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Topological susceptibility of Yang-Mills center projection vortices
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The topological susceptibility induced by center projection vortices extractedSidR) lattice Yang-Mills
configurations via the maximal center gauge is measured. Two different smoothing procedures, designed to
eliminate spurious ultraviolet fluctuations of these vortices before evaluating the topological charge, are ex-
plored. They result in consistent estimates of the topological susceptibility carried by the physical thick
vortices characterizing the Yang-Mills vacuum in the vortex picture. This susceptibility is comparable to the
one obtained from the full lattice Yang-Mills configurations. The topological properties o5 t(&) Yang-

Mills vacuum can thus be accounted for in terms of its vortex content.
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[. INTRODUCTION The observation of center dominance for large Wilson
loops [1-3] sparked the recent renewed interest in ¢ke-

The center vortex picture of the Yang-Mills vacuum haster vortex pictureof confinement. Once one has defined a
recently experienced rapid development. Two advances figZ(2) lattice configuration by the center projection stép
ure prominently in particular. On the one hand, methods havene equivalently obtains an associated center vortex configu-
been constructed with which it is possible to extract vorticedation in a canonical fashion: One considers all plaquettes of
from lattice gauge configurations; on the other hand, it haghe Z(2) lattice, and if the product of the links bounding a
been realized that the vortex picture not only can account foplaguette yields the value 1, a vortex is defined to pierce
confinement, but also for the topological properties of thethat plaquette. These vortices form closed two-dimensional
Yang-Mills field. world-sheets in four-dimensionalEuclidean space-time,

In more detail, center vortices can be extracted from latand they can be thought of as being composed of plaquettes
tice gauge configurations using a combined gauge fixing an@n the dual lattice, i.e. the lattice shifted by half a lattice
projection procedure. The first such procedure was presentégpacing in all four directions with respect to the original one.
in [1-3]; it involves fixing the gauge up to transformations Vortices contribute a phase facterl to the value of any
from the center of the gauge group, by demanding maximiWilson loop they are linked to. Center dominance equiva-
zation of a gauge fixing functional, lently implies vortex dominance.

Depending on the observable under consideration, the
Gr2 original or the dual latticévortex) language may be advan-
mGaXZ |tr U] (1) tageous. Note that, while the formulation in termsZ¢P)
link variables still has a residudl(2) gauge invariancghe
gauge fixing functional(l) contains no bias with respect to

under gauge transformatiorts, where theU; are the link -
variables specifying a lattice gauge configuration. This istransformatlonsGeZ(Z)], the vortex world-sheets on the

called the(directh maximal center gauge. It biases link vari- Cther hand represent gauge-invariant variables under this re-
ables towards the center of the gauge group, e.g. in th 'du‘?‘l gauge group. One advantage of the vortex Iangu_age
SU(2) case considered henceforth, towards the elemen s n t.he fact. th‘_"lt it can be dgtached from an underlylng
+1. Physically, the idea is to transform as much physicana(’fe't'me lattice; one can .conS|der vortex wolrld-surfaces in
information as possible to the center part of the com‘iguraf:Ontlnuous space-time. This has proven particularly useful

L : C when considering the topological properties of vortex con-
tion, .e. the part one obtains by subsequently projecting figurations, which initially are only defined in a continuum

2 framework[7—9]. The topological winding numbé&Pontrya-
gin index Q of anSU(2) vortex surface configuratidgdcan

This projection step truncates physical information, andP€ given in terms of itforiented self-intersection number

whether one has succeeded in retaining the relevant physi£

can usually only be answeredposteriori by comparing the

results obtained for a particular observable using either the

center projected configurations or the full ones. If the results 1This observation was subsequently extended to finite tempera-
agree, this is calledenter dominance tures[4-6].

