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We study soft supersymmetriSUSY) breaking parameters in the Nelson-Strassler-type models: SUSY
standard models coupled with superconformal field theo®SFT'9. In this type of model, soft SUSY
breaking parameters including sfermion masses can be suppressed around the decoupling scale of SCFT’s. We
clarify the condition to derive exponential suppression of sfermion masses within the framework of pure
SCFT’s. Such behavior is favorable for degeneracy of sfermion masses. However, the realistic sfermion masses
are not quite degenerate due to the gauge couplings and the gaugino masses in the standard model sector. We
show the sfermion mass spectrum obtained in such models. The aspect of suppression for the soft SUSY
breaking parameters is also demonstrated in an explicit model. We also give a mechanism generating the
term of the electroweak scale by a singlet field coupled with the SCFT.
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I. INTRODUCTION heavy sfermion massésand (3) the alignment of the fer-
mion and the sfermion bases.
] o ] . Recently, supersymmetric standard modeglSSM’s
Understanding the origin of flavor structure, i.e., h|erar-coup|ed with superconformal field theori¢SCFT’9 have
chical fermion masses and mixing angles, is one of the mosieen discussed by Nelson and Strasgdgr Here the SCFT
important issues in particle physics. Actually, several typesneans the theory realized at a nontrivial IR fixed point. Such
of mechanisms to realize the fermion mass matrices havéxed p_OigSféEfg? gf\}\(;m’] t(t)h?XifSt accordli<ng to tli]e d(ijslcustsions
been proposed: e.g., the Froggatt-Nielsen mechafiigand  9'VE€N IN Ret.[I].” WIthin this Tramework, quark and lepton
somepne\?v ideas c?)ncerned 8v?th extra dimens[;;g]l.g; fields coupled with the superconform@C) sector have en-

S i tension i £ th ¢ attracii hanced anomalous dimensions due to strong gauge and
upersymmetry extension IS one ol the most atlraCliVey,iawa couplings in the SC sector around IR fixed points.

ways beyond the standard mod&M). In supersymmetric  The anomalous dimensions lead to the hierarchically sup-
models, realization mechanisms of fermion mass matrices, igressed Yukawa couplings at low energy in the SSM sector
general, affect the sfermion sector. Each realization mechasven if those are ofD(1) at high energy. Thus, this can
nism of the flavor structure would lead to a proper pattern oforovide one type of mechanism to generate realistic quark
the sfermion mass matrices as well as supersymmetrgnd lepton mass matrices.

(SUSY) breaking trilinear couplings. For example, within the ~ Superconformal IR fixed points have more intriguing as-
framework of the Froggatt-Nielsen mechanism with gauged€cts for renormalization-grougRG) behavior of SUSY
extra symmetries, sfermion masses have the so-caHeim breaking parameters. For example, the IR behavior of softly

contributions, which are proportional to charges of fermionsbrOk.en supersymmetric QCD has be_en studied in Ref]
. ) . and it has been shown that the gaugino mass and the squark
under broken symmetries. Alternatively, if the Yukawa cou-

. . i _ L masses are exponentially suppressed around the IR fixed
plings are subject to infraredR) fixed points in the manner ,,in:3 Fyrthermore, its dual theory is described in terms of
of Pendelton and Rog4], we have specific relations among a| quarks and singlémeson fields [9]. In the dual side,
the soft SUSY breaking term$]. Thus, the study of the SUSY breaking trilinear couplings are suppressed. Moreover
sfermion sector is interesting to distinguish several types ofhe soft scalar masses of the singlet fields, as well as the sum
realization mechanisms of the flavor structure. Furthermoregf (mas$? for the dual squark and its conjugate, are found to
the sfermion sector has severe constraints due to experimeris suppressed.
of flavor changing neutral currefECNC) processes as well ~In Ref.[8], it has been mentioned that the above behavior
as CP physic$6]. FCNC problems can be solved by three Of suppressed soft scalar masses around the IR fixed point

ways: (1) degenerate sfermion masség) decoupling of &0 be_ qseful to avoid the dangerous FCNC processes. Be-
cause it is expected that sfermion masses at least for the first

and the second families would be quite suppressed at the
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'The recent measurement of the muons anomalous magnetic mo2See Ref[10] for a review of superconformal theories and their
ment[7] disfavors the decoupling solution at least for the sleptondual descriptions. The IR fixed points have been discussed also in
sector, if the deviation from the prediction of the SM is indeed dueRefs.[11,12,13.
to superpartners. 3See also Ref[15].
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decoupling scale of the SC sector, and that after decoupling, [I. EXACT RESULTS FOR SOFT MASSES IN SCFT
the masses receive radiative corrections due to gaugino
masses of the SSM sector, which are flavor blind. Thus, sfer-

tial condition at high energy. the soft parameters added to generic SCFT’s. In particular,

From the above-mentioned phenomenological viewpoint,son scalar masses v_viII be found to sati;fy interesting sum
it is quite interesting to study the IR behavior of softly bro- rules. Our argument is based on the explicit form of the beta

ken SCFT's and SSM's coupled to the SC sector, and téunctions for soft parameterfsl6—-23. Therefore, we first

clarify the conditions leading to exponentially suppresseJeV'eW the exact beta functions of general softly broken su-

SUSY breaking terms. That would provide useful constraint?ersymmemc_ gauge theories in this section.
for model building. _ Let us pegm with the gauge coupllng and the corregpond—
In this paper, we first study the IR behavior of generalIng gaugino mass. The holomorphic gauge couplifig

_ 2 caticfi ; .
softly broken SCFT’'s by means of the so-called exact beta 1/2g;, satisfies the RG equatidRGB):

A. Beta functions

functions. The conditions to realize suppressed SUSY break- ds 1
ing terms will be shown. It is also shown that some fields w—= _2<3TG_2 Ti): (1)
become tachyonic in generic cases. These aspects around the dp 167 [

IR fixed point are also useful for phenomenology. Next we ) o )
discuss phenomenological aspects of SSM’s coupled with th&/here T is the Dynkin index andl's denotes the Dynkin
SC sector. Taking account of the effects due to gaugind’dex (quadratic Casimjr of adjoint representation. The
masses of SSM’s, the sfermion masses are found to convergdysical couplingg is related to the holomorphic coupling
to flavor dependent values. We study this flavor dependend@rough the general formula
of the sfermion masses that remained after suppression, and

show hovy much degeneracy between sfermion masses is fi- 872(S+ ST)—E T,In Zi=£+TG Ina+ Z a,a"
nally achieved at the weak scale. In practice, the range of i @

scale where the SSM’s couple with the SC sector must be

finite to generate the small but nonvanishing Yukawa cou- =F(a), @)
plings. Therefore, the sfermion masses do not totally con- P )
verge at the decoupling scale. We also discuss the amount §f1€r€ @=g°/8x~ and Z; denotes the wave-function renor-

convergence by demonstrating the RG flows for eXpncitmalization of the chiral superfield@'. The coefficients,, are
models. We also mention that the SCFT may resolvesthe the scheme-dependent constants and the Novikov-Shifman-

problem in SSM's in a natural way. We will show a model in Vainstein-SakharouNSVZ) scheme[24] is given by a,
which soft SUSY breaking mass of a singlet coupled with=0- From this relation the beta function feris given ex-
SCFT's becomes tachyonic and its vacuum expectation valu@ctly as
appears of the weak scale automatically. If this singlet
couples to the Higgs fields, then tr,ae_term may be gener- Ba=,ud—a= ’L 3TG_Z T(1-7)|, 3)
ated through the vacuum expectation value of the weak ap F'(a) |
scale.

