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Matrix elements relevant for DIÄ1Õ2 rule and «8Õ« from lattice QCD with staggered fermions
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We perform a study of matrix elements relevant for theDI 51/2 rule and the directCP violation parameter
«8/« from first principles by computer simulation in lattice QCD. We use staggered~Kogut-Susskind! fermi-
ons, and employ chiral perturbation theory to studyK0→pp decays. Having obtained a reasonable statistical
accuracy, we observe an enhancement of theDI 51/2 amplitude, consistent with experiment within our large
systematic errors. Finite volume and quenching effects have been studied and were found small compared to
noise. The estimates of«8/« are hindered by large uncertainties associated with operator matching. In this
paper we explain the simulation method, present the results and address the systematic uncertainties.
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I. INTRODUCTION

In those areas of particle phenomenology which requ
addressing nonperturbative effects, lattice gauge theory p
an increasingly significant role, being a first-principl
method. The rapid advances in computational performa
as well as algorithmic techniques are allowing us to ap
lattice gauge theory to a wider range of problems than e
before.

In this paper we address the phenomenology ofK0

→pp decays. Our goal is to compute^ppuOi uK0& matrix
elements for all four-fermion operators in the basis of
DS51 effective weak Hamiltonian~introduced in Sec. II A!.

We had several physical quantities in mind when do
our calculations. One is contained in the ‘‘DI 51/2 rule,’’
which is the observation that the transition channel ofK
→pp decays with isospin changing by 1/2 is enhanced
times with respect to transitions with isospin changing
3/2. This is a well-known, long-standing puzzle in kaon ph
nomenology. Strong interactions are essential for explain
this effect within the standard model. Since the energy sc
involved in these decays are rather small, computation
quantum chromodynamics~QCD! have to be done using
nonperturbative method such as lattice QCD. In particu
lattice QCD is used to calculate the hadronic matrix eleme
of the operators appearing in theDS51 effective weak
Hamiltonian. Confirming the agreement of theory and e
periment with regard to this phenomenon would be very
portant.

In addition, we address the related issue of«8, the direct
CP-violation parameter in the neutral kaon system. Ther
now compelling experimental evidence that this paramete
nonzero. The Fermilab KTeV group’s@1# most recent resul
is Re («8/«)5(28.064.1)31024, while the CERN NA48
group @2# reports Re («8/«)5(18.567.3)31024. Results
from a third independent experiment at Frascati are expe
soon. The world average based on both old and new resu
currently (19.363.6)31024, more than 5s above zero. On
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the theoretical side, the progress in estimating«8/« in the
standard model has to rely on nonperturbative technique
computing matrix elements of the appropriate basis opera
@3#, in this case using lattice QCD, and this is another p
pose of our work.

We will introduce the methods employed in this work
detail in appropriate sections. Here we would like to say
few general words about them.

We employ the method of chiral perturbation theory, u
ing it in its lowest order to combine our numerical results f
^p1uOi uK1& and ^0uOi uK0& matrix elements to obtain
^ppuOi uK0&. Compared to the previous attempt@4# to com-
pute them on the lattice with staggered fermions, this w
introduces a number of improvements. The matrix eleme
are computed using ensembles with two different latt
spacings (b56.0 andb56.2 quenched ensembles!. We have
a significant increase in statistics~70 times forb56.0, com-
ing from both an increased number of configurations a
number of noise samples per configuration!. As a result
of this increase the statistical accuracy of our results
both DI 51/2 and DI 53/2 amplitudes, ^ppuO6uK0&,
^ppuO8uK0& and other matrix elements is finally under co
trol. In this work we also consider operator matching, wh
in the previous work this issue was ignored. And finally, w
study quenching effects by considering anNf52 ensemble
at b55.7.

Several other attempts to study the matrix elements
question have been reported from various lattice groups
ing either staggered or Wilson fermions~Refs. @5–9#, re-
views in Refs.@7,10#!, but they fell short of desired accurac
because of technical difficulties and/or insufficient statisti
In addition, several groups@11,6,9# have studied matrix ele
ments^p1p0uOi uK1& with good accuracy. However, thes
matrix elements describe onlyDI 53/2, notDI 51/2 transi-
tion, and so are not enough to study either theDI 51/2 rule
or «8/«.

Most recently, several attempts to compute the matrix
ements in question using domain wall fermions have b
initiated ~Refs. @12–15#!. This is a promising technique
which has certain advantages and disadvantages compar
staggered fermions. On the one hand, domain wall fermi
afford, in principle, the presence of full chiral symmetry
final cutoff without the complications due to an addition

er,
©2001 The American Physical Society02-1
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D. PEKUROVSKY AND G. KILCUP PHYSICAL REVIEW D64 074502
flavor of fermions as in the staggered fermions case.
chiral symmetry, however, requires a price to be paid
terms of added~fifth! dimension of the lattice which signifi
cantly increases the computational load. Therefore in p
tice one uses finalN5 ~or Ls), which translates into residua
chiral symmetry breaking effects and can have a high imp
on calculating certain quantities. In particular, calculation
matrix elements considered in this work is subject to sign
cant complications since they depend on gross cancella
between their components and hence are very sensitiv
chiral symmetry. These problems are discussed in deta
Ref. @15#. Therefore it remains to be shown whether dom
wall fermions indeed offer an advantage in the practical m
ter of computinĝ p1p0uOi uK1& matrix elements.

Our calculations confirm significant enhancement of
DI 51/2 channel, consistent with the experimental va
within the estimated uncertainty. Unfortunately the latter u
certainty is significant. Even though the statistical accur
is very reasonable, there is another significant source of e
in these complicated calculations, namely the uncertain
due to ignoring higher orders in chiral expansion, which a
contain final state interactions. This error is common to a
method using chiral perturbation theory, which includes m
work in this area at present.

Another significant source of uncertainty, which infl
ences mostly«8/«, but notDI 51/2 results, is due to pertur
bative operator matching, or the partially nonperturbative
erator renormalization procedure, which we implement a
temporary step in cases where lattice perturbation the
breaks down. This uncertainty is the main obstacle to get
a reliable estimate of«8/«.

Speaking of the central value, we are seeing the nega
sign of Re(«8/«), whereas the experiment shows it to
positive. Since systematic uncertainties entering our w
are admittedly very large, it is too soon to call the stand
model dead based on this result. However, it is still an in
esting finding, and we are eager to see if other lattice gro
confirm it.

The paper is structured as follows. In Sec. II we show
context of our calculations, define the quantities we are lo
ing after, and discuss a number of theoretical points relev
for the calculation. Section III discusses issues pertaining
lattice simulations. In Sec. IV we present the results a
discuss systematic errors forDI 51/2 rule amplitudes. In
Sec. V we explain how the operator matching problem
gether with other systematic errors preclude a reliable ca
lation of «8/«, and give our best estimates for this quantity
Sec. VI. Section VII contains the conclusion. In the Appe
dices we give details about the quark operators and sou
and provide explicit expressions for all contractions and m
trix elements. We also list our raw lattice results for all co
tractions involved.

II. THEORETICAL FRAMEWORK

A. Framework and definitions

The standard approach in applying theory to topics m
tioned in Sec. I is to use the operator product expansio
the MW scale and the renormalization group equations
07450
e
n

c-

ct
f
-
on
to
in
n
t-

e
e
-
y
or
s

o
y
t

-
a
ry
g

ve

k
d
r-
ps

e
-
nt
to
d

-
u-

-
es,
-

-

-
at
o

translate the effective weak theory to more convenient sc
(m;224 GeV!. At such scales the effective Hamiltonia
for K→pp decays is the following linear superposition@3#:

HW
eff5

GF

A2
Vud Vus* (

i 51

10

@zi~m!1tyi~m!#Oi~m!, ~1!

wherezi andyi are Wilson coefficients~currently known at
two-loop order!, t[2VtdVts* /VudVus* , and Oi are basis of
four-fermion operators defined as follows:

O15„s̄agm~12g5!ub…„ūbgm~12g5!da…, ~2a!

O25„s̄agm~12g5!ua…„ūbgm~12g5!db…, ~2b!

O35„s̄agm~12g5!da…(
q

„q̄bgm~12g5!qb…, ~2c!

O45„s̄agm~12g5!db…(
q

„q̄bgm~12g5!qa…, ~2d!

O55„s̄agm~12g5!da…(
q

„q̄bgm~11g5!qb…, ~2e!

O65„s̄agm~12g5!db…(
q

„q̄bgm~11g5!qa…, ~2f!

O75 3
2 „s̄agm~12g5!da…(

q
eq„q̄bgm~11g5!qb…, ~2g!

O85 3
2 „s̄agm~12g5!db…(

q
eq„q̄bgm~11g5!qa…, ~2h!

O95 3
2 „s̄agm~12g5!da…(

q
eq„q̄bgm~12g5!qb…, ~2i!

O105
3
2 „s̄agm~12g5!db…(

q
eq„q̄bgm~12g5!qa…. ~2j!

Herea andb are color indices,eq is quark electric charge
and summation is done over all light quarks.

Isospin amplitudes are defined as

A0,2e
id0,2[^~pp! I 50,2uHWuK0&, ~3!

whered0,2 are the final state interaction phases of the t
channels. Experimentally

v5ReA0 /ReA2.22. ~4!

The directCP violation parameter«8 is defined in terms
of imaginary parts of these amplitudes:

«852
Im A02v Im A2

A2v ReA0

ei (p/21d22d0). ~5!
2-2
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MATRIX ELEMENTS RELEVANT FOR DI 51/2 RULE AND . . . PHYSICAL REVIEW D 64 074502
Experiments measure the quantity Re«8/«, which is given
by

Re
«8

«
.

GF

2vu«uReA0
Im l t @P02vP2#, ~6!

where

P05(
i

yi ^~pp! I 50uOi
(0)uK0&~12Vh1h8!, ~7!

P25(
i

yi ^~pp! I 52uOi
(2)uK0&, ~8!

with Im l t[Im VtdVts* , and whereVh1h8;0.2560.05 takes
into account the effect of isospin breaking in quark mas
(muÞmd). Oi

(0) and Oi
(2) are isospin 0 and 2 parts of th

basis operators. Their expressions are given in Append
for completeness.

B. Treatment of charm quark

The effective Hamiltonian given above is obtained in t
continuum theory in which the top, bottom, and cha
quarks are integrated out.@In particular, the summation in
Eqs. ~2c!–~2j! is done overu, d, ands quarks.# This makes
sense only when the scalem is sufficiently low compared to
the charm quark mass. As mentioned in Ref.@16#, at scales
comparable tomc higher-dimensional operators can contri
ute considerably. Then one should consider an expande
of operators including those containing the charm quark. L
tice treatment of the charm quark is possible but in prac
quite limited, for example by having to work at much smal
lattice spacings and having a more complicated set of op
tors and contractions. Therefore we have opted to work
the effective theory in which the charm quark is integra
out. Since we typically usem;2 GeV in our simulations,
this falls into a dangerous region. We hope that the effect
higher-dimensional operators can still be neglected,
strictly speaking this issue should be separately investiga

C. Calculating ŠppzOi zK0
‹

As was shown by Maiani and Testa@17#, two-particle
hadronic states are very difficult to construct on the latt
~and in general, in any Euclidean description!. We have to
use an alternative procedure to calculate the matrix elem
appearing in Eqs.~3!, ~7!, and ~8!. We choose the metho
@18# in which lowest-order chiral perturbation theory is us
to relate ^ppuOi uK0& to matrix elements involving one
particle states:

^p1p2uOi uK0&5
mK

2 2mp
2

f
g, ~9!

^p1uOi uK1&5~pp•pK!g2
ms1md

f
d, ~10!

