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Topological susceptibility of Yang-Mills center projection vortices
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M. Faber
Atominstitut der O¨ sterreichischen Universita¨ten, Arbeitsgruppe Kernphysik, TU Wien, Austria

~Received 18 April 2001; published 5 September 2001!

The topological susceptibility induced by center projection vortices extracted fromSU(2) lattice Yang-Mills
configurations via the maximal center gauge is measured. Two different smoothing procedures, designed to
eliminate spurious ultraviolet fluctuations of these vortices before evaluating the topological charge, are ex-
plored. They result in consistent estimates of the topological susceptibility carried by the physical thick
vortices characterizing the Yang-Mills vacuum in the vortex picture. This susceptibility is comparable to the
one obtained from the full lattice Yang-Mills configurations. The topological properties of theSU(2) Yang-
Mills vacuum can thus be accounted for in terms of its vortex content.
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I. INTRODUCTION

The center vortex picture of the Yang-Mills vacuum h
recently experienced rapid development. Two advances
ure prominently in particular. On the one hand, methods h
been constructed with which it is possible to extract vortic
from lattice gauge configurations; on the other hand, it
been realized that the vortex picture not only can account
confinement, but also for the topological properties of
Yang-Mills field.

In more detail, center vortices can be extracted from
tice gauge configurations using a combined gauge fixing
projection procedure. The first such procedure was prese
in @1–3#; it involves fixing the gauge up to transformation
from the center of the gauge group, by demanding maxi
zation of a gauge fixing functional,

max
G

(
i

utr Ui
Gu2 ~1!

under gauge transformationsG, where theUi are the link
variables specifying a lattice gauge configuration. This
called the~direct! maximal center gauge. It biases link var
ables towards the center of the gauge group, e.g. in
SU(2) case considered henceforth, towards the elem
61. Physically, the idea is to transform as much physi
information as possible to the center part of the configu
tion, i.e. the part one obtains by subsequently projecting

U→sgn trU. ~2!

This projection step truncates physical information, a
whether one has succeeded in retaining the relevant phy
can usually only be answereda posteriori, by comparing the
results obtained for a particular observable using either
center projected configurations or the full ones. If the res
agree, this is calledcenter dominance.
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The observation of center dominance for large Wils
loops1 @1–3# sparked the recent renewed interest in thecen-
ter vortex pictureof confinement. Once one has defined
Z(2) lattice configuration by the center projection step~2!,
one equivalently obtains an associated center vortex confi
ration in a canonical fashion: One considers all plaquette
the Z(2) lattice, and if the product of the links bounding
plaquette yields the value21, a vortex is defined to pierce
that plaquette. These vortices form closed two-dimensio
world-sheets in four-dimensional~Euclidean! space-time,
and they can be thought of as being composed of plaque
on the dual lattice, i.e. the lattice shifted by half a latti
spacing in all four directions with respect to the original on
Vortices contribute a phase factor21 to the value of any
Wilson loop they are linked to. Center dominance equiv
lently implies vortex dominance.

Depending on the observable under consideration,
original or the dual lattice~vortex! language may be advan
tageous. Note that, while the formulation in terms ofZ(2)
link variables still has a residualZ(2) gauge invariance@the
gauge fixing functional~1! contains no bias with respect t
transformationsGPZ(2)], the vortex world-sheets on the
other hand represent gauge-invariant variables under this
sidual gauge group. One advantage of the vortex langu
lies in the fact that it can be detached from an underly
space-time lattice; one can consider vortex world-surface
continuous space-time. This has proven particularly use
when considering the topological properties of vortex co
figurations, which initially are only defined in a continuu
framework@7–9#. The topological winding number~Pontrya-
gin index! Q of anSU(2) vortex surface configurationScan
be given in terms of its~oriented! self-intersection numbe
@7#

1This observation was subsequently extended to finite temp
tures@4–6#.
©2001 The American Physical Society04-1
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Q52
1

16
emnabE

S
d2sabE

S
d2smn8 d4

„x̄~s!2 x̄~s8!… ~3!

where x̄(s) denotes a parametrization of the tw
dimensional surfaceS in four space-time dimensions, i.e. fo
any two-vectors from a two-dimensional parameter spac
the four-vectorx̄ gives the corresponding point on the vort
surface in space-time. This parametrization furthermore
plies an infinitesimal surface element

d2smn5eab

] x̄m

]sa

] x̄n

]sb
d2s ~4!

on the vortex surface. Note that the continuum surfaces
must be specified not only with a location, but also an o
entation, encoded in the sign of the surface element~4!. In
general, vortex surfaces consist of surface patches of a
nating orientation; indeed, generic center projection vorti
in the confining phase have been shown to be non-orient
@6#, and therefore necessarily contain lines at which the
entation switches, i.e. patch boundaries. These lines ca
associated with Abelian monopole trajectories2 @7#. For Z(2)
lattice vortices, by contrast, the orientation information
initially lost and must be reintroduced before the topologi
charge can be evaluated@10#. Note furthermore that Eq.~3!
includes not only surface self-intersections in the usual se
@for which Eq.~3! is normalized such as to give a contrib
tion of modulus 1/2, as shown in@7,9##, but all singular
points of a surface@10#; these are all points where the set
tangent vectors to the surface spans all four space-time
rections.

