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Sfermion masses in Nelson-Strassler-type models: Supersymmetric standard models
coupled with superconformal field theories
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We study soft supersymmetric~SUSY! breaking parameters in the Nelson-Strassler-type models: SUSY
standard models coupled with superconformal field theories~SCFT’s!. In this type of model, soft SUSY
breaking parameters including sfermion masses can be suppressed around the decoupling scale of SCFT’s. We
clarify the condition to derive exponential suppression of sfermion masses within the framework of pure
SCFT’s. Such behavior is favorable for degeneracy of sfermion masses. However, the realistic sfermion masses
are not quite degenerate due to the gauge couplings and the gaugino masses in the standard model sector. We
show the sfermion mass spectrum obtained in such models. The aspect of suppression for the soft SUSY
breaking parameters is also demonstrated in an explicit model. We also give a mechanism generating them
term of the electroweak scale by a singlet field coupled with the SCFT.
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I. INTRODUCTION

Understanding the origin of flavor structure, i.e., hier
chical fermion masses and mixing angles, is one of the m
important issues in particle physics. Actually, several typ
of mechanisms to realize the fermion mass matrices h
been proposed: e.g., the Froggatt-Nielsen mechanism@1# and
some new ideas concerned with extra dimensions@2,3#.

Supersymmetry extension is one of the most attrac
ways beyond the standard model~SM!. In supersymmetric
models, realization mechanisms of fermion mass matrice
general, affect the sfermion sector. Each realization mec
nism of the flavor structure would lead to a proper pattern
the sfermion mass matrices as well as supersymm
~SUSY! breaking trilinear couplings. For example, within th
framework of the Froggatt-Nielsen mechanism with gaug
extra symmetries, sfermion masses have the so-calledD-term
contributions, which are proportional to charges of fermio
under broken symmetries. Alternatively, if the Yukawa co
plings are subject to infrared~IR! fixed points in the manne
of Pendelton and Ross@4#, we have specific relations amon
the soft SUSY breaking terms@5#. Thus, the study of the
sfermion sector is interesting to distinguish several types
realization mechanisms of the flavor structure. Furtherm
the sfermion sector has severe constraints due to experim
of flavor changing neutral current~FCNC! processes as we
as CP physics@6#. FCNC problems can be solved by thre
ways: ~1! degenerate sfermion masses,~2! decoupling of

*Email address: kobayash@gauge.scphys.kyoto-u.ac.jp
†Email address: terao@hep.s.kanazawa-u.ac.jp
1The recent measurement of the muons anomalous magnetic

ment @7# disfavors the decoupling solution at least for the slep
sector, if the deviation from the prediction of the SM is indeed d
to superpartners.
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heavy sfermion masses,1 and ~3! the alignment of the fer-
mion and the sfermion bases.

Recently, supersymmetric standard models~SSM’s!
coupled with superconformal field theories~SCFT’s! have
been discussed by Nelson and Strassler@8#. Here the SCFT
means the theory realized at a nontrivial IR fixed point. Su
fixed points are known to exist according to the discussi
given in Ref.@9#.2 Within this framework, quark and lepton
fields coupled with the superconformal~SC! sector have en-
hanced anomalous dimensions due to strong gauge
Yukawa couplings in the SC sector around IR fixed poin
The anomalous dimensions lead to the hierarchically s
pressed Yukawa couplings at low energy in the SSM se
even if those are ofO(1) at high energy. Thus, this ca
provide one type of mechanism to generate realistic qu
and lepton mass matrices.

Superconformal IR fixed points have more intriguing a
pects for renormalization-group~RG! behavior of SUSY
breaking parameters. For example, the IR behavior of so
broken supersymmetric QCD has been studied in Ref.@14#
and it has been shown that the gaugino mass and the sq
masses are exponentially suppressed around the IR fi
point.3 Furthermore, its dual theory is described in terms
dual quarks and singlet~meson! fields @9#. In the dual side,
SUSY breaking trilinear couplings are suppressed. Moreo
the soft scalar masses of the singlet fields, as well as the
of ~mass!2 for the dual squark and its conjugate, are found
be suppressed.

In Ref. @8#, it has been mentioned that the above behav
of suppressed soft scalar masses around the IR fixed p
can be useful to avoid the dangerous FCNC processes.
cause it is expected that sfermion masses at least for the
and the second families would be quite suppressed at

o-
n
e

2See Ref.@10# for a review of superconformal theories and the
dual descriptions. The IR fixed points have been discussed als
Refs.@11,12,13#.

3See also Ref.@15#.
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decoupling scale of the SC sector, and that after decoup
the masses receive radiative corrections due to gau
masses of the SSM sector, which are flavor blind. Thus, s
mion masses could be degenerate at low energy for any
tial condition at high energy.

From the above-mentioned phenomenological viewpo
it is quite interesting to study the IR behavior of softly br
ken SCFT’s and SSM’s coupled to the SC sector, and
clarify the conditions leading to exponentially suppress
SUSY breaking terms. That would provide useful constrai
for model building.

In this paper, we first study the IR behavior of gene
softly broken SCFT’s by means of the so-called exact b
functions. The conditions to realize suppressed SUSY bre
ing terms will be shown. It is also shown that some fie
become tachyonic in generic cases. These aspects aroun
IR fixed point are also useful for phenomenology. Next
discuss phenomenological aspects of SSM’s coupled with
SC sector. Taking account of the effects due to gaug
masses of SSM’s, the sfermion masses are found to conv
to flavor dependent values. We study this flavor depende
of the sfermion masses that remained after suppression,
show how much degeneracy between sfermion masses
nally achieved at the weak scale. In practice, the range
scale where the SSM’s couple with the SC sector must
finite to generate the small but nonvanishing Yukawa c
plings. Therefore, the sfermion masses do not totally c
verge at the decoupling scale. We also discuss the amou
convergence by demonstrating the RG flows for expl
models. We also mention that the SCFT may resolve thm
problem in SSM’s in a natural way. We will show a model
which soft SUSY breaking mass of a singlet coupled w
SCFT’s becomes tachyonic and its vacuum expectation v
appears of the weak scale automatically. If this sing
couples to the Higgs fields, then them term may be gener
ated through the vacuum expectation value of the w
scale.

This paper is organized as follows. In Sec. II, we stu
the IR behavior of pure SCFT’s with soft SUSY breakin
terms, and show the condition for suppressed sferm
masses. We also give speculative considerations on SC
with nonrenormalizable couplings and corresponding SU
breaking terms. In Sec. III, we study SSM’s coupled with t
SC sector. In Sec. III A we give a brief review on the setup
Nelson-Strassler models, and also a constraint for the de
pling scale of the SC sector is given. In Sec. III B it is fou
that gaugino masses in the SSM sector have important m
ing for exponential suppression of soft scalar masses, w
is also significant from the viewpoint of FCNC constrain
Within the framework of the minimal SSM~MSSM!, we
show numerically how sfermion masses are strongly deg
erate at the weak scale. Also, a typical mass spectrum
shown in Sec. III C. In Sec. IV, we consider explicit mode
showing the desired suppression. After discussing the ty
for such models in Sec. IV A, we demonstrate typical R
flows in an illustrating model in Sec. IV B. The convergen
of the sfermion masses are also examined there. In Se
the m problem is discussed. Section VI is devoted to disc
sions and the conclusion.
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II. EXACT RESULTS FOR SOFT MASSES IN SCFT

A. Beta functions

In this section, we are going to discuss the IR behavior
the soft parameters added to generic SCFT’s. In particu
soft scalar masses will be found to satisfy interesting s
rules. Our argument is based on the explicit form of the b
functions for soft parameters@16–23#. Therefore, we first
review the exact beta functions of general softly broken
persymmetric gauge theories in this section.

