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Zero temperature string breaking in lattice quantum chromodynamics
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The separation of a heavy quark and antiquark pair leads to the formation of a tube of flux, or ‘‘string,’’
which should break in the presence of light quark-antiquark pairs. This expected zero-temperature phenomenon
has proven elusive in simulations of lattice QCD. We study mixing between the string state and the two-meson
decay channel in QCD with two flavors of dynamical sea quarks. We confirm that mixing is weak and find that
it decreases at level crossing. While our study does not show direct effects of internal quark loops, our results,
combined with unitarity, give a clear confirmation of string breaking.
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I. INTRODUCTION

In the absence of dynamical sea quarks, the heavy-qua
antiquark potential is known quite accurately from numeri
simulations of lattice quantum chromodynamics@1#. The po-
tential is traditionally determined from the Wilson-loop o
servable, which is proportional to exp@2V(R)T# at largeT. At
large separationR, the potentialV(R) rises linearly, as ex-
pected in a confining theory. In the presence of dynam
sea quarks the potential is expected to level off at largeR,
signaling string breaking. Thus far, no SU~3! simulation at
zero temperature with light sea quarks has found clear
dence in the Wilson-loop observable for string break
@2,3#, even out toR'2 fm.

The reason string breaking has not been seen using
traditional Wilson-loop observable is now clear@5–7#. The
Wilson loop can be regarded as a hadron correlator wit
source and sink state~F! consisting of a fixed heavy quark
antiquark pair and an associated flux tube. The correct low
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energy contribution to the Wilson-loop correlator at largeR
should be a stateM consisting of two isolated heavy-ligh
mesons. However, such a state with an extra light dynam
quark pair has poor overlap with the flux-tube state, so i
presumably revealed only after evolution to very largeT. To
hasten the emergence of the true ground state, it is neces
to enlarge the space of sources to include bothF and at least
oneM state.

Drummond demonstrated string breaking in a stron
coupling, hopping parameter expansion with Wilson qua
@7,8#. A number of numerical studies of theories less comp
tationally demanding than QCD, including non-Abelia
theories with scalar and adjoint matter fields, found str
breaking @9–13#. One study claimed to have found strin
breaking in the absence of dynamical sea quarks by doin
transfer matrix calculation@14#.

In a full SU~3! simulation, until recently, string breakin
has only been observed at nonzero temperature~close to, but
below the deconfinement crossover! @6#, based on the Polya
kov loop observable, which evidently has much better ov
lap with theM state. Some of us reported a preliminary low
statistics result for staggered quarks in 1999@15#, and, last
year, Pennanen and Michael announced evidence of s
8,
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CLAUDE BERNARD et al. PHYSICAL REVIEW D 64 074509
breaking at zero temperature using Wilson-clover quarks
a novel technique for variance reduction in computing
light quark propagator@16#. Duncan, Eichten, and Thacke
found hints of a flattening static potential using a trunca
determinant algorithm@17#.

In this paper we demonstrate string breaking in an SU~3!
simulation with two flavors of dynamical sea quarks. O
simulations are done in the staggered fermion scheme o
archive of 198 configurations of dimensions 203324, gener-
ated with the conventional one-plaquette Wilson gauge
tion at 6/g255.415 and two flavors of conventional dynam
cal quarks of massam50.0125. At this gauge coupling an
bare quark mass the lattice spacing is approximately 0.
fm ~based on a measurement of the Sommer parameter@18#
r 0 extracted from Wilson loops! with a pi to rho mass ratio o
0.358. These parameters were selected to give a relat
light quark, making pair production energetically favorab
and a large lattice volume~about 3.3 fm on a side and 3.9 fm
in temporal extent! to allow ample room for string breaking

Our computational methodology is described briefly
Sec. II. In Sec. III we justify our fitting ansatz. Finally, i
Sec. IV we present our results and conclusions. Two App
dixes describe our formalism for random sources, and rev
the transfer matrix formalism we employ in our analysis.

II. COMPUTATIONAL METHODOLOGY

Our conventional Wilson loop is computed with APE Co
laboration smearing@19# of the spacelike gauge links. Spe
cifically, we used ten iterations, combining the direct li
with a factor 12a ~in our case,a50.294) and six staples
with factora/6 with SU~3! projection after each iteration. In
Hamiltonian language the expectation value of this opera
is the correlatorGFF(R,T) between an initial and final stat
F, consisting of a static quark-antiquark pair separated b
fat string of color flux. Most of our results are obtained fro
on-axis Wilson loops withR ranging from 1 to 10, but we
have two off-axis points at displacement~2,2,0! and ~4,4,0!
~plus permutations and reflections!. Including other off-axis
displacements might have been statistically useful@3#.

We enlarge the source and sink space by includin
meson-antimeson stateM with an extra light quark located
near the static antiquark and an extra light antiquark near
static quark. To be precise, this state is the tensor produc
a static-light meson operator and a static-light antimeson
erator. As discussed in Appendix B, staggered flavor con
erations make other choices more desirable close to the
tinuum limit, e.g. the tensor product of creation operators
a flux-tube state and a sigma meson. Our static-light me
construction makes the numerical analysis tractable an
adequate for studying mixing on coarse lattices.

We use an extended source for the light quark in
static-light meson. The heavy quark position, on the ot
hand, is fixed and used to define the separationR. Specifi-
cally, the gauge-invariant source wave function at a site
support only on the site itself and on the second on-a
neighbors in all six spatial directions, connected to the c
tral site by a product of the APE smeared links along
paths. Rather arbitrarily, the central site is given weigh
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while the satellite sites have weight 1. Thus we also comp
the additional correlation matrix elementsGMM(R,T),
GMF(R,T), andGFM(R,T). They are diagrammed in Figs.
and 2.

For the light quarks in the static-light mesons we use
same parameters as for the dynamical sea quarks. To re
variance we generated ‘‘all-to-all’’ propagators for the lig
quark, using a Gaussian random source method@4# ~see Ap-
pendix A!. Results reported here are based on 128 s
sources per gauge configuration, which gave satisfactory
tistics for our lattice volume. With this number of sources t
variance due to fluctuations in random source was com
rable to that due to fluctuations in the ensemble of ga
configurations.

We analyze our correlators using an extension of
transfer matrix formalism of Sharatchandra, Thun, and We
@20# for staggered fermions, described in Appendix B. W
our choice of local meson operators, discrete lattice sym
tries, also discussed in Appendix B, require that all produ
of gauge links in the observables be assigned phases co
tent with being viewed as paths of heavy staggered fermio
For example, for the Wilson-loop operator, a hopping para
eter expansion around an on-axisR3T rectangular path
gives, in addition to the conventional Wilson-loop gauge-li
product, a net phase factor (21)(R11)(T11), independent of
the staggered fermion Dirac phase conventions.~Included is
a factor 21 for a single closed fermion loop.! This phase
then controls the sign of the transfer matrix eigenvalue as

FIG. 1. The static-light meson-antimeson pair contribution
the full QCD propagator. The wiggly lines denote the light qua
propagator. Shown are the ‘‘direct’’ and ‘‘exchange’’ terms respe
tively.

