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Nonperturbative improvement and tree-level correction of the quark propagator
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We extend an earlier study of the Landau gauge quark propagator in quenched QCD where we used two
forms of theO(a)-improved propagator with the Sheikholeslami-Wohlert quark action. In the present study we
use the nonperturbative value for the clover coefficientcsw and mean-field improvement coefficients in our
improved quark propagators. We compare this with our earlier results which used the mean-fieldcsw and
tree-level improvement coefficients for the propagator. We also compare three different implementations of
tree-level correction: additive, multiplicative, and hybrid. We show that the hybrid approach is the most robust
and reliable and can successfully deal even with strong ultraviolet behavior and zero crossing of the lattice
tree-level expression. We find good agreement between our improved quark propagators when using the
appropriate nonperturbative improvement coefficients and hybrid tree-level correction. We also present a
simple extrapolation of the quark mass function to the chiral limit.
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I. INTRODUCTION

Lattice studies of the quark propagator provide a dire
model-independent window into the mechanism of dyna
cal chiral symmetry breaking and its momentum dep
dence. In addition it provides insight into the nature a
location of the transition region of QCD where inheren
nonperturbative behavior evolves into the more analytica
accessible perturbative form. Furthermore, direct lattice
culations of the quark propagator inform hadron mo
building from the relativized constituent quark picture
quark models based on Schwinger-Dyson equations@1,2#.

In a recent paper@3# we presented a method for removin
the dominant ultraviolet tree-level lattice artifacts in t
momentum-space quark propagator. This was a genera
tion of the concept of tree-level correction, which was fi
introduced in the study of the gluon propagator@4–7#. It was
shown that, for two differentO(a)-improved propagatorsSI

and SR , see Eqs.~2! and ~3!, and using a mean-field im
proved action, this leads to a dramatic improvement in
ultraviolet behavior of the propagator. However, the rema
ing ultraviolet artifacts are sufficiently large to make the
sults unreliable beyondpa;1.2. Moreover, the two im-
proved propagators remain discernibly different even in
infrared, yielding different estimates for the infrared qua
mass.

Here we will present results using nonperturbatively d
termined values for theO(a) improvement coefficients
rather than the tree-level and mean-field improved coe
cients used in Ref.@3#. We will also present two alternativ
techniques for removing tree-level artifacts and will discu
the relative merits of the three methods.

*Electronic address: jonivar@mail.desy.de
†Electronic address: dleinweb@physics.adelaide.edu.au
‡Electronic address: awilliam@physics.adelaide.edu.au
0556-2821/2001/64~7!/074508~9!/$20.00 64 0745
t,
i-
-

d

y
l-
l

a-
t

e
-
-

e

-

-

s

II. IMPROVEMENT

The general scheme forO(a) improvement of the quark
propagator was discussed in Ref.@3#. Here we restrict our-
selves to presenting the formulas and definitions which
will be using in this paper. For further details, see Ref.@3#
and references therein.

The SW fermion action,

L~x!5L W~x!2
i

4
cswac̄~x!smnFmn~x!c~x!, ~1!

combined with appropriate improvements of operators
be shown@8# to remove allO(a) errors in on-shell matrix
elements. For off-shell quantities such as the quark propa
tor it is not that simple, and no general proof ofO(a) im-
provement is known. Indeed, to calculate gauge depen
quantities one might expect to have to introduce gauge n
invariant @but Becchi-Rouet-Stora-Tyutin~BRST! invariant#
terms in the action. However, at tree level it is possible
proceed by adding all possible dimension-5 operators to
action and eliminating all but the clover~SW! term by a field
redefinition@9#. Beyond tree level, one may proceed by ad
ing all possible terms with the correct dimensionality a
quantum numbers to the operator in question, and tuning
parameters to eliminateO(a) terms. Ignoring the gauge non
invariant terms~which are discussed in Refs.@10,11#! we
may write down the following expressions for theO(a) im-
proved quark propagator:

SI~x,y![^SI~x,y;U !&[^~11bqam!S0~x,y;U !

2ald~x2y!&, ~2!

