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Zero temperature string breaking in lattice quantum chromodynamics
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The separation of a heavy quark and antiquark pair leads to the formation of a tube of flux, or “string,”
which should break in the presence of light quark-antiquark pairs. This expected zero-temperature phenomenon
has proven elusive in simulations of lattice QCD. We study mixing between the string state and the two-meson
decay channel in QCD with two flavors of dynamical sea quarks. We confirm that mixing is weak and find that
it decreases at level crossing. While our study does not show direct effects of internal quark loops, our results,
combined with unitarity, give a clear confirmation of string breaking.
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[. INTRODUCTION energy contribution to the Wilson-loop correlator at laige
should be a stat®! consisting of two isolated heavy-light
In the absence of dynamical sea quarks, the heavy-quarkmesons. However, such a state with an extra light dynamical
antiquark potential is known quite accurately from numericalquark pair has poor overlap with the flux-tube state, so it is
simulations of lattice quantum chromodynamifié$ The po-  presumably revealed only after evolution to very lalgdo
tential is traditionally determined from the Wilson-loop ob- hasten the emergence of the true ground state, it is necessary
servable, which is proportional to gxpV(R)T] at largeT. At to enlarge the space of sources to include Fotind at least
large separatioir, the potentialV(R) rises linearly, as ex- oneM state.
pected in a confining theory. In the presence of dynamical Drummond demonstrated string breaking in a strong-
sea quarks the potential is expected to level off at ld&kge coupling, hopping parameter expansion with Wilson quarks
signaling string breaking. Thus far, no &)Y simulation at [7,8]. A number of numerical studies of theories less compu-
zero temperature with light sea quarks has found clear evitationally demanding than QCD, including non-Abelian
dence in the Wilson-loop observable for string breakingtheories with scalar and adjoint matter fields, found string
[2,3], even out toR~2 fm. breaking[9-13]. One study claimed to have found string
The reason string breaking has not been seen using thgeaking in the absence of dynamical sea quarks by doing a
traditional Wilson-loop observable is now clefd—7]. The transfer matrix calculatiofil4].
Wilson loop can be regarded as a hadron correlator with a In a full SU(3) simulation, until recently, string breaking
source and sink stat@) consisting of a fixed heavy quark- has only been observed at nonzero temperdtiose to, but
antiquark pair and an associated flux tube. The correct lowegtelow the deconfinement crossoyvgs], based on the Polya-
kov loop observable, which evidently has much better over-
lap with theM state. Some of us reported a preliminary low-
*Present address: debis Systemhaus GEI, mbH, PascalstraResgatistics result for staggered quarks in 1929], and, last
52076 Aachen, Germany. year, Pennanen and Michael announced evidence of string
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breaking at zero temperature using Wilson-clover quarks anc AANANNANNN
a novel technique for variance reduction in computing the

light quark propagatof16]. Duncan, Eichten, and Thacker TT—»

found hints of a flattening static potential using a truncated R

determinant algorithn17].
In this paper we demonstrate string breaking in af3U 1
simulation with two flavors of dynamical sea quarks. Our
simulations are done in the staggered fermion scheme on a
archive of 198 configurations of dimensions>2®4, gener-
ated with the conventional one-plaquette Wilson gauge ac-
tion at 65%=5.415 and two flavors of conventional dynami- NN
cal quarks of masam=0.0125. At this gauge coupling and  FIG. 1. The static-light meson-antimeson pair contribution to
bare quark mass the lattice spacing is approximately 0.16@e full QCD propagator. The wiggly lines denote the light quark
fm (based on a measurement of the Sommer pararfid8¢r propagator. Shown are the “direct” and “exchange” terms respec-
ro extracted from Wilson loopswith a pi to rho mass ratio of tively.
0.358. These parameters were selected to give a relatively
light quark, making pair production energetically favorable,while the satellite sites have weight 1. Thus we also compute
and a large lattice volum@bout 3.3 fm on a side and 3.9 fm the additional correlation matrix element§,u(R,T),
in temporal extentto allow ample room for string breaking. Gye(R,T), andGgy(R,T). They are diagrammed in Figs. 1
Our computational methodology is described briefly inand 2.
Sec. Il. In Sec. Il we justify our fitting ansatz. Finally, in For the light quarks in the static-light mesons we use the
Sec. IV we present our results and conclusions. Two Appensame parameters as for the dynamical sea quarks. To reduce
dixes describe our formalism for random sources, and reviewariance we generated “all-to-all” propagators for the light
the transfer matrix formalism we employ in our analysis. quark, using a Gaussian random source mefdddsee Ap-
pendix A). Results reported here are based on 128 such
sources per gauge configuration, which gave satisfactory sta-
tistics for our lattice volume. With this number of sources the

Our conventional Wilson loop is computed with APE Col- Variance due to fluctuations in random source was compa-
laboration smearing19] of the spacelike gauge links. Spe- rable to that due to fluctuations in the ensemble of gauge
cifically, we used ten iterations, combining the direct link configurations. _ _
with a factor 1- « (in our case,a=0.294) and six staples ~ We analyze our correlators using an extension of the
with factor /6 with SU(3) projection after each iteration. In {ransfer matrix formalism of Sharatchandra, Thun, and Weisz
Hamiltonian language the expectation value of this operatok20] for staggered fermions, described in Appendix B. With
is the correlatoiGgr(R, T) between an initial and final state OUr choice of local meson operators, discrete lattice symme-
F, consisting of a static quark-antiquark pair separated by &i€s, also discussed in Appendix B, require that all products
fat string of color flux. Most of our results are obtained from Of gauge links in the observables be assigned phases consis-
on-axis Wilson loops witR ranging from 1 to 10, but we tentwith being viewed as paths of heavy staggered fermions.
have two off-axis points at displaceme(®;2,0 and(4,4,0  For example, for the Wilson-loop operator, a hopping param-
(plus permutations and reflectionsncluding other off-axis ~ €ter expansion around an on-ax®x T rectangular path
displacements might have been statistically usgsul gives, in addition to the conventional W|Iso.n-loop gauge-link

We enlarge the source and sink space by including ®roduct, a net phase factor-(L) (), independent of
meson-antimeson statd with an extra light quark located the staggered fermion Dirac phase conventighluded is
near the static antiquark and an extra light antiquark near th@ factor —1 for a single closed fermion loopThis phase
static quark. To be precise, this state is the tensor product ¢hen controls the sign of the transfer matrix eigenvalue asso-
a static-light meson operator and a static-light antimeson op-
erator. As discussed in Appendix B, staggered flavor consid- 4 ANNANNNNNN
erations make other choices more desirable close to the cor
tinuum limit, e.g. the tensor product of creation operators for
a flux-tube state and a sigma meson. Our static-light mesotr
construction makes the numerical analysis tractable and it
adequate for studying mixing on coarse lattices. T T T T

We use an extended source for the light quark in the
static-light meson. The heavy quark position, on the other
hand, is fixed and used to define the separaRoispecifi-
cally, the gauge-invariant source wave function at a site has{_~_~_~_AAAAA
support only on the site itself and on the second on-axis
neighbors in all six spatial directions, connected to the cen- FIG. 2. The string-meson correlation matrix elem&gt, (and
tral site by a product of the APE smeared links along theits Hermitian conjugatéSy,:). The wiggly line again denotes the
paths. Rather arbitrarily, the central site is given weight 2light quark propagator.

