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Charge and color breaking conditions associated with the top quark Yukawa coupling
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In the minimal supersymmetric extension of the standard model, the charge and color brgxRB)g
vacuum in the planeH,t, ,tg) typically deviates largely from alD-flat directions, due to the large effects
induced by the presence of the top quark Yukawa coupling. As a result, the critical CCB bound on the trilinear
soft term A; becomes more restrictive than tiieflat boundAfs3(n1%L+ rn;2R+ m%). For large tarB, we
consider the effect of a splitting between the soft squark Masges;  on this optimal CCB bound and give
a useful approximation for it, accurate within 1% in all interesting phenomenological cases. The physical
implications on the top squark mass spectrum and the one-loop upper bound on the Gghieetn Higgs
boson mass are also discussed in a model-independent way.
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I. INTRODUCTION In the present paper, we first summarize our method to
evaluate the optimal CCB condition oA; in the plane
In the minimal supersymmetric standard modiSSM), (4, T, 1) and extend then the latter result by incorporating
spontaneous symmetry breaking may occur into a dangeroyge possibility of a large mass splitting between the soft
charge and color breakingcCB) vacuum, therefore, desta- squark massesr ,m;_, taking also for comparison the exact
L R

bilizing the realistic physical electrowealEW) vacuum . ! = .
[1,2]. To avoid this danger, CCB conditions must be imposeoone'|°0p Higgs maximal mixing. We still concentrate on the

on the soft supersymmetr§USY) breaking terms which aSymptotic regime tafi=+c, which actually provides a
enter the scalar potential of the MSSM. Such conditions an@e&nchmark CCB bound ofy, with properties useful for phe-
their physical consequences have been extensively discussB@menological applications. In particular, in the extended
in the literature in a large variety of directions in the MSSM plane H,,H,,t, ,tg), this benchmark value proves to put an
scalar field spacé¢see, e.g.[1-3] and references therdin  upper bound on the CCB allowed values for the top squark
CCB vacua associated with the top quark Yukawa couplingnixing term|A,|=|A+ u/tang| [8]. We present an analytic
represent a special class of dangerous vacua in the sense tgproximation for it, accurate within 1% in all interesting
they typically deviate largely frond-flat directions and can  phenomenological cases. Finally, we consider some physical
furthermore develop in the close V|C|n|ty of the EW VaCUUm.impncationS of this bound, inc|uding the effect on the top
Such features were first investigated in R} in the field  squark mass spectrum and the one-loop upper bound on the
direction H4,H,,t, ,tg,v.), neglecting possible deviations lightestCP-even Higgs boson mass.

from the SU(3) D-flat direction. In[3], we considered the

restricted planelr(lz,t,__,tR) and propos_ed a new method to IIl. THE CCB VACUUM IN THE PLANE  (H, T, r)
evaluate analytically, in a fully model-independent way, the
vacuum expectation valué¥EV’s) of the CCB vacuuni3]. At the tree level, the effective potential in the plane

We showed that the effect of deviations from the SW(3) (H,,t, ,tg) reads[1-3]
D-flat direction, typically small in minimal supergravity
(MSUGRA) models(as considered in Ref2]), cannot be
neglected in a model-independent way and tend to make
more restrictive the CCB condition on the trilinear soft term

Vy=m2H3+ m%LtEJr mfR”fﬁ—zvtAtHzTJR

~ ~o\ 2
A:. This new feature appears in models with a large splitting FY2(HZ2+ HA2+T572) + g_f H2+ ﬁ _ ﬁ)
at the EW scale between the soft squark masses; , as L T2R LRI g 20 3 3
occurs for instance in some string effective field theories 2 2
[4,5]. For large tagB andmao>myo, it was also pointed out + %(Hg_TE)ZJF %(”tf_?é){ (1
that the one-loop Higgs maximal mixing for the top squark 8 6

masses is largely ruled out by CCB consideratifdls as-
suming a common soft squark madsgysy= My, =My, and whereH, denotes the neutral component of the correspond-
taking furthermore a simplified value for the Higgs maximaling Higgs scalar SU(2) doublet, andt, , tg are, respec-
mixing A,=.6m;, which is accurate only forn; tively, the left and right top squark fields. All fields are sup-
= \/MSZUSY+ th> m; [6,7]. posed to be reaH,,t, , the top quark Yukawa coupling,
and the trilinear soft term\, are also assumed to be positive,
which can be arranged by a phase redefinition of the fields.
*Electronic address: lemouel@physics.auth.gr Finally, positivity for the squared soft squark masses
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m;ZL,m;zR is assumed to avoid an obvious instability of the the global minimum of the potentiad;, Eq. (1), is automati-
potential at the origin of the fields. cally trapped in the plane_R=f[L=(_) and cannot be lower
As is well known, this potential becomes negative in thethan the EW vacuuntln this situation, we have always;

