB condition onAt in the plane
(H2 , t̃ L , t̃ R) and extend then the latter result by incorporati
the possibility of a large mass splitting between the s
squark massesmt̃ L

,mt̃ R
, taking also for comparison the exa

one-loop Higgs maximal mixing. We still concentrate on t
asymptotic regime tanb51`, which actually provides a
benchmark CCB bound onAt with properties useful for phe
nomenological applications. In particular, in the extend
plane (H1 ,H2 , t̃ L , t̃ R), this benchmark value proves to put a
upper bound on the CCB allowed values for the top squ
mixing termuÃtu[uAt1m/tanbu @8#. We present an analytic
approximation for it, accurate within 1% in all interestin
phenomenological cases. Finally, we consider some phys
implications of this bound, including the effect on the to
squark mass spectrum and the one-loop upper bound on
lightestCP-even Higgs boson mass.

II. THE CCB VACUUM IN THE PLANE „H 2 , t̃ L , t̃ R…

At the tree level, the effective potential in the plan
(H2 , t̃ L , t̃ R) reads@1–3#

V35m2
2H2

21mt̃ L

2
t̃ L

21mt̃ R

2
t̃ R

222YtAtH2 t̃ L t̃ R

1Yt
2~H2

2 t̃ L
21H2

2 t̃ R
21 t̃ L

2 t̃ R
2 !1

g1
2

8
S H2

21
t̃ L

2

3
2

4 t̃ R
2

3
D 2

1
g2

2

8
~H2

22 t̃ L
2!21

g3
2

6
~ t̃ L

22 t̃ R
2 !2, ~1!

whereH2 denotes the neutral component of the correspo
ing Higgs scalar SU(2)L doublet, andt̃ L , t̃ R are, respec-
tively, the left and right top squark fields. All fields are su
posed to be real.H2 , t̃ L , the top quark Yukawa couplingYt
and the trilinear soft termAt are also assumed to be positiv
which can be arranged by a phase redefinition of the fie
Finally, positivity for the squared soft squark mass
©2001 The American Physical Society09-1
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C. LE MOUËL PHYSICAL REVIEW D 64 075009
mt̃ L

2 ,mt̃ R

2 is assumed to avoid an obvious instability of t

potential at the origin of the fields.
As is well known, this potential becomes negative in t

D-flat direction uH2u5u t̃ Lu5u t̃ Ru, unless the well-known
condition @1,2#,

At
2<~At

D!2[3~mt̃ L

2
1mt̃ R

2
1m2

2! ~2!

is verified. If the top quark Yukawa coupling were as sm
as the Yukawa couplings of the first two generations
quarks, this relation would provide an accurate necessary
sufficient condition to avoid CCB in the plane (H2 , t̃ L , t̃ R)
@1–3#. But this is not the case and large deviations of
CCB vacuum from allD-flat directions are typically ob-
served, making more restrictive the critical CCB bound
At . In fact, looking at the extremal equations associated w
the potentialV3, Eq. ~1!, one finds that the minimum of th
potential lies in theD-flat direction only for

mt̃ L

2
5mt̃ R

2
5m2

2 . ~3!

Violations of these relations trigger deviations from t
D-flat directions@3#. In particular, the first relation in Eq.~3!
is intimately related to the deviation from the SU(3)c D-flat
direction @3#, previously disregarded in@2#. We can conve-
niently keep track of this feature by definingf [ t̃ R / t̃ L .
Alignment of the CCB vacuum in the SU(3)c D-flat direc-
tion will correspond tô f &561.

Replacingt̃ R→ f t̃ L in V3, Eq. ~1!, which is unambiguous
provided by t̃ LÞ0, the extremal equation associated with
nontrivial CCB VEV ^ t̃ L& is straightforwardly solved, and
gives @3#

^ t̃ L&2522
B3

A3
, ~4!

with

B35H2
2
~12Yt

224g1
2! f 2112Yt

21g1
223g2

2

12

22AtYt f H21mt̃ L

2
1 f 2mt̃ R

2 , ~5!

A354Yt
2f 21

g1
2~4 f 221!2

18
1

g2
2f 4

2
1

2g3
2~ f 221!2

3
,

~6!

where the field parametersH2 , f take their vacuum expecta
tion valuesH25^H2&, f 5^ f &. Consistency of this solution
requires thatB3<0, implying on one hand̂ f &>0 and
thereforê H2&,^ t̃ L/R&>0 @3#. On the other, it is easily show

that for At<At
(0) , where

At
(0)[mt̃ L

A12
g1

2

3Yt
2
1mt̃ R

A12
~3g2

22g1
2!