Il. COMPUTATIONAL METHODOLOGY

4
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ciated with the flux tube state. We use a similar construction 10! r——— — T3
to obtain the phases for the nonclosed gauge-link products in 3 E
the diagrams of Figs. 1 and 2. In all cases the Dirac phase 10° _
convention for the gauge-link products must be consistent
with that of the light quark. A consequence of this construc- 10t ]
tion is that the correlation matrix elements involving off-axis
gauge-link products must vanish when summed over 10-2 . 1
symmetry-equivalent paths for net displacemdtsat have
more than one odd Cartesian component. 108k 1
Ill. STAGGERED FERMION PAIR PRODUCTION 107* £ 3

A. Transfer matrix eigenvalues sl | [ .

10 5 1 1 1 1 1 1 1 1 1 1 1 1
The heavy quark potential is defined as the ground state 0 5 10 15

energy of the QCD Hamiltonian with a static quark and an- T

tiquark separated by distanBe Operationally, we extract the o ) .
FIG. 3. Static light propagator with nonoscillatilgwave and

ground state energy by fitting the time dependence of the " ~: o ,
correlation matrix elements in the same manner as one 06)_SCI||atlng P-wave components. The solid line connects the best fit

tains hadron masses. Fundamentally, the potential is dete\f?lues'
mined by the eigenvalues of the transfer matrix. To justify
our fitting ansatz, therefore, we start from an analysis of the
transfer matrix in the staggered fermion scheme. Since we expect to find two static-light mesons at ladRge
Transforming to temporal axial gauge and making a suitin our Gy correlator, we look for a positive eigenvalue
able choice of fermion phases, Sharatchandra, Thun, andSS' spectral component corresponding to tavave me-
Weisz showed that the staggered fermion transfer matrix isons and a negative eigenvalsi® component corresponding
Hermitian but not positivg¢20]. Then it is convenient to use to an S and P-wave meson. For most of our analysis we
the eigenvectors of the transfer matrix as a basis for represmit the PP component, a choice that we justify as follows.
senting the correlation matrix. In terms of tfEossibly nega- Squaring the static light propagator suggests that Rife
tive) eigenvalues\,(R) of the transfer matrix, our correla- channel would contribute a second nonoscillating spectral
tion matrix can therefore be written in spectral component at a higher energgbout 0.5 in lattice unijshan
decomposition as the SSchannel, and with a smaller amplitudabout 0.2.
However, we present results that include an excited state
N Ti1 component inspired by theP contribution. TheSSandSP
GAB(R*T):; Za(RIZgi(R)N(R) ], (1) components would be expected to have a smooth depen-
dence orR for largeR. To these two spectral components we
add a third, corresponding to a conventional Wilson-loop
where A and B refer to the flux tubeF or meson-mesoiM  contribution at short distand®. With the staggered fermion
states. Thél +1 power is natural, as we show in Appendix phases included, the net Wilson-loop phase factor
B. This result forms the basis for our fitting ansatz. To apply(—1)®* DT+ produces a transfer matrix eigenvalue with a
this decomposition to our results, it is essential, as we havphase )R that oscillates witR.
done, that we treat the heavy quark lines as static staggered Our proposed fitting ansatz is thus Eitj) with N=3, and
quarks, with all fermion phases included, and that source andith explicit S§ SP, and flux-tube eigenvalue§espec-
sink operators are equivalent. tively)

C. Fitting form for the correlation matrix

N

A(R)= e ViR
B. Static light propagator

We first examine the single static-light meson correlator, Ay(R)=—e Vo®), (2
shown in Fig. 3. We find good fits to two spectral compo-
nents, one with no phase oscillationTncorresponding to a A3(R)=(—)Rt1e Va(®),

Swave light quark and a positive transfer-matrix eigenvalue,

and the other, higher in energy, and with oscillating phase ifOther components can be readily included. With our choice
T, corresponding to @-wave light quark and a negative of sources and sinks the correlation matrix is found to be
transfer-matrix eigenvalue. Fitting to a single nonoscillatingreal, so we may take red factors. An ambiguity permits
exponential plus a single oscillating exponential over theone to change the sign simultaneouslyin andZ,,; , which
ranget=[2,9] gives energiegdefined as usual as Idy[)]  we resolve arbitrarily by requirin@y; to be positive. At
aEg=0.7884(12) andaEp=1.022(6) with xy?/df=2.7/4. large R we expectV,(R) to approach aEg and V,(R) to
The P-wave amplitude is suppressed by a factor of about 0.&pproachaEg+aEp, and at smallR we expectV3(R) to
relative to theS.wave amplitude. correspond roughly to a Coulomb plus linear heavy quark
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TABLE I. Fit ranges int, 2, potentials, andc vs R. Jackknife errors are given.

R Grr Grwm Gum X2/df V1(R) Va(R) V3(R)
1.0 [4,12] [1,12] [2,12] 20.0/23 1.5W) 1.71(10 0.52294)
20 [4,11] [1,10 [2,10] 24.0/18 1.6%5) 1.91(13 0.818115)
2.83 [3,10] [1,9] [2,9] 11.1/16 1.613) 1.81(8) 1.006613)
3.0 [4,9] [1,9] [2,9] 23.4/14 1.6%) 1.91(13 1.0244)
4.0 [4,9] [1,9] [2,9] 16.2/14 1.616) 1.8513) 1.19810)
5.0 [2,9] [1,8] [2,8] 18.6/14 1.6%) 1.8811 1.3533)
5.66 [2,9] [1,7] [2,7] 14.6/12 1.5¢4) 1.749) 1.4582)
6.0 [2,9] [1,7] [2,7] 14.8/12 1.54) 1.6910 1.50714)
7.0 [2,8] [2,7] [2,7] 9.6/10 1.694) 1.9612) 1.64814)
8.0 [2,8] [2,6] [2,7] 13.3/9 1.614) 1.81(6) 1.786)
9.0 [2,8] [2,5] [2,6] 9.6/7 1.493) 1.548) 1.93614)
10.0 [2,8] [2,5] [2,6] 8.717 1.585) 1.7914) 2.092)

potential. At intermediat®® we expect mixing among these spectral component is denot®d(R). Doing so increases the
states. Avoided level crossing may occur at efRebetween  parameter count to 12. To assure stability of the fits, we fixed
intermediate states 2 and 3 and at &tldetween intermedi- the two-meson energie¥(R)=2Eg and V4(R)=2Ep,
ate states 1 and 3. leaving ten free parameters. We found acceptable fits. The
unconstrained energids, andV; agreed within errors with
results from the three-spectral-component ansatz. For ex-
ample atR=3 over fit ranges €[4,9], [1,9], [1,9] we find
A. Potential x%1df=22.9/14 withV,=1.95(2) andV;=1.0244).