U—sgntry.
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1 _ _ the anomalously high mass of thg meson. These develop-
Q=- Eeuvaﬁjsdzaaﬁjsdzo-l;p#(x((T)_X(O-,)) (3 ments have given rise to the expectation that the vortex pic-
ture may be the first infrared effective framework capable of
_ o providing a consistent explanation of the entire spectrum of
where x(o) denotes a parametrization of the two- nonperturbative effects characterizing the infrared sector of
dimensional surfac8&in four space-time dimensions, i.e. for Yang-Mills theory. Originally, the vortex picture was only
any two-vectoro from a two-dimensional parameter SPace. proposed in particular to explain confinemdag]. It re-
the four-vectoix gives the corresponding point on the vortex cejved early corroboration through the observation that a
surface in space-time. This parametrization furthermore imzonstant Yang-Mills chromomagnetic field is unstable with
plies an infinitesimal surface element respect to the formation of flux tube domains in three-
dimensional spacEl4]. Also in the lattice formulation, dif-
ferent possibilities of defining vortices were explorfgd—
17]. Notably, an alternative confinement criterion based on
the vortex free energy was establisheld] and measure-
on the vortex surface. Note that the continuum surfaces thu@ents of this free energy have recently been carried out
must be specified not only with a location, but also an ori-{18,19. The new developments highlighted further above
entation, encoded in the sign of the surface elenténtin have significantly enlarged the scope of the vortex picture
general, vortex surfaces consist of surface patches of altebeyond this by establishing the link to the topological prop-
nating orientation; indeed, generic center projection vorticegrties of Yang-Mills theory.
in the confining phase have been shown to be non-orientable The purpose of the present work is to combine the two
[6], and therefore necessarily contain lines at which the orirecent advances discussed above: The construction of the
entation switches, i.e. patch boundaries. These lines can hgpological charge for lattice vortex surfacgk0], hitherto
associated with Abelian monopole trajectofifg). ForZ(2)  only applied to an ensemble of random vortex surfdae;
lattice vortices, by contrast, the orientation information iSy|| be used to measure the topological susceptibility associ-
initially lost and must be reintroduced before the topologicalaied with the vortices extracted from lattice Yang-Mills con-
charge can be evaluatétio]. Note furthermore that Ed3)  figurations via the maximal center gaujEhese vortex con-
includes not only surface self-intersections in the usual sensgyyrations exhibit ultraviolet artifacts which have been noted
[for which Eq.(3) is normalized such as to give a contribu- pefore in other contexts, cf. the discussion in Sec. IIl. These
tion of modulus 1/2, as shown if7,9]], but all singular  atifacts strongly influence the measurement of the topologi-
points of a surfacgl0]; these are all points where the set of cal charge, and it is consequently necessary to explore
tangent vectors to the surface spans all four space-time dimoothing procedures applied to the vortices before the mea-
rections. _ _ surement. In this respect, the center projection framework is
The continuum expressiof8) for the topologlcal charge quite similar to full lattice Yang-Mills experiments. While
has been implemented for vortex surfaces defined @ua)  the prediction for the topological susceptibility arrived at in
space-time latticg10]; the detailed prescription is presented thjs work is thus fraught with a measure of systematic un-
in Sec. Il. Using this construction, a random vortex surfaceertainty, the values obtained will be seen to be comparable
en_semble defined such_ as to reproduce the conflnement ProRith the full SU(2) Yang-Mills topological susceptibility.
erties ofSU(2) Yang-Mills theory[11] was shown to simul-  Thjs result is consistent with an interpretation of the topo-

taneously predict the correct topological susceptibit9]  |ogical charge of Yang-Mills configurations being generated
as measured in lattice Yang-Mills experiments. The topologityy their vortex content.

X, X,

=€,
B her, do,

dzow d?c (4)

cal susceptibilityy=(Q?)/V, whereV is the space-time vol- ~ Finally, a comment is in order regarding the gauge chosen
ume under consideration, e.g. determines, via the Witteng extract the vortices. The maximal center gauge to be used
Veneziano estimatgl2] in the following has been the subject of recent debate due to
pronounced Gribov copy effects. While most Gribov copies,
mfy,+mfy—2mﬁ=2NfX/ffT (5) i.e. local maxima of the gauge fixing functiond)), appear,

as an ensemble, to generate center dominance for large Wil-
son loops, closer numerical scrutif®1-24 has indicated
. o ) o _ that the highest maxima may not. This actually is not entirely
This becomes plausible if one invokes continuity of eelian gyrprising in view of the continuum limit of the maximal
part of the magnetic flux. A change in orientation of a vortex physi- anter gaugé7], which always leads to a trivial center pro-

cally corresponds to an inversion of its magnetic flux, and thusjection with no vortex content. One remedy suggestd@jn
implies the presence of a source or a sink of twice (#kelian) is to cc,)nsider altered function;';lls

magnetic flux of a vortex. This is precisely the flux emanating from

or disappearing into an Abelian magnetic monopole or antimono-

pole. Correspondingly, one consistent possibility of defining the

changes of orientation on the vortex surfaces lies in identifying *Note that up to now only the complementary experiment has
them with the Abelian magnetic monopole world-lines detected inbeen performed20]: An ensemble of Yang-Mills configurations
the maximal Abelian gauge, cf. also the more detailed comments dtom which all vortices had been removed was shown to belong
the beginning of Sec. Il exclusively to the topologically trivial sect@=0.

074504-2



TOPOLOGICAL SUSCEPTIBILITY OF YANG-MILLS . . . PHYSICAL REVIEW D 64 074504

G pological susceptibility was evaluated for both cases and
maxZ f(|true)) (6)  turns out to be equal within the statistical error of the mea-
G surement, even though the monopole density varies by a

with monotonously rising; any such functional implements Iargifactpr; mémerical Val:fes are %iven i_n Seg. ]EV din thi
the general idea of concentrating physical information onto The orlgnte vortex sur ace con igurations detined In this
the center of the gauge group. It is in fact quite straightfor-\’_vay contain two types of ?‘mb'gu'“es as to their precise con-
ward to construct functionswhich, in the continuum, avoid UnuuUM interpretation, which must be resolved before the
the singularities leading to the absence of vortices in the caggPnt'yagdin index can be evaluated. One ambiguity lies in the
of the gauge fixing functionall). Another alternative type of fgct that the vortex surfacgs generically intersect along. whole
gauge with which it is possible to identify vortices is the I|r)e§, as opposed to points, as they do in the continuum.
Laplacian center gaugf25—28, which is free of Gribov Similarly, monop_ole trajectories on the syrfaqieswhl_ch the
copies. While it is ultimately desirable to develop better-Surface orientation switchpsntersect singular pointsat

defined alternative gauge fixing procedures such as higH’—Vhiqh topologicfal charge is genera}ewith afinitg pr.oba.bil—
lighted above, these procedures are just beginning to bys in the continuum, assuming a random distribution of

explored! For this reason, in this work, the usual maximal lines and points on a surface, the two sets are generically

center gauge overrelaxation algoritfith-3] will be used to disjoint. These ambiguities arise due to the coa_lrse-graining
renforced by the lattice; to resolve them, one defines the vor-