12Yt
2

.mt̃ L
1mt̃ R

~7!
07500
l
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the global minimum of the potentialV3, Eq. ~1!, is automati-
cally trapped in the planet̃ R5 t̃ L50 and cannot be lowe
than the EW vacuum.~In this situation, we have alwaysB3

>0, whatever̂ f & is.! The boundAt
(0) therefore provides a

very simple sufficient condition onAt to avoid CCB in the
plane (H2 , t̃ L , t̃ R) @3#. It is also restrictive enough to secur
some interesting model-dependent scenarios. This inclu
the infrared quasifixed point scenario in an MSUGRA co
text, for both low and large tanb @3#. In a quite different
context, we also mention the effective MSSM recently p
posed, coming from an underlying model where the t
quark or top squark sector is living in the bulk of an ext
dimension@9#. In this case, the trilinear soft termuAtu is
related to the soft squark massmt̃ R

, with uAtu5mt̃ R
. A quick

look at Eq.~7! shows that this model is also exempt from
CCB vacuum in the plane (H2 , t̃ L , t̃ R).

The previous sufficient bound to avoid CCB in the pla
(H2 , t̃ L , t̃ R) can be improved. This requires some inform
tion on the remaining extremal equations associated withH2

and f. Taking t̃ L5^ t̃ L& in the potentialV3, Eq. ~1!, these
equations are straightforwardly obtained. The derivative w
respect tof provides an equation quadratic inH2 and quartic
in f

a3f H2
21b3H21c3f 50, ~8!

where a3536Yt
4(211 f 2)1O(gi

2), b35O(gi
2), c3

5236Yt
2(mt̃ L

2
2 f 2mt̃ R

2 )1O(gi
2) ~the exact value of the co

efficientsa3 ,b3 ,c3 can be found in@3#!. Numerical investi-
gation shows that, at the CCB vacuum, the gauge contr
tions ;O(gi

2) to the coefficientsa3 ,b3 ,c3 can be safely
neglected. Doing so, the extremal equation, Eq.~8!, is solved
exactly and gives

^ f &.Amt̃ L

2
1Yt

2^H2&
2

mt̃ R

2
1Yt

2^H2&
2
. ~9!

A more transparent approximation of the deviation parame
^ f &, independent of the CCB VEV̂H2&, can be subse-
quently derived@3#:

^ f &. f 3
(0)[AAt

212mt̃ L

2
2mt̃ R

2

At
212mt̃ R

2
2mt̃ L

2 . ~10!

The accuracy of this approximated value proves to be ex
lent, whatever the values of the soft parametersAt ,mt̃ L

,mt̃ R

are: it fits the exact result^ f & within 5%, or even less for no
a too large splitting between the soft squark massesmt̃ L

,mt̃ R

@3#. It also clearly indicates that alignment of the CC
vacuum in the SU(3)c D-flat direction is a model-dependen
feature which occurs in two different cases:

For At@2Max@mt̃ L
,mt̃ R

#. However,At is also very large

compared to the critical CCB bound onAt above which CCB
occurs.
9-2
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CHARGE AND COLOR BREAKING CONDITIONS . . . PHYSICAL REVIEW D 64 075009
For mt̃ L

2
5mt̃ R

2
@the first mass relation in Eq.~3!#. Then,

the potentialV3, Eq. ~1!, has an underlying approximat
symmetry t̃ L↔ t̃ R broken by tinyO(g1

2 ,g2
2) contributions.

Therefore, any nontrivial CCB extremum is necessa
nearly aligned in the SU(3)c D-flat direction. Model building
may favor the latter situation. This occurs approximate
e.g., in MSUGRA models@10#. In Ref. @2#, such models
were investigated, neglecting in a first approximation the
fect of the deviation from the SU(3)c D-flat direction and
CCB conditions @evaluated in the extended plan
(H1 ,H2 , t̃ L , t̃ R ,ñL)# were given in terms of the universa
soft SUSY breaking parameters at the grand unified the
~GUT! scale. However, in a model-independent way, the p
sibility of a large splitting between the soft squark masse
not ruled out and is even favored in some interesting al
natives to the MSUGRA scenarios. Some of them incor
rate a substantial amount of nonuniversality between the
SUSY breaking terms@4,5,11,12# and possibly show large
violations of the relationmt̃ L

5mt̃ R
at the EW scale. This

occurs, e.g., in some anomaly mediated scenarios@4,5#. In
this case, the effect of the deviation from the SU(3)c D-flat
direction on the critical CCB bound cannot be neglected
will be illustrated in the following, and must be proper
taken into account.