Our fit results for the three-spectral-component ansatz are
listed in Tables | and I, and plotted in Fig. 6. For small
distances the flux tube ener(R) is smallest and the flux

IV. RESULTS

With the factorization inherent in our ansaiq. (1)] and
the choiceN=3, we fit three correlators with nine param-
eters. Our fitting range i varies over the data set as shown X _ .
in Table | with typically ten or more degrees of freedom. Thetube.state @mmates the_lar@ebehawor of the correlauonl
goodness of fit supports our ansatz. matrix, while at large distances the two-meson energies

Our selection of fit ranges compromised between the neef1(R) and V5(R) are smaller and the two-meson states
to obtain acceptable fits and our intention to vary the end/ominate the correlation matrix at large With our choice

pointst,,;, andt,., smoothly as a function d® At low Rthe  ©f light quark mass the first level crossing occursat6a,
Gee (flux-tube-type correlator has quite small errors, ©F 0.98 fm. The string is broken. It is interesting that the

whereas at largeR, errors increase, especially at higher ~ €nergiesVi(R) and Vp(R) are very nearly equal to their
Thus for smallR we can set a highetr,. in the Gep cor- asymptotic values throughqut. Thgs we see no spectral evi-
relator to improvey? without loss of information. At largeR dpr_me of & meson-meson interaction at the level of our sta-
there seems to be little improvement in goodness of fit if'SUcs:
setting a hight,,,i,, and the large statistical errors at high 10%
give no advantage to setting a highggy.

To give an impression of the quality of the fits, we plot the
absolute valueof the correlation matrix elements V& for
two values oR in Figs. 4 and 5. Also plotted are the absolute
values of the fitting functions. The errors on the observed
Gem and Gy correlators also give an indication of the
signal obtainable with the random source method. 107%

Results alR=3 are a good representative of the sniall
correlators and the degree to which the fit results are affected
by the choice of end points. Fitting the three correlators 1074
Gee, Ggy, andGy over the range3 €[6,9], [2,9], and
[1,9], respectively, gave/;=1.605), V,=1.89(11), and
V3=1.026(6) withy?/df=14.6/12. Changing the fit ranges F o
tote[2,9], [2,9], and[2,9] increasedy?/df to 23.6/15 and 10
gaveV;=1.625), V,=1.88(11), andv/3;=1.0258).

To see the effect upon the mixing analysis of including
other states, we experimented with adding an excited state FiG. 4. Absolute value of the correlation matrix elements at
modeled after the two-mesdhP spectral component, which R=3. The lines connect the best fit values. The fit range$ 48
contributes in the same way as ti&component. The fourth for Gg¢, [1,9] for Ggy , and[2,9] for Gy -

10°

1 |||||||| 1 Mlml’ 1 |||||||| 1 |||||||| 1 |||||||| 1 |||||||| 1 |||||||| TRt

T llllllll T llllll1 T llllllll T llllllll T llllllll T llllllll T Illlllll TTTTm

(@]
)]
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(@]
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FIG. 5. Same as Fig. 4, but wifR=6. The fit ranges arg2,9]
for Ggg, [1,7] for Ggy, and[2,7] for Gy -

It is clear from these results that mixing between the flux-

tube and two-meson channels is weak. There is no evider?]t
rounding of the potentials normally associated with an
avoided level crossing. At higher order in mixing we would
expect to require two-meson spectral components in the flu
tube Ggg correlator. They should appear as a result of the
breaking and rejoining of the string. However, the ampli-
tudes for both terms in this correlator are small enough that
if it were not for the enforcement of a common spectrum an
factorization in our fit ansatz, they might have been missed
The converse presence of the string term in the diagoneE
two-meson correlatoiG,,,, can be accounted for by the
“box” diagram in the quark correlator that resembles a Wil-

son loop.

As a check of mixing between the flux-tube level and the

two-meson levels, we examined the transition amplitude
Gen to see if, by itself, it contained both types of spectral
component§21]. To do so we carried out a separate three-
exponential fit to the transition amplitud&-,, alone, fixing
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R

Oand imply string breaking.
We have required that the valence and sea quarks match,
f"lUS assuring that the correlation matrix is a power of the
ransfer matrix. However, if mixing effects are very weak,
had we chosen, instead, to omit the dynamical sea quarks
altogether, it would very likely be difficult to detect the con-
sequent inconsistencies. We analyze mixing further in Sec.

B. Modeling the mixing

FIG. 6. Heavy quark potential and first two excited states vs
separatiorR. The dashed and solid lines give the asymptotic values
2aEg andEp+ Eg. Jackknife errors are shown.

ents to the values found in the multichannel channel analy-
sis, but adjusting their amplitudes for a best fit. Fet5,
where the spectral components are clearly nondegenerate, we
found that the amplitudes for th&@Sand flux-tube compo-
nents were both nonzero at the three- to five-sigma level.
Thus our results, combined with unitarity, confirm mixing

Drummond, Pennanen, and Michael analyzed their results
the energies of th&S SP, and flux-tube spectral compo- in terms of a transfer matrix model that mixes the two-meson

TABLE II. Couplings vsR. Odd and eveiR values are groupedThe displacements witR= 8 and 2,/8
have even Cartesian components.

R ZFl ZMl ZF2 ZMZ ZF3 ZM3
1.0 0.1623) 14.01.0 —0.002(3) 182) —1.2733(10) 3.35@)
3.0 0.243) 16(2) 0.0054) 19(5) —1.582(14) 4.387)
5.0 0.233) 16(2) 0.0053) 18(4) —1.784(6) 2.92)
7.0 0.98) 16(5) —0.00(2) 215) —1.8(4) g6)
9.0 —0.01(3) 12.17) —0.007(10) 9.21.49) —2.13(5) 0.27)
2.0 0.018014) 16(2) 0.0057) 19(5) —1.443(5) 1.97(®)
2.83 0.01607) 15.41.1) 0.051(4) 16(2) —1.540(3) 1.57®)
4.0 0.014112) 16(2) 0.05615) 17(4) —1.70(4) 1.198)
5.66 0.008711) 14.91.3 0.062) 14(2) —1.780(5) 0.717)
6.0 0.006713) 13.41.2) 0.126) 12(2) —1.890(9) 1.03)
8.0 —0.003(12) 15.6L.3) -1(2) 1020) 1(2) 9(15)
10.0 —0.014(10) 182) 0.2(2) 15(4) —2.24(6) 33)
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TABLE Ill. Results of a mixing model analysis based on a three-exponential fit showing the coefficient
ratiod’ prior to imposing thea posteriorisum rule constraint and after, the increase ig?, and the mixing
parameterx andy vs R. This mixing model seems plausible only fRe=5.66. Jackknife errors are given.
Values for odd and eveR are grouped as in Table II.

