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We perform a study of matrix elements relevant for ttle= 1/2 rule and the dired€ P violation parameter
¢'le from first principles by computer simulation in lattice QCD. We use staggé¢edut-Sussking fermi-
ons, and employ chiral perturbation theory to st~ 77 decays. Having obtained a reasonable statistical
accuracy, we observe an enhancement ofAhe 1/2 amplitude, consistent with experiment within our large
systematic errors. Finite volume and quenching effects have been studied and were found small compared to
noise. The estimates af' /e are hindered by large uncertainties associated with operator matching. In this
paper we explain the simulation method, present the results and address the systematic uncertainties.
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[. INTRODUCTION the theoretical side, the progress in estimatirige in the
standard model has to rely on nonperturbative techniques of
In those areas of particle phenomenology which requireeomputing matrix elements of the appropriate basis operators
addressing nonperturbative effects, lattice gauge theory play$], in this case using lattice QCD, and this is another pur-
an increasingly significant role, being a first-principlespose of our work.
method. The rapid advances in computational performance We will introduce the methods employed in this work in
as well as algorithmic techniques are allowing us to applydetail in appropriate sections. Here we would like to say a

lattice gauge theory to a wider range of problems than evef€W general words about them. ,
before. We employ the method of chiral perturbation theory, us-

ing it in its lowest order to combine our numerical results for
(m")O)|K*) and (0|O;|K®) matrix elements to obtain
e<7T7T|Oi|KO>. Compared to the previous attenigl to com-

In this paper we address the phenomenology K5
— decays. Our goal is to compuerm|O;|K®) matrix

elements for all four-fermion operators in the basis of th ; . : :
AS—1 effective weak Hamiltoniatintroduced in Sec. Il A pute them on the lattice with staggered fermions, this work

. e . . _introduces a number of improvements. The matrix elements
We had s_everal phygcal quantities in m‘!nd when O,l,omgare computed using ensembles with two different lattice
our caI.cuIatlons. One is contained in th@l =1/2 rule, spacings 8=6.0 and3=6.2 quenched ensembjetve have
which is the observation that the transition channelKof a significant increase in statisti€g0 times for8=6.0, com-
—mm decays with isospin changing by 1/2 is enhanced 234 from both an increased number of configurations and
times with respect to transitions with isospin changing bynumber of noise samples per configuratioAs a result
3/2. This is a well-known, long-standing puzzle in kaon phe-of this increase the statistical accuracy of our results for
nomenology. Strong interactions are essential for explainingoth Al=1/2 and Al=3/2 amplitudes, (| Og KO,
this effect within the standard model. Since the energy scalegy 7| 0g|K®) and other matrix elements is finally under con-
involved in these decays are rather small, computations ifrol. In this work we also consider operator matching, while
quantum chromodynamid®CD) have to be done using a in the previous work this issue was ignored. And finally, we
nonperturbative method such as lattice QCD. In particularstudy quenching effects by considering lp=2 ensemble
lattice QCD is used to calculate the hadronic matrix elementat 8=5.7.
of the operators appearing in theS=1 effective weak Several other attempts to study the matrix elements in
Hamiltonian. Confirming the agreement of theory and ex-question have been reported from various lattice groups us-
periment with regard to this phenomenon would be very im-ng either staggered or Wilson fermioriRefs. [5-9], re-
portant. views in Refs[7,10]), but they fell short of desired accuracy
In addition, we address the related issue:bfthe direct  because of technical difficulties and/or insufficient statistics.
CP-violation parameter in the neutral kaon system. There ign addition, several grougd.1,6,9 have studied matrix ele-
now compelling experimental evidence that this parameter isnents(#* #°|O;|K ™) with good accuracy. However, these
nonzero. The Fermilab KTeV group[4] most recent result matrix elements describe onlyl =3/2, notAl =1/2 transi-
is Re '/e)=(28.0-4.1)x10 4, while the CERN NA48 tjon, and so are not enough to study either Me=1/2 rule
group [2] reports Reé'/e)=(18.5+7.3)x10 %. Results ore'/s.
from a third independent experiment at Frascati are expected Most recently, several attempts to compute the matrix el-
soon. The world average based on both old and new results éments in question using domain wall fermions have been
currently (19.3-3.6)x 10 %, more than & above zero. On initiated (Refs. [12—15). This is a promising technique
which has certain advantages and disadvantages compared to
staggered fermions. On the one hand, domain wall fermions
*Current address: MC 0505, San Diego Supercomputing Centegfford, in principle, the presence of full chiral symmetry at
9500 Gilman Drive, La Jolla, CA 92093. final cutoff without the complications due to an additional
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flavor of fermions as in the staggered fermions case. Thé&ranslate the effective weak theory to more convenient scales
chiral symmetry, however, requires a price to be paid in(u~2—4 GeV). At such scales the effective Hamiltonian
terms of addedfifth) dimension of the lattice which signifi- for K— 77 decays is the following linear superpositif3i:
cantly increases the computational load. Therefore in prac-
tice one uses findll; (or L), which translates into residual o OF .

chiral symmetry breaking effects and can have a high impact szﬁvudvusizl [Zi(p)+ 7yi()]0i(w), (D)
on calculating certain quantities. In particular, calculation of

matrix elements considered in this work is subject to Signiﬁ‘wherezi andy; are Wilson coefficientécurrently known at

cant complications since they depend on gross Cance"atioﬂvo-loop orde), 7= —V,V/V,V*., and O, are basis of
between their components and hence are very sensitive {g ’ s Tudtus: !