SR~x,y![^SR~x,y;U !&

[^~11bq8am!@12cq8D” ~x!#

3S0~x,y;U !@11cq8D”Q ~y!#&, ~3!
©2001 The American Physical Society08-1
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whereS0(x,y;U) for a given configurationU is the inverse
of the fermion matrix. Note that if we are only interested
on-shell quantities such as hadronic matrix elements,
d-function can be ignored, so we only needS0 together with
the improvement coefficients for the various operators. Fr
this, SI is easily obtained, whereasSR is computationally
somewhat more expensive.

The coefficientsbq , bq8 , l andcq8 must be tuned in orde
to eliminateO(a) errors in the propagator~as far as this is
possible!. At tree level, their values arebq51,l5bq85 1

2 ,cq8
5 1

4 . The values forbq andl have recently been calculated
one-loop level@12#. The mean-field improved values for a
these coefficients may be obtained by dividing the tree-le
values by the mean linku0. The one-loop mean-field im
proved values have also been calculated in Ref.@12# but as
we will argue, the small changes in values obtained by
cluding the one-loop contribution have very little practic
effect, so we will not use these here. It should also be no
that the mean-field improved value forl is very close to the
nonperturbative value reported in Ref.@13#. This indicates
that mean-field improvement of the coefficientsbq andl ~or,
alternatively,bq8 andcq8) may be sufficient to removeO(a)
errors to the desired precision.

The bare mass also receives anO(a) correction, which
can be expressed as follows:

m̃5~11bmam!m, am5
1

2k
2

1

2kc
. ~4!

The coefficientbm has been calculated at one-loop ord
@14#:

bm52
1

2
20.0962g0

21O~g0
4!. ~5!

When evaluating Eq.~5!, we will be using the boosted cou
pling constantg25g0

2/u0
4.

III. TREE-LEVEL CORRECTION

In the continuum, the spin and Lorentz structure of t
quark propagator, together with parity symmetry, determi
that the propagator must have the following form:

S~m;p!5
Z~m;p2!

ip”1M ~p2!
[

1

ip”A~m;p2!1B~m;p2!
. ~6!

On the lattice, what we measure is the bare~regularized
but unrenormalized! propagator. This differs from the reno
malized propagator in Eq.~6! by an overall renormalization
constantZ2(m,a), which we will absorb intoZ(p), as we did
in Ref. @3# to simplify the presentation of our results.

In Ref. @3# we defined a tree-level correction procedu
involving an overall multiplicative correction and an additiv
correction of the mass function, as follows:
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S21~pa!5
1

Z~pa!Z(0)~pa!
@ iak”1aMa~pa!

1aDM (0)~pa!#, ~7!

wherekm5sin(pma)/a andZ(0) andDM (0) are defined by the
tree-level quark propagator,

„S(0)~pa!…215
1

Z(0)~pa!
@ ik”a1am1aDM (0)~pa!#. ~8!

The functionsZ(pa) and Ma(pa) should then express th
nonperturbative behavior of the quark propagator, with
dominant lattice artifacts removed. We saw that this pro
dure led to a dramatic improvement in the behavior of th
functions, but at large momenta the data could still not
trusted because of large cancellations.

Here we will consider an alternative, purely multiplicativ
tree-level correction procedure, defined by

S21~pa!5
1

Z~pa!Z(0)~pa!
@ iak”1aMm~pa!Zm

(0)~pa!#,

~9!

whereZm
(0)(pa) is defined by the tree-level expression

„S(0)~pa!…215
1

Z(0)~pa!
@ ik”a1amZm

(0)~pa!#. ~10!

The tree-level corrected mass functionM is thus obtained
from the uncorrected functionML[trS21/4Nc via

aMm~pa!5ML~pa!/Zm
(0)~pa!. ~11!

This procedure should not suffer from the problem of lar
cancellations. However, it will encounter problems when
ther the numerator or denominator of Eq.~11! crosses or is
close to zero. In order to remedy this problem, we conside
third, ‘‘hybrid’’ scheme, where the negative part of the tre
level expression is subtracted, while the remaining posit
part is multiplicatively corrected. Specifically, we defin
DM (1),DM (2) such that

DM (1)~pa!1DM (2)~pa!5DM (0)~pa! ~12!