The continuum expression~3! for the topological charge
has been implemented for vortex surfaces defined on a~dual!
space-time lattice@10#; the detailed prescription is presente
in Sec. II. Using this construction, a random vortex surfa
ensemble defined such as to reproduce the confinement p
erties ofSU(2) Yang-Mills theory@11# was shown to simul-
taneously predict the correct topological susceptibility@10#
as measured in lattice Yang-Mills experiments. The topolo
cal susceptibilityx5^Q2&/V, whereV is the space-time vol-
ume under consideration, e.g. determines, via the Wit
Veneziano estimate@12#

mh8
2

1mh
222mK

2 52Nfx/ f p
2 ~5!

2This becomes plausible if one invokes continuity of theAbelian
part of the magnetic flux. A change in orientation of a vortex phy
cally corresponds to an inversion of its magnetic flux, and th
implies the presence of a source or a sink of twice the~Abelian!
magnetic flux of a vortex. This is precisely the flux emanating fro
or disappearing into an Abelian magnetic monopole or antimo
pole. Correspondingly, one consistent possibility of defining
changes of orientation on the vortex surfaces lies in identify
them with the Abelian magnetic monopole world-lines detected
the maximal Abelian gauge, cf. also the more detailed commen
the beginning of Sec. II.
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the anomalously high mass of theh8 meson. These develop
ments have given rise to the expectation that the vortex
ture may be the first infrared effective framework capable
providing a consistent explanation of the entire spectrum
nonperturbative effects characterizing the infrared secto
Yang-Mills theory. Originally, the vortex picture was onl
proposed in particular to explain confinement@13#. It re-
ceived early corroboration through the observation tha
constant Yang-Mills chromomagnetic field is unstable w
respect to the formation of flux tube domains in thre
dimensional space@14#. Also in the lattice formulation, dif-
ferent possibilities of defining vortices were explored@15–
17#. Notably, an alternative confinement criterion based
the vortex free energy was established@15# and measure-
ments of this free energy have recently been carried
@18,19#. The new developments highlighted further abo
have significantly enlarged the scope of the vortex pict
beyond this by establishing the link to the topological pro
erties of Yang-Mills theory.

The purpose of the present work is to combine the t
recent advances discussed above: The construction of
topological charge for lattice vortex surfaces@10#, hitherto
only applied to an ensemble of random vortex surfaces@10#,
will be used to measure the topological susceptibility asso
ated with the vortices extracted from lattice Yang-Mills co
figurations via the maximal center gauge.3 These vortex con-
figurations exhibit ultraviolet artifacts which have been not
before in other contexts, cf. the discussion in Sec. III. Th
artifacts strongly influence the measurement of the topolo
cal charge, and it is consequently necessary to exp
smoothing procedures applied to the vortices before the m
surement. In this respect, the center projection framewor
quite similar to full lattice Yang-Mills experiments. While
the prediction for the topological susceptibility arrived at
this work is thus fraught with a measure of systematic u
certainty, the values obtained will be seen to be compara
with the full SU(2) Yang-Mills topological susceptibility.
This result is consistent with an interpretation of the top
logical charge of Yang-Mills configurations being generat
by their vortex content.

Finally, a comment is in order regarding the gauge cho
to extract the vortices. The maximal center gauge to be u
in the following has been the subject of recent debate du
pronounced Gribov copy effects. While most Gribov copi
i.e. local maxima of the gauge fixing functional~1!, appear,
as an ensemble, to generate center dominance for large
son loops, closer numerical scrutiny@21–24# has indicated
that the highest maxima may not. This actually is not entir
surprising in view of the continuum limit of the maxima
center gauge@7#, which always leads to a trivial center pro
jection, with no vortex content. One remedy suggested in@7#
is to consider altered functionals,

s

-
e
g
n
at

3Note that up to now only the complementary experiment h
been performed@20#: An ensemble of Yang-Mills configuration
from which all vortices had been removed was shown to belo
exclusively to the topologically trivial sectorQ50.
4-2



s
nt
or

a
f
e

er
ig

a

a

o
x-

b
fi

rfa
n

ug
n
ec

T
ki
u

ce
do

ce
n
d
e

s
to

nd
a-
y a

his
on-
the
the
ole

um.

of
ally
ing

vor-
m
les

n
at-

re-

a
the

ons
wo
han
ube
ce
of
of

then
ice
rves
the
e the

e, it
ds
a

nts,

ing
e-
ly
. If

. two
site
ach

en
ca
e

ca

ing
beit
ys
the

TOPOLOGICAL SUSCEPTIBILITY OF YANG-MILLS . . . PHYSICAL REVIEW D 64 074504
max
G

(
i

f ~ utr Ui
Gu! ~6!

with monotonously risingf; any such functional implement
the general idea of concentrating physical information o
the center of the gauge group. It is in fact quite straightf
ward to construct functionsf which, in the continuum, avoid
the singularities leading to the absence of vortices in the c
of the gauge fixing functional~1!. Another alternative type o
gauge with which it is possible to identify vortices is th
Laplacian center gauge@25–28#, which is free of Gribov
copies. While it is ultimately desirable to develop bett
defined alternative gauge fixing procedures such as h
lighted above, these procedures are just beginning to
explored.4 For this reason, in this work, the usual maxim
center gauge overrelaxation algorithm@1–3# will be used to
definethe gauge fixing image, in recognition of the fact th
it does not strictly implement condition~1!, cf. also the re-
cent discussion in@30#.

