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Preliminaries on a lattice analysis of the pion light-cone wave function: A partonic signal?
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We present the first attempt of a new method to compute the pion light-cone wave function~LCWF! on the
lattice. We compute the matrix element between the pion and the vacuum of a nonlocal operator: the propa-
gator of a ‘‘scalar quark’’~named, for short a ‘‘squark’’!. A theoretical analysis shows that for some kinematical
conditions ~an energetic pion and hard squark! this matrix element depends dominantly on the LCWF
Fp(u),uP@0,1#. On the lattice, the discretization of the parton momenta imposes further constraints on the
pion momentum. The two-point Green functions made of squark-quark and squark-squark fields show a
hadronlike bound-state behavior and verify the standard energy spectrum. We show some indications that
during a short time, after being created, the system of the spectator quark and the squark behave like partons,
before they form a hadronlike bound state. This short time is the place where the partonic wave function has
to be looked for.
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I. INTRODUCTION
The light-cone wave functions1 ~LCWF’s! @1# enter the

calculation of a large variety of processes such as e
troweak decays, diffractive processes, meson productio
e1e2 and gg annihilation, relativistic heavy ion collisions
heavy flavors, and many others@2#.

The LCWF depends on a large momentum scalem2,
which is typically the momentum of the considered hadr
Pz

2 in a physically well chosen reference frame~e.g., equal
velocity frame for form factors,B rest frame forB decay,
etc.!. The pion wave function is expanded in terms of Fo
states:

up&5a1uqq̄&1a2uqq̄g&1a3uqq̄gg&1••• , ~1!

where the lowest Fock stateuqq̄& describes the valence con
figuration which is dominant at large enoughPz

2 @3#. Up to
power correctionsO(LQCD

2 /Pz
2), the valence componen

uqq̄& is fully described by its leading twist amplitude.
The leading twist amplitude has been proven to be

scribable in a very compact and frame independent way:
wave functionFp(u) is defined by the following matrix el-
ement involving thep2 meson and a light cone Wilso
string:

^0ud̄~0!PFexpS i E
x

0

dtmAmD Ggmg5u~x!up2~p!&x250

52 ipm f pE
0

1

du e2 iup•xFp~u!. ~2!

1We use the expression ‘‘light cone’’ wave function according to
common habit, although a ‘‘null plane’’ wave function is more a
propriate since the quantification surface is indeed a null plane
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The Wilson string in the square brackets ensures the ga
invariance of the left-hand side~LHS! of Eq. ~2!. The link
between the first term in Eq.~1! andFp(u) will be discussed
in Sec. II A.

Let us notice here that Eq.~2! describes the LCWF a la
Bethe-Salpeter~BS!, but, although the Bethe-Salpeter fram
work differs significantly from the null-plane quantizatio
approach, Eq.~2! exactly describes the dominant contrib
tion to the pion wave function on a null plane. It is als
useful to remember that the null-plane quantized wave fu
tion on a planet1z50, is equal to the pion wave functio
quantized ont5constant, for a pion with a momentumPz
5`. In Eq. ~2! u denotes the longitudinal momentum fra
tion of the pion carried by the~valence! quark in the infinite
momentum frame. The antiquark carries a fraction (12u).

Let us insist, the pion wave function in QCD is an e
tremely complicated object, which cannot be reduced to
BS wave function on the light cone.2 However, in its infinite
momentum frame, it simplifies dramatically in the followin
sense: the form factors depend only on the longitudinal w
function defined in Eq.~2! while the transverse motion o
quarks becomes irrelevant. For finite but large pion mome
the corrections areO(LQCD

2 /Pz
2). Equivalently, for a quark

and an antiquark lying almost on the same light line a c
rective termO(x2LQCD

2 ) has to be added to the LHS of Eq
~2! if this is not to be restricted tox250.

Systematic expansions in inverse powersLQCD
2 /Pz

2 may
be performed. But, even better, for each order inLQCD

2 /Pz
2 ,

perturbative QCD~pQCD! methods@1,4,5# allow the coeffi-
cients to be systematically expanded in powers
1/log(Pz

2/LQCD
2 ).

The dominant term in this perturbative expansion, i.e.,
asymptotic form of the LCWF for very largem2;Pz

2 reads:

2The light cone is a surface of zero measure in full space tim
©2001 The American Physical Society11-1
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Fp
as~u!56u~12u!. ~3!

In this extreme limit, the shape of the wave function is
tally given by pQCD, while the multiplicative constantf p in
Eq. ~2! contains all the relevant nonperturbative knowled
The function Eq.~3! is corrected by terms that decrease on
logarithmically whenm2→`. While the anomalous dimen
sions of these terms are computable from pQCD, their co
ficients are only computable by nonperturbative methods
to be taken from experiment.

At lower m2, when theO(LQCD
2 /m2) power corrections

can still be neglected but not the logarithm
O(1/log(m2/LQCD

2 )) ones, the form of the wave functio
evolves away from Eq.~3!. The study of the LCWF in this
range needs the use of nonperturbative methods. Most
quently one computes the LCWF via moments of the fu
tion Fp(u) as will be shortly described in the next par
graph. A well known example is the work by Chernyak a
Zhitnitsky ~CZ! @6# who used the QCD sum rules3 to deter-
mine the first two moments and determined that atm51
GeV the shape of the pion wave function is completely d
ferent from its asymptotic form and it is written:

Fp
CZ~u!5120u~12u!~u20.5!2. ~4!

As can be seen from Eqs.~3! and ~4! there is a large differ-
ence between the two functions.

Experimental measurements of the electromagnetic f
factors of the pion were considered to be the best way
study these wave functions@8#. Recent model-dependen
analyses of CLEO data on meson-photon transition form
tors @9,10# are consistent with the asymptotic wave functio
A direct measurement@11# was carried out using data o
diffractive dissociation of 500 GeV/c p2 into di-jets from a
platinum target at Fermilab experiment E791. The res
show that the asymptotic wave function Eq.~3! describes the
data well form2;10 (GeV/c)2 or more, although this inter
pretation is subject to some controversy@12#.

