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Nonperturbative improvement and tree-level correction of the quark propagator
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We extend an earlier study of the Landau gauge quark propagator in quenched QCD where we used two
forms of theO(a)-improved propagator with the Sheikholeslami-Wohlert quark action. In the present study we
use the nonperturbative value for the clover coefficiegt and mean-field improvement coefficients in our
improved quark propagators. We compare this with our earlier results which used the mean;fialtd
tree-level improvement coefficients for the propagator. We also compare three different implementations of
tree-level correction: additive, multiplicative, and hybrid. We show that the hybrid approach is the most robust
and reliable and can successfully deal even with strong ultraviolet behavior and zero crossing of the lattice
tree-level expression. We find good agreement between our improved quark propagators when using the
appropriate nonperturbative improvement coefficients and hybrid tree-level correction. We also present a
simple extrapolation of the quark mass function to the chiral limit.
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I. INTRODUCTION II. IMPROVEMENT

Lattice studies of the quark propagator provide a direct, .
model-independent window into the mechanism of dynami- The general scheme f@(a) improvement of the quark

propagator was discussed in RE3]. Here we restrict our-

cal chiral symmetry breaking and its momentum depen'selves to presenting the formulas and definitions which we

dence. In addition it provides insight into the nature and i pe using in this paper. For further details, see R@l.
location of the transition region of QCD where inherently g references therein.

nonper'turbative behgvior evolves into the more analytically The SW fermion action,
accessible perturbative form. Furthermore, direct lattice cal-
culations of the quark propagator inform hadron model W [ —
building from the relativized constituent quark picture to Lx)=L (X)_ZCSWa‘/’(X)‘TWFW(X)‘/’(X)' @)
quark models based on Schwinger-Dyson equati@rs. . . o

In a recent pap€i3] we presented a method for removing combined with appropriate Improvements of operators can
the dominant ultraviolet tree-level lattice artifacts in the P& shown[8] to remove allO(a) errors in on-shell matrix
momentum-space quark propagator. This was a generaliz§léments. For off-shell quantities such as the quark propaga-
tion of the concept of tree-level correction, which was firsttOF it is not that simple, and no general proof @{a) im-
introduced in the study of the gluon propagdié-7]. It was provement is known. Indeed, to calculate gauge dependent

shown that, for two differen©(a)-improved propagatorS quan_tities one mighF expect to have to introduqe gauge non-
and Sg, see Eqs(2) and (3) (ar)1d uging a Fr)negn?field ilm- invariant[but Becchi-Rouet-Stora-TyutitBRST) invariani
R ' S . terms in the action. However, at tree level it is possible to

itraviolet behavior of th tor. H th . eproceed by adding all possible dimension-5 operators to the
uitraviolet benavior ot In€ propagator. HOWEVET, the TeMaiN qiqn ang eliminating all but the clov€sW) term by a field
ing ultraviolet artifacts are sufficiently large to make the re-

X , redefinition[9]. Beyond tree level, one may proceed by add-

sults unreliable beyonga~1.2. Moreover, the two im- 4 5|l possible terms with the correct dimensionality and

proved propagators remain discernibly different even in th‘%quantum numbers to the operator in question, and tuning the

infrared, yielding different estimates for the infrared quarkparameters to eliminat®(a) terms. Ignoring the gauge non-

mass. invariant terms(which are discussed in Reff10,11]) we
Here we will present results using nonperturbatively de-may write down the following expressions for ti¥a) im-

termined values for theO(a) improvement coefficients, proved quark propagator:

rather than the tree-level and mean-field improved coeffi-

cients used in Ref.3]. We will also present two alternative Si(x,y)=(S(x,y;U))=((1+bsam)Sy(x,y;U)

techniques for removing tree-level artifacts and will discuss _ _

the relative merits of the three methods. ans(x=y)), @

Sr(X,Y)=(Sr(X,y;U))
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where Sy(x,y;U) for a given configuratior is the inverse

of the fermion matrix. Note that if we are only interested in S Ypa)=
on-shell quantities such as hadronic matrix elements, the Z(pa)z©(pa)
S-function can be ignored, so we only ne§gltogether with +aAM©(pa)] @)
the improvement coefficients for the various operators. From '

this, §, is easily obtained, where&S; is computationally wherek,, =sin(p,a)/a andz© andAM© are defined by the
somewhat more expensive. tree-level quark propagator,