R d Ax? d X y

1.00 0.523) 520 0.686) 0.0563) —0.019(3)
3.00 0.563) 200 0.5Q09) 0.0233) —0.007(2)
5.00 0.722) 98 ~0.0(8) 0.0006) ~0.0010(9)
7.00 1.0012) 0.0 1.000113) 0.0042) —0.0004(8)
9.00 ~1(9) 0.21 1.00210) 0.0009015) —0.0005(5)
2.00 0.143) 1300 2.412) 0.0023) —0.036(8)
2.83 0.435) 230 0.8710) ~0.0044(4) ~0.0077(11)
4.00 0.5810) 23 1.0810) ~0.0030(6) ~0.0075(15)
5.66 0.799) 12 1.003) ~0.0016(2) ~0.0029(3)
6.00 0.857) 5.8 0.92) ~0.0009(3) ~0.0029(10)
8.00 1.24) 16 1.06) ~0.00(2) 0.0115)
10.00 0.32) 2.1 0.93) 0.00034) —0.0006(5)

and flux-tube statels7,16]. Our approach differs slightly, be-
cause our multiexponential fit carries more information and ~ A;=Z¢;(R)Zy1(R)=Z25(R)Z%1(R) 5 Ry
because our multichannel contributions complicate the N (R)—A3(R)
analysis. A perturbative model of string breaking starts with

a zeroth order pure flux-tube staté% and a pure two- 0 0 y
meson state, consisting of either a pair of unperturbed A2=Zr2(R)Zy2(R)=Zg3(R)Zy(R) 5————,
Swave mesons S") or unperturbedS- and P-wave me- A2(R)=A5(R)
sons B°PY). (By extension, we could include thB°P°
channel. At a givenR the lattice mixing between the states
can be described by a transfer matrix on the unperturbe

A3=Zp3(R)Zy3(R)=—(A1+A,). (6)

ﬁio first order in the mixing parameters, tefactors are

basis, unperturbed, and we may equate=Z° to obtain three con-
)\E(R) 0 X straints for the two mixing parametexsandy. The third
0 constraint is a sum rule. To apply the model we chose to
TR)=( 0 MR vy (3)  impose the sum rule as am posteriori constraint on the
X y A(R) parameters of the fit for eadR
that evolves a state across a Euclidean time slice. The rows (2)=Zr1Zy1+ ZrpZy2t Zp3Zy3=0 (7)

and columns are arranged in the or&8°, S°P°, andF°. _ . _ .

We assume a small value for the mixirgbetweenF° and and use the first two conditions to determine the mixing pa-
S°S° andy betweenF® and S°P°. Although theS’S® and ~ fameters:
S°PO states may mix, for simplicity, we have ignored this 0 "
effect. The diagonal elements correspond to our conventions X=[M(R)=A3(R)1Zr1/Zps,

for our fit ansat4 Eq. (2)]. The 2X 2 correlation matrix con- o 0 ®
necting our flux-tube and two-meson source and sink states y=[A2(R)=A3(R)]Zp2/Zgs.

at a givenR is . . . . S
g This was done by linearizing the sum rule in the vicinity of

G(R,T)=Z%R)T(R)T+12%R) 4) the minimumz, of the unconstraineg?:
where Z° is the unperturbed 23 matrix used in our fit [(Zo)=0=1(Z,)+VI(Z,)-(Zo=Z,). ©
ansatz. The diagonal elements®fT) and the potentials are
unperturbed at first order ir andy. The off-diagonal cor-
relator to first order is

It is straightforward to determine the attendant increase in
x?, the shift in parameters, and the decrease in errors. Since
this procedure assumes the sum rule can be linearized, it is

GFm(R-T):Al[)\(l)(R)]T+1+A2[?\g(R)]T+1 valid only to the extent that the increaseyA is small. _
Table 111 lists results. Shown are the values of the coeffi-
+A AR, (5 cient ratio,
where d=—(Zr1Zw1t Zr2Zm2) Zr3Zus, (10
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TABLE IV. Same as Table lll, but with a four-exponential fit, constrainMg(R) =2Eg and V,(R)
=2Ep. The mixing model now seems plausible e 2. Jackknife errors are given.

R d Ax? d X y

1.00 0.525) 140 1.49) 0.1014) 0.0074)
3.00 0.42) 19 0.942) 0.0512) 0.008913)
5.00 0.64) 1.8 0.992) 0.01396) 0.00347)
7.00 12) 0.00 1.0019) 0.00326) —0.001(4)
9.00 Q20 0.032 0.96) 0.2(15) —-0.1(7)
2.00 0.52) 5.8 1.064) ~0.037(3) ~0.016(2)
2.83 0.6115) 9.6 1.0032) —0.0200(11) —0.0129(3)
4.00 0.94) 0.037 1.000®) ~0.010(2) —0.0075(3)
5.66 0.35) 4.8 0.964) —0.0038(11) —0.0025(3)
6.00 0.46) 0.83 1.0012) —0.0011(13) —0.0027(3)
8.00 1.53) 55 1.116) 0.0076) —0.0008(14)
10.00 0.32) 1.6 19) 0.0025) —0.001(13)

before and after imposing the linearized sum rule constrainR. In Fig. 7 we see a significant decrease in bo#mdy with

as well as the shifts iry? and the values af andy obtained  increasingR, which is to be expected partly from E() as
after imposing the constraint. The ratioshould be 1 if the the eigenvalues cross. There is also a pronounced difference
sum rule is satisfied. We see that the increasg?iis small-  in mixing strengths at even and o& suggesting a suppres-
est forR=5.66, but it is otherwise unacceptably large. Thussion of mixing between unperturbed oscillating and nonoscil-
the mixing model suits our three-exponential ansatz only fotating levels. Obviously, given the coarseness of our lattice,
largerR. The agreement improves considerably when we inthe comparison with a model Hamiltonian must be done ju-
clude then two-mesoR P spectral component, as discusseddiciously. However, even these first, crude QCD results
above, and fix the two-meson energi¥s(R)=2Eg and should help constrain the phenomenological analysis of
V,4(R)=2Ep, leaving ten free parameters. Although we in- quarkonium decay22].

clude the fourth component in the fit, we still consider only a

three-state mixing mode(ln effect, we have set mixing to
’ . V. CONCLUSIONS
the fourth level to zerg.Results are shown in Table IV. Now
the mixing model seems plausible fBe=2. We have studied string breaking in the heavy quark inter-