This paper is organized as follows. In Sec. Il, we studywhere the anomalous dimensigfis defined by
the IR behavior of pure SCFT’'s with soft SUSY breaking
terms, and show the condition for suppressed sfermion dlInz
masses. We also give speculative considerations on SCFT’s YT T dn w (4)
with nonrenormalizable couplings and corresponding SUSY
breaking terms. In Sec. Ill, we study SSM’s coupled with theHere we assume the wave-function renormalization to be di-
SC sector. In Sec. Il Awe give a brief review on the setup ofagonal just for simplicity.
Nelson-Strassler models, and also a constraint for the decou- The gaugino mass can be incorporated with the gauge
pling scale of the SC sector is given. In Sec. Il B it is found coupling by superfield extension. The holomorphic coupling
that gaugino masses in the SSM sector have important meafs extended as
ing for exponential suppression of soft scalar masses, which
is also significant from the viewpoint of FCNC constraints. ~ 1 )
Within the framework of the minimal SSMMSSM), we S= 2_92(1_'\/“9 ). ©)
show numerically how sfermion masses are strongly degen- h
erate at the weak scale. Also, a typical mass spectrum i -
shown in Sec. llIC. In Sec. IV, we c)gpnsider epric!Ct) models FlereS satisfies the same RGE.SQOGS‘ on t.he pther hand,
showing the desired suppression. After discussing the type\ge also extend the wave-funcpon renormallzat!on fachyrs
for such models in Sec. IVA, we demonstrate typical RGand the physical gauge coupling to real superfields as
flows in an illustrating model in Sec. IV B. The convergence
of the sfermion masses are also examined there. In Sec. V,
the u problem is discussed. Section VI is devoted to discus- . . .
sions and the conclusion. a=a[1+M6*+M@*+(2MM+Ay) 6267, (6)

n>0

Z :2¢i(1_ mlzazgz)z:@ ,
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whereM andm? give the gaugino mass and the soft scalar i dhiik 1 - "
masses, respectively. We have extracted the chiral and the h :MW: 5(7i+7j+7k)hj —( +7;
antichiral parts ofZ; as Z, and Z¢i for the wave-function .

renormalization of theanti-chiral matter fields. Herd  is y'k, (19

determined by consistency with the extended relation _
It has been known that the wave-function superfields
- - - are also given by the extension Bf(a,y'¥,y;..) [19]:
872(5+SH)— > T,InZ=F (@), 7 g Y Y™ i) 119)
1 ~ —~ i ~
Zi=Z,(a,3" ¥ij), (16)

and is found out to be where the extended Yukawa couplirfig& are defined by

1 s N I
Ae=LF T >[2 Tim?—[a?F'(a)]' MM} ® yl= YIS (mPE mE e mgyo%et. (17)
Therefore, the superfield are given explicitly in terms of
In the NSVZ scheme) is given by[20-23 the rigid factorz; as
— Zi=7Z;+D,Z;6?°+D,Z;6°+D,Z;6°6%, 18
Ag:_m EI TimiZ_TGMM}- (9) i i 14 14 24 (18

whereD, andD, are the differential operators defined by
The beta function of the gaugino mass can be derived

from the extended relation by expanding with and found D,=M ai_ hijkl_k_
da ay*’
to be y
Md_M:'udlna‘ = 1 3T _E T(1-%) D2=51D1+(M|\7+Ag)ai+E(miz+mj2+mﬁ)
d:“/ d,LL ‘02 'ZrF’('Zr) G i i i 02! Jar 2
X | yk—e g i (19
(10) y z9y” yljkay
where the extended anomalous dimensjois given by Here it will be helpful for the later discussions to note that
N”k [V%|?/872 satisfies the same form of renormalization
dinZ . as the rigid one:
L Tt A R RS e
N;)ll)(are_Ng/]kZiZjZk- (20)

Next let us consider the Yukawa couplings and the trilin-

. ) ; Moreover, we also find the beta functions for the scalar
ear couplings given by the superpotential

masses by the superfield extension as

_ 1oyilk _ pnilk g2y ai 2 1k -
W=y —hlke%) ¢l ) . (12 dm? dinZ;|

. . T . BmZE/'L d =T M d | _
The SUSY breaking trilinear coupling’® is often written as : m M1 g2g2
hilk=ylkAllk “where A% are calledA terms. Because of @
nonrenormalization of the superpotential, the holomorphic N
couplingsY'*=y'k—hilk 92 are renormalized by the chiral =D,y 21)
superfieldZ ; as

ik i B. Renormalization group flows around the infrared stable
Yiae= Y2 4 Z 4y Z g (13 fixed points

First let us consider the IR fixed point of the rigid beta
functions, where the SCFT realizes. The beta functions for
the gauge coupling and the Yukawa couplings vanish, i.e.,
B. ,8"" 0, when the anomalous dimensions satisfy the

followmg conditions:
we can immediately derive the beta functions for the Yukawa

couplings and the trilinear couplings as 2
T7=3Te-2 Ti,

By noting that the chiral superfields are represented as

24=Z1"+Z}| 262, (14)

ijk

Ijk -7 4y Ijk
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for each Yukawa coupling. We may wonder that these conthe IR region. Note that this does not always mean that these
ditions are insufficient to determine the fixed points, sincecouplings are irrelevant in Wilson's sense, since they are
the Yukawa couplings are complex in general. However thaimensionful.

phase of the Yukawa coupling is not renormalized by the real \we also regard thé26% components of the extended cou-
wave-function renormalization. Also the anomalous dimen-jings as the infinitesimal variations. Sineandh'/¥ vanish

sions are actually independent of the phases, since they ag the IR regime, the variations given by
found to satisfy[ 18]
1

dy  _ dy 5a=WZ Tim; 6°6,
ijk —\7.. (23) ( *) 1
y o"y”R leko'»ij'
Saf=allf(mf+m?+mg) 6262 (26)

As a result the phases of the Yukawa couplings are com-
pletely undetermined in all order of perturbation. This issatisfy Eq.(24). This shows thats;T;m? as well asm?
similar to the behavior of & parameter in generic gauge 2, 2 ; -

theories. On the other hand phowever tive ?elevancge 0? -+ M correspondlng fo the Yukawa_couplmg%., de-

h .I' . q ' v with ' i t their ab crease exponentially towards the IR regime. By using the IR
the couplings Is concerned only with evolution of their ab-papayior of the soft parameters clarified so far, it is seen that

solute values. Therefore, we should rather consider the rerﬂl]e beta functions for soft scalar masses also decrease expo-