The coefficientd, by, N andc, must be tuned in order
to eliminate®(a) errors in the propagatdias far as this is ) . 1 ) )
possible. At tree level, their values are,=1\=b;=73,c, (S(pa) =Wpa)[|ka+am+ aAM™(pa)]. (8)
=1, The values fobgq and\ have recently been calculated at
one-loop leve[12]. The mean-field improved values for all The functionsz(pa) and M3(pa) should then express the
these coefficients may be obtained by dividing the tree-levehonperturbative behavior of the quark propagator, with the
values by the mean linki,. The one-loop mean-field im-  dominant lattice artifacts removed. We saw that this proce-
proved values have also been calculated in RE] but as  dure led to a dramatic improvement in the behavior of these

we will argue, the small changes in values obtained by infynctions, but at large momenta the data could still not be
cluding the one-loop contribution have very little practical trysted because of large cancellations.

effect, so we will not use these here. It should also be noted Here we will consider an alternative, purely multiplicative
that the mean-field improved value faris very close to the tree-level correction procedure, defined by
nonperturbative value reported in R¢L3]. This indicates
that mean-field improvement of the coefficiebtsandX (or, . 1 _ ©
alternatively,b; andcg) may be sufficient to remové(a) S (pa)=—— 5 —[iak+aM"(pa)Zy’(pa)],
errors to the desired precision. Z(pa)Z™(pa)

The bare mass also receives @ga) correction, which
can be expressed as follows:

[iak+aM?3pa)

(€)

wherezﬁr?)(pa) is defined by the tree-level expression

- 11 1
m=(1+b,amm, am=g =5 (4) (S‘O)(pa))*:kaaJramZY?)(pa)]. (10)

The coefficientb,, has been calculated at one-loop order 1€ tree-level corrected mass functidh is thus obtained

[14]; from the uncorrected functiokl*=trS™ /4N, via
aM"(pa)=M"(pa)/Z{’(pa). (11)
1
b=~ 5—0-096@34‘ O(gp)- (5 This procedure should not suffer from the problem of large

cancellations. However, it will encounter problems when ei-
ther the numerator or denominator of E@l) crosses or is
When evaluating Eq5), we will be using the boosted cou- close to zero. In order to remedy this problem, we consider a
pling constang?= g§/ug. third, “hybrid” scheme, where the negative part of the tree-
level expression is subtracted, while the remaining positive
part is multiplicatively corrected. Specifically, we define
AM) AM) such that
In the continuum, the spin and Lorentz structure of the ) ) _ )
quark propagator, together with parity symmetry, determines AMT(pa)+AMT(pa)=AMT(pa) (12
that the propagator must have the following form:

Ill. TREE-LEVEL CORRECTION

AM™)(pa)=0; AM)(pa)<0 Vpa (13
Z(u;p?) 1 Then we can write

S(u;p)=- N — —-- (6
ip+M(p) ipA(x;p%)+B(u;p%) M©(pa)=am+AM)(pa)+AM)(pa)

=amZ)(pa)+AM)(pa). (14

On the lattice, what we measure is the béegularized
but unrenormalizedpropagator. This differs from the renor-
malized propagator in Ed6) by an overall renormalization
constanZ,(u,a), which we will absorb intZ(p), as we did aM"(pa)=(M'(pa)—aAM (*)(pa))/ZSn“(pa). (15)
in Ref.[3] to simplify the presentation of our results.