^0uOi uK0&5~ms2md!d, ~11!
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wheref is the lowest-order pseudoscalar decay constant.
masses in the first of these formulas are the physical me
masses, while the quark masses and the momenta in the
ond and third formulas are meant to be from actual simu
tions on the lattice~done with unphysical masses!. These
relationships ignore higher-order terms in the chiral exp
sion, most importantly the final state interactions. Theref
this method suffers from a significant uncertainty. Golterm
and Leung@19# have computed one-loop correction for th
DI 53/2 amplitude in chiral perturbation theory. They fin
this correction can be large, up to 30% or 60%, depending
the values of unknown contact terms and the cutoff.

III. LATTICE TECHNIQUES

A. Mixing with lower-dimensional operators

Equations~9!–~11! handle unphysicals↔d mixing in
^p1uOi uK1& by subtracting the unphysical part proportion
to ^0uOi uK0&. This is equivalent to subtracting the operato

Osub[~md1ms!s̄d1~md2ms!s̄g5d. ~12!

As shown in Refs.@20,21#, these statements are also true
the lattice if one uses staggered fermions. A number of W
identities discussed in these references show that lattice
mulation with staggered fermions retains the essential ch
properties of the continuum theory. In particular,Osub de-
fined in Eq.~12! is the only lower-dimensional operator th
appears in mixing with the basis operators.~Lower-
dimensional operators have to be subtracted nonpertu
tively since they are multiplied by powers ofa21.! We em-
ploy the nonperturbative procedure suggested in Ref.@21#:

^p1p2uOi uK0&5^p1uOi2a iOsubuK1&•
mK

2 2mp
2

~pp•pK! f
,

~13!

wherea i are found from

05^0uOi2a iOsubuK0&. ~14!

This procedure is equivalent to the lattice version of E
~9!–~11! and allows subtraction timeslice by timeslice.

Throughout our simulation we use only degenerate m
sons, i.e.,ms5md5mu . Since only the negative parity pa
of Osub contributes in Eq.~14!, one naively expects infinity
when calculating a i . However, the matrix element
^0uOi uK0& of all basis operators vanish whenms5md due to
invariance of both the Lagrangian and all the operators
question under theCPS symmetry, which is defined as th
CP symmetry combined with interchange ofs andd quarks.
Thus calculation ofa i requires taking the first derivative o
^0uOi uK0& with respect to (md2ms). In order to evaluate the
first derivative numerically, we insert another fermion mat
inversion in turn into all propagators involving the stran
quark. Detailed expressions for all contractions are given
the Appendices.
2-3
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FIG. 1. Five diagram types
needed to be computed:~a!
‘‘eight,’’ ~b! ‘‘eye,’’ ~c! ‘‘annihila-
tion,’’ ~d! ‘‘subtraction,’’ and ~e!
two-point function.
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B. Diagrams to be computed

According to Eqs.~13! and ~14!, we need to compute
three diagrams involving four-fermion operators~shown in
Fig. 1! and a couple of bilinear contractions. The ‘‘eigh
contraction type@Fig. 1~a!# is relatively cheap to compute. I
is the only contraction needed for theDI 53/2 amplitude.
The ‘‘eye’’ and ‘‘annihilation’’ diagrams@Figs. 1~b! and 1~c!#
are much more expensive since they involve calculation
propagators from every point in space-time.

C. Lattice parameters and other details

The parameters of simulation are listed in the Table I.
use periodic boundary conditions in both space and ti
Our main ‘‘reference’’ ensemble is a set of quenched c
figurations atb[6/g256.0 (Q1). In addition, we use an
ensemble with a larger lattice volume (Q2), an ensemble
with b56.2 (Q3) for checking the lattice spacing depe
dence, and an ensemble with two dynamical flavorsm
50.01) generated by the Columbia group, used for check
the impact of quenching. The quenched ensembles were
tained using a 4-to-1 ratio of 3-hit SU~2! overrelaxed and
heatbath algorithms. The configurations were separated
1000 sweeps. The dynamical configurations were obtai
by theR algorithm @22#.

We use the standard staggered fermion action. Ferm
matrices are inverted by the conjugate gradient algorith
07450
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JACKKNIFE is used for statistical analysis.
As explained below, we have extended the lattice fo

times in the time dimension by copying gauge links. This
done in order to get rid of excited states contamination a
wrap-around effects. The largest-volume (Q2) lattices were
extended only two times.

The quenched lattice scale was set as in Ref.@23#, i.e., we
demand perturbative scaling of the form

a~b!5a0S 16p2

11gMS
2 D 51/121

expS 28p2

11gMS
2 D , ~15!

normalizing so that the world data for the mass ofr meson
@24# is well fit by mr(a)5(770 MeV)„11L2a2(b)…. The
lattice spacing for the dynamical ensemble is also set by
r mass@25#.

Some other technicalities are as follows. We work in t
two flavor formalism. We use local wall sources that cre
pseudoscalar mesons at rest. The mesons are degen
(ms5md5mu , mp5mK). We use staggered fermions an
work with gauge-invariant operators, since the gauge sy
metry enables significant reduction of the list of possib
mixing operators. The staggered flavor structure is assig
depending on the contraction type. Our operators are tad
improved. This serves to ‘‘improve’’ the perturbative expa
sion at a later stage when we match the lattice and continu
s

TABLE I. Simulation parameters.

Ensemble Number of Quark masse
name Nf b Size a21 ~GeV! L ~fm! configurations used

Q1 0 6.0 1633(3234) 2.1 1.6 216 0.01–0.05
Q2 0 6.0 3233(6432) 2.1 3.2 26 0.01–0.05
Q3 0 6.2 2433(4834) 2.8 1.7 93 0.005–0.03
D 2 5.7 1633(3234) 2.0 1.6 83 0.01–0.05
2-4
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MATRIX ELEMENTS RELEVANT FOR DI 51/2 RULE AND . . . PHYSICAL REVIEW D 64 074502
operators. For calculating fermion loops we employ the U~1!
pseudofermion stochastic estimator. More details and an
planation of some of these terms can be found in the App
dix A.

D. Setup for calculating matrix elements
of four-fermion operators

Consider the setup for calculation of^p1uOi uK1&. Kaons
are created att050, the operators are inserted at a varia
time t, and the pion sink is located at the timeT ~see Fig. 2!,
whereT is sufficiently large. In principle, a number of stat
with pseudoscalar quantum numbers can be created by
kaon source. Each state’s contribution is proportional
AZe2mutu, so the lightest state~kaon! dominates at large
enought. Analogously, states annihilated by the sink contr
ute proportionally toAZe2muT2tu, which is dominated by the
pion.

In this work kaon and pion have equal mass. In the mid
of the lattice, wheret is far enough from both 0 andT, we
expect to see a plateau, corresponding toZe2mpT^puOuK&.
This plateau is our working region~see Fig. 3!.

As concerns the kaon annihilation matrix eleme

^0uOi uK0&, we only need their ratio tô 0us̄g5duK0&, in
which the factorsAZe2mt cancel. Indeed, we observe
rather steady plateau~Fig. 4!.

E. B ratios

It has become conventional to express the results for
trix elements in terms of so-calledB ratios, which are the
ratios of desired four-fermion matrix elements to their valu
obtained by vacuum saturation approximation~VSA!. For
example, theB ratios of operatorsO2 andO4 are formed by
dividing the full matrix element by the product of axia
current two-point functions~Fig. 5!. We expect the denomi
nator to form a plateau in the middle of the lattice, equal
Ze2mpT ^puAmu0& • ^0uAmuK&, whereAm are the axial vector
currents with appropriate flavor quantum numbers for ka
and pion. The factorZe2mpT cancels, leaving the desirab

FIG. 2. The general setup of the simulation. An ‘‘eight’’ con
traction is shown for convenience. The kaon source is at
timeslice 0, while the pion sink is at the timesliceT. The operator is
inserted at a variable timet. The result of this contraction is pro
portional to the product of two exponentials shown in the figure
07450
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ratio ^puOuK& / (^puAmu0& • ^0uAmuK&). Apart from com-
mon normalization factors, a number of systematic unc
tainties also tend to cancel in this ratio, including the unc
tainty in the lattice spacing, quenching, and in some ca
perturbative correction uncertainty. Therefore, it is som
times reasonable to give lattice answers in terms of thB
ratios.

However, eventually the physical matrix element needs
be reconstructed by using the known experimental par
eters~namely f K) to compute VSA. In some cases, such
for operatorsO52O8, the VSA itself is known very impre-
cisely due to the failure of perturbative matching~see Sec.
V!. Then it is more reasonable to give answers in terms
matrix elements in physical units. We have adopted the st
egy of expressing all matrix elements in units
^puAmu0& ^0uAmuK&5( f K

latt)2mM
2 at an intermediate stage

and using precomputedf K
latt at the given meson mass to co

e FIG. 3. An example of the signal we get for one of theB ratios
~in this case, for the ‘‘eye’’ part of theO2 operator on theQ1

ensemble, using quark mass 0.01!. The wall sources are att51 and
t549. We see that the excited states quickly disappear and a st
well-distinguished plateau is observed. We performJACKKNIFE av-
eraging in the range oft from 12 to 37~shown with the horizontal
lines!.

FIG. 4. An example of the signal for̂ 0uO2uK0& / @(md

2ms) ^0us̄g5duK0&# on the Q1 ensemble with quark mass 0.01
The kaon source is att51. We average over the range oft from 5
to 12 ~shown with horizontal lines!.
2-5
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D. PEKUROVSKY AND G. KILCUP PHYSICAL REVIEW D64 074502
vert to physical units. This method is sensitive to the cho
of the lattice spacing. Our raw results are listed in Tab
II–V.

It is very important to check that the time distance b
tween the kaon and pion sourcesT is large enough so that th
excited states do not contribute. That is, the plateau in
middle of the lattice should be sufficiently flat, and theB
ratios should not depend onT. We have found that in order to
satisfy this requirement the lattice has to be artificially e
tended in time direction by using a number of copies of
gauge links~four in the case of the small volume lattice
two otherwise!. We are usingT572 for the Q3 (b56.2)
ensemble, andT548 for the rest. An example of a platea
that we obtain with this choice ofT is shown in Fig. 3. To
read off the result, we average over the whole extension
the plateau, and useJACKKNIFE to estimate the statistical er
ror in this average.

IV. DIÄ1Õ2 RULE RESULTS

Using the data obtained for matrix elements of basis
erators~raw results are listed in Tables II–V!, in this section
we report numerical results for ReA0 and ReA2 amplitudes
as well as their ratio. We discuss these amplitudes separ
since the statistics for ReA2 are much better and the con
tinuum limit extrapolation is easier.

A. ReA2 results

The expression for ReA2 can be written as

ReA25
GF

A2
VudVus* z1~m!^O2~m!&2 , ~16!

wherez1(m) is a Wilson coefficient~we usem52 GeV! and

^O2&2[^~pp! I 52uO2
(2)uK&. ~17!

Here

FIG. 5. B ratio is formed by dividing the four-fermion matrix
element by the product of two-point functions, typically involvin
Am or P bilinears. All the operators involved are inserted at t
same timeslicet, and the external meson sources are also locate
the same timeslices. This enables cancellation of various com
factors.
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O2
(2)5O1

(2)

5 1
3 @„s̄gm~12g5!u…„ūgm~12g5!d…

1„s̄gm~12g5!d…„ūgm~12g5!u…

2„s̄gm~12g5!d…„d̄gm~12g5!d…#. ~18!

In lowest-order chiral perturbation theory the matrix eleme
^O2&2 can be expressed as

^O2&25A2
mK

2 2mp
2

f

^p1uO2
(2)uK1&

mM
2

. ~19!

So,

ReA25GF VudVus*
mK

2 2mp
2

f
R2 , ~20!

whereR2 is calculated on the lattice and is defined as

R2[z1

^p1uO2
(2)uK1&

mM
2

. ~21!

The latter matrix element involves only ‘‘eight’’ diagrams
and there are no subtractions to be made. Moreover, in
limit of exact SU(3)flavor symmetry it is directly related@26#
to parameterBK @which is theB ratio of the neutral kaon
mixing operatorOK5( s̄gLd) ( s̄gLd)], so that

R25 4
9 z1~m! BK~m! f K

2 . ~22!