definethe gauge fixing image, in recognition of the fact tha . . . :
it does not strictly implement conditiofl), cf. also the re- tex conflgurathns on a finer lattice and allows for random
cent discussion if30]. small deformatpns of the surfaces apd_ of th.e_ monopoles
until the ambiguities are resolvéd0]. This is reminiscent of
inverse blocking prescriptions in full Yang-Mills theory. In
summary, one arrives at the following algorithm for evaluat-
ing the Pontryagin index of the lattice vortex surfagtse
Given vortex surface configurations composed offeader interested in further details of the construction is re-
plaquettes on ddua) hypercubic lattice, such as e.g. ex- ferred to[10]).
tracted via center projection frol@U(2) lattice Yang-Mills (i) Transfer the given lattice surface configuration onto a
configurations, the Pontryagin index cannot immediately bdattice of 1/3 the lattice spacing and sweep once through the
evaluated. For one, as mentioned above, orientations firédttice, applying so-called elementary cube transformations
have to be assigned to the plaquettes making up the surfatéenever this leads to the removal of links along which two
configuration. In the case of center projection vortices, on&ortex surface segments intersect, i.e. to which more than
could use an indirect version of the maximal center gaugéwo vortex plaquettes are attached. An elementary cube
[1,2], in which one first transforms to the maximal Abelian transformatiofiis a particular elementary update of a lattice
gauge, extracts the Abelian monopoles via Abelian projecsurface configuration; it is carried out on all six plaguettes of
tion, and subsequently fixes the residual Abeligi)auge an elementary three-dimensional cube of the lattice. If any of
freedom such as to reach the maximal center gauge. TH8ese plaquettes were part of a vortex before the update, then
monopoles define the edges of the oriented patches makirifey are removed from the vortex after the update, and vice
up the vortex surfaces. However, this gauge fixing procedur¥ersa. Note that an elementary cube transformation preserves
does not perfectly locate the monopoles on the surfaceshe closed character of the surfaces. The orientations of the
there remains a small fraction of monopole links which doupdated plaquettes should be chosen such as to conserve the
not lie on a vorteX[2]. In anticipation of the fact that the number of monopole links as much as possible. In practice, it
topological charge varies very little under mdsppologi- i sufficient to carry this procedure out twice, i.e. one ends
cally allowed deformations of the monopole trajectorigse ~ up With a lattice of 1/9 the original lattice spacing. As a
reason for this is discussed in detail in Sec),IM this work  result, the surface configuration only self-intersects at points,
a simpler prescription was applied. Namely, vortex surface®ut not anymore along lines.
were identified by transforming directly to the maximal cen- (i) For each lattice site, make a copy of all attached
ter gauge; then, random initial orientations were assigned tplaguettes, and transform the copy as follows. After finding
the vortex plaquettes, and sweeps through the lattice wer@n initial plaguette which is part of a vortex, iteratively re-
performed in which plaquettes were reoriented such as t@rient further vortex plaquettes sharing links with previously
either maximize or minimize the monopole density. The to-considered ones such as to remove all monopole lines. If
there are two independent surface segments present, i.e. two
sets of vortex plaquettes which share only the lattice site
under consideration, then carry out this procedure for each

II. TOPOLOGICAL CHARGE OF LATTICE VORTEX
SURFACES

4For some first results using the Laplacian center gaugé26f
27,29; note e.g. the as yet unclear interpretation of the vortex den-
sity in the Laplacian center gauge, which does not seem to scale
properly with the renormalization group and seems to extrapolate to *Elementary cube transformations are also the basic building
an infinite continuum valug29]. blocks of the smoothing procedure discussed in Sec. Il B, albeit
%In this respect, the Laplacian center gafig6—28 is more ad-  with a different acceptance criterion; Fig. 2 in Sec. Il B displays
vantageous, since it can be constructed such as to explicitly locafearticular examples of elementary cube transformations used in the
monopoles on vortex surfaces. context of smoothing.

074504-3



R. BERTLE, M. ENGELHARDT, AND M. FABER PHYSICAL REVIEW D64 074504

given space-time plane were investigated32]. On ultra-

violet length scales, up to about 0.4 fm, the binary correla-
tion function between these points indeed is strongly en-
hanced. Also this finding can be understood in terms of the

aforementioned short wavelength fluctuations of the center
FIG. 1. Thick vortices(in a three-dimensional slice of space- Projection vortices. Consider a plane which cuts a thick vor-

time) associated with rough lattice center projection vortideft),  tex, such as depicted in Fig. 1, alongsmeared-outline,
and smooth thin vortex cordsight), respectively. and consider furthermore intersection points of the associ-

ated center projection vortex with this plane. Due to the
segment independently. The result of this procedure is thatansverse fluctuations of the projection vortices, one will
all monopole lines are deformed away from the lattice sitefind a strongly enhanced probability of detecting such inter-
being scrutinized. Using the transformed vortex plaguettessection points close to one anottieompared with the prob-
one can now obtain the contributiay, to the Pontryagin  apility one would expect from the mean vortex density
index from the siten in question, cf. Eq(3) and the discus- Note that this picture also clarifies the origin of the low ratio
sion following. Namely, each pair of mutually orthogonal of the string tension to the center projection vortex density
vortex plaquettes, i.e. with combined tangent vectors spanyentioned further above; the vortex density relevant for the