~ ~ i (0) i
D-flat direction |H,|=[%,|=[Txl, unless the well-known =0, whatever(f) is.) The boundA;~’ therefore provides a

condition[1,2], very simpls s~ufficient condition oA, to avoid CCB in the
plane H,,t, ,tg) [3]. It is also restrictive enough to secure
Afs(AP)ZES(m% +rrrt2 +m3) (20  some interesting model-dependent scenarios. This includes
L R

the infrared quasifixed point scenario in an MSUGRA con-

is verified. If the top quark Yukawa coupling were as smalltext, for both low and large ta8 [3]. In a quite different
as the Yukawa couplings of the first two generations ofcOntext, we also mention the effective MSSM recently pro-
quarks, this relation would provide an accurate necessary arPsed, coming from an underlying model where the top

sufficient condition to avoid CCB in the planélg T, .ix) quark or top squark sector is living in the bulk of an extra

[1-3]. But this is not the case and large deviations of thedlmen5|on[9]. In this case, the trilinear soft terfii| is

CCB vacuum from allD-flat directions are typically ob- 'clated to the soft squark masg,, with |Ad =i, A quick
served, making more restrictive the critical CCB bound onlook at Eq.(7) shows that this model is also exempt from a
A;. In fact, looking at the extremal equations associated witfCCB vacuum in the planeHs,t, ,tg).

the potentialV;, Eqg. (1), one finds that the minimum of the The previous sufficient bound to avoid CCB in the plane
potential lies in theD-flat direction only for (H,,t, ,tg) can be improved. This requires some informa-
tion on the remaining extremal equations associated ith

2 _ 2 _ 2 - _
my = Mg =M2. @ andt. Taking t,=(t,) in the potentialV;, Eq. (1), these

equations are straightforwardly obtained. The derivative with

Violations of these relations trigger deviations from the egpect tdf provides an equation quadraticfif, and quartic
D-flat directiong3]. In particular, the first relation in Eq3) i,

is intimately related to the deviation from the SU{3)-flat

direction[3], previously disregarded if2]. We can conve- agfH2+bgH,+csf=0, (8)

niently keep track of this feature by defining=tg/t, .

Alignment of the CCB vacuum in the SU(3pD-flat direc- where a;=36Y;(—1+f2)+0(g?), by=0(g?), cs

tion will correspond to(f) =+ 1. = —36Yt2(m;2L—f2m%R)+O(gi2) (the exact value of the co-
Replacingtg— ft, in Vs, Eq. (1), which is unambiguous  efficientsas,bs,c5 can be found irf3]). Numerical investi-

provided byt, #0, the extremal equation associated with agation shows that, at the CCB vacuum, the gauge contribu-

nontrivial CCB VEV (t,) is straightforwardly solved, and tions ~0(g?) to the coefficientsaz,bs,c;3 can be safely

gives[3] neglected. Doing so, the extremal equation, @y.is solved

exactly and gives

T y2= -2 (@)
L Az’ /”TEZLJFY?(Hz)Z
, f)= ——. 9
with \h m%R+Yt2<H2>2 )
2 2\¢2 2, 42 2
Bs= Hg (12Yi—4g) T+ 12Yi+ 01~ 39 A more transparent approximation of the deviation parameter
12 (f), independent of the CCB VEVYH,), can be subse-
_ZAthfH2+”‘I2L+f2”'¥2R' 5) quently derived 3]:
A2+ 2mF —m?
2 2 2 2¢4 20£2 2 t t t
gi(4fc—=1)= g5f* 2g3(f°—1) ~£(0)— L R
—AVv2f2 fy=f3'= . 10
Ag=aYif2+ =t =t ————, (=15 AZ+2m —m? o
(6) R L

The accuracy of this approximated value proves to be excel-
lent, whatever the values of the soft paramefgrsm; ,m

are: it fits the exact resu{tf) within 5%, or even less for not
a too large splitting between the soft squark massgsm;

[3]. It also clearly indicates that alignment of the CCB
vacuum in the SU(3)D-flat direction is a model-dependent

5 32— a2 feature which occurs in two different cases:
AO = + [1- 9_12Jrrrrt 1o (302 291):mT . For A>2Max m; ,m;_]. However,A, is also very large
- 3Y; R 12Y; t R compared to the critical CCB bound ép above which CCB
(7

occurs.