In Ref. [3] we defined a tree-level correction procedureThe definition of this scheme contains an ambiguity, since it
involving an overall multiplicative correction and an additive is obvious that we may still satisfy Eq&l2), (13) by adding
correction of the mass function, as follows: any strictly positive term taM (™) and subtracting the same

The tree-level corrected mass functibt'(pa) is then
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term from AM():; e.g. by taking AM(F)—-AM)
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success of our improvement and correction scheme whether

+k%AMT) - AME)—K2, In order to remove this ambigu- the logarithmic corrections may be extracted from the lattice

ity, we add the following criteria:

(1) Factoring out a common(positive denominator,
AM) andAM () should be polynomials in the 4 variables

k2,k2,Ak? andm, where we have defined

2 .
kﬂzasm(pﬂaIZ); a’Ak’=k>—K>. (16)

data.

IV. RESULTS

In addition to the data used in R¢8], we have analyzed
data atB=6.0 using the nonperturbatively determined value
for ¢y (=1.769, and atB=6.2 using the mean-field im-

(2) The coefficient of each term must be positive for provedc,, (=1.442. This is a subset of the UKQCD data

AM®) and negative foAM (™),

(3) Any one monomial irk?,k?,Ak? andm can only occur

analyzed in Ref{15], with the values focg, taken from Ref.
[16]. The simulation parameters are given in Table |. Note

in one of AM(") or AM(7); eg., if there is a term propor- that the values oam are different from those given in Ref.
tional tomk? in AM(™) there cannot be a term proportional [3]; this is because we have here used the determination of

to mk in AM(*), These criteria ensure tha&tM (") and

k. reported in Ref[15] instead of an earlier, preliminary

AM©) are as small as possible, leading to the minimumyalue. All the data shown have been obtained from the raw

possible distortion of the data.
Specifically, the expressions we use are

Z§11+,|)( p)

1 -
am+ (bg—\)a?m?+ )\a4Ak2+(§bq—>\ a®mié
- am(1+am) '
17
aAM{(p)
Natkd2+ 2\ —1)a2k?
=- : (18
2(1+am)
aZ{ k(p)
1 1
=————|am+ Ea“Akz), (19
amAx(p)
aAME(p)
1 1 "
=———|a’mié+ —a“kzkz) , (20
16Ag(P) 2
where we have written
1 3 1
AL(p)=1+ zam+ —a%k?+ —a*Ak?. (21)

2 16 4

It should be remembered that the mass functid(p)

data using the cylinder cut described in H&fl. The scale is
taken from the hadronic radiug [17] using the interpolating
formula of Ref.[18] and the phenomenological valug
=0.5 fm. Note that this differs from the scale used in Ref.
[3], which was taken from an earlier determination of the
string tension. The gauge fixing is identical to that of Ref.
[5], which was also used in Ref3]. This is a version of
lattice Landau gauge that contains Gribov copies; the effects
of these have not been studied here.

A. Results with mean-field improvedcy,

We first consider the effect of employing the multiplica-
tive and hybrid correction schemes on the data analyzed in
Ref.[3]. Figure 1 shows the tree-level corrected mass func-
tion M evaluated using the three schemes, for I&tand Sy
at 3=6.0, cs,= MF. It is clear that the ultraviolet behavior is
much improved, but the multiplicatively correct®tifrom S,
exhibits pathological behavior at intermediate momenta. This
is a consequence of a zero crossing in the tree-level mass
function, leading to division by near-zero numbers in Eq.
(11). In the hybrid scheme, this problem is absent.

It is worth noting that although the mass function ap-
proaches the subtracted bare mas# the ultraviolet, the
actual values obtained using the multiplicative and hybrid
schemes differ from each other and from the bare mass by up
to 20%. It is clear that at this stage this procedure is not good
enough to yield a good estimate of current quark masses. We
also see that there is no sign in these data of the logarithmic

must be renormalization-point independent in a renormalizfunning of the current quark mass. _ .
able theory and that the current quark mass at the renormal- For Sk, we also see a clear improvement in the ultraviolet