ning four dimensions, contributes 1/32 to the Pontryagin 464 jaw behavior of the Wilson loop is the density of thick
index. The sign depends on the relative orientation of the tWQ/ortices, which would be well represented by smooth thin

plaquettes; the magnitude 1/32 can be inferred from the faq}ortex cores, cf. Fig. 1, as opposed to the rough center pro-

that an intersection point in the usual sense contains 16 Suﬁgction vortices. Indeed, the smoothing procedure to be dis-
. . . + " L
pa'(riisi')a_lphdeCtiigle;é%ﬁ’fIggi'gaillnggir%ﬁ;g i{gl:c;[?'g]' cussed in Sec. Il B has been shown to keep the string ten-
. ; yag dn-  gion approximately fixed while depleting the vortex density
Applying this procedure to general surface configuration eliminating ultraviolet fluctuation$6]; ultimately, one

on a hypercubic lattice, i.e. a space-time torus, one obtains > . : )
Pontryagin index quantized in half-integer units, which iSreaches a ratio compatible with the one expected in a random
' vortex ensemble.

exactly as it should bg31]; this is nontrivial in view of the A fh b i it ¢
fact that the magnitudes of the individual site contributionsex I§r2 (r:r?gti%?jietgceeli?nina?:ihoe :elrj\?c):fsnﬁitlral\/si()r}:fﬁﬁizg- 0
An Can be as small as 1/1@or surfaces in a space-time tioﬁs of the center projection VOI’ECBS' only then can one
continuum, the contribution from any particular singular projec iy y
: I expect to extract the physical topological content of the con-
point can even be arbitrarily small . . X o . :
figurations, without contamination by ultraviolet artifacts.
Before discussing these methods, it is worth noting that the
IIl. ELIMINATION OF ULTRAVIOLET ARTIFACTS problems discussed above would be exacerbated by using the

Using the above algorithm, the Pontryagin index of ankaplacian center gauge instead of the maximal center gauge.

arbitrary lattice center projection vortex configuration can ben the latter, the center projection vortex density and its bi-
evaluated. However, such thin vortex surfaces exhibit ultra@"y correlations measured 82] scale properly under the
violet artifacts which strongly contaminate the measuremen{€normalization group, such as to extrapolate to a finite
Specifically, in the vortex picture of Yang-Mills theory, thick phys_lcal r_esult n the.contlnuur‘.n limit, albeit with strong cor- .
physical vortices are conjectured to characterize the im‘rareEelatlons in the ultraviolet, as d!scussed aboye. By contrast, it
properties of the vacuum. By contrast, the thin vortices ob12S recently been noted that in the Laplacian center gauge,
tained by center projection from full Yang-Mills configura- € vortex density does not scale to a finite continuum limit,
tions only approximate the aforementioned thick vortices ogt appears to e>;]trapolz:|1te_to an Infinite contmuumﬁder}lsny
infrared length scales coarser than a scale related to tHg%)- IN @ sense, the Laplacian center gauge may suffer from

physical vortex thickness. On the other hand, within the thickts own efficiency. As observed [27], vortices extracted via

profile of the physical vortex it corresponds to, the thin cen-N€ Laplacian center gauge at least partly reproduce the

ter projection vortex in general exhibits spurious gaugeShortrange Coulomb potential between static charges,

dependent ultraviolet fluctuations, cf. Fig. 1. whereas this effect is completely truncated when projecting

This has been noted before in several contexts. For one, fiom the r??ximal Cenﬁ?r gauge. Inlterms of tEe underlying
[7] explicit examples were constructed showing that the predegr{egsfo reedom, t 'SpresurTab y me?ng that, in addition
cise location of a center projection vortex on scales finer thafC (e infrared structure of the theory, Laplacian center gauge

the physical vortex thickness depends on the gauge fixin@x'ng attempts to also partially represent ultraviolet pertur-
function f in Eq. (6). Similarly, in [3] it was observed that DPative gluons by vortices. This may be the reason for the

this location varies as different Gribov copies of the maximaltMPhysical renormalization group behavior observed for the

center gauge fixed configurations are considered. Moreovef€nsity of Laplacian center gauge vorti¢es).

in lattice experiments, the ratio between the string tension
and the center projection vortex density is substantially sup-
pressed compared to what one would expect from a random
vortex ensemblé4]; motivated by this, the correlations be- A simple way to eliminate ultraviolet fluctuations of the

tween intersection points of center projection vortices with acenter projection vortices obtained in the maximal center

A. Blocking
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gauge is to apply blocking steps such as to transfer the vortex Ay
configurations onto new coarser lattices, while always pre- y

serving their chromomagnetic flux content on length scales a) 6 plaquettes — 0 plaquettes
larger than the new lattice spacing. Such blocking steps are
easily implemented starting on the original lattice, i.e. before
constructing the vortex surfaces on the corresponding dual
lattice.

!