The mixing model makes separate predictions for the conaction at zero temperature in QCD. Our calculation used two
nected and disconnected meson-to-meson correlators, whiélavors of light staggered quarks and gauge configurations
provides an additional constraint on the mixing parametersgenerated in the presence of the same quarks. We extended
As a test of the systematic error arising from model assumpthe analysis of the spectrum of the transfer matrix in the
tions, we have tried refitting all of our data to a purely four- staggered fermion formalism to treat our nonlocal sources.
component mixing model, with separate disconnected an8y adding explicit two-meson states to the conventional
connected correlators. While the resulting mixing coeffi-flux-tube state, we obtain the expected result that the two-
cients repeat the trends of Tables Il and 1V, the values diffemeson state is energetically favored at large distance. Our
as much from those of the tables as the two tables do frortwo-channel correlators fit a model with three factorizing
each other. spectral components and a partially constrained, extended

If we now take the mixing model at face value, it is in- model with four spectral components. Our results are also
teresting to consider how the strength of mixing varies withconsistent with simple three- and four-state models with

Y M e R

_1; ORodd 03 F ORodd |1
107 & o OReven T3 107 O R even $=
= m = = =
al o} ® — el m — FIG. 7. Absolute value of the mixing param-
10 E | o = 10 = % o] TS etersx andy vs separatiofR. Odd and even series
= 2 o 3 = O gm 3 are distinguished.
1073 = . 1073 1
E | E = E
10—4_|||||||||||||||||||||||_ 10—4_|||||||||||||||||||||||_
0 2 4 6 8 10 0 2 4 (§ 8 10
R R
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weak mixing. The mixing coefficients in the mixing model Ot (x,7)=a(x T.M)Uf(; 7 (A4)
matrix appear to decrease at the level crossing points. Our w A

principal finding is that mixing between the flux-tube and ;4 thea(X, 7, u) are staggered fermion phase factors. For
two-meson channels is indeed weak. Thus we see why strintlg< ,

breaking has been missed in the flux-tube channel by itself. '

While our matching of dynamical and valence quarks is de- t'-1 ab

signed to satisfy unitarity, with our statistics we have not Gﬁb[()z,t),(ﬁytr)]zgi 9( 11 04()2,7)) . (A5)
found compelling evidence for quark loop effects. Doubtless, T\ =t

our results could have just as well been reproduced in a
guenched simulation, where inconsistencies with unitaritQ"’h‘:“re
would appear only at higher order in the mixing matrix ele-
ments. However, we also find that the transition correlator by

itself connecting flux-tube and two-meson channels is non
zero for allr and shows both stringlike and two-meson-like
spectral components, at least forx6. Thus our results,
combined with unitarity, require string breaking. It is recom- R _ L. .
mended that future staggered fermion studies closer to the B(x,t)=2, > h3(x,0)p%x,y)q°(y,1),
continuum take care to restrict the two-meson wave function y ab

to the light-flavor singlet channel.

UM()Z,T)=—a()Z,T;,U,)UM()Z,T). (AB)

We will be interested in static-light mesons, which we con-
struct from the Grassman fields as

(A7)

B(x,H)=2 2 a*(Y,Dp°(y,0h°(x.).
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tion under Grants Nos. PHY99-70701 and PHY97-22022. =1

The spacelike gauge-link matrices can be taken(ARE)
APPENDIX A: RANDOM SOURCE ESTIMATORS smeared gauge fields. Thus the tilde here represents both
APPLIED TO STRING BREAKING smearing and the inclusion of the fermion hopping phases.

We use random source methods to calculate the all-to-afPn the other hand the timelike gauge-link matrices are not
quark propagators in this study. Here we outline the metho§Meared. _ o
as applied to string breaking. We begin with the conventional For th_e ;tatlc-llght meson correlation function with source
light quark propagator at the origin, we obtain

Gy = (PP, Ay Ga(M=(BO.TB(O.0)
which satisfies the equation =Gp"(0,0),(0,T)1p3%(0,x)
(D+m1)2 Gy, 2)= 56, ,. (A2) X GUL(X,T),(y,0)]p5(y,0)
Summation over repeated indices is implied unless noted =(7"3(0,0V®*[(0,0),(0,T)]p%(0,%)
;J;Eerwise.m denotes the usual staggered lattice Dirac opera- ><ng[(i,T),(§,t’)]pf,e(i,f) ﬂe(fyt')%p
The static (infinitely heavy quark propagator can be (A9)

found from an expansion to leading order im1/The result
depends on whether propagation is forward or backward isvhere
time. Fort>t’, omitting the heavy quark mass factors,

t—1 ab
- - . — . abr (¢ c TV — T (v
GET (0, (5.t") 1= (X, OFR(Y, 1)) VIO, D] (ﬂo U“(“)) (A10
, b
L : is the product of link matrices and hopping phase factors
=s;51 II Olxn) (A3) . " : : i
AR ’ from (x,0) to (x,T). In the last line we introduced Gaussian
random numberg,'?(x) 7°(y)),= 62°5, ,, to compute the
where trace. Multiplied byp, they form the source for the light
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quark inversion and are then used again in the computatiofhe V with four coordinate arguments stands for the product
of the static-light meson correlation function as seen in Eqof timelike and(APE smearedspacelike gauge fields that
(A9). Introducing the smeared, random source propagator make up the part of a timelike Wilson loop without the spa-
tial segment at timé= 0. Again, this correlator is computed
\lfa(x t)=p2°(x, y)GbC[(y t),(z,t’ )]Pt'(z u)pdu,t’), with the Gaussian random source method, in a manner
(A11) similar to the static-light meson correlation function
[Eq. (A9)]. The other off-diagonal correlator,
we can write the static-light meson correlation function as (B(ﬁ,T)g(G,T)S(Gﬁ,O)), is the Hermitian conjugate of
. . . . Eq. (A16). This quantity is averaged over the same choices
Gg(T)=(%"%(0,0)V3"[(0,0),(0,T)]¥"(0,T)),. of origin and displacement as the Wilson loop.
(A12) Finally, we need the two-meson correlator

In numerical practice this result is computed for a source at . .
any lattice location, and averaged over the space-time vol- (O};(0,R,T)Ow(0,R,0))

ume. . - R R
For the computation of the heavy quark potential and the =V3(R,0),(R,T)]p?(RX)GE (X, T).(y,T)]

investigation of string breaking we will need a heavy quark- de, = A\ refr R - fo, 3 =

antiquark “string state” X p7(y,0VeT(0,7),(0,0)]po’(0,2)

. hr/5 - a a =) S
OF()_(),)—/),t):ha()z,t)vab[()z,t),(g,t)]hb(g,t)/\/N_C, XGg [(Zio),(uio)]Po (U R) \ b[(R!O)!(R!T)]

(A13) X p2(RX)GEH (X, T),(,0 13V, R)
where Vab[(i,t),()7,t)] is a superposition of products of Vef[(o T, (0 O)]p (O z)
(APE smearedgauge fields in time slice starting atx and - . e =
ending aty. X Gg'[(2,0),(u,T)]p7%(u,0). (A17)