DM (1)~pa!>0; DM (2)~pa!<0 ;pa. ~13!

Then we can write

M (0)~pa!5am1DM (1)~pa!1DM (2)~pa!

[amZm
(1)~pa!1DM (2)~pa!. ~14!

The tree-level corrected mass functionMh(pa) is then

aMh~pa!5„ML~pa!2aDM (2)~pa!…/Zm
(1)~pa!. ~15!

The definition of this scheme contains an ambiguity, sinc
is obvious that we may still satisfy Eqs.~12!, ~13! by adding
any strictly positive term toDM (1) and subtracting the sam
8-2
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term from DM (2); e.g. by taking DM (1)→DM (1)

1k2;DM (2)→DM (2)2k2. In order to remove this ambigu
ity, we add the following criteria:

~1! Factoring out a common~positive! denominator,
DM (1) andDM (2) should be polynomials in the 4 variable
k2,k̂2,Dk2 andm, where we have defined

k̂m[
2

a
sin~pma/2!; a2Dk2[ k̂22k2. ~16!

~2! The coefficient of each term must be positive f
DM (1) and negative forDM (2).

~3! Any one monomial ink2,k̂2,Dk2 andm can only occur
in one of DM (1) or DM (2); eg., if there is a term propor
tional to mk2 in DM (2) there cannot be a term proportion
to mk2 in DM (1). These criteria ensure thatDM (1) and
DM (2) are as small as possible, leading to the minim
possible distortion of the data.

Specifically, the expressions we use are

Zm,I
(1)~p!

5

am1~bq2l!a2m21la4Dk21S 1

2
bq2l Da3mk̂2

am~11am!
,

~17!

aDMI
(2)~p!

52
la4k̂4/21~2l21!a2k̂2

2~11am!
, ~18!

aZm,R
(1) ~p!

5
1

amAR8 ~p!
S am1

1

2
a4Dk2D , ~19!

aDMR
(2)~p!

52
1

16AR8 ~p!
S a3mk21

1

2
a4k2k̂2D , ~20!

where we have written

AR8 ~p!511
1

2
am1

3

16
a2k21

1

4
a4Dk2. ~21!

It should be remembered that the mass functionM (p)
must be renormalization-point independent in a renorma
able theory and that the current quark mass at the renor
ization pointm(m) is given bym(m)5M (p5m). The ultra-
violet mass function is of course only constant up
logarithmic corrections. The multiplicative and hybrid tre
level correction ensures that the zeroth-order perturbative
havior of the mass function in the ultraviolet matches tha
the continuum. The logarithmic corrections should princip
show up in the lattice data, as they did for the gluon pro
gator in Ref.@5#. However, this is a small effect compared
the tree-level lattice artifacts. It will be a measure of t
07450
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success of our improvement and correction scheme whe
the logarithmic corrections may be extracted from the latt
data.

IV. RESULTS

In addition to the data used in Ref.@3#, we have analyzed
data atb56.0 using the nonperturbatively determined val
for csw ~51.769!, and atb56.2 using the mean-field im
provedcsw ~51.442!. This is a subset of the UKQCD dat
analyzed in Ref.@15#, with the values forcsw taken from Ref.
@16#. The simulation parameters are given in Table I. No
that the values ofam are different from those given in Ref
@3#; this is because we have here used the determinatio
kc reported in Ref.@15# instead of an earlier, preliminary
value. All the data shown have been obtained from the r
data using the cylinder cut described in Ref.@3#. The scale is
taken from the hadronic radiusr 0 @17# using the interpolating
formula of Ref. @18# and the phenomenological valuer 0

50.5 fm. Note that this differs from the scale used in R
@3#, which was taken from an earlier determination of t
string tension. The gauge fixing is identical to that of R
@5#, which was also used in Ref.@3#. This is a version of
lattice Landau gauge that contains Gribov copies; the effe
of these have not been studied here.