Let us begin with the gauge coupling and the correspo
ing gaugino mass. The holomorphic gauge couplingS
51/2gh

2 satisfies the RG equation~RGE!:

m
dS

dm
5

1

16p2 S 3TG2(
i

Ti D , ~1!

where Ti is the Dynkin index andTG denotes the Dynkin
index ~quadratic Casimir! of adjoint representation. The
physical couplingg is related to the holomorphic couplin
through the general formula

8p2~S1S†!2(
i

Ti ln Zi5
1

a
1TG ln a1 (

n.0
anan

[F~a!, ~2!

wherea5g2/8p2 and Zi denotes the wave-function reno
malization of the chiral superfieldf i . The coefficientsan are
the scheme-dependent constants and the Novikov-Shifm
Vainstein-Sakharov~NSVZ! scheme@24# is given by an
50. From this relation the beta function fora is given ex-
actly as

ba5m
da

am
5

1

F8~a! F3TG2(
i

Ti~12g i !G , ~3!

where the anomalous dimensiong i is defined by

g i52
d ln Zi

d ln m
. ~4!

Here we assume the wave-function renormalization to be
agonal just for simplicity.

The gaugino mass can be incorporated with the ga
coupling by superfield extension. The holomorphic coupli
is extended as

S̃5
1

2gh
2 ~12Mu2!. ~5!

HereS̃ satisfies the same RGE asSdoes. On the other hand
we also extend the wave-function renormalization factorsZi
and the physical gauge coupling to real superfields as

Z̃i5Z̃f i~12mi
2u2ū2!Z! f i ,

ã5a@11Mu21M̄ ū21~2MM̄1Dg!u2ū2#, ~6!
3-2
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whereM and mi
2 give the gaugino mass and the soft sca

masses, respectively. We have extracted the chiral and
antichiral parts ofZ̃i as Z̄f i and Z! f i for the wave-function
renormalization of the~anti-!chiral matter fields. HereDg is
determined by consistency with the extended relation

8p2~S̃1S̃†!2(
i

Ti ln Z̃i5F~ ã !, ~7!

and is found out to be

Dg5
1

aF8~a! F(
i

Timi
22@a2F8~a!#8MM̄ G . ~8!

In the NSVZ scheme,Dg is given by@20–22#

Dg52
a

12TGa F(
i

Timi
22TGMM̄ G . ~9!

The beta function of the gaugino mass can be deri
from the extended relation by expanding withu2 and found
to be

m
dM

dm
5m

d ln ã

dm U
u2

5
1

ãF8~ ã ! F3TG2(
i

Ti~12g̃ i !GU
u2

,

~10!

where the extended anomalous dimensiong̃ i is given by

g̃ i52
d ln Z̃i

d ln m
[g i1g i

~1!u21ḡ i
~1!ū21g i

~2!u2ū2. ~11!

Next let us consider the Yukawa couplings and the tril
ear couplings given by the superpotential

W5 1
6 ~yi jk2hi jku2!f if jfk. ~12!

The SUSY breaking trilinear couplinghi jk is often written as
hi jk5yi jkAi jk , where Ai jk are calledA terms. Because o
nonrenormalization of the superpotential, the holomorp
couplingsYi jk5yi jk2hi jku2 are renormalized by the chira
superfieldZ̃f i as

Ybare
i jk 5Yi jk Z̃f i Z̃f j Z̃fk. ~13!

By noting that the chiral superfields are represented as

Z̃f i5Zi
1/21Z̃i uu2u2, ~14!

we can immediately derive the beta functions for the Yuka
couplings and the trilinear couplings as

by
i jk5m

dyi jk

dm
5

1

2
~g i1g j1gk!y

i jk ,
07500
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i jk5m

dhi jk

dm
5

1

2
~g i1g j1gk!h

i jk2~g i
~1!1g j

~1!

1gk
~1!!yi jk . ~15!

It has been known that the wave-function superfieldsZ̃i
are also given by the extension ofZi(a,yi jk ,ȳi jk) @19#:

Z̃i5Zi~ ã,ỹi jk ,y! i jk !, ~16!

where the extended Yukawa couplingsỹi jk are defined by

ỹi jk5Yi jk1 1
2 ~mi

21mj
21mk

2!yi jku2ū2. ~17!

Therefore, the superfieldsZ̃i are given explicitly in terms of
the rigid factorZi as

Z̃i5Zi1D1Ziu
21D̄1Zi ū

21D2Ziu
2ū2, ~18!

whereD1 andD2 are the differential operators defined by

D15Ma
]

]a
2hi jk

]

]yi jk ,

D25D̄1D11~MM̄1Dg!a
]

]a
1

1

2
~mi

21mj
21mk

2!

3S yi jk
]

]yi jk 1 ȳi jk

]

] ȳi jk
D . ~19!

Here it will be helpful for the later discussions to note th
ãy

i jk5u ỹi jk u2/8p2 satisfies the same form of renormalizatio
as the rigid one:

ãybare
i jk 5ãy

i jk Z̃i Z̃ j Z̃k. ~20!

Moreover, we also find the beta functions for the sca
masses by the superfield extension as

bm
i
2[m

dmi
2

dm
52m

d ln Z̃i

dm
U

u2ū2

5g i
~2!

5D2g i . ~21!

B. Renormalization group flows around the infrared stable
fixed points

First let us consider the IR fixed point of the rigid be
functions, where the SCFT realizes. The beta functions
the gauge coupling and the Yukawa couplings vanish,
ba5by

i jk50, when the anomalous dimensions satisfy t
following conditions:

(
i

Tig i53TG2(
i

Ti ,

g i1g j1gk50 ~22!
3-3
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for each Yukawa coupling. We may wonder that these c
ditions are insufficient to determine the fixed points, sin
the Yukawa couplings are complex in general. However
phase of the Yukawa coupling is not renormalized by the r
wave-function renormalization. Also the anomalous dime
sions are actually independent of the phases, since they
found to satisfy@18#

yi jk
]g

]yi jk 5 ȳi jk

]g

] ȳi jk
. ~23!

As a result the phases of the Yukawa couplings are c
pletely undetermined in all order of perturbation. This
similar to the behavior of au parameter in generic gaug
theories. On the other hand, however, the~ir! relevance of
the couplings is concerned only with evolution of their a
solute values. Therefore, we should rather consider the
couplingsay

i jk5uyi jk u2/8p2.
Now we assume the existence of the IR attractive n

trivial fixed points (a* ,ay*
i jk).4 Then generic low-energy ef

fective theories turn out to be SCFT’s subject to these fi
points. Around the IR attractive fixed points, both the gau
coupling and the Yukawa couplings should be irrelevant
we take infinitesimal variations from the fixed point:a
5a* 1da, ay

i jk5ay*
i jk

1day
i jk , then the variations are sub

ject to the linear differential equations

m
dda

dm
5S ]ba

]a D
*

da1S ]ba

]ay
i jk D

*

day
i jk ,

m
dday

lmn

dm
5S ]bay

lmn

]a
D
*

da1S ]bay

lmn

]ay
i jk D

*

day
i jk , ~24!

where the asterisk represents evaluation at the fixed p
The irrelevance of these couplings means that the eigen
ues of these equations are all positive.

Next let us consider the IR behavior of the gaugino m
and the trilinear couplings@14,15#. As we have already seen
the beta functions for these couplings can be obtained by
Grasmannian expansion. The extended couplingsã andãy

i jk

satisfy the same form of the RG equations:

m
dã

dm
5ba~ã,ãy!,

m
dãy

i jk

dm
5bay

i jk~ ã,ãy!. ~25!

