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Preliminaries on a lattice analysis of the pion light-cone wave function: A partonic signal?
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We present the first attempt of a new method to compute the pion light-cone wave fuhedfi~) on the
lattice. We compute the matrix element between the pion and the vacuum of a nonlocal operator: the propa-
gator of a “scalar quark{named, for short a “squark’ A theoretical analysis shows that for some kinematical
conditions (an energetic pion and hard squarthis matrix element depends dominantly on the LCWF
® _(u),ue[0,1]. On the lattice, the discretization of the parton momenta imposes further constraints on the
pion momentum. The two-point Green functions made of squark-quark and squark-squark fields show a
hadronlike bound-state behavior and verify the standard energy spectrum. We show some indications that
during a short time, after being created, the system of the spectator quark and the squark behave like partons,
before they form a hadronlike bound state. This short time is the place where the partonic wave function has
to be looked for.

DOI: 10.1103/PhysRevD.64.074511 PACS nuniderll.15.Ha, 11.10.St, 12.38.Gc, 13.20.Cz

[. INTRODUCTION The Wilson string in the square brackets ensures the gauge
The light-cone wave functiohLCWF'’s) [1] enter the invariance of the left-hand sid&HS) of Eq. (2). The link
calculation of a large variety of processes such as eledsetween the first term in E¢1) and® ,(u) will be discussed
troweak decays, diffractive processes, meson production iy Sec. Il A.
e"e” and yy annihilation, relativistic heavy ion collisions, Let us notice here that Eq2) describes the LCWF a la
heavy flavors, and many othei2]. Bethe-SalpetefBS), but, although the Bethe-Salpeter frame-
The LCWF depends on a large momentum scaf  work differs significantly from the null-plane quantization
which is typically the momentum of the considered hadro”approach, Eq(2) exactly describes the dominant contribu-
PZ in a physically well chosen reference frarteg., equal tion to the pion wave function on a null plane. It is also
velocity frame for form factorsB rest frame forB decay, useful to remember that the null-plane quantized wave func-
etc). The pion wave function is expanded in terms of Focktion on a planet+z=0, is equal to the pion wave function
states: quantized ont=constant, for a pion with a momentum,
=, In EQ. (2) u denotes the longitudinal momentum frac-
|T,):a1|qa>+az|qag>+ag|qagg>+ . (1)  tion of the pion carried by thévalence quark in the infinite
momentum frame. The antiquark carries a fraction-(1).

— . Let us insist, the pion wave function in QCD is an ex-
where the lowest Fock statqq) describes the valence con- tremely complicated object, which cannot be reduced to the
figuration which is domzmant at large enou@f [3]. Upto s waye function on the light corfeHowever, in its infinite
power correctionsO(Agcr/P7), the valence component momentum frame, it simplifies dramatically in the following
|qq) is fully described by its leading twist amplitude. sense: the form factors depend only on the longitudinal wave

The leading twist amplitude has been proven to be defunction defined in Eq(2) while the transverse motion of
scribable in a very compact and frame independent way: thquarks becomes irrelevant. For finite but large pion momenta
wave function® .(u) is defined by the following matrix el- the corrections ar®©(A5cy/P2). Equivalently, for a quark
ement involving ther~ meson and a light cone Wilson and an antiquark lying almost on the same light line a cor-
string: rective termO(széCD) has to be added to the LHS of Eq.

(2) if this is not to be restricted tg®=0.
0
ex;{ [ f dTMA“)
X

— Systematic expansions in inverse pow P2 ma
(0[d0)P y p powdrgcr/ P2 may
1 .
:—ipﬂfwf due '"P*d _(u). (2
0

YuysU()| T (P))e=0 be performed. But, even better, for each ordeng/P?,
perturbative QCOpQCD) methodd1,4,5 allow the coeffi-
cients to be systematically expanded in powers of
11og(PIAScp)-

The dominant term in this perturbative expansion, i.e., the
asymptotic form of the LCWF for very large?~ Pﬁ reads:

We use the expression “light cone” wave function according to a
common habit, although a “null plane” wave function is more ap-
propriate since the quantification surface is indeed a null plane.  ?The light cone is a surface of zero measure in full space time.
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®2u)=6u(1—u). ©) where the dots at the end correspond to terms suppressed by
powers ofAéCD/P§ [the same terms have been eliminated in

In this extreme limit, the shape of the wave function is to-the LHS of Eq.(2) by means of the restrictior”=0]. The
tally given by pQCD, while the multiplicative constahy in lattice discretization of the derivative operators in B} is

Eq. (2) contains all the relevant nonperturbative knowledge more and more tricky with higher moments, and their renor-
The function Eq(3) is corrected by terms that decrease onlyMalization is not easy either. .
logarithmically whenu2— . While the anomalous dimen- It was therefore proposed [14] that we attempt a direct
sions of these terms are computable from pQCD, their coefc@lculation of the LCWF from lattice QCD. One ftries to
ficients are only computable by nonperturbative methods orS€€” on the latticethe partonic constituentsf the hadrons

to be taken from experiment. instead of the hadrons themselves. The idea is first to con-

At lower u2, when theO(AZcy/u?) power corrections ~ Sider an er)ergetic“fpion, ngich is supgosed to gave itsdpar-
can still be neglected but not the logarithmic tqnlc cons.tltuents rozen- by I__orentz 00st, an secon to
O(l/log(,uzlAéCD)) ones, the form of the wave function hit one of |tsr<]quarks by giving it a Ialllrgg momentum in orger
evolves away from Eq(3). The study of the LCWF in this to measure the perturbative pgstall distance between the

range needs the use of nonperturbative methods. Most frgonstituents of the wave function. Having scalar with the
guently one computes the LCWF via moments of the func-COIOr content of quarks propagating from the hit quark to the
tion @ _(u) as will be shortly described in the next para- spectatpr ENSures gauge invariance. -

graph. A well known example is the work by Chernyak and In th|s paper we report the first and F’Fe"m'”af.y r_eal at-
Zhitnitsky (CZ) [6] who used the QCD sum rufeto deter- tempt in tha} direction. In Sec. Il we explain the pr'|n0|ple of
mine the first two moments and determined thatuat 1 the calculation and derive the basic formulas, taking care to