II. TOPOLOGICAL CHARGE OF LATTICE VORTEX
SURFACES

Given vortex surface configurations composed
plaquettes on a~dual! hypercubic lattice, such as e.g. e
tracted via center projection fromSU(2) lattice Yang-Mills
configurations, the Pontryagin index cannot immediately
evaluated. For one, as mentioned above, orientations
have to be assigned to the plaquettes making up the su
configuration. In the case of center projection vortices, o
could use an indirect version of the maximal center ga
@1,2#, in which one first transforms to the maximal Abelia
gauge, extracts the Abelian monopoles via Abelian proj
tion, and subsequently fixes the residual Abelian U~1! gauge
freedom such as to reach the maximal center gauge.
monopoles define the edges of the oriented patches ma
up the vortex surfaces. However, this gauge fixing proced
does not perfectly locate the monopoles on the surfa
there remains a small fraction of monopole links which
not lie on a vortex5 @2#. In anticipation of the fact that the
topological charge varies very little under most~topologi-
cally allowed! deformations of the monopole trajectories~the
reason for this is discussed in detail in Sec. IV!, in this work
a simpler prescription was applied. Namely, vortex surfa
were identified by transforming directly to the maximal ce
ter gauge; then, random initial orientations were assigne
the vortex plaquettes, and sweeps through the lattice w
performed in which plaquettes were reoriented such a
either maximize or minimize the monopole density. The

4For some first results using the Laplacian center gauge, cf.@25–
27,29#; note e.g. the as yet unclear interpretation of the vortex d
sity in the Laplacian center gauge, which does not seem to s
properly with the renormalization group and seems to extrapolat
an infinite continuum value@29#.

5In this respect, the Laplacian center gauge@25–28# is more ad-
vantageous, since it can be constructed such as to explicitly lo
monopoles on vortex surfaces.
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pological susceptibility was evaluated for both cases a
turns out to be equal within the statistical error of the me
surement, even though the monopole density varies b
large factor; numerical values are given in Sec. IV.

The oriented vortex surface configurations defined in t
way contain two types of ambiguities as to their precise c
tinuum interpretation, which must be resolved before
Pontryagin index can be evaluated. One ambiguity lies in
fact that the vortex surfaces generically intersect along wh
lines, as opposed to points, as they do in the continu
Similarly, monopole trajectories on the surfaces~at which the
surface orientation switches! intersect singular points~at
which topological charge is generated! with a finite probabil-
ity; in the continuum, assuming a random distribution
lines and points on a surface, the two sets are generic
disjoint. These ambiguities arise due to the coarse-grain
enforced by the lattice; to resolve them, one defines the
tex configurations on a finer lattice and allows for rando
small deformations of the surfaces and of the monopo
until the ambiguities are resolved@10#. This is reminiscent of
inverse blocking prescriptions in full Yang-Mills theory. I
summary, one arrives at the following algorithm for evalu
ing the Pontryagin index of the lattice vortex surfaces~the
reader interested in further details of the construction is
ferred to@10#!.

~i! Transfer the given lattice surface configuration onto
lattice of 1/3 the lattice spacing and sweep once through
lattice, applying so-called elementary cube transformati
whenever this leads to the removal of links along which t
vortex surface segments intersect, i.e. to which more t
two vortex plaquettes are attached. An elementary c
transformation6 is a particular elementary update of a latti
surface configuration; it is carried out on all six plaquettes
an elementary three-dimensional cube of the lattice. If any
these plaquettes were part of a vortex before the update,
they are removed from the vortex after the update, and v
versa. Note that an elementary cube transformation prese
the closed character of the surfaces. The orientations of
updated plaquettes should be chosen such as to conserv
number of monopole links as much as possible. In practic
is sufficient to carry this procedure out twice, i.e. one en
up with a lattice of 1/9 the original lattice spacing. As
result, the surface configuration only self-intersects at poi
but not anymore along lines.

~ii ! For each lattice siten, make a copy of all attached
plaquettes, and transform the copy as follows. After find
an initial plaquette which is part of a vortex, iteratively r
orient further vortex plaquettes sharing links with previous
considered ones such as to remove all monopole lines
there are two independent surface segments present, i.e
sets of vortex plaquettes which share only the lattice
under consideration, then carry out this procedure for e

-
le
to

te

6Elementary cube transformations are also the basic build
blocks of the smoothing procedure discussed in Sec. III B, al
with a different acceptance criterion; Fig. 2 in Sec. III B displa
particular examples of elementary cube transformations used in
context of smoothing.
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segment independently. The result of this procedure is
all monopole lines are deformed away from the lattice s
being scrutinized. Using the transformed vortex plaquet
one can now obtain the contributionqn to the Pontryagin
index from the siten in question, cf. Eq.~3! and the discus-
sion following. Namely, each pair of mutually orthogon
vortex plaquettes, i.e. with combined tangent vectors sp
ning four dimensions, contributes61/32 to the Pontryagin
index. The sign depends on the relative orientation of the
plaquettes; the magnitude 1/32 can be inferred from the
that an intersection point in the usual sense contains 16
pairs, and carries topological chargeqn561/2, cf. @7,9#.