As a result,a* M and2 ȳi jk* hi jk /8p2, as well as their com-
plex conjugates, are found to satisfy the same linear dif
ential equations forda andday

i jk given by Eq.~24! around
the fixed point. Therefore, bothM andhi jk acquire negative
anomalous dimensions and decrease exponentially tow

4We do not consider the possibility of fixed lines.
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the IR region. Note that this does not always mean that th
couplings are irrelevant in Wilson’s sense, since they
dimensionful.

We also regard theu2ū2 components of the extended co
plings as the infinitesimal variations. SinceM andhi jk vanish
at the IR regime, the variations given by

da5
1

F8~a* ! (i
Timi

2u2ū2,

day
i jk5ay*

i jk
~mi

21mj
21mk

2!u2ū2 ~26!

satisfy Eq. ~24!. This shows thatS iTimi
2 as well asmi

2

1mj
21mk

2 corresponding to the Yukawa couplingsyi jk , de-
crease exponentially towards the IR regime. By using the
behavior of the soft parameters clarified so far, it is seen
the beta functions for soft scalar masses also decrease e
nentially. Consequently we find that the soft scalar mas
approach the constant values satisfying

(
i

Timi
250,

mi
21mj

21mk
250 ~27!

for each Yukawa coupling. Each IR valuemi is heavily de-
pendent on the initial soft parameters. However the relati
among them must be universal. In the case where the ano
lous dimensionsg i are completely determined by Eq.~22!,
the above Eq.~27! lead to the vanishing IR soft scala
masses for the corresponding masses. This happens w
ever the anomalous dimensions of the fields can be uniq
determined from anR symmetry, since the dimension of th
field must be given by theR charge in SCFT@8#.

We mention the dual SQCD as a special case. The the
contains the magnetic quark pairs (q,q̄) and a gauge single
M and the Yukawa coupling of them is unique,W5yqq̄M .
Therefore, the soft masses of them should behave as5

~mq
2,mq̄

2,mM
2 ! →

m→0

m2~1,21,0!. ~28!

If we assumemq
25mq̄

2 as the initial condition, then all scala
masses are exponentially suppressed.

C. Higher-dimensional interactions

The higher-dimensional operators can be turned into o
relevant to the large anomalous dimensions at the fixed po
Therefore, we should include such operators as well to fi
the IR stable fixed points in general. However, we can
apply the RG framework for the renormalizable theories d
cussed so far. If the Wilson RG, respecting the gauge s
metries and supersymmetry simultaneously were found
would give a suitable framework instead. Here we naiv

5Similar discussions of suppressing the sfermion masses in
dual side have also been done in Ref.@14#.
3-4
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assume such a framework and somewhat speculatively
cuss the IR behavior of the soft parameters around suc
fixed point.

Suppose that the superpotential of SCFT also cont
higher-dimensional operators such as

W5(
1

n!

yi 1i 2¯ i n

mn23 f i 1f i 2
¯f i n. ~29!

The nonrenormalization for the superpotential and the ga
coupling may well be supposed to remain intact.6 Then we
write the Wilsonian effective Lagrangian as

L5E d4u K~f i ,f i†,V!1E d2u
1

16gh
2 tr WaWa

1E d2u W~f i !1H.c., ~30!

where the superpotentialW is given by Eq.~29!. The Kähler
potentialK given generally as

K~f i ,f i†,V!5Zif
i†e2Vf i1( knOn ~31!

contains generic operatorsOn allowed by symmetries. It
should be noted that the wave-function renormalization f
tors Zi also depend on the effective couplingskn as well as
other couplings in the Wilson RG.

The gauge beta function is given in the same way as
~3! except for the fact that the anomalous dimensiong i is
defined from the generalized wave-function renormalizat
Zi . The beta functions for the couplingsyi 1i 2¯ i n are also
given by

by
i 1i 2¯ i n5m

dyi 1i 2¯ i n

dm
5~n23!yi 1i 2¯ i n1

1

2
~g i 1

1g i 2

1¯1g i n
!yi 1i 2¯ i n. ~32!

The beta functions forkn are unknown though. All these bet
functions are required to vanish at the fixed points. If t
fixed point action contains the higher-dimensional interact
yi 1i 2¯ i nf i 1f i 2

¯f i n, then we impose

(
i

Tig i* 53TG2(
i

Ti ,

g i 1
* 1g i 2

* 1¯1g i n
* 522~n23! ~33!

6Perturbative nonrenormalization theorem applied to the n
renormalizable theories has been presented in Ref.@25#. On the
other hand nonrenormalization is not maintained nonperturbati
in general, e.g., the Affleck-Dine-Seiberg superpotential. We
sume that such corrections are absent in the following argume
07500
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as the necessary condition. If the fixed point is IR attracti
then all the eigenvalues of the linearized beta functions
the infinitesimal variation from the fixed point values mu
be positive.

Now we shall consider incorporating the SUSY breaki
parameters by applying the spurion method. We introd
the chiral superfieldYi 1i 2¯ i n5yi 1i 2¯ i n2hi 1i 2¯ i nu2 and the
real superfieldsk̃n adding toZ̃i and ã defined by Eq.~6!.
Here suppose the wave function superfieldZ̃i is simply given
by the extension as

Z̃i5Zi~ ã,ỹi j ¯k,y! i j ¯k ,k̃n!, ~34!

where the extended couplingsỹi j ¯k are defined by

ỹi j ¯k5Yi j ¯k1 1
2 ~mi

21mj
21¯1mk

2!yi j ¯ku2ū2. ~35!

The reasoning of this extension is the same for the Yuka
coupling. Then the beta functions foru ỹi j ¯ku2 as well asã
can be given by extending the couplings in the rigid b
functions foru ỹi j ¯ku2. Since the fixed point is IR attractive
the u2ū2 term in the extended couplings given by Eq.~35!
decreases exponentially again. Namely, we could obtain
extended sum rule at IR as

mi
21mj

21¯1mk
2→0. ~36!

III. SUPERSYMETRIC STANDARD MODELS COUPLED
WITH SUPERCONFORMAL FIELD THEORIES

A. Yukawa hierarchy

Here we give a brief review on the mechanism to real
hierarchically suppressed Yukawa couplings following R
@8#. We assume two sectors: One is the SSM sector, wh
has the gauge groupGSM5SU(3)3SU(2)3U(1)Y or an
extended group, and three families of quarks and lepton
well as Higgs fieldsHu,d . The i th family of them are de-
noted by qi , representatively, and they have ordina
Yukawa couplingsyu,d

i j qL
i qR

j Hu,d . The other sector is the SC
sector, which has the gauge groupGSC and matter fields,
which are denoted byF r representatively. The SC-secto
matter fields also have their coupling
l8r 1r 2¯r nF r 1F r 2

¯F r n, and the first two families ofqi are
assumed to have Yukawa couplings withF r , i.e.,
l rsiF rFsqi . In the small tanb scenario, the bottom quar
and tau lepton, as well as the down sector Higgs fieldHd ,
must be coupled toF r . Altogether we have the following
superpotential:

W5yu,d
i j qL

i qR
j Hu,d1l8r 1r 2¯r nF r 1F r 2

¯F r n1l rsiF rFsqi .

~37!

The SSM matter fieldsqi andHu,d are assumed to be single
underGSC. Hence, some of the SC matter fieldsF r must
have nontrivial representations underGSM to allow Yukawa
couplingsl rsiF rFsqi . The gauge couplings of the SSM se
tor and the SC sector are denoted byga (a51,2,3) andg8,
respectively, and the gauge groupGSC is assumed to be
strongly coupled. On top of that, as mentioned in Sec. II, i

-
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s-
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expected that the SC sector has a nontrivial IR fixed po
Here we assume that the gauge couplingsga of the SSM
sector are weak compared withg8. Then we neglectga and
Yukawa couplingsyu,d

i j of the SSM sector for calculations o
the fixed point forg8, l rsi, andl8r 1r 2¯r n, that is,ba85bl

5bl850, where

ba85
1

F~a8! F3TG2(
r

Tr~12g r !G ,
bl

rsi5l rsi~g r1gs1g i !, ~38!

b
l8

r 1r 2¯r n5l8r 1r 2¯r n~g r 1
1g r 2

1¯1g r n
!.