GeV the shape of the pion wave function is completely dif-Ci e UL RS B e e T oo be
ferent from its asymptotic form and it is written: P

under control. In Sec. lll we describe the lattice setup used.
In Sec. IV we present the results on the two-point Green
functions. In Sec. V we present the results on the three-point
Green function and present the main analysis of our result.
As can be seen from Eqg3) and (4) there is a large differ- e believe that our results might provide some hint of a

ence between the two functions. _ partonic behavior. Finally, we discuss the relevance of our
Experimental measurements of the electromagnetic formesyits in Sec. VI.

factors of the pion were considered to be the best way to

study these wave functiong3]. Recent model-dependent

analyses of CLEO data on meson-photon transition form fac- Il. PRINCIPLE OF THE CALCULATION
tors[9,10] are consistent with the asymptotic wave function.
A direct measurementll] was carried out using data on
diffractive dissociation of 500 Ge¢/ 7~ into di-jets from a

®%%(u)=120u(1-u)(u—0.5>2. (4)

In this section we want to elaborate on some theoretical
tools necessary to prepare the direct lattice calculation of the
LCWF. The issue is to reach some understanding of what to
Fun on a lattice to measure the pion LCWF and to estimate

show that the asymptotic wave function E8) describes the o oyhected uncertainties. On a lattice, it is clearly impos-

data well foru~10 (GeVk)? or more, although this inter- - gjyo 14 directly measure the matrix element in E). since
pretation is subject to some controvef&y]. , it is obvious that the Euclidean metric has no light cone. The
On the theoretical _S|de, a direct nonperturbative Measurga e momentum frame approach is more promising, with a
ment of the LCWF is badly needed. There are only fewgiangard continuation to imaginary time. We will then need
attempts in that direction. The first methpiB] is a lattice 4 tae into consideration the full pion wave function, assum-
computation of moments of the LCWF ing from QCD some general knowledge about it, and then
consider under which conditions what is measured in the
lattice depends dominantly on the LCWF, and if so, to esti-
mate the subleading contributions. This will first be per-
formed in Lorentz metric in an infinite volume. Later on we

which can be done by computing the pion to vacuum matrik"’i” take into account the Euclidean metric and the finite
elements of local operators such as volume effects.

M= fldu uw"® _(u), (5)
0

<7T—(5ﬂ)|a(0)7ﬂy5(i[)u1) . _(iDﬂn)u(0)|0> A. Derivation of the basic formulas

From now on, we will use the Light-cone gauge, where
the path ordered operatd?exp( derMA") is equal to 1.
Equation(2) defines the pion Bethe and Salpeter wave func-
tion on the light cone, which has been extensively studied in

3These QCD sum rules for the first two moments of the pionliterature since the pioneering work of Brodski and Lepage
twist-two distribution amplitude were recalculated in REf] re-  [1]. It contains the leading contribution to the pion wave
sulting in a shape between the two extreme cas&sand &2, function, the subleading pieces having been eliminated by

=—if ;Mpphpht .. phnte.
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the light cone conditionk?=0. We are aiming at a lattice In Eq. (6) we have only considered thg, component in
investigation of this wave function. This will lead uas the direction “+” of the pion momentum. The other direc-
already done in Ref14]) to compute Fourier integrals of the tions y* and y~ can lead to matrix elements proportional,
wave function over the whole space and not only on the lightespectively, top™ andp~. In the pion rest frame all these
cone. Therefore, the effect of subdominant contributionscomponents of the matrix elements should be of OmééD
should be considered. Luckily, hadron properties, as derivef we do not assume any restrictibon x. This simply ex-
from QCD asymptotic freedom, allow us to control the ap-presses that the size of the pion in its rest fram® (4 ocp)
proximation introduced when neglecting these subdominani momentum space ar@(l/AQCD) in configuration space.

contributions. Let us now consider a frame in which the pion has a very
Let us follow the standard light-cone perturbation theory|arge p*. Then the matrix element considered in E6) is
(LCPth) techniqueg1]. We consider the first term in EGL),  increased proportionally to the increasepof; however, on

i.e., the valencai—d Fock staté for the 7~ meson wave the contraryx~ is decreased by the same ratio and the trans-
function resulting from the quantification on the null-plane verse components remain constant. For an “infinite momen-

time, i.e.,x"=t+z=0 (VT () =Vy+(—)V,): tum” pion we are left only with the contribution proportional
o to the pion momentum. This is a first indication that in our
(0]d(0) y* ysu(X)|7m(P))x+ =0 analysis we will have to concentrate on energetic pions.
- - - Equation (6) is a definition of the wave function
= —ip*f fldu e’i“(p+x_)’2f dok, ngd,ﬁ(u,la). It only depends on the quantitiegthe fraction
"Jo (217)2 of pion’'s momentum carried longitudinally by one parton
oz R and IZL ; it is frame independent for longitudinal boosts. In
X "L X g (UK ) order to establish the connection with E&), we now put
1 e _ x2=0 (i.e., )?L=O provided that we quantized on the light-
= —|p+wa0 du e P2y, (u,x,), cone timex™ =0) in Eq.(6). If we takex, =0 in Eq.(6) and
compare the result with E42) we see thét
(6)
d?k, L.
where the change of variabke =up™ has been performed, q’w(U)EJ (ZT)ziﬁUd/w(U,kl): Paar=(U,0. (8

with O<u=<1 since both the %” components of quark
(up™) and antiquark (1—u)p™] have to be positivere-

member that componentst* of momenta have to be posi- To clarify the physical picture let us now compare in the