ization pointm(u) is given bym(u) =M (p=w). The ultra-

behavior, as well as a small but significant difference in the

violet mass function is of course only constant up toultraviolet mass between the multiplicative and hybrid
logarithmic corrections. The multiplicative and hybrid tree- schemes. Since the tree-level mass function§pdoes not
level correction ensures that the zeroth-order perturbative bdvave any zero crossings, the multiplicatively corrected mass
havior of the mass function in the ultraviolet matches that ofdoes not exhibit the same pathological behavior asSor

the continuum. The logarithmic corrections should principleThe tree-level mass function f@g does not cross zero, but
show up in the lattice data, as they did for the gluon propadoes approach it, and the effects of this may be detected at
gator in Ref[5]. However, this is a small effect compared to intermediate momenta. Hence we consider the hybrid correc-
the tree-level lattice artifacts. It will be a measure of thetion to be more reliable foSg.
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TABLE I. Simulation parameters. “MF” and “NP” refer to the mean-field improved and nonperturba-
tively determined values faeg,,, respectively. The improved propagat@sand Sg are defined in Eq92)

and (3).
B Volume a ! (GeV) cg, K prop am m(MeV)  m (MeV) Neq
6.0 16x 48 2.120 MF 0.13700 § 0.0579 123 118 499
Sk 20
0.13810 S 0.0289 61 60 499
6.0 16x 48 2.120 NP  0.13344 S 0.0498 105 102 10
Sk 20
0.13417 S 0.0294 62 61 10
0.13455 S 0.0188 40 39 10
6.2 24x 48 2.907 MF 0.13640 S 0.0399 116 113 54
0.13710 S 0.0212 62 61 54

B. Results with nonperturbative Cq, correction. For largepa, the discrepancy remains, which is

We now turn to the effect of using nonperturbatively de-NOt unexpected since at these momeé¥@?) and higher
termined, rather than tree-level or mean-field, improvemen€fTors become dominant.
coefficients. Figure 2 shows, on the left, the mass function Itis instructive to compare this with the effect of reducing
obtained from our two improved propagators using the nonthe lattice spacing, as shown in Fig. 3. We do not have data
perturbative value forcg, and the mean-field values for for Sg at 8=6.2, but we see tha changes very little with
bq ,bé and\ (we have not been in a position to obtain data/ in the intermediate momentum range where the discrep-
using mean-field or nonperturbative values égr, only the — ancy becomes large. Assuming i8¢ changes by a similar
tree-level valuec;=3). As indicated in Sec. II, the nonper- amount, we may conclude that reducing the lattice spacing
turbative values for the latter coefficients are currently notdoes very little to reduce the discrepancy, although the be-
known, but at least the nonperturbative value Xoreported havior of S, at large momenta is somewhat improved, as one
in Ref.[13] is close to the mean-field value, and it seemswould expect. We can also see that going from tree-level to
reasonable to guess that this is the case for the other coeffirean-field values for the coefficients, and A has only a
cients as well. We therefore assume that although it is notery small effect. We may also conclude that using one-loop
entirely consistent, it is not unreasonable to use the mearnalues for these coefficients will have negligible effect, since
field values. On the right of Fig. 2 are shown equivalent datahe difference between tree-level and one-loop coefficients is
from Ref.[3], along with data using mean-field values for all even smaller than that between the tree-level and mean-field
the improvement coefficients ig; . improved values. This also gives us added confidence in the

It is immediately clear that using the NP value foy,  use of mean-field rather than nonperturbative values for these
removes the large discrepancy between the two improvedoefficients.
propagators fopa<2, even when using additive tree-level In Fig. 4 we show the tree-level correct&dp) function,

0.3 — T T —T— T —T—% T 0.3 — T —T—T e e
[ | R [ | | ]
I S;, ma=0.0579 X i I Sg, ma=0.0579 i
- X 4 - 4
] © 1 x add A
0.2 % KX add 0.2 g@ 0 mult —|
- %XX o hmli)lt'd E - ¢ hybrid
- < ri 1 -
l o sbrid ] B
= 0.1 — = 0.1
5] - v 5] -
i wmunleuunuuowenuu B
L °, ] L
- o _ -
0.0 — — 0.0 —
L @ i L
_0.1 1 1 | 1 1 1 1 | 1 1 1 1 _0.1 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 1 2 3 0 1 2 3
pa pa