Through this procedure, the anomalous dimensionsg i of the
SSM matter fieldsqi are obtained by fixed-point values o
g8, l rsi andl8r 1r 2¯r n, and are in general, large. In particu
lar, the anomalous dimensiong i is fixed to be a definite
value in the case discussed in Sec. II, and also in that
the corresponding sfermion mass is exponentially s
pressed. Thus, we have the following beta function ofyu,d

i j :

byu,d

i j 5 1
2 yu,d

i j ~gLi1gR j1gHu,d
!, ~39!

and the Yukawa couplingyi j at the decoupling energy sca
Mc of the SC sector is obtained:

yu,d
i j ~Mc!5yu,d

i j ~M0!S Mc

M0
D ~gLi1gR j1gHu,d

!/2

, ~40!

where yu,d
i j (M0) is an initial condition atM0 . The factor

Mc /M0 gives the suppression factor. Thus, even ifyi j (M0)
5O(1) for most of ~i,j!, we can have hierarchical Yukaw
matrices by powers of large anomalous dimensionsg i .7

Note thatyi j (MC) itself is not a fixed point and its value i
not fixed, but its suppression factor is fixed. Here lar
anomalous dimensions play a role similar toU(1) charges of
the Froggatt-Nielsen mechanism with an extraU(1) symme-
try. Resultant Yukawa matrices have the same form as
Froggatt-Nielsen mechanism. To obtain realistic Yukawa m
trices, we need nondegenerate anomalous dimensiong i
Þg j .

The decoupling energy scaleMc is obtained by mass
terms ofF r . In general, families can have different deco
pling energy scales with each other, because they couple
different fieldsF r . However, here we restrict ourselves
the universal decoupling scaleMc for simplicity. The discus-
sions in the following sections can be extended to the c
with nonuniversal decoupling scales. Such mass terms
decoupling can be generated by another dynamical me
nism.

7This form is similar to Yukawa couplings with power-law beha
ior due to Kaluza-Klein modes in extra dimensions, where ex
dimensions actually play a role similar to anomalous dimensi
@3#, and in this case FCNC problems could be solved by the
alignment mechanism@26#.
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The decoupling energy scaleMc should not be as low as
the weak scale. One constraint forMc comes from the fact
that F r are charged underGSM, and the inclusion of such
extra matter fields change beta-function coefficients ofGSM

to be asymptotically nonfree. In that case, the gauge c
plings would be strong at a high-energy scale and com
rable with g8 of the SC sector. Then, the above fixed-po
calculations, neglectingga , are not reliable, and the abov
mechanism to produce hierarchical suppression Yukawa c
plings, would be spoiled. For example, here we assume
the gauge couplings ofGSM should not blow up below the
grand unified theory~GUT! scaleMX5231016GeV. Then
we take the case that the beta-function coefficient ofSU(3)
is obtained byb3523 ~just like the MSSM! below Mc and
up to MZ , and aboveMc , extra matter fieldsFa contribute
to it as b35231x. Figure 1 shows the curve of (Mc ,x)
corresponding to the gauge couplingg3 , which blows up at
MX . We have used the one-loop beta function. The reg
above the curve corresponds to the region, whereg3 blows
up belowMX .

Also the gauge coupling unification is spoiled if we ad
generic extra matter fields. However, the coupling unificat
still holds atMX in the case where we add extra matter su
that the beta-function coefficients shift universally from t
values of MSSM,ba

MSSM→ba
MSSM1x at Mc . We assume this

situation in this whole section. A value of the unified co
pling aX changes from the value for the MSSM, and in ge
eral, it becomes strong.

In the previous section, we have seen that soft sc
masses are exponentially suppressed around the IR fi
point in the case that the corresponding anomalous dim
siong i is determined definitely by Eq.~38!. That is favorable
for FCNC constraints because after such suppressions atMc ,
we have radiative corrections due to the gaugino masse
the SSM sector, which are flavor blind. Actually, such a po
sibility has been mentioned in Ref.@8#. However, in the pre-
vious section, we have considered the pure SC sector.
important to study the effects of finite gauge couplings a
gaugino masses of the SSM sector for realistic models. T
is the purpose of Sec. III B. Actually, we shall show that t
gauge couplings and the gaugino masses of the SSM se
play an important role.

a
s

FIG. 1. Blowup ofg3 .
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B. Degeneracy of sfermion masses

In Sec. II, we have shown that within the framework
pure SCFT’s soft scalar masses as well as gaugino ma
andA parameters, decrease exponentially atMc in the case
where the corresponding anomalous dimensions are d
mined definitely. That is favorable from the viewpoint
FCNC problems because that would provide degenerate
mion masses at the weak scale by flavor-blind radiative c
rections due to gaugino masses of the SM sector. Howe
in a realistic case, we have to examine two points for SS
coupled with SCFT’s: One is that we have to take into
count effects due to gauge couplings and gaugino masse
the SM sector. The other point is that a running region
finite. The former point is considered in this section, while
Sec. IV B the latter shall be discussed by use of an illust
ing model.

For concreteness, we consider the case whereMc is less
thanMX , and belowMC we have the same matter content
the MSSM. It is possible to assumeMC.MX , that is, the
Nelson-Strassler mechanism works aboveMX . It is easy to
extend the following calculations to such cases, although
sults are GUT model dependent.

Here we denote gaugino masses of the SM sector asMa .
We assume the universal gaugino massMa5M1/2 at the
GUT scaleMX . Recall that the gauge coupling is unified
MX in the case where the beta-function coefficie
(b1 ,b2 ,b3)5(b1

MSSM1x,b2
MSSM1x,b3

MSSM1x) and we are
considering such a case. It holds thatMa /aa is a RG invari-
ant. Suppose that the theory is regarded as SCFT at the
of Mc,m,MX . In the RG equations of soft scalar mass
we ignore the gaugino mass andA parametersAl of the SC
sector because they decrease rapidly. We shall come ba
this point later. Then the RG equations for soft scalar mas
are written down as

m
dmi

2

dm
5Mi j mj

22CiaaaMa
2

5Mi j ~mj
22Mjk

21CkaaaMa
2!, ~41!

where Cia is a quadratic Casimir. In the pure SCFT lim
aa→0, the second term vanishes and soft scalar masses
tinue to decrease exponentially. However, the exponenti
suppressing behavior is stopped by the second term.
evolution of aaMa

2 is small compared with the exponenti
running of the soft scalar masses. Thus, the termaaMa

2 could
be treated as a constant during the exponential running o
soft scalar masses. However, the finite-size effect ofaaMa

2 is
important. The soft mass squaredmi

2 converges on

mi
2→ Cia

G i
aa~Mc!Ma

2~Mc!,

where we denote

Cia

G i
5Mi j

21Cja .
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The constantG i can be obtained from fixed-point values
the gauge and Yukawa couplings of the SC sector by fixin
model from Eq.~21!, and it isO(g i), i.e., G i<O(1). It is
important thatG i is flavor dependent because anomalous
mensionsg i are flavor-dependent to realize hierarchic
Yukawa couplings. Thus, the difference between sferm
masses, e.g., the first and the second families, is obtaine

m2
2~Mc!2m1

2~Mc!5Cf̃ aaa~Mc!Ma
2~Mc!S 1

G2
2

1

G1
D ,

~42!

whereCia is denoted byCf̃ a , because the quadratic Casim
is common. HereG2 would be smaller thanG1 to obtain
realistic Yukawa matrices. Naturally, we would have 1/G2
21/G15O(1/G2). Below Mc we have only flavor-blind ra-
diative corrections. Hence, the mass difference is estima
as Eq.~42! at any scale belowMc . Actually this difference is
suppressed by the one-loop factoraa compared with the ini-
tial value, which is favorable for FCNC constraints. How
ever, whether that is indeed suppressed enough for FC
constraints, depends on radiative corrections betweenMc
and the weak scale, and an explicit value forG2 .