On the theoretical side, a direct nonperturbative meas
ment of the LCWF is badly needed. There are only f
attempts in that direction. The first method@13# is a lattice
computation of moments of the LCWF

Mn5E
0

1

du unFp~u!, ~5!

which can be done by computing the pion to vacuum ma
elements of local operators such as

^p2~pW p!ud̄~0!gmg5~ iD m1! . . . ~ iD mn!u~0!u0&

52 i f pMnpp
mpp

m1 . . . pp
mn1•••,

3These QCD sum rules for the first two moments of the p
twist-two distribution amplitude were recalculated in Ref.@7# re-
sulting in a shape between the two extreme casesFas andFCZ.
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where the dots at the end correspond to terms suppresse
powers ofLQCD

2 /Pz
2 @the same terms have been eliminated

the LHS of Eq.~2! by means of the restrictionx250]. The
lattice discretization of the derivative operators in Eq.~6! is
more and more tricky with higher moments, and their ren
malization is not easy either.

It was therefore proposed in@14# that we attempt a direc
calculation of the LCWF from lattice QCD. One tries t
‘‘see’’ on the latticethe partonic constituentsof the hadrons
instead of the hadrons themselves. The idea is first to c
sider an energetic pion, which is supposed to have its
tonic constituents ‘‘frozen’’ by Lorentz boost, and second
hit one of its quarks by giving it a large momentum in ord
to measure the perturbative part~small distance between th
constituents! of the wave function. Having scalar with th
color content of quarks propagating from the hit quark to
spectator ensures gauge invariance.

In this paper we report the first and preliminary real
tempt in that direction. In Sec. II we explain the principle
the calculation and derive the basic formulas, taking care
establish which parameters of the run we may expect
subdominant contributions to the pion wave function to
under control. In Sec. III we describe the lattice setup us
In Sec. IV we present the results on the two-point Gre
functions. In Sec. V we present the results on the three-p
Green function and present the main analysis of our res
We believe that our results might provide some hint of
partonic behavior. Finally, we discuss the relevance of
results in Sec. VI.

II. PRINCIPLE OF THE CALCULATION

In this section we want to elaborate on some theoret
tools necessary to prepare the direct lattice calculation of
LCWF. The issue is to reach some understanding of wha
run on a lattice to measure the pion LCWF and to estim
the expected uncertainties. On a lattice, it is clearly imp
sible to directly measure the matrix element in Eq.~2! since
it is obvious that the Euclidean metric has no light cone. T
large momentum frame approach is more promising, wit
standard continuation to imaginary time. We will then ne
to take into consideration the full pion wave function, assu
ing from QCD some general knowledge about it, and th
consider under which conditions what is measured in
lattice depends dominantly on the LCWF, and if so, to e
mate the subleading contributions. This will first be pe
formed in Lorentz metric in an infinite volume. Later on w
will take into account the Euclidean metric and the fin
volume effects.

A. Derivation of the basic formulas

From now on, we will use the Light-cone gauge, whe
the path ordered operatorP exp(i*x

0 dtmAm) is equal to 1.
Equation~2! defines the pion Bethe and Salpeter wave fu
tion on the light cone, which has been extensively studied
literature since the pioneering work of Brodski and Lepa
@1#. It contains the leading contribution to the pion wa
function, the subleading pieces having been eliminated
1-2
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PRELIMINARIES ON A LATTICE ANALYSIS OF THE . . . PHYSICAL REVIEW D 64 074511
the light cone conditionx250. We are aiming at a lattice
investigation of this wave function. This will lead us~as
already done in Ref.@14#! to compute Fourier integrals of th
wave function over the whole space and not only on the li
cone. Therefore, the effect of subdominant contributio
should be considered. Luckily, hadron properties, as deri
from QCD asymptotic freedom, allow us to control the a
proximation introduced when neglecting these subdomin
contributions.

Let us follow the standard light-cone perturbation theo
~LCPth! techniques@1#. We consider the first term in Eq.~1!,
i.e., the valenceū2d Fock state4 for the p2 meson wave
function resulting from the quantification on the null-pla
time, i.e.,x15t1z50 (V1(2)5V01(2)Vz):

^0ud̄~0!g1g5u~x!up~p!&x150

52 ip1 f pE
0

1

du e2 iu(p1x2)/2E d2kW'

~2p!2

3eikW'•xW'c ūd/p~u,kW'!

52 ip1 f pE
0

1

du e2 iu(p1x2)/2c̃ ūd/p~u,xW'!,

~6!

where the change of variablek15up1 has been performed
with 0<u<1 since both the ‘‘1’’ components of quark
(up1) and antiquark@(12u)p1# have to be positive~re-
member that components ‘‘1’’ of momenta have to be posi
tive by definition! and wherec̃ ūd/p(u,xW') is the partial Fou-
rier transform~over kW') of c ūd/p(u,kW').

The previous matrix element depends on the light-co
three-momentump5(p1,pW') and its conjugated three vec

tor in configuration space,x5(x2,xW'). For the sake of sim-

plicity, we chose the frame wherepW'50, and hencep•x

[p1x2/2. The wave functionc ūd/p(u,kW') in Eq. ~6! repre-
sents the probability amplitude for finding two partons w
momenta (up1,kW') and (p1(12u),2kW'), respectively, in
the valence Fock state of the pion. This amplitude is norm
ized to 1,

E
0

1

duE d2kW'

~2p!2
c ūd/p~u,kW'!5E du c̃ ūd/p~u,0!51, ~7!

as it immediately comes from requiring th

^0ud̄g1g5uup&52 ip1 f p when the operator becomes loca
i.e., whenx50 in Eq. ~6!.