; ik _|yiik|2/Q.-2 : .
couplingsay™=y"|*/8m*. . nentially. Consequently we find that the soft scalar masses
Now we assume the existence of the IR attractive NONupproach the constant values satisfying

trivial fixed points (o, ,ayf).“ Then generic low-energy ef-

fective theories turn out to be SCFT’s subject to these fixed S Tm2=0
points. Around the IR attractive fixed points, both the gauge ~
coupling and the Yukawa couplings should be irrelevant. If

we take infinitesimal variations from the fixed poing m?+ mj2+ m2=0 (27)
=a, +da, all¥=alfi+sall*, then the variations are sub-
ject to the linear differential equations for each Yukawa coupling. Each IR value is heavily de-
pendent on the initial soft parameters. However the relations
déa (4B, 9B, ik among them_ must be universal. In the case where the anoma-
MWZ da da+ EPILS day”, lous dimensionsy; are completely determined by E2),
* Yo the above Eq.27) lead to the vanishing IR soft scalar
mn mn masses for the corresponding masses. This happens when-
d5a'ym” aﬁay '9Bay . ever the anomalous dimensions of the fields can be uniquely
T Sat|——p| day", (29  determined from aR symmetry, since the dimension of the
M a |, day N

field must be given by th& charge in SCFT8].
We mention the dual SQCD as a special case. The theory

where the asterisk represents evaluation at the fixed po”;i'/lontains the magnetic quark pairg, @ and a gauge singlet

The irrelevance of these couplings means that the eigenvay- and the Yukawa coupling of them is uniqu&=yqqM.

ues of these equations are all positive. . Therefore, the soft masses of them should behave as
Next let us consider the IR behavior of the gaugino mass

and the trilinear couplinggl4,15. As we have already seen,

the beta functions for these couplings can be obtained by the (mz,mg,mf,,)ﬂjomz(l,— 1,0). (28)
Grasmannian expansion. The extended couprfnmd”d;)k 4
satisfy the same form of the RG equations: If we assumem; =mZ as the initial condition, then all scalar
03 masses are exponentially suppressed.
o

o du Ba(a,ay), C. Higher-dimensional interactions
~iik The higher-dimensional operators can be turned into ones
dall . : , : .
u—2=pI&,a,). (25) relevant to the large an_omalous dimensions at the fixed point.
du “y Y Therefore, we should include such operators as well to find
-~ the IR stable fixed points in general. However, we cannot
As aresulta, M and —y;j, h'1*/872, as well as their com- apply the RG framework for the renormalizable theories dis-
plex conjugates, are found to satisfy the same linear differcussed so far. If the Wilson RG, respecting the gauge sym-
ential equations foba and 5a9k given by Eq.(24) around  metries and supersymmetry simultaneously were found, it
the fixed point. Therefore, botkl andh'/* acquire negative would give a suitable framework instead. Here we naively
anomalous dimensions and decrease exponentially towards

SSimilar discussions of suppressing the sfermion masses in the
“We do not consider the possibility of fixed lines. dual side have also been done in Hé#].
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assume such a framework and somewhat speculatively digs the necessary condition. If the fixed point is IR attractive,
cuss the IR behavior of the soft parameters around such then all the eigenvalues of the linearized beta functions for

fixed point. the infinitesimal variation from the fixed point values must
Suppose that the superpotential of SCFT also containbe positive.
higher-dimensional operators such as Now we shall consider incorporating the SUSY breaking
o, parameters by applying the spurion method. We introduce
1y : the chiral superfieldy'2'2 In=ylilz"In—hi1l21hg2 and the
W=2 — g pl1gz g (29 P
n' real superfield$c,, adding toZ; and @ defined by Eq.(6).

Here suppose the wave function superfiélds simply given
The nonrenormalization for the superpotential and the gaugby the extension as
coupling may well be supposed to remain infadthen we
write the Wilsonian effective Lagrangian as Zi=Z(@¥" Vi K, (34)

where the extended coupling¥ ™ are defined by

c=f d40K(q§i,qb”,V)+f d26 ——tr WeW,, § . .
16gj, ylk= Yk S (mf i ml)y' T k9282, (35)
+f d20W( ) +H.c., (30)  The reasoning of this extension is the same for the Yukawa
coupling. Then the beta functions " |2 as well asa

o . can be given by extending the couplings in the rigid beta
where the superpotenti®V is given by Eq.(29). The Kaler  functions for|y'" 2. Since the fixed point is IR attractive,

potentialK given generally as the 6262 term in the extended couplings given by Eg5)
decreases exponentially again. Namely, we could obtain the
K(qbi,qS”,V):Zi ¢”e*V¢i+2 KO, 31) extended sum rule at IR as

m{+m?+- -+ mg—0. (36)
contains generic operator®, allowed by symmetries. It
should be noted that the wave-function renormalization fac- |||. SUPERSYMETRIC STANDARD MODELS COUPLED
tors Z; also depend on the effective couplings as well as WITH SUPERCONFORMAL FIELD THEORIES
other couplings in the Wilson RG.

The gauge beta function is given in the same way as Eq.
(3) except for the fact that the anomalous dimensigris Here we give a brief review on the mechanism to realize
defined from the generalized wave-function renormalizatiorhierarchically suppressed Yukawa couplings following Ref.
Z;. The beta functions for the couplings'2"'n are also [8]. We assume two sectors: One is the SSM sector, which
given by has the gauge groufsy=SU(3)XSU(2)xU(1)y or an

extended group, and three families of quarks and leptons as

A. Yukawa hierarchy

igedy dyr2rin A well as Higgs fieldsH, 4. Theith family of them are de-
B, —MT—(H—3)Y vt S (T, noted by g;, representatively, and they have ordinary
o Yukawa couplings/yl 40, dkH, 4. The other sector is the SC

ety Jy'Hz (32 sector, which has the gauge gro@c and matter fields,

which are denoted byb" representatively. The SC-sector
The beta functions fok,, are unknown though. All these beta Mmatter  fields ~ also ~ have  their  couplings
functions are required to vanish at the fixed points. If theh' "2 '@ 2---d'n, and the first two families of' are
fixed point action contains the higher-dimensional interactiorassumed to have Yukawa couplings witl', i.e.,
ylizingligiz... pin then we impose \S'®"d3g'. In the small taB scenario, the bottom quark
and tau lepton, as well as the down sector Higgs figld
must be coupled tab". Altogether we have the following
> Ty =3Tg—> T;, superpotential:
I 1

W= yH,dQLq{?Hu,d_" N T2 Tagprad e - Ppint )\rsiq)rq)sqi.
yiHy, Tty =—2(n=3) (33 (37)

The SSM matter fieldg' andH,, 4 are assumed to be singlets
under Ggc. Hence, some of the SC matter fields must
SPerturbative nonrenormalization theorem applied to the nonf@ve nontrivial representations undegy to allow Yukawa
renormalizable theories has been presented in R&. On the  couplings\''®'®%q; . The gauge couplings of the SSM sec-
other hand nonrenormalization is not maintained nonperturbativeljor and the SC sector are denoteddy(a=1,2,3) andg’,
in general, e.g., the Affleck-Dine-Seiberg superpotential. We astespectively, and the gauge gro@sc is assumed to be
sume that such corrections are absent in the following argument. strongly coupled. On top of that, as mentioned in Sec. Il, it is
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expected that the SC sector has a nontrivial IR fixed point. 20 . . » | »

Here we assume that the gauge coupliggsof the SSM 18 - 7
sector are weak compared wigfi. Then we neglecy, and 16 - .
Yukawa couplingsy[{d of the SSM sector for calculations of 14 blow up below My -
the fixed point forg’, A", and\'"1"2""n, that is, B, = B\ -