AP =

Consider a new coarse lattice withtimes' the spacing of b) Splaquettes ~ —s I plaquette
an old fine lattice, superimposed on the latter such that all v
sites of the coarse lattice coincide with sites of the fine lat- il == = T
tice. Then each link on the coarse lattice is defined to be =
equal to the product of the links on the fine lattice which =
make up the path of the coarse lattice link under consider- ¢) 4 plaquettes —» 2 plaquettes

ation. Note that this implies that the gauge phases associated

with plaquettes on the coarse lattice are equal torthken /ﬁ
Wilson loops on the old fine lattice to which these plaquettes
correspond; i.e., the chromomagnetic flux is preserved on

scales as coarse as or coarser than the new lattice. Note fur- ~ d) 4 plaquettes = 2 plaquettes
thermore that the following description of a blocking step is

. . - . FIG. 2. Different smoothing steps effected by elementary cube
equivalent to the definition given above: If an odd number Oftransformations. They are distinguished by the number of vortex

vortices pierces thaxn Wilson loop on the old fine lattice, ,aquettes removed and created by the operation. Note that two
then one vortex pierces the corresponding plaquette on theyssiiities (c) and (d) of removing four plaguettes and creating
new coarse lattice; if an even number of vortices pierces thgyo other ones are possible, depending on whether the latter two are
nXxn Wilson loop on the fine lattice, then no vortex piercesopposite(c) or adjacent face&d) of the elementary cube. The or-
the corresponding plaquette on the coarse lattice. Note lastyering of the step&) and(d) may at first sight seem counterintui-
that the coarse lattice is againZq2) lattice; thus, vortex tive, since(d) can be clearly visualized as smoothing the vortex
surfaces remain closed after blocking by construction. surface, whereag) seems more severe and does not constitute a
In practice, the blocking procedutand also the smooth- smoothing step in the strict sense; it can change the connectivity of
ing procedure discussed further beJowas applied to the the vortex world-sheets. The reas@) is nevertheless carried out
center projected lattice configuratiobsforedefining the ori-  before(d) lies in the fact that includingc) in the smoothing proce-
entations of the vortex surfaces in the manner described #ure in practice has little effect on the observables measured here,
the beginning of Sec. Il. It should also be mentioned thay_vhile step(d) is the chief source of_changes in the infrared proper-
blocking manifestly preserves the values of all Wilson loopsties of the surface ensemble, cf. Fig. 3. The weak effect of &iep
(as far as they can still be defined on the coarse lattice is due to the fact that instances whécgis applied are rather rare.
Thus, blocking leaves the string tension induced by a thin
vortex ensemble invariant. fm. Thus, the authors estimate that the separation scale, i.e.
In Sec. IV, the behavior of the topological susceptibility asthe new lattice spacing which should be reached by blocking,
a function of the coarse lattice spacing reached by blockingoughly lies between 0.4 fm and 0.6 fm. This is also com-
is discussed. Of course, the question arises which scale dgagiple with the findings in a random vortex surface model

fines the separation between spurious ultraviolet fluctuationﬁl] adjusted to reproduce the confinement properties of
to be eliminated, and relevant infrared information on vortex. U(2) Yang-Mills theory: there, two neighboring vortices

degrees'of freedom to be kgpt. Obv.iously, this scale is relate an be identified as distinct down to a minimal distance of
to the thickness of the physical vortices thought to be prese 4 fm

in the full Yang-Mills configurations; however, the precise ' . .
relation isa priori unclear. Certainly, the blocking procedure It should be emphasized t.hat the above estlmates dq not
Exclude the chromomagnetic flux of the vortices being

should not be carried so far as to deplete the density of thic q iderably further- i he f f neiahb
vortices relevant for the asymptotic string tension. An estji-Smeare out considerably further; 1.e., the flux of neighbor-

mate of this density, discussed [i83], leads to the conclu- N9 thick physical vortipes may to a certain extent overlap
sion that the centers of neighboring thick vortices, on thd33l- The flux of a physical vortex has been argued to extend
average, are 0.6 fm apart. This therefore constitutes an uppignsversally over a distance of a little over 1 [8)34], in
bound on the length scales to be eliminated by the blockin@rder to account e.g. for the Casimir scaling behavior of
procedure. On the other hand, the ultraviolet correlation@djoint representation Wilson loop85].

measured i32], interpreted above to be a consequence of
the spurious short wavelength fluctuations of the center pro-

S . B. Smoothin
jection vortex surfaces, extend to distances up to about 0.4 g

Another way to remove the artificial ultraviolet fluctua-

tions of the center projection vortices is the smoothing pro-
"In practice,n=2,3 and 4 were used. cedure first discussed if6]. It operates using elementary
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FIG. 3. Creutz ratiog(2,2), ¢(3,3) andc(4,4) as a function of the inverse coupliggfor different versions of smoothing. Incorporating
smoothing step&) through(c), cf. Fig. 2, leads to no appreciable change in the Creutz ratios compared with the unsmoothed ensemble. Only
smoothing stefgd) has a non-negligible effect on the static quark potential.

cube transformations of the type already introduced in Sec. lihat distancé.Thus, strictly speaking, the asymptotic string
in connection with the removal of topological ambiguities in tension is not modified by smoothing. However, already the
the lattice vortex surface configurations. The difference liegnedium range behavior of the confining static quark poten-
in the condition for accepting an elementary cube transfortial constitutes relevant nonperturbative information, e.g.
mation. The smoothing procedure is defined by acceptinghrough its influence on hadronic properties. In this sense,
such an elementary update whenever it implies a net desmoothing stefd) does truncate important nonperturbative
crease in the number of vortex plaquettes, and it can be fuffécts carried by the vortices. _ _

ther split up into a progression of steps characterized by the On the other hand, according to Fig. 3, the suppression of

precise way in which the update affects the vortex surface, d&'€ Creutz ratios by smoothing ste also weakens as the
nverse coupling3 is increased. This can be understood from

displayed in Fig. 2. Note also that repeated smoothin
Pay g P gihe fact that smoothing is not defined in a renormalization

sweeps through the lattice are performed, until no furthe . ant El ¢ thi i
elementary cube transformations of the type under considef’OUP Invariant manner. iementary Smoothing _opgra lons
are defined locally on the scale of one lattice spacing; as one

ation are possible; thus, smoothing can propagate informa- . .
: . . ) Increaseg, this spacing decreases. Therefore, some fluctua-
tion over distances of more than one lattice spacing.