The extremal equation associated withH2 is cubic inH2
and quartic inf. It reads@3#

a3H2
31b3H2

21g3H21d350, ~11!

where

a35236Yt
4~ f 211!21@3g3

2~g1
21g2

2!14g1
2g2

2#~ f 221!2

16Yt
2g1

2~4 f 416 f 221!118Yt
2g2

2~2 f 211!, ~12!

b359AtYt f @~12Yt
224g1

2! f 2112Yt
21g1

223g2
2#, ~13!

g35272At
2f 2Yt

223~mt̃ L

2
1 f 2mt̃ R

2
!@~12Yt

224g1
2! f 2112Yt

2

1g1
223g2

2#1m2
2@72Yt

2f 21g1
2~4 f 221!219g2

2

112g3
2~ f 221!2#, ~14!

d3536AtYt f ~mt̃ L

2
1 f 2mt̃ R

2
!. ~15!

This equation, considered as a cubic polynomial inH2, may
be solved exactly. In a compact trigonomical form, the CC
VEV ^H2& reads

^H2&52
b3

3a3
S 122

A2N
b3

cosFf14p

3 G D , ~16!

cosf52
M

2A2N 3
, fP@0,p#, ~17!

where

M[2b3
329a3b3g3127a3

2d3 ~18!
07500
y

,

f-

ry
s-
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-
ft

s

N52b3
213a3g3 , ~19!

where the coefficienta3 ,b3 ,g3 ,d3, Eqs. ~12!–~15!, should
be evaluated withf 5^ f &. For clarity, let us add some com
ments concerning this solution.

It can be shown that a CCB vacuum may develop in
plane (H2 , t̃ L , t̃ R) only if the extremal equation, Eq.~11!, has
three real roots inH2. Then, these roots are found to b
positive and the CCB VEV̂H2& is given by the intermediate
one@3#, which is written in its trigonomical analytic form in
Eqs.~16!–~19!. ^H2& depends on̂ f &, for which we have an
accurate approximation̂f &. f 3

(0) , Eq. ~10!. This way, we
obtain in turn an accurate approximation for^H2&, which fits
the exact result within less than 1%. This accuracy is eno
in particular to evaluate the critical CCB bound onAt with a
precision of order;1 GeV.1

The extremal equation, Eq.~11!, has three real roots inH2
if ~and only if! the following condition is verified:

C3[M 214N 3<0. ~20!

As noted above, no CCB vacuum may develop forC3>0.
Therefore, the quantityC3 provides an additional criterion to
avoid CCB in the plane (H2 , t̃ L , t̃ R), which enables us to
improve the sufficient boundAt

(0) , Eq. ~7!. Taking f 5 f 3
(0) ,

and giving values to all parameters exceptAt , the equation
C350 can be solved numerically as a function ofAt . Below
the largest positive solution thus obtained, denotedAt

(1) , the
relation C3>0 is always found. Typically, the hierarch
At

(1)>At
(0) holds, except in the unphysical regime where t

lightest stop mass is vanishingmt̃ 1
.0 @3#. Nevertheless, de

fining

At
suf[Max@At

(0),At
(1)#, ~21!

this quantity may be identified as the optimal sufficie
bound onAt below which no CCB vacuum may develop
the plane (H2 , t̃ L , t̃ R). For At5At

suf, a consistent local CCB

vacuum with real and positive VEVs (^H2&,^ t̃ L&,^ f &) begins
to develop and soon becomes global with increasingAt @3#.

The evaluation of the critical CCB bound onAt , above
which CCB occurs, requires some additional information
the EW vacuum. At the tree level, this vacuum is determin
by the extremal equations

m1
22m2

2 tan2b

tan2b21
2

mZ0
2

2
50, ~22!

~m1
21m2

2!tanb2m3
2~11tan2b!50, ~23!

where tanb[v2 /v1 is the ratio of the VEV’sv1 ,v2 of the
EW vacuum~with v[Av1

21v2
25174 GeV!. For tanb>1,

the minimal value of the EW potential reads

1This precision can be improved at will with the iterative proc
dure proposed in@3#.
9-3
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^V&uEW52
@m2

22m1
21A~m1

21m2
2!224m3

4#2

2~g1
21g2

2!
. ~24!

At a consistent EW vacuum, this quantity depends only
two free parameters that may conveniently be chosen to
tanb and the pseudoscalar massmA05Am1

21m2
2. The criti-

cal CCB boundAt
CCB is found by comparing the depth of th

potential at the EW vacuum and at the CCB vacuum:

CCB⇔^V3&,^V&uEW ~25!

⇔At.At
CCB@mt̃ L

,mt̃ R
;m1 ,m2 ,m3 ,Yt ,g1 ,g2 ,g3#.

~26!