We are then interested in the diagonal correlator between
a string state at time 0 and one at tiie-we consider the \ve compute the two terms in EGA17) again with the

connected part only: Gaussian random source method using two independent
.. .. Gaussian sourceg and £, one for each of the two light
(Or(R,0,T)Og(0,R,0))=W(R,T), (A14)  quark propagators:

with smeared space-like gauge field product segments in the
timelike Wilson IoopW(ﬁ,T). Except for the fermion hop- <O (O.R, T)Om(O.R, 0))

ping phases, which give a net factor {(R*D(T*1) indepen- T O O P
dent of staggered fermion phase convention, this is the cor- =(¥5(0.077(R,OVARO,(RDD,

relation function usually considered for the computation of b/ te/ A efr g 3

the heavy quark potential. As usual, in practice this quantity X(PARTDEHO.DVILO0.T).(0.0]),
is averaged over all choices of lattice origins and on-axis —(7™(R,0)V3[(R,0),(R,T)]¥?(R,T))
displacement®R. We also computed it for two off-axis dis- K 7
placements, namelfg= /8 and 2/8. For off-axis displace- x(£"(0,T)Ve(G,T),(0,01¥¥0,0)),.

mentsvab[(i,t),(ﬁ,t)] is constructed from a symmetric set
of spacelike paths joining the endpoints.

We are also interested in the off-diagonal correlator be-
tween the string state and the two-meson state:

Again, this quantity is averaged over the same choices of
origin and displacement as the Wilson loop. It is important to
note from our expressions for the correlators that all can be

- — . - i N h forN :
Oy (6.R.0) =B(ROB(G.L), (AL5) computed usingd(N) methods forN random sources

(Op(R,0,T)Oy(0,R,0)) APPENDIX B: TRANSFER MATRIX APPLIED
TO STRING BREAKING

—\/abr v v ber (B A
VALOG0, (D IVAL(RT)L(0,T)] We review the Sharatchandra-Thun-Wei{STW) Fock-

XV (R,T),(R,0)]p3%0,x) space formulation of the staggered fermion partition function
with specific application to the operators used in our string
XGE(x,0),(y.01p52(Y.R) breaking studyf20].

. ) ab A A
(n (R’O)V [(R’O)'(R’T)'(O'T)’(O’O)] 1. Introduction

X\Pz(G’O»v- (A16) The fermion action is given by
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S=Z Sa(,q¢,Uy)

- - T
+ ; ar,t;4[qr,t+1ur,tqr,t_ qr,tUr’{qr,Hl]u (B1)

where the spatial part of the action is

Se,@,qt 1Ut):Z erEr,tqrﬁzi ar,t;i[arﬁ,tur,t;iqnt

—E,IUI,t;qu;,t]}. (B2)
With the STW phase conventions
ar,t;lz(_)zi ar,t;zz(_)xy (B3)
a’r,t;sz(_)y, ar,t;4:(_)x+y+z-

With these choices the phases havetmependence. The

imaginary time variable ranges over.0. ,N—1, and the
antiperiodic boundary condition requirgsy=—0; -
The partition function is given by

sz dgdgexpS), (B4)

Whereaandq denote the full sear,t andq; ;. We would like

to convert the Grassmann integral into a Fock-space operator

PHYSICAL REVIEW D 64 074509

Here the delta function implies a product over delta functions
on each lattice site. The Grassmann delta function is simply

s(q—phH=(q—p".

We introduce a Fock space by associating creation and anni-
hilation operators with each Grassmann variable. The corre-
sponding Fock space operators are denoted by a hat. It is
convenient to introduce Grassmann coherent s{@8ls

(B9)

algy=ala), plp)=plp)

R i (B10)
(@'9™=(q'la", (p'Ip"=(p'[p".

The coherent states satisfy completeness and trace relations
1=f dq'dgla)(alexp(—q'a),

(B11)
TrA=f dg'da(q’|Ala)expa’a).

With these identities we can reorganize the factors in 8xp(
in the form

exp(S)s(p—qhs(q—ph

ot e N N
:1:[ {e PiPria qtqt+1<q;rp2|e53(q P2 (p—q"

X (q—p"):eS P2 qpy)},

trace. To this end STW first eliminated the staggered-fermion _ _
phase in the time direction altogether, by changing variablewhere :: denotes operator normal ordering. Using the com-

to qT:arME The spatial action becomes
Sa(af,ae, U =2 {2/ qp e st 2 el

+
X [qr +}'tUr,t;iqr,t_ q:,tU:,t;iqrﬁ,t] )
(BS)
where

(B6)

T
Ay 4 = A 4y -

Then STW introduced a dummy set of Grassmann variables

ptzq;r andp;=q;. The action is then

S=§t) Sy(a P2+ Ss(py,G0)/2— [Py Pes 1+ A A 1],
(B7)

pleteness and trace identities and the antiperiodic boundary
condition, we can then write the partition function in terms
of a transfer matrix operator:

zZ=Tr7", (B12)
where
T=e5@ P2 (gt = p)(g—p'):eS@P2  (B13)

This is a manifestly Hermitian, but not positive definite,
transfer matrix.

2. Quantum mechanics

To see how this transfer matrix works, as a warmup exer-
cise, suppose there is only one spatial &jigantum mechan-
ics). The transfer matrix is then

7=(1+mqg'p":(q"-p)(@—p"):(1-magp). (B14)

It has eigenstatesr(=sinhvy)

where we have suppressed the sum over spatial coordinate

The partition function now includes integration over the

dummy variables with a delta-function constraint:

Z=f dg'dqdp'dps(p—q")s(q—pHexpS). (B8)

q'0),p"0),| +c)=(17e77q"p")[0)/V1+e7?,
(B15)

with eigenvalues 1 1,+e*”. Thus the ground state is
|—c). The “degenerate’p and g states are interpreted as
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single particle and single antiparticle states, and the state _ [R1
|+c) as a state with a particle and antiparticle pair. The Or(R,t)=F(R,t)=hg; 11 a; iUy ¢ |hoy. (B23)
partition function is N even r=0

Z=2+2 costiNvy). (B16) (With all of our static quark propagators, it is convenient to

introduce a separate, heavy flavor for each straight-line seg-
Next we consider the propagator for a single massive ferment) The meson-antimeson creation and annihilation op-
mion, created at time slice 0 and propagating to time glice erators are simply

G(T)= f dg'dgexpS)aral/z. (B17) Ol (R,1)=B(0,00B(R,0) = hq,0or; hrit
. . . (B24)
Converting to the Fock space basis as we did with the parti- Om(R,)=B(R,)B(0,t) =hg; (drj,o;ho; -

tion function leads to ) . . .
We are interested in the two-channel correlators in the static

G(M =TTV T-pt77+1p)/zZ. (B18) limit Mp— oo with the heavy quarks fixed at 0 afj
This example shows that &+1 power is natural. If we Gas(R,T)=(0a(R,T)OL(R,0))(2M)?T,  (B25)
assume thall is large, so only the ground state contributes to
the traces, we havel&N) whereA,B e {M,F}. The conversion to Fock space proceeds
as before. Withs(g—h") 8(h—g") the Fock space operators
G(T)=e ""/[2 cosliy)], (B19  are
with v interpreted as the energy of the propagating state. For R-1
a large mass the correlator is approximately iff& *%). OL(R)=goraoral I1 (iUl ) PRy,
The antiparticle propagatawith glq, instead is also r=0
easily computed with the result -
~ AT ~
G(T)=~(-)Te [2cosiy)]. (B0 Or(RI=heiarival 11 (eriUrei|al;, (826
Next we introduce a second heavy flavor of misgM A A o A
=sinhI’), denoted byh. We consider the propagation of a OIA(R):goyta’o,t;4QO,tpRA|,ta'RA|,t;4hRA|,ta
heavy-light meson. For simplicity we use an interpolating
. : . : . - At R
operator with a localpoint) wave function. In this case the OM(R):hR".,taR],t;4pR],tqg,tao,t;498,t-

Grassmann integration involves the combinatiginrh/go.