~iii ! The total Pontryagin index is the sumQ5(nqn .
Applying this procedure to general surface configuratio

on a hypercubic lattice, i.e. a space-time torus, one obtai
Pontryagin index quantized in half-integer units, which
exactly as it should be@31#; this is nontrivial in view of the
fact that the magnitudes of the individual site contributio
qn can be as small as 1/16~for surfaces in a space-tim
continuum, the contribution from any particular singul
point can even be arbitrarily small!.

III. ELIMINATION OF ULTRAVIOLET ARTIFACTS

Using the above algorithm, the Pontryagin index of
arbitrary lattice center projection vortex configuration can
evaluated. However, such thin vortex surfaces exhibit ul
violet artifacts which strongly contaminate the measurem
Specifically, in the vortex picture of Yang-Mills theory, thic
physical vortices are conjectured to characterize the infra
properties of the vacuum. By contrast, the thin vortices
tained by center projection from full Yang-Mills configura
tions only approximate the aforementioned thick vortices
infrared length scales coarser than a scale related to
physical vortex thickness. On the other hand, within the th
profile of the physical vortex it corresponds to, the thin ce
ter projection vortex in general exhibits spurious gau
dependent ultraviolet fluctuations, cf. Fig. 1.

This has been noted before in several contexts. For on
@7# explicit examples were constructed showing that the p
cise location of a center projection vortex on scales finer t
the physical vortex thickness depends on the gauge fix
function f in Eq. ~6!. Similarly, in @3# it was observed tha
this location varies as different Gribov copies of the maxim
center gauge fixed configurations are considered. Moreo
in lattice experiments, the ratio between the string tens
and the center projection vortex density is substantially s
pressed compared to what one would expect from a ran
vortex ensemble@4#; motivated by this, the correlations be
tween intersection points of center projection vortices wit

FIG. 1. Thick vortices~in a three-dimensional slice of spac
time! associated with rough lattice center projection vortices~left!,
and smooth thin vortex cores~right!, respectively.
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given space-time plane were investigated in@32#. On ultra-
violet length scales, up to about 0.4 fm, the binary corre
tion function between these points indeed is strongly
hanced. Also this finding can be understood in terms of
aforementioned short wavelength fluctuations of the cen
projection vortices. Consider a plane which cuts a thick v
tex, such as depicted in Fig. 1, along a~smeared-out! line,
and consider furthermore intersection points of the ass
ated center projection vortex with this plane. Due to t
transverse fluctuations of the projection vortices, one w
find a strongly enhanced probability of detecting such int
section points close to one another~compared with the prob-
ability one would expect from the mean vortex densit!.
Note that this picture also clarifies the origin of the low ra
of the string tension to the center projection vortex dens
mentioned further above; the vortex density relevant for
area law behavior of the Wilson loop is the density of thi
vortices, which would be well represented by smooth th
vortex cores, cf. Fig. 1, as opposed to the rough center
jection vortices. Indeed, the smoothing procedure to be
cussed in Sec. III B has been shown to keep the string
sion approximately fixed while depleting the vortex dens
by eliminating ultraviolet fluctuations@6#; ultimately, one
reaches a ratio compatible with the one expected in a ran
vortex ensemble.

As a consequence of these observations, it is necessa
explore methods to eliminate the spurious ultraviolet fluct
tions of the center projection vortices; only then can o
expect to extract the physical topological content of the c
figurations, without contamination by ultraviolet artifact
Before discussing these methods, it is worth noting that
problems discussed above would be exacerbated by usin
Laplacian center gauge instead of the maximal center ga
In the latter, the center projection vortex density and its
nary correlations measured in@32# scale properly under the
renormalization group, such as to extrapolate to a fin
physical result in the continuum limit, albeit with strong co
relations in the ultraviolet, as discussed above. By contras
has recently been noted that in the Laplacian center ga
the vortex density does not scale to a finite continuum lim
but appears to extrapolate to an infinite continuum den
@29#. In a sense, the Laplacian center gauge may suffer f
its own efficiency. As observed in@27#, vortices extracted via
the Laplacian center gauge at least partly reproduce
short-range Coulomb potential between static charg
whereas this effect is completely truncated when project
from the maximal center gauge. In terms of the underly
degrees of freedom, this presumably means that, in add
to the infrared structure of the theory, Laplacian center ga
fixing attempts to also partially represent ultraviolet pert
bative gluons by vortices. This may be the reason for
unphysical renormalization group behavior observed for
density of Laplacian center gauge vortices@29#.

A. Blocking

A simple way to eliminate ultraviolet fluctuations of th
center projection vortices obtained in the maximal cen
4-4
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gauge is to apply blocking steps such as to transfer the vo
configurations onto new coarser lattices, while always p
serving their chromomagnetic flux content on length sca
larger than the new lattice spacing. Such blocking steps
easily implemented starting on the original lattice, i.e. bef
constructing the vortex surfaces on the corresponding d
lattice.