. . ... tions of the vortex surfaces which occur on the scale of one
This smoothing procedure depletes the center projectio

. ; . ) fhttice spacing at lowgs (and are therefore removed by
vortex density while keeping the long-range static quark POSmoothing remain unaffected by smoothing at high@be-

tential largely intact, in accordance with the interpretation of .o se they then extend over more than one lattice spacing.

the center projection vortices discussed above in connectiofine trend visible in Fig. 3 suggests that, &&2.5, one
with Fig. 1. However, in contrast to the blocking procedure sy ghly reaches the point where smoothing tdust stops
presented in the previous section, preservation of the stringyncating relevant physical informatiofand, presumably,
tension is not an exact property of smoothing. Thus, invaristj|| removes spurious ultraviolet fluctuationgét higher 3,
ance of the static potential can be used as a criterion to d%moothing stefd) can be expected to even leave some of
termine how far the smoothing procedure can be applied bahese ultraviolet fluctuations intact.
fore it begins to truncate relevant physical information about As a consequence of the above discussion, the authors
the confining thick vortex structures, and should therefore beonclude that, ag=2.3, the topological susceptibility mea-
stopped. sured from center projection vortices before applying
The effect of the different smoothing steps on Creutz ra-smoothing stegd) constitutes an upper limit on the physical
tios is displayed in Fig. 3. The Creutz ratios are clearly un-susceptibility carried by the confining thick physical vortices
affected by the smoothing stegs) through (c), whereas a Ccharacterizing infrared Yang-Mills theory; the measurement
suppression is seen after stép). At first sight, therefore, after smoothing stepd) constitutes a lower limit. At3
steps(a) through(c) only remove spurious ultraviolet fluc- =2.5, on the other hand, the value measured after smoothing
tuations from the vortex configurations, whereas $tBbe-
gins to truncate relevant information. However, two trends
are visible in Fig. 3 which deserve further comment. For one, 8\ote that an analogous argument applies with regard to cooling
the suppression effect becomes weaker as one progressess{gps applied to lattice Yang-Mills configurations.
larger Wilson loops. This is natural; a finite number of local °Renormalization group invariance would presumably be restored
smoothing steps, which propagates information over a finitey considering smoothing steps of increasingly nonlocal natuge as
distance, cannot influence correlations on scales larger thag augmented.
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step(d) should give a rough indication of the aforementionedfrom the fact that the parallel use of two fundamentally dis-
relevant physical thick vortex susceptibility. It will be seen tinct algorithms at intermediate stages, namely blocking and
that these characterizations at differghare consistent with smoothing!® nevertheless leads to consistent estimates of the

each other. susceptibility, as will be seen further below.
Before proceeding to interpret Fig. 4, a discussion of the
IV. NUMERICAL MEASUREMENTS AND DISCUSSION monopole density dependence of the results is in order. The

) . measurements displayed in Fig. 4 were obtained using the
Having presented all the elements employed in the analysaximal monopole density reached via the biased vortex

sis, the complete procedure used to extract the topologicq)jaquette reorientation procedure described at the beginning

susceptibility can be summarized as follows. . of Sec. II. If one conversely minimizes the monopole density,
(i) Generate an ensemble &U(2) lattice Yang-Mills  the values shown in Fig. 4 only change by at most 1%, i.e. by

configurations. . . _ considerably less than the uncertainty of the measurement.
(i) Transform the configurations to the maximal centerthys, for practical purposes, the topological susceptibility is

gauge and perform center projection. independent of variations of the monopole den¥ityo il-

(iii) Remove ultraviolet fluctuations of the center projec-|ystrate the significance of this result, Fig. 5 displays the
tion vortex surfaces by either blocking or smoothing, cf. Secaforementioned maximal and minimal monopole line densi-
. . o _ ties considered for each measured data point in Fig. 4. For

(iv) Randomly assign orientations to the dual latticecomparison, the zero-temperature monopole line density
plaquettes making up the surfaces, with a choice of biagneasured in fullSU(2) Yang-Mills theory in the maximal
which either maximizes or minimizes the monopole line den-ppelian gaugeg36] amounts Qo= 64/fme.
sity, cf. the beginning of Sec. II. o The phenomenon that the topological susceptibility is in-

(v) Remove ambiguities in the vortex surfaces, i.e. linesjependent of the monopole density has been observed before
along which vortices intersect and monopole lines coincidingn the random vortex surface modgl0]. Also the reasons

with singular surface points, cf. Sec. Il. for this independence there and here are similar. Most impor-
(vi) Evaluate the topological charge carried by the singu-

lar points, cf. Sec. II.