. o ~ N . Light-cone gauge the LHS of E@2) unrestricted tax?=0

tive by definition anjj wherep;d,w(u;xl) is the partial Fou- (the full BS equation and the LHS of Eq(6). They only

rier transform(overk, ) of iq/-(U,K.). differ by the null plan constraink™=0. This constraint is
The previous matrix element depends on the light-congjenerated by requiring that the pion carry a large momentum.

three—momentumn=(p+,5L) and its conjugated three vec- Indeed p‘=mi/(pz+ E,) appears to be powerfully sup-

tor in configuration spacex=(x",X, ). For the sake of sim- Pressed. This suppression pf implies thatp™x_+p~x,
licity we chose the frame whems. =0 and hencen-: x =p*x_ (unlessx’ is unnaturally large If one assumes the

P +y,_ . B ! ® absence of sudden changes whenmoves away from 0,

=p x"/2. The wave function/;y »(U,k.) in Eq. (6) repre-  one may replacg*x_ by px in Eq. (6) which now reads

sents the probability amplitude for finding two partons with

momenta (p*,k,) and (p*(l—. u),—k,), respectively, in <0|€(0)’yﬂ'y5u(x)|77_(p)>

the valence Fock state of the pion. This amplitude is normal-

ized to 1,

-

1 . ~
:_ipl/-fﬂ'J'odueilup'xlrllad/ﬂrr(uixi)' (9)

1 d?k . ~
J dUJ —lzl/fid/ﬁ(U,kL):j du iy -(u,00=1, (7)  If we add the physical input that the wave function extends
0 (2m) typically to transverse momenta on the orderAqfcp, we
get from O<u=<1 the picture that the valence constituents of
as it immediately comes from requiring that the pion move essentially in the same direction as the pion
(0|dy* ysu|m)=—ip*f, when the operator becomes local, itself at a velocity close to 1. In other words, due to
i.e., whenx=0 in Eq. (6). asymptotic freedom, the constituents do not like to have a
- very large virtuality and the only way for almost massless

4Strictly speaking, we retain only the dominant part of the valence
Fock state, the one connected to vacuum via the axial current, theSLet us repeat that we are not allowed to restrict ourselves to small
other contributions being suppressed. This suppression can be ur; since we will perform Fourier transforms.
derstood simply from the fact that the quarks in an energetic pion °Remember that the exponential in brackets in @)is equal to
have dominantly the same helicity. 1 in our gauge.
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quarks to build up the energy and momentum of the almostul study of the effect of radiative corrections is strongly
massless pion is to move in the same direction, i.e., to haveeeded. This replacement loses the gauge invariance of the
Eqt Eq= Kol | kgl =E,=|kqt kgl 1/D? operator. This is difficult to avoid: if the light cone
From now on we shall follow the method ji4] and we  wave function Eq.(2) is gauge invariant, the more general
will replace the gauge invariance restoring operatorones, Eq(9), are not. Here the loss of gauge invariance is the
Pexp@fg dr,A¥) by another one, which is easier to continue price we pay to present the argument that will follow. Need-
analytically to euclidean time: the scalar colored propagatotess to say, the real lattice calculations have been performed
in a gauge invariant way.
1 We can thus write

1
S(O;X):_ 2 2. 2 2. A o
bfmmstle —dimmgtie & 19%(0[d(0) y,,75S(0:X)u(x)| 7(p))

d*k [ 4
= e—lkv(O—X)—.' (10) _ H ! dk —i(uptqg—Kk)-
f(Zn-)"’ k2—mi+ie =—ip,f, 0du (277)46 i(up+a—k)-x

wheremg is a mass parameter, assumed to be small or zero
to mimic a massless parton. In E4.0), when replacingD? U (ux,). (12)
by 9> we have bluntly neglected the coupling to gluons. This k2— m§+ ie
has been done in order to simplify the argument which will . ]
follow and is justified if we assume the scalar object to beThis iS supposed to be valid for allso that we can integrate
“hard” and hence to behave mainly as a parton. Still, a care-overx and obtain

o

: 3y A—i0-X/ A/ ! dko d°k, i(UE_—K
|| dPxe7190]d(0) 7,75 S(0p)u(X) | m(p)) =Puf | du dekz(z PR e
™ 1~ K~ MgTle

is(up,+q,—ky,) .
)t;lﬂﬂd/w(uy(h_kﬂ

(/lid/ﬂ'(ul_lzL)

1 dzlzl ei(UEﬂ'7\/(Upz+qz)2+(ai+li)2+mé)t
=_p”f”j duf 2 —

0 @m? 2\(up,+a,)%+ (G, +K,)P+m3

(12

where qo=0, Xo=—t (t<0), k,=(Ko,k,), and againp, Es=\(up,+q,)%+q’+m2 (13
=0. The right-hand side of the latter line derives from inte-

grating the former’s overIZ,, and changing variablesq(
—-k), ——k, .

At this stage let us return to the physical understanding of
the wave functiorwgd,w(u,—li) already briefly considered . 3y e iq-x/Ala; ]
above. The quarks have a small probability of being far off ' | 9 %€ (0[d(0) 7y, ysS(0;x)u(x)| m(p))
shell andygy (UK, ) vanishes whek? becomes largéin

We then get

M “ N 1 gl(UE,—Egt 2
practice,k? ;g -(U,k, ) —0 ask?—o [1]. Therefore, this :—prWf duT @W(U)Jrf iz
suppression for IargEf allows one to expand in powers of 0 S (2m)

the transverse components, provided gt A ocp; Agcp o oK G +R2
being a natural hadronic energy scdleundingthe trans- % efi[(ZKLqﬁkf)/ZEs]t 1_$ -1
verse momentum carried by the partons and 2E§

Xlrllad/‘n'(u!_EL) teey (14)