The parameterBK is rather well studied~e.g., Refs.
@23,27#!. Quenched chiral perturbation theory@28# predicts
the chiral behavior of the formBK5a1bmK

2 1cmK
2 log mK

2 ,
which fits the data well~see Fig. 6! and yields a finite non-
zero value in the chiral limit.

The ratio R2 shows a large dependence on the mes
mass used in the simulation~Fig. 7!. This is not surprising
since bothBK and f K depend on this mass quite significant
@see Figs. 6 and 8 and Eq.~22!#. Which meson mass shoul
be used to read off theR2 value for estimation of ReA2
becomes an open question. If known, the higher-order ch
terms would remove this ambiguity. Forced to make
choice, we extrapolate toM25(mK

2 1mp
2 )/2. Using our data

for BK in quenched QCD and taking the continuum limit w
obtain ReA25(1.7760.07)31028 GeV, where the error is
only statistical, to be compared with the experimental res
ReA251.2331028 GeV.

Higher-order chiral terms, including the meson mass
pendence, are the largest systematic error in this determ
tion ~see analysis in Sec. IV C!. Other uncertainties~lattice
scale determination, perturbative operator matching, and
nite lattice volume! are much smaller.

at
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MATRIX ELEMENTS RELEVANT FOR DI 51/2 RULE AND . . . PHYSICAL REVIEW D 64 074502
TABLE II. Raw data forK→pp matrix elements: ‘‘eights’’ (E), ‘‘eyes’’ ~I! and ‘‘annihilation’’ ~A! parts of certain matrix elements, a
well as sum total~O! combined byJACKKNIFE for theQ1 ~quenchedb56.0) ensemble. The notation is explained in the Appendices, an
additionLR meansVA2AV. The data are in units of̂puAmu0&•^0uAmuK&. Lattice results for meson decay constantf are also shown~in
units of 1/a) in order to allow translation into physical units.

Quark mass m50.01 m50.02 m50.03 m50.04 m50.05
Nconf 216 216 216 23 23

AAEU 1.49960.018 1.20860.007 1.12960.004 1.07560.007 1.05660.010
AAEF 1.46560.040 0.71860.011 0.52260.005 0.42760.008 0.38860.005
VVEU 20.34160.015 20.10060.003 20.04560.002 20.02560.004 20.01960.003
VVEF 21.70960.039 20.83860.012 20.55960.005 20.39960.010 20.32560.007
SSEU 26.61060.100 21.93360.023 20.89160.009 20.47160.010 20.30760.006
SSEF 26.59260.075 22.04260.017 20.98960.006 20.54760.007 20.36060.004
PPEU 2263.04062.312 2123.69360.735 281.63360.331 260.73560.606 248.99060.424
PPEF 2113.14160.995 252.57860.311 234.49160.139 225.56260.252 220.57260.176
LREU 0.00560.001 0.00660.000 0.00660.000 0.00560.001 0.00560.001
LREF 0.06460.003 0.09760.003 0.10860.002 0.10760.005 0.10860.008
AAIU 0.42160.038 0.29260.016 0.21160.010 0.13060.015 0.10860.012
AAIF 0.86060.062 0.60160.022 0.42260.012 0.29860.020 0.24360.017
VVIU 20.10760.039 20.02960.017 20.03060.010 20.01760.016 20.01060.011
VVIF 26.35660.261 24.90060.121 23.71560.073 22.84060.118 22.33160.160
SSIU 2240.11064.887 2148.60962.487 2108.52261.659 280.90762.847 268.25563.475
SSIF 2101.93962.078 262.53661.046 245.51160.695 233.91061.198 228.56161.456
PPIU 23.27760.088 20.98260.024 20.45660.010 20.25460.016 20.15660.012
PPIF 23.53860.093 21.11360.021 20.55260.011 20.32460.012 20.20760.011
AVA1U 20.11760.021 20.06260.012 20.02560.009 20.01160.026 20.01260.028
AVA1F 25.39060.096 24.78960.043 24.32360.021 23.94660.043 23.64760.036
VAA1U 0.41660.025 0.28760.011 0.22560.008 0.15860.021 0.16360.012
VAA1F 0.89560.029 0.61060.012 0.48960.008 0.42160.021 0.36860.014
AVA2U 0.00160.012 0.00560.005 0.00260.003 20.01260.006 0.01160.005
AVA2F 20.02660.018 0.00260.005 0.00260.003 20.00260.006 0.00460.004
VAA2U 20.00060.012 0.00160.004 20.00160.002 0.00160.005 0.00160.004
VAA2F 0.02060.015 0.00160.005 20.00160.003 20.00060.006 0.00360.004
SPA2U 0.17660.021 0.03360.006 0.00560.003 0.00360.005 0.00360.004
SPA2F 0.08160.017 20.03160.005 20.04060.002 20.03360.005 20.02460.003
PSA2U 285.82760.278 281.79960.116 277.67860.081 273.54060.149 269.67860.113
PSA2F 235.68060.122 234.08160.050 232.38160.034 230.66460.062 229.05860.049
O1

1/2 20.72660.067 20.48060.031 20.41860.018 20.34460.025 20.32060.036

O1
3/2 0.30460.004 0.32960.002 0.34960.001 0.36060.003 0.36760.004

O2
1/2 2.73260.272 1.93160.077 1.52260.034 1.14660.059 1.06060.051

O2
3/2 0.30460.004 0.32960.002 0.34960.001 0.36060.003 0.36760.004

O3
1/2 2.98960.551 2.08260.172 1.43760.092 0.91260.130 0.78160.159

O4
1/2 6.44760.807 4.49360.234 3.37760.112 2.40260.178 2.16160.178

O5
1/2 226.05962.016 216.13360.646 212.33660.346 29.91860.588 27.35360.625

O6
1/2 255.62564.975 235.40261.546 226.97660.849 222.26861.365 216.42661.495

O7
1/2 92.07960.917 41.61160.327 26.70960.163 19.51260.319 15.97760.325

O7
3/2 54.19560.469 25.92260.151 17.33860.069 13.05760.123 10.64460.089

O8
1/2 222.38462.214 100.96760.780 65.23760.394 47.85860.761 39.42460.784

O8
3/2 129.80261.122 61.65860.362 40.91160.164 30.54560.295 24.69860.212

O9
1/2 22.58460.272 21.76160.077 21.34660.034 20.97260.060 20.87060.052

O9
3/2 0.45660.006 0.49460.003 0.52360.002 0.53960.005 0.55060.005

O10
1/2 0.874760.071 0.65060.031 0.59460.019 0.51860.023 0.51060.037

O10
3/2 0.45660.006 0.49460.003 0.52360.002 0.53960.005 0.55060.005

f (627611)31024 (739621)31024 (828611)31024 (928616)31024 (1153624)31024
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D. PEKUROVSKY AND G. KILCUP PHYSICAL REVIEW D64 074502
TABLE III. Raw data forK→pp matrix elements: ‘‘eights’’ (E), ‘‘eyes’’ ( I ), and ‘‘annihilation’’ ~A! parts as well as sum total~O!
combined byJACKKNIFE for the Q2 (b56.0, higher volume! ensemble. The data are in units of^puAmu0&•^0uAmuK&. Lattice results for
meson decay constantf are also shown~in units of 1/a) in order to allow translation into physical units.

Quark mass m50.01 m50.02 m50.03 m50.04 m50.05

Nconf 26 26 26 26 26

AAEU 1.32660.036 1.19360.031 1.10560.003 1.07360.002 1.04260.019

AAEF 0.92760.040 0.60560.019 0.48260.004 0.41660.002 0.38060.007

VVEU 20.14560.010 20.05860.003 20.03460.001 20.02160.001 20.01560.001

VVEF 21.20360.041 20.73560.022 20.52260.005 20.40260.003 20.32260.006

SSEU 26.70060.225 22.02160.057 20.90460.007 20.50060.003 20.30660.006

SSEF 26.67060.206 22.12260.055 20.99060.004 20.57160.002 20.36060.006

PPEU 2262.47867.257 2125.27763.053 280.49660.203 260.81160.146 248.79160.857

PPEF 2112.84163.122 253.24661.301 234.00660.085 225.59560.061 220.48560.360

LREU 0.00160.000 0.00160.000 0.00560.000 0.00660.000 0.00160.000

LREF 0.00860.000 0.01260.000 0.10360.002 0.10660.002 0.01360.000

AAIU 0.47860.034 0.30260.020 0.18360.011 0.14360.005 0.10360.004

AAIF 0.99260.059 0.63860.024 0.39560.010 0.30460.006 0.22260.007

VVIU 20.16860.041 20.05460.020 20.02160.011 20.02860.006 20.01960.005

VVIF 26.69460.209 24.95560.108 23.56160.069 22.81860.056 22.21460.038

SSIU 2243.21663.839 2150.95262.618 2104.28261.475 281.93561.457 265.92060.866

SSIF 2103.12261.644 263.47761.103 243.72060.617 234.29560.611 227.58660.362

PPIU 23.13860.078 21.00460.025 20.46260.011 20.24760.008 20.16360.004

PPIF 23.37360.082 21.14760.030 20.55760.008 20.33060.009 20.21360.003

AVA1U 20.09760.042 20.05360.018 20.03760.011 20.02060.008 20.00460.007

AVA1F 25.29460.102 24.69060.039 24.34860.026 23.97860.017 23.65960.013

VAA1U 0.41860.037 0.27160.013 0.22160.009 0.19860.009 0.15060.005

VAA1F 0.82460.042 0.59760.016 0.46860.010 0.40260.009 0.33660.005

AVA2U 20.03860.021 0.00360.007 20.00260.004 0.00260.003 20.00160.002

AVA2F 20.00660.028 20.01160.010 20.00460.005 0.00560.002 20.00360.002

VAA2U 20.02760.017 0.00660.005 0.00160.003 0.00260.002 20.00160.002

VAA2F 20.01460.020 0.00860.006 20.00260.004 20.00460.002 0.00060.002

SPA2U 0.15460.021 0.03360.007 0.00160.004 20.00660.002 20.00760.001

SPA2F 0.03960.015 20.03660.006 20.04760.003 20.03960.002 20.03260.001

PSA2U 285.67260.221 281.96160.168 277.76560.050 273.71860.039 269.91660.033

PSA2F 235.66060.100 234.15960.071 232.42960.021 230.74760.016 229.16460.013

O1
1/2 20.80060.090 20.50360.043 20.41160.020 20.37860.014 20.37860.014

O1
3/2 0.30260.009 0.33560.009 0.34360.001 0.35560.001 0.35560.001

O2
1/2 2.57660.189 1.87860.079 1.52160.031 1.25860.025 1.25860.025

O2
3/2 0.30260.009 0.33560.009 0.34360.001 0.35560.001 0.35560.001

O3
1/2 2.59160.503 1.90360.187 1.47260.098 1.02160.063 1.02160.063

O4
1/2 5.96760.626 4.28460.241 3.40460.112 2.65760.077 2.65760.077

O5
1/2 224.18263.520 216.19961.122 212.60560.318 29.85360.297 29.85360.297

O6
1/2 252.36468.362 235.35062.815 227.80360.805 221.77360.716 221.77360.716

O7
1/2 93.03461.444 42.29260.777 26.05560.135 19.52660.141 19.52660.141

O7
3/2 53.82161.480 26.18860.640 17.07860.041 13.05960.030 13.05960.030

O8
1/2 224.87463.524 102.84861.887 63.74960.320 48.04860.339 48.04860.339

O8
3/2 128.95463.550 62.29861.519 40.29860.099 30.56460.072 30.56460.072

O9
1/2 22.49660.196 21.70660.082 21.35360.031 21.07860.024 21.07860.024

O9
3/2 0.45360.013 0.50360.013 0.51560.002 0.53360.001 0.53360.001

O10
1/2 0.88060.102 0.67560.043 0.58060.018 0.55860.014 0.55860.014

O10
3/2 0.45360.013 0.50360.013 0.51560.002 0.53360.001 0.53360.001

f (73068)31024 (85165)31024 (96668)31024 (107367)31024 (117667)31024
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MATRIX ELEMENTS RELEVANT FOR DI 51/2 RULE AND . . . PHYSICAL REVIEW D 64 074502
TABLE IV. Raw data forK→pp matrix elements: ‘‘eights’’ (E), ‘‘eyes’’ ( I ), and ‘‘annihilation’’ ~A! parts as well as sum total~O!
combined byJACKKNIFE for the Q3 (b56.2) ensemble. The data are in units of^puAmu0&•^0uAmuK&. Lattice results for meson deca
constantf are also shown~in units of 1/a) in order to allow translation into physical units.