where the field parameteks,,f take their vacuum expecta-
tion valuesH,=(H,), f=(f). Consistency of this solution
requires thatB;<0O0, implying on one handf)=0 and
therefore(H,),(t, ;r)=0 [3]. On the other, it is easily shown
that for A=A, where
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For msz=m%R [the first mass relation in Ed3)]. Then, N=—B3+3a3y;, (19
the potentialV;, Eq. (1), has an underlying approximate
symmetryt, —tg broken by tinyO(g?,g3) contributions.
Therefore, any nontrivial CCB extremum is necessarily
nearly aligned in the SU(3)D-flat direction. Model building
may favor the latter situation. This occurs approximately,
e.g., in MSUGRA modelq§10]. In Ref. [2], such models
were investigated, neglecting in a first approximation the e
fect of the deviation from the SU(3)D-flat direction and
CCB conditions [evaluated in the extended plane
(Hq,H5,t ,tg,v )] were given in terms of the universal : : __£(0) .
soft SUSY breaking parameters at the grand unified theoragf;:irnaﬁ?| tzfr?g)ri(l;:iﬂ?g e> a; or (;xi'raneiti(olr?)(. <b1‘T2 r;liswvr\]/i{]’ f\i,;/:
(GL.J.T) scale. Howevgr, in a model-independent way, the POSthe exact result within less than 1%. This accuracy is enough
sibility of a large splitting between the soft squark masses IS particular to evaluate the critical CCB bound Apwith a
not ruled out and is even favored in some interesting alter- ™" f order-1 GeVl
natives to the MSUGRA scenarios. Some of them incorpo-}:)re_lc_:r']Slon oror ler >€ .E 1). has th | »
rate a substantial amount of nonuniversality between the sof{ 3 exﬁrem?he%uﬁt'on’ @ )a't'as t. ree r.?_a dr.oots 2
SUSY breaking term$4,5,11,12 and possibly show large it (and only if the following condition is verified:

violations of the relationm; =y at the EW scale. This Ci= M2+ 4N3<0. (20)
occurs, e.g., in some anomaly mediated scenddds. In

this case, the effect of the deviation from the SU(B}flat  As noted above, no CCB vacuum may develop g&=0.
direction on the critical CCB bound cannot be neglected, aherefore, the quantitg; provides an additional criterion to
will be illustrated in the following, and must be properly ayoid CCB in the planeH,,T, ,Tz), which enables us to

where the coefficientvs, B3, v3, 3, EQs.(12)—(15), should
be evaluated withf =(f). For clarity, let us add some com-
ments concerning this solution.

It can be shown that a CCB vacuum may develop in the

plane H,,t, ,tg) only if the extremal equation, E¢11), has
sthree real roots irH,. Then, these roots are found to be
positive and the CCB VEVH,) is given by the intermediate
one[3], which is written in its trigonomical analytic form in
Eqgs.(16)—(19). (H,) depends or{f), for which we have an

taken into account. _ o o improve the sufficient bound{®), Eq. (7). Taking f=f{,
The extremal equation associated wih is cubic inH,  ang giving values to all parameters excépt the equation
and quartic irf. It reads[3] C3=0 can be solved numerically as a functionfgf Below
a3H§+,83H§+ ysHo+ 8,=0, (11) the largest positive solution thus obtained, denaﬁé’d, the
relation C3=0 is always found. Typically, the hierarchy
where AM=A® holds, except in the unphysical regime where the
lightest stop mass is vanishimg; =0 [3]. Nevertheless, de-
az=—36Y/(f2+1)%+[305(g7+03) +49705](1?~1)? fining '
2.2 4 2 2.2 2
+6Y2g2(4f4+612—1) +18Y2g3(2f2+ 1), (12 A= Max A® A 21
Ba=9AYf[(12Y7 —4g]) {2+ 12Y¢+ 71— 303 ], (13 this quantity may be identified as the optimal sufficient

bound onA; below which no CCB vacuum may develop in

_ 262v2 2 2,2 2_ An2\§2 2 —
vs=— T2A{TTY 3(m;L+f mIR)[(let 49 17+ 12v; the plane H,,t, ,tg). For A=A a consistent local CCB

02— 3027+ m2 72Y22+ a2(4F2— 1)+ 902 vacuum with real and positive VEVEH,),(t, ),(f)) begins
01~ 302 )+ ma[ 72Yi T+ ga( )"+99; to develop and soon becomes global with increagip3].
+1293(f2—1)?], (14) The evaluation of the critical CCB bound d@%, above
which CCB occurs, requires some additional information on
53=36Athf(m;2L+ fznéR)_ (15  the EW vacuum. At the tree level, this vacuum is determined

by the extremal equations

This equation, considered as a cubic polynomiaHiyy may

2 2 2
be solved exactly. In a compact trigonomical form, the CCB my —m; tarf 8 _ Mzo _