FIG. 2. The string-meson correlation matrix elementGFM ~and
its Hermitian conjugateGMF). The wiggly line again denotes th
light quark propagator.
9-2
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ZERO TEMPERATURE STRING BREAKING IN LATTICE . . . PHYSICAL REVIEW D 64 074509
ciated with the flux tube state. We use a similar construct
to obtain the phases for the nonclosed gauge-link produc
the diagrams of Figs. 1 and 2. In all cases the Dirac ph
convention for the gauge-link products must be consis
with that of the light quark. A consequence of this constru
tion is that the correlation matrix elements involving off-ax
gauge-link products must vanish when summed o
symmetry-equivalent paths for net displacementsRW that have
more than one odd Cartesian component.

III. STAGGERED FERMION PAIR PRODUCTION

A. Transfer matrix eigenvalues

The heavy quark potential is defined as the ground s
energy of the QCD Hamiltonian with a static quark and a
tiquark separated by distanceR. Operationally, we extract the
ground state energy by fitting the time dependence of
correlation matrix elements in the same manner as one
tains hadron masses. Fundamentally, the potential is d
mined by the eigenvalues of the transfer matrix. To just
our fitting ansatz, therefore, we start from an analysis of
transfer matrix in the staggered fermion scheme.

Transforming to temporal axial gauge and making a s
able choice of fermion phases, Sharatchandra, Thun,
Weisz showed that the staggered fermion transfer matri
Hermitian but not positive@20#. Then it is convenient to use
the eigenvectors of the transfer matrix as a basis for re
senting the correlation matrix. In terms of the~possibly nega-
tive! eigenvaluesln(R) of the transfer matrix, our correla
tion matrix can therefore be written in spectr
decomposition as

GAB~R,T!5(
i 51

N

ZAi* ~R!ZBi~R!@l i~R!#T11, ~1!

whereA and B refer to the flux tubeF or meson-mesonM
states. TheT11 power is natural, as we show in Append
B. This result forms the basis for our fitting ansatz. To ap
this decomposition to our results, it is essential, as we h
done, that we treat the heavy quark lines as static stagg
quarks, with all fermion phases included, and that source
sink operators are equivalent.

B. Static light propagator

We first examine the single static-light meson correla
shown in Fig. 3. We find good fits to two spectral comp
nents, one with no phase oscillation inT, corresponding to a
S-wave light quark and a positive transfer-matrix eigenval
and the other, higher in energy, and with oscillating phase
T, corresponding to aP-wave light quark and a negativ
transfer-matrix eigenvalue. Fitting to a single nonoscillati
exponential plus a single oscillating exponential over
ranget5@2,9# gives energies@defined as usual as log(ulu)#
aES50.7884(12) andaEP51.022(6) with x2/d f52.7/4.
TheP-wave amplitude is suppressed by a factor of about
relative to theS-wave amplitude.
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C. Fitting form for the correlation matrix

Since we expect to find two static-light mesons at largeR
in our GMM correlator, we look for a positive eigenvalu
‘‘ SS’’ spectral component corresponding to twoS-wave me-
sons and a negative eigenvalueSPcomponent correspondin
to an S- and P-wave meson. For most of our analysis w
omit thePP component, a choice that we justify as follow
Squaring the static light propagator suggests that thePP
channel would contribute a second nonoscillating spec
component at a higher energy~about 0.5 in lattice units! than
the SS channel, and with a smaller amplitude~about 0.2!.
However, we present results that include an excited s
component inspired by thePP contribution. TheSSandSP
components would be expected to have a smooth de
dence onR for largeR. To these two spectral components w
add a third, corresponding to a conventional Wilson-lo
contribution at short distanceR. With the staggered fermion
phases included, the net Wilson-loop phase fac
(21)(R11)(T11) produces a transfer matrix eigenvalue with
phase (2)R11 that oscillates withR.

Our proposed fitting ansatz is thus Eq.~1! with N53, and
with explicit SS, SP, and flux-tube eigenvalues~respec-
tively!

l1~R!5e2V1(R),

l2~R!52e2V2(R), ~2!

l3~R!5~2 !R11e2V3(R).

Other components can be readily included. With our cho
of sources and sinks the correlation matrix is found to
real, so we may take realZ factors. An ambiguity permits
one to change the sign simultaneously inZFi andZMi , which
we resolve arbitrarily by requiringZMi to be positive. At
large R we expectV1(R) to approach 2aES and V2(R) to
approachaES1aEP , and at smallR we expectV3(R) to
correspond roughly to a Coulomb plus linear heavy qu

FIG. 3. Static light propagator with nonoscillatingS-wave and
oscillatingP-wave components. The solid line connects the bes
values.
9-3
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TABLE I. Fit ranges int, x2, potentials, andk vs R. Jackknife errors are given.

R GFF GFM GMM x2/d f V1(R) V2(R) V3(R)

1.0 @4,12# @1,12# @2,12# 20.0/23 1.57~3! 1.71~10! 0.5229~4!

2.0 @4,11# @1,10# @2,10# 24.0/18 1.62~5! 1.91~13! 0.8181~15!

2.83 @3,10# @1,9# @2,9# 11.1/16 1.61~3! 1.81~8! 1.0066~13!

3.0 @4,9# @1,9# @2,9# 23.4/14 1.63~5! 1.91~13! 1.024~4!

4.0 @4,9# @1,9# @2,9# 16.2/14 1.61~6! 1.85~13! 1.198~10!

5.0 @2,9# @1,8# @2,8# 18.6/14 1.63~5! 1.88~11! 1.353~3!

5.66 @2,9# @1,7# @2,7# 14.6/12 1.59~4! 1.74~9! 1.458~2!

6.0 @2,9# @1,7# @2,7# 14.8/12 1.54~4! 1.69~10! 1.507~4!

7.0 @2,8# @2,7# @2,7# 9.6/10 1.69~4! 1.96~12! 1.648~14!

8.0 @2,8# @2,6# @2,7# 13.3/9 1.61~4! 1.81~6! 1.78~6!

9.0 @2,8# @2,5# @2,6# 9.6/7 1.49~3! 1.54~8! 1.936~14!

10.0 @2,8# @2,5# @2,6# 8.7/7 1.58~5! 1.79~14! 2.09~2!
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potential. At intermediateR we expect mixing among thes
states. Avoided level crossing may occur at evenR between
intermediate states 2 and 3 and at oddR between intermedi-
ate states 1 and 3.

IV. RESULTS

A. Potential

With the factorization inherent in our ansatz@Eq. ~1!# and
the choiceN53, we fit three correlators with nine param
eters. Our fitting range inT varies over the data set as show
in Table I with typically ten or more degrees of freedom. T
goodness of fit supports our ansatz.

Our selection of fit ranges compromised between the n
to obtain acceptable fits and our intention to vary the e
pointstmin andtmax smoothly as a function ofR. At low R the
GFF ~flux-tube-type! correlator has quite small errors
whereas at largerR, errors increase, especially at higherT.
Thus for smallR we can set a highertmin in the GFF cor-
relator to improvex2 without loss of information. At largerR
there seems to be little improvement in goodness of fit
setting a hightmin , and the large statistical errors at highT
give no advantage to setting a highertmax.

To give an impression of the quality of the fits, we plot t
absolute valueof the correlation matrix elements vsT for
two values ofR in Figs. 4 and 5. Also plotted are the absolu
values of the fitting functions. The errors on the observ
GFM and GMM correlators also give an indication of th
signal obtainable with the random source method.