4Strictly speaking, we retain only the dominant part of the valen
Fock state, the one connected to vacuum via the axial current
other contributions being suppressed. This suppression can b
derstood simply from the fact that the quarks in an energetic p
have dominantly the same helicity.
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In Eq. ~6! we have only considered thegm component in
the direction ‘‘1’’ of the pion momentum. The other direc
tions g' and g2 can lead to matrix elements proportiona
respectively, top' and p2. In the pion rest frame all thes
components of the matrix elements should be of orderLQCD

2

if we do not assume any restriction5 on x. This simply ex-
presses that the size of the pion in its rest frame isO(LQCD)
in momentum space andO(1/LQCD) in configuration space
Let us now consider a frame in which the pion has a v
large p1. Then the matrix element considered in Eq.~6! is
increased proportionally to the increase ofp1; however, on
the contraryx2 is decreased by the same ratio and the tra
verse components remain constant. For an ‘‘infinite mom
tum’’ pion we are left only with the contribution proportiona
to the pion momentum. This is a first indication that in o
analysis we will have to concentrate on energetic pions.

Equation ~6! is a definition of the wave function
c ūd/p(u,kW'). It only depends on the quantitiesu ~the fraction
of pion’s momentum carried longitudinally by one parto!

and kW' ; it is frame independent for longitudinal boosts.
order to establish the connection with Eq.~2!, we now put
x250 ~i.e., xW'50 provided that we quantized on the ligh
cone timex150) in Eq.~6!. If we takexW'50 in Eq.~6! and
compare the result with Eq.~2! we see that6

Fp~u![E d2kW'

~2p!2
c ūd/p~u,kW'!5c̃ ūd/p~u,0!. ~8!

To clarify the physical picture let us now compare in t
Light-cone gauge the LHS of Eq.~2! unrestricted tox250
~the full BS equation! and the LHS of Eq.~6!. They only
differ by the null plan constraintx150. This constraint is
generated by requiring that the pion carry a large moment
Indeed p25mp

2 /(pz1Ep) appears to be powerfully sup
pressed. This suppression ofp2 implies thatp1x21p2x1

.p1x2 ~unlessx1 is unnaturally large!. If one assumes the
absence of sudden changes whenx1 moves away from 0,
one may replacep1x2 by px in Eq. ~6! which now reads

^0ud̄~0!gmg5u~x!up2~p!&

52 ipm f pE
0

1

du e2 iup•xc̃ ūd/p~u,xW'!. ~9!

If we add the physical input that the wave function exten
typically to transverse momenta on the order ofLQCD, we
get from 0<u<1 the picture that the valence constituents
the pion move essentially in the same direction as the p
itself at a velocity close to 1. In other words, due
asymptotic freedom, the constituents do not like to hav
very large virtuality and the only way for almost massle

e
he
un-
n

5Let us repeat that we are not allowed to restrict ourselves to s
xm since we will perform Fourier transforms.

6Remember that the exponential in brackets in Eq.~2! is equal to
1 in our gauge.
1-3
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quarks to build up the energy and momentum of the alm
massless pion is to move in the same direction, i.e., to h
Eq1Eq̄.ukqu1ukq̄u.Ep.ukq1kq̄u.

From now on we shall follow the method in@14# and we
will replace the gauge invariance restoring opera
P exp(i*x

0 dtmAm) by another one, which is easier to contin
analytically to euclidean time: the scalar colored propaga

S~0;x!5
1

2D 22mS
21 i e

.
1

2]22mS
21 i e

5E d4k

~2p!4
e2 ik•(02x)

i

k22mS
21 i e

, ~10!

wheremS is a mass parameter, assumed to be small or z
to mimic a massless parton. In Eq.~10!, when replacingD 2

by ]2 we have bluntly neglected the coupling to gluons. T
has been done in order to simplify the argument which w
follow and is justified if we assume the scalar object to
‘‘hard’’ and hence to behave mainly as a parton. Still, a ca
te

o

of

f

d

f

o
pl
a-
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ful study of the effect of radiative corrections is strong
needed. This replacement loses the gauge invariance o
1/D 2 operator. This is difficult to avoid: if the light cone
wave function Eq.~2! is gauge invariant, the more gener
ones, Eq.~9!, are not. Here the loss of gauge invariance is
price we pay to present the argument that will follow. Nee
less to say, the real lattice calculations have been perfor
in a gauge invariant way.

We can thus write

e2 iq•x^0ud̄~0!gmg5S~0;x!u~x!up~p!&

52 ipm f pE
0

1

duE d4k

~2p!4
e2 i (up1q2k)•x

3
i

k22mS
21 i e

c̃ ūd/p~u,xW'!. ~11!

This is supposed to be valid for allx so that we can integrate
over xW and obtain
i E d3xe2 iq•x^0ud̄~0!gmg5S~0;x!u~x!up~p!&5pm f pE
0

1

duE dk0

2p
dkz

d2kW'

~2p!2
ei (uEp2k0)t

id~upz1qz2kz!

kW //
2 2kW'

2 2mS
21 i e

c ūd/p~u,qW'2kW'!

52pm f pE
0

1

duE d2kW'

~2p!2

ei (uEp2A(upz1qz)
21(qW'1kW')21mS

2)t

2A~upz1qz!
21~qW'1kW'!21mS

2
c ūd/p~u,2kW'!

~12!
s

where q050, x052t (t,0), kW //5(k0 ,kz), and againpW'

50. The right-hand side of the latter line derives from in

grating the former’s overkW // and changing variables (q
2k)'→2k' .

At this stage let us return to the physical understanding

the wave functionc ūd/p(u,2kW') already briefly considered
above. The quarks have a small probability of being far
shell andc ūd/p(u,kW') vanishes whenkW'

2 becomes large.7 In

practice,kW'
2 c ūd/p(u,kW')→0 as kW'

2 →` @1#. Therefore, this

suppression for largekW'
2 allows one to expand in powers o

the transverse components, provided thatES@LQCD; LQCD
being a natural hadronic energy scalebounding the trans-
verse momentum carried by the partons and

7Perturbative analysis indicates that hadronic wave functions

not decrease quickly enough askW'
2 →` to avoid the appearance o

infinities. The pionq̄q wave function falls off roughly as 1/kW'
2 @1#,

and the resulting ultraviolet logarithmic divergence is the origin
the scale dependence of the wave function. For the sake of sim
ity this point shall be deliberately overlooked in our formal deriv
tion.
-

f

f

ES[A~upz1qz!
21q'

2 1mS
2. ~13!