Following the same steps as before leads to We recall thate, .. is independent of, and ag; .4aoy.a=

Ge(T)=—(—)Te~O*DT/[4 costiy)coshT)] (—)R, so the dagger indeed denotes the Fock space Hermit-
B ' (B21) ian conjugate. The desired correlators are then

3. String-breaking operators GAB(R’T):<Vaqu(R)TTHOE(R)|VaC>' (B27)
Here we construct the operators required for our stringAn eigenstatdn) of the transfer matrix with eigenvalue,

breaking study. Two interpolating operatd®§ andO], are  contributes

used, one that creates a static quark-antiquark pair with a

connecting flux tube and another that creates a pair of static- Gasn(RT)=ZA (R Zen(RINL(R)]THE,  (B29)

light mesons. A simple way to construct the flux tube opera-

tor is to introduce a new heavy flavéet of massM,. Our ~ where

conventions for the on-axiglirection1) string-creation op- .

erator can be obtained from the Grassmann product Zan(R)=(n,R[OA(R)|vag. (B29)

2Mp)RhoHoHr hr after integrating out the new flavor . . .

i(n thzz) stzoi’;icovltim?ftMR,:ﬂoo. The gresultg is a heavy-quark— This result is the basis for Eq1).

antiquark creation operator connected by the static quark

propagator. In the Grassmann basis this is 4. Staggered spin and flavor considerations
_ The external states in our analysis are built from two op-
Rt)=F'(Rt h. U Y he s era_ltors: one that creates a static ququ-anﬂqu_ark pair at_ sepa-
OH(R)= )=hoy E[ ~ i) | Mrig ration R and one that creates a pair of static quark—light-

(B22) guark mesons at separatiBnBoth the static quark and light
quark carry four continuum flavors. One may ask, in the
Our corresponding annihilation operator is similarly gener-continuum limit, what spin, parity, and flavor combinations

ated from the product (2 )R thHRtHOthOtv yielding occur?
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a. Flavors and spins of the static-light meson This operator generates both a pionlike and sigmalike
state in the continuum, in which, respectively, the light quark
content of staggered quark-antiquark mesons. Our staticiS found in anSor P orbital around the static quark. Similar

light-meson wave function has a local compongero dis- linear combinations yield eight operators, altogether belong-

H i 2+ +— 2+ /111 2+ H
placementand a component with displacement 2 along any"d 1o the irrepsl™", 1" -, 37, and3™*", each interpo-
axis. An even displacement does not change the light-quariting one of e|gh_t3wal/e channels: two pionlikeB( me-
flavor and spin wave function, so for simplicity we analyze SON$ and two rholike B* mesons Each of these is paired

Golterman and Smif25] give an analysis of the flavor

only the local component with one of eightP-wave channels: two sigmalike and two
’ pseudovectorlike, respectively. ABwave states are degen-
h(2y+ 5,t)q(2y+ 7,t), (B30)  erate, as are aP-wave states. A fixed offsef corresponds

to a distinct linear combination of these degenerate states.
where the c.m. offsef ranges over the eight sites in a unit Alternatively, we may say that a fixed offsetcorresponds

cube. to the pairing of a single flavor-spin species of light quark
The more familiar flavor-spin content is displayed in theand heavy quark.
notation of Kluberg-Steret al. [24], Thus our two-meson operator interpolates all combina-

tions of B and B* and theirP-wave counterparts. Our pro-
cedure for computing correlators sums over all cubic rota-
tions of R at fixed|R)|, so is consistent with zero total angular
momentum for the two-meson and flux-tube states. Transi-
where a sum over four flavow indices and four spire  tions of the typeSS—SP are accompanied by a change in

.1 .
a(2y+n,t)=5I5%q"(y), (B31)

indices is assumed, and orbital angular momentum.
Static-light mesons in the Golterman classes 1, 2, and 3
Lof=y oy v,y (B32)  are similarly degenerate within each class with multiplicities

24, 24, and 8, respectively. One would expect in analogy
A similar expression holds for the heavy quark operatofith the lightqq mesons that on a coarse lattice the energies
h(2y+ »,t). We have ignored the gauge connection in thesef the class nonzero static-light mesons are higher than that
expressions. The coefficienf#a give the flavor-spin wave of class 0. In the continuum limit all 64 become degenerate

function of a quark created at sitg because of flavor and heavy quark symmetry. A multiplicity
The zero-three-momentum projection of the local staticfactor of 16 comes from separate heavy-flavor and light-
light operator is given by flavor symmetry and a multiplicty factor of41+ 3 for de-
generate singlet and triplet spin combinations.
B (1)= Z h(2y+n.0)a(2y+71). (B33) b. Flavors and spins of the static-static meson
y

The flux-tube operator is designed so that it belongs to the
All eight operators, corresponding to the eight values}of same representation of the symmetry group of the transfer
belong to Golterman’s class 0. Because the static quark musgtatrix as the meson-antimeson operator, thus permitting a
propagate in place, the correlation matrix for these eighmixing of the states they create. The zero momentum projec-

states is diagonal in and independent ;pf Apart from a  tion of the meson-antimeson operator at any separalien
volume factor, it is exactly the static-light correlator we havein Golterman class 0. A&R=0 the flux-tube operator creating
computed. Linear combinations of these operators with coef® Static quark-antiquark pair is trivially one of eight Golter-
ficients differing only by signs yield operators belonging to Man class 0 operators. For it to remain in this class as the
the rest-frame symmetry group of the discrete transfer maduarks separate, one must include the hopping phases
trix. For example, the operator belonging to the one-=@,(X) with the gauge-link operators that excite the electric
dimensional representatidri ~ in the Golterman-Smit nota- flux accompanying the creation of the static pei4). A

tion is given by simple way to see this is to consider that the operator class is
a symmetry of the transfer matrix, so acting upon the zero
1 separation state with the heavy-quark hopping matrix, which
By ()= — >, (—)2ta2tasg (). (B34)  incorporates the phases, preserves the operator class. The
V8 7 eight operators consist of two pion-like and six rho-like op-

erators. More specifically, the static-quark—antiquark opera-
In the Kluberg-Sterret al. basis this operator is written as  tor at allR is a linear combination of the two locgheavy
quark pseudoscalarsrs; and mys and the six local vector
(B35) mesons; andp;q. In theb-quark system, these states would
be classified as th¥ and thezn,.