A. Results with mean-field improvedcsw

We first consider the effect of employing the multiplic
tive and hybrid correction schemes on the data analyze
Ref. @3#. Figure 1 shows the tree-level corrected mass fu
tion M evaluated using the three schemes, for bothSI andSR

at b56.0, csw5MF. It is clear that the ultraviolet behavior i
much improved, but the multiplicatively correctedM from SI

exhibits pathological behavior at intermediate momenta. T
is a consequence of a zero crossing in the tree-level m
function, leading to division by near-zero numbers in E
~11!. In the hybrid scheme, this problem is absent.

It is worth noting that although the mass function a
proaches the subtracted bare massm in the ultraviolet, the
actual values obtained using the multiplicative and hyb
schemes differ from each other and from the bare mass b
to 20%. It is clear that at this stage this procedure is not g
enough to yield a good estimate of current quark masses
also see that there is no sign in these data of the logarith
running of the current quark mass.

For SR , we also see a clear improvement in the ultravio
behavior, as well as a small but significant difference in
ultraviolet mass between the multiplicative and hyb
schemes. Since the tree-level mass function forSR does not
have any zero crossings, the multiplicatively corrected m
does not exhibit the same pathological behavior as forSI .
The tree-level mass function forSR does not cross zero, bu
does approach it, and the effects of this may be detecte
intermediate momenta. Hence we consider the hybrid cor
tion to be more reliable forSR .
8-3
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TABLE I. Simulation parameters. ‘‘MF’’ and ‘‘NP’’ refer to the mean-field improved and nonpertur
tively determined values forcsw, respectively. The improved propagatorsSI andSR are defined in Eqs.~2!
and ~3!.

b Volume a21 ~GeV! csw k prop am m~MeV! m̃ ~MeV! Ncfg

6.0 163348 2.120 MF 0.13700 SI 0.0579 123 118 499
SR 20

0.13810 SI 0.0289 61 60 499
6.0 163348 2.120 NP 0.13344 SI 0.0498 105 102 10

SR 20
0.13417 SI 0.0294 62 61 10
0.13455 SI 0.0188 40 39 10

6.2 243348 2.907 MF 0.13640 SI 0.0399 116 113 54
0.13710 SI 0.0212 62 61 54
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B. Results with nonperturbative csw

We now turn to the effect of using nonperturbatively d
termined, rather than tree-level or mean-field, improvem
coefficients. Figure 2 shows, on the left, the mass funct
obtained from our two improved propagators using the n
perturbative value forcsw and the mean-field values fo
bq ,bq8 andl ~we have not been in a position to obtain da
using mean-field or nonperturbative values forcq8 , only the
tree-level valuecq85 1

4 ). As indicated in Sec. II, the nonpe
turbative values for the latter coefficients are currently
known, but at least the nonperturbative value forl reported
in Ref. @13# is close to the mean-field value, and it see
reasonable to guess that this is the case for the other co
cients as well. We therefore assume that although it is
entirely consistent, it is not unreasonable to use the me
field values. On the right of Fig. 2 are shown equivalent d
from Ref.@3#, along with data using mean-field values for a
the improvement coefficients inSI .

It is immediately clear that using the NP value forcsw
removes the large discrepancy between the two impro
propagators forpa&2, even when using additive tree-lev
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correction. For largerpa, the discrepancy remains, which
not unexpected since at these momentaO(a2) and higher
errors become dominant.

It is instructive to compare this with the effect of reducin
the lattice spacing, as shown in Fig. 3. We do not have d
for SR at b56.2, but we see thatSI changes very little with
b in the intermediate momentum range where the discr
ancy becomes large. Assuming thatSR changes by a similar
amount, we may conclude that reducing the lattice spac
does very little to reduce the discrepancy, although the
havior ofSI at large momenta is somewhat improved, as o
would expect. We can also see that going from tree-leve
mean-field values for the coefficientsbq and l has only a
very small effect. We may also conclude that using one-lo
values for these coefficients will have negligible effect, sin
the difference between tree-level and one-loop coefficient
even smaller than that between the tree-level and mean-
improved values. This also gives us added confidence in
use of mean-field rather than nonperturbative values for th
coefficients.