Quark mass m50.005 m50.01 m50.015 m50.02 m50.03

Nconf 93 93 93 93 92

AAEU 1.85860.040 1.43260.019 1.25460.012 1.20960.009 1.12760.006

AAEF 2.51460.131 1.22860.039 0.77160.017 0.66660.011 0.50060.006

VVEU 20.64760.044 20.22760.014 20.09860.007 20.07160.004 20.03260.002

VVEF 22.97060.105 21.58360.041 21.01360.019 20.83860.014 20.57760.008

SSEU 226.44560.740 28.39460.191 23.91360.071 22.28060.038 21.00460.013

SSEF 221.26560.511 27.02260.121 23.43160.046 22.06460.025 20.96860.008

PPEU 2421.68866.876 2190.01062.146 2120.95661.050 289.03360.658 259.24660.279

PPEF 2186.53763.188 283.10460.975 252.19460.478 238.41860.287 225.38060.120

LREU 0.00460.001 0.00860.001 0.01260.001 0.01260.001 0.01360.001

LREF 0.07760.008 0.15560.007 0.20660.011 0.23560.009 0.26560.007

AAIU 0.65160.126 0.64860.055 0.55660.041 0.42160.024 0.30760.011

AAIF 1.31360.172 1.22460.072 1.07360.057 0.90360.042 0.65660.021

VVIU 20.03660.112 20.01160.052 20.10860.035 20.07660.025 20.04260.012

VVIF 211.38761.081 211.23560.432 210.04760.481 28.61260.300 26.75860.172

SSIU 2424.398612.231 2307.68367.808 2258.96169.757 2212.16166.490 2164.61163.885

SSIF 2182.31965.323 2130.99663.329 2109.18164.056 289.85262.717 269.60561.632

PPIU 211.64060.467 23.82160.127 21.95860.086 21.16560.042 20.56260.017

PPIF 29.97460.381 23.50160.102 21.96560.079 21.18860.038 20.62860.014

AVA1U 20.10360.031 20.05460.016 20.03760.015 20.04560.013 20.03660.010

AVA1F 24.48460.249 24.05460.099 23.92460.054 23.81360.032 23.60060.018

VAA1U 0.40760.033 0.23360.017 0.22260.013 0.19460.011 0.16060.008

VAA1F 0.78260.053 0.50860.022 0.43060.013 0.40760.010 0.35260.007

AVA2U 20.02060.012 0.00660.004 0.00360.002 0.00160.002 20.00060.001

AVA2F 20.02160.026 0.00560.006 0.00260.003 0.00060.002 0.00060.001

VAA2U 0.00960.015 20.00560.004 0.00560.002 20.00060.001 20.00060.001

VAA2F 0.04260.019 20.00360.005 20.00460.003 0.00360.002 20.00160.001

SPA2U 0.51660.048 0.13560.014 0.03160.007 20.00760.004 20.02760.002

SPA2F 0.28760.032 0.02660.010 20.04160.005 20.06360.002 20.06560.001

PSA2U 275.09960.315 275.66460.130 274.99260.072 273.90160.046 271.28260.027

PSA2F 231.27060.145 231.80260.073 231.39660.056 231.13360.047 230.04160.045

O1
1/2 21.12960.203 20.56160.081 20.62960.053 20.51760.044 20.40160.023

O1
3/2 0.25260.010 0.28360.003 0.30560.003 0.32260.002 0.33960.002

O2
1/2 3.47761.315 1.94860.439 1.88360.228 1.50260.105 1.22060.051

O2
3/2 0.25260.010 0.28360.003 0.30560.003 0.32260.002 0.33960.002

O3
1/2 3.27962.473 1.92160.860 1.55860.483 1.12160.260 0.89860.120

O4
1/2 7.88563.815 4.42961.293 4.07060.693 3.13960.336 2.51960.157

O5
1/2 232.00064.403 218.58661.769 213.68461.376 211.87160.717 27.52660.420

O6
1/2 268.245611.915 240.62364.435 228.72163.468 226.24661.750 216.55460.965

O7
1/2 146.44862.604 65.60960.959 41.12760.621 29.64260.348 19.99960.200

O7
3/2 83.88861.363 38.87160.437 25.05760.221 18.81760.135 12.78660.059

O8
1/2 350.56365.938 157.28662.201 99.76861.502 71.55360.874 48.56460.479

O8
3/2 200.36463.133 92.21461.001 59.41360.497 44.12860.317 29.66060.137

O9
1/2 23.33361.316 21.80160.440 21.72260.229 21.33560.106 21.05160.051

O9
3/2 0.37860.014 0.42460.005 0.45760.004 0.48360.003 0.50960.002

O10
1/2 1.27360.213 0.70760.082 0.78960.054 0.68360.045 0.57060.023

O10
3/2 0.37860.014 0.42460.005 0.45760.004 0.48360.003 0.50960.002

f (40765)31024 (45164)31024 (49264)31024 (53664)31024 (61164)31024
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D. PEKUROVSKY AND G. KILCUP PHYSICAL REVIEW D64 074502
TABLE V. Raw data forK→pp matrix elements: ‘‘eights’’ (E), ‘‘eyes’’ ( I ), and ‘‘annihilation’’ ~A! parts as well as sum total~O!
combined byJACKKNIFE for theD (Nf52, b55.7) ensemble. The data are in units of^puAmu0&•^0uAmuK&. Lattice results for meson deca
constantf are also shown~in units of 1/a) in order to allow translation into physical units.

Quark mass m50.01 m50.02 m50.03 m50.04 m50.05

Nconf 83 83 32 33 33

AAEU 1.59360.039 1.23360.014 1.13360.013 1.08760.009 1.06260.006

AAEF 1.59560.088 0.73860.016 0.50860.012 0.42560.007 0.38460.004

VVEU 20.37560.031 20.11560.006 20.04960.004 20.02860.002 20.01860.001

VVEF 21.86760.084 20.82060.019 20.51560.015 20.37760.009 20.30060.005

SSEU 25.52060.192 21.43560.032 20.62560.018 20.34660.008 20.21560.005

SSEF 25.93760.151 21.65960.027 20.77560.015 20.44860.007 20.28960.004

PPEU 2289.85265.473 2129.09561.377 285.48561.009 264.04860.570 251.60560.373

PPEF 2125.60562.369 255.36160.590 236.46960.428 227.24560.240 221.91160.157

LREU 0.00260.001 0.00460.000 0.00360.001 0.00260.000 0.00260.000

LREF 0.04060.003 0.05960.003 0.05960.004 0.05660.003 0.05260.002

AAIU 0.48360.082 0.37860.033 0.19360.036 0.12360.017 0.09560.015

AAIF 1.02260.104 0.72360.046 0.43860.041 0.30660.020 0.21660.015

VVIU 0.02360.094 20.07560.040 20.03060.035 20.02660.017 20.02060.014

VVIF 28.73560.742 26.26860.259 24.31460.280 23.13660.162 22.37460.106

SSIU 2294.011611.938 2167.89864.893 2115.82465.170 286.54963.057 268.23062.059

SSIF 2125.82265.060 271.42862.086 249.09462.189 236.66461.293 228.89760.871

PPIU 22.59060.135 20.76160.038 20.29960.029 20.19260.013 20.12060.012

PPIF 23.01560.131 20.96560.045 20.49260.039 20.29460.017 20.18560.012

AVA1U 20.10260.030 20.05560.021 20.04760.027 20.03160.017 20.03660.021

AVA1F 26.46460.156 25.60660.052 24.99960.047 24.52360.031 24.09060.020

VAA1U 0.48860.034 0.30560.020 0.21760.026 0.18960.016 0.15460.014

VAA1F 1.01260.036 0.67260.022 0.57660.025 0.47160.013 0.38260.012

AVA2U 20.01260.016 0.00160.008 20.00160.009 20.00260.006 20.00660.005

AVA2F 20.01460.024 20.00760.008 0.01060.009 0.00460.006 0.00560.006

VAA2U 20.01060.016 0.01160.006 0.00260.007 20.00060.003 0.00260.003

VAA2F 0.01260.020 0.00460.008 0.00460.009 20.00060.004 20.00360.005

SPA2U 20.00960.031 20.05560.007 20.04560.006 20.03560.003 20.02460.002

SPA2F 20.10260.028 20.12360.006 20.09460.006 20.06860.003 20.05060.002

PSA2U 299.62460.485 292.33860.199 285.62860.182 279.89760.121 274.80160.090

PSA2F 242.08060.213 239.03360.087 236.20960.078 233.78360.052 231.63260.038

O1
1/2 20.88660.139 20.48260.068 20.38760.070 20.35960.036 20.30060.028

O1
3/2 0.31560.011 0.34560.004 0.35960.004 0.36960.003 0.37660.002

O2
1/2 4.55860.621 2.30460.139 1.61160.097 1.32760.061 1.13760.042

O2
3/2 0.31560.011 0.34560.004 0.35960.004 0.36960.003 0.37660.002

O3
1/2 6.19361.236 2.80260.318 1.68660.291 1.20560.171 0.99860.126

O4
1/2 11.63661.833 5.58860.419 3.68360.327 2.89160.204 2.43560.144

O5
1/2 246.80063.109 224.18461.182 216.06060.834 211.62560.550 28.89060.433

O6
1/2 299.35667.610 252.04162.682 234.32861.825 225.14461.227 219.40960.956

O7
1/2 94.13161.816 40.84260.582 26.98260.442 20.36960.275 16.60760.192

O7
3/2 60.81861.141 27.52560.290 18.43860.213 13.95660.121 11.35160.079

O8
1/2 224.17964.337 97.84261.388 65.31061.079 49.48460.673 40.47360.474

O8
3/2 143.89762.705 64.60960.686 42.94160.506 32.25260.285 26.03760.186

O9
1/2 24.42560.623 22.12560.141 21.42360.097 21.14260.061 20.94960.043

O9
3/2 0.47360.016 0.51860.005 0.53960.006 0.55460.004 0.56360.003

O10
1/2 1.01960.145 0.66260.070 0.57560.073 0.54560.037 0.48760.029

O10
3/2 0.47360.016 0.51860.005 0.53960.006 0.55460.004 0.56360.003

f (541611)31024 (676610)31024 (80069)31024 (936612)31024 (1035614)31024
074502-10



ti

-
-

the
-

om-

ave
all

-

ba-

e
f t

on
th

d

er

ne

MATRIX ELEMENTS RELEVANT FOR DI 51/2 RULE AND . . . PHYSICAL REVIEW D 64 074502
B. ReA0 results

Using Eqs.~13! and ~14!, ReA0 can be expressed as

ReA05
GF

A2
VudVus*

mK
2 2mp

2

f
R0 , ~23!

where

R0[(
i

zi

^p1uOi
(0)uK1&s

m2
.

Here zi are Wilson coefficients, and the subscript ‘‘s’’ indi-
cates that these matrix elements already include subtrac
of ^p1uOsubuK1&. Oi

(0) are isospin 0 parts of operatorsOi

~given in Appendix B for completeness!. For example,

O1
(0)5 2

3 „s̄gm~12g5!d…„ūgm~12g5!u…

2 1
3 „s̄gm~12g5!u…„ūgm~12g5!d…

1 1
3 „s̄gm~12g5!d…„d̄gm~12g5!d…, ~24!