Numerical measurements were carried out for the cou- 1oy ) ) ) ) i
pling =25 on a 16 lattice, where 1156 samples were he differences between the two algorithms in particular mani-

taken, and also fo3=2.3 both on a 1% lattice (1183 €St thfn}selvtes in ;he faCttha.t’ after blcngking, a muctr] Iargf(ter
samples and on a 12 lattice (4622 samplesFigure 4 de- amount of vortex surface ambiguity removal is necessary than after

icts the results for the topological susceptibiligyof the s_moot_hlng. Presumably, a coarse I_attlce, such as the surface_ con-
p. .. d figurations are forced onto by blocking, does not allow the vortices
different center projection vortex ensembles considered. Sp

o L ) ) % avoid one another, thereby inducing a large density of lines on
cifically, the fourth root ofy is given in units of the square which vortex surfaces intersect. These ambiguities subsequently

root of the string tensiorr, where the latter was simulta- paye to be removed again by correspondingly abundant applications
neously extracted from the center projected lattice ensemblgy elementary cube transformations, as described in Sec. II. In the
(given center dominanckl—3], this is equivalent to using case of smoothing, much less alteration of the surfaces is needed. In
the string tension obtained from the full gauge configurathis sense, smoothing seems to constitute a better preconditioner as
tions). Measurements are displayed as a function of thear as the vortex surface ambiguity removal procedure is concerned.
blocking scald(i.e. the spacing of the blocked lattjc@nd as  This difference between the algorithms becomes more and more
a function of the smoothing steps. The fact that #%©2.3  pronounced with progressive blocking/smoothing, and it is to be
and theB= 2.5 values in the right-hand panel in Fig. 4 do not expected that systematical influences of the vortex surface ambigu-
lie on a universal curvéas opposed to the left-hand panisl ity removal on the topological charge affect the blocking results to
natural, since the smoothing steps defining the horizontad much greater degree than the smoothing results, thus directly
axis are not constructed in a renormalization group invarianfanifesting themselves in a difference between these results. Nev-
manner, cf. the discussion in the previous section. ertheless, the final estimates for the topological susceptibility ob-

The vertical error bars in Fig. 4 are compounded from twot@ined using the two procedures will be seen to be consistent with
sources, namely the statistical uncertainty of the susceptibi®e another. _ _
. et ; : It should be emphasized that this does not mean that the topo-
ity measurement and the statistical uncertainty of the string . -Mpr p
tension measurement. The latter uncertainty in addition lead29'¢@ chargeexistsindependent of the presence of monopoles.
to the horizontal error bars displayed in the left-hand panel ir{ndeed, oriented vortex °°”f'9“f?“°'?5' l.e. those with no mono-
Fig. 4, since the evaluation afa® was also used to deter- POISS: CaITy vanishing Pontryagin inddx]. Rather, the non-

; ' . . . orientability of the vortex surfaces implies a certain irreducible
mine the lattice spacing by equatingy/o=440 MeV.

/ " .. minimal monopole density, and the topological susceptibility is
It should be noted that, in addition to the purely staﬂshcalmere,y independent of changes in the monopole density implied by

error bars displayed, there is a systematical uncertainty ingpologically trivial fluctuations of the monopoles, i.e. deformations
herent in the determination of the topological susceptibilityyhich are topologically allowed while keeping the monopoles lo-
due to the necessity of applying the vortex surface ambiguityated on the vortex surfaces. Correspondingly, the topological
removal procedure discussed in Sec. Il. This uncertainty igharge can thus be evaluated withaxplicit knowledge of the
difficult to quantify. Some confidence in the reliability of the monopoles. The relevant information is already encoded in the non-
final results for the topological susceptibility can be derivedorientable character of the vortex surfaces.
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FIG. 4. Fourth root of the topological susceptibiljpycarried by center projection vortices, in units of the square root of the string tension
o. Measurements are shown as a function of the blocking scékft) and of the smoothing stegeaght). Open squares correspond £o
=2.3 on a 12 lattice, crosses t@=2.3 on a 18 lattice, and filled squares 6=2.5 on a 186 lattice. Error bars are discussed in the main
text.

tantly, the dominant proportion of the topological charge isat a writhing point. As a consequence of this structure, the
carried by so-called writhing points of the vortex surfaces asssociated contribution to the Pontryagin index is manifestly
opposed to intersection points in the usual sense. The forménvariant under changes of the monopole configuration: En-
class of singular points is distinguished from the latter asircling a writhing point by a monopole loop implies invert-
follows: At intersection points, two distinct surface segmentsing the orientations of all plaquettes attached to the point,
share one point, but one cannot reach one surface segmesihce they are all connected via links. As a result, all pairs of
from the other by proceeding along plaquettes which share arthogonal plaquettes retain their relative orientation, and the
link. Writhing points on the other hand are characterized prePontryagin index is unchangédo].

cisely by the opposite; all plaquettes attached to such a point The topological susceptibility therefore must be indepen-
can be connected by proceeding along plaquettes whictient of the monopole density to the extent that it is domi-
share a link. In this sense, there is only one surface segmenated by the contributions from writhing points. To corrobo-
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s 250 | 20 1 207 "
fm I1 -fm
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0 0.1 0.2 0.3 a/fm0'4 0.5 0.6 07 unsmoothed  a a+b arb+c  arb+crd