Consider a new coarse lattice withn times7 the spacing of
an old fine lattice, superimposed on the latter such that
sites of the coarse lattice coincide with sites of the fine
tice. Then each link on the coarse lattice is defined to
equal to the product of the links on the fine lattice whi
make up the path of the coarse lattice link under consid
ation. Note that this implies that the gauge phases assoc
with plaquettes on the coarse lattice are equal to then3n
Wilson loops on the old fine lattice to which these plaquet
correspond; i.e., the chromomagnetic flux is preserved
scales as coarse as or coarser than the new lattice. Note
thermore that the following description of a blocking step
equivalent to the definition given above: If an odd number
vortices pierces then3n Wilson loop on the old fine lattice
then one vortex pierces the corresponding plaquette on
new coarse lattice; if an even number of vortices pierces
n3n Wilson loop on the fine lattice, then no vortex pierc
the corresponding plaquette on the coarse lattice. Note la
that the coarse lattice is again aZ(2) lattice; thus, vortex
surfaces remain closed after blocking by construction.

In practice, the blocking procedure~and also the smooth
ing procedure discussed further below! was applied to the
center projected lattice configurationsbeforedefining the ori-
entations of the vortex surfaces in the manner describe
the beginning of Sec. II. It should also be mentioned t
blocking manifestly preserves the values of all Wilson loo
~as far as they can still be defined on the coarse latti!.
Thus, blocking leaves the string tension induced by a t
vortex ensemble invariant.

In Sec. IV, the behavior of the topological susceptibility
a function of the coarse lattice spacing reached by block
is discussed. Of course, the question arises which scale
fines the separation between spurious ultraviolet fluctuat
to be eliminated, and relevant infrared information on vor
degrees of freedom to be kept. Obviously, this scale is rela
to the thickness of the physical vortices thought to be pres
in the full Yang-Mills configurations; however, the precis
relation isa priori unclear. Certainly, the blocking procedu
should not be carried so far as to deplete the density of th
vortices relevant for the asymptotic string tension. An e
mate of this density, discussed in@33#, leads to the conclu-
sion that the centers of neighboring thick vortices, on
average, are 0.6 fm apart. This therefore constitutes an u
bound on the length scales to be eliminated by the block
procedure. On the other hand, the ultraviolet correlati
measured in@32#, interpreted above to be a consequence
the spurious short wavelength fluctuations of the center p
jection vortex surfaces, extend to distances up to about

7In practice,n52,3 and 4 were used.
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fm. Thus, the authors estimate that the separation scale
the new lattice spacing which should be reached by block
roughly lies between 0.4 fm and 0.6 fm. This is also co
patible with the findings in a random vortex surface mod
@11# adjusted to reproduce the confinement properties
SU(2) Yang-Mills theory; there, two neighboring vortice
can be identified as distinct down to a minimal distance
0.4 fm.

It should be emphasized that the above estimates do
exclude the chromomagnetic flux of the vortices bei
smeared out considerably further; i.e., the flux of neighb
ing thick physical vortices may to a certain extent overl
@33#. The flux of a physical vortex has been argued to exte
transversally over a distance of a little over 1 fm@3,34#, in
order to account e.g. for the Casimir scaling behavior
adjoint representation Wilson loops@35#.

B. Smoothing

Another way to remove the artificial ultraviolet fluctua
tions of the center projection vortices is the smoothing p
cedure first discussed in@6#. It operates using elementar

FIG. 2. Different smoothing steps effected by elementary cu
transformations. They are distinguished by the number of vor
plaquettes removed and created by the operation. Note that
possibilities~c! and ~d! of removing four plaquettes and creatin
two other ones are possible, depending on whether the latter two
opposite~c! or adjacent faces~d! of the elementary cube. The or
dering of the steps~c! and~d! may at first sight seem counterintu
tive, since~d! can be clearly visualized as smoothing the vort
surface, whereas~c! seems more severe and does not constitut
smoothing step in the strict sense; it can change the connectivit
the vortex world-sheets. The reason~c! is nevertheless carried ou
before~d! lies in the fact that including~c! in the smoothing proce-
dure in practice has little effect on the observables measured h
while step~d! is the chief source of changes in the infrared prop
ties of the surface ensemble, cf. Fig. 3. The weak effect of step~c!
is due to the fact that instances where~c! is applied are rather rare
4-5
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FIG. 3. Creutz ratiosc(2,2), c(3,3) andc(4,4) as a function of the inverse couplingb, for different versions of smoothing. Incorporatin
smoothing steps~a! through~c!, cf. Fig. 2, leads to no appreciable change in the Creutz ratios compared with the unsmoothed ensemb
smoothing step~d! has a non-negligible effect on the static quark potential.
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cube transformations of the type already introduced in Se
in connection with the removal of topological ambiguities
the lattice vortex surface configurations. The difference
in the condition for accepting an elementary cube trans
mation. The smoothing procedure is defined by accep
such an elementary update whenever it implies a net
crease in the number of vortex plaquettes, and it can be
ther split up into a progression of steps characterized by
precise way in which the update affects the vortex surface
displayed in Fig. 2. Note also that repeated smooth
sweeps through the lattice are performed, until no furt
elementary cube transformations of the type under consi
ation are possible; thus, smoothing can propagate infor
tion over distances of more than one lattice spacing.