Before estimating nondegeneracy explicitly for th
MSSM, we comment on the fact that we have neglected
SC gaugino massM 8 and A parametersAl , which corre-
spond to trilinear couplings among the SC sector and the
sector. In pure SCFT’s without effects of the SM gaugi
massesMa , all of them decrease exponentially as discuss
in Sec. II. However, for nonvanishingaaMa , they converge
on M 85O(aaMa) and Al5O(aaMa). The RG equations
of soft scalar masses squaredmi

2 include the terms ofM 82

andAl
2. These are small compared withaaMa

2 in Eq. ~41! by
the loop factoraa . That justifies our above calculations.

Here we study the degeneracy of sfermion masses ex
itly for the MSSM. Sfermion masses in the MSSM are o
tained atMc ,

mQi
2 ~MC!5

1

GQi
F16

3
a3M3

213a2M2
21

1

15
a1M1

2G~MC!,

~43!

mui
2 ~MC!5

1

Gui
F16

3
a3M3

21
16

15
a1M1

2G~MC!, ~44!

mdi
2 ~MC!5

1

Gui
F16

3
a3M3

21
4

15
a1M1

2G~MC!, ~45!

mLi
2 ~MC!5

1

GLi
F3a2M2

21
3

5
a1M1

2G~MC!, ~46!

mei
2 ~MC!5

1

Gei
F12

5
a1M1

2G~MC!. ~47!

To be explicit, here we write radiative corrections due
gaugino masses betweenMc andMZ ,
3-7
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mQi
2 ~MZ!2mQi

2 ~MC!5
8

9 F a3
2~MZ!

a3
2~MC!

21GM3
2~Mc!

1
3

2 F12
a2

2~MZ!

a2
2~MC!GM2

2~Mc! ~48!

1
1

198F12
a1

2~MZ!

a1
2~MC!GM1

2~Mc!, ~49!

mui
2 ~MZ!2mui

2 ~MC!5
8

9 F a3
2~MZ!

a3
2~MC!

21GM3
2~Mc!

1
8

99F12
a1

2~MZ!

a1
2~MC!GM1

2~Mc!,

~50!

mdi
2 ~MZ!2mdi

2 ~MC!5
8

9 F a3
2~MZ!

a3
2~MC!

21GM3
2~Mc!

1
2

99F12
a1

2~MZ!

a1
2~MC!GM1

2~Mc!,

~51!

mLi
2 ~MZ!2mLi

2 ~MC!5
3

2 F12
a2

2~MZ!

a2
2~MC!GM2

2~Mc!

1
1

22F12
a1

2~MZ!

a1
2~MC!GM1

2~Mc!,

~52!

mei
2 ~MZ!2mei

2 ~MC!5
2

11F12
a1

2~MZ!

a1
2~MC!GM1

2~Mc!.

~53!

We have assumed to have exactly the MSSM matter con
below Mc . These radiative corrections are quite large co
pared with the initial values atMc . Thus, the nondegenerac
Dm

f̃

2
5(m

f̃ 2

2
2m

f̃ 1

2
)/m

f̃ av

2
, wherem

f̃ av

2
is an average value o

them, is obtained as

Dm
f̃

2
5

Cf̃ a
aa~Mc!Ma

2~Mc!

m
f̃

2
~MZ!

S 1

G2
2

1

G1
D . ~54!

To estimate such nondegeneracy, we define

D f̃5
Cf̃ aaa~Mc!Ma

2~Mc!

m
f̃

2
~MZ!

. ~55!

To be explicit, we use

DQ̃5
~16/3!a3

3~Mc!13a2
3~Mc!1~1/15!a1

3~Mc!

2~8/9!Da3
21~3/2!Da2

21~1/198!Da1
2 , ~56!
07500
nt
-

D ũ5
~16/3!a3

3~Mc!1~16/15!a1
3~Mc!

2~8/9!Da3
21~8/99!Da1

2 , ~57!

D d̃5
~16/3!a3

3~Mc!1~4/15!a1
3~Mc!

2~8/9!Da3
21~2/99!Da1

2 , ~58!

D L̃5
3a2

3~Mc!1~3/5!a1
3~Mc!

~3/2!Da2
21~1/22!Da1

2 , ~59!

D ẽ5
~12/5!a1

3~Mc!

~2/11!Da1
2 5

66

5

a1~MC!

12@a1~MZ!/a1~MC!#2 ,

~60!

where Da i
25a i

2(MC)2a i
2(MZ). Recall that we have as

sumed gaugino mass unificationMa5M1/2 at the GUT scale
Mx . It should be noted thatD f̃ , and thereforeDm

f̃

2
, may be

predicted independently of the SM gaugino masses.
Figure 2 showsDQ̃ and D d̃ againstMc . We omitted to

showD ũ , because it is almost same asD d̃ . As a result, this
mechanism can realize favorable degeneracy between sq
masses for largeMc . ForG i.0.1, we could avoid the FCNC
problem. On the other hand, the FCNC problem would
serious for smaller values ofG i .

Similarly, Fig. 3 showsD L̃ andD c̃ againstMc . We have a
good degeneracy between left-handed sleptons. ForG i
.0.1, we could avoid the FCNC problem. However, for t

FIG. 2. DQ̃ andD d̃ againstMc .

FIG. 3. D L̃ andD ẽ againstMc .
3-8
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right-handed slepton the degeneracy is not strong comp
with squarks and left-handed sleptons. The reason is tha
radiative correction due to the bino is not large compa
with the others. In this case, we would be faced with
FCNC problem forG i;O(0.1).

We have ignored contributions to the RG equations du
the U(1)YD term. However, such a contribution would b
sizable, in particular, for the right-handed slepton mass
Therefore, we also discuss contributions due to theU(1)YD
term. Including such effects, the right-handed slepton m
squaredmẽi

2 at Mc is obtained:

mei
2 ~MC!5

1

Gei

5

3
a1@4M1

22S#~MC!, ~61!

whereS5tr Ymi
2, i.e.,

S5mHu
2 2mHd

2 1(
i

~m
Q̃i

2
22mũi

2 1m
d̃i

2
2m

L̃i

2
1mc̃i

2 !.

~62!

At Mc , the fields that do not couple to the SC sector, e
top squark and Higgs fields, have nonsuppressed soft s
masses, and these masses contribute to the initial valu
S(Mc), which is, in general, not suppressed and would
O(Ma

2). In addition, the radiative corrections including theS
effect are obtained:

mei
2 ~MZ!2mei

2 ~MC!5
2

11F12
a1

2~MZ!

a1
2~MC!GM1

2~Mc!

1
1

11F a1~MZ!

a1~MC!
21GS~Mc!.

~63!

Figure 4 showsD ẽ including these effects forS(Mc)50,
2M1

2(Mc) and210M1
2(Mc). We have a slight suppressio

of D ẽ , but that is not drastic enough to change its ord
Thus, forG i5O(0.1), we would still have the serious FCN
problem. In this case, we may be required to take the deg
erate case withge15ge2 and Ge15Ge2 . That would con-
strain the form of the lepton Yukawa matrix.

FIG. 4. D ẽ againstMc with S50, S52M1
2, andS5210M1

2.
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We have assumed the universal gaugino massMa(MX)
5M1/2 and can relax the condition. However, all of th
above results on degeneracy of sfermion masses are sim
because only one of the gaugino masses contributes al
dominantly to each fermion mass degeneracy, i.e.,M3 , M2 ,
andM1 contribute to the degeneracy of squark masses, l
handed slepton masses and right-handed slepton masse
spectively.