"Perturbative analysis indicates that hadronic wave functions do
not decrease quickly enough B%—mc to avoid the appearance of

infinities. The pionqq wave function falls off roughly as &f [1], . -
and the resulting ultraviolet logarithmic divergence is the origin ofIt is easy to see that the second term inside the bratkst

ine) i ; 2
the scale dependence of the wave function. For the sake of simplié'—ne) is formally OSAQCD/ES)' provided thatt<Es/Aqep
ity this point shall be deliberately overlooked in our formal deriva- and t<Eg/(Aqcp|d, |). This second term is negligible as
tion. long as, and this is the general situatids~[|up,+q,|?
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+07 V%> Aqcp.® However, when [up,+0,|~Agcp for 27 L
some values ofi and wheng, <A qcp, i-€., whenp andq Pu> L, (16

are back to backthe expansion in Eq14) breaks down as . - .
Es s not larger tham ocp any longer. In other words, giving This condition[C2] has to be added to the set of condi-
a large transverse kick to the pion generates a hard gluoions[C1] summarized at the end of Sec. Il Ain the case of
exchange between quarks, which selects the perturbativgfinite volume. Clearly this new onis notequivalent to the
component of the pion wave function, the so-called “smallformer ones since this one does depend. grand disappears
pion,” which is what we want to measure. Indeed in thesmoothly in the large volume limit.

Fermilab experiment E79[11], the LCWF is observed via

jets which have rather large transverse momenta. Let us now C. Strategy for lattice calculations

summarize. Following the method of14] on the lattice we compute

the three-point Green function
Conditions for a partonic signal [C1]
In order to determine on the light-cone wave function  px( *,a;t)zf d3y dBx e 19X P V(0| Pg(y,t,)U(X,1)
@ _(u) from the lattice calculation of the LHS of E@l4),
the following conditions are required beyond the general
large pion momentum constraint, i.ep,>Agcp: t

<I_Es/AéCD, t<Es/(Aqcold. ), andEs>Aqcp for all u. when all the conditionC1] and[C2] are satisfied, and after
This generally implies cog, = cos6,, for some cogin Sig-  performing a Wick rotation to Euclidean metric, the LHS of

X S(X,1;0)7,,75d(0)|0)eEltx~1), (17)

nificantly greater than-1. Eq. (17) approximately verifies the following proportionality
in terms of the LCWF:
B. Consequences of discrete partonic momenta o (1-U)E,+Egt
Let us now consider a finite parallelepipedic volume with F“(D,Qit)xpﬂfﬁg W‘bﬁ(ui)v (18)
i i

periodic boundary conditiongorus. As is well known, the

momenta components can only take the form where theX; extends over all values<Qu;=<1 such that

2 uip,*L/(2m) are integersp is the momentum of the pion

pu:L_ﬂ”w (19 generated by the interpolating figRk(y)=d(y) ysu(y), and
ﬁ is a momentum given to one valence quark of the pion.
Eg(u) is defined in Eq.(13). We have assumed<0t<t,,.
The eE=(t==Y takes into account the propagation of the pion
betweent andt_. Of courset ,—t has been assumed to be
large enough to eliminate the excited pseudoscalar states.
Equation(18) may be understood in a simple way: the

time evolution between 0 andis the product of the propa-
%ators of two “partons,” one scalar parton of eneigy with

wheren, are integers anti, is the length in the directiop..
This is obviously also valid for partonic momerfdThus in
the formulas of Sec. Il A all integrals ovgigdu have to be
replaced by discrete sums over the values sfich thatip,,
verifies Eq.(15).

There is an immediate problem. Let us assume for on

moment that the componentspf are all 0 or 27/L ,. Then a propagator proportional te~Es'/(2E<) and the spectator
only the valuesi=0,1 are allowed. In any model the LCWF

uark of ener T u)E_. The scalar parton has the color
which is proportional tau(1—u), Egs.(3) and (4), vanish d 9y (+WE, P

for th | h d domi behavi | uantum numbers of a quark. For convenience let us call it a
or these values. The expected dominant behavior at larggy .ok although it has obviously nothing to do with super-
momentum vanishes in this case, and only subdominant et

; be ob q ymmetry. The three-point Green function in Eg7) could
ects can be observed. . also be used to estimate the form factor for the transition
The simplest situation, the only one considered from no

hetween a pion and squark-quark bound statgich we call
on, is when the pion momenta are aligned along one of the P . .

lattice spatial directiong.. To allow values ol that scan the ? pl)or:mo,w,hto follow on the Izatmﬁdmetaphorlc QC}me?hcla—
domain of variatiof 0,1] densely* enough to provide a fair ur:)eu'n dns?:fe ?o(r:]?rfc? t\gedt\)Nn?ililate? arge enough for the
description of the LCWF we should have 9 P :

FA(p,q;t) = e B, (19)
t—ox

8Remember thaing is small. i o
9Strictly speakingp andq could be back to back as long )| whereE? is the pionino energy. For smdllon the contrary,

~[p2> Agco- the excited states should add up coherently in a complicated
19For other values the amplitudes are canceled by destructive ifhanner. The analysis presented in Sec. Il D seems to indicate
teferences. that this should boil down to a rather simple partoniclike

“The dominant contribution to the LCWF is only possible when picture. In other words we expect a kind of hadron-parton
all then, ,.=1,3 are 0 or have a common divisor, and at least oneduality to be at work for smalt which should allow a par-
n, is larger than 1. tonic reading of our data. At this stage it is clear that we need
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FIG. 1. Two point Green functions in logarithmic plots for pionino and squark-squark states. As an example we present the lightest states,
i.e., k=0.1339 and«s=0.1431.

to study, beyond the three-point function in the LHS of Eq. In general all Green functions we consider are real in
(17), the two-point function corresponding to the pionino configuration space. Therefore they are real in momentum

interpolating field. space if parity-even and imaginary if parity-odd. See Table I.
An additional comment concerns the squark mass. In the
preceding formulas we have written a squark magsas a Ill. LATTICE SETUP

free parameter. In order to gain the richest possible informa- ) ) _
tion on the pion wave function, the renormalized squark We consider a 18<40 lattice at5=6.0 in the quenched

mass has to be as light as possible. How do we perform thisdPProximation. The quarks are computed with the clover ac-
We have chosen an approach based on an analogy with QC®N with the coefficientcg,=1.769. We have used for the
hadrons. We will vary the bare squark mass down to whergPectator quark two values of the bare mass parameters:
the algorithm to compute the squark propagator stops con=0.1333 and 0.1339, and for the active ot 0.1339.
verging, which we take as an indication of possible zero The squark propagatdd(x,0) verifies the equation
modes.