VEV (H,) reads tarf5—1 2 " “
B3 ( V=N S{¢+4W (m2+m3)tanB—m3(1+tarf8)=0 (23
(Hp)=—2—|1-2——co , (18 1 3 ’
3as B3 3

where tanB=uv, /v, is the ratio of the VEV'sv{,v, of the
EW vacuum(with v=vZ+v3=174 Ge\j. For tang=1,

COSh=— N ¢$e[0,7], (17 the minimal value of the EW potential reads
where
3 5 IThis precision can be improved at will with the iterative proce-
M=2p3-9a3B3y3+ 272363 (18)  dure proposed ifi3].
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[m2—m2+ \(m2+m2)2— am?]? turning to the numerical analysis, let us first briefly comment
Mew= - > (24)  on the latter.
2(g5+93) In the plane H,,t, ,tg), the critical CCB boundAS“®,

. . . Eq. (26), proves to be decreasing for increasing arand
At a consistent EW vacuum, this quantity depends only oNcreasing for increasingiyo. Moreover, in the limit targ

two free parameters that may conveniently be chosen t0 be | ., it can be shown that the most restrictive CCB bound
tarll,Lc%:ggdbthe giggg.osfa'a;';m(’z Vm1+tr;]12.(;l'hethcrl?;h in the plane H,,t, ,tg) is obtained, whatever the values
cal LLB boundi, “ 1S found by comparing the dep 9 € mao and tan3(=1) are. Therefore, the benchmark value
potential at the EW vacuum and at the CCB vacuum: ACCH b . imal suffici

¢ lang=+= Can be considered as an optimal sufficient

CCBS (Va) < (V)| (25) condition to avoid a dangerous CCB vacuum in this plane:
A AL M L mimy,mp, Mg, Y, ,01,92,93]- A=A anp=+»=No CCB inthe plane(Hy,t, ,tr).
(26) (27)

The maximal depth of the potentisl, Eg. (1), can be given o .

an analyticalthough complicatedexpression by taking the We stress however that this interesting property does not
excellent approximations of the CCB VEV'’s given in Egs. prevent a CCB situation from outside the plam&, (t, ,tg).

(4), (10), and (16). This way, we incorporate all possible In particular, CCB may still occur in the extended plane
deviations of the CCB vacuum from aD-flat directions, (H, H, t, ,tg), as a full investigation of the optimal CCB
including the SU(3) D-flat one previously disregardd@].  conditions in this plane indeed shows. This will be presented
When all parameters are chodexceptA,], the critical CCB  elsewherd8]. To enlighten the importance of the valag®®
bound AS“® is straightforwardly obtained by a numerical for tanB= -+, we borrow an interesting property of the

scan of the regios\=A{"". We haveAf“®=A", because  cB hound on the stop mixing terfy,=A,+ u/tang from
the EW potential is not very dee)|ew~ —mso/(93+03),  this study. As is well known, this quantity plays a central role
whereas the depth of the CCB potential increases rapidljh Higgs phenomenology6,7,14. It can be shown that if
with A;. This simple procedure provides an excellent ap{A | exceeds some critical value, which depends on
proximated value for the critical CCB bound which fits the , , tang, . and alsons ,n_, CCB occurs in the plane
exact resultA"“® with an accuracy of order 1 GeV. -~ LR _ _
Let us add a few words concerning the impact of radiative H1-Hz2: 1L tR). In t.he Interesting phenomeno]qglcal region
corrections oMACSE. As is well known, the results obtained M™M=, one finds in addition that this critical value is
with the tree-level approximation of the potential may incor-maximal for tan3=+o and =0 and that this maximal
porate leading one-loop corrections, provided all quantitiey@lue moreover  coincides with the CCB bound
are evaluated at an appropriate field-dependent $28l€.  AF%an5- +.. Obtained in the planeH,,t, ,tg). To summa-
This numerical observation was, in fact, intensively used in(ize,A§ZCB|tanB:+Oc also provides a CCB maximal mixing for
the context of CCB studies in order to use the relative simyne stop fields, above which CCB unavoidably occurs in the
plicity of the tree-level potentidl2]. For the EW potential at lane Hy,H, T, 10
the EW vacuum, the appropriate scale is the SUSY scal® L2t iR

Qsusy, With Qsysy~Msysy= V(m;Ler;R)IZ for Mgysy
>m;,, whereas fortMgysy=m;, Qsusy should be taken at  [A]=A % anp- +»=CCB in the plane(Hy,H, T, tr).
a more significant SUSY mass. In the vicinity Af=A" (28)
[=AFCB], it can be shown that the scale adapted to the CCB

potentialV3, Eq. (1), at the CCB vacuum, is also the SUSY
scaleQgygy. This result, which is in agreement wifR], is
due essentially to the fact that the CCB vacuum proves to b
rather close to the EW vacuuf3]. Therefore, provided the
tree-level comparison in E@25) is performed at the SUSY
scaleQgysy, the critical boundAS“® thus obtained should
also incorporate leading one-loop corrections.