The maximal depth of the potentialV3, Eq. ~1!, can be given
an analytical~though complicated! expression by taking the
excellent approximations of the CCB VEV’s given in Eq
~4!, ~10!, and ~16!. This way, we incorporate all possibl
deviations of the CCB vacuum from allD-flat directions,
including the SU(3)c D-flat one previously disregarded@2#.
When all parameters are chosen@exceptAt#, the critical CCB
bound At

CCB is straightforwardly obtained by a numeric
scan of the regionAt>At

suf. We haveAt
CCB.At

suf, because
the EW potential is not very deep^V&uEW;2mZ0

4 /(g1
21g2

2),
whereas the depth of the CCB potential increases rap
with At . This simple procedure provides an excellent a
proximated value for the critical CCB bound which fits th
exact resultAt

CCB with an accuracy of order 1 GeV.
Let us add a few words concerning the impact of radiat

corrections onAt
CCB. As is well known, the results obtaine

with the tree-level approximation of the potential may inco
porate leading one-loop corrections, provided all quanti
are evaluated at an appropriate field-dependent scale@13,2#.
This numerical observation was, in fact, intensively used
the context of CCB studies in order to use the relative s
plicity of the tree-level potential@2#. For the EW potential at
the EW vacuum, the appropriate scale is the SUSY sc
QSUSY, with QSUSY;MSUSY[A(mt̃ L

2
1mt̃ R

2 )/2 for MSUSY

@mt , whereas forMSUSY&mt , QSUSY should be taken a
a more significant SUSY mass. In the vicinity ofAt.At

suf

@.At
CCB#, it can be shown that the scale adapted to the C

potentialV3, Eq. ~1!, at the CCB vacuum, is also the SUS
scaleQSUSY. This result, which is in agreement with@2#, is
due essentially to the fact that the CCB vacuum proves to
rather close to the EW vacuum@3#. Therefore, provided the
tree-level comparison in Eq.~25! is performed at the SUSY
scaleQSUSY, the critical boundAt

CCB thus obtained should
also incorporate leading one-loop corrections.

III. THE CCB CONDITIONS ON At FOR LARGE tan b

In this section, we investigate the effect of a mass splitt
between the soft squark massesmt̃ L

,mt̃ R
on the CCB bounds

presented in Sec. II. We focus on the asymptotic reg
tanb51`. This choice is motivated by the nice properti
of the critical CCB condition onAt in this regime. Before
07500
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turning to the numerical analysis, let us first briefly comme
on the latter.

In the plane (H2 , t̃ L , t̃ R), the critical CCB boundAt
CCB,

Eq. ~26!, proves to be decreasing for increasing tanb, and
increasing for increasingmA0. Moreover, in the limit tanb
51`, it can be shown that the most restrictive CCB bou
in the plane (H2 , t̃ L , t̃ R) is obtained, whatever the value
mA0 and tanb(>1) are. Therefore, the benchmark valu

At
CCBu tanb51` can be considered as an optimal sufficie

condition to avoid a dangerous CCB vacuum in this plan

At<At
CCBu tanb51`⇒No CCB in the plane~H2 , t̃ L , t̃ R!.

~27!

We stress however that this interesting property does
prevent a CCB situation from outside the plane (H2 , t̃ L , t̃ R).
In particular, CCB may still occur in the extended pla
(H1 ,H2 , t̃ L , t̃ R), as a full investigation of the optimal CCB
conditions in this plane indeed shows. This will be presen
elsewhere@8#. To enlighten the importance of the valueAt

CCB

for tanb51`, we borrow an interesting property of th
CCB bound on the stop mixing termÃt[At1m/tanb from
this study. As is well known, this quantity plays a central ro
in Higgs phenomenology@6,7,14#. It can be shown that if
uÃtu exceeds some critical value, which depends
mA0,tanb,m and alsomt̃ L

,mt̃ R
, CCB occurs in the plane

(H1 ,H2 , t̃ L , t̃ R). In the interesting phenomenological regio
mt̃ L

,mt̃ R
*mt , one finds in addition that this critical value i

maximal for tanb51` and m50 and that this maxima
value moreover coincides with the CCB boun
At

CCBu tanb51` obtained in the plane (H2 , t̃ L , t̃ R). To summa-

rize,At
CCBu tanb51` also provides a CCB maximal mixing fo

the stop fields, above which CCB unavoidably occurs in
plane (H1 ,H2 , t̃ L , t̃ R):

uÃtu>At
CCBu tanb51`⇒CCB in the plane~H1 ,H2 , t̃ L , t̃ R!.

~28!

This important property is our main motivation to study
detail the numerical behavior of this benchmark value. In
following, we shall also give an accurate analytic appro
mation for it, which should be quite useful for phenomen
logical applications and to constrain model building.