We then get

i E d3xe2 iq•x^0ud̄~0!gmg5S~0;x!u~x!up~p!&

52pm f pE
0

1

du
ei (uEp2ES)t

2ES
FFp~u!1E d2kW'

~2p!2

3H e2 i [(2kW'•qW'1kW'
2 )/2ES] tS 12

2kW'•qW'1kW'
2

2ES
2 D 21J

3c ūd/p~u,2kW'!G1•••, ~14!

It is easy to see that the second term inside the bracket~last
line! is formally O(LQCD/ES), provided thatt!ES /LQCD

2

and t!ES /(LQCDuqW'u). This second term is negligible a
long as, and this is the general situation,ES;@ uupz1qzu2

o

f
ic-
1-4
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PRELIMINARIES ON A LATTICE ANALYSIS OF THE . . . PHYSICAL REVIEW D 64 074511
1q'
2 #1/2@LQCD.8 However, when uupz1qzu;LQCD for

some values ofu and whenq'&LQCD, i.e., whenpW andqW
are back to back,9 the expansion in Eq.~14! breaks down as
ES is not larger thanLQCD any longer. In other words, giving
a large transverse kick to the pion generates a hard g
exchange between quarks, which selects the perturba
component of the pion wave function, the so-called ‘‘sm
pion,’’ which is what we want to measure. Indeed in t
Fermilab experiment E791@11#, the LCWF is observed via
jets which have rather large transverse momenta. Let us
summarize.

Conditions for a partonic signal [C1]

In order to determine on the light-cone wave functi
Fp(u) from the lattice calculation of the LHS of Eq.~14!,
the following conditions are required beyond the gene
large pion momentum constraint, i.e.,pz@LQCD: t

!ES /LQCD
2 , t!ES /(LQCDuqW'u), and ES@LQCD for all u.

This generally implies cosmin & cosupq for some cosmin sig-
nificantly greater than21.

B. Consequences of discrete partonic momenta

Let us now consider a finite parallelepipedic volume w
periodic boundary conditions~torus!. As is well known, the
momenta components can only take the form

pm5
2p

Lm
nm , ~15!

wherenm are integers andLm is the length in the directionm.
This is obviously also valid for partonic momenta.10 Thus in
the formulas of Sec. II A all integrals over*0

1 du have to be
replaced by discrete sums over the values ofu such thatupm
verifies Eq.~15!.

There is an immediate problem. Let us assume for
moment that the components ofpm are all 0 or 2p/Lm . Then
only the valuesu50,1 are allowed. In any model the LCW
which is proportional tou(12u), Eqs. ~3! and ~4!, vanish
for these values. The expected dominant behavior at la
momentum vanishes in this case, and only subdominan
fects can be observed.

The simplest situation, the only one considered from n
on, is when the pion momenta are aligned along one of
lattice spatial directionsm. To allow values ofu that scan the
domain of variation@0,1# densely11 enough to provide a fair
description of the LCWF we should have

8Remember thatmS is small.
9Strictly speakingpW andqW could be back to back as long asuqzu

2upzu@LQCD.
10For other values the amplitudes are canceled by destructive

teferences.
11The dominant contribution to the LCWF is only possible wh

all thenm ,m51,3 are 0 or have a common divisor, and at least o
nm is larger than 1.
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2p

Lm
. ~16!

This condition@C2# has to be added to the set of cond
tions @C1# summarized at the end of Sec. II A in the case
infinite volume. Clearly this new oneis notequivalent to the
former ones since this one does depend onLm and disappears
smoothly in the large volume limit.

C. Strategy for lattice calculations

Following the method of@14# on the lattice we compute
the three-point Green function

Fm~pW ,qW ;t ![E d3y d3x e2 iqW •xWe2 ipW •yW^0uP5~yW ,tp!u~xW ,t !

3S~xW ,t;0!gmg5d̄~0!u0&eEp(tp2t). ~17!

When all the conditions@C1# and@C2# are satisfied, and afte
performing a Wick rotation to Euclidean metric, the LHS
Eq. ~17! approximately verifies the following proportionalit
in terms of the LCWF:

Fm~pW ,qW ;t !}pm f p(
ui

e2((12ui )Ep1ES)t

2ES~ui !
Fp~ui !, ~18!

where the( i extends over all values 0<ui<1 such that
uipm* L/(2p) are integers.pW is the momentum of the pion
generated by the interpolating fieldP5(y)[d̄(y)g5u(y), and
qW is a momentum given to one valence quark of the pi
ES(u) is defined in Eq.~13!. We have assumed 0,t,tp .
The eEp(tp2t) takes into account the propagation of the pi
betweent and tp . Of coursetp2t has been assumed to b
large enough to eliminate the excited pseudoscalar state

Equation ~18! may be understood in a simple way: th
time evolution between 0 andt is the product of the propa
gators of two ‘‘partons,’’ one scalar parton of energyES with
a propagator proportional toe2ESt/(2ES) and the spectato
quark of energy (12u)Ep . The scalar parton has the colo
quantum numbers of a quark. For convenience let us call
squark, although it has obviously nothing to do with sup
symmetry. The three-point Green function in Eq.~17! could
also be used to estimate the form factor for the transit
between a pion and squark-quark bound state~which we call
a pionino,p̃, to follow on the same metaphoric nomencl
ture!. In such a case we would taket large enough for the
ground state pionino to dominate:

Fm~pW ,qW ;t ! }
t→`

e2Ep̃t, ~19!

whereEp̃ is the pionino energy. For smallt, on the contrary,
the excited states should add up coherently in a complica
manner. The analysis presented in Sec. II D seems to indi
that this should boil down to a rather simple partonicli
picture. In other words we expect a kind of hadron-part
duality to be at work for smallt which should allow a par-
tonic reading of our data. At this stage it is clear that we ne

n-

e
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FIG. 1. Two point Green functions in logarithmic plots for pionino and squark-squark states. As an example we present the lighte
i.e., k50.1339 andkS50.1431.
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to study, beyond the three-point function in the LHS of E
~17!, the two-point function corresponding to the pionin
interpolating field.