Results atR53 are a good representative of the smalR
correlators and the degree to which the fit results are affe
by the choice of end points. Fitting the three correlat
GFF , GFM , andGMM over the rangesTP@6,9#, @2,9#, and
@1,9#, respectively, gaveV151.60(5), V251.89(11), and
V351.026(6) withx2/d f514.6/12. Changing the fit range
to tP@2,9#, @2,9#, and@2,9# increasedx2/d f to 23.6/15 and
gaveV151.62(5), V251.88(11), andV351.025(8).

To see the effect upon the mixing analysis of includi
other states, we experimented with adding an excited s
modeled after the two-mesonPP spectral component, which
contributes in the same way as theSScomponent. The fourth
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spectral component is denotedV4(R). Doing so increases the
parameter count to 12. To assure stability of the fits, we fix
the two-meson energiesV1(R)52ES and V4(R)52EP ,
leaving ten free parameters. We found acceptable fits.
unconstrained energiesV2 andV3 agreed within errors with
results from the three-spectral-component ansatz. For
ample atR53 over fit rangestP@4,9#, @1,9#, @1,9# we find
x2/d f522.9/14 withV251.95(2) andV351.024(4).

Our fit results for the three-spectral-component ansatz
listed in Tables I and II, and plotted in Fig. 6. For sma
distances the flux tube energyV3(R) is smallest and the flux
tube state dominates the largeT behavior of the correlation
matrix, while at large distances the two-meson energ
V1(R) and V2(R) are smaller and the two-meson stat
dominate the correlation matrix at largeT. With our choice
of light quark mass the first level crossing occurs atR56a,
or 0.98 fm. The string is broken. It is interesting that t
energiesV1(R) and V2(R) are very nearly equal to thei
asymptotic values throughout. Thus we see no spectral
dence of a meson-meson interaction at the level of our
tistics.

FIG. 4. Absolute value of the correlation matrix elements vst at
R53. The lines connect the best fit values. The fit ranges are@4,9#
for GFF , @1,9# for GFM , and@2,9# for GMM .
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ZERO TEMPERATURE STRING BREAKING IN LATTICE . . . PHYSICAL REVIEW D 64 074509
It is clear from these results that mixing between the flu
tube and two-meson channels is weak. There is no evid
rounding of the potentials normally associated with
avoided level crossing. At higher order in mixing we wou
expect to require two-meson spectral components in the
tube GFF correlator. They should appear as a result of
breaking and rejoining of the string. However, the amp
tudes for both terms in this correlator are small enough t
if it were not for the enforcement of a common spectrum a
factorization in our fit ansatz, they might have been miss
The converse presence of the string term in the diago
two-meson correlatorGMM can be accounted for by th
‘‘box’’ diagram in the quark correlator that resembles a W
son loop.

As a check of mixing between the flux-tube level and t
two-meson levels, we examined the transition amplitu
GFM to see if, by itself, it contained both types of spect
components@21#. To do so we carried out a separate thre
exponential fit to the transition amplitudeGFM alone, fixing
the energies of theSS, SP, and flux-tube spectral compo

FIG. 5. Same as Fig. 4, but withR56. The fit ranges are@2,9#
for GFF , @1,7# for GFM , and@2,7# for GMM .
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nents to the values found in the multichannel channel an
sis, but adjusting their amplitudes for a best fit. Forr<5,
where the spectral components are clearly nondegenerate
found that the amplitudes for theSSand flux-tube compo-
nents were both nonzero at the three- to five-sigma le
Thus our results, combined with unitarity, confirm mixin
and imply string breaking.

We have required that the valence and sea quarks ma
thus assuring that the correlation matrix is a power of
transfer matrix. However, if mixing effects are very wea
had we chosen, instead, to omit the dynamical sea qu
altogether, it would very likely be difficult to detect the con
sequent inconsistencies. We analyze mixing further in S
IV B.

B. Modeling the mixing

Drummond, Pennanen, and Michael analyzed their res
in terms of a transfer matrix model that mixes the two-mes

FIG. 6. Heavy quark potential and first two excited states
separationR. The dashed and solid lines give the asymptotic valu
2aES andEP1ES . Jackknife errors are shown.
TABLE II. Couplings vsR. Odd and evenRvalues are grouped.~The displacements withR5A8 and 2A8
have even Cartesian components.!

R ZF1 ZM1 ZF2 ZM2 ZF3 ZM3

1.0 0.162~3! 14.0~1.0! 20.002(3) 13~2! 21.2733(10) 3.356~3!

3.0 0.24~3! 16~2! 0.005~4! 19~5! 21.582(14) 4.33~7!

5.0 0.23~3! 16~2! 0.005~3! 18~4! 21.784(6) 2.9~2!

7.0 0.9~8! 16~5! 20.00(2) 21~5! 21.8(4) 8~6!

9.0 20.01(3) 12.1~7! 20.007(10) 9.2~1.4! 22.13(5) 0.2~7!

2.0 0.0180~14! 16~2! 0.005~7! 19~5! 21.443(5) 1.970~8!

2.83 0.0160~7! 15.4~1.1! 0.051~4! 16~2! 21.540(3) 1.577~9!

4.0 0.0141~12! 16~2! 0.056~15! 17~4! 21.70(4) 1.19~3!

5.66 0.0087~11! 14.9~1.3! 0.06~2! 14~2! 21.780(5) 0.71~7!

6.0 0.0067~13! 13.4~1.2! 0.12~6! 12~2! 21.890(9) 1.0~3!

8.0 20.003(12) 15.5~1.3! 21(2) 10~20! 1~2! 9~15!

10.0 20.014(10) 15~2! 0.2~2! 15~4! 22.24(6) 3~3!
9-5
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TABLE III. Results of a mixing model analysis based on a three-exponential fit showing the coeffi
ratio d8 prior to imposing thea posteriorisum rule constraint andd after, the increase inx2, and the mixing
parametersx andy vs R. This mixing model seems plausible only forR>5.66. Jackknife errors are given
Values for odd and evenR are grouped as in Table II.

R d8 Dx2 d x y

1.00 0.52~3! 520 0.68~6! 0.056~3! 20.019(3)
3.00 0.56~3! 200 0.50~9! 0.023~3! 20.007(2)
5.00 0.72~2! 98 20.0(8) 0.000~6! 20.0010(9)
7.00 1.00~12! 0.0 1.0001~13! 0.004~2! 20.0004(8)
9.00 21(9) 0.21 1.002~10! 0.00090~15! 20.0005(5)

2.00 0.14~3! 1300 2.4~12! 0.002~3! 20.036(8)
2.83 0.43~5! 230 0.87~10! 20.0044(4) 20.0077(11)
4.00 0.58~10! 23 1.08~10! 20.0030(6) 20.0075(15)
5.66 0.79~9! 12 1.00~3! 20.0016(2) 20.0029(3)
6.00 0.85~7! 5.8 0.9~2! 20.0009(3) 20.0029(10)
8.00 1.2~4! 1.6 1.0~6! 20.00(2) 0.01~15!