In Fig. 4 we show the tree-level correctedZ(p) function,
d
FIG. 1. The tree-level corrected mass function, forSI ~left! andSR ~right! with csw5MF,k50.13700, using additive, multiplicative an
hybrid correction. The hybrid scheme is robust even in the presence of a zero crossing of the tree-level mass function forSI .
8-4
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FIG. 2. The additively tree-level corrected mass function, forcsw5NP,k50.13344~left! andcsw5MF,k50.13700~right!. SI , imp in the
right-hand figure is obtained using the mean-field improved rather than the tree-level values forbq andl in Eq. ~2!.
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for both nonperturbative and mean-fieldcsw. The upper fig-
ures show the ‘‘unrenormalized’’Z(p) — the upper right
figure is taken directly from Fig. 5 in Ref.@3#. We see that
there is still a very significant discrepancy betweenSI and
SR , even with the nonperturbativecsw. Much of this dis-
crepancy, however, amounts to an overall renormalizat
which may be included in the quark field renormalizati
constantZ2. To eliminate this possible, unphysical source
disagreement we rescale the data by imposing the ‘‘ren
malization condition’’ Z(pa51)51. The result of this is
shown in the lower panel of Fig. 4. We then see that
infrared behavior of the tree-level correctedZ(p) functions
agree much better than they did in the previous work in R
@3#. For the few most infrared points we see that there is
apparently better agreement forZ(p) between the two forms
of the propagator when the nonperturbativecsw is used. The

FIG. 3. The additively tree-level corrected mass function,
csw5MF, at b56.2 andb56.0.
07450
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ultraviolet agreement is less than satisfactory even when
nonperturbativecsw is used and we conclude that the ultr
violet behavior of the tree-level form ofSI is too severe to be
remedied by our tree-level correction scheme even with n
perturbative and mean-field improved coefficients in the
tion and propagators respectively. Because of the more
sonable tree-level behavior ofSR and because in this cas
Z(p) is almost unchanged when using either the nonper
bative or mean-fieldcsw, we take as our best estimate fo
Z(p) the tree-level corrected result fromSR with nonpertur-
bativecsw.

Figure 5 shows the mass function forcsw5NP, with the
multiplicative and hybrid correction schemes. The multip
cative scheme exhibits the same problems as those we
countered withcsw5MF. In particular, Zm

(0)(p) from SI

crosses zero forpa;0.5 and renders the multiplicativ
scheme meaningless for that case. Even forSR we find that
the uncorrectedML has small zero crossings for momentu
values in the range 1.5,pa,2.3, which render the multipli-
cative scheme unsatisfactory. Using the hybrid scheme, h
ever, we avoid these pathologies of the naive multiplicat
scheme as can be seen from the two lower figures in Fig
In Fig. 6 we have plotted the mass functions for the tw
propagators in physical units. We see good agreement
tween the mass functions using hybrid tree-level correct
and the nonperturbativecsw coefficient across the entir
range of available momenta. The mass function forSR dips
slightly below that forSI at intermediate momentum point
even though they approach very similar asymptotic valu
This residual disagreement implies that we have not s
ceeded in removing all of the lattice artifacts at intermedi
momenta, although hopefully we have gone some signific
way toward achieving that end.

C. Chiral extrapolations

We have available data for three quark masses forSI with
the nonperturbativecsw. Having seen the very plausible be

r

8-5
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FIG. 4. The tree-level correctedZ(p), for csw5NP,k50.137 ~left! andcsw5MF,k50.13344~right!. The upper two figures show th
data in lattice units, and without rescaling. The lower two figures showZ(p) vs momentum in physical units, and after rescaling~‘‘renor-
malizing’’! so thatZ(2.1 GeV)51. The infrared agreement after rescaling is very good and we take the tree-level correctedZ(p) from SR