We have assumed that the SC region is belowMX . Alter-
natively, We can take the possibility that the SC region
betweenMX and the Planck scale, and the Nelson-Stras
mechanism would work in some GUT model. Such a ca
can be studied similarly and we may have a signific
change for the slepton masses. This GUT scenario sha
discussed elsewhere@27#.

C. Mass spectrum

Here we show representative mass spectra in the
where we have the exactly same matter content belowMC as
the MSSM and the gaugino masses are unified atMX ,
Ma(MX)5M1/2. As we saw in Sec. III C, sfermion masse
can be quite suppressed atMc for the fields that couple with
the SC sector and whose anomalous dimensions are d
mined definitely. Namely, we have no-scale type of init
conditions for such fields. Thus magnitudes of sfermi
masses of this type are calculated only by radiative corr
tions betweenMc and the weak scale~48!–~53!. Figure 5
shows ratios of sfermion masses toM3 at the weak scale
The three solid lines correspond tomQ̃ /M3 , mL̃ /M3 , and
mẽ /M3 , respectively. We have takenS50. Also the two
dotted lines show ratios of gauginos toM3 . The upper and
the lower correspond toM2 /M3 and M1 /M3 , respectively.
Note that the right-handed slepton is lighter than theB-ino.
In this case the lightest sypersymmetric particle~LSP! would
be slepton and the ordinary no-scale type initial condit
has the same problem@28,29#, although we have to take
mass eigenvalues and it depends on the overall magnitud
soft masses. However, theU(1)Y D term has a sizable effec
as discussed in Sec. III B. Figure 6 showsmẽ /M3 for
S(Mc)520.5M3

2(MZ). In this case the LSP is the
neutralino.

FIG. 5. Ratios of sfermion masses toM3 at the weak scale. The
three solid lines correspond tomQ̃ /M3 , mL̃ /M3 , andmẽ /M3 , re-
spectively. The two dotted~upper and lower! lines correspond to
ratios of gaugino masses toM3 ~M2 /M3 andM1 /M3!.
3-9
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TATSUO KOBAYASHI AND HARUHIKO TERAO PHYSICAL REVIEW D 64 075003
The masses of the sfermion, which do not couple with
SC sector, e.g., top squark masses~and sbottom and sta
masses for the large tanb scenario! depend on their initial
conditions. It is natural to assume their masses are
O@Ma(MX)# or O@Ma(MC)#. Note that the ratio
M3(MZ)/M1/2 is less than 3~which is expected in the ordi
nary MSSM! if Mc is lower thanMX , because the unified
gauge coupling becomes large by adding extra matter fie
We have a large mass gap between the stau and the
sleptons if the stau couple with the SC sector. On the o
hand, whether the top squark is lighter than the other squ
depends on the initial condition. Anyway, we can pred
definitely the mass spectrum for the sfermions coupling w
the SC sector for fixedMc . Also, we could relax the condi
tion with the universal gaugino massMa(MX)5M1/2.

IV. ANALYSES OF SQUARK MASSES IN EXPLICIT
MODELS

A. Models with suppressed soft parameters

The models based on the SCFT with exponentially s
pressed scalar masses are favorable phenomenologica
avoiding the flavor problems. In this section, we consider
perturbatively renormalizable theories enjoying this prope
Indeed we could consider also many varieties by using
SCFT’s with higher-dimensional operators as discussed
Sec. II. However, in that case, we should start with the
sumption that there exists such an IR fixed point, becaus
the lack of RG frameworks applicable to nonrenormaliza
theories. Therefore, we shall restrict ourselves to the re
malizable theories. Then the types of models with suppres
scalar masses are found to be rather limited as follows.

Suppose a quark~lepton! q couples to the SCFT throug
Yukawa interactionqQP. Then we search for the models
which gQ1gP is uniquely determined by the fixed-poin
conditions in terms of the anomalous dimensions. In t
case, the squark~slepton! mass decreases exponentially,
shown in Sec. II. Now the interactions are limited to t
Yukawa type in renormalizable theories. Here, let us a
assume that there are no Yukawa terms composed onl
nonsinglet fields underGSC. Then gQ1gP must be deter-
mined by the condition for vanishing gauge beta functio
This means that the gauge beta function should depend
on gQ1gP . On the other hand, the quadratic Casimirs ofQ

FIG. 6. mẽ /M3 for S50 and20.5M3
2.
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andP must be equal, sinceQP forms aGSC singlet. There-
fore, the dimensions ofGSM representations ofQ andP are
also necessarily the same.

Taking into account the fact thatq carriesGSM charges,
the possible types of models seem to be rather limited.
shall enumerate a few simple examples below.

1. Chiral SU(5) model

The SC-gauge groupGSC is SU(Nc) and the SM-gauge
group GSM is SU(5). We introduce the following chiral
fields assigned the representations under (GSC,GSM):

Q:~Nc ,5̄!, P:~N̄c ,5̄!, q:~1, 10!. ~64!

The superpotential is given byW5lqQP, and the IR fixed
point is found to exist forNc52,3.
In this class of models, the SC-gauge nonsinglet fieldsQ and
P belong to the same dimensional representations of the
gauge group and, therefore, their anomalous dimensions
equal.8 All scalar masses,mQ

2 , mP
2 , and mq

2 converge to 0,
irrespective of initial values.

2. L-R symmetric SU(3) model

SupposeGSC5SU(Nc) andGSM5SU(3) and introduce

Q:~Nc,3!, Q̄:~N̄c ,3̄!, P:~N̄c,3!, P̄:~Nc ,3̄!,

qL :~1,3!, qR :~1,3̄!. ~65!

Also the superpotential is defined asW5l(qLQP̄

1qRQ̄P). The IR fixed point is found to exist forNc53.
The anomalous dimensions ofQ and Q̄, and alsoP and P̄,
are the same by the left-right symmetry. Therefore,gQ1gP
is fixed by the fixed-point equation given by Eq.~22!. In
such cases, however, we need to assumemQ

2 5m
Q̄

2
, mP

2

5m
P̄

2
for exponential suppression of the scalar massesmqL

andmqR
. Note thatmQ

2 or mP
2 is not reduced to 0, though th

sum of them decreases exponentially.
For these types of models, we cannot introduce t

quarks with distinct anomalous dimensions in a single S
gauge sector.9 In other words, we need to assume a differe
SC-gauge theory for every quark or lepton to be given la
anomalous dimension. There may be some exceptional c
where the Yukawa interactions composed only of the S
gauge nonsinglet fields are also allowed. In this paper we
not going to explore such possibilities. Hereafter we disc
the IR behavior of the soft scalar masses by considering
models similar to the above examples.

8The SU(3)3 model in Ref.@8# belongs to this class.
9The hierarchy of Yukawa couplings can be generated by ass

ing different decoupling scalesMc instead of the anomalous dimen
sions. In such cases we may make several quarks couple to a
mon SC sector.
3-10
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B. Sfermion mass convergence in theSU„3…SCÃSU„3…C

model

In Sec. III B we have evaluated the flavor dependence
squark masses. In this discussion we have assumed tha
scalar masses in the SC sector converge sufficiently. H
ever, the range of scale where the theory is regarded
SCFT, must be finite, otherwise the Yukawa couplings
suppressed out too much. Therefore, soft scalar masses
not converge completely either at the decoupling scaleMc .
The degree of the convergence is related to the suppres
for the Yukawa couplings. First let us estimate roughly h
much the squark masses converge.