FIG. 6. ParameterBK in NDR MS scheme at 2 GeV on th
dynamical ensemble vs the meson mass squared. The fit is o
form BK5a1bmK

2 1cmK
2 log mK

2 . The vertical line here and in the
other plots below marks the physical kaon mass.

FIG. 7. Matrix elementR2 computed on the dynamicalD
~squares! and quenchedQ1 ~diamonds! ensembles. ReA2 is propor-
tional to this quantity in the lowest order in chiral perturbati
theory. The horizontal line shows the value corresponding to
experiment.
07450
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O2
(0)5 2

3 „s̄gm~12g5!u…„ūgm~12g5!d…

2 1
3 „s̄gm~12g5!d…„ūgm~12g5!u…1 1

3 „s̄gm~1

2g5!d…„d̄gm~12g5!d…. ~25!

All contraction types are needed~as opposed to the cal
culation of ReA2), including the expensive ‘‘eyes’’ and ‘‘an
nihilations.’’ The results for quenchedb56.0 andb56.2
ensembles are shown in Fig. 9. Dependence ofR0 on the
meson mass is small, so there is no big ambiguity about
mass prescription as in theR2 case. Considerable cutoff de
pendence is present~Fig. 10!.

We have checked the lattice volume dependence by c
paring ensemblesQ1 andQ2 ~1.6 and 3.2 fm atb56.0). The
dependence was found to be small, so we consider~1.6 fm)3

as a volume large enough to contain the system. We h
also checked the effect of quenching and found it to be sm
compared to noise~see Fig. 11!. In addition, there is an op
erator matching uncertainty coming from mixing ofO2 with
O6 operators through penguin diagrams in lattice pertur

he

e

FIG. 8. Pseudoscalar decay constant (Fp593 MeV in con-
tinuum! on the dynamicalD ~squares! and quenchedQ1 ~diamonds!
ensembles vs meson mass squared.

FIG. 9. Matrix elementR0 for quenched ensembles plotte
against the meson mass squared. ReA0 is proportional to this quan-
tity in the lowest order in chiral perturbation theory. The upp
group of points is for ensemblesQ1 andQ2, while the lower group
is for Q3. Only statistical errors are shown. The horizontal li
shows the value corresponding to the experiment.
2-11
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tion theory. This is explained in Sec. V A. We estimate th
this uncertainty does not exceed 20% for all ensembles.

The breakdown of contributions of various basis operat
to ReA0 is shown in Fig. 12. By far,O2 plays the most
important role, whereas penguins have only a small in
ence.

C. DIÄ1Õ2 rule results and errors

Shown in Fig. 13 is the ratio ReA2 /ReA0 as directly
computed on the lattice for quenched and dynamical d
sets. The data exhibit strong dependence on the meson m
primarily due to the chiral behavior of ReA2 ~compare with
Fig. 7!. Taking the meson mass asmK /A2 we obtain

ReA2

ReA0
50.04460.010 ~stat! 60.024 ~syst!. ~26!

The central value is based on the dynamicalb55.7 results.
The predominant source of systematic error in this ratio

higher-order chiral terms. Unfortunately a rigorous study
these terms is impossible at present because they invol
cutoff parameterL which is known only approximately, an
the higher-order momentum expansion~contact terms! pa-
rameters are not known at all. Various combinations of th

FIG. 10. ReA0 for quenched ensembles plotted against latt
spacing squared. A naive extrapolation to the continuum limi
made. The horizontal line corresponds to the experimental resu
27.831028 GeV. Only statistical errors are shown.

FIG. 11. Comparison of quenched (Q1) and dynamical results
for ReA0 at comparable lattice spacings.
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unknowns can lead to vastly different results. So we can o
estimate the order of magnitude of higher-order chiral term
for example by choosing a reasonable value forL and evalu-
ating only chiral logs~setting the contact terms to zero!.

For DI 51/2 amplitude, the final state interactions tend
increase ReA0 by about 30%, according to Ref.@29#. The
one-loop chiral corrections also change the relative weig
of K→p and K→0 matrix elements, and since these tw
contributions have different signs, the total ReA0 amplitude
is extremely sensitive to these corrections. It tends to
crease considerably after the one-loop corrections have b
put in.

For the DI 53/2 amplitude, the effect of neglectin
higher-order chiral terms is present in the large depende
of the amplitude on the meson mass, as well as in the neg
of final state interactions. One-loop chiral terms, if include
would bring the values for ReA2 down by approximately
30% or more~according to estimates in Ref.@19#!.

Using results of Ref.@30# ~accounting only chiral logs!,
we obtain that for the meson mass equal to kaon mass
ratio ReA2 /ReA0 increases~i.e., DI 51/2 rule becomes
weaker! roughly by two times compared to the lowest ord
in chiral expansion.

Additional systematic errors are rather small compared
the chiral approximation error. The lattice cutoff dependen

e
s
of

FIG. 12. Contribution of various operators to ReA0.

FIG. 13. ReA2 /ReA0 vs the meson mass squared for quench
and dynamical ensembles. EnsemblesQ1 and D have comparable
lattice spacings. Solid lines correspond to fits made throughQ1 and
D data. The horizontal dashed line shows the experimental valu
1/22. The error bars show only the statistical errors obtained
JACKKNIFE.
2-12
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FIG. 14. Example of four kinds of diagram
with an arbitrary number of loops arising i
renormalization of four-fermion operators: in~a!
and~b! no propagator crosses the box or the ax
~c! and ~d! exemplify the rest of the diagrams
The rectangle drawn in dotted line in~b! corre-
sponds to operator structurePPEU .
a
an

ou
rm

t

le
a

tio

n

re

r

or

um
iate

on

c-
y

ion
ft-

-
for
does not appear significant for this ratio, as opposed to e
individual amplitude. Finite volume effects are smaller th
noise. The error due to operator matching is estimated to
about 20%~see previous subsection and Sec. V A!.

Keeping in mind the above systematic uncertainties,
results are broadly consistent with experiment. They confi
the understanding that most of theDI 51/2 enhancemen
comes from the ‘‘eye’’ and ‘‘annihilation’’ diagrams.

V. OPERATOR MATCHING

As mentioned before, we have computed the matrix e
ments of all relevant operators with reasonable statistical
curacy. These are regulated in the lattice renormaliza
scheme. To get physical results, operators need to
matched to the same scheme in which the Wilson coefficie
were computed in the continuum, namelyMS NDR. While
perturbative matching works quite well for ReA0 and ReA2,
it seems to break down severely for matching operators
evant for«8/«.

A. Perturbative matching and ReA0

Conventionally, lattice and continuum operators a
matched using lattice perturbation theory:

Oi
cont~q* !5Oi

lat1
g2~q* a!

16p2 (
j

„g i j ln~q* a!1Ci j …Oj
lat

1O~g4!1O~an!, ~27!

whereg i j is the one-loop anomalous dimension matrix~the
same in the continuum and on the lattice!, andCi j are finite
coefficients calculated in one-loop lattice perturbation the
@31,32#. We use the ‘‘horizontal matching’’ procedure@33#,
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whereby the same coupling constant as in the continu
(gMS) is used. The operators are matched at an intermed
scaleq* and evolved using the continuum renormalizati
group equations to the reference scalem, which we take to
be 2 GeV.

In calculation of ReA0 and ReA2, the main contributions
come from left-left operators. One-loop renormalization fa
tors for such~gauge-invariant! operators were computed b
Ishizuka and Shizawa@31# ~for current-current diagrams! and
by Patel and Sharpe@32# ~for penguin diagrams!. These fac-
tors are fairly small, so at the first glance the perturbat
theory seems to work well, in contrast with the case of le
right operators essential for estimating«8/«, as described
below. However, even in the case of ReA0 there is a certain
ambiguity due to mixing ofO2 with O6 through penguin
diagrams. The matrix element ofO6 is rather large, so it

FIG. 15. Three contributions tôp1uO6uK1&: ‘‘eight’’ ~boxes!,
‘‘eye’’ ~diamonds!, and ‘‘subtraction’’~crosses!. These data repre
sent bare operators for the dynamical ensemble. The fit is done
the sum total of all contributions.
2-13
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TABLE VI. ^p1p2uO6uK0& for the Q1 ensemble in units of (GeV)3 with tree-level matching~bare!; with one-loop perturbative
matching using two values ofq* ; and with matching obtained by the partially nonperturbative procedure. The errors are statistical,
for the last line, where the first error is statistical, the second one comes from uncertainty in our determination ofZS andZP , and the third
one is an estimate of higher-order diagrams. As mentioned in the text, there is an unknown uncertainty in the partially nonper
procedure.

Quark
mass

0.01 0.02 0.03 0.04 0.05

Bare 22.9560.27 22.6160.11 22.5060.08 22.6060.16 22.9460.27
q* 5p/a 20.6960.10 20.6660.04 20.6660.03 20.7360.06 20.8360.09
q* 51/a 0.0160.07 20.0760.03 20.1160.02 20.1960.04 20.2060.03
Partially
nonpert.

2.0360.0760.4260.62 0.7460.0360.3760.02 0.4460.0260.3160.03 0.2360.0360.2860.02 0.2560.0560.3660.02
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heavily influenceŝ O2& in spite of the small mixing coeffi-
cient. The operatorO6 receives enormous renormalizatio
corrections in the first order, as discussed below. Theref
there is an ambiguity as to whether the mixing should
evaluated with renormalized or bareO6. That is, the higher-
order diagrams@such as Figs. 14~b! and 14~d!# may be quite
important here.

In order to estimate the uncertainty of neglecting high
order diagrams, we evaluate the mixing withO6 renormal-
ized by the partially nonperturbative procedure described
low, and compare it with results obtained by evaluati
mixing with bareO6. The first method amounts to resumm
tion of those higher-order diagrams belonging only to ty
~b! in Fig. 14, while the second method ignores all high
than-one-order corrections. Results quoted in the prev
section were obtained by the first method, which is also cl
to using tree-level nondiagonal matching. The seco
method would produce values of ReA0 lower by about 20%.
Thus we consider 20% a reasonable estimate of the matc
uncertainty.

In calculating«8/« the operator matching issue become
much more serious obstacle as explained below.

B. Problems with perturbative matching

The value of«8/« depends on a number of subtle canc
lations between matrix elements. In particular, in the exist
literatureO6 and O8 have been so far considered the mo
important operators whose contributions have opposite s
and almost cancel. Furthermore, the matrix elements of i
vidual operators contain three main components~‘‘eights,’’
‘‘eyes,’’ and ‘‘subtractions’’!, which again conspire to almos
cancel each other out~see Fig. 15!. Thus«8/« is extremely
sensitive to each of these components, and in particula
their matching.

Consider fermion contractions with operators such as

~PP!EU5~ s̄g5^ j5u!~ ūg5^ j5d!, ~28a!

~SS! IU5~ s̄1^ 1d!~ d̄1^ 1d!, ~28b!

~PS!A2U5~ s̄g5^ j5d!~ d̄1^ 1d!, ~28c!
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which are main parts of, correspondingly, ‘‘eight,’’ ‘‘eye,
and ‘‘subtraction’’ components ofO6 andO8 ~see Appendix
B!. The finite renormalization coefficients for these operat
have been computed in Ref.@32#. The diagonal coefficients
are very large, so the corresponding one-loop corrections
in the neighborhood of2100% and strongly depend o
which q* is used ~refer to Table VI!. Thus perturbation
theory fails in reliably matching the operators in Eqs.~28!.

The finite coefficients for other~subdominant! operators,
for example (PP)EF , (SS)EU , and (SS)EF , are not known
for formulation with gauge-invariant operators.1 For illustra-
tion purposes, in Table VI we have used coefficients
gauge noninvariant operators computed in Ref.@32#, but
strictly speaking this is not justified.