Finally, all things considered, we will have to make a + -
systematic study of the spectrum of all the colorless bound | 9xy™ ks (U, ()8 y it UL(X— 1) S yi5) [D(Y,0)
states constituted by quarks and squarks. It will turn out that a

in the quenched approximation nice exponential behaviors =48, . (20
do indeed appear, signaling the existence of pioninos and
squark-squark bound statesee Fig. 1, and furthermore, for We compute the squark propagator with the bare mass

nonvanishing momenta, they follow the relativistic SpeCtralparameterKS= 0.1428, 0.1430, and 0.1431. Aboves

law E={m+p” (see Fig. 2, or if one prefers the lattice — 0 1431 the convergence of the inverter becomes very long,
one[see Eq. 2Pbelow], which is not distinguishable from \yhich we take as a sign that we are close to the massless
the former within our statistical errors. squark.

In each case we have run 100 configurations. The errors
are computed according to the jackknife method. The pion
interpolating fieldP5 is inserted att,.=16. This has been

Before turning to the actual calculation, it is useful to chosen so that the direct signal at sma#i not significantly
summarize which among the two- and three-point Greemerturbed by the signal which has looped around via the end
functions we intend to compute should vanish because aff the lattice: 40—16 has eight time intervals more than 16.
QCD'’s discrete symmetries. This is an important precaution. Indeed from Table | we learn

D. Symmetries
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that the three-point Green function withyys inserted att For the study of the two- and three-point Green functions

=0 is odd for time reversal. If, was taken in the middle of we have run with the following values for the pion three
the lattice,t=20, it would have resulted in a vanishing of momentum:
this three-point Green function far=0. Since we are inter- .
ested in small values of such a vanishing of the signal Lp
would have made the analysis impossible.g ’ 7, ~(00.0:(1,0,0:(1.1,0:(2,0,0. (22)
TABLE |. The symmetry properties of the Green functions. BY | practice, however, the vanishing momentum does not pro-
three point we mean the Green functibrf(p,q) defined in Eq.  duce a pion describable by a light-cone wave function. The
(17). The second column refers to the matrices in the Green momentum(1,0,0 (1,1,0 will not be useful since in these
function. For squark-quark, only ong matrix is traced with the ~55eg only the values=0,1 are allowed by the discretiza-
quark propagator. In the other cases we indicate the matrices of;y and the LCWE vanishes for these values. However, they
both ends of the quark propagators. The third column refers to th%re kept in the analysis for a comparison of the results ob-
spatial parity of the Green function. The time reversal refers to th%ained from(1,0,0 (1,1,0 with the ones from(2,0,0, which
symmetry whert— —t (andt,— —t_ in the three point cageWe might be inte}p’reted, a,s partonic signal B
thus learn, for example, that the three point wifys— vs vanishes Concerningq,, we have run a large ﬁumber of momenta
att=0 if t,=tya/2. . M . '
with components ranging from-(4#/L) to (4w/L) but
again too large momenta are too noisy. Later we will detail

Time Vanishes

. . > the momentum configurations considered in the analysis.

Operator v matrices Parity Real/lmreversal atp=0 . L
As already explained, we hope to catch the partonic signal

Squark-squark 1 + Real + No at smallt. In practice we have concentrated on the region
Squark-quark 1 + Real + No =0,4 as we will see later. It leaves—t=12 which should
Squark-quark Yo + Real - No be enough to isolate the pion and it leaves some space to
Squark-quark ¥i - Imag + Yes look for plateaus.
Quark-quark Y5— Vs + Real + No
Quark-quark  yoys—vs  + Real - No IV. TWO-POINT GREEN FUNCTIONS
Quark-qu_ark YivsTYs ) Imag * ves We have shown in Fig. 1 six examples of new two-point
Three-point YoYs5— Vs + Real - No . - -
Three-point Viys— Vs ) Imag " Yes Green functions for momenta=(0,0,0), p=27/L(1,0,0),

andp=2#/L(2,0,0), respectively. It is seen that these two-
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TABLE II. Energies of the various bound states in unitsaoft mass is about 0.44 in lattice units, i.e., about 900 MeV
(for B=6.0a"'=2.0 Ge\). The symbolgy, g, represent, respec- (a~'=2 GeV for = 6.0), not far from the rho meson mass.
tively, «=0.1333,0.1339 for quarks51,S2S3, respectively,xs |t is rewarding that the mass of this squark-squark bound
=0.1428,0.1430,0.1431 for scalars. The momentum norms argigte is rather light, as if the squark with an approximately
given in units of 27/L. We indicate they matrices used in the \anishing renormalized mass did indeed produce rather light
meson interpolating fields. bound state$? Indeed we feel encouraged to treat this squark
as a light parton as will be done soon.