This important property is our main motivation to study in

detail the numerical behavior of this benchmark value. In the
Following, we shall also give an accurate analytic approxi-
mation for it, which should be quite useful for phenomeno-
logical applications and to constrain model building.

For tanB— +o0, the EW vacuum is driven in the plane
(H,.t,,tg) and appears as an additional minimum of the
potential V3, Eq. (1), with VEV's v3=2m5e/(g2+93),
{(tLR)=0, giving (V)| gw= — m3o/2(g3+g3). Stability of the

In this section, we investigate the effect of a mass splittingz\y vacuum in the planet( ,tg) is required, otherwise an
between the soft squark masseg,my_ on the CCB bounds  gpyvious CCB situation will occur. Therefore, we may write a
presented in Sec. Il. We focus on the asymptotic regimeew CCB condition om\;, which merely encodes the physi-
tanB= +. This choice is motivated by the nice propertiescal requirement of avoiding a tachyonic lightest stop mass
of the critical CCB condition orA; in this regime. Before [3]:

Ill. THE CCB CONDITIONS ON A; FOR LARGE tan 8
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FIG. 1. The CCB optimal sufficient bound®”, the D-flat
boundAP, and the instability bound"'vs Mg sy. All bounds are
normalized toy6m; . The higher, intermediate, and lower lines cor-
respond, respectively, to=1, 2, and 3.

inst
A=A}

\/(GmeJr 6m?+ m§0—4m\2,vt)(3m;2R+ 3mZ+2ma.)

3\/§mt

(29

As we will see, unlike theD-flat bound AP, Eq. (2), the
sufficient boundAS", Eq. (21), and the CCB maximal mix-
ing AC®®, Eq. (26), automatically fulfill this requirement.
Notice that the instability bound!™' is only a function of
the soft squark masses;, My, the top mass, and the gauge
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1.0-|-|'|'|'___|___

09 s e
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05 —— CCB maximal mixing

0.4 I - CCB approx. maximal mixing

————— Higgs maximal mixing
oglb— 0 .
0 200 400 600 800 1000 1200 1400
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FIG. 2. The CCB maximal mixingA"“®, its approximation
AF“® app. and the one-loop Higgs maximal mixirf', vs Mgysy.
All bounds are normalized tg6m; . The higher, intermediate and
lower lines correspond, respectively,te-1, 2, and 3.

SU(3), D-flat direction must be taken into account in the
evaluation of the CCB condition, to avoid a tachyonic stop
mass. In contrast, the-flat boundAP has rather bad behav-
ior. In particular, for lowM ggy, notice that it is not restric-
tive enough to avoid a tachyonic lightest stop.

Comparing theD-flat boundAtD with the sufficient bound
A" for r=1,2,3, a precise indication of the effect of the
CCB vacuum deviation from alD-flat directions can be ob-
tained. For largeM g5y, We observe first that these bounds
enter an asymptotic regime, witkP larger thanAS". Forr
=1, the CCB vacuum is aligned in the SU(3)-flat direc-
tion. Therefore, the discrepancy betweh and A, _, is

boson masses. This result actually extends to the Cc%ssentially due to the deviation from the SU(R)J(1)y

boundsA" and AS©® [for tanB— +]. In our numerical
analysis, we taken,= 175 GeV and display the CCB bounds

as a function of an average of the soft squark masse

'Vlsustw/(m;ZLJr m%R)/Z, for three different values of the

splitting parameterErrrfL/m;R= 1,2,3. The latter parameter

D-flat direction, triggered by the large violation of the rela-
tion M3,5y=m3, Eq.(3). ForMgysy=1 TeV, we have, e.g.,
E\P—Af“']r=1:365 GeV. For =2,3, large deviations of the
CCB vacuum from the SU(3)D-flat direction now occur
and the sufficient bound®" is lowered. We have, e.g., for

will enable us to conveniently survey the effect of the CCBMgusy=1 TeV, AP — AN, _,=475 GeV andA?—AM| _,

vacuum deviation from the SU(3)D-flat direction. We re-
mark that splitting parameters as largeras2 can be found,
for instance, in anomaly mediated scenalfib$ To be ex-

=585 GeV, and the fraction due to the deviation from the
SU(3), D-flat direction represents 23% for=2 (37.5% for
r=3) of the total effect. This clearly illustrates that this ad-

haustive, we also consider the possibility of a very largeditional contribution to the CCB condition may be important

splitting termr = 3.