For tanb→1`, the EW vacuum is driven in the plan
(H2 , t̃ L , t̃ R) and appears as an additional minimum of t
potential V3, Eq. ~1!, with VEV’s v2

252mZ0
2 /(g1

21g2
2),

^ t̃ L/R&50, giving ^V&uEW52mZ0
4 /2(g1

21g2
2). Stability of the

EW vacuum in the plane (t̃ L , t̃ R) is required, otherwise an
obvious CCB situation will occur. Therefore, we may write
new CCB condition onAt , which merely encodes the phys
cal requirement of avoiding a tachyonic lightest stop m
@3#:
9-4



.

e
C

s
s

r
B

rg

a

m
te
rla
ly

h

e
op
-

e
-
s

a-

r

he

d-
nt
en

g

e-
ve

or

nd

a-

d

r-
d
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At<At
inst

[
A~6mt̃ L

2
16mt

21mZ0
2

24mW6
2

!~3mt̃ R

2
13mt

212mW6
2

!

3A2mt

.

~29!

As we will see, unlike theD-flat boundAt
D , Eq. ~2!, the

sufficient boundAt
suf, Eq. ~21!, and the CCB maximal mix-

ing At
CCB, Eq. ~26!, automatically fulfill this requirement

Notice that the instability boundAt
inst is only a function of

the soft squark massesmt̃ L
,mt̃ R

, the top mass, and the gaug
boson masses. This result actually extends to the C
boundsAt

suf and At
CCB @for tanb→1`#. In our numerical

analysis, we takemt5175 GeV and display the CCB bound
as a function of an average of the soft squark mas
MSUSY[A(mt̃ L

2
1mt̃ R

2 )/2, for three different values of the

splitting parameterr[mt̃ L
/mt̃ R

51,2,3. The latter paramete
will enable us to conveniently survey the effect of the CC
vacuum deviation from the SU(3)c D-flat direction. We re-
mark that splitting parameters as large asr 52 can be found,
for instance, in anomaly mediated scenarios@5#. To be ex-
haustive, we also consider the possibility of a very la
splitting termr 53.

In Fig. 1, we display the optimal sufficient boundAt
suf,

Eq. ~21!, the traditional bound in theD-flat directionAt
D , Eq.

~2!, and the instability boundAt
inst, Eq. ~29!, as a function of

MSUSY. All bounds are normalized toA6mt̃ , where mt̃

[AMSUSY
2 1mt

2. We note first that the sufficient boundAt
suf

automatically fulfills the important requirement of avoiding
tachyonic lightest stop. We always haveAt

inst>At
suf. A large

region ~which depends onr ) is found where the relation
At

inst5At
suf holds, implying that no dangerous CCB vacuu

may exist unless the EW vacuum is unstable. In this in
ference regime, the EW and the CCB vacua actually ove
and the CCB VEV̂ f & proves to be connected quite simp
to the stop mixing angleũ, with the relation^ f &5tanũ @3#.
Here, the slightest deviation of the CCB vacuum from t

FIG. 1. The CCB optimal sufficient boundAt
suf , the D-flat

boundAt
D , and the instability boundAt

inst vs MSUSY. All bounds are
normalized toA6mt̃ . The higher, intermediate, and lower lines co
respond, respectively, tor 51, 2, and 3.
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SU(3)c D-flat direction must be taken into account in th
evaluation of the CCB condition, to avoid a tachyonic st
mass. In contrast, theD-flat boundAt

D has rather bad behav
ior. In particular, for lowMSUSY, notice that it is not restric-
tive enough to avoid a tachyonic lightest stop.

Comparing theD-flat boundAt
D with the sufficient bound

At
suf for r 51,2,3, a precise indication of the effect of th

CCB vacuum deviation from allD-flat directions can be ob
tained. For largeMSUSY, we observe first that these bound
enter an asymptotic regime, withAt

D larger thanAt
suf. For r

51, the CCB vacuum is aligned in the SU(3)c D-flat direc-
tion. Therefore, the discrepancy betweenAt

D andAt
sufur 51 is

essentially due to the deviation from the SU(2)c3U(1)Y
D-flat direction, triggered by the large violation of the rel
tion MSUSY

2 5m2
2 , Eq. ~3!. For MSUSY51 TeV, we have, e.g.,

At
D2At

sufur 51.365 GeV. Forr 52,3, large deviations of the
CCB vacuum from the SU(3)c D-flat direction now occur
and the sufficient boundAt

suf is lowered. We have, e.g., fo
MSUSY51 TeV, At

D2At
sufur 52.475 GeV andAt

D2At
sufur 53

.585 GeV, and the fraction due to the deviation from t
SU(3)c D-flat direction represents 23% forr 52 (37.5% for
r 53) of the total effect. This clearly illustrates that this a
ditional contribution to the CCB condition may be importa
and should not be neglected for a large splitting betwe
mt̃ L

,mt̃ R
.