Momentum 0 1 1.4 2
Pion ;01— ¥s,7s 0.422) 0.623) 0.704) 0.6X13 V. THREE-POINT FUNCTIONS
Piondi0:—v0ys,70ys 0.4142) 0.602) 0.693) 0.897) . .
Pion g,0;— s, ¥s 0.392) 0.603) 0.664) 0.3516) With our set of momenta, only the momentum,
Pion 4,0, s, ¥s 0.342) 0.584) 0.615) 0.0922) =2mx/L (2,0,0) gi\_/es a nonvanishiﬁi_;@w(u) for discrete
PiON 0205~ Y0¥s,Yoys  0.342) 0.563) 0.624) 0.8410) u=1/2. Thus we will focus our analysis on the latter momen-
rho g:9:— ¥, 0.621) 0.762) 0.963) 1.026) tum although we have studied the full set of momepia
rho 020, %, 0.602) 0.743) 0.985 0.959) with a set of momentg to be discussed later. We have only
Pioninoq;S1- v, 0.591) 0.711) 0811 0983)  considered the time compone®f(p,q;t).
Pioninoq;S1—1 0.551) 0.6711) 0.772) 0.9X5) Our analysis of the data follows from Sec. Il C. To test
Pioninoq,S2— v, 0.541) 0.671) 0.712) 0.953) whether Eq(18) or (19) has some relevance for our data we
Pioninoq;S2—1 0.5X1) 0.632) 0.742) 0.886) will consider whether the following quantities
Pioninoq;S3— vy, 0.51(1) 0.652) 0.762) 0.933) €21 ey .
PioninodS1— 081D 070D 074D 0oH3 FO(BGi0)| P (112) (23

2 Yo . . . . 2Eg
Pioninog,S1—1 0.531) 0.642) 0.742) 0.917)
PioNiN0q,S2— v, 0.521) 0.662) 0.762) 0.943) and
Pioninoq,S2—1 0.481) 0.602) 0.743) 0.879
Pioninoq,S3— vy, 0.492) 0.632) 0.742) 0.924) Fo(ﬁ,ﬁ;t)[e_ E;t]—l (24)
Pioninoq,S3—1 0.452) 0.572) 0.693) 0.8510
Squark-squari§1S1 0592) 0.702) 0.802) 0.939) are constant in time for some time interval.
Squark-squarks2S2 0.502) 0.612) 0.743) 0.837) Before that, it is instructive to have a look at the numera-

Squark-squarks3s3 0442) 0563 0.724) 0748  torsF9(p,q;t). As an illustrative example in Fig. 3 we have
plotted the three-point function fqﬁw=2wlL (2,0,0) and

point Green functions do indeed behave as if the quarkvarious vectorg]. We observe a very striking feature akin to
squark and squark-squark states were hadronlike bour@n oscillating behavior. We do not claim to fully understand
states. this shape. However, since in Sec. Il a rationale was elabo-
We present the results for the energies of the bound statégted to describe the expected partonic behavior which may
in Table II. In Fig 2 we present some checks of the spectrafhow up at small time, from now on we will focus on this
law E= Jm?+ p?. The latticized free boson dispersion rela- time interval.
tion The very rapid drop observed at small time, ites,[0,3
—4] is present for all values cﬁ‘ We will test the hypothesis
) ) ) that this rapid drop is due to a partonic signassuming that
SInfF(E/2) =sint?(m/2) + X sin(p,/2) (22 the hadronic behavior sets in for larger times. The typical
shape in Fig. 3 might suggest a negative interference be-

does not significantly differ from the continuum one within tween the small time regime and the latter one, leading to a

our errors. For momentumL the quark-quark states are Vvanishing amplitude arouni=4. We do not understand the

in some cases meaningless due to the noise. It is surprisir@figin of the latter, which is beyond the scope of this work

that the nonconventional states present a better signal for thfgcused on the small-time drop. It is noticeable that the sta-

large momentum. tistical errors for this time range are small enough to exhibit
Of course the main lesson of this analysis is that the nona signal while the two-point function for the corresponding

conventional bound states, pioninos, and squark-squark d@ion propagation time and the same pion momentum is ex-

behave exactly as real hadrons. We are not in a position tfemely noisy.

discuss the theoretical implications of this fact, nor make any

statement about the existence of such bound states in a non-

supersymmetric extension of QCD. 2We do not know of any symmetry which would impose a pi-
The lowest bare squark mass considere@ds-0.1431.  gplike massless state for massless squarks.

When Ks is varied Sllghﬂy above 0.1431, the scalar inverter 13\|otice that the CZ wave functio®) vanishes fou=1/2, and

no longer converges. This squark is cod@3din Table Il and  its study needs even larger momenta and will not be discussed in

we see that the corresponding squark-squark bound state resir analysis.
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A. Searching for plateaus at small times matics considered. This cancellation has already been seen

on the numerators of E¢23) in Fig. 3. We have argued that

it is motivated by destructive interferences that generate an
overdecreasing of the numerators in E2P) with respect to

the denominators. The signals vanish as soot=a3—4,

A plateau of Eq(23) would indicate a partoniclike behav-
ior, while a plateau of Eq.24) would indicate a pionino. We
will compute E,, and E;. from the measured pion and pi-

onino rest massegsee Table N, and the formulaE e h h | iaht b
— JmZ+ pZ. We prefer this to the direct use of the measured S3t'cting the range where plateaus might be seen to a very
short time intervaf* aroundt=0.

energies for nonzero momentum, as reported in Table II, be . . .
he latter are noisier than the rest masseshfor Anyhow, the most restrictive of the constraints relative to
cause the la ISI PIOT ¢ summarized at the end of Sec. IIA, iet

( / )( Y ) ' <E /(A |q |) amounts, for a massless scalar parto
| 1 i S S QCD L1/ 1 ’
he energ}ES has been taken via Em.S) assuming two witt r latti t tf val /2’ to i iti

possible masses\g for ks=0.1431. As already mentioned,

for kg>0.1431 the calculation d(x,0) from Eq.(20) fails, al (pd2t a2t @
indicating the presence of small eigenvalues, i.e., thats t< X X S5 (25)
small. Besides considering a massless scalar pamog ( Aqep |a. |