10.00 0.3~2! 2.1 0.9~3! 0.0003~4! 20.0006(5)
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and flux-tube states@7,16#. Our approach differs slightly, be
cause our multiexponential fit carries more information a
because our multichannel contributions complicate
analysis. A perturbative model of string breaking starts w
a zeroth order pure flux-tube state (F0) and a pure two-
meson state, consisting of either a pair of unperturb
S-wave mesons (S0S0) or unperturbedS- and P-wave me-
sons (S0P0). ~By extension, we could include theP0P0

channel.! At a givenR the lattice mixing between the state
can be described by a transfer matrix on the unpertur
basis,

T~R!5S l1
0~R! 0 x

0 l2
0~R! y

x y l3
0~R!

D ~3!

that evolves a state across a Euclidean time slice. The r
and columns are arranged in the orderS0S0, S0P0, andF0.
We assume a small value for the mixingx betweenF0 and
S0S0 and y betweenF0 and S0P0. Although theS0S0 and
S0P0 states may mix, for simplicity, we have ignored th
effect. The diagonal elements correspond to our convent
for our fit ansatz@Eq. ~2!#. The 232 correlation matrix con-
necting our flux-tube and two-meson source and sink st
at a givenR is

G~R,T!5Z̃0~R!T~R!T11Z0~R!, ~4!

where Z0 is the unperturbed 233 matrix used in our fit
ansatz. The diagonal elements ofG(T) and the potentials are
unperturbed at first order inx and y. The off-diagonal cor-
relator to first order is

GFM~R,T!5A1@l1
0~R!#T111A2@l2

0~R!#T11

1A3@l3
0~R!#T11, ~5!

where
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A15ZF1~R!ZM1~R!5ZF3
0 ~R!ZM1

0 ~R!
x

l1
0~R!2l3

0~R!
,

A25ZF2~R!ZM2~R!5ZF3
0 ~R!ZM2

0 ~R!
y

l2
0~R!2l3

0~R!
,

A35ZF3~R!ZM3~R!52~A11A2!. ~6!

To first order in the mixing parameters, theZ factors are
unperturbed, and we may equateZ5Z0 to obtain three con-
straints for the two mixing parametersx and y. The third
constraint is a sum rule. To apply the model we chose
impose the sum rule as ana posteriori constraint on the
parameters of the fit for eachR,

f ~Z!5ZF1ZM11ZF2ZM21ZF3ZM350 ~7!

and use the first two conditions to determine the mixing
rameters:

x5@l1
0~R!2l3

0~R!#ZF1 /ZF3 ,
~8!

y5@l2
0~R!2l3

0~R!#ZF2 /ZF3 .

This was done by linearizing the sum rule in the vicinity
the minimumZ* of the unconstrainedx2:

f ~Z0!505 f ~Z* !1¹ f ~Z* !•~Z02Z* !. ~9!

It is straightforward to determine the attendant increase
x2, the shift in parameters, and the decrease in errors. S
this procedure assumes the sum rule can be linearized,
valid only to the extent that the increase inx2 is small.

Table III lists results. Shown are the values of the coe
cient ratio,

d52~ZF1ZM11ZF2ZM2!/ZF3ZM3 , ~10!
9-6
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TABLE IV. Same as Table III, but with a four-exponential fit, constrainingV1(R)52ES and V4(R)
52EP . The mixing model now seems plausible forR>2. Jackknife errors are given.

R d8 Dx2 d x y

1.00 0.52~5! 140 1.0~9! 0.10~14! 0.007~4!

3.00 0.4~2! 19 0.94~2! 0.051~2! 0.0089~13!

5.00 0.6~4! 1.8 0.99~2! 0.0139~6! 0.0034~7!

7.00 1~2! 0.00 1.001~9! 0.0032~6! 20.001(4)
9.00 0~20! 0.032 0.9~6! 0.2~15! 20.1(7)

2.00 0.5~2! 5.8 1.06~4! 20.037(3) 20.016(2)
2.83 0.61~15! 9.6 1.003~2! 20.0200(11) 20.0129(3)
4.00 0.9~4! 0.037 1.0000~2! 20.010(2) 20.0075(3)
5.66 0.3~5! 4.8 0.96~4! 20.0038(11) 20.0025(3)
6.00 0.4~6! 0.83 1.001~2! 20.0011(13) 20.0027(3)
8.00 1.5~3! 5.5 1.1~16! 0.007~6! 20.0008(14)
10.00 0.3~2! 1.6 1~9! 0.002~5! 20.001(13)
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before and after imposing the linearized sum rule constr
as well as the shifts inx2 and the values ofx andy obtained
after imposing the constraint. The ratiod should be 1 if the
sum rule is satisfied. We see that the increase inx2 is small-
est forR>5.66, but it is otherwise unacceptably large. Th
the mixing model suits our three-exponential ansatz only
largerR. The agreement improves considerably when we
clude then two-mesonPP spectral component, as discuss
above, and fix the two-meson energiesV1(R)52ES and
V4(R)52EP , leaving ten free parameters. Although we i
clude the fourth component in the fit, we still consider only
three-state mixing model.~In effect, we have set mixing to
the fourth level to zero.! Results are shown in Table IV. Now
the mixing model seems plausible forR>2.

The mixing model makes separate predictions for the c
nected and disconnected meson-to-meson correlators, w
provides an additional constraint on the mixing paramet
As a test of the systematic error arising from model assu
tions, we have tried refitting all of our data to a purely fou
component mixing model, with separate disconnected
connected correlators. While the resulting mixing coe
cients repeat the trends of Tables III and IV, the values di
as much from those of the tables as the two tables do f
each other.

If we now take the mixing model at face value, it is in
teresting to consider how the strength of mixing varies w
07450
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R. In Fig. 7 we see a significant decrease in bothx andy with
increasingR, which is to be expected partly from Eq.~8! as
the eigenvalues cross. There is also a pronounced differe
in mixing strengths at even and oddR, suggesting a suppres
sion of mixing between unperturbed oscillating and nonos
lating levels. Obviously, given the coarseness of our latti
the comparison with a model Hamiltonian must be done
diciously. However, even these first, crude QCD resu
should help constrain the phenomenological analysis
quarkonium decay@22#.

V. CONCLUSIONS

We have studied string breaking in the heavy quark int
action at zero temperature in QCD. Our calculation used
flavors of light staggered quarks and gauge configurati
generated in the presence of the same quarks. We exte
the analysis of the spectrum of the transfer matrix in
staggered fermion formalism to treat our nonlocal sourc
By adding explicit two-meson states to the conventio
flux-tube state, we obtain the expected result that the t
meson state is energetically favored at large distance.
two-channel correlators fit a model with three factorizi
spectral components and a partially constrained, exten
model with four spectral components. Our results are a
consistent with simple three- and four-state models w
-
FIG. 7. Absolute value of the mixing param
etersx andy vs separationR. Odd and even series
are distinguished.
9-7
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weak mixing. The mixing coefficients in the mixing mod
matrix appear to decrease at the level crossing points.
principal finding is that mixing between the flux-tube a
two-meson channels is indeed weak. Thus we see why s
breaking has been missed in the flux-tube channel by its
While our matching of dynamical and valence quarks is
signed to satisfy unitarity, with our statistics we have n
found compelling evidence for quark loop effects. Doubtle
our results could have just as well been reproduced i
quenched simulation, where inconsistencies with unita
would appear only at higher order in the mixing matrix e
ments. However, we also find that the transition correlator
itself connecting flux-tube and two-meson channels is n
zero for all r and shows both stringlike and two-meson-li
spectral components, at least forr ,6. Thus our results
combined with unitarity, require string breaking. It is recom
mended that future staggered fermion studies closer to
continuum take care to restrict the two-meson wave func
to the light-flavor singlet channel.
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APPENDIX A: RANDOM SOURCE ESTIMATORS
APPLIED TO STRING BREAKING

We use random source methods to calculate the all-to
quark propagators in this study. Here we outline the met
as applied to string breaking. We begin with the conventio
light quark propagator

Gq
ab~x,y!5^qa~x!q̄b~y!&, ~A1!

which satisfies the equation

~D” 1m1!x,y
ab Gq

bc~y,z!5dacdx,z . ~A2!