with the nonperturbativecsw as the best estimate for this quantity~see text!.
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havior of the mass function forSI after hybrid tree-level
correction and the good agreement with that forSR , we are
given the confidence to attempt a simple extrapolation of
quark mass function to the chiral limit. The first chiral e
trapolation we performed was a linear extrapolation of
ultraviolet mass@obtained by fittingMh(p) to a constant in
the range 2,pa,3] as a function ofm̃. This is shown in
Fig. 7, where we see that the ultraviolet mass vanishes in
chiral limit to a very good approximation as it should. I
deed, the extrapolated value of21 MeV is much smaller
than the systematic uncertainties arising from the differ
tree-level correction schemes discussed above. We also
that for the ultraviolet mass a linear extrapolation does v
well. As we noted in Sec. III, the ultraviolet mass function
only constant up to logarithmic corrections, but our ultrav
let behavior is not sufficiently under control that it would b
meaningful to attempt to extract those from Fig. 5.
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Also in Fig. 7, we show the result of a linear extrapolati
of the infrared quark massM (p→0), together with our pre-
vious results from Ref.@3#. Due to the small statistics, th
error bars for the nonperturbativecsw data are quite large. We
still observe that the extrapolated mass value for the non
turbativecsw is systematically lower than for the mean-fie
csw, but the results forSI and SR are now fully consistent,
and also agree with the value obtained fromSR with the
mean-fieldcsw. Note that the value in MeV forM (p→0)
from the mean-fieldcsw differs from that reported in Ref.@3#.
This is due to the different values for the lattice spacing
the two papers. The uncertainty in the lattice spacing add
additional uncertainty of about 10% to all numbers in phy
cal units. This uncertainty is an intrinsic feature of th
quenched approximation.

We also show in Fig. 8 the result of a simple quadra
chiral extrapolation inm̃ for the entire mass function~for SI
8-6
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FIG. 5. The tree-level correctedM (p), for csw5NP, usingSI ~left! andSR ~right!, and with the multiplicative~top! and hybrid~bottom!
correction schemes. The multiplicative scheme clearly fails forSI , and also performs poorly forSR ; while the hybrid scheme performs we
for both and leads to good agreement between the two propagators.
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with hybrid tree-level correction and nonperturbativecsw).
The result has a plausible form and is presumably a g
estimate ofM (p) in the chiral limit. The very small dip a
p;1.4 GeV is within two standard deviations and, while n
statistically significant, it is a again a hint that we have n
completely removed lattice artifacts at intermediate m
menta. A linear chiral extrapolation, while adequate in
ultraviolet and infrared, does not fit the data in the interm
diate momentum regime. We see that the quadratic extra
lation to the chiral limit is consistent with a vanishing curre
quark mass and a rapid falling off ofM (p) such that it ap-
pears to essentially vanish by approximately 1.5 GeV. T
suggests that the effects of dynamical chiral symmetry bre
ing become negligible at a scalepx which we estimate to be
px51.45213

110 GeV, where the errors are purely statistical.
We have also studied the systematic uncertainties ari

from the specific choice of tree-level correction scheme
order to quantify this, we have modified the hybrid sche
defined in Sec. III by taking
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DM (1)~pa!→DM (1)~pa!1eDM (2)~pa!,

DM (2)~pa!→~12e!DM (2)~pa! ~22!

wheree is a free parameter. Considering small variations
e, 20.1&e&0.1, we find that the correction scheme depe
dence gives rise to uncertainties inpx of about 100 MeV.
Using the mean-fieldcsw at b56.0 and 6.2, we get values fo
px that are slightly higher, but still consistent within tw
standard deviations.

We take as our best estimate for the chiral symmetry sc
the value fromSI with the nonperturbativecsw at b56.0:
px51.4521328

11016(14) GeV, where the first set of errors a
statistical, the second are the systematic uncertainties du
the tree-level correction scheme, and the third is the un
tainty in the lattice spacing. This value is roughly consiste
with the chiral symmetry breaking scaleLx SB arising in low-
energy effective theories and in instanton models~see e.g.
Ref. @19#!. An understanding of the relationship between th
8-7
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FIG. 6. The hybrid tree-level correctedMh(p), for csw5NP, usingSI ~left! and SR ~right!. For m̃591 MeV we find good agreemen
between the two data sets, both in the infrared and ultraviolet. The residual disagreement at intermediate momenta is a pointe
artifacts that we have not brought under full control, even with nonperturbative improvement and hybrid tree-level correction.
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result and the recent analysis of the pseudoscalar vertex@20#
is an interesting topic for future investigation.