FIG. 1. The tree-level corrected mass function, $pfleft) and Sy (right) with cg,= MF, x=0.13700, using additive, multiplicative and

hybrid correction. The hybrid scheme is robust even in the presence of a zero crossing of the tree-level mass fugtion for
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FIG. 2. The additively tree-level corrected mass function,cfgr= NP,x= 0.13344(left) and cg,,= MF, x=0.13700(right).

pa

pa

S, imp in the

right-hand figure is obtained using the mean-field improved rather than the tree-level valbgsafa\ in Eq. (2).

ultraviolet agreement is less than satisfactory even when the
nonperturbativec,, is used and we conclude that the ultra-
violet behavior of the tree-level form &, is too severe to be
there is still a very significant discrepancy betwegnand remedied by our tree-level correction scheme even with non-
Sk, even with the nonperturbative,,. Much of this dis- perturbative and mean-field improved coefficients in the ac-
crepancy, however, amounts to an overall renormalizationtion and propagators respectively. Because of the more rea-
which may be included in the quark field renormalizationsonable tree-level behavior & and because in this case
constantZ,. To eliminate this possible, unphysical source ofZ(p) is almost unchanged when using either the nonpertur-
disagreement we rescale the data by imposing the “‘renobative or mean-fielcts,,, we take as our best estimate for
malization condition”Z(pa=1)=1. The result of this is Z(p) the tree-level corrected result fro8y with nonpertur-
shown in the lower panel of Fig. 4. We then see that thedative cg.

infrared behavior of the tree-level correct&@p) functions Figure 5 shows the mass function fag,= NP, with the
agree much better than they did in the previous work in Refmultiplicative and hybrid correction schemes. The multipli-
[3]. For the few most infrared points we see that there is agative scheme exhibits the same problems as those we en-
apparently better agreement #¢p) between the two forms countered withcg,=MF. In particular, ZET?’(p) from S

of the propagator when the nonperturbatogg is used. The crosses zero fopa~0.5 and renders the multiplicative
scheme meaningless for that case. EvenSpwe find that

the uncorrected‘ has small zero crossings for momentum

for both nonperturbative and mean-fialg,,. The upper fig-
ures show the “unrenormalizedZ(p) — the upper right
figure is taken directly from Fig. 5 in Ref3]. We see that

500

400

100

¢ 8§, $=6.2, m=113 MeV
X 8y, $=6.0, m=118 MeV
O 8g, $=6.0, m=118 MeV

||||||||||||||||||||||||
(=]
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I
=
=

@
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¥
*

...!‘9+‘...||re\-.>‘..|....|...|

o
—
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values in the range 15pa< 2.3, which render the multipli-
cative scheme unsatisfactory. Using the hybrid scheme, how-
ever, we avoid these pathologies of the naive multiplicative
scheme as can be seen from the two lower figures in Fig. 5.
In Fig. 6 we have plotted the mass functions for the two
propagators in physical units. We see good agreement be-
tween the mass functions using hybrid tree-level correction
and the nonperturbative, coefficient across the entire
range of available momenta. The mass functionSgrdips
slightly below that forS, at intermediate momentum points
even though they approach very similar asymptotic values.
This residual disagreement implies that we have not suc-
ceeded in removing all of the lattice artifacts at intermediate
momenta, although hopefully we have gone some significant
way toward achieving that end.