This smoothing procedure depletes the center projec
vortex density while keeping the long-range static quark
tential largely intact, in accordance with the interpretation
the center projection vortices discussed above in connec
with Fig. 1. However, in contrast to the blocking procedu
presented in the previous section, preservation of the st
tension is not an exact property of smoothing. Thus, inv
ance of the static potential can be used as a criterion to
termine how far the smoothing procedure can be applied
fore it begins to truncate relevant physical information ab
the confining thick vortex structures, and should therefore
stopped.

The effect of the different smoothing steps on Creutz
tios is displayed in Fig. 3. The Creutz ratios are clearly u
affected by the smoothing steps~a! through ~c!, whereas a
suppression is seen after step~d!. At first sight, therefore,
steps~a! through ~c! only remove spurious ultraviolet fluc
tuations from the vortex configurations, whereas step~d! be-
gins to truncate relevant information. However, two tren
are visible in Fig. 3 which deserve further comment. For o
the suppression effect becomes weaker as one progress
larger Wilson loops. This is natural; a finite number of loc
smoothing steps, which propagates information over a fi
distance, cannot influence correlations on scales larger
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that distance.8 Thus, strictly speaking, the asymptotic strin
tension is not modified by smoothing. However, already
medium range behavior of the confining static quark pot
tial constitutes relevant nonperturbative information, e
through its influence on hadronic properties. In this sen
smoothing step~d! does truncate important nonperturbati
effects carried by the vortices.

On the other hand, according to Fig. 3, the suppressio
the Creutz ratios by smoothing step~d! also weakens as th
inverse couplingb is increased. This can be understood fro
the fact that smoothing is not defined in a renormalizat
group invariant manner. Elementary smoothing operati
are defined locally on the scale of one lattice spacing; as
increasesb, this spacing decreases. Therefore, some fluc
tions of the vortex surfaces which occur on the scale of o
lattice spacing at lowb ~and are therefore removed b
smoothing! remain unaffected by smoothing at higherb be-
cause they then extend over more than one lattice spac9

The trend visible in Fig. 3 suggests that, atb52.5, one
roughly reaches the point where smoothing step~d! just stops
truncating relevant physical information~and, presumably,
still removes spurious ultraviolet fluctuations!. At higher b,
smoothing step~d! can be expected to even leave some
these ultraviolet fluctuations intact.

As a consequence of the above discussion, the aut
conclude that, atb52.3, the topological susceptibility mea
sured from center projection vortices before applyi
smoothing step~d! constitutes an upper limit on the physic
susceptibility carried by the confining thick physical vortic
characterizing infrared Yang-Mills theory; the measurem
after smoothing step~d! constitutes a lower limit. Atb
52.5, on the other hand, the value measured after smoot

8Note that an analogous argument applies with regard to coo
steps applied to lattice Yang-Mills configurations.

9Renormalization group invariance would presumably be resto
by considering smoothing steps of increasingly nonlocal nature ab
is augmented.
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step~d! should give a rough indication of the aforemention
relevant physical thick vortex susceptibility. It will be see
that these characterizations at differentb are consistent with
each other.

IV. NUMERICAL MEASUREMENTS AND DISCUSSION

Having presented all the elements employed in the an
sis, the complete procedure used to extract the topolog
susceptibility can be summarized as follows.

~i! Generate an ensemble ofSU(2) lattice Yang-Mills
configurations.

~ii ! Transform the configurations to the maximal cen
gauge and perform center projection.

~iii ! Remove ultraviolet fluctuations of the center proje
tion vortex surfaces by either blocking or smoothing, cf. S
III.

~iv! Randomly assign orientations to the dual latti
plaquettes making up the surfaces, with a choice of b
which either maximizes or minimizes the monopole line de
sity, cf. the beginning of Sec. II.

~v! Remove ambiguities in the vortex surfaces, i.e. lin
along which vortices intersect and monopole lines coincid
with singular surface points, cf. Sec. II.

~vi! Evaluate the topological charge carried by the sin
lar points, cf. Sec. II.

Numerical measurements were carried out for the c
pling b52.5 on a 164 lattice, where 1156 samples we
taken, and also forb52.3 both on a 164 lattice (1183
samples! and on a 124 lattice (4622 samples!. Figure 4 de-
picts the results for the topological susceptibilityx of the
different center projection vortex ensembles considered. S
cifically, the fourth root ofx is given in units of the square
root of the string tensions, where the latter was simulta
neously extracted from the center projected lattice ensem
~given center dominance@1–3#, this is equivalent to using
the string tension obtained from the full gauge configu
tions!. Measurements are displayed as a function of
blocking scale~i.e. the spacing of the blocked lattice!, and as
a function of the smoothing steps. The fact that theb52.3
and theb52.5 values in the right-hand panel in Fig. 4 do n
lie on a universal curve~as opposed to the left-hand panel! is
natural, since the smoothing steps defining the horizo
axis are not constructed in a renormalization group invar
manner, cf. the discussion in the previous section.

The vertical error bars in Fig. 4 are compounded from t
sources, namely the statistical uncertainty of the suscept
ity measurement and the statistical uncertainty of the st
tension measurement. The latter uncertainty in addition le
to the horizontal error bars displayed in the left-hand pane
Fig. 4, since the evaluation ofsa2 was also used to deter
mine the lattice spacinga by equatingAs5440 MeV.