An additional comment concerns the squark mass. In
preceding formulas we have written a squark massmS as a
free parameter. In order to gain the richest possible inform
tion on the pion wave function, the renormalized squa
mass has to be as light as possible. How do we perform t
We have chosen an approach based on an analogy with Q
hadrons. We will vary the bare squark mass down to wh
the algorithm to compute the squark propagator stops c
verging, which we take as an indication of possible ze
modes.

Finally, all things considered, we will have to make
systematic study of the spectrum of all the colorless bo
states constituted by quarks and squarks. It will turn out t
in the quenched approximation nice exponential behav
do indeed appear, signaling the existence of pioninos
squark-squark bound states~see Fig. 1!, and furthermore, for
nonvanishing momenta, they follow the relativistic spect
law E5Am21p2 ~see Fig. 2!, or if one prefers the lattice
one @see Eq. 22! below#, which is not distinguishable from
the former within our statistical errors.

D. Symmetries

Before turning to the actual calculation, it is useful
summarize which among the two- and three-point Gre
functions we intend to compute should vanish because
QCD’s discrete symmetries.
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In general all Green functions we consider are real
configuration space. Therefore they are real in momen
space if parity-even and imaginary if parity-odd. See Tabl

III. LATTICE SETUP

We consider a 163340 lattice atb56.0 in the quenched
approximation. The quarks are computed with the clover
tion with the coefficientcsw51.769. We have used for th
spectator quark two values of the bare mass parameterk
50.1333 and 0.1339, and for the active onek50.1339.

The squark propagatorD(x,0) verifies the equation

Fdx,y2kS(
m

~Um~x!dx,y2m̂1Um
† ~x2m̂ !dx,y1m̂!GD~y,0!

5dx,0 . ~20!

We compute the squark propagator with the bare m
parameterkS5 0.1428, 0.1430, and 0.1431. AbovekS
50.1431 the convergence of the inverter becomes very lo
which we take as a sign that we are close to the mass
squark.

In each case we have run 100 configurations. The er
are computed according to the jackknife method. The p
interpolating fieldP5 is inserted attp516. This has been
chosen so that the direct signal at smallt is not significantly
perturbed by the signal which has looped around via the
of the lattice: 40–16 has eight time intervals more than
This is an important precaution. Indeed from Table I we lea
1-6
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FIG. 2. Energy of the bound states as a fun
tion of the momentum in lattice units. The do
correspond to the continuum formulaE
5Am21p2, the mass being taken as the cent
value of the zero momentum energy. Three fi
plots are withk50.1339,kS50.1431, the last one
with k50.1333,kS50.1428.
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that the three-point Green function withg0g5 inserted att
50 is odd for time reversal. Iftp was taken in the middle o
the lattice,t520, it would have resulted in a vanishing o
this three-point Green function fort50. Since we are inter-
ested in small values oft such a vanishing of the signa
would have made the analysis impossible.

TABLE I. The symmetry properties of the Green functions. B

three point we mean the Green functionFm(pW ,qW ) defined in Eq.
~17!. The second column refers to theg matrices in the Green
function. For squark-quark, only oneg matrix is traced with the
quark propagator. In the other cases we indicate the matrice
both ends of the quark propagators. The third column refers to
spatial parity of the Green function. The time reversal refers to
symmetry whent→2t ~and tp→2tp in the three point case!. We
thus learn, for example, that the three point withg0g52g5 vanishes
at t50 if tp5tmax/2.

Operator g matrices Parity Real/Im
Time

reversal

Vanishes

at pW 50

Squark-squark 1 1 Real 1 No
Squark-quark 1 1 Real 1 No
Squark-quark g0 1 Real - No
Squark-quark g i - Imag 1 Yes
Quark-quark g52g5 1 Real 1 No
Quark-quark g0g52g5 1 Real - No
Quark-quark g ig52g5 - Imag 1 Yes
Three-point g0g52g5 1 Real - No
Three-point g ig52g5 - Imag 1 Yes
07451
For the study of the two- and three-point Green functio
we have run with the following values for the pion thre
momentum:

LpW

2p
5~0,0,0!;~1,0,0!;~1,1,0!;~2,0,0!. ~21!

In practice, however, the vanishing momentum does not p
duce a pion describable by a light-cone wave function. T
momentum~1,0,0! ~1,1,0! will not be useful since in these
cases only the valuesu50,1 are allowed by the discretiza
tion and the LCWF vanishes for these values. However, t
are kept in the analysis for a comparison of the results
tained from~1,0,0! ~1,1,0! with the ones from~2,0,0!, which
might be interpreted as partonic signal.

Concerningqm we have run a large number of moment
with components ranging from2(4p/L) to (4p/L) but
again too large momenta are too noisy. Later we will de
the momentum configurations considered in the analysis

As already explained, we hope to catch the partonic sig
at smallt. In practice we have concentrated on the regiot
50,4 as we will see later. It leavestp2t>12 which should
be enough to isolate the pion and it leaves some spac
look for plateaus.

IV. TWO-POINT GREEN FUNCTIONS

We have shown in Fig. 1 six examples of new two-po
Green functions for momentapW 5(0,0,0), pW 52p/L(1,0,0),
andpW 52p/L(2,0,0), respectively. It is seen that these tw

on
e
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A. ABADA et al. PHYSICAL REVIEW D 64 074511
point Green functions do indeed behave as if the qua
squark and squark-squark states were hadronlike bo
states.

We present the results for the energies of the bound st
in Table II. In Fig 2 we present some checks of the spec
law E5Am21p2. The latticized free boson dispersion rel
tion

sinh2~E/2!5sinh2~m/2!1( sin2~pm/2! ~22!

does not significantly differ from the continuum one with
our errors. For momentum 4p/L the quark-quark states ar
in some cases meaningless due to the noise. It is surpr
that the nonconventional states present a better signal for
large momentum.