C. Chiral extrapolations

We have available data for three quark massesSfavith
the nonperturbative,. Having seen the very plausible be-

FIG. 3. The additively tree-level corrected mass function, for
Csw=MF, at B=6.2 andB=6.0.
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FIG. 4. The tree-level corrected(p), for cg,=NP,x=0.137 (left) and cy,,= MF, k=0.13344(right). The upper two figures show the
data in lattice units, and without rescaling. The lower two figures sB@ vs momentum in physical units, and after rescalifrgnor-
malizing”) so thatZ(2.1 GeV)=1. The infrared agreement after rescaling is very good and we take the tree-level cafigntdrbm Sy
with the nonperturbative, as the best estimate for this quantisee text

havior of the mass function fo%, after hybrid tree-level Also in Fig. 7, we show the result of a linear extrapolation
correction and the good agreement with that$gr, we are  of the infrared quark massl (p—0), together with our pre-
given the confidence to attempt a simple extrapolation of th&ious results from Ref[3]. Due to the small statistics, the
guark mass function to the chiral limit. The first chiral ex- error bars for the nonperturbatieg, data are quite large. We
trapolation we performed was a linear extrapolation of thestill observe that the extrapolated mass value for the nonper-
ultraviolet masgobtained by fittingM"(p) to a constant in turbativecy, is systematically lower than for the mean-field

the range 2 pa<3] as a function ofm. This is shown in  Csw, but the results fo§ and Sg are now fully consistent,
Fig. 7, where we see that the ultraviolet mass vanishes in thand also agree with the value obtained fr@ with the
chiral limit to a very good approximation as it should. In- mean-fieldcs,,. Note that the value in MeV foM(p—0)
deed, the extrapolated value ef1 MeV is much smaller from the mean-field, differs from that reported in Ref3].
than the systematic uncertainties arising from the different his is due to the different values for the lattice spacing in
tree-level correction schemes discussed above. We also sé two papers. The uncertainty in the lattice spacing adds an
that for the ultraviolet mass a linear extrapolation does very@dditional uncertainty of about 10% to all numbers in physi-
well. As we noted in Sec. Ill, the ultraviolet mass function is cal units. This uncertainty is an intrinsic feature of the
only constant up to logarithmic corrections, but our ultravio-duenched approximation.

let behavior is not sufficiently under control that it would be ~ We also show in Fig. 8 the result of a simple quadratic
meaningful to attempt to extract those from Fig. 5. chiral extrapolation irm for the entire mass functioffor S
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FIG. 5. The tree-level corrected (p), for cs,=NP, usingS, (left) and Sk (right), and with the multiplicativétop) and hybrid(bottom)
correction schemes. The multiplicative scheme clearly failSforand also performs poorly f@&g; while the hybrid scheme performs well
for both and leads to good agreement between the two propagators.

with hybrid tree-level correction and nonperturbativg,). AMP)(pa)—AMH)(pa)+eAMT)(pa),
The result has a plausible form and is presumably a good
estimate ofM (p) in the chiral limit. The very small dip at AM)(pa)—(1—e)AMT)(pa) (22

p~1.4 GeV is within two standard deviations and, while not
statistically significant, it is a again a hint that we have notwheree is a free parameter. Considering small variations in
completely removed lattice artifacts at intermediate mo-€, —0.1<=e=0.1, we find that the correction scheme depen-
menta. A linear chiral extrapolation, while adequate in thedence gives rise to uncertainties iy of about 100 MeV.
ultraviolet and infrared, does not fit the data in the interme-Using the mean-fieldy, at 3=6.0 and 6.2, we get values for
diate momentum regime. We see that the quadratic extrapg,, that are slightly higher, but still consistent within two
lation to the chiral limit is consistent with a vanishing current standard deviations.
quark mass and a rapid falling off & (p) such that it ap- We take as our best estimate for the chiral symmetry scale
pears to essentially vanish by approximately 1.5 GeV. Thighe value fromS; with the nonperturbative, at 8=6.0:
suggests that the effects of dynamical chiral symmetry breaks, =1.4 }2*2(14) GeV, where the first set of errors are
ing become negligible at a scabe which we estimate to be statistical, the second are the systematic uncertainties due to
p,=1. 4519 GeV, where the errors are purely statistical. ~ the tree-level correction scheme, and the third is the uncer-
We have also studied the systematic uncertainties arisintinty in the lattice spacing. This value is roughly consistent
from the specific choice of tree-level correction scheme. Irwith the chiral symmetry breaking scalg, sg arising in low-
order to quantify this, we have modified the hybrid schemeenergy effective theories and in instanton modsise e.g.
defined in Sec. Ill by taking Ref.[19]). An understanding of the relationship between this
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FIG. 6. The hybrid tree-level correctéd"(p), for c,=NP, usingS, (left) and Sg (right). For m=91 MeV we find good agreement
between the two data sets, both in the infrared and ultraviolet. The residual disagreement at intermediate momenta is a pointer to lattice
artifacts that we have not brought under full control, even with nonperturbative improvement and hybrid tree-level correction.