=B,=0, where T

1
Ba=Eah 3TG—Z T(1= )|,

B =Ny + vt ), (39)
2 4 6 8 10 12 14 16
log(Mc) [GeV
Bi\l,rz rn:)\rrlrz'“rn(yrl_{_,yr2+...+yrn)_ og(Mc) [GeV]

FIG. 1. Blowup ofgs.
Through this procedure, the anomalous dimensignsf the

SSM matter fieldsy' are obtained by fixed-point values of

’ rsi Imro Iy i icu-
g, A and\ , and are in general, large. In particu the weak scale. One constraint fisk, comes from the fact

lar, the anomalous dimensiof; is fixed to be a definite r . .
value in the case discussed in Sec. Il, and also in that castgatq) are charged undéBsy, and the inclusion of such

the corresponding sfermion mass is exponentially Supgaxtra matter fields change beta-function coefficient&egf,

pressed. Thus, we have the following beta functiory!df tol be asymptotically nonfree. _In that case, the gauge cou-
’ plings would be strong at a high-energy scale and compa-

B =iyl (y,i+ Yri+ YH, ) (39) rable withg’ of the SC sector. Then, the above fixed-point
Yud ’ ua calculations, neglecting,, are not reliable, and the above

and the Yukawa coupling'! at the decoupling energy scale Mechanism to produce hierarchical suppression Yukawa cou-

The decoupling energy scaM. should not be as low as

M. of the SC sector is obtained: plings, would be spoiled. For example, here we assume that
the gauge couplings dbgy should not blow up below the
| i M\ LT YR F m, )2 grand unified theorfGUT) scaleMy=2Xx10'*GeV. Then
Yu,d(Mc)=Yy,a(Mo) M_o ' (40 we take the case that the beta-function coefficier 0f3)

) is obtained byb;= —3 (just like the MSSM below M and
where y|! ((My) is an initial condition atM. The factor up toMz, and aboveM ., extra matter fieldsb, contribute
M /M, gives the suppression factor. Thus, evey'ifM) to it asbz=—3+x. Figure 1 shows the curve oM_,x)
=0(1) for most of(i,j), we can have hierarchical Yukawa corresponding to the gauge coupligg, which blows up at
matrices by powers of large anomalous dimensigns’ M. We have used the one-loop beta function. The region
Note thaty (M¢) itself is not a fixed point and its value is above the curve corresponds to the region, whgrélows
not fixed, but its suppression factor is fixed. Here largeyp pelowMy .
anomalous dimensions play a role similatt¢l) charges of Also the gauge coupling unification is spoiled if we add
the Froggatt-Nielsen mechanism with an extrel) symme-  generic extra matter fields. However, the coupling unification
try. Resultant Yukawa matrices have the same form as thetill holds atMy in the case where we add extra matter such
Froggatt-Nielsen mechanism. To obtain realistic Yukawa mathat the beta-function coefficients shift universally from the
trices, we need nondegenerate anomalous dimensjpns yalues of MSSMpMSSM_, pMSSM y atM .. We assume this
Y- . ) ) situation in this whole section. A value of the unified cou-
The decoupling energy scalel. is obtained by mass pjing @y changes from the value for the MSSM, and in gen-
terms of ®. In general, families can have different decou-era|, it becomes strong.
pling energy scales with each other, because they couple with | the previous section, we have seen that soft scalar
different fields®d'. However, here we restrict ourselves to masses are exponentia”y Suppressed around the IR fixed
the universal decoupling scallé. for simplicity. The discus-  point in the case that the corresponding anomalous dimen-
sions in the following sections can be extended to the casgjgn y; is determined definitely by E¢38). That is favorable
with nonuniversal decoupling scales. Such mass terms faor ECNC constraints because after such suppressidvis at
decoupling can be generated by another dynamical mechge have radiative corrections due to the gaugino masses of
nism. the SSM sector, which are flavor blind. Actually, such a pos-
sibility has been mentioned in Ré¢B]. However, in the pre-
vious section, we have considered the pure SC sector. It is
"This form is similar to Yukawa couplings with power-law behav- important to study the effects of finite gauge couplings and
ior due to Kaluza-Klein modes in extra dimensions, where extradaugino masses of the SSM sector for realistic models. That
dimensions actually play a role similar to anomalous dimensionds the purpose of Sec. Il B. Actually, we shall show that the
[3], and in this case FCNC problems could be solved by the IRgauge couplings and the gaugino masses of the SSM sector
alignment mechanisii26]. play an important role.
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B. Degeneracy of sfermion masses The constani’; can be obtained from fixed-point values of
In Sec. II, we have shown that within the framework of the gauge and Yukawa couplings of the SC sector by fixing a

pure SCFT’s soft scalar masses as well as gaugino mass@del from Eq.(21), and it isO(y), i.e, I'=0O(1). Itis

and A parameters, decrease exponentiall\Matin the case |mpor_tant thatl"; is flavor dependent becaus_e ano_maloue di-

where the corresponding anomalous dimensions are detdPl€nsionsy; are flavor-dependent to realize hierarchical

mined definitely. That is favorable from the viewpoint of Yukawa couplings. Thus, the difference between sfermion

FCNC problems because that would provide degenerate sfeéfaSses, €.g., the first and the second families, is obtained by

mion masses at the weak scale by flavor-blind radiative cor-

rections due to gaugino masses of the SM sector. However, 2 _ 2 1 1

in a realistic case, we have to examine two points for SSM’s My(Me) =My (Me) = Craaa(Me)M(Me) r, r,/

coupled with SCFT’s: One is that we have to take into ac- (42

count effects due to gauge couplings and gaugino masses of

the SM sector. The other point is that a running region iswvhereC;, is denoted byC;,, because the quadratic Casimir

finite. The former point is considered in this section, while inis common. Herdl', would be smaller thad’; to obtain

Sec. IV B the latter shall be discussed by use of an illustratrealistic Yukawa matrices. Naturally, we would havd 1/

ing model. —1T'1=0(1/T5). Below M. we have only flavor-blind ra-
For concreteness, we consider the case whkgas less  diative corrections. Hence, the mass difference is estimated

thanMy, and belowM ¢ we have the same matter content asas Eq.(42) at any scale belowl . Actually this difference is

the MSSM. It is possible to assumMc>My, that is, the suppressed by the one-loop factey compared with the ini-

Nelson-Strassler mechanism works abdwe. It is easy to  tial value, which is favorable for FCNC constraints. How-

extend the following calculations to such cases, although reever, whether that is indeed suppressed enough for FCNC

sults are GUT model dependent. constraints, depends on radiative corrections betwden
Here we denote gaugino masses of the SM sectdM as  and the weak scale, and an explicit value For.
We assume the universal gaugino madg=M,,, at the Before estimating nondegeneracy explicitly for the

GUT scaleMy . Recall that the gauge coupling is unified at MSSM, we comment on the fact that we have neglected the
My in the case where the beta-function coefficientsSC gaugino mas#1’ and A parametersh, , which corre-
(by,by,bg) = (bY5M+x bYSSMy x bYSSM4 x) and we are  spond to trilinear couplings among the SC sector and the SM
considering such a case. It holds tiha}/«, is a RG invari-  sector. In pure SCFT’s without effects of the SM gaugino
ant. Suppose that the theory is regarded as SCFT at the scate@ssedV ,, all of them decrease exponentially as discussed
of M.<u<My. In the RG equations of soft scalar massesin Sec. Il. However, for nonvanishing,M,, they converge
we ignore the gaugino mass aAdparameter®\, of the SC on M'=0(e,M,) and A,=0(a;M,). The RG equations
sector because they decrease rapidly. We shall come back ¢ soft scalar masses squared include the terms oM '?