Suppose that the theory is regarded as a SCFT at the
of Mc,m,Lc . In this region the soft scalar masses a
subject to Eq.~41! ignoring the gaugino mass andA param-
eter in the SC sector. Then the speed of convergence is g
by the smallest eigenvaluej of the matrixM. This eigen-
value is found to be of the same order of the anomal
dimensions off i . Let us define the deviation of the squa
mass from the convergent value bydmi

25mi
2

2(Ci /G i)a3M3
2. Then the deviation atMc , which is esti-

mated roughly as

dmi
2~Mc!5e2j i ln~Lc /Mc!dmi

2~Lc!, ~66!

has to be much less thana3M3
2 in order that the formula for

the squark masses, given in the previous section, is va
Also if dmi

2 is found to be much larger thana3M3
2, the

squark masses may not be degenerate enough so as to
the flavor problem.

The ratio of the Yukawa couplings is determined by t
anomalous dimension of the quarks. By noticing that
eigenvaluej i is found to be the same order as the anomal
dimension, we evaluatedmi

2 also as

dmi
2~Mc!;

yii ~Mc!

yii ~Lc!
mi

2~Lc!;
mqi

mq3

mi
2~Lc!, ~67!

wheremqi
denotes the quark mass of thei th generation. The

deviationdmi
2 for the second generation should be especia

suppressed by a factor similar toms /mb;O(1022). There-
fore, there a large uncertainty in the squark mass due to
deviation atMc for the second generation may remain. If t
squark mass is the same order as the SM-gaugino ma
Lc , this uncertainty is supposed to be much larger than
convergent value evaluated in Sec. IV A. Therefore the S
gaugino mass is required to be fairly larger than the squ
masses atLc .

In practice the above argument is rather bold. In the f
lowing, we shall demonstrate the RG flows for the squ
masses and their converging behavior explicitly in a conc
model and examine the convergence. Suppose both of
SC-gauge and SM-gauge groups areSU(3) and introduce
the following chiral fields:

Q5~3,3̃!, Q̄5~ 3̄,3!, P5~3,3!, P̄5~ 3̄,3̄!,

qi5~1,3!, q̄i5~1,3̄! ~ i 51,2,3!, H5~1,1!. ~68!
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The superpotential is defined by

W5l~q1Q̄P1q̄1P̄Q!1yi q̄iqiH. ~69!

Here we have simplified the Yukawa couplings to the diag
nal ones. In this toy model only the Yukawa coupling of t
first generationy1 is suppressed. Also we assumemQ

2 5m
Q̄

2

andmP
2 5m

P̄

2
.

Below we analyze the RG flows of the various couplin
numerically by substituting the anomalous dimensions in
exact beta functions with those evaluated in one-loop per
bation. The anomalous dimensions are given by

gQ5gP52 8
3 a812al2 8

3 a, ~70!

gq156al2 8
3 a1ay1 , gqi

52 8
3 a1ayi

~ i 52,3!,
~71!

gH53~ay11ay21ay3!, ~72!

where a85g82/8p2, a5g2/8p2, al5ulu2/8p2, and ayi

5uyi u2/8p2. It is straightforward to derive the beta function
for all couplings by using formula shown in Sec. II. Here l
us write down only the beta functions for soft parameters
the SC sector:

m
dM8

dm
52

3a8~223a8!

~123a8!2 @112gQ
#M 82

6a82

123a8
gQ

~1! ,

~73!

m
dAl

dm
52~2gQ

~1!1gq1
~1!!, ~74!

m
dmQ

2

dm
5m

dmP
2

dm
5gQ

~2! , ~75!

m
dm1

2

dm
5gq1

~2! , ~76!

whereg (1) andg (2) are obtained by the superfield extensi
discussed in Sec. II. By neglecting terms ofO(a2) or of
O(ay1) as negligible amounts, they are given by

gQ
~1!52 8

3 a8M 822alAl2 8
3 aM , ~77!

gq1
~1!526alAl2 8

3 aM , ~78!

gQ
~2!52 8

3 a8~2uM 8u21Dg8!12al~ uAlu21mQ
2 1mP

2 1m1
2!

2 16
3 auM u2, ~79!

gq1
~2!56al~ uAlu21mQ

2 1mP
2 1m1

2!2 16
3 auM u2, ~80!

whereDg853a8(uM 8u22mQ
2 2mP

2 ) as defined by Eq.~9!.
The fixed points are found atA:(a

*
8 ,al* )5(5/16,1/6)

and B:(a
*
8 ,al* )5(3/16,0). PointA is the IR attractive

fixed point and the anomalous dimensions there are foun
be
3-11
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gQ
*
5gP

*
52 1

2 , gq1* 51.

In the region thatM 8 and Al are suppressed to negligib
amounts, the RG evolution of the sfermion masses are g
by

m
d

dm S mQ
2 1mP

2

m1
2 D 5S 16a

*
8214al

*
4al

*
6al

*
6al

*
D S mQ

2 1mP
2

m1
3 D

2
16

3
auM u2S 2

1D . ~81!

Note thatmQ
2 1mP

2 but not each ofmQ
2 andmP

2 converges to
O(auM u2) in this model. WhenauM u2 is treated as a con
stant, the eigenvalues of this coupled equation are foun
be ~2.64!, ~0.59!. Indeed the smaller onej50.59 is close to
the anomalous dimension 1/2. Therefore, degrees of supp
sion for the Yukawa coupling and the scalar masses are
most the same in this model. It is also expected that
scalar masses converge asm1

2→0.78aM2,mQ
2 1mP

2

→4.55aM2.
Now we present the results obtained by numerical an

ses of the RG equations. In Fig. 7, the aspect of suppres
for (y1 ,M 8,Al) are shown with respect tot5 log10(m/Lc).
Here we seta8 and al on the IR fixed point. The initial
values for other couplings are chosen as follows:M 85Al

51.0, M55.0, a51/(48p), anday151/(8p2). The value
of a refers to the GUT gauge coupling. It is seen that
Yukawa coupling is smoothly suppressed. If we supposeMc
to be the scale that the Yukawa coupling is suppressed
1022, thentc5 log10(Mc /Lc) is found to be22.01.

Next we examine the RG flows of the sfermion masses
varying the initial values and observe the converging beh
ior. Figure 8 shows the RG flows obtained by varying t
initial value for m1

2 between @0.0, 2.0# with setting mQ
2

5mP
2 51.0. It is seen that the sfermion masses converg

the values ofO(auM u2), though the coefficients are slightl
shifted from the above naive estimation:m1

2→0.3aM2. It is
found also that the range ofm1

2 shrinks to about 5% of initial
one atMc . Actually we obtain almost the same results f
any setting for the initial couplings. For generic initial sfe
mion masses of the same order of the SM-gaugino m

FIG. 7. The running couplings (y1 ,M 8,Al) are shown in ratio
to their initial values by a solid, a dashed, and a long-dashed
respectively.t5 log10(m/Lc).
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given atLc , the deviationdmi
2 is found to remain about ten

times larger than the converging value atMc . Thus we con-
clude that the strongly degenerate squark mass spec
evaluated in Sec. III, is indeed achieved irrespective of
initial sfermion masses, if the SM-gaugino mass is fai
larger than them.

In practice, the theories must become SCFT’s at a cer
scale in order to generate finite ratio among Yukawa c
plings. Therefore, we have also performed similar obser
tions by assuming the initial vales ofa8 andal off the fixed
point at the higher-energy scaleL0.Lc . However, the re-
sults obtained on the convergence for the sfermion mas
are not significantly changed.

V. GENERATION OF m TERM BY A SINGLET

So far, we have discussed the cases where the l
anomalous dimensions for quarks and leptons are determ
definitely. It has been seen that the corresponding sferm
masses are exponentially suppressed and converge to no
nishing values due to effects of an SM-gaugino mass. It w
be shown that this converging value for (mass)2 can be nega-
tive for a singlet field coupled with the SC sector. The ord
of the tachyonic (mass)2 is fixed to O(aM2), namely, the
weak scale, irrespectively of the bare scalar mass. On
other hand, the weak scale mass term~m term! in the super-
symmetric SM has no theoretical grounds and poses the
calledm problem@30#. It has been discussed sometimes th
a singlet can explain them term by developing its vacuum
expectation value~VEV! of the weak scale@31,32#. In this
section we propose another solution for them problem by
considering a singlet field coupled with the SC sector.