It should be noted that, in addition to the purely statisti
error bars displayed, there is a systematical uncertainty
herent in the determination of the topological susceptibi
due to the necessity of applying the vortex surface ambig
removal procedure discussed in Sec. II. This uncertaint
difficult to quantify. Some confidence in the reliability of th
final results for the topological susceptibility can be deriv
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from the fact that the parallel use of two fundamentally d
tinct algorithms at intermediate stages, namely blocking a
smoothing,10 nevertheless leads to consistent estimates of
susceptibility, as will be seen further below.

Before proceeding to interpret Fig. 4, a discussion of
monopole density dependence of the results is in order.
measurements displayed in Fig. 4 were obtained using
maximal monopole density reached via the biased vor
plaquette reorientation procedure described at the begin
of Sec. II. If one conversely minimizes the monopole dens
the values shown in Fig. 4 only change by at most 1%, i.e.
considerably less than the uncertainty of the measurem
Thus, for practical purposes, the topological susceptibility
independent of variations of the monopole density.11 To il-
lustrate the significance of this result, Fig. 5 displays
aforementioned maximal and minimal monopole line den
ties considered for each measured data point in Fig. 4.
comparison, the zero-temperature monopole line den
measured in fullSU(2) Yang-Mills theory in the maximal
Abelian gauge@36# amounts tormag564/fm3.

The phenomenon that the topological susceptibility is
dependent of the monopole density has been observed b
in the random vortex surface model@10#. Also the reasons
for this independence there and here are similar. Most imp

10The differences between the two algorithms in particular ma
fest themselves in the fact that, after blocking, a much lar
amount of vortex surface ambiguity removal is necessary than a
smoothing. Presumably, a coarse lattice, such as the surface
figurations are forced onto by blocking, does not allow the vortic
to avoid one another, thereby inducing a large density of lines
which vortex surfaces intersect. These ambiguities subseque
have to be removed again by correspondingly abundant applica
of elementary cube transformations, as described in Sec. II. In
case of smoothing, much less alteration of the surfaces is neede
this sense, smoothing seems to constitute a better precondition
far as the vortex surface ambiguity removal procedure is concer
This difference between the algorithms becomes more and m
pronounced with progressive blocking/smoothing, and it is to
expected that systematical influences of the vortex surface amb
ity removal on the topological charge affect the blocking results
a much greater degree than the smoothing results, thus dire
manifesting themselves in a difference between these results.
ertheless, the final estimates for the topological susceptibility
tained using the two procedures will be seen to be consistent
one another.

11It should be emphasized that this does not mean that the t
logical chargeexists independent of the presence of monopole
Indeed, oriented vortex configurations, i.e. those with no mo
poles, carry vanishing Pontryagin index@7#. Rather, the non-
orientability of the vortex surfaces implies a certain irreducib
minimal monopole density, and the topological susceptibility
merely independent of changes in the monopole density implied
topologically trivial fluctuations of the monopoles, i.e. deformatio
which are topologically allowed while keeping the monopoles
cated on the vortex surfaces. Correspondingly, the topolog
charge can thus be evaluated withoutexplicit knowledge of the
monopoles. The relevant information is already encoded in the n
orientable character of the vortex surfaces.
4-7
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FIG. 4. Fourth root of the topological susceptibilityx carried by center projection vortices, in units of the square root of the string ten
s. Measurements are shown as a function of the blocking scalea ~left! and of the smoothing steps~right!. Open squares correspond tob
52.3 on a 124 lattice, crosses tob52.3 on a 164 lattice, and filled squares tob52.5 on a 164 lattice. Error bars are discussed in the ma
text.
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tantly, the dominant proportion of the topological charge
carried by so-called writhing points of the vortex surfaces
opposed to intersection points in the usual sense. The for
class of singular points is distinguished from the latter
follows: At intersection points, two distinct surface segme
share one point, but one cannot reach one surface seg
from the other by proceeding along plaquettes which sha
link. Writhing points on the other hand are characterized p
cisely by the opposite; all plaquettes attached to such a p
can be connected by proceeding along plaquettes w
share a link. In this sense, there is only one surface segm
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at a writhing point. As a consequence of this structure,
associated contribution to the Pontryagin index is manife
invariant under changes of the monopole configuration:
circling a writhing point by a monopole loop implies inver
ing the orientations of all plaquettes attached to the po
since they are all connected via links. As a result, all pairs
orthogonal plaquettes retain their relative orientation, and
Pontryagin index is unchanged@10#.