To summarize, perturbative matching does not work a
some of the coefficients are even poorly known. A soluti
would be to use a nonperturbative matching procedure, s
as described in Ref.@34#. We have not completed this proce
dure. Nevertheless, can we say anything about«8/« at this
moment?

C. Partially nonperturbative matching

As a temporary solution, we have adopted a partially n
perturbative operator matching procedure, which makes
of bilinear renormalization coefficientsZP andZS . We com-
pute the latter@35# following the nonperturbative metho
suggested by Martinelliet al. @36#. Namely we study the
inverse of the ensemble-averaged quark propagator at l
off-shell momenta in a fixed~Landau! gauge. An estimate o
the renormalization of four-fermion operators can be o
tained as follows.

Consider renormalization of the pseudoscal
pseudoscalar operator in Eq.~28a!. At the one-loop level, the
diagonal renormalization coefficientCPP ~involving dia-
grams shown in Fig. 16! is almost equal to twice the pseu

1Patel and Sharpe@32# have computed corrections for gaug
noninvariant operators. Operators in Eqs.~28! have zero distances
so the corrections are the same for gauge-invariant and the no
variant operators. Renormalization of other operators~those having
nonzero distances! generally differs from the gauge-noninvaria
operators.
2-14
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MATRIX ELEMENTS RELEVANT FOR DI 51/2 RULE AND . . . PHYSICAL REVIEW D 64 074502
doscalar bilinear correctionCP . This suggests that, at least
one-loop level, the renormalization of (PP)EU comes mostly
from diagrams in which no gluon propagator crosses the
tical axis of the diagram@for example, diagram~a! in Fig.
16#, and very little from the rest of the diagrams@such as
diagram~b! in Fig. 16#. In other words, the renormalizatio
of (PP)EU would be identical to the renormalization of pro
uct of two pseudoscalar bilinears, were it not for the d
grams of type~b!, which give a subdominant contribution
Mathematically,

~PP!EU
cont5~PP!EU

latt ZPP1•••,

with

ZPP5ZP
2 S 11

g2

16p2
CPP̃1O~g4!D , ~29!

ZP511
g2

16p2
CP1O~g4!, ~30!

and dots indicate mixing with other operators~nondiagonal
part!. The factorCPP̃[CPP22CP contains diagrams of type
~b! in Fig. 16 and is quite small.

In order to proceed, it may be reasonable toassumethat
the same holds at all orders in perturbation theory; nam
the diagrams of type~c! in Fig. 14 give subdominant contri
bution compared to type~a! of the same figure. This assump
tion should be verified separately by performing nonpert
bative renormalization procedure for four-fermion operato
If this ansatz is true, we can substitute the nonperturba
value of ZP into Eq. ~29! instead of using the perturbativ
expression from Eq.~30!. Thus a partially nonperturbativ

FIG. 16. Example of one-loop diagrams arising in renormali
tion of four-fermion operators: in type~a! no propagator crosses th
axis, and type~b! includes the rest of the diagrams.
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estimate of (PP)U
cont is obtained. This procedure is quit

similar to the tadpole improvement idea: the bulk of diago
renormalization is calculated nonperturbatively, while t
rest is reliably computed in perturbation theory. Analogou
we obtain diagonal renormalization of operators (SS) IU and
(PS)A2U by using

ZSS5ZS
2S 11

g2

16p2
CSS̃1O~g4!D

and

ZPS5ZSZPS 11
g2

16p2
CPS̃1O~g4!D .

~Note thatZPÞZS , even though they are equal in perturb
tion theory.! We match operators at the scaleq* 51/a and
use the continuum two-loop anomalous dimension to evo
to m52 GeV.

Unfortunately, the above procedure does not comple
solve the problem of operator renormalization, since it de
only with diagonal renormalization of the zero-distance o
erators in Eqs.~28!. Even though these operators are dom
nant in contributing to«8/«, other operators@such as (SS)EU
and (PP)EF] can be important due to mixing with the dom
nant ones. The mixing coefficients for these operators are
known even in perturbation theory. For a reasonable estim
we use the coefficients obtained for gauge-noninvariant
erator mixing@32#.

Second, since renormalization of operators (PP)EU ,
(SS) IU , and (PS)A2U is dramatic,2 their influence on other
operators through nondiagonal mixing is ambiguous at o
loop order, even if the mixing coefficients are known. T
ambiguity is due to higher-order diagrams~for example,
those shown in Fig. 14!. In order to partially resum them we
use operators (PP)EU , (SS) IU , and (PS)A2U multiplied by
factorsZP

2 , ZS
2 , andZPZS , correspondingly, whenever the

appear in nondiagonal mixing with other operators. This
equivalent to evaluating the diagrams of type~a! and ~b! in
Fig. 14 at all orders, but ignoring the rest of the diagra
@such as diagrams~c! and~d! in Fig. 14# at all orders higher
than first. A completely analogous procedure was used
mixing of O6 with O2 through penguins when evaluatin
ReA0. To estimate a possible error in this procedure we co
pare it with a simpler one, whereby bare operators are u
in nondiagonal corrections~i.e., we apply strictly one-loop
renormalization!. The difference in«8/« between these two
approaches is of the same order or even less than the
due to uncertainties in determination ofZP and ZS ~see
Tables VII and VIII!.

2For example, atmq50.01 andm52 GeV for theQ1 ensemble
we obtain ZPP50.05560.007, ZPS50.08860.007, and ZSS

50.14260.010.

-
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TABLE VII. «8/« in units of 1024 for Q1 ensemble, computed in three ways: (M1) with ReA0 and ReA2 taken from experiment; (M2)
with v taken from experiment, and ReA0 amplitude from our simulation; (M3) with both ReA0 and ReA2 from our simulation. In all cases
partially nonperturbative matching has been used to obtain the results. In all perturbative corrections we have used one-loop no
coefficients computed for gauge-noninvariant operators, which are assumed to be of the same order as those for gauge-invarian
The first error is statistical~obtained by combining the individual errors in matrix elements byJACKKNIFE!. The second error is the diagona
operator matching error due to uncertainty in the determination ofZP and ZS . In order to estimate the nondiagonal matching error
compare two renormalization procedures: using strictly one-loop nondiagonal corrections@denoted ‘‘~1-loop!’’ #, and resumming part of
higher-order corrections in nondiagonal mixing by using nonperturbative renormalization factorsZP andZS ~as explained in Sec. V C!. The
latter method is denoted ‘‘~p.r.!.’’ Some other parameters used in obtaining these results are: Iml t51.531024, mt5170 GeV,mb54.5 GeV,

mc51.3 GeV, Vh1h850.25, a
MS

(nf50)
(2 GeV)50.195 ~the latter is based on setting the lattice scale byr meson mass!. Short distance

coefficients were obtained by two-loop running using the anomalous dimension and threshold matrices computed by Buraset al. @15#.

Quark 0.01 0.02 0.03 0.04 0.05
mass

M1 ~p.r.! 261.262.8610.6 227.460.968.9 216.860.568.0 28.060.967.2 24.460.967.2
M1 ~1-loop! 252.362.2610 222.060.868.3 212.260.566.9 24.261.166.5 21.261.066.6
M2 ~p.r.! 238.662.166.0 218.760.367.0 211.760.266.0 26.160.565.3 23.160.564.9
M2 ~1-loop! 245.463.568.6 218.860.467.0 210.360.366.0 23.760.865.8 20.960.865.2
M3 ~p.r.! 297614613 28164623 27962627 28165638 27464638
M3 ~1-loop! 2142628629 28865635 27562639 26464652 25565651
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VI. ESTIMATES OF «8Õ«

Within the procedure outlined in Sec. V we have fou
that ^O6& has a different sign from the expected one due t
large renormalization factor. This translates into the nega
sign of Re («8/«) ~Tables VII and VIII and Fig. 17!.

Finite volume and quenching effects were found sm
compared to noise. Lattice cutoff dependence also seem
be small~see Fig. 18!. The main uncertainty in estimatin
«8/« comes from operator matching, diagonal, and non
agonal. For diagonal matching the uncertainty comes fro
~1! statistical errors in the nonperturbative determination
ZP andZS and from~2! unknown degree of validity of ou
ansatz in Sec. V C. For nondiagonal matching, the erro
due to:~3! unknown nondiagonal coefficients in the mixin
matrix and~4! ambiguity of accounting higher-order corre
tions. The error~1!, as well as the statistical error, is quote
in Tables VII and VIII. The size of the error~4! can be
judged by the spread in«8/« between two different ap
proaches to higher-order corrections~strictly one-loop and
partial resummation!, also presented in Tables VII and VII
The error~3! is likely to be of the same order as the error~4!.
The error~2! is uncontrolled at this point, since it is difficu
to rigorously check our assumptions made in Sec. V C.
Fig. 17 we combine the statistical error with errors~1! and
~4! in quadrature.
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There are several ways to make a numerical prediction
«8/«. One can use the experimental values of ReA0 and
ReA2 in Eq. ~6! (M1), or one can use the values obtained
the lattice (M3). One can also adopt an intermediate strate
of using the experimental amplitude ratiov and computed
ReA0 (M2). All three methods are presented in Tables V
and VIII and Fig. 17. When the higher-order chiral corre
tions are taken into account and the continuum limit is tak
~so thatv522), these three methods should converge. In
meantime, the spread can be taken as an error estimato
order to quote the central value we prefer the intermed
(M2) method, since herein the overall error due to final st
interactions cancels between real and imaginary parts oA0
amplitude, while the relative size ofP0 andP2 contributions
is given by the physicalv. Thereby we obtain

Re~«8/«!5„238.662.1 ~stat!69.1 ~syst!…31024.
~31!

The central value is based on quenchedb56.0 data, taken a
the kaon mass. The quoted systematic error includes only
errors~1! and ~4! discussed above.

VII. CONCLUSIONS

We have presented in detail the setup of our calculation
hadronic matrix elements. Statistically reliable numbers
TABLE VIII. «8/« results for theQ3 ensemble (b56.2). See caption of Table VII for details.

Quark mass 0.005 0.010 0.015 0.020 0.030

M1 ~p.r.! 268.166.9636.0 233.662.9623.9 224.961.8622.0 214.861.0624.8 210.360.6619.6
M1 ~1-loop! 260.966.9631.2 229.362.9621.0 21.461.9619.4 211.861.1621.9 27.960.7617.3
M2 ~p.r.! 243.969.5616.5 233.163.8618.3 222.161.2616.4 214.260.4620.3 29.560.3616.1
M2 ~1-loop! 253.6616.9625.0 237.966.0625.3 223.061.5620.0 213.660.6624.3 28.560.5618.0
M3 ~p.r.! 263.3635.1615.5 2103.9631.7645.2 282.4612.9651.0 274.965.7688.0 280.463.9692.3
M3 ~1-loop! 298.3672.9646.2 2138.1653.16101.5 292.4616.3686.3 272.665.76142.0 273.564.06131.0
2-16
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all operators in the basis defined in Eqs.~2! have been ob-
tained. Based on these data we have made numerical
mates of ReA0 , ReA2, and«8/«.

For the ratio of theDI 53/2 andDI 51/2 amplitudes we
obtain

ReA2

ReA0
50.04460.010 ~stat!60.024 ~syst!. ~32!

The central value is based on the dynamicalb55.7 estimate
at M5mK /A2. The systematic error includes mainly an e
timated 50% uncertainty from higher-order chiral terms,
cluding quenching effects. This estimation is based on a b
study of the effect of including the one-loop chiral logs~see
Sec. IV C!. Additional systematic errors are operator matc

FIG. 17. An estimate of«8/« for the Q1 (b56.0) ensemble
using the partially nonperturbative procedure described in the
Three sets of points correspond to using experimental ReA0 and
ReA2 in Eq. ~6! ~crosses!, using our ReA0 but experimentalv
~diamonds!, or using ReA0 and ReA2 obtained from our calcula-
tions ~squares!. All other details are the same as in Table VII. Th
error shown is a combination of the statistical error, a match
error coming from uncertainties in the determination ofZP andZS ,
and an estimated uncertainty in nondiagonal mixing of subdomin
operators. The horizontal dashed line indicates the experime
value from Fermilab.