this point later. Then the RG equations for soft scalar maSS@quf_ These are small compared WWAMﬁ in Eq. (41) by

are written down as the loop factore,. That justifies our above calculations.
5 Here we study the degeneracy of sfermion masses explic-
Mdmi = M..m2—C..a.M2 itly for the MSSM. Sfermion masses in the MSSM are ob-
du el mamaa tained atM .,
= Mij (M= My CaeraM3), (42) 116 .
mai(Mc)= 7| 3 asM3+3aM3+ Ealmi}(mc),
where C;, is a quadratic Casimir. In the pure SCFT limit Qi (43)

a,— 0, the second term vanishes and soft scalar masses con-
tinue to decrease exponentially. However, the exponentially

; S 116 16
suppressing beh?\_/lor is stopped by the second term._ The mﬁi(MC):r —a3M§+—alM§ (Mo), (44)
evolution of @,M% is small compared with the exponential uil 3 15
running of the soft scalar masses. Thus, the tagrl\vllg1 could )
be treated as a constant during the exponential running of the 116 , 4 )
soft scalar masses. However, the finite-size effect 2 is mgi(Mc) = Ty 3 asM3t My (Mc), (45)
important. The soft mass squarmﬁ converges on )
2 1 [ 2 3 2
, Cia ) mLi(MC)=F 3a,M5+ galMl (Mg), (46)
mi— - @a(Mc)Ma(Mo), Lil
I
) 112 )
where we denote mgi(Mc) = T, 5 @1M1|(Mc). (47)
%: i 'Cia. To be explicit, here we write radiative corrections due to
i

gaugino masses betweéh, andM,
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a3(Mz)

mgi(Mz) —mg;(M¢)= —m 1} M3(M¢)

5[1— LV

+
2 ag(Mc)

2
ai(Mz)
__2—a1(MC)} MI(Mo), (49)

1
22

(M)
1- —é(M—Z)} ME(Mo),

(52

2 ai(My)
mZ(Mz) —mZ(M¢) = 1111 (Mo M1(M¢).

(53
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0.018
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0.014

Ago.012
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0.008

0.006

0.004 1 1 1 ) 1
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log(Mc) [GeV]

FIG. 2. A5 andAj againstM .

(16/3 a3(M )+ (16/19 a3 (M)

T (8/9A a2+ (8199 A2 67
(16/39 a3(M) +(4/15) aj(M,)
= , (58)
(8/9Aa2+(2199Aa?

__3a3(Mo)+(3/5)ai(M,)

LT (312Aas+(1129Aa3 ®9

__(1219a3(M,) 66 a;(M¢)

T (21)Ad? 5 1-[ay(Mp)lay(Mo)]?
(60)

where Aa?=a?(M¢) —a?(M5). Recall that we have as-
sumed gaugino mass unificatibh,= M 4, at the GUT scale
M, . It should be noted thakt;, and therefore&mf, may be
predicted independently of the SM gaugino masses.

Figure 2 showsAg and Ag againstM .. We omitted to
showAg, because it is almost same Aa%. As a result, this
mechanism can realize favorable degeneracy between squark
masses for larg® .. ForI';>0.1, we could avoid the FCNC

We have assumed to have exactly the MSSM matter contemroblem. On the other hand, the FCNC problem would be
below M. These radiative corrections are quite large com-serious for smaller values @f; .

pared with the initial values & .. Thus the nondegeneracy,

Similarly, Fig. 3 shows\] andAz againstM .. We have a

Am%:(m%z_m%l)/m% ,whererrr is an average value of good degeneracy between left-handed sleptons. For
av’

them, is obtained as

Amg:qaaam:c)Mi(Mc) (i_ i), -
f m;(Mz) L, I
To estimate such nondegeneracy, we define
- Ctaa( M(C)I\Z/I)a(Mc) _ 55
To be explicit, we use
(16/3 a3(M¢) +3a3(Mo) +(1/15 a3 (M) 58

QT T (8/9)Aal+ (3/2A a2+ (1/198 A d2

>0.1, we could avoid the FCNC problem. However, for the

0.11 T T T T T
0.1 —\——’/
0.09 |- é .
0.08 |- i
Af

0.07 | -
0.06 |- L e
0.05 - -
004 1 ! 1 | |

10 11 12 13 14 15 16

log(Mc) [GeV)

FIG. 3. AT andA; againstM...
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0.11 T T T T T 1 T T T T T
5=0 0.9 - A
01f 7 . ]
\—/// 08 Q _
0.09 \__/// 07k B
S = —]\/112 06 L |
0.08 \_—/’/‘j os
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0.05 F B 01k - E
€
0 1 I3 1 1 1
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log(Mc) [GeV]
FIG. 5. Ratios of sfermion masseshb; at the weak scale. The
three solid lines correspond tog /M3, m{ /M3, andmg /M3, re-

) ) spectively. The two dottedupper and lowerlines correspond to
nght-handed slepton the degeneracy is not strong pomparqgﬂos of gaugino masses M5 (M,/M5 andM, /Ms).
with squarks and left-handed sleptons. The reason is that the

radiative correction due to the bino is not large compared We have assumed the universal gaugino nidg$M )

with the others. In this case, we would be faced with the=M,, and can relax the condition. However, all of the

FCNC problem fol’;~0(0.1). above results on degeneracy of sfermion masses are similar,

We have ignored contributions to the RG equations due tdecause only one of the gaugino masses contributes almost

the U(1)yD term. However, such a contribution would be dominantly to each fermion mass degeneracy, Mgy, M,

sizable, in particular, for the right-handed slepton massesandM; contribute to the degeneracy of squark masses, left-

Therefore, we also discuss contributions due tolii{é ), D handed slepton masses and right-handed slepton masses, re-

term. Including such effects, the right-handed slepton masspectively.

squared’ngi at M. is obtained: We have assumed that the SC region is belldw. Alter-
natively, We can take the possibility that the SC region is
betweenMy and the Planck scale, and the Nelson-Strassler

FIG. 4. Az againstM . with S=0, S=—M?, andS= —10M?.

mZi(M¢) = F§a1[4Mi—S](Mc), (61)  mechanism would work in some GUT model. Such a case
el can be studied similarly and we may have a significant
_ . change for the slepton masses. This GUT scenario shall be
whereS=trYnt, ie., discussed elsewhefe7].
S= mﬁu—mﬁd-FEi (méi—Zm%i-Fmsi—m%i-i— mé). C. Mass spectrum
(62) Here we show representative mass spectra in the case

where we have the exactly same matter content b&liguas
At M, the fields that do not couple to the SC sector, e.g.the MSSM and the gaugino masses are unifiedVigt,
top squark and Higgs fields, have nonsuppressed soft scalbta(Mx) =My,. As we saw in Sec. Ill C, sfermion masses
masses, and these masses contribute to the initial value 6&n be quite suppressedMt for the fields that couple with
S(M.), which is, in general, not suppressed and would béhe SC sector and whose anomalous dimensions are deter-
O(M2). In addition, the radiative corrections including the mined definitely. Namely, we have no-scale type of initial
effect are obtained: conditions for such fields. Thus magnitudes of sfermion
masses of this type are calculated only by radiative correc-

, , 2 [ af(Mz) , tions betweenM . and the weak scalé48)—(53). Figure 5
mgi(Mz)—mgi(M¢)= —~|1- ———|M1(M,) shows ratios of sfermion masses Nb; at the weak scale.
1 1(Mc) The three solid lines correspond tag /M3, mi /M3, and

1 [ay(My) me/Mg3, respectively. We have takeB=0. Also the two

1 m— 1}S(MC). dotted lines show ratios of gauginos tb;. The upper and

the lower correspond tM,/M; andM /M3, respectively.
(63)  Note that the right-handed slepton is lighter than Baimo.