In Fig. 2, we now display the CCB maximal mixin
At

CCB, Eq. ~26!, as a function ofMSUSY, for r 51,2,3. For
comparison, we remark thatAt

CCB closely follows the suffi-
cient boundAt

suf displayed in Fig. 1, withAt
CCB>At

suf for all
values ofMSUSY. In the interference regime mentioned pr
viously, this inequality is saturated and furthermore we ha
At

CCB5At
inst. For MSUSY>mt , we find At

suf<At
CCB

<1.025At
suf for r 51,2,3, the lower value being reached f

MSUSY;mt and the larger forMSUSY;1.5 TeV. For large
MSUSY*700 GeV, we observe also that the CCB bou

At
CCB enters an asymptotic regime in which only tiny vari

tions still occur.
In Fig. 2, an approximation of the critical CCB boun

FIG. 2. The CCB maximal mixingAt
CCB, its approximation

At
CCBuapp. and the one-loop Higgs maximal mixingAt

H , vs MSUSY.
All bounds are normalized toA6mt̃ . The higher, intermediate an
lower lines correspond, respectively, tor 51, 2, and 3.
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At
CCB is also displayed. It reads analytically

At
CCBuapp.5

2

15
A2

3
~212r !

3
mt̃

3

mt̃
2
2

~11r !2~45242A312A3r !

4A3~212r !r
mt

2

.

~30!

This approximation fulfills two important requirement

At
CCBuapp..

2
15A 2

3 (212r )mt̃ for largemt̃ , which is consistent
with the numerical behavior observed; at first order
mt /mt̃ , At

CCBuapp..mt̃ L
1mt̃ R

for mt̃ L
mt̃ R

.mt
2 , as required

at the center of the interference regime@See Eq.~43! in Ref.
@3##. We stress that this approximation holds only forr>1.
However, numerical investigation shows that no signific
variation of At

CCB occurs under the transformationr→1/r
@3#. Accordingly, formt̃ L

<mt̃ R
, the analytical expression Eq

~30! for At
CCBuapp. should be adapted by redefiningr

[mt̃ R
/mt̃ L

. For MSUSY large enough, Fig. 2 shows the e

cellent accuracy of the approximationAt
CCBuapp.. For all val-

ues ofr, it fits the exact resultAt
CCB within less than 1%. In

contrast, for lowMSUSY, it behaves rather badly. Howeve
this feature occurs only in a region of the parameter sp
where the lightest stop mass is small, i.e.,mt̃ 1

&100 GeV
~see Fig. 3!. Such a region is nearly completely excluded
experimental data@15#.

Finally, in Fig. 2 we display the one-loop Higgs maxim
mixing for the stop masses, denotedAt

H in the following. As
is well known, the tree-level lightestCP-even Higgs boson
mass receives large one-loop corrections from loops of
and stop quark fields, which are essential to overcome
tree-level upper boundmh<mZ0 @6#. For tanb51` and

FIG. 3. The bounds on the stop masses for the CCB maxi
mixing and the Higgs maximal mixing, versusMSUSY, for r 51, 2,
and 3. Lines below~respectively, above! the no mixing case give
lower ~respectively, upper! bounds on the lightest~respectively,
heaviest! top squark mass.
07500
t

e

p
e

mA0@mt , these corrections are maximized and we have
the top-stop approximation@6#:

mh
25mZ0

2
1

3mt
4

8pv2 F Log
mt̃ 1

mt̃ 2

mt
2

1
4At

2

mt̃ 2

2
2mt̃ 1

2 Log
mt̃ 2

mt̃ 1

1
2At

4

~mt̃ 2

2
2mt̃ 1

2
!2 S 12

mt̃ 2

2
1mt̃ 1

2

mt̃ 2

2
2mt̃ 1

2 Log
mt̃ 2

mt̃ 1

D G ,

v5174 GeV, ~31!

where the stop masses read

mt̃ 1 , t̃ 2

2
5

mt̃ L

2
1mt̃ R

2

2
1mt

22
1

4
mZ0

2

7Amt
2At

21
@6~mt̃ L

2
2mt̃ R

2
!28mW6

2
15mZ0

2
#2

144
.

~32!

The Higgs maximal mixing valueAt
H , which maximizesmh

in Eq. ~31!, can be obtained numerically as a function
MSUSY and r. As is well known, for largeMSUSY5mt̃ L

5mt̃ R
@mt , At

H takes the simple expression:At
H5A6mt̃

@6,7# ~this value is actually used as a normalization factor
Figs. 1 and 2!. Indeed, this asymptotic behavior is observ
in Fig. 2 for r 51. In addition, Fig. 2 shows thatAt

H is de-
creasing for an increasing splitting between the soft squ
masses@6#.