Of course the main lesson of this analysis is that the n
conventional bound states, pioninos, and squark-squark
behave exactly as real hadrons. We are not in a positio
discuss the theoretical implications of this fact, nor make a
statement about the existence of such bound states in a
supersymmetric extension of QCD.

The lowest bare squark mass considered iskS50.1431.
WhenkS is varied slightly above 0.1431, the scalar inver
no longer converges. This squark is codedS3 in Table II and
we see that the corresponding squark-squark bound state

TABLE II. Energies of the various bound states in units ofa21

~for b56.0,a21.2.0 GeV!. The symbolsq1 ,q2 represent, respec
tively, k50.1333,0.1339 for quarks;S1,S2,S3, respectively,kS

50.1428,0.1430,0.1431 for scalars. The momentum norms
given in units of 2p/L. We indicate theg matrices used in the
meson interpolating fields.

Momentum 0 1 1.4 2

Pion q1q12g5 ,g5 0.42~2! 0.62~3! 0.70~4! 0.61~13!

Pion q1q12g0g5 ,g0g5 0.41~2! 0.60~2! 0.69~3! 0.89~7!

Pion q2q12g5 ,g5 0.38~2! 0.60~3! 0.66~4! 0.35~16!

Pion q2q22g5 ,g5 0.34~2! 0.58~4! 0.61~5! 0.09~22!

Pion q2q22g0g5 ,g0g5 0.34~2! 0.56~3! 0.62~4! 0.84~10!

rho q1q12g i ,g i 0.62~1! 0.76~2! 0.96~3! 1.02~6!

rho q2q22g i ,g i 0.60~2! 0.71~3! 0.98~5! 0.95~9!

Pioninoq1S12g0 0.59~1! 0.71~1! 0.81~1! 0.98~3!

Pioninoq1S121 0.55~1! 0.67~1! 0.77~2! 0.91~5!

Pioninoq1S22g0 0.54~1! 0.67~1! 0.77~2! 0.95~3!

Pioninoq1S221 0.51~1! 0.63~2! 0.74~2! 0.88~6!

Pioninoq1S32g0 0.51~1! 0.65~2! 0.76~2! 0.93~3!

Pioninoq1S321 0.48~2! 0.60~2! 0.72~2! 0.86~7!

Pioninoq2S12g0 0.57~1! 0.70~1! 0.79~1! 0.98~3!

Pioninoq2S121 0.53~1! 0.64~2! 0.74~2! 0.91~7!

Pioninoq2S22g0 0.52~1! 0.66~2! 0.76~2! 0.94~3!

Pioninoq2S221 0.48~1! 0.60~2! 0.71~3! 0.87~9!

Pioninoq2S32g0 0.49~2! 0.63~2! 0.74~2! 0.92~4!

Pioninoq2S321 0.45~2! 0.57~2! 0.69~3! 0.85~10!

Squark-squarkS1S1 0.59~2! 0.70~2! 0.80~2! 0.93~5!

Squark-squarkS2S2 0.50~2! 0.61~2! 0.74~3! 0.83~7!

Squark-squarkS3S3 0.44~2! 0.56~3! 0.72~4! 0.74~8!
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mass is about 0.44 in lattice units, i.e., about 900 M
(a21.2 GeV forb56.0), not far from the rho meson mas
It is rewarding that the mass of this squark-squark bou
state is rather light, as if the squark with an approximat
vanishing renormalized mass did indeed produce rather l
bound states.12 Indeed we feel encouraged to treat this squ
as a light parton as will be done soon.

V. THREE-POINT FUNCTIONS

With our set of momenta, only the momentumpW p

52p/L (2,0,0) gives a nonvanishing13 Fp(u) for discrete
u51/2. Thus we will focus our analysis on the latter mome
tum although we have studied the full set of momentapW p ,
with a set of momentaqW to be discussed later. We have on
considered the time componentF0(pW ,qW ;t).

Our analysis of the data follows from Sec. II C. To te
whether Eq.~18! or ~19! has some relevance for our data w
will consider whether the following quantities

F0~pW ,qW ;t !Fp0f p

e2(Ep/21ES)t

2ES
Fp~1/2!G21

~23!

and

F0~pW ,qW ;t !@e2Ep̃t#21 ~24!

are constant in time for some time interval.
Before that, it is instructive to have a look at the nume

tors F0(pW ,qW ;t). As an illustrative example in Fig. 3 we hav
plotted the three-point function forpW p52p/L (2,0,0) and
various vectorsqW . We observe a very striking feature akin
an oscillating behavior. We do not claim to fully understa
this shape. However, since in Sec. II a rationale was ela
rated to describe the expected partonic behavior which m
show up at small time, from now on we will focus on th
time interval.

The very rapid drop observed at small time, i.e.,tP@0,3
24# is present for all values ofqW . We will test the hypothesi
that this rapid drop is due to a partonic signalassuming that
the hadronic behavior sets in for larger times. The typi
shape in Fig. 3 might suggest a negative interference
tween the small time regime and the latter one, leading t
vanishing amplitude aroundt54. We do not understand th
origin of the latter, which is beyond the scope of this wo
focused on the small-time drop. It is noticeable that the s
tistical errors for this time range are small enough to exh
a signal while the two-point function for the correspondi
pion propagation time and the same pion momentum is
tremely noisy.

12We do not know of any symmetry which would impose a p
onlike massless state for massless squarks.

13Notice that the CZ wave function~4! vanishes foru51/2, and
its study needs even larger momenta and will not be discusse
our analysis.

re
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FIG. 3. We plotF0(pW ,qW ;t), normalized by a

constant@divided by the pion propagator withpW

5(4p/L,0,0) from the fixed timetp to 0] vs the
running time for momenta indicated on the plo
using the lightest quarks (k50.1339) and the
lightest ‘‘squark’’ (kS50.1431).
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A. Searching for plateaus at small times

A plateau of Eq.~23! would indicate a partoniclike behav
ior, while a plateau of Eq.~24! would indicate a pionino. We
will compute Ep and Ep̃ from the measured pion and p
onino rest masses~see Table II!, and the formulaE
5Am21p2. We prefer this to the direct use of the measur
energies for nonzero momentum, as reported in Table II,
cause the latter are noisier than the rest masses fopW
5(2p/L)(2,0,0).