Summation over repeated indices is implied unless no
otherwise.D” denotes the usual staggered lattice Dirac ope
tor.

The static ~infinitely heavy! quark propagator can b
found from an expansion to leading order in 1/m. The result
depends on whether propagation is forward or backward
time. Fort.t8, omitting the heavy quark mass factors,

Gh
ab@~xW ,t !,~yW ,t8!#5^ha~xW ,t !h̄b~yW ,t8!&

5dxW ,yWS )
t5t21

t8

Ũ4
†~xW ,t!D ab

, ~A3!

where
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Ũm
† ~xW ,t!5a~xW ,t;m!Um

† ~xW ,t!, ~A4!

and thea(xW ,t;m) are staggered fermion phase factors. F
t,t8,

Gh
ab@~xW ,t !,~yW ,t8!#5dxW ,yWS )

t5t

t821

Ũ4~xW ,t!D ab

, ~A5!

where

Ũm~xW ,t!52a~xW ,t;m!Um~xW ,t!. ~A6!

We will be interested in static-light mesons, which we co
struct from the Grassman fields as

B~xW ,t !5(
yW

(
a,b

h̄a~xW ,t !r t
ab~xW ,yW !qb~yW ,t !,

~A7!

B̄~xW ,t !5(
yW

(
a,b

q̄a~yW ,t !r t
ab~yW ,xW !hb~xW ,t !.

The wave functionr t is Hermitian,r t
†5r t , and depends via

gauge fields ont. We use

r t
ab~xW ,yW !52dabdxW ,yW1 (

m51

3 H S )
l 50

r 021

Ũm~xW1 l m̂,t !D ab

dxW ,yW2r 0m̂

1S )
l 51

r 0

Ũm
† ~xW2 l m̂,t !D ab

dxW ,yW1r 0m̂J . ~A8!

The spacelike gauge-link matrices can be taken as~APE!
smeared gauge fields. Thus the tilde here represents
smearing and the inclusion of the fermion hopping phas
On the other hand the timelike gauge-link matrices are
smeared.

For the static-light meson correlation function with sour
at the origin, we obtain

GB~T!5^B~0W ,T!B̄~0W ,0!&

5Gh
ab@~0W ,0!,~0W ,T!#rT

bc~0W ,xW !

3Gq
cd@~xW ,T!,~yW ,0!#r0

da~yW ,0W !

5^h†a~0W ,0!Vab@~0W ,0!,~0W ,T!#rT
bc~0W ,xW !

3Gq
cd@~xW ,T!,~yW ,t8!#r t8

de
~yW ,zW !he~zW,t8!&h ,

~A9!

where

Vab@~xW ,0!,~xW ,T!#5S )
t50

t21

Ũ4~xW ,t!D ab

~A10!

is the product of link matrices and hopping phase fact
from (xW ,0) to (xW ,T). In the last line we introduced Gaussia
random numbers,̂h†a(x)hb(y)&h5dabdx,y , to compute the
trace. Multiplied byr t they form the source for the ligh
9-8
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quark inversion and are then used again in the computa
of the static-light meson correlation function as seen in
~A9!. Introducing the smeared, random source propagato

Ch
a~xW ,t !5r t

ab~xW ,yW !Gq
bc@~yW ,t !,~zW,t8!#r t8

cd
~zW,uW !hd~uW ,t8!,

~A11!

we can write the static-light meson correlation function a

GB~T!5^h†a~0W ,0!Vab@~0W ,0!,~0W ,T!#Ch
b~0W ,T!&h .

~A12!

In numerical practice this result is computed for a source
any lattice location, and averaged over the space-time
ume.

For the computation of the heavy quark potential and
investigation of string breaking we will need a heavy qua
antiquark ‘‘string state’’

OF~xW ,yW ,t !5h̄a~xW ,t !Vab@~xW ,t !,~yW ,t !#hb~yW ,t !/ANc,
~A13!

where Vab@(xW ,t),(yW ,t)# is a superposition of products o
~APE smeared! gauge fields in time slicet starting atxW and
ending atyW .

We are then interested in the diagonal correlator betw
a string state at time 0 and one at timeT—we consider the
connected part only:

^OF~RW ,0W ,T!OF~0W ,RW ,0!&5W~RW ,T!, ~A14!

with smeared space-like gauge field product segments in
timelike Wilson loopW(RW ,T). Except for the fermion hop-
ping phases, which give a net factor (2)(R11)(T11) indepen-
dent of staggered fermion phase convention, this is the
relation function usually considered for the computation
the heavy quark potential. As usual, in practice this quan
is averaged over all choices of lattice origins and on-a
displacementsR. We also computed it for two off-axis dis
placements, namely,R5A8 and 2A8. For off-axis displace-
mentsVab@(xW ,t),(yW ,t)# is constructed from a symmetric s
of spacelike paths joining the endpoints.

We are also interested in the off-diagonal correlator
tween the string state and the two-meson state:

OM~0W ,RW ,t !5B̄~RW ,t !B~0W ,t !, ~A15!

^OF~RW ,0W ,T!OM~0W ,RW ,0!&

5Vab@~xW ,0!,~xW ,T!#Vbc@~RW ,T!,~0W ,T!#

3Vcd@~RW ,T!,~RW ,0!#r0
de~0W ,xW !

3Gq
e f@~xW ,0!,~yW ,0!#r0

f a~yW ,RW !

5^h†a~RW ,0!Vab@~RW ,0!,~RW ,T!,~0W ,T!,~0W ,0!#

3Ch
b~0W ,0!&h . ~A16!
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TheV with four coordinate arguments stands for the prod
of timelike and~APE smeared! spacelike gauge fields tha
make up the part of a timelike Wilson loop without the sp
tial segment at timet50. Again, this correlator is compute
with the Gaussian random source method, in a man
similar to the static-light meson correlation functio
@Eq. ~A9!#. The other off-diagonal correlator

^B(RW ,T)B̄(0W ,T)S(0W ,RW ,0)&, is the Hermitian conjugate o
Eq. ~A16!. This quantity is averaged over the same choic
of origin and displacement as the Wilson loop.

Finally, we need the two-meson correlator

^OM
† ~0W ,RW ,T!OM~0W ,RW ,0!&

5Vab@~RW ,0!,~RW ,T!#rT
bc~RW ,xW !Gq

cd@~xW ,T!,~yW ,T!#

3rT
de~yW ,0W !Ve f@~0W ,T!,~0W ,0!#r0

f g~0W ,zW !