In this case the lightest sypersymmetric partit!€P) would
Figure 4 showsAz including these effects fo5(M;)=0, be slepton and the ordinary no-scale type initial condition
—M2(M,) and —10M2(M_). We have a slight suppression has the same problef28,29, although we have to take
of Az, but that is not drastic enough to change its ordermass eigenvalues and it depends on the overall magnitude of
Thus, forl";=0(0.1), we would still have the serious FCNC soft masses. However, thg(1)y D term has a sizable effect
problem. In this case, we may be required to take the degeras discussed in Sec. IlIB. Figure 6 shows/Mj for
erate case Withyg;=7ye, andI'g;=T"g,. That would con- S(Mc)=—0.5M§(MZ). In this case the LSP is the
strain the form of the lepton Yukawa matrix. neutralino.
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0.5 ' . * ' ' and P must be equal, sinc®P forms aGgc singlet. There-
0.45 7 fore, the dimensions dBgy, representations d andP are
04+ 7 also necessarily the same.
0385 1 7 Taking into account the fact that carriesGgy, charges,
03 1 the possible types of models seem to be rather limited. We
ma/ My [ § = —0.5M; 1 shall enumerate a few simple examples below.
0.2
: 1. Chiral SU(5) model
00(;; :._——/”///S—_j/‘f The SC-gauge groufsc is SU(N,) and the SM-gauge
'0 } , , , 0 group Ggy is SU(5). We introduce the following chiral
10 11 12 13 14 15 16 fields assigned the representations undgsd,Gsy):
log(Mc) [GeV]
FIG. 6. mg/M for S=0 and—0.5M2. Q:(N¢,5), P:(N¢,5), q:(1, 10. (64)

The masses of the sfermion, which do not couple with thel h€ superpotential is given B}Y=XqQP, and the IR fixed
SC sector, e.g., top squark massasd sbottom and stau Pointis found to exist foN.=2,3. _ _
masses for the large tghscenario depend on their initial N this class of models, the SC-gauge nonsinglet fiQl@md
conditions. It is natural to assume their masses are of Pelong to the same dimensional representations of the SM-
O[My(My)] or O[Ms(M¢)]. Note that the ratio 9auge group and, therefonza, th(gir anomglous dimensions are
M3(M;)/ My, is less than 3which is expected in the ordi- €qual® All scalar massesmg, mp, andmg converge to 0,
nary MSSM if M. is lower thanMy, because the unified irrespective of initial values.
gauge coupling becomes large by adding extra matter fields.
We have a large mass gap between the stau and the other 2. L-R symmetric SU(3) model
sleptons if the stau couple with the SC sector. On the other gypposeG.=SU(N,) andGgy=SU(3) and introduce
hand, whether the top squark is lighter than the other squarks
depends on the initial condition. Anyway, we can predict ) - — =
definitely the mass spectrum for the sfermions coupling with Q:(Ne.3),  Q:(Ne.3),
the SC sector for fixetl.. Also, we could relax the condi- .
tion with the universal gaugino masé,(My) =M. q.:(1,3, qg:(1,3). (65)

P:(N.3), P:(Ng,3),

IV. ANALYSES OF SQUARK MASSES IN EXPLICIT

Also the superpotential is defined a8V=A\ P
MODELS - perp (9. Q

+grQP). The IR fixed point is found to exist fax.= 3.
A. Models with suppressed soft parameters The anomalous dimensions @ andQ, and alsoP and P,

The models based on the SCFT with exponentially supare the same by the left-right symmetry. Therefoyg:+ yp
pressed scalar masses are favorable phenomenologically i fixed by the fixed-point equation given by E2). In
avoiding the flavor problems. In this section, we consider thesuch cases, however, we need to assun‘é—:: m2—, m,%
perturbatively renorma!izable theories enquipg this property._ m% for exponential suppression of the scalar massgs
Indeed we could consider also many varieties by using the P 2 9. L
SCFT’s with higher-dimensional operators as discussed iﬁmquR‘ Note thatmg or mp is not reduced to 0, though the
Sec. IIl. However, in that case, we should start with the assum of them decreases exponentially.
sumption that there exists such an IR fixed point, because of For these types of models, we cannot introduce two
the lack of RG frameworks applicable to nonrenormalizableduarks with distinct anomalous dimensions in a single SC-
theories. Therefore, we shall restrict ourselves to the renodauge sectdtIn other words, we need to assume a different
malizable theories. Then the types of models with suppressedC-gauge theory for every quark or lepton to be given large
scalar masses are found to be rather limited as follows. ~anomalous dimension. There may be some exceptional cases

Suppose a quarueptod q Coup|es to the SCFT through where the Yukawa interactions Composed Only of the SC-
Yukawa interactiomgQP. Then we search for the models in gauge nonsinglet fields are also allowed. In this paper we are
which yo+ vp is uniquely determined by the fixed-point not going to _explore such possibilities. Hereafter we d_|scuss
conditions in terms of the anomalous dimensions. In thighe IR behavior of the soft scalar masses by considering the
case, the squarlslepton mass decreases exponentially, asmodels similar to the above examples.
shown in Sec. Il. Now the interactions are limited to the
Yukawa type in renormalizable theories. Here, let us also
assume that there are no Yukawa terms composed only offthe Su(3)2 model in Ref.[8] belongs to this class.
nonsinglet fields undeGgc. Then yq+ yp must be deter-  °The hierarchy of Yukawa couplings can be generated by assum-
mined by the condition for vanishing gauge beta function.ing different decoupling scaled . instead of the anomalous dimen-
This means that the gauge beta function should depend onljons. In such cases we may make several quarks couple to a com-
on yq+ vp. On the other hand, the quadratic Casimir€of mon SC sector.
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B. Sfermion mass convergence in th&U(3)scXSU(3)¢ The superpotential is defined by
model
In Sec. 1ll B we have evaluated the flavor dependence of W=\(0:QP+0:PQ) +YigigiH. (69

squark Masses. In this discussion we have ass_u_med that Sfzfzre we have simplified the Yukawa couplings to the diago-
scalar masses in the SC sector converge sufficiently. How-

ever, the range of scale where the theory is regarded as néall ones. In this toy model only the Yukawa coupling of the

. ) 2
SCFT, must be finite, otherwise the Yukawa couplings ardi'St generatiory, is suppressed. Also we assunm%zma
suppressed out too much. Therefore, soft scalar masses wahd m§,=m2;.