In free (statio propagation the even parify-wave part-
where the first gamma factor in the tensor product operatesers of both are trivially absent in the static limit. On the
on the spin basis, and the second the flavor basis, and tlwther hand, in the presence of dynamical staggered quarks
sign is plus for evert and minus for odd. and in the strong-coupling limit, we see no reason that dy-

1 _
8 E_ h(Y)[¥sX y5% voX ¥ola(y),
y
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namical quark loops could not generate an anomalous, Inthe continuum limit flavor symmetry requires only two
opposite-parity partner in the Wilson loop correlator at secenergy levels, depending on whether the light quarks form a
ond order in the mixing coefficients. Thus the appearance dflavor singlet or nonsinglet. Thus we ugg to denote the
both oscillating and nonoscillating components in the Wilsonsinglet, andE; to denote the nonsinglet. Since our source-
loop would be a signal of string-breaking at strong coupling.sink operator generates a single flavor-spin species of light
In the continuum limit the anomalous components shouldquark and light antiquark, for four light flavors the relative
vanish, in keeping with the expectation that lattice staggereaveight of singlet to nonsinglet is 1:3, and we obtain

and nonstaggered fermion actions have identical limits. On
our moderately coarse lattices, in the transition correlator
connecting the flux-tube and meson-antimeson channels, the
signal appears in leading order, but from our mixing analysis

we find that the anomalous parity component is smaller. Next we consider the connected correla®yyc. We
treat light quark pair annihilation and creation as a weak

c. Light flavor artifacts in the meson-meson correlator process with amplitude, and analyze this correlator as a

N . i ies ix. Thus the leadi in th -
The peculiarities of staggered flavor symmetry requweperturbatlon series ix. Thus the leading term in the con

paying special attention to light quark flavor counting. Two nected diagram has the form

2 ZZ
GMMD|COI’]'[=E_EO+3E_E1' (838)

issues confront us. First, in our meson-antimeson channel, in 72,2
the continuum limit the light quarks can combine as a flavor G&c= , (B39)
singlet or flavor nonsinglet with, in principle, distinct ener- (E-Eo)*(E—Ey)

gies. Since the flux-tube state is necessarily a light-flavor ) )
singlet, only the singlet components mix, leaving the non-WhereE; is the energy of the flux-tube state. The amplitude
singlet as a potential additional spectral component. Secondf, 9ives the weight for annihilation or creation of a single
the gauge configurations were generated in the presence gght-quark—antiquark flavor. Here is the sequence'of events:
N;=2 flavors, through the usual device of taking the squard € source state couples to the lowest level, which propa-
root of the intrinsically four-flavor fermion determinant. 9ates with energi,. It then annihilates with amplitudeto
However, the light quarks in our source and sink carry fourProduce the flux-tube state, propagating with endtgy Pair
flavors. A mismatch between the number of valence and segf€ation leads back to the lowest level, which propagates

quarks gives rise to additional spectral components in th&ith energyE, before coupling to the sink.

To count flavors, we construct a toy model similar to the@ quark-loop insertion. The sequence of events is the same as
mixing model of Sec. IV B. However, for present purposesin the leading-order contribution, except that an extra pair
we ignore negative transfer matrix eigenvalues and deal dicréation and annihilation process occurs in the flux-tube
rectly with the Laplace transform of the correlators. FurtherState. Pair creation on a coarse lattice leads to any of the four
it is sufficient to concentrate on the meson-meson correlatdeVelsE; at the same order ir. In the continuum limit and
Gy - large R these levels are degenerate, and would each count

We begin with the disconnected meson-meson correlatofith weightx*N/4, the factomN /4 arising from the fermion
Guwp at a fixed separatioR. As we have noted above, the determinant. For simplicity, to model the full effect of the

N . ! H P ; ; 2 ; 12
static-light mesons are created in Golterman class 0. In th#iternal quark loop, we assign it a weight™ with x
absence of glueball exchange between the meson and anfi-X"Ns in the continuum and represent only the lowest level
meson, they remain in class 0. Glueball exchange can excifeo- Thus we have
classn>0 levels in pairs. Such an effect is presumably short )2
range, because the glueball mass is of order 1 GeV. Thus, on cW —g@ X

. .. MMC MMC :
a coarse lattice we expect four distinct energy levels, and the (E—Eo)(E—Ey)
Laplace transform of th&,,,p correlator has the form

(B40)

Continuing with these simplifications to all orders, we may
3 2 sum the perturbation series to obtai®yu=Gumb
n (B36) +Gpme, Where

GMMD:ngO E-E,
1+ (X*=x"?)/[[(E-Eg)(E~Ey)] .
E—Eo—x'2/(E—E;y) '

At least forR larger than a few tenths of a Fermi, we expect ~ Gum=Z?
the lowest level to have the largest overlap with the source

and sink so thaZy>Z,, for n>0. So we simplify our model, (B41)
writing The ellipsis represents contributions to the disconnected dia-
2 gram from light-flavor nonsinglet terms.
z (B37) This toy flavor-counting model shows the desired shifted

=t ... .. . .
Gump =g Eo ’ pole atEy+x'2/(E—E;y), but additional, complicating spec-

tral components occur &, E;, and the light-flavor non-
where the remaining terms are higher energy and weaklginglet levels). These additional components are an artifact
coupled, except, possibly, at small of our choice of source and sink. While, in principle, one
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may carry through a spectral analysis of the correlators, reing in an explicit projection of the light-quark flavor singlet.
membering to include the artifacts, the analysis would beAn example is a state formed from the tensor product af a
unnecessarily complicated. For the present numerical studypeson and a static quark-antiquark flux tube. Clearly, such a
weak mixing and strong flavor symmetry breaking on ourprojection eliminates the nonsinglet contribution. But to
coarse lattice render the extra spectral components harmlesgiminate the other artifacts also requipes=x'? in the toy
First, strong coupling breaks the flavor symmetry and liftsmodel, which is not automatic when there are two sea quark
the levelsE,, ... aboveE,, making it less likely to confuse flavors but four source and sink flavors. The remaining arti-
them withE,. Second, because of weak mixing, we are un-facts are eliminated by adjusting the weight of the discon-
able to detect the internal quark loop directly. Thus we meanected diagram, relative to the connected diagram. To be
sure the mixing parametet but do not see’. precise, once a projection to an @Wflavor singlet has been

Closer to the continuum, it is desirable to replace thedone in the stateM, the proper weighting isGywp
meson-meson interpolating operator with a better one, build+ N{/4G\yc -
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