In Fig. 1, we display the optimal sufficient bourﬁq‘“f,
Eqg.(21), the traditional bound in thB-flat directionAP Eq.
(2), and the instability bouné&"', Eq.(29), as a function of
Msysy. All bounds are normalized ta/6m;, where niy
= /MZ,sy+mZ. We note first that the sufficient bourf"'

and should not be neglected for a large splitting between
e

In Fig. 2, we now display the CCB maximal mixing
ASCB| Eq. (26), as a function oM gygy, for r=1,2,3. For
comparison, we remark th&C® closely follows the suffi-
cient boundA$" displayed in Fig. 1, withAS“B=AS"" for all

automatically fulfills the important requirement of avoiding a values ofM g,sy. In the interference regime mentioned pre-
tachyonic lightest stop. We always haAé‘StzAf“f. Alarge  viously, this inequality is saturated and furthermore we have
region (which depends om) is found where the relation AZ®=A™. For Mgysy=m;, we find AM<AT®
A= A8 holds, implying that no dangerous CCB vacuum <1.025A%" for r=1,2,3, the lower value being reached for
may exist unless the EW vacuum is unstable. In this interM g5y~ m; and the larger foMgysy~1.5 TeV. For large
ference regime, the EW and the CCB vacua actually overlapl g,5yv=700 GeV, we observe also that the CCB bound
and the CCB VEW(f) proves to be connected quite simply ACCB enters an asymptotic regime in which only tiny varia-
to the stop mixing angl®, with the relation(f)=tan® [3].  tions still occur.

Here, the slightest deviation of the CCB vacuum from the In Fig. 2, an approximation of the critical CCB bound
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1400 — T T mao>m;, these corrections are maximized and we have in
[GeVl | o maximalmixing  cop the top-stop approximatiof6]:
1200 [ ----- Higgs maximal mixing
F No mixing
1000 s 2 3m; g, M, 4n? ng,
mi =m0+ 5| Log >t — 5~ Log —
800 8 m; my, — My, e,
2 2
600 4 +
2A i, M, g,
400 T 221_ 2 7> Log—1 |,
(mEz_ mIl) m¥2_ mIl rrrtl
200
v=174 GeV, (31
0 200 400 600 800 1000
M., [GeV] where the stop masses read
2 2
FIG. 3. The bounds on the stop masses for the CCB maximal 5 me+ m;R 1,
mixing and the Higgs maximal mixing, verstgysy, forr=1, 2, m g ZT + mtz_ Zmzo
and 3. Lines below(respectively, aboyethe no mixing case give v
lower (respectively, upperbounds on the lightestrespectively, 2 2. o2 2 12
heaviest top squark mass. _ \/m2A2+ [6(th mtR) 8my,= +5mzo]
” t 144
ASCB s also displayed. It reads analytically (32)
The Higgs maximal mixing valué\{*, which maximizean,
ccB 2 /2 ) ) . :
A |app_:E §(21—r) in Eqg. (31), can be obtained numerically as a function of
Msusy and r. As is well known, for largeM gysy= my,
me =m; >m;, Al takes the simple expressior;' = 6my
Y . [6,7] (this value is actually used as a normalization factor in
2_ (1+1)%(45-42y3+23r) mtz Figs. 1 and 2 Indeed, this asymptotic behavior is observed

! 4\3(21-r)r in Fig. 2 forr=1. In addition, Fig. 2 shows tha{" is de-
(30) creasing for an increasing splitting between the soft squark
masse$6].

_ o , _ , For low Mgysy, the CCB maximal mixingA"“® and the
This approximation fulfills two important requirements: Higgs maximal mixingAtH follow each other closely, show-
At_CCB| app?%\/g(?l— r)n; for largen; , which is consistent ing thatmy, is maximal forA;=AF“® (we have furthermore
with the gCuBmencal behavior observed; gt first orgler inA~A"Y " Notice that A" can be lower thanAS®® for
M /M, A7 app="T; +m;_ for m; m;_=my¢, as required Mg c,<m,, though just slightly and, moreover, in an un-
at the center of the interference regifigee Eq(43) in Ref.  physical region where the lightest top squark mass is vanish-
[3]]. We stress that this approximation holds only fer1. ing n"rtl:O GeV (see Fig. 32 For larger values oM ggy,
However, numerical investigation shows that no significanihe CCB maximal mixing clearly rules out the Higgs maxi-
variation of A”°® occurs under the transformation-1r  mal mixing. ForMsysy=1 TeV, AC® is about 10% below
[3]. Accordingly, form; <nm;_, the analytical expression Eq. A forr=1,2,3. Thus, the large exclusion already observed
(30) for AFCB|app_ should be adapted by redefining in Ref.[3] for equal soft squark masses is also found in the
ErrrtR/rrrtL. For Mgysy large enough, Fig. 2 shows the ex- presence of a large mass splitting.
cellent accuracy of the approximatiéf |, For all val- In Fig. 3, we compare the bounds on the top squark mass
ues ofr, it fits the exact resula®® within less than 1%. In  SPectrum for the CCB and the Higgs maximal mixing values.
contrast, for lowMgsy, it behaves rather badly. However, In bqth ca;es, .We dzlsplay bzelo(/vesp;ectn/zely, aboyethe
this feature occurs only in a region of the parameter spacBO-Mixing line, i.e.m; 5 =Mgysy*+ mM;—mzo/4, the corre-
where the lightest stop mass is small, i <100 GeV  sponding lower(respectively, uppgroounds on the lightest
(see Fig. 3 Such a region is nearly completely excluded bystop massi;, (respectively, the heaviest stop masg). For
experimental datgl5].