3Gq
gh@~zW,0!,~uW ,0!#r0

ha~uW ,RW !2Vab@~RW ,0!,~RW ,T!#

3rT
bc~RW ,xW !Gq

cd@~xW ,T!,~yW ,0!#r0
da~yW ,RW !

3Ve f@~0W ,T!,~0W ,0!#r0
f g~0W ,zW !

3Gq
gh@~zW,0!,~uW ,T!#rT

he~uW ,0W !. ~A17!

We compute the two terms in Eq.~A17! again with the
Gaussian random source method using two indepen
Gaussian sourcesh and z, one for each of the two light
quark propagators:

^OM
† ~0W ,RW ,T!OM~0W ,RW ,0!&

5^Ch
f ~0W ,0!h†a~RW ,0!Vab@~RW ,0!,~RW ,T!#&h

3^Cz
b~RW ,T!z†e~0W ,T!Ve f@~0W ,T!,~0W ,0!#&z

2^h†a~RW ,0!Vab@~RW ,0!,~RW ,T!#Ch
b~RW ,T!&h

3^z†e~0W ,T!Ve f@~0W ,T!,~0W ,0!#Cz
f ~0W ,0!&z .

Again, this quantity is averaged over the same choices
origin and displacement as the Wilson loop. It is important
note from our expressions for the correlators that all can
computed usingO(N) methods forN random sources.

APPENDIX B: TRANSFER MATRIX APPLIED
TO STRING BREAKING

We review the Sharatchandra-Thun-Weisz~STW! Fock-
space formulation of the staggered fermion partition funct
with specific application to the operators used in our str
breaking study@20#.

1. Introduction

The fermion action is given by
9-9
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S5(
t

S3~ q̄t ,qt ,Ut!

1(
r ,t

a r ,t;4@ q̄r ,t11Ur ,tqr ,t2q̄r ,tUr , t̂
†

qr ,t11#, ~B1!

where the spatial part of the action is

S3~ q̄t ,qt ,Ut!5(
r

H 2mq̄r ,tqr ,t1(
i

a r ,t; i@ q̄r 1 ı̂ ,tUr ,t; iqr ,t

2q̄r ,tUr ,t; i
† qr 1 ı̂ ,t#J . ~B2!

With the STW phase conventions

a r ,t;15~2 !z, a r ,t;25~2 !x, ~B3!

a r ,t;35~2 !y, a r ,t;45~2 !x1y1z.

With these choices the phases have not dependence. The
imaginary time variable ranges over 0, . . . ,N21, and the
antiperiodic boundary condition requiresqr ,N52qr ,0 .

The partition function is given by

Z5E dq̄dq exp~S!, ~B4!

whereq̄ andq denote the full setq̄r ,t andqr ,t . We would like
to convert the Grassmann integral into a Fock-space ope
trace. To this end STW first eliminated the staggered-ferm
phase in the time direction altogether, by changing variab
to q†5a r ,t;4q̄. The spatial action becomes

S3~qt
† ,qt ,Ut!5(

r
H 2mqr ,t

† qr ,ta r ,t;41(
i

a r ,t; i8

3@qr 1 ı̂ ,t
†

Ur ,t; iqr ,t2qr ,t
† Ur ,t; i

† qr 1 ı̂ ,t#J ,

~B5!

where

a r ,t; i8 5a r ,t;4a r ,t; i . ~B6!

Then STW introduced a dummy set of Grassmann varia
pt5qt

† andpt
†5qt . The action is then

S5(
t

S3~qt
† ,pt

†!/21S3~pt ,qt!/22@pt
†pt111qt

†qt11#,

~B7!

where we have suppressed the sum over spatial coordinar.
The partition function now includes integration over t
dummy variables with a delta-function constraint:

Z5E dq†dqdp†dpd~p2q†!d~q2p†!exp~S!. ~B8!
07450
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Here the delta function implies a product over delta functio
on each lattice site. The Grassmann delta function is sim

d~q2p†!5~q2p†!. ~B9!

We introduce a Fock space by associating creation and a
hilation operators with each Grassmann variable. The co
sponding Fock space operators are denoted by a hat.
convenient to introduce Grassmann coherent states@23#:

q̂uq&5quq&, p̂up&5pup&
~B10!

^q†uq̂†5^q†uq†, ^p†u p̂†5^p†up†.

The coherent states satisfy completeness and trace rela

15E dq†dquq&^quexp~2q†q!,

~B11!

Tr A5E dq†dq^q†uAuq&exp~q†q!.

With these identities we can reorganize the factors in expS)
in the form

exp~S!d~p2q†!d~q2p†!

5)
t

$e2pt
†pt112qt

†qt11^qt
†pt

†ueS3(q̂†,p̂†)/2:~ p̂2q̂†!

3~ q̂2 p̂†!:eS3(q̂,p̂)/2uqtpt&%,

where :: denotes operator normal ordering. Using the co
pleteness and trace identities and the antiperiodic boun
condition, we can then write the partition function in term
of a transfer matrix operator:

Z5Tr T N, ~B12!

where

T5eS3(q̂†,p̂†)/2:~ q̂†2 p̂!~ q̂2 p̂†!:eS3(q̂,p̂)/2. ~B13!

This is a manifestly Hermitian, but not positive definit
transfer matrix.

2. Quantum mechanics

To see how this transfer matrix works, as a warmup ex
cise, suppose there is only one spatial site~quantum mechan-
ics!. The transfer matrix is then

T5~11mq̂†p̂†!:~ q̂†2 p̂!~ q̂2 p̂†!:~12mq̂p̂!. ~B14!

It has eigenstates (m5sinhg)

q̂†u0&,p̂†u0&,u6c&5~17e7gq̂†p̂†!u0&/A11e72g,
~B15!

with eigenvalues 1,21,6e7g. Thus the ground state i
u2c&. The ‘‘degenerate’’p and q states are interpreted a
9-10
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single particle and single antiparticle states, and the s
u1c& as a state with a particle and antiparticle pair. T
partition function is (N even!

Z5212 cosh~Ng!. ~B16!

Next we consider the propagator for a single massive
mion, created at time slice 0 and propagating to time sliceT:

G~T!5E dq†dq exp~S!qTq0
†/Z. ~B17!

Converting to the Fock space basis as we did with the pa
tion function leads to

G~T!5Tr@T N2T21p̂†T T11p̂#/Z. ~B18!

This example shows that aT11 power is natural. If we
assume thatN is large, so only the ground state contributes
the traces, we have (T!N)

G~T!5e2gT/@2 cosh~g!#, ~B19!

with g interpreted as the energy of the propagating state.
a large mass the correlator is approximately 1/(2m)(T11).

The antiparticle propagator~with qT
†q0 instead! is also

easily computed with the result

G~T!52~2 !Te2gT/@2 cosh~g!#. ~B20!

Next we introduce a second heavy flavor of massM (M
5sinhG), denoted byh. We consider the propagation of
heavy-light meson. For simplicity we use an interpolati
operator with a local~point! wave function. In this case th
Grassmann integration involves the combinationqT

†hTh0
†q0.

Following the same steps as before leads to

GB~T!52~2 !Te2(g1G)T/@4 cosh~g!cosh~G!#.
~B21!