The topological susceptibility therefore must be indepe
dent of the monopole density to the extent that it is dom
nated by the contributions from writhing points. To corrob
re shown,

ey
ta are
. II. Thus,
the upper
index was

; in fact,
ion of the
FIG. 5. Monopole line densityr as a function of the blocking scale~left! and of the smoothing step~right!. For each point on the
horizontal axes, both the maximal and the minimal densities reached by the vortex plaquette reorientation procedure of Sec. II a
where in the right-hand panel, open squares correspond tob52.3 on a 124 lattice, crosses tob52.3 on a 164 lattice, and filled squares to
b52.5 on a 164 lattice. In the left-hand panel, identification of the differentb values and lattices is foregone for the sake of legibility; th
can however be inferred by comparing with Fig. 4~left!, since the ordering of the data in the blocking scale is identical. Instead, the da
represented by vertical bars to indicate the rise in the densities induced by the vortex surface ambiguity removal procedure of Sec
the lower end of each vertical bar gives the monopole density originally defined by the plaquette reorientation procedure, whereas
end of each bar represents the density after the subsequent ambiguity removal; this is therefore the density at which the Pontryagin
ultimately measured. The inset is simply an enlargement of the range@0.3 fm,0.7 fm# in the blocking scale. In the case of smoothing~right!,
the variation of the monopole density through the vortex surface ambiguity removal is always smaller than the symbols displayed
in marked contrast to the case of blocking, this variation becomes negligible with progressive smoothing steps, cf. also the discuss
systematic uncertainty of the topological susceptibility further above.
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FIG. 6. Truncated topological susceptibilityx̄ of center projection vortices obtained by disregarding writhing points and taking
contributions from intersection points into account. For legibility, the fourth root of the susceptibility is displayed, in units of the squa
of the string tensions. Measurements are shown as a function of the blocking scalea ~left! and of the smoothing steps~right!. Open squares
correspond tob52.3 on a 124 lattice, crosses tob52.3 on a 164 lattice, and filled squares tob52.5 on a 164 lattice.
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rate this dominance, Fig. 6 displays the topologi
susceptibilityx̄ obtained by discarding writhing points~in all
other respects, Fig. 6 is completely analogous to Fig.!.
Evidently, the fourth root of this truncated susceptibility
only roughly half as large as the fourth root of the full on
i.e., the contribution of intersection points to the full top
logical susceptibility is suppressed compared with the c
tribution from writhing points by roughly a factor 24.

Note furthermore that Fig. 6 was again obtained using
maximal monopole density reached via the biased vo
plaquette reorientation procedure of Sec. II. If one inste
uses the minimal monopole density, the variation of the
sults in Fig. 6 still is rather weak; it amounts to no more th
5%, which is comparable to the statistical uncertainty of
measurement. This at first sight surprisingly weak dep
dence is presumably due to the high degree of n
orientability of the vortex surfaces. This non-orientability e
forces a certain minimal monopole density which cannot
removed by the aforementioned vortex reorientation pro
dure. Evidently already this minimal density suffices to ra
domize the signs of the intersection point contributions to
Pontryagin index to such an extent that additional rand
changes of the signs, induced by adding monopole loops
the vortex surfaces, do not strongly influence the associ
topological susceptibility.

The fact that the topological susceptibility is virtually in
dependent of the monopole density allows to predict
former without going to the trouble of explicitly determinin
the monopole content of each lattice Yang-Mills configu
tion considered. The remaining task lies in extracting fro
Fig. 4 the physical value of the topological susceptibil
obtained after eliminating spurious ultraviolet fluctuations
the center projection vortex surfaces.

Starting with the left-hand panel in Fig. 4, the discuss
in Sec. III A led to the conclusion that the residual susce
bility x at a blocking scale of 0.4 fm represents an up
limit for the physical susceptibilityxphys, whereas the value
at 0.6 fm constitutes a lower limit. In the extreme cases
mitted by the error bars, this implies
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~174 MeV!4<xphys<~224 MeV!4, ~7!

whereAs5440 MeV was used. Likewise, in the right-han
panel in Fig. 4, theb52.3 data extracted using smoothin
steps~a!–~c! limit the physical susceptibility from above
whereas theb52.3 data obtained using smoothing ste
~a!–~d! limit it from below, cf. the discussion in Sec. III B
Therefore, one has in the extreme cases admitted by the
bars

~166 MeV!4<xphys<~230 MeV!4. ~8!

This is furthermore consistent with the value obtained ab
52.5 using smoothing steps~a!–~d!, namely x1/45(187
63) MeV ~only statistical error quoted!.

In summary, the results for the topological susceptibil
carried by the physical thick vortex content of lattice Yan
Mills configurations, as estimated within the differe
schemes of eliminating spurious ultraviolet fluctuations
the associated thin center projection vortices, are consis
with one another. While this agreement bolsters the co
dence in the results obtained, it should be noted that
systematic uncertainties inherent in all the procedures u
remain under limited control. A worthwhile possibility o
achieving progress on this issue in the future lies in study
the correlation, configuration by configuration, between
topological charge extracted from the center projection v
tices and the one determined from the originalSU(2) lattice
Yang-Mills fields e.g. by cooling methods. Of course, al
the latter methods are afflicted with a measure of uncertai
and the outcome of the aforementioned detailed compar
would indeed be very interesting.

Keeping these caveats in mind, the range for the topolo
cal susceptibility carried by the center projection vortic
obtained here corresponds well with values extracted fr
the full SU(2) lattice Yang-Mills ensemble, cf. e.g.@37# and
references therein. The latter values are located roughl
the center of the range admitted by Eqs.~7! and ~8!. This
suggests that the topological properties of the Yang-M
4-9
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ensemble can be accounted for in terms of the vortex con
of the gauge field configurations, just as is the case for
confining properties. The vortex picture appears suited
provide a unified description of these two different nonp
turbative aspects of Yang-Mills theory.
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