=0), we have also considered the valug=0.22 in lattice h for A h tak tvpical K t
units, which corresponds to the scalar-scalar bound stat& eré TorAqcp We have laken a typical quark transverse
mass(divided by twa. It would be tempting to fimg from momentum of 400 MeV within a hadron. Th|s constraint
the results, yielding the flattest plateau, but it turned out to bgoes not allow us to use larger time domains than the one

too difficult to disentangle the effect ohg on the plateau Just dlscgssed. . .
from other effects which will be discussed later. We will now go on confronting the slopes on this small

. . . time interval to the theoretical prediction of a plateau for Eq.
In Fig. 4 we show two examples of ratios correspondlng(23) ostboning the mavbe more convincind comparative
to Egs. (23 (left) and (24) (right) at small time. In light » POSIp 9 0 ya 9 P

of the discussion in Sec. Il A, we have chosen to illustrateStudy of the values ofF"(p,q;0).

the following kinematics: Lg/(27)=(—2,—1,—1) and We perform a systematllc study over a Larger set of three-
L&/(Zw)=(—l,—l,—2), both forLﬁ/(Zw)=(2,0,0). It is poLnt Grzeen functlon§ diaflnedzsuch thaqa/2'7-rf(2.,0,0),
clearly seen that the plots to the right of E84) are utterly ~ (LG/27)°<4, and ((q+ p)/2m)°<6. These limitations on
incompatible with a plateau, thus discarding a pionino inter{h€ norm of the momenta are meant to avoid too noisy re-
pretation at small time. The plots to the left might show some

indication of plateaus but they deserve some discussion. The

signal decreases from a maximum at time O to reach a valuel“one may worry about contact terms or other lattice artifacts that
compatible with 0 at a time 3—4. This happens not only formight spoil the analysis arourtd=0; this will be discussed in the
these two examples but is a general pattern for all the kinesonclusion.
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sults. On the other hand, the constraii> A ocp (See Sec.  data with white circles on the plots correspondLmix/(ZTr)

IIA) translates into the lower bound: =(—1,0,-1) which is marginal for both conditions Egs.
, (25) and(26). It should be noted that the back-to-back points
E / &Jrqx +(ﬁ>1- (26) L_ﬁ/(Zv_r)z_(—Z,0,0) do r_10t raise probl_ems as a_result of the
™ 2 discretization of partonic momenta, indeed, since 1/2,

For this set of data we measure the slope of the ratios iyp+ g never vanishes contrarily to the continuum case dis-
Egs. (23) and (24) for the time interval¢=0,3 andt=0,4.  cyssed in Sec. Il A. More generally, the majority of the
For the latter range, the results are presented in Fig. 5: thﬁoints with cosf,, close to—1 are not excluded for the same
ratios of Eqs(23) and(24) are presented for commodity as a raa50n.
function of the cosine of the angle betweprandq, which Comparing both plots in Fig. 5, it is evident that the par-
we will from now on be referred to as c6g,. tonic slopes(left) are much closer to zero than the hadronic

We have eliminated from the analysis the data withones(right). Nevertheless, the partonic slopes show a general
Lg/(27)=(—1,0,0) for which the scalar parton is at rest tendency to be negativsee Table Ill which can be traced
(pyx/2+0g4,=0) and thus violates the condition E@6). The  back to the vanishing arourie- 3—4. The white circles show

Slopes of 3-pomnts / massless parton Slopes ot 3-points / pionino
B i et S e
T p=(2.0,0) 1 0% 0 p=(2,0,0) ]
00 [ { 4 o0 - - FIG. 5. Slope of the ratios on the time interval
[ { H ] l 1 t=0,4 for formulas(23) (left) and(24) (right) for
50 L } 1 s L I i different values ofq and for p=(2/L)(200)
r F ] ] with a massless scalar parton. The horizontal axis
w L 1 ol i if' the cosine of the angle between vectﬁrand
. q
1.5 — -5 - -
Lo b b b by | Lo b vy v by by v o |
-1.0 -80 -60 -40 -20 0.0 -1.0 -.80 -.60 -.40 -20 0.0
cos(9) cos(9)
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TABLE lIl. Average slopegand x?/d.o.f for a vanishing slope  scalar parton. The plotted ratio is indeed strikingly constant:
of the expression appearing in E¢83) and(24) for two time slices  the y?/d.o.f. for the fit to a constant ratio is 0.22. This ex-
and two parton masses. It is seen that the parton mass does not plgécted constancy of a large set of numbers, which are sig-
a very important role. The difference between the two time slices iﬁ-]iﬁcanﬂy different from zero, yields amazing support to a
due to the zero oF® discussed in the text. partonic interpretation of these data. We cannot figure out
any other explanation for this feature. Indeed, one might fear

Model Time slice x*/d.of Average slope that the observed constancy B(1/2)F°(p,q;0) is simply
Pionino 0-4 4.1 —0.56(18) due to some contact term producinggaindependent of
Partonsms=0 0-4 19 —0.26(13) F°(p,q;0) combined with a small dependenceff(1/2) on
i%r;?::nszo'zz 8:3 08'932 __%2832((233) q. To consider this we have tried a fit witR%(p,q;0)

. ' = constant, which giveg?/d.o.f=0.72, larger than the pre-
Partonsms=0 0-3 8.7 —0.39(13) viously found 0.22, although still smaller than 1. We would
Partonsms=0.22 0-3 22 —0.36(13) thus rather believe, in agreement with the partonic interpre-

tation, that the small variation oIFO(ﬁ,(i;O) is a conse-

a lesser improvement of the partonic data as compared to tigience of the constancy &g(1/2)F°(p,q;0) and a small
hadronic ones as conjectured just above. variation of Eg(1/2). As a check, we have tested the con-
The slopes given in Table Il are the averages over our seitancy ofF°(p,q;0) for p=2#/L(1,0,0), which is not ex-
of momentaq (excluding the momentum corresponding to pected to follow Eq(27) while contact terms have no reason

the white circle. We have kept the mass of the scalar partonto be absent® We find x?/d.o.f.= 2.7, which further supports
between 0 and half the mass of the scalar-scalar bound steifee  partonic  interpretation  of the  constancy
(see Table ). The resulting slopes do not depend signifi- ES(1/2)F°(5,(§;O) for p=27/L(2,0,0).

cantly on the latter mass. It can also be seen that the slopes
are quite similar for time slicels0,3] and[0,4].