not converge completely either at the decoupling sééje Below we analyze the RG flows of the various couplings
The degree of the convergence is related to the suppressigiumerically by substituting the anomalous dimensions in the
for the Yukawa couplings. First let us estimate roughly howexact beta functions with those evaluated in one-loop pertur-

much the squark masses converge. bation. The anomalous dimensions are given by
Suppose that the theory is regarded as a SCFT at the scale

of M,<u<A.. In this region the soft scalar masses are Yo=7vp=—5a'+2a,—}a, (70)

subject to Eq(41) ignoring the gaugino mass addparam-

eter in the SC sector. Then the speed of convergence is given Yq1=6ay—fa+tay, yq=—3ata, (i=23),

by the smallest eigenvalug of the matrix M. This eigen- (77

value is found to be of the same order of the anomalous

dimensions ofg; . Let us define the deviation of the squark Y=3(ay;+ ay+ ays), (72)

mass from the convergent value bysm?=m? e e e
—(C,IT,)asM2. Then the deviation aé,, which is esti- Where a’=g'*/8m", a=g°/8n*, a,=|\["/87" and

mated roughly as =|yi|?/8=2. It is straightforward to derive the beta functions
for all couplings by using formula shown in Sec. Il. Here let
Sm3(Mg)=e & INAe/Mo sm2(A ), (66)  us write down only the beta functions for soft parameters in

the SC sector:
has to be much less tharsM3 in order that the formula for

the squark masses, given in the previous section, is valid. dM’ B 3a’'(2—3a’) ) 6a'? W
Also if ém? is found to be much larger thanzM3, the P ae = T(1-3a)? [142), M= T—=-77q"
squark masses may not be degenerate enough so as to avoid (73
the flavor problem.

The ratio of the Yukawa couplings is determined by the dA,

— 1 1
anomalous dimension of the quarks. By noticing that the MW——(Z%)WH)- (74)
eigenvalueg; is found to be the same order as the anomalous
dimension, we evaluatém? also as dm2 dm?
p—2=pu——r =y (79
du du Q
smecM g~ 2N ey - a6
T YA TS mg, R dnf
K =it (76)

wheremqi denotes the quark mass of ttth generation. The

deviationsm? for the seco.nd.generation shouldzbe especialljyhere y*) and y@ are obtained by the superfield extension
suppressed by a factor similar tas/my~0O(10™“). There-  discussed in Sec. Il. By neglecting terms @{«?) or of

fore, there a large uncertainty in the squark mass due to thi@(ayl) as negligible amounts, they are given by
deviation atM . for the second generation may remain. If the

squark mass is the same order as the SM-gaugino mass a;/g): —2a'M'—2a,A,—5aM, (77)
A, this uncertainty is supposed to be much larger than the
convergent value evaluated in Sec. IV A. Therefore the SM- yglfz —BayA,— ZaM, (79
gaugino mass is required to be fairly larger than the squark
masses af\ .. (2)— _ 8, 1|2 , 20 m2+m2+m?
In practice the above argument is rather bold. In the fol- 7 s (2] e S+ 2a(A) Mgt mp )
lowing, we shall demonstrate the RG flows for the squark —Za|M|?, (79
masses and their converging behavior explicitly in a concrete
model and examine the convergence. Suppose both of theyy = 6a, (|A\|2+mg+mz+m?) — Fa|M|?, (80)
SC-gauge and SM-gauge groups &¥(3) and introduce
the following chiral fields: whereAy, =3a’ (IM’[2—mg—m3) as defined by Eq(9).
_ . o The fixed points are found a:(«, ,a,,)=(5/16,1/6)
Q=(33), Q=(3,3, P=(33, P=(3,3), and B:(a} ,a,,)=(3/16,0). PointA is the IR attractive

. fixed point and the anomalous dimensions there are found to
4i=(13, q=(13 (i=123, H=(11. (68 be
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FIG. 7. The running couplingsy¢,M’,A,) are shown in ratio
to their initial values by a solid, a dashed, and a long-dashed line,

2 2 2 H
respectivelyt = logyo( i/ A). FIG. 8. RG flows for (nf,mg+mp) shown by solid and dashed

lines, respectively. The long-dashed line giveld?.
1

—yp =—14, =1, _ » . .

Yo7 IR T T2 Yo given atA, the deviationsm? is found to remain about ten

In the region thatM’ and A, are suppressed to negligible times larger than the converging valueMdf . Thus we con-
amounts, the RG evolution of the sfermion masses are givefude that the strongly degenerate squark mass spectrum

by evaluated in Sec. lll, is indeed achieved irrespective of the
) ) 1602+ 4 4 ) 5 initial sfermion masses, if the SM-gaugino mass is fairly

d [mg+mp) [ 5% taay, fan | (mi+md larger than them.
Pap\ m2 |~ 6y, 6y, m3 In practice, the theories must become SCFT's at a certain

scale in order to generate finite ratio among Yukawa cou-
2 plings. Therefore, we have also performed similar observa-
1)- (81)  tions by assuming the initial vales ef anda, off the fixed
point at the higher-energy scale,> A .. However, the re-
Note thatméJr m3 but not each ofm3 andm3 converges to  sults obtained on the convergence for the sfermion masses,
O(a|M|?) in this model. Whena|M]? is treated as a con- are not significantly changed.
stant, the eigenvalues of this coupled equation are found to
be (2.64), (0.59. Indeed the smaller ong=0.59 is close to
the anomalous dimension 1/2. Therefore, degrees of suppres- V. GENERATION OF u TERM BY A SINGLET
sion for the Yukawa coupling and the scalar masses are al- go far, we have discussed the cases where the large
most the same in this model. It is also expected that th@nomalous dimensions for quarks and leptons are determined
scalar masses converge asn;—0.78«M%m3+Mi  definitely. It has been seen that the corresponding sfermion
—4.55M?, masses are exponentially suppressed and converge to nonva-
Now we present the results obtained by numerical analynishing values due to effects of an SM-gaugino mass. It will
ses of the RG equations. In Fig. 7, the aspect of suppressiase shown that this converging value for (m&ssan be nega-
for (y;,M’,A,) are shown with respect to=10g,o(1/Ac).  tive for a singlet field coupled with the SC sector. The order
Here we seta’ and @, on the IR fixed point. The initial of the tachyonic (mas8$)is fixed to O(aM?), namely, the
values for other couplings are chosen as folloMs:=A,  weak scale, irrespectively of the bare scalar mass. On the
=1.0,M=5.0, a=1/(487), and ey =1/(877). The value other hand, the weak scale mass tégrterm) in the super-
of « refers to the GUT gauge coupling. It is seen that thesymmetric SM has no theoretical grounds and poses the so-
Yukawa coupling is smoothly suppressed. If we supddse called » problem[30]. It has been discussed sometimes that
to be the scale that the Yukawa coupling is suppressed by singlet can explain the term by developing its vacuum
1072, thent.=log,o(M./A.) is found to be—2.01. expectation valu¢VEV) of the weak scal¢31,32. In this
Next we examine the RG flows of the sfermion masses byection we propose another solution for theproblem by
varying the initial values and observe the converging behaveonsidering a singlet field coupled with the SC sector.
ior. Figure 8 shows the RG flows obtained by varying the Suppose that a singlet fieBlis coupled to the SC sector
initial value for mf between[0.0, 2.0 with settingmf  through the superpotenttél
=m3=1.0. It is seen that the sfermion masses converge to
the values oO(«|M|?), though the coefficients are slightly
shifted from the above naive estimation{—0.3xM?. Itis %Here we assume the bageterm is absent in the superpotential.
found also that the range oif shrinks to about 5% of initial  |ndeed the term may be prohibited by imposing a discrete sym-
one atM.. Actually we obtain almost the same results for metry. However the discrete symmetries lead to a cosmological
any setting for the initial couplings. For generic initial sfer- problem by forming domain walls in general. Alternatively we may
mion masses of the same order of the SM-gaugino masstroduce an extr&J (1) gauge symmetry to forbid the bageterm.