Finally, in Fig. 2 we display the one-loop Higgs maximal

mixing for the stop masses, denotafl in the following. As 2Some residual gauge contributions are actually neglected in the
is well known, the tree-level lightest P-even Higgs boson  writing of Eq. (31) in order to gain approximate independence for
mass receives large one-loop corrections from loops of topn, with respect to the renormalization sc&€6]. For lowMgsy,

and stop quark fields, which are essential to overcome theuch contributions may presumably restore the hierargy
tree-level upper boundn,<myo [6]. For tanB=+% and =AC°E,
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maximal mixing values presented here, which depend essen-
tially on the top-stop contribution.

Thus, the numerical benefit of taking the CCB maximal
mixing rather than the exact one-loop Higgs maximal mixing
to constrain the top squark mass spectrum and the one-loop
upper bound omm,,, is not very larggalthough not always
negligible. However, on theoretical ground, this statement
| | must be completed by stressing that the requirement of
135 :gics maximal Im",‘",‘g J avoiding a dangerous CCB vacuum provides a strong and
f 995 maximal ming independent physical motivation to consider stop mixing
180 e oor o0 7000 1200 1200 terms smaller than the Higgs maximal mixing. The latter in

My, [GEV] contrast represents a benchmark mixing, useful essentially in
) keeping track of the value that maximizes the lightest
_FIG. 4. The one-loop upper bounds om for the CCB maximal ¢ p_ayen Higgs boson mass. Moreover, outside this context,
mixing and the Higgs maximal mixing v8sysy. The higher, o ccB maximal mixing can have more drastic phenomeno-
intermediate, and lower lines correspond, respectively,d. 2, logical implications. For instance, at the tree level, it was
and 3. shown that the cross section of production of the lightest

large Msysy, the allowed range for the top squark massCI?-even Higgs bosot in association with a lightest stop

spectrum is enlarged for an increasing splitting between th@air_is strongly enhanced for a large stop mixing ter]
soft squark masses, despite the decrease of the CCB and the/6nT; and can even exceed the production cross section in
Higgs maximal mixing values for increasing(see Fig. 2 association with a top quark pair at the CERN Large Hadron
Obviously, the CCB bounds on the top squark mass spectrui@ollider [14]. However, this interesting window for the dis-
are more restrictive than the Higgs maximal mixing ones.covery of supersymmetric particles opens for a lightest stop
This effect is, however, not very large, although not negli-mass light enough at; ~m;, therefore in a region of the
gible for r=1. For instance, foMgysy=1 TeV we have, parameter space where the optimal CCB conditions are very
respectively, Amy =(25.5,16.5,14.5) GeV andAm;, restrictive. Clearly, Figs. 2 and 3 show that the two require-
=(17,7,4) GeV, for=1,2,3. ments, a light stop massi; ~m; and a large stop mixing
Figure 3 exhibits another interesting feature. Taking con-lﬂt|~ /6
servativelyrrrtlz 100 GeV as an experimental limit on the

150 |-
145 |-

140 |-

m;, are in conflicfwe note that CCB occurs in the
i i < plane Hy,H, T, tr) for [A|=AT® s, Eq. (28)].
lightest stop masgl5], we find that a stop mixing value as Hence, we expect a dramatic reduction of the cross section of

large as the CCB maximal mixing is excluded in a large parl,cy 5 process in the CCB allowed region of the parameter

of the parameter space, i.8,sysy=(310,360,440) GeV for  gna0et This example illustrates the phenomenological use-
r=1,2,3. In the respective domains, the EW vacuum is not .ass of the CCB maximal mixing B for tanB= + o
t 1