Suppose that a singlet fieldS is coupled to the SC secto
through the superpotential10

10Here we assume the barem term is absent in the superpotentia
Indeed them term may be prohibited by imposing a discrete sy
metry. However the discrete symmetries lead to a cosmolog
problem by forming domain walls in general. Alternatively we m
introduce an extraU(1) gauge symmetry to forbid the barem term.

e,
FIG. 8. RG flows for (m1

2,mQ
2 1mP

2 ) shown by solid and dashe
lines, respectively. The long-dashed line givesaM2.
3-12
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W5lSQQ̄. ~82!

Here we also assume that (Q,Q̄) carries SM-gauge charge
By assumingmQ

2 5m
Q̄

2
, the form of the RG equations for th

scalar masses are given generally as

m
dmQ

2

dm
5~a12b!mQ

2 1bmS
22CQauM u2,

m
dmS

2

dm
52cmQ

2 1cmS
2, ~83!

where the gaugino mass andA parameter have been ignore
again. The coefficientsa, b, c, andCQ are positive and de
termined by group-theoretical factors.

If Q and Q̄ are SM-gauge singlets, orCQ50, the scalar
massesmQ

2 andmS
2 are reduced to 0 exponentially. Howev

the correction by the SM-sector gauginoauM u2, makes the
scalar masses converge to nonvanishing values. We can
the gaugino mass as well as the gauge coupling in the
sector as constants, since their evolution is slow enou
Then the scalar masses converge to

mQ
2 → CQ

a
auM u2,

mS
2→2

2CQ

a
auM u2. ~84!

Here we should note that the singletS becomes tachyonic
irrespective of the initial values of the scalar masses. T
singlet mass remains to be tachyonic and also appear
O@aM2(Mc)# at the weak scale. Now we suppose that
bare supersymmetric mass term is forbidden by an e
U(1) gauge symmetry and thatScarries thisU(1) charge so
as to couple with Higgs fields through Yukawa interacti
SHuHd. Also the potential forS is supplied by theD term of
this gauge interaction. Therefore, them term can be gener
ated by the VEV^S& of electroweak scale induced by th
tachyonic mass.

The singlet field generating them term of the weak scale
can be incorporated with the SC sector inducing Yuka
suppression. Let us demonstrate this here by introducin
singlet to theSU(3)SC3SU(3)C model analyzed in Sec. IV
We extend the superpotential of the SCFT as

W5l~q1Q̄P1q̄1P̄Q!1yi j q̄iqjH1l8SQ̄Q

1l9SP̄P1SH2. ~85!

At the IR fixed point, the anomalous dimensions are fixed
begQ5gP521/2,gq15gS51. It is seen thatl85l9 at the
fixed point fromgQ5gP .

Below we examine the RG equations by applying t
anomalous dimensions obtained by one-loop perturbatio

gQ52 8
3 a812al1al82

8
3 a, ~86!
07500
eat
-

h.

e
in

e
ra

a
a

o

gP52 8
3 a812al1al92

8
3 a, ~87!

gq1
56al2 8

3 a, ~88!

gS53al813al9 . ~89!

The IR fixed-point couplings are found ata
*
8 53/16, al*

5al8* 51/6. By ignoring the gaugino mass andA parameter
of the SC sector again, the RG equations for the sc
masses are given by

m
d

dm S mQ
2 1mP

2

mq1

2

mS
2

D 5S 13/4 2/3 1/3

1 1 0

1 0 1
D S mQ

2 1mP
2

mq1

2

mS
2

D
2

16

3
aM2S 2

1
0
D , ~90!

where the fixed-point couplings are used. From this equat
it is found that the scalar masses converge as

S mQ
2 1mP

2

mq1

2

mS
2

D →16

3
aM2S 16/27

11/27
216/27

D . ~91!

Thus it is seen that the singlet becomes tachyonic indee
As another possibility for a singlet to develop the we

scale VEV, we may consider the SCFT’s whose anomal
dimensions are not uniquely determined by the fixed-po
conditions~22!. In such cases, the sfermion masses conve
to certain values of the same order as the initial mas
Therefore, the singlet field can be driven to be tachyonic
the Yukawa coupling to the SC sector. However, the conve
ing values depend on the initial conditions and, hence, i
not automatic for the singlet to become tachyonic contrary
the above case.

VI. CONCLUSIONS AND DISCUSSIONS

We have studied soft SUSY breaking parameters in
Nelson-Strassler type of models: SSM’s coupled w
SCFT’s. We have clarified the condition to derive the exp
nential suppression of sfermion masses within the framew
of pure SCFT’s, i.e., we have suppressed sfermion ma
for the fields whose anomalous dimensions are determ
definitely.

In a realistic case with nonvanishing gauge couplings
the SM sector, however, the termsaaMa

2 in RGE’s of sfer-
mion masses, play an important role in realizing degene
sfermion masses. The sfermion masses converge
O(aaMa

2) and these are flavor dependent unlessg i5g j . We
have shown explicitly how much degeneracy we have
tween sfermion masses in the MSSM. For squarks we
have suppression strong enough to avoid the FCNC prob
On the other hand, for sleptons, such suppression is w
For squarks, this mechanism is attractive even if we co
not obtain sufficiently realistic Yukawa matrices only by th
Nelson-Strassler mechanism, i.e., it might be useful to in
duce a SC sector in order only to suppress initial nondeg
eracy between squark masses.

We have assumed that the SC region is belowMX . It is
3-13
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also possible that the SC region is aboveMX and the Nelson-
Strassler mechanism would work within the GUT fram
work. Such a case can be studied similarly and we wo
have a significant change for the slepton masses. Su
GUT scenario shall be discussed elsewhere@27#.

Also we have discussed the possibility for generating
m term. We can have naturally the singlet fields, which ha
tachyonic masses ofO(MZ) and whose VEV’s generate th
supersymmetric mass term of the Higgs fields. It might
possible that a similar mechanism generates mass term
the SC matter fields, so that they would decouple the
sector from the SM sector. This decoupling scale of the
sector isO(MZ), Mc5O(MZ). That has the problem of th
blowup of ga as discussed in Sec. III A, if those are charg
underGSM.

Moreover, an application to the neutrino sector is intere
ing. Since the right-handed neutrino is theGSM singlet, we
have less limitation for model building. Such an applicati
will be studied elsewhere.

We have studied mainly the degenerate solution for
FCNC problem. Finally we comment on the decoupling s
lution. It has been shown that the sfermion masses expo
tially damp in the case where their anomalous dimensi
s

ek
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et
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are determined definitely. Otherwise, squark and slep
masses are of the same order as the initial values. Sup
that soft SUSY breaking terms appear only in the SC se
including squarks and sleptons coupled with this sec
while the SM sector has no SUSY breaking terms, that
Ma50 for the gaugino masses of the SM sector andmi

2

50 for the stop as well as for the sbottom and stau for
large tanb scenario. In this case, the gaugino and the s
field of the SM sector gain masses due to higher loop effe
from the SC sector. Thus, those masses are suppresse
loop factors compared with the squark masses of the first
the second families. This is one of the possibilities to real
the decoupling solution. However, note that although squ
masses of the first and the second families appear in the s
order as initial values in general, the sign of~mass!2 as well
as the values, are totally dependent on initial sferm
masses in the SC sector. We must choose the initial co
tions to avoid tachyonic sfermion masses.
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