FIG. 18. A study of lattice cutoff dependence of Re («8/«).
Plotted data were obtained onb56.0 andb56.2 ensembles for the
M2 method. The error bars show only the statistical error in ma
elements and inZS andZP constants. Systematic errors are sign
cant but common to both ensembles. The horizontal dashed
indicates the experimental value from Fermilab.
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ing ~estimated 20%!, lattice cutoff dependence~less than
noise!, finite volume~less than noise!.

To summarize, we find thatDI 51/2 transitions are en
hanced with respect toDI 53/2 ones~the ratio above is much
less than 1!, and that ‘‘eye’’ and ‘‘annihilation’’ diagrams are
essential to such enhancement. The degree of enhance
while estimated with sizable systematic error, is consist
with experiment.

As mentioned in the previous section, our numerical e
mates of«8/« in Tables VII and VIII as well as Figs. 17 an
18 are also subject to considerable systematic uncertain
As our ‘‘best’’ value, we quote

Re~«8/«!5„238.662.1 ~stat!69.1 ~syst!…31024.
~33!

The central value is based on quenchedb56.0 data, taken a
the kaon mass. The quoted systematic error includes the
rors that can be estimated as discussed in Sec. VI. In a
tion, the following errors are not included~due to difficulty
of estimation!: ~1! the validity of assumptions made in parti
nonperturbative operator matching, and~2! higher-order chi-
ral terms. The effects of quenching, finite volume, and fin
lattice cutoff are found small compared to noise and ot
errors. In addition, our estimates of both«8/« and
ReA2 /ReA0 are subject to uncertainty due to the treatme
of charm quark. This uncertainty includes higher-order QC
corrections and neglect of higher-dimensional charm qu
operators, and is estimated to be on the order of 10%.

Due to the presence of potentially large systematic unc
tainties in the above results, at present it is difficult to p
vide rigorous constraints on the standard model parame
However, the negative sign of«8/« seems to be a stabl
feature in our numerical estimates and deserves some a
tion. Taken at face value, this result would contradict t
experiment, which would mean that the minimal standa
model does not describe directCP violation adequately.

In order to decrease the above systematic errors a f
nonperturbative operator matching procedure should be
formed and higher-order chiral terms should be calculat
These developments, together with the statistically sign
cant values forK→p andK→0 matrix elements obtained in
this work, can be used to achieve reliable numerical e
mates both for the«8/« andDI 51/2 rule in the future, thus
providing more rigorous tests of the standard model.
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APPENDIX A: EXPLICIT EXPRESSIONS
FOR FERMION CONTRACTIONS

1. Quark operators

We work in the two flavor traces formalism when calc
lating contractions with four-fermion operators: for ea
contraction separately the operators are rendered in the
~if necessary, by Fierz transformation! of two bilinears with
the flavor flow in the form of a product of two flavor trace
To be more precise, for ‘‘eight’’ contractions the operato
are rendered in the form (s̄Gu)(ūGd), while for the ‘‘eye’’
and ‘‘annihilation’’ contractions the appropriate form
( s̄Gd)(q̄Gq). This is done in the continuum, before assig
ing the staggered fermion flavor.

The operator transcription in flavor space for stagge
fermions is now standard@21#, and we give it here for com
pleteness. The Goldstone bosons have spin-flavor struc
g5^ j5. The flavor structure of the operators is defined
requiring nonvanishing of the flavor traces, and so it depe
on the contraction type: the flavor structure isj5 in ‘‘eights’’
and two-point functions,1 in ‘‘eyes,’’ and ‘‘subtractions.’’ In
‘‘annihilation’’ contractions the flavor structure is1 for the
bilinear in the quark loop trace andj5 for the one involved in
the external trace.

Either one or two color traces may be appropriate fo
particular contraction with a given operator~see the next
Appendix section for details!. In one trace contractions~type
‘‘ F ’’ for ‘‘fierzed’’ ! the color flow is exchanged between th
bilinears, while in two trace contractions~type ‘‘U ’’ for ‘‘un-
fierzed’’! the color flow is contained within each bilinear s
that the contraction is the product of two color traces.
either contraction type, when the distance between stagg
fermion fields being color connected is nonzero, a ga
connector is inserted in the gauge-invariant fashion. The c
nector is computed as the average of products of gauge
along all shortest paths connecting the two sites. We a
implement tadpole improvement by dividing each link in e
ery gauge connector byu05@1/3 Tr(UP)#1/4, where UP is
the average plaquette value.

2. Sources and contractions

We use local U~1! pseudofermion wall sources. Explicitly
we set up a field of U~1! phasesja(x;t0) (uju51) for each
color and each site at a given timeslicet0, which are chosen
at random and satisfy

^ja* ~x;t0! jb~y;t0!&5da,b dx,y . ~A1!

~Boldface characters designate spatial parts of the 4-ve
with the same name.! We proceed to explain how this setu
works in the case of the two-point function calculation, w
trivial generalization to ‘‘eight’’ and ‘‘annihilation’’ contrac-
tions.

Consider the propagator from a wall att050 in a given
background gauge configuration, computed by inverting
equation

~D” 1m!xy
ab xb~y!5ja~x;0!dx4,0 . ~A2!
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This is equivalent to computing

xb~y!5(
x

ja~x;0!Gba~y;x,0!, ~A3!

whereG(y;x) is the propagator from four-pointx to four-
point y. For the staggered fermions description we label
fields by hypercube indexh and the hypercube corner indice
AmP$0,1%4 instead of y. The two-point function is con-
structed as follows:

TP}(
h,A

xa* ~h,A!Uab~h,A,A1D!xb~h,A1D!

3f~A!~21!A, ~A4!

wheref(A) andDm are phases and distances appropriate
a given staggered fermion operator,3 U(h,A,A1D) is the
appropriate gauge connector~see below!, modulo 2 summa-
tion is implied for hypercube indicesA, andh runs over all
hypercubes in a given timeslicet where the operator is in
serted. The factor (21)A takes into account that for stag
gered fermionsG(x;y)5G†(y;x)(21)x(21)y. Equation
~A4! corresponds to

TP} (
x,y,z

Gab~z,y!GGbg~y,x!~21!zja* ~z!jg~x!,

~A5!

whereG is used for simplicity to show the appropriate o
erator structure. The summation overx andz over the entire
spatial volume averages over the noise, so the last equati
equivalent to

TP}(
x,y

tr G~x,y! G G~y,x!~21!x. ~A6!

Therefore, using the pseudofermion wall source is equiva
to summation of contractions obtained with independent
cal delta-function sources. Note that the factor (21)x and
zero distance in the staggered fermions language are eq
lent to spin-flavor structureg5^ j5. This means the sourc
creates pseudoscalar mesons at rest, which includes G
stone bosons. Strictly speaking, this source also creates
sons with spin-flavor structureg5g4^ j5j4, since it is de-
fined only on one timeslice. However, as explained in
first footnote in Sec. 2.3 of Ref.@21#, these states do no
contribute.

We have used one copy of pseudofermion sources
configuration. Analogously, we construct the pion sink

3For a given bilinear with spin-flavor structureGS^ GF , these are
determined as follows: Dm5uSm2Fmu2 and f(A)
5

1
4 Tr(GA

† GS GA1D GF
†), whereSm andFm are spin and flavor vec-

tors such thatGS5g1
S1g2

S2g3
S3g4

S4 and GF5g1
F1g2

F2g3
F3g4

F4, and GA

5g1
A1g2

A2g3
A3g4

A4.
2-18
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time T by using another set of U~1! random noise
(^ja* (x;T)jb(y;T)&5da,bdx,y , uju51). The propagatorF is
computed as follows:

~D” 1m!xy
ab Fb~y!5ja~x;T!dx4 ,T . ~A7!

SupposeD1 , D2P$0,1%4 andf1(A), f2(A) are distances
and phases of the two staggered fermion bilinears making
a given four-fermion operator. The expression for t
‘‘eight’’ contraction @Fig. 1~a!# with two color traces~‘‘ U ’’
type! is given by

EU} (
h,A,B

xa* ~h,A!Uab~h,A,A1D1!xb~h,A1D1!

3f1~A!~21!AFr* ~h,B!Urs~h,B,B1D2!

3Fs~h,B1D2!f2~B!~21!B, ~A8!

up to various normalization factors which cancel in theB
ratio. In this expressionA, BP$0,1%4 run over 16 hypercube
corners~modulo 2 summation is implied for these indices!.
The hypercube indexh, as before, runs over the entire spat
volume of the timeslicet of the operator insertion. The gaug
connectorU(h,A,B) is the identity matrix whenA5B, oth-
erwise it is the average of products of gauge links in
given configuration along all shortest paths fromA to B in a
given hypercubeh. The expression Eq.~A8!, as well as all
other contractions, is computed for each background ga
configuration and is subject to averaging over the configu
tions. ~Whenever several contractions are combined in
single quantity, such as aB ratio, we useJACKKNIFE to esti-
mate the statistical error.!

The expression for one color trace~‘‘ F ’’ type! contraction
is similar:

EF} (
h,A,B

xa* ~h,A!Uab~h,A,B1D2!xs~h,A1D1!

3f1~A!~21!AFr* ~h,B!Urs~h,B,A1D1!

3Fb~h,B1D2!f2~B!~21!B. ~A9!

For ‘‘eye’’ and ‘‘subtraction’’ diagrams@Figs. 1~b! and
1~d!# the source setup is a little more involved, since t
kaon and pion are directly connected by a propagator
order to construct a wall source we need to compute
product

c~y!5(
x

G~y,t;x,T!•G~x,T;0,0!~21!x.

In order to avoid computing propagators from every poinx
at the timesliceT, we first compute propagatorG(x,T;0,0),
cut out the timesliceT, and use it as the source for calcula
ing the propagator to (y,t). This amounts to inverting the
equation

~D” 1m!xy
abcb~y!5xa~x!d (x4 ,T)~21!x, ~A10!
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where xa(x) is the propagator from the wall source att0
50 defined in Eq.~A2!. We use the following expression fo
evaluating the ‘‘subtraction’’ diagram:

S}(
h,A

xa* ~h,A!Uab~h,A,A1D!cb~h,A1D!f~A!~21!A.

~A11!

Again, averaging over the noise leaves only local conn
tions in both sources, so in the continuum language we

S} (
x,y,z

tr G~x,0;z,t !GG~z,t;y,T!G~y,T;x,0!~21!x~21!y.

~A12!

@In fact, we are mostly interested in subtracting the opera
s̄1^ 1d, so in Eq.~A11! D50,0,0,0 andf(A)51.#

In order to efficiently compute fermion loops for ‘‘eye
and ‘‘annihilation’’ diagrams@Figs. 1~b! and 1~c!#, we use
U~1! noise copiesz ( i ), i 51, . . . ,N, at every point in space
time. We computeh ( i ) by inverting (D” 1m)h ( i )5z ( i ). It is
easy to convince oneself that the propagator fromy to x
equals

G~x;y!5^hxzy* &. ~A13!

In practice we average overN510 noise copies. This in-
cludes two or four copies of the lattice in time extension,
the real number of noise copies is 20 or 40, with anot
factor of 3 for color. The efficiency of this method is cruci
for obtaining good statistical precision.

The expressions for ‘‘U ’’ and ‘‘ F ’’ type ‘‘eye’’ diagrams
are as follows:

I U} (
h,A,B

xa* ~h,A!Uab~h,A,A1D1!cb~h,A1D1!

3f1~A!~21!A
1

N (
i 51

N

zr
( i )* ~h,B!Urs~h,B,B1D2!