3. String-breaking operators

Here we construct the operators required for our stri
breaking study. Two interpolating operatorsOF

† andOM
† are

used, one that creates a static quark-antiquark pair wi
connecting flux tube and another that creates a pair of st
light mesons. A simple way to construct the flux tube ope
tor is to introduce a new heavy flavorH of massMH . Our
conventions for the on-axis~direction ı̂ ! string-creation op-
erator can be obtained from the Grassmann prod
(2MH)Rh̄0,tH0,tH̄R,thR,t after integrating out the new flavo
in the static limit MH→`. The result is a heavy-quark
antiquark creation operator connected by the static qu
propagator. In the Grassmann basis this is

OF
†~R,t !5F†~R,t !5h̄0,tF )

r 50

R21

~2a r ,t; iUr ,t; i
† !GhRı̂,t .

~B22!

Our corresponding annihilation operator is similarly gen
ated from the product (2MH)Rh̄R,tHR,tH̄0,th0,t , yielding
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OF~R,t !5F~R,t !5h̄R ı̂,tF )
r 50

R21

a r ,t; iUr ,t; i Gh0,t . ~B23!

~With all of our static quark propagators, it is convenient
introduce a separate, heavy flavor for each straight-line s
ment.! The meson-antimeson creation and annihilation
erators are simply

OM
† ~R,t !5B̄~0,0!B~R,0!5h̄0,tq0,tq̄R ı̂,thRı̂,t ,

~B24!
OM~R,t !5B̄~R,t !B~0,t !5h̄R ı̂,tqRı̂,tq̄0,th0,t .

We are interested in the two-channel correlators in the st
limit Mh→` with the heavy quarks fixed at 0 andR,

GAB~R,T!5^OA~R,T!OB
†~R,0!&~2Mh!2T, ~B25!

whereA,BP$M ,F%. The conversion to Fock space procee
as before. Withd(g2h†)d(h2g†) the Fock space operator
are

ÔF
†~R!5ĝ0,ta0,t;4F )

r 50

R21

~2a r ,t; iUr ,t; i
† !G ĥR ı̂,t ,

ÔF~R!5ĥR ı̂
†

aRı̂,t;4F )
r 50

R21

~a r ,t; iUr ,t; i !G ĝ0,t
† , ~B26!

ÔM
† ~R!5ĝ0,ta0,t;4q̂0,t p̂R ı̂,taRı̂,t;4ĥR ı̂,t ,

ÔM~R!5ĥR ı̂,t
†

aRı̂,t;4p̂R ı̂,t
†

q̂0,t
† a0,t;4ĝ0,t

† .

We recall thata r ,t;4 is independent oft, andaRî,t;4a0,t;45
(2)R, so the dagger indeed denotes the Fock space Her
ian conjugate. The desired correlators are then

GAB~R,T!5^vacuOA~R!T T11OB
†~R!uvac&. ~B27!

An eigenstateun& of the transfer matrix with eigenvalueln
contributes

GABn~R,T!5ZAn* ~R!ZBn~R!@ln~R!#T11, ~B28!

where

ZAn~R!5^n,RuÔA~R!uvac&. ~B29!

This result is the basis for Eq.~1!.

4. Staggered spin and flavor considerations

The external states in our analysis are built from two o
erators: one that creates a static quark-antiquark pair at s
ration R and one that creates a pair of static quark–lig
quark mesons at separationR. Both the static quark and ligh
quark carry four continuum flavors. One may ask, in t
continuum limit, what spin, parity, and flavor combination
occur?
9-11
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a. Flavors and spins of the static-light meson

Golterman and Smit@25# give an analysis of the flavo
content of staggered quark-antiquark mesons. Our sta
light-meson wave function has a local component~zero dis-
placement! and a component with displacement 2 along a
axis. An even displacement does not change the light-qu
flavor and spin wave function, so for simplicity we analy
only the local component,

h̄~2yW1hW ,t !q~2yW1hW ,t !, ~B30!

where the c.m. offsethW ranges over the eight sites in a un
cube.

The more familiar flavor-spin content is displayed in t
notation of Kluberg-Sternet al. @24#,

q~2yW1hW ,t !5
1

2
Gh

aaqaa~yW !, ~B31!

where a sum over four flavora indices and four spina
indices is assumed, and

Gh
aa5g0

h0g1
h1g2

h2g3
h3 . ~B32!

A similar expression holds for the heavy quark opera
h(2yW1h,t). We have ignored the gauge connection in the
expressions. The coefficientsGh

aa give the flavor-spin wave
function of a quark created at siteh.

The zero-three-momentum projection of the local sta
light operator is given by

BhW ~ t !5(
yW

h̄~2yW1hW ,t !q~2yW1hW ,t !. ~B33!

All eight operators, corresponding to the eight values ofhW ,
belong to Golterman’s class 0. Because the static quark m
propagate in place, the correlation matrix for these ei
states is diagonal in and independent ofhW . Apart from a
volume factor, it is exactly the static-light correlator we ha
computed. Linear combinations of these operators with co
ficients differing only by signs yield operators belonging
the rest-frame symmetry group of the discrete transfer
trix. For example, the operator belonging to the on
dimensional representation112 in the Golterman-Smit nota
tion is given by

B112~ t !5
1

A8
(
hW

~2 !a11a21a3BhW ~ t !. ~B34!

In the Kluberg-Sternet al. basis this operator is written as

1

8 (
yW

h̄~y!@g53g56g03g0#q~y!, ~B35!

where the first gamma factor in the tensor product oper
on the spin basis, and the second the flavor basis, and
sign is plus for event and minus for odd.
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This operator generates both a pionlike and sigma
state in the continuum, in which, respectively, the light qua
is found in anS or P orbital around the static quark. Simila
linear combinations yield eight operators, altogether belo
ing to the irreps121, 112, 39921, and39921, each interpo-
lating one of eightS-wave channels: two pionlike (B me-
sons! and two rholike (B* mesons!. Each of these is paired
with one of eightP-wave channels: two sigmalike and tw
pseudovectorlike, respectively. AllS-wave states are degen
erate, as are allP-wave states. A fixed offsethW corresponds
to a distinct linear combination of these degenerate sta
Alternatively, we may say that a fixed offsethW corresponds
to the pairing of a single flavor-spin species of light qua
and heavy quark.

Thus our two-meson operator interpolates all combi
tions of B and B* and theirP-wave counterparts. Our pro
cedure for computing correlators sums over all cubic ro
tions ofRW at fixeduRu, so is consistent with zero total angula
momentum for the two-meson and flux-tube states. Tra
tions of the typeSS→SP are accompanied by a change
orbital angular momentum.