For low MSUSY, the CCB maximal mixingAt
CCB and the

Higgs maximal mixingAt
H follow each other closely, show

ing thatmh is maximal forAt.At
CCB ~we have furthermore

At.At
inst). Notice that At

H can be lower thanAt
CCB for

MSUSY&mt , though just slightly and, moreover, in an un
physical region where the lightest top squark mass is van
ing mt̃ 1

.0 GeV ~see Fig. 3!.2 For larger values ofMSUSY,
the CCB maximal mixing clearly rules out the Higgs max
mal mixing. ForMSUSY51 TeV, At

CCB is about 10% below
At

H , for r 51,2,3. Thus, the large exclusion already observ
in Ref. @3# for equal soft squark masses is also found in
presence of a large mass splitting.

In Fig. 3, we compare the bounds on the top squark m
spectrum for the CCB and the Higgs maximal mixing valu
In both cases, we display below~respectively, above! the
no-mixing line, i.e.,mt̃ 1 , t̃ 2

2
5MSUSY

2 1mt
22mZ0

2 /4, the corre-

sponding lower~respectively, upper! bounds on the lightes
stop massmt̃ 1

~respectively, the heaviest stop massmt̃ 2
). For

2Some residual gauge contributions are actually neglected in
writing of Eq. ~31! in order to gain approximate independence f
mh with respect to the renormalization scaleQ @6#. For low MSUSY,
such contributions may presumably restore the hierarchyAt

H

>At
CCB.

al
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large MSUSY, the allowed range for the top squark ma
spectrum is enlarged for an increasing splitting between
soft squark masses, despite the decrease of the CCB an
Higgs maximal mixing values for increasingr ~see Fig. 2!.
Obviously, the CCB bounds on the top squark mass spect
are more restrictive than the Higgs maximal mixing on
This effect is, however, not very large, although not neg
gible for r 51. For instance, forMSUSY51 TeV we have,
respectively, Dmt̃ 1

.(25.5,16.5,14.5) GeV andDmt̃ 2

.(17,7,4) GeV, forr 51,2,3.
Figure 3 exhibits another interesting feature. Taking c

servativelymt̃ 1
*100 GeV as an experimental limit on th

lightest stop mass@15#, we find that a stop mixing value a
large as the CCB maximal mixing is excluded in a large p
of the parameter space, i.e.,MSUSY&(310,360,440) GeV for
r 51,2,3. In the respective domains, the EW vacuum is
threatened by the CCB vacuum in the plane (H2 , t̃ L , t̃ R), and
is automatically stable. This result illustrates how a prec
study of CCB conditions can produce refined statements c
cerning metastability of the EW vacuum@16#.3

In Fig. 4, we finally compare the one-loop upper bound
theCP-even Higgs bosonmh in the top-stop approximation
Eq. ~31!, for the CCB and the Higgs maximal mixing value
In both cases, this bound is decreasing with increasingr, but
the effect is rather small, at most;2 – 3 GeV. The mass
discrepancy between the CCB and the Higgs maximal m
ing cases is negligible forMSUSY;500 GeV. It is slowly
increasing withMSUSY, but is still small forMSUSY51500
GeV, where it is;1 GeV for r 51,2,3. Let us note that in
the large tanb regime investigated here,mh may also receive
at one-loop level important additional contributions, comi
in particular from the bottom/sbottom sector@6,7#. Such con-
tributions would modify the numerical upper bound onmh ,
but not the discrepancy between the CCB and the Hi

3In the metastability domain, we further remark that the analy
expressions for the VEV’s of the CCB vacuum presented in the
section should also be very useful in precisely evaluating the C
metastability condition onAt @16#, for large tanb.

FIG. 4. The one-loop upper bounds onmh for the CCB maximal
mixing and the Higgs maximal mixing vsMSUSY. The higher,
intermediate, and lower lines correspond, respectively, tor 51, 2,
and 3.
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maximal mixing values presented here, which depend es
tially on the top-stop contribution.

Thus, the numerical benefit of taking the CCB maxim
mixing rather than the exact one-loop Higgs maximal mixi
to constrain the top squark mass spectrum and the one-
upper bound onmh , is not very large~although not always
negligible!. However, on theoretical ground, this stateme
must be completed by stressing that the requirement
avoiding a dangerous CCB vacuum provides a strong
independent physical motivation to consider stop mixi
terms smaller than the Higgs maximal mixing. The latter
contrast represents a benchmark mixing, useful essential
keeping track of the value that maximizes the lighte
CP-even Higgs boson mass. Moreover, outside this cont
the CCB maximal mixing can have more drastic phenome
logical implications. For instance, at the tree level, it w
shown that the cross section of production of the light
CP-even Higgs bosonh in association with a lightest sto

pair is strongly enhanced for a large stop mixing termuÃtu
;A6mt̃ and can even exceed the production cross sectio
association with a top quark pair at the CERN Large Had
Collider @14#. However, this interesting window for the dis
covery of supersymmetric particles opens for a lightest s
mass light enough atmt̃ 1