The energyES has been taken via Eq.~13! assuming two
possible massesmS for kS50.1431. As already mentioned
for kS.0.1431 the calculation ofD(x,0) from Eq.~20! fails,
indicating the presence of small eigenvalues, i.e., thatmS is
small. Besides considering a massless scalar partonmS
50), we have also considered the valuemS50.22 in lattice
units, which corresponds to the scalar-scalar bound s
mass~divided by two!. It would be tempting to fitmS from
the results, yielding the flattest plateau, but it turned out to
too difficult to disentangle the effect ofmS on the plateau
from other effects which will be discussed later.

In Fig. 4 we show two examples of ratios correspond
to Eqs. ~23! ~left! and ~24! ~right! at small time. In light
of the discussion in Sec. II A, we have chosen to illustr
the following kinematics: LqW /(2p)5(22,21,21) and
LqW /(2p)5(21,21,22), both for LpW /(2p)5(2,0,0). It is
clearly seen that the plots to the right of Eq.~24! are utterly
incompatible with a plateau, thus discarding a pionino int
pretation at small time. The plots to the left might show so
indication of plateaus but they deserve some discussion.
signal decreases from a maximum at time 0 to reach a v
compatible with 0 at a time 3–4. This happens not only
these two examples but is a general pattern for all the k
07451
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matics considered. This cancellation has already been
on the numerators of Eq.~23! in Fig. 3. We have argued tha
it is motivated by destructive interferences that generate
overdecreasing of the numerators in Eq.~23! with respect to
the denominators. The signals vanish as soon ast5324,
restricting the range where plateaus might be seen to a
short time interval14 aroundt50.

Anyhow, the most restrictive of the constraints relative
t, summarized at the end of Sec. II A, i.e.,t
!ES /(LQCDuqW'u), amounts, for a massless scalar parto
with our lattice setup and the valueu51/2, to the condition

t!
a21

LQCD

A~px/21qx!
21q'

2

uq'u
;5, ~25!

where for LQCD we have taken a typical quark transver
momentum of 400 MeV within a hadron. This constrai
does not allow us to use larger time domains than the
just discussed.

We will now go on confronting the slopes on this sma
time interval to the theoretical prediction of a plateau for E
~23!, postponing the maybe more convincing comparat
study of the values ofF0(pW ,qW ;0).

We perform a systematic study over a larger set of thr
point Green functions defined such that:LpW /2p5(2,0,0),
(LqW /2p)2<4, and (L(qW 1pW )/2p)2<6. These limitations on
the norm of the momenta are meant to avoid too noisy

14One may worry about contact terms or other lattice artifacts t
might spoil the analysis aroundt50; this will be discussed in the
conclusion.
1-9
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FIG. 4. Ratios of Eqs.~23! ~left! and ~24!
~right! for momenta indicated on the plots usin
the lightest quarks (k50.1339) and the lightes
‘‘squark’’ ( kS50.1431).
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sults. On the other hand, the constraintES@LQCD ~see Sec.
II A ! translates into the lower bound:

L

p
AS px

2
1qxD 2

1q'
2 @1. ~26!

For this set of data we measure the slope of the ratio
Eqs. ~23! and ~24! for the time intervalst50,3 andt50,4.
For the latter range, the results are presented in Fig. 5:
ratios of Eqs.~23! and~24! are presented for commodity as
function of the cosine of the angle betweenpW andqW , which
we will from now on be referred to as cosupq.

We have eliminated from the analysis the data w
LqW /(2p)5(21,0,0) for which the scalar parton is at re
(px/21qx50) and thus violates the condition Eq.~26!. The
07451
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he

data with white circles on the plots correspond toLqW /(2p)
5(21,0,21) which is marginal for both conditions Eqs
~25! and~26!. It should be noted that the back-to-back poin

LqW /(2p)5(22,0,0) do not raise problems as a result of t
discretization of partonic momenta, indeed, sinceu51/2,

upW 1qW never vanishes contrarily to the continuum case d
cussed in Sec. II A. More generally, the majority of th
points with cosupq close to21 are not excluded for the sam
reason.

Comparing both plots in Fig. 5, it is evident that the pa
tonic slopes~left! are much closer to zero than the hadron
ones~right!. Nevertheless, the partonic slopes show a gen
tendency to be negative~see Table III! which can be traced
back to the vanishing aroundt53 –4. The white circles show
al

xis
FIG. 5. Slope of the ratios on the time interv
t50,4 for formulas~23! ~left! and~24! ~right! for

different values ofqW and for pW 5(2p/L)(200)
with a massless scalar parton. The horizontal a

is the cosine of the angle between vectorspW and

qW .
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PRELIMINARIES ON A LATTICE ANALYSIS OF THE . . . PHYSICAL REVIEW D 64 074511
a lesser improvement of the partonic data as compared to
hadronic ones as conjectured just above.

The slopes given in Table III are the averages over our
of momentaqW ~excluding the momentum corresponding
the white circle!. We have kept the mass of the scalar par
between 0 and half the mass of the scalar-scalar bound
~see Table II!. The resulting slopes do not depend sign
cantly on the latter mass. It can also be seen that the sl
are quite similar for time slices@0,3# and @0,4#.

B. Comparing three-point functions at tÄ0

Equation~18! predicts two main features of the parton
behavior:~i! the exponential time evolution;~ii ! the follow-
ing amplitude att50

F0~pW ,qW ;t50!}
Fp~u51/2!

2ES~u51/2!
. ~27!

The beginning of this section was devoted to the time e
lution. Let us now focus on the amplitude~27!.