V. DISCUSSION

We have made use of asymptotic freedom to factor out
dominant~tree-level! lattice artifacts in the quark propagato
at high momenta. We have discussed several diffe
schemes for applying this idea, referred to as tree-level
rection, to the mass function, which is the scalar part of
inverse quark propagator. A purely multiplicative scheme
seen to encounter problems because the value of the
07450
e

nt
r-
e
s
e-

level mass function approaches or crosses zero, leadin
ill-defined behavior at intermediate momenta. The purely
ditive scheme defined in Ref.@3#, although leading to a dra
matic improvement on the uncorrected data, did not g
reliable results for the mass function abovepa;1. We have
defined a hybrid tree-level correction scheme which co
bines the additive and multiplicative schemes in such a w
that the mass function becomes well-behaved at all mom
tum values. Ambiguities in the correction scheme sho
show up most clearly at intermediate momenta. We find t
the uncertainties due to such ambiguities are of compar
magnitude to the statistical uncertainties.
l

t
f
spite
FIG. 7. Left: The ultraviolet quark massMuv as a function of the bare quark massm̃, for SI with csw5NP and using hybrid tree-leve
correction. The values are obtained by fittingMh(p) to a constant for 2,pa,3. Right: The infrared quark massM ir[M (p50), obtained

by extrapolatingM (p) to pa50, as a function ofm̃. The bursts indicate the chirally extrapolated values ofM ir obtained by a simple straigh
line fit for each action. The solid line represents the fit forcsw5NP, while the dotted line is the fit forcsw5MF. We see that the values o
M ir from SI andSR agree forcsw5NP, giving us further indication of the superiority of nonperturbative to mean-field improvement, de
the large statistical uncertainties in the NP data.
8-8
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NONPERTURBATIVE IMPROVEMENT AND TREE- . . . PHYSICAL REVIEW D 64 074508
We have also studied the effect of using the nonpertur
tive value forcsw. This was seen to improve the data co
siderably, as demonstrated most dramatically by the v
good agreement between the two definitionsSI andSR of the
improved quark propagator. In contrast, reducing the lat
spacing by going fromb56.0 to b56.2 with a mean-field
csw only gave a slight improvement.

Finite volume effects may be estimated by studying
spread of points with momenta in different directions in t
infrared, as was done in Refs.@3,5#. We do not find any
significant anisotropy at low momenta either inZ(p) or in

FIG. 8. The hybrid-corrected mass function fromSI with csw

5NP, with the bare massm̃ extrapolated to zero using a quadra
fit. The small dip atp;1.6 GeV is not statistically significant an
may be due to residual lattice artifacts. The non-zero values
M (p) in the chiral limit are entirely due to dynamical chiral sym
metry breaking and provide a direct measure of this effect.
.

.

G

.

ys

T.

07450
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-
ry

e

e

M (p), so we conclude that finite volume effects here a
small.

We have not here considered the possible effect of Gri
copies. This remains an interesting subject for future stu
which is currently being pursued.

In summary, the key results of this study are that o
should use the most appropriate~nonperturbative! determina-
tions of improvement coefficients wherever possible. Wh
tree-level behavior is severe with zero crossings or near z
crossings the hybrid tree-level correction scheme can be u
in place of the multiplicative one. In the infrared and inte
mediate momentum regimes we appear to have reason
control over lattice artifacts. The chiral behavior resulti
from a simple chiral extrapolation appears reasonable.
believe that the best estimate of the continuumZ(p) function
corresponds to the nonperturbativecsw result for the SR
propagator as shown in Fig. 4. All of the hybrid correct
mass functions with nonperturbativecsw appear reasonabl
and agree with each other. The chiral extrapolation of th
is shown in Fig. 8. We find that the effects of dynamic
chiral symmetry breaking become negligible above a m
mentum scalepx . Our best estimate for this scale ispx

51.4521328
11016(14) GeV.

We emphasize that the real test of these conclusions
be to implement these methods on finer lattice spacings, w
further improved actions, and ideally with actions which r
spect chiral symmetry on the lattice. These subjects are b
pursued.
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