result and the recent analysis of the pseudoscalar vE2x

is an interesting topic for future investigation.

V. DISCUSSION
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level mass function approaches or crosses zero, leading to
ill-defined behavior at intermediate momenta. The purely ad-
heme defined in Rdf3], although leading to a dra-
matic improvement on the uncorrected data, did not give
reliable results for the mass function abgva~1. We have

We have made use of asymptotic freedom to factor out thelefined a hybrid tree-level correction scheme which com-
dominant(tree-level lattice artifacts in the quark propagator bines the additive and multiplicative schemes in such a way
at high momenta. We have discussed several differentat the mass function becomes well-behaved at all momen-
schemes for applying this idea, referred to as tree-level cotum values. Ambiguities in the correction scheme should
rection, to the mass function, which is the scalar part of theshow up most clearly at intermediate momenta. We find that
inverse quark propagator. A purely multiplicative scheme isthe uncertainties due to such ambiguities are of comparable

ditive sc

p (GeV)

seen to encounter problems because the value of the tregragnitude to the statistical uncertainties.
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FIG. 7. Left: The ultraviolet quark madd, as a function of the bare quark mass for S, with c4,=NP and using hybrid tree-level
correction. The values are obtained by fittiktf'(p) to a constant for  pa<3. Right: The infrared quark ma$8;, =M (p=0), obtained
by extrapolating (p) to pa=0, as a function ofn. The bursts indicate the chirally extrapolated valueMgfobtained by a simple straight
line fit for each action. The solid line represents the fitdgy= NP, while the dotted line is the fit fary,= MF. We see that the values of
M;, from S; and Sy agree forcg,,= NP, giving us further indication of the superiority of nonperturbative to mean-field improvement, despite

the large statistical uncertainties in the NP data.
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M(p), so we conclude that finite volume effects here are
small.

We have not here considered the possible effect of Gribov
copies. This remains an interesting subject for future study,
which is currently being pursued.

In summary, the key results of this study are that one
should use the most appropridt®nperturbativedetermina-
tions of improvement coefficients wherever possible. Where
tree-level behavior is severe with zero crossings or near zero
crossings the hybrid tree-level correction scheme can be used
in place of the multiplicative one. In the infrared and inter-
mediate momentum regimes we appear to have reasonable
control over lattice artifacts. The chiral behavior resulting
from a simple chiral extrapolation appears reasonable. We
believe that the best estimate of the continufifp) function
corresponds to the nonperturbatieg, result for the Sg
propagator as shown in Fig. 4. All of the hybrid corrected
mass functions with nonperturbativg, appear reasonable
and agree with each other. The chiral extrapolation of these
is shown in Fig. 8. We find that the effects of dynamical

=NP, with the bare mas® extrapolated to zero using a quadratic chiral symmetry breaking become negligible above a mo-
fit. The small dip app~1.6 GeV is not statistically significant and mentum scalep, . Our best estimate for this scale &,
may be due to residual lattice artifacts. The non-zero values for=1.45"13"5(14) GeV.

M(p) in the chiral limit are entirely due to dynamical chiral sym-
metry breaking and provide a direct measure of this effect.

We emphasize that the real test of these conclusions will
be to implement these methods on finer lattice spacings, with
further improved actions, and ideally with actions which re-

We have also studied the effect of using the nonperturbaspect chiral symmetry on the lattice. These subjects are being
tive value forcg,. This was seen to improve the data con-pursued.

siderably, as demonstrated most dramatically by the very
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