The plot in Fig. 6 shows for our set of momentaqW the
productES(1/2)F0(pW ,qW ;0) which is expected to be consta
from Eq.~27!. ES is computed from Eq.~13! with a massless

TABLE III. Average slopes~andx2/d.o.f for a vanishing slope!
of the expression appearing in Eqs.~23! and~24! for two time slices
and two parton masses. It is seen that the parton mass does no
a very important role. The difference between the two time slice
due to the zero ofF0 discussed in the text.

Model Time slice x2/d.o.f Average slope

Pionino 0–4 4.1 20.56(18)
PartonsmS50 0–4 1.9 20.26(13)
PartonsmS50.22 0–4 0.92 20.23(13)
Pionino 0–3 8.3 20.82(9)
PartonsmS50 0–3 3.7 20.39(13)
PartonsmS50.22 0–3 2.2 20.36(13)

FIG. 6. Values ofES(1/2)F0(pW ,qW ;0) normalized as Fig. 3 for

pW 5(4p/L,0,0) and our full set ofqW ~labeled from 1–12 on the
horizontal axis!. The data show the expected constancy around
average represented by the horizontal line.
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scalar parton. The plotted ratio is indeed strikingly consta
the x2/d.o.f. for the fit to a constant ratio is 0.22. This e
pected constancy of a large set of numbers, which are
nificantly different from zero, yields amazing support to
partonic interpretation of these data. We cannot figure
any other explanation for this feature. Indeed, one might f
that the observed constancy ofES(1/2)F0(pW ,qW ;0) is simply
due to some contact term producing aqW independent of
F0(pW ,qW ;0) combined with a small dependence ofES(1/2) on
qW . To consider this we have tried a fit withF0(pW ,qW ;0)
5 constant, which givesx2/d.o.f.50.72, larger than the pre
viously found 0.22, although still smaller than 1. We wou
thus rather believe, in agreement with the partonic interp
tation, that the small variation ofF0(pW ,qW ;0) is a conse-
quence of the constancy ofES(1/2)F0(pW ,qW ;0) and a small
variation of ES(1/2). As a check, we have tested the co
stancy ofF0(pW ,qW ;0) for p52p/L(1,0,0), which is not ex-
pected to follow Eq.~27! while contact terms have no reaso
to be absent.15 We findx2/d.o.f.52.7, which further supports
the partonic interpretation of the constan
ES(1/2)F0(pW ,qW ;0) for p52p/L(2,0,0).

VI. DISCUSSION AND CONCLUSION

We have performed the first tentative application of a n
proposal@14# to compute the pion LCWF. This proposal wa
to compute the pion to vacuum matrix element of a nonlo
operator, namely the propagator of a scalar particle wh
has the color quantum numbers of a quark. For convenie
we call it a ‘‘squark.’’ This resulting matrix element is gaug
invariant. To exhibit the partonic structure of the pion a lar
momentumqW is added to the scalar propagator.

We have shown that, provided the pion has a large eno
momentumpW , provided that the squark has a large enou
energy, and provided the propagation time of the scalar
ject is short enough~end of Sec. II A!, the above-mentioned
matrix element is dominated by a contribution from the pi
LCWF. A measure of this matrix element can then provi
information on the LCWF.

A necessary first step is the computation of the two-po
Green functions of quark~squark!-quark ~squark! bound
states. The new states, which contain at least one squ
show a behavior quite similar to standard hadrons, they sh
nice exponential time dependence~Fig. 1!, they verify Ein-
stein spectral law~Fig. 2!, and the masses decrease w
increasingkS , i.e., decreasing squark bare mass.

We have then analyzed the three-point Green functi
for a large set of pion momentapW and transfersqW . The scalar
parton has a momentumupW 1qW , whereuP@0,1# is the frac-
tion of pion momentum carried by the active quark. T
discretization due to the finite volume implies a discretiz
tion of the fractionu. In our set, only the momentumpW

15We did not check the constancy ofES(1/2)F0(pW ,qW ;0) in this
case sinceu51/2 is forbidden in the casep52p/L(1,0,0).
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5(2p/L)(2,0,0) allows foruÞ0,1 ~where the LCWF van-
ishes!, namelyu51/2.

We focused the analysis on small times (tP@0,3–4#) ac-
cording to the formulas Eqs.~23! and ~24! which express,
respectively, the hypothesis of a partonic behavior of
squark and the spectator quark during this small time inte
or, on the contrary, the hypothesis of a precocious confi
ment of the squark and the spectator quark into a hadro
like bound state. The correct hypothesis should show up
plateau in time.

Our data clearly favor the partonic behavior at small tim
the observed rapid drop of the Green function is expec
from a partonic picture, while a hadronic picture predicts
slower decrease. The analysis is however made delicate
to an observed vanishing of the Green function arount
53 –4 which might be due to a destructive interference. T
resulting analysis domain is very short and close to ze
This might induce the objection that we cannot disentan
our signals from lattice artifacts such as contact terms, e

Nevertheless, a second series of tests has confirmed
feeling that a real partonic signal shows up: all the Gre
functions att50 for our set of values ofqW verify the predic-
tion, Eq. ~27!, of the partonic model~up to one unknown
constant! in an amazing manner. It is difficult to figure ou
how a lattice artifact could mimic this behavior for so ma
data.

This work focused mainly on testing the viability of th
program. We believe that the answer is positive. The fact
we could argue rather firmly that we see a partonic sign
obtained on a small lattice, with a rather large lattice spac
and ‘‘large’’ momenta which are indeed not so large is e
couraging.
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In order to progress we first need to settle the question
possible lattice artifacts. To that aim, it would be necess
to change the lattice parameters and mainlya and to run a
larger set of momenta. This would furthermore allow us
reach values ofu other than 1/2 and provide an idea abo
the shape of the LCWF. This program implies the use o
larger volume, which would also hopefully reduce the no
of large momenta Green functions.

A recent work by Dalley based on a Hamiltonian form
lation of QCD on a lattice@15# presents an interesting analy
sis of the LCWF. This new method is very promising a
though it presents some difficulties as stated by the autho
is of course too early to perform a detailed comparison of
Lagrangian formulation used here and also a Hamiltoni
Both need to be followed.
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