FIG. 5. Monopole line density as a function of the blocking scaléeft) and of the smoothing steight). For each point on the
horizontal axes, both the maximal and the minimal densities reached by the vortex plaquette reorientation procedure of Sec. Il are shown,
where in the right-hand panel, open squares correspogd=t2.3 on a 12 lattice, crosses t@=2.3 on a 18 lattice, and filled squares to
B=2.5 on a 18 lattice. In the left-hand panel, identification of the differghvalues and lattices is foregone for the sake of legibility; they
can however be inferred by comparing with Figlleft), since the ordering of the data in the blocking scale is identical. Instead, the data are
represented by vertical bars to indicate the rise in the densities induced by the vortex surface ambiguity removal procedure of Sec. Il. Thus,
the lower end of each vertical bar gives the monopole density originally defined by the plaquette reorientation procedure, whereas the upper
end of each bar represents the density after the subsequent ambiguity removal; this is therefore the density at which the Pontryagin index was
ultimately measured. The inset is simply an enlargement of the f@hg8dm,0.7 fn] in the blocking scale. In the case of smoothiright),
the variation of the monopole density through the vortex surface ambiguity removal is always smaller than the symbols displayed; in fact,
in marked contrast to the case of blocking, this variation becomes negligible with progressive smoothing steps, cf. also the discussion of the
systematic uncertainty of the topological susceptibility further above.
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FIG. 6. Truncated topological susceptibiligy of center projection vortices obtained by disregarding writhing points and taking only
contributions from intersection points into account. For legibility, the fourth root of the susceptibility is displayed, in units of the square root
of the string tensiowr. Measurements are shown as a function of the blocking sodédt) and of the smoothing stefisght). Open squares
correspond tg3=2.3 on a 12 lattice, crosses t@=2.3 on a 18 lattice, and filled squares t6=2.5 on a 16 lattice.

rate this do_minance, Fig. 6 displays the topological (174 MeV)4<Xphys$(224 MeV)4, (7
susceptibilityy obtained by discarding writhing point all
other respects, Fig. 6 is completely analogous to Fig. 4 whereJo=440 MeV was used. Likewise, in the right-hand
Evidently, the fourth root of this truncated susceptibility is panel in Fig. 4, the3=2.3 data extracted using smoothing
only roughly half as large as the fourth root of the full one; steps(a)—(c) limit the physical susceptibility from above,
i.e., the contribution of intersection points to the full topo- whereas theB=2.3 data obtained using smoothing steps
logical susceptibility is suppressed compared with the con¢a)—(d) limit it from below, cf. the discussion in Sec. Il B.
tribution from writhing points by roughly a factor’2 Therefore, one has in the extreme cases admitted by the error
Note furthermore that Fig. 6 was again obtained using théars
maximal monopole density reached via the biased vortex
plaquette reorientation procedure of Sec. Il. If one instead (166 Me\/)4$)(physs(230 MeV)*. (8
uses the minimal monopole density, the variation of the re-
sults in Fig. 6 still is rather weak; it amounts to no more thanThis is furthermore consistent with the value obtainegBat
5%, which is comparable to the statistical uncertainty of the=2.5 using smoothing step&)—(d), namely y*=(187
measurement. This at first sight surprisingly weak depen=3) MeV (only statistical error quoted
dence is presumably due to the high degree of non- In summary, the results for the topological susceptibility
orientability of the vortex surfaces. This non-orientability en- carried by the physical thick vortex content of lattice Yang-
forces a certain minimal monopole density which cannot beMills configurations, as estimated within the different
removed by the aforementioned vortex reorientation proceschemes of eliminating spurious ultraviolet fluctuations of
dure. Evidently already this minimal density suffices to ran-the associated thin center projection vortices, are consistent
domize the signs of the intersection point contributions to thewith one another. While this agreement bolsters the confi-
Pontryagin index to such an extent that additional randontlence in the results obtained, it should be noted that the
changes of the signs, induced by adding monopole loops osystematic uncertainties inherent in all the procedures used
the vortex surfaces, do not strongly influence the associate@main under limited control. A worthwhile possibility of
topological susceptibility. achieving progress on this issue in the future lies in studying
The fact that the topological susceptibility is virtually in- the correlation, configuration by configuration, between the
dependent of the monopole density allows to predict thd¢opological charge extracted from the center projection vor-
former without going to the trouble of explicitly determining tices and the one determined from the origiS&J(2) lattice
the monopole content of each lattice Yang-Mills configura-Yang-Mills fields e.g. by cooling methods. Of course, also
tion considered. The remaining task lies in extracting fromthe latter methods are afflicted with a measure of uncertainty,
Fig. 4 the physical value of the topological susceptibility and the outcome of the aforementioned detailed comparison
obtained after eliminating spurious ultraviolet fluctuations ofwould indeed be very interesting.
the center projection vortex surfaces. Keeping these caveats in mind, the range for the topologi-
Starting with the left-hand panel in Fig. 4, the discussioncal susceptibility carried by the center projection vortices
in Sec. Il A led to the conclusion that the residual suscepti-obtained here corresponds well with values extracted from
bility xy at a blocking scale of 0.4 fm represents an uppethe full SU(2) lattice Yang-Mills ensemble, cf. e.(87] and
limit for the physical susceptibility,nys, Whereas the value references therein. The latter values are located roughly at
at 0.6 fm constitutes a lower limit. In the extreme cases adthe center of the range admitted by E@#) and (8). This
mitted by the error bars, this implies suggests that the topological properties of the Yang-Mills
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ensemble can be accounted for in terms of the vortex conteimtg their results in[29] together with A. Schike, prior to

of the gauge field configurations, just as is the case for thgublication of that work. M.E. furthermore acknowledges
confining properties. The vortex picture appears suited t®FG financial support under grant DFG En 415/1-1, includ-
provide a unified description of these two different nonper-ing the funding of a collaborative stay at TU Wien; also the

turbative aspects of Yang-Mills theory.
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