threatened by the CCB vacuum in the plahi (t, ,tr), and  considered in this paper. As noted before, this benchmark
is automatically stable. This result illustrates how a precisenixing can also be used to avoid metastability of the EW
study of CCB conditions can produce refined statements coRzacyum in model-dependent scenarios, which unavoidably

cerning metastability of the EW vacuufh6].® if || = ACCB t th v le. In th
In Fig. 4, we finally compare the one-loop upper bound onOCCurS 1A= A lta”‘*:*” at the SUSY scale. In these

the CP-even Higgs bosomy, in the top-stop approximation, contexts, the 5|m_ple apprOX|mat|oAt |a”p-’. Eq. (39)2
Eq. (31), for the CCB and the Higgs maximal mixing values. should pe of particular mtgrest. Moreover, it is definitely
In both cases, this bound is decreasing with increasitgit more .re“aE,"e than the tradmor!al ccB bou.nd in iheflat
the effect is rather small, at most2—3 GeV. The mass Q|rect|onAt ' Eq.(2),_o_ften con3|de_red as afirst guess_of the
discrepancy between the,CCB and the Higgs maximal miximpact of CCB conditions, but which largely underestimates

- . - : the restrictive power of the latter.
ing cases is negligible foM gys5y~500 GeV. It is slowly . I .
increasing withM s sy, but is still small forM sysy= 1500 Finally, we remark that two-loop contributions provide

GeV where it is~1 GeV forr=1.2.3. Let us note that in important contributions ton, and induce a displacement of

the large tarB regime investigated heraey, may also receive the Higgs maximal mixing, Wh"?h. magcgecome more restric-
at one-loop level important additional contributions, comingt've than the CCB maximal mF:xmg\t  for mao,Msysy
in particular from the bottom/shottom secf6t7]. Such con- > Mz0, tang=+cc andr=1, Af,_eep=2M; [7], whereas
tributions would modify the numerical upper bound my, ~ A-“®=2.17m;. However, at the two-loop level, a precise
but not the discrepancy between the CCB and the Higg#vestigation of the effect of CCB conditions on the Higgs

3In the metastability domain, we further remark that the analytic 4t remains to be determined if in some regions of the parameter
expressions for the VEV's of the CCB vacuum presented in the lasspace, this process is still favored compared to the production rate
section should also be very useful in precisely evaluating the CCBn association with a top quark pair. This will be the subject of
metastability condition o\ [16], for large tans. future investigations.
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boson massn;, requires the evaluation of the one-loop CCB motivated by the nice features of the CCB bound in this
bound AF“®; _jp0p. This value incorporates in particular regime. In particular, a complete investigation of CCB con-

contributions which escape our tree-level improved CCByitions in the extended planéi(,H,,t, ,tg), which will be

bound A7, evaluated at the SUSY scale. Therefore, the) oconted elsewhef8], shows that the stop mixing ter&;
_prev_ious comparison Seems s_omewhat misleading. Howeve% absolute value, should not exceed this benchmark value,
t Cr(?B'SGS the |mpHortant question of the hierarchy bewveeQ)therwise CCB unavoidably occurs. This CCB bound should
A 1-100p aNAA |2*'°°P' For lowMsysy=m;, we remark 0 efore be useful for phenomenological applications. For
that the relatiomA7 “®=~A"™=A{' (see Figs. 1 and)Zhould  this reason, we presented an accurate analytic approximation
persist at the next loop level. For large f@nit is due essen- for it, which fits the exact result within less than 1% in the

tially to the presence of an interference regime where theteresting phenomenological region wheng =100 GeV.
CCB vacuum and the EW vacuum overlap. At the one-loop For Mgus>m,, we showed that the cl)ne loop Higgs
SUS ty b

level, the EW vacuum is still driven in the plangl{,t, ,tg) maximal mixing is ruled out by more than 10%, whatever

for large tanB, and such a regime should therefore also beth e .
’ . e splitting between the soft squark masses,ny_ is.
found. ForM gsy>m, things are not so clear. However, we PHting W au o !

may reasonably expect that one-loop corrections will alsd=Cmpared to the Higgs maximal mixing, the effect of the
lower the CCB maximal mixing, as occurs for the Higgs CCB maximal mixing on the top squark mass spectrum and

maximal mixing, implying presumably the hierarchy ON the one-loop upper bound am, is not very large, though
AtCCB|1—|oop$AtH|z—|oop- This expectation can be checked not always negligible. We pointed out however that larger

only by a complete one-loop investigation of the CCB con-effeCtS can be _e_xpected in Higgs phenomenology, \.NhiCh can
. . ~ o~ . be more sensitive to such an exclusion. Further investiga-
ditions in the plane l,,t, ,tg), for large tan3, which we

olan to do in the future tions are in progress in this direction.
[ uture.
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