VI. DISCUSSION AND CONCLUSION

B. Comparing three-point functions att=0 We have performed the first tentative application of a new
proposal 14] to compute the pion LCWF. This proposal was
to compute the pion to vacuum matrix element of a nonlocal
operator, namely the propagator of a scalar particle which
has the color quantum numbers of a quark. For convenience,
d_(u=1/2) we call it a “squark.” This resulting matrix element is gauge
m- 27 invariant. To exhibit the partonic structure of the pion a large

momentumﬁ is added to the scalar propagator.

The beginning of this section was devoted to the time evo- \We have shown that, provided the pion has a large enough
lution. Let us now focus on the amplitud2?). momentump, provided that the squark has a large enough

The plot in Fig. 6 shows for our set of momerdgathe ~ energy, and provided the propagation time of the scalar ob-

productE5(1/2)F°(5,ﬁ;0) which is expected to be constant ject is short enougkend of Sec. Il A, the above-mentioned

from Ea.(27). E<is computed from Eq(13) with a massless matrix element is domingted by_ a contribution from the pi_on
9.27- Es P a13 LCWEF. A measure of this matrix element can then provide

information on the LCWF.

A necessary first step is the computation of the two-point
Green functions of quarksquark-quark (squark bound
states. The new states, which contain at least one squark,
show a behavior quite similar to standard hadrons, they show
nice exponential time dependengdgg. 1), they verify Ein-
stein spectral law(Fig. 2), and the masses decrease with
increasingxs, i.e., decreasing squark bare mass.

We have then analyzed the three-point Green functions

Equation(18) predicts two main features of the partonic
behavior:(i) the exponential time evolutiortii) the follow-
ing amplitude at=0

FO(p,q;t=0)c

12

.90

.60

.30

—_
—
———

Lo o b b v b o by oy |

0.0 X /d.of. =022 for a large set of pion momenfaand transfers|. The scalar
parton has a momentump+ g, whereue[0,1] is the frac-
-30 tion of pion momentum carried by the active quark. The
I R I R I discretization due to the finite volume implies a discretiza-
0.0 3.0 6.0 9.0 12. tion of the fractionu. In our set, only the momentum

FIG. 6. Values ofE¢(1/2)F°(p,q;0) normalized as Fig. 3 for

p=(4/L,0,0) and our full set off (labeled from 1-12 on the o
horizontal axi$. The data show the expected constancy around the ®We did not check the constancy &(1/2)F°(p,q;0) in this
average represented by the horizontal line. case sincei=1/2 is forbidden in the case=2#/L(1,0,0).
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=(27/L)(2,0,0) allows foru#0,1 (where the LCWF van- In order to progress we first need to settle the question of
isheg, namelyu=1/2. possible lattice artifacts. To that aim, it would be necessary
We focused the analysis on small timés=(0,3—4]) ac- to change the lattice parameters and mamlgnd to run a

cording to the formulas Eqg23) and (24) which express, larger set of momenta. This would furthermore allow us to
respectively, the hypothesis of a partonic behavior of thaeach values ofi other than 1/2 and provide an idea about
squark and the spectator quark during this small time intervahe shape of the LCWF. This program implies the use of a
or, on the contrary, the hypothesis of a precocious confinemrger volume, which would also hopefully reduce the noise
ment of the squark and the spectator quark into a hadronicsf |arge momenta Green functions.

like bound state. The correct hypothesis should show up as a a recent work by Dalley based on a Hamiltonian formu-

plateau in time. _ _ _lation of QCD on a lattic§15] presents an interesting analy-
Our data clearly favor the partonic behavior at small time:

the ob d 4 d f the G function | ¢ ﬁis of the LCWF. This new method is very promising al-
€ observed rapid drop of the loréen function Is expecte ough it presents some difficulties as stated by the author. It
from a partonic picture, while a hadronic picture predicts g

| d Th vsis is h de delicate d of course too early to perform a detailed comparison of the
slower decrease. 1he analysis IS however made delicate lﬂ'?:\grangian formulation used here and also a Hamiltonian.
to an observed vanishing of the Green function arotund

. : I Both t foll .
=3-4 which might be due to a destructive interference. The oth need to be followed

resulting analysis domain is very short and close to zero.
This might induce the objection that we cannot disentangle
our signals from lattice artifacts such as contact terms, etc.

Nevertheless, a second series of tests has confirmed our we are specially grateful to Guido Martinelli and Damir

feeling that a real partonic signal shows up: all the Greemecirevic for the discussions that initiated this work. We
functions att=0 for our set of values af verify the predic- thank Gregori Korchemsky and Claude Roiesnel for very
tion, Eq. (27), of the partonic mode{up to one unknown instructive discussions. J. R-Q is indebted to Spanish Funda-
constant in an amazing manner. It is difficult to figure out cion Rama Areces for financial support. These calculations
how a lattice artifact could mimic this behavior for so many were performed on the QUADRICS QH1 located in the Cen-
data. ter de Resources InformatiquéBaris-sud, Orsgyand pur-

This work focused mainly on testing the viability of this chased thanks to a funding from the Minigt@le I'Education
program. We believe that the answer is positive. The fact thaiationale and the CNRS. This work is supported in part by
we could argue rather firmly that we see a partonic signalEuropean Union Human Potential Program under Contract
obtained on a small lattice, with a rather large lattice spacingNo. HPRN-CT-2000-00145 Hadrons Lattice QCD. Labora-
and “large” momenta which are indeed not so large is en-toire de Physique Ttmique is UniteMixte de Recherche du
couraging. CNRS-UMR 8627.
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