Static-light mesons in the Golterman classes 1, 2, an
are similarly degenerate within each class with multipliciti
24, 24, and 8, respectively. One would expect in analo
with the light q̄q mesons that on a coarse lattice the energ
of the class nonzero static-light mesons are higher than
of class 0. In the continuum limit all 64 become degener
because of flavor and heavy quark symmetry. A multiplic
factor of 16 comes from separate heavy-flavor and lig
flavor symmetry and a multiplicty factor of 45113 for de-
generate singlet and triplet spin combinations.

b. Flavors and spins of the static-static meson

The flux-tube operator is designed so that it belongs to
same representation of the symmetry group of the tran
matrix as the meson-antimeson operator, thus permittin
mixing of the states they create. The zero momentum pro
tion of the meson-antimeson operator at any separationR is
in Golterman class 0. AtR50 the flux-tube operator creatin
a static quark-antiquark pair is trivially one of eight Golte
man class 0 operators. For it to remain in this class as
quarks separate, one must include the hopping pha
6am(x) with the gauge-link operators that excite the elect
flux accompanying the creation of the static pair~A4!. A
simple way to see this is to consider that the operator clas
a symmetry of the transfer matrix, so acting upon the z
separation state with the heavy-quark hopping matrix, wh
incorporates the phases, preserves the operator class.
eight operators consist of two pion-like and six rho-like o
erators. More specifically, the static-quark–antiquark ope
tor at all R is a linear combination of the two local~heavy
quark! pseudoscalarsp5 and p05 and the six local vector
mesonsr i andr i0. In theb-quark system, these states wou
be classified as theY and thehb .

In free ~static! propagation the even parityP-wave part-
ners of both are trivially absent in the static limit. On th
other hand, in the presence of dynamical staggered qu
and in the strong-coupling limit, we see no reason that
9-12
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namical quark loops could not generate an anomalo
opposite-parity partner in the Wilson loop correlator at s
ond order in the mixing coefficients. Thus the appearanc
both oscillating and nonoscillating components in the Wils
loop would be a signal of string-breaking at strong couplin
In the continuum limit the anomalous components sho
vanish, in keeping with the expectation that lattice stagge
and nonstaggered fermion actions have identical limits.
our moderately coarse lattices, in the transition correla
connecting the flux-tube and meson-antimeson channels
signal appears in leading order, but from our mixing analy
we find that the anomalous parity component is smaller.

c. Light flavor artifacts in the meson-meson correlator

The peculiarities of staggered flavor symmetry requ
paying special attention to light quark flavor counting. Tw
issues confront us. First, in our meson-antimeson channe
the continuum limit the light quarks can combine as a fla
singlet or flavor nonsinglet with, in principle, distinct ene
gies. Since the flux-tube state is necessarily a light-fla
singlet, only the singlet components mix, leaving the no
singlet as a potential additional spectral component. Sec
the gauge configurations were generated in the presenc
Nf52 flavors, through the usual device of taking the squ
root of the intrinsically four-flavor fermion determinan
However, the light quarks in our source and sink carry fo
flavors. A mismatch between the number of valence and
quarks gives rise to additional spectral components in
disconnected meson-to-meson correlator.

To count flavors, we construct a toy model similar to t
mixing model of Sec. IV B. However, for present purpos
we ignore negative transfer matrix eigenvalues and dea
rectly with the Laplace transform of the correlators. Furth
it is sufficient to concentrate on the meson-meson correl
GMM .

We begin with the disconnected meson-meson correl
GMMD at a fixed separationR. As we have noted above, th
static-light mesons are created in Golterman class 0. In
absence of glueball exchange between the meson and
meson, they remain in class 0. Glueball exchange can ex
classn.0 levels in pairs. Such an effect is presumably sh
range, because the glueball mass is of order 1 GeV. Thus
a coarse lattice we expect four distinct energy levels, and
Laplace transform of theGMMD correlator has the form

GMMD5 (
n50

3 Zn
2

E2En
. ~B36!

At least forR larger than a few tenths of a Fermi, we expe
the lowest level to have the largest overlap with the sou
and sink so thatZ0@Zn for n.0. So we simplify our model,
writing

GMMD5
Z2

E2E0
1•••, ~B37!

where the remaining terms are higher energy and wea
coupled, except, possibly, at smallR.
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In the continuum limit flavor symmetry requires only tw
energy levels, depending on whether the light quarks form
flavor singlet or nonsinglet. Thus we useE0 to denote the
singlet, andE1 to denote the nonsinglet. Since our sourc
sink operator generates a single flavor-spin species of l
quark and light antiquark, for four light flavors the relativ
weight of singlet to nonsinglet is 1:3, and we obtain

GMMDucont5
Z2

E2E0
13

Z2

E2E1
. ~B38!

Next we consider the connected correlatorGMMC . We
treat light quark pair annihilation and creation as a we
process with amplitudex, and analyze this correlator as
perturbation series inx. Thus the leading term in the con
nected diagram has the form

GMMC
(2) 5

Z2x2

~E2E0!2~E2Ef !
, ~B39!

whereEf is the energy of the flux-tube state. The amplitu
x gives the weight for annihilation or creation of a sing
light-quark–antiquark flavor. Here is the sequence of eve
The source state couples to the lowest level, which pro
gates with energyE0. It then annihilates with amplitudex to
produce the flux-tube state, propagating with energyEf . Pair
creation leads back to the lowest level, which propaga
with energyE0 before coupling to the sink.

The next-higher order contribution toGMMC comes from
a quark-loop insertion. The sequence of events is the sam
in the leading-order contribution, except that an extra p
creation and annihilation process occurs in the flux-tu
state. Pair creation on a coarse lattice leads to any of the
levelsEi at the same order inx. In the continuum limit and
large R these levels are degenerate, and would each co
with weightx2Nf /4, the factorNf /4 arising from the fermion
determinant. For simplicity, to model the full effect of th
internal quark loop, we assign it a weightx82 with x82

5x2Nf in the continuum and represent only the lowest le
E0. Thus we have

GMMC
(4) 5GMMC

(2) x82

~E2E0!~E2Ef !
. ~B40!

Continuing with these simplifications to all orders, we m
sum the perturbation series to obtainGMM5GMMD
1GMMC , where

GMM5Z2
11~x22x82!/@~E2E0!~E2Ef !#

E2E02x82/~E2Ef !
1•••.

~B41!

The ellipsis represents contributions to the disconnected
gram from light-flavor nonsinglet terms.

This toy flavor-counting model shows the desired shift
pole atE01x82/(E2Ef), but additional, complicating spec
tral components occur atE0 , Ef , and the light-flavor non-
singlet level~s!. These additional components are an artifa
of our choice of source and sink. While, in principle, on
9-13
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may carry through a spectral analysis of the correlators,
membering to include the artifacts, the analysis would
unnecessarily complicated. For the present numerical st
weak mixing and strong flavor symmetry breaking on o
coarse lattice render the extra spectral components harm
First, strong coupling breaks the flavor symmetry and l
the levelsE1 , . . . aboveE0, making it less likely to confuse
them withE0. Second, because of weak mixing, we are u
able to detect the internal quark loop directly. Thus we m
sure the mixing parameterx, but do not seex8.

Closer to the continuum, it is desirable to replace
meson-meson interpolating operator with a better one, bu
ys

y

tt.

07450
e-
e
y,

r
ss.

s

-
-

e
d-

ing in an explicit projection of the light-quark flavor single
An example is a state formed from the tensor product of as
meson and a static quark-antiquark flux tube. Clearly, suc
projection eliminates the nonsinglet contribution. But
eliminate the other artifacts also requiresx25x82 in the toy
model, which is not automatic when there are two sea qu
flavors but four source and sink flavors. The remaining a
facts are eliminated by adjusting the weight of the disco
nected diagram, relative to the connected diagram. To
precise, once a projection to an SU~4! flavor singlet has been
done in the stateM, the proper weighting isGMMD
1Nf /4GMMC .
el,

l.

ys.
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