;mt , therefore in a region of the
parameter space where the optimal CCB conditions are v
restrictive. Clearly, Figs. 2 and 3 show that the two requi
ments, a light stop massmt̃ 1

;mt and a large stop mixing

uÃtu;A6mt̃ , are in conflict@we note that CCB occurs in th
plane (H1 ,H2 , t̃ L , t̃ R) for uÃtu>At

CCBu tanb51` , Eq. ~28!#.
Hence, we expect a dramatic reduction of the cross sectio
such a process in the CCB allowed region of the param
space.4 This example illustrates the phenomenological u
fulness of the CCB maximal mixingAt

CCB for tanb51`,
considered in this paper. As noted before, this benchm
mixing can also be used to avoid metastability of the E
vacuum in model-dependent scenarios, which unavoida
occurs if uÃtu>At

CCBu tanb51` at the SUSY scale. In thes
contexts, the simple approximationAt

CCBuapp., Eq. ~30!,
should be of particular interest. Moreover, it is definite
more reliable than the traditional CCB bound in theD-flat
directionAt

D , Eq. ~2!, often considered as a first guess of t
impact of CCB conditions, but which largely underestima
the restrictive power of the latter.

Finally, we remark that two-loop contributions provid
important contributions tomh and induce a displacement o
the Higgs maximal mixing, which may become more restr
tive than the CCB maximal mixingAt

CCB: for mA0,MSUSY

@mZ0, tanb51` and r 51, At
Hu22 loop.2mt̃ @7#, whereas

At
CCB.2.17mt̃ . However, at the two-loop level, a precis

investigation of the effect of CCB conditions on the Hig

c
st
B

4It remains to be determined if in some regions of the param
space, this process is still favored compared to the production
in association with a top quark pair. This will be the subject
future investigations.
9-7
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C. LE MOUËL PHYSICAL REVIEW D 64 075009
boson massmh requires the evaluation of the one-loop CC
bound At

CCBu12 loop. This value incorporates in particula
contributions which escape our tree-level improved C
bound At

CCB, evaluated at the SUSY scale. Therefore,
previous comparison seems somewhat misleading. How
it raises the important question of the hierarchy betwe
At

CCBu12 loop andAt
Hu22 loop. For low MSUSY&mt , we remark

that the relationAt
CCB.At

inst.At
H ~see Figs. 1 and 2! should

persist at the next loop level. For large tanb, it is due essen-
tially to the presence of an interference regime where
CCB vacuum and the EW vacuum overlap. At the one-lo
level, the EW vacuum is still driven in the plane (H2 , t̃ L , t̃ R)
for large tanb, and such a regime should therefore also
found. ForMSUSY@mt , things are not so clear. However, w
may reasonably expect that one-loop corrections will a
lower the CCB maximal mixing, as occurs for the Hig
maximal mixing, implying presumably the hierarch
At

CCBu12 loop<At
Hu22 loop. This expectation can be checke

only by a complete one-loop investigation of the CCB co
ditions in the plane (H2 , t̃ L , t̃ R), for large tanb, which we
plan to do in the future.

IV. CONCLUSION

In this paper, we investigated the optimal CCB conditi
on At in the plane (H2 , t̃ L , t̃ R), taking into account the pos
sibility of a large mass splitting between the soft squa
massesmt̃ L

,mt̃ R
, as occurs in interesting models@4,5#. We

essentially focused on the asymptotic regime tanb51`,
y,
.

g.
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motivated by the nice features of the CCB bound in t
regime. In particular, a complete investigation of CCB co

ditions in the extended plane (H1 ,H2 , t̃ L , t̃ R), which will be

presented elsewhere@8#, shows that the stop mixing termÃt ,
in absolute value, should not exceed this benchmark va
otherwise CCB unavoidably occurs. This CCB bound sho
therefore be useful for phenomenological applications.
this reason, we presented an accurate analytic approxima
for it, which fits the exact result within less than 1% in th
interesting phenomenological region wheremt̃ 1

*100 GeV.

For MSUSY@mt , we showed that the one-loop Higg
maximal mixing is ruled out by more than 10%, whatev
the splitting between the soft squark massesmt̃ L

,mt̃ R
is.

Compared to the Higgs maximal mixing, the effect of t
CCB maximal mixing on the top squark mass spectrum a
on the one-loop upper bound onmh is not very large, though
not always negligible. We pointed out however that larg
effects can be expected in Higgs phenomenology, which
be more sensitive to such an exclusion. Further invest
tions are in progress in this direction.
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