—§a|M|2
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W=1SQQ (82) yp=—3a'+2ay+tay—3a, (87)

— . =6a,—Sa, 88
Here we also assume tha{Q) carries SM-gauge charges. Ya, TP T 3 (88)
By assuming’néz mza, the form of the RG equations for the vs=3a, +3ayr. (89
scalar masses are given generally as i ) ) ,

The IR fixed-point couplings are found at, =3/16, «,,

dm2 = a,, = 1/6. By ignoring the gaugino mass aAcarameter
M—Qz(a+2b)mé+ bmi— Coa|M|?, of the SC sector again, the RG equations for the scalar
du masses are given by
dmé , g mg+ma 13/4 2/3 13 [ mi+m}
y73 m = Zch+ Cms, (83) n= mgl = 1 1 0 mczh
du 2 2
. . mS 1 0 1 mS
where the gaugino mass aAdparameter have been ignored
again. The coefficients, b, ¢, andC, are positive and de- 16 2
termined by group-theoretical factors. — gaMz 1], (90)
If Q andQ are SM-gauge singlets, @4=0, the scalar 0

2 2 .
massesn, andms are reduced to 0 exponentially. However where the fixed-point couplings are used. From this equation,

i - i 2 - .
the correction by the SM-sector ge}ug_md)Ml , makes the it js found that the scalar masses converge as
scalar masses converge to nonvanishing values. We can treat

the gaugino mass as well as the gauge cou'pling in the SM- mé+ m%, 16/27
sector as constants, since their evolution is slow enough. m2 —>1—6aM2 11/27 91)
Then the scalar masses converge to 1121 '

m3 —16/27

Co
mé—>;a|M|2,

Thus it is seen that the singlet becomes tachyonic indeed.
As another possibility for a singlet to develop the weak
scale VEV, we may consider the SCFT’s whose anomalous
5 Co ) dimensions are not uniquely determined by the fixed-point
Mg— — Ta| M|?. (84) conditions(22). In such cases, the sfermion masses converge
to certain values of the same order as the initial masses.
Therefore, the singlet field can be driven to be tachyonic by

. . . he Yukawa coupling to the SC sector. However, the converg-
irrespective of the initial values of the scalar masses. Th ng values depend on the initial conditions and, hence, it is

singlet mass remains to be tachyonic and also appears (b o tomatic for the singlet to become tachyonic contrary to
O[aM“(M,)] at the weak scale. Now we suppose that the,o ahove case

bare supersymmetric mass term is forbidden by an extra

U(1) gauge symmetry and th&tcarries thisJ(1) charge so VI. CONCLUSIONS AND DISCUSSIONS
as to couple with Higgs fields through Yukawa interaction
SHyH4. Also the potential foSis supplied by thé term of
this gauge interaction. Therefore, theterm can be gener-
ated by the VEV(S of electroweak scale induced by the
tachyonic mass.

The singlet field generating the term of the weak scale
can be incorporated with the SC sector inducing Yukaw
suppression. Let us demonstrate this here by introducing
singlet to theSU(3)s5cX SU(3)c model analyzed in Sec. IV.

Here we should note that the sing®thecomes tachyonic,

We have studied soft SUSY breaking parameters in the
Nelson-Strassler type of models: SSM’s coupled with
SCFT’s. We have clarified the condition to derive the expo-
nential suppression of sfermion masses within the framework
of pure SCFT’s, i.e., we have suppressed sfermion masses
for the fields whose anomalous dimensions are determined

efinitely.
2 In a realistic case with nonvanishing gauge couplings of
the SM sector, however, the terragM? in RGE'’s of sfer-

We extend the superpotential of the SCFT as mion masses, play an important role in realizing degenerate

- o — sfermion masses. The sfermion masses converge on
W=A(q;QP+q:PQ)+y;jqigiH+A"SQQ O(a,M?2) and these are flavor dependent unlgss ;. We

I > have shown explicitly how much degeneracy we have be-

+A'SPP+SH. (85 tween sfermion masses in the MSSM. For squarks we can

, , ) ) , have suppression strong enough to avoid the FCNC problem.
At the IR fixed point, the anomalous dimensions are fixed tapgn the other hand, for sleptons, such suppression is weak.
be yo=yp=—1/2, yq1=ys=1. Itis seen thak’=\" atthe  For squarks, this mechanism is attractive even if we could

fixed point fromyq=yp. not obtain sufficiently realistic Yukawa matrices only by the
Below we examine the RG equations by applying theNelson-Strassler mechanism, i.e., it might be useful to intro-
anomalous dimensions obtained by one-loop perturbation: duce a SC sector in order only to suppress initial nondegen-

eracy between squark masses.
Yo=—35a' +2a +a, —5a, (86) We have assumed that the SC region is beMw. It is
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also possible that the SC region is abdtg and the Nelson- are determined definitely. Otherwise, squark and slepton
Strassler mechanism would work within the GUT frame-masses are of the same order as the initial values. Suppose
work. Such a case can be studied similarly and we wouldhat soft SUSY breaking terms appear only in the SC sector
have a significant change for the slepton masses. Suchiacluding squarks and sleptons coupled with this sector,
GUT scenario shall be discussed elsewHéd. while the SM sector has no SUSY breaking terms, that is,

Also we have discussed the possibility for generating thevi,=0 for the gaugino masses of the SM sector zm%i
w term. We can have naturally the singlet fields, which have=0 for the stop as well as for the sbottom and stau for the
tachyonic masses (M) and whose VEV’s generate the l|arge tang scenario. In this case, the gaugino and the stop
supersymmetric mass term of the Higgs fields. It might befield of the SM sector gain masses due to higher loop effects
possible that a similar mechanism generates mass terms ffbm the SC sector. Thus, those masses are suppressed by
the SC matter fields, so that they would decouple the SQoop factors compared with the squark masses of the first and
sector from the SM sector. This decoupling scale of the SGhe second families. This is one of the possibilities to realize
sector iSO(M), M =0(M;). That has the problem of the the decoupling solution. However, note that although squark
blowup ofg, as discussed in Sec. lll A, if those are chargedmasses of the first and the second families appear in the same
underGgy. order as initial values in general, the sign(ofass? as well

Moreover, an application to the neutrino sector is interestas the values, are totally dependent on initial sfermion
ing. Since the right-handed neutrino is tgy singlet, we  masses in the SC sector. We must choose the initial condi-
have less limitation for model building. Such an applicationtions to avoid tachyonic sfermion masses.
will be studied elsewhere.

We have studied mainly the degenerate solution for the
FCNC problem. Finally we comment on the decoupling so-
lution. It has been shown that the sfermion masses exponen- The authors would like to thank J. Kubo and K. Yoshioka
tially damp in the case where their anomalous dimensionor useful discussions.
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