3hs
( i )~h,B1D2!f2~B!~21!B, ~A14!

I F} (
h,A,B

xa* ~h,A!Uas~h,A,B1D2!cb~h,A1D1!

3f1~A!~21!A
1

N (
i 51

N

zr
( i )* ~h,B!Urb~h,B,A1D1!

3hs
( i )~h,B1D2!f2~B!~21!B. ~A15!

The computation of ‘‘annihilation’’ diagrams@Fig. 1~c!# is
similar to the two-point function, except the fermion loop
added and the derivative with respect to the quark mass
ferencemd2ms is inserted in turn in every strange qua
propagator. Derivatives of the propagators are given by
verting equations

~D” 1m!x85x, ~A16!

~D” 1m!h8( i )5h ( i ). ~A17!
2-19
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We have, therefore, four kinds of ‘‘annihilation’’ contrac
tions, which should be combined in an appropriate way
each operator depending on the quark flavor structure~this is
spelled out in Appendix B!:

A1U} (
h,A,B

xa8* ~h,A!Uab~h,A,A1D1!xb~h,A1D1!

3f1~A!~21!A
1

N (
i 51

N

zr
( i )* ~h,B!Urs~h,B,B1D2!

3hs
( i )~h,B1D2!f2~B!~21!B, ~A18!

A1F} (
h,A,B

xa8* ~h,A!Uas~h,A,B1D2!xb~h,A1D1!

3f1~A!~21!A
1

N (
i 51

N

zr
( i )* ~h,B!Urb~h,B,A1D1!

3hs
( i )~h,B1D2!f2~B!~21!B, ~A19!

A2U} (
h,A,B

xa* ~h,A!Uab~h,A,A1D1!xb~h,A1D1!

3f1~A!~21!A
1

N (
i 51

N

zr
( i )* ~h,B!Urs~h,B,B1D2!

3hs8
( i )~h,B1D2!f2~B!~21!B, ~A20!

A2F} (
h,A,B

xa* ~h,A!Uas~h,A,B1D2!xb~h,A1D1!

3f1~A!~21!A
1

N (
i 51

N

zr
( i )* ~h,B!Urb~h,B,A1D1!

3hs8
( i )~h,B1D2!f2~B!~21!B. ~A21!

APPENDIX B: EXPLICIT EXPRESSIONS FOR MATRIX
ELEMENTS IN TERMS OF FERMION CONTRACTIONS

Operators in Eqs.~2! can be decomposed intoI 50 and
I 52 parts, which contribute, correspondingly, toDI 51/2
and DI 53/2 transitions. Here we give the expressions
these parts for completeness, since ReA0 , ReA2, and«8/«
are directly expressible in terms of their matrix elemen
The I 50 parts are given as follows:

O1
(0)5 2

3 „s̄gm~12g5!d…„ūgm~12g5!u…2 1
3 „s̄gm~12g5!u…

3„ūgm~12g5!d…1 1
3 „s̄gm~12g5!d…

3„d̄gm~12g5!d…, ~B1!

O2
(0)5 2

3 „s̄gm~12g5!u…„ūgm~12g5!d…2 1
3 „s̄gm~12g5!d…

3„ūgm~12g5!u…1 1
3 „s̄gm~12g5!d…

3„dgm~12g5!d…, ~B2!
07450
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O3
(0)5„s̄gm~12g5!d… (

q5u,d,s
„q̄gm~12g5!q…, ~B3!

O4
(0)5„s̄agm~12g5!db… (

q5u,d,s
„q̄bgm~12g5!qa…, ~B4!

O5
(0)5„s̄gm~12g5!d… (

q5u,d,s
„q̄gm~11g5!q…, ~B5!

O6
(0)5„s̄agm~12g5!db… (

q5u,d,s
„q̄bgm~11g5!qa…, ~B6!

O7
(0)5 1

2 @„s̄gm~12g5!d…„ūgm~11g5!u…2„s̄gm~1

2g5!u…„ūgm~11g5!d…2„s̄gm~12g5!d…

3„s̄gm~11g5!s…#, ~B7!

O8
(0)5 1

2 @„s̄agm~12g5!db…„ūbgm~11g5!ua…

2„s̄agm~12g5!ub…„ūbgm~11g5!da…

2„s̄agm~12g5!db…„s̄bgm~11g5!sa…#, ~B8!

O9
(0)5 1

2 @„s̄gm~12g5!d…„ūgm~12g5!u…

2„s̄gm~12g5!u…„ūgm~12g5!d…

2„s̄gm~12g5!d…„s̄gm~12g5!s…#, ~B9!

O10
(0)5 1

2 @„s̄gm~12g5!u…„ūgm~12g5!d…

2„s̄gm~12g5!d…„ūgm~12g5!u…

2„sgm~12g5!d…„sgm~12g5!s…#. ~B10!

Expressions for theI 52 parts are as follows:

O1
(2)5O2

(2)5 2
3 O9

(2)5 2
3 O10

(2)

5 1
3 @„s̄gm~12g5!u…„ūgm~12g5!d…

1„s̄gm~12g5!d…„ūgm~12g5!u…

2„s̄gm~12g5!d…„d̄gm~12g5!d…#, ~B11!

O7
(2)5 1

2 @„s̄gm~12g5!u…„ūgm~11g5!d…

1„s̄gm~12g5!d…„ūgm~11g5!u…

2„s̄gm~12g5!d…„d̄gm~11g5!d…# ~B12!

O8
(2)5 1

2 @„s̄agm~12g5!ub…„ūbgm~11g5!da…

1„s̄agm~12g5!db…„ūbgm~11g5!ua…

2„s̄agm~12g5!db…„d̄bgm~11g5!da…# ~B13!

O3
(2)5O4

(2)5O5
(2)5O6

(2)50. ~B14!
2-20
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~Whenever the color indices are not shown, they are c
tracted within each bilinear, i.e., there are two color trace!

As mentioned in Sec. III B, in order to compute matr
elements ofI 50 operators one needs to evaluate three ty
of diagrams: ‘‘eight’’@Fig. 1~a!#, ‘‘eye’’ @Fig. 1~b!#, and ‘‘an-
nihilation’’ @Fig. 1~c!#. In Appendix A we have given detaile
expressions for computation of these contractions, given
spin-flavor structure. Here we assign this structure to all c
tractions required for each operator, i.e., we express e
matrix element in terms of contractions which were ‘‘buil
in the previous section.

Let us introduce some notation. The matrix element of
above operators has three components:

^p1p2uOi uK0&5„Ei1I i2S~ 2 ma i !…
mK

2 2mp
2

~pp•pK! f
,

~B15!

wherem is the common quark mass fors, d, andu, and

a i5
Ai

P
. ~B16!

HereEi and I i stand for ‘‘eight’’ and ‘‘eye’’ contractions of
the ^p1uOi uK1& matrix element, Ai;^0uOi uK0& / (md

2ms) is the ‘‘annihilation’’ diagram,S5^p1us̄duK1& is the
‘‘subtraction’’ diagram, andP5^0us̄g5duK0& is the two-
point function. We computea i by averaging the ratio on th
right-hand side of Eq.~B16! over a suitable time range.

Detailed expressions forEi , I i , andAi are given below in
terms of the basic contractions on the lattice. We label ba
contractions by two letters, each representing a bilinear.
example,PP stands for contraction of the operator with sp
structure (g5)(g5), SS is for (1)(1), VV stands for
(gm)(gm), andAA is for (gmg5)(gmg5). The staggered fla
vor is determined by the type of contraction, as explained
Appendix A. Basic contractions are also labeled by their s
script. The first letter indicates whether it is an ‘‘eight
‘‘eye,’’ or ‘‘annihilation’’ contraction, and the second is ‘‘U ’’
for two, or ‘‘F ’’ for one color trace. For example,PPEU
stands for the ‘‘eight’’ contraction of the operator with spi
flavor structure (g5^ j5)(g5^ j5) with two color traces;
VAA1F stands for the ‘‘annihilation’’ contraction of the firs
type, in which the derivative is taken with respect to qua
mass on the external leg~see Appendix A!, the spin-flavor
structure is (gm ^ j5)(gmg5^ 1), and one color trace is taken
What follows are the full expressions.4

‘‘Eight’’ parts:

E1
(0)5 2

3 ~VVEF1AAEF!2 1
3 ~VVEU1AAEU!, ~B17!

E2
(0)5 2

3 ~VVEU1AAEU!2 1
3 ~VVEF1AAEF!, ~B18!

E3
(0)5VVEF1AAEF , ~B19!

4Signs of operatorsO7 andO8 have been changed in order to b
consistent with the sign convention of Buraset al. @3#.
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E4
(0)5VVEU1AAEU , ~B20!

E5
(0)52~PPEF2SSEF!, ~B21!

E6
(0)52~PPEU2SSEU!, ~B22!

E7
(0)5SSEF2PPEF1 1

2 ~VVEU2AAEU!, ~B23!

E8
(0)5SSEU2PPEU1 1

2 ~VVEF2AAEF!, ~B24!

E9
(0)52E10

(0)5 1
2 ~VVEF1AAEF2VVEU2AAEU!,

~B25!

E1
(2)5E2

(2)5 2
3 E9

(2)5 2
3 E10

(2)

5 1
3 ~VVEU1AAEU1VVEF1AAEF!, ~B26!

E3
(2)5E4

(2)5E5
(2)5E6

(2)50, ~B27!

E7
(2)5 1

2 ~AAEU2VVEU!1SSEF2PPEF , ~B28!

E8
(2)5 1

2 ~AAEF2VVEF!1SSEU2PPEU . ~B29!

‘‘Eye’’ parts:

I 1
(0)5VVIU1AAIU , ~B30!

I 2
(0)5VVIF1AAIF , ~B31!

I 3
(0)53~VVIU1AAIU !12~VVIF1AAIF !, ~B32!

I 4
(0)53~VVIF1AAIF !12~VVIU1AAIU !, ~B33!

I 5
(0)53~VVIU2AAIU !14~PPIF2SSIF !, ~B34!

I 6
(0)53~VVIF2AAIF !14~PPIU2SSIU !, ~B35!

I 7
(0)52~PPIF2SSIF !, ~B36!

I 8
(0)52~PPIU2SSIU !, ~B37!

I 9
(0)5VVIF1AAIF , ~B38!

I 10
(0)5VVIU1AAIU . ~B39!

‘‘Annihilation’’ parts are obtained by inserting the deriva
tive with respect to (md2ms) into every propagator involv-
ing the strange quark:

A1
(0)52~VAA1U1AVA1U!, ~B40!

A2
(0)52~VAA1F1AVA1F!, ~B41!

A3
(0)523~VAA1U1AVA1U!2~VAA2U1AVA2U!

22~VAA1F1AVA1F!2~VAA2F1AVA2F!, ~B42!

A4
(0)523~VAA1F1AVA1F!2~VAA2F1AVA2F!

22~VAA1U1AVA1U!2~VAA2U1AVA2U!, ~B43!
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A5
(0)53~VAA1U2AVA1U!1~VAA2U2AVA2U!

12~PSA2F2SPA2F!, ~B44!

A6
(0)53~VAA1F2AVA1F!1~VAA2F2AVA2F!

12~PSA2U2SPA2U!, ~B45!

A7
(0)5 1

2 ~VAA2U2AVA2U!1~PSA2F2SPA2F!, ~B46!

A8
(0)5 1

2 ~VAA2F2AVA2F!1~PSA2U2SPA2U!, ~B47!
-

. B

us

07450
A9
(0)5VAA1F1AVA1F

1 1
2 ~VAA2U1AVA2U1VAA2F1AVA2F!,

~B48!

A10
(0)5VAA1U1AVA1U

1 1
2 ~VAA2F1AVA2F1VAA2U1AVA2U!. ~B49!

Of course, ‘‘eye’’ and ‘‘annihilation’’ contractions are no
present inI 52 operators.
e,

tt.
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