. . ; . -fermi fi foll :
chiral symmetry. These problems are discussed in detail in ur-fermion operators defined as follows
Ref.[15]. Therefore it remains to be shown whether domain

10

= (g — m M —
wall fermions indeed offer an advantage in the practical mat- O1= (S, 7,(1~ y5)up)(Ugy*(1—y5)d,), (23
ter of computing{7* 7°|O;|K*) matrix elements. — —
Our calculations confirm significant enhancement of the 0= (SaVu(1= ¥5)U)(Ugy* (1= y5)dp), (2b)
Al=1/2 channel, consistent with the experimental value
within the estimated uncertainty. Unfortunately the latter un- e -~ ol
certainty is significant. Even though the statistical accuracy Os=(avu(l 75)d‘“); (@py*(1=v5)dp), 29

is very reasonable, there is another significant source of error

in these complicated calculations, namely the uncertainties _ _

due to ignoring higher orders in chiral expansion, which also ~ Oa=(S.7,.(1= ¥5)d) > (Ae¥*(1—¥5)0,), (2d)

contain final state interactions. This error is common to any d

method using chiral perturbation theory, which includes most

work in this area at present. _ o O5=(Sa7,(1— vs)d,) >, (Apy"(1+ v5)dp), (20
Another significant source of uncertainty, which influ- q

ences mostly '/, but notAl =1/2 results, is due to pertur-

bative operator matching, or the partially nonperturbative op- — —

erator renormalization procedure, which we implement as a O6=(Savu(1- 75)dﬁ)% @7 (1+ 75)0a),

temporary step in cases where lattice perturbation theory

breaks down. This uncertainty is the main obstacle to getting _ _

a reliable estimate of'/z. 07=3(5,7,(1~ ¥5)d,) > gy (1+¥5)0p), (29
Speaking of the central value, we are seeing the negative 4

sign of Reg’/e), whereas the experiment shows it to be

positive._Since systematic. qncertainties entering our work 08=§(;am(1—75)d,3)2 eq(ag)’“(lJer)%), (2h)

are admittedly very large, it is too soon to call the standard q

model dead based on this result. However, it is still an inter-

esting finding, and we are eager to see if other lattice groups 3 — — .

confirm it. Og= E(Sa')’,u(l_ 75)da)z eq(qﬁ'yﬂ(l_ '}’S)Qﬁ): (2i)
The paper is structured as follows. In Sec. Il we show the I

context of our calculations, define the quantities we are look- o o

ing after, and discuss a number of theoretical points relevant  O5=3(s,y,(1- y5)dﬁ)2 eq(@sY“ (1= ys5)0,).  (2))

for the calculation. Section Ill discusses issues pertaining to q

lattice simulations. In Sec. IV we present the results and o . .

discuss systematic errors faxl=1/2 rule amplitudes. In Hereéa andp are color indicesg, is quark electric charge,

Sec. V we explain how the operator matching problem to-2nd summation is done over all light quarks.

gether with other systematic errors preclude a reliable calcu- 'SOSPin amplitudes are defined as

lation of &'/¢, and give our best estimates for this quantity in -

Sec. VI. Section VIl contains the conclusion. In the Appen- Ao £ 5O'ZE<(7”T)':0~JHW|KO>’ 3

dices we give details about the quark operators and sources , . .

and provige explicit expressionsqfor all cF:)ntractions and mayvhere S92 are th_e final state interaction phases of the two

trix elements. We also list our raw lattice results for all con_channels. Experimentally

tractions involved.

(2f)

w= Rer/ReAZZZZ. (4)

Il. THEORETICAL FRAMEWORK The directCP violation parametet’ is defined in terms

A. Framework and definitions of imaginary parts of these amplitudes:

The standard approach in applying theory to topics men- ImA-— o ImA
. : . ) MA— @IMA2 a2t 5,5
tioned in Sec. | is to use the operator product expansion at g'=— ————— “¢i(m2t =5 (5)
the M, scale and the renormalization group equations to V2w ReAq
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Experiments measure the quantity &ée, which is given  wheref is the lowest-order pseudoscalar decay constant. The

by masses in the first of these formulas are the physical meson
masses, while the quark masses and the momenta in the sec-
e’ Ge ond and third formulas are meant to be from actual simula-
Re = zw|8|ReAO"m‘t [Ho= wlly], ®  tions on the lattice(done with unphysical massesThese

relationships ignore higher-order terms in the chiral expan-
where sion, most importantly the final state interactions. Therefore
this method suffers from a significant uncertainty. Golterman
and Leung[19] have computed one-loop correction for the
Al =3/2 amplitude in chiral perturbation theory. They find
this correction can be large, up to 30% or 60%, depending on
the values of unknown contact terms and the cutoff.

Mo=2, ¥i{(mm)i=ol OfVIKH1=Qypi ), (D)

o= 20 yi ((mm)i=o| O [K?), ®)

Ill. LATTICE TECHNIQUES
with Im\=ImV4V{5, and wher&), , ,,~0.25* 0.05 takes
into account the effect of isospin breaking in quark masses
(my#mg). 0% and O are isospin 0 and 2 parts of the ~ Equations(9)—(11) handle unphysicak«d mixing in
basis operators. Their expressions are given in Appendix B7"|O;|K™) by subtracting the unphysical part proportional
for completeness. to (0|O;|K®). This is equivalent to subtracting the operator

A. Mixing with lower-dimensional operators

B. Treatment of charm quark Osu=(Mg+mg)sd+(my—mg)sysd. (12

The effective Hamiltonian given above is obtained in the
continuum theory in which the top, bottom, and charm
quarks are integrated outin particular, the summation in
Egs. (20)—(2j) is done ovemw, d, ands quarks] This makes
sense only when the scaleis sufficiently low compared to
the charm quark mass. As mentioned in R&®], at scales
comparable tan. higher-dimensional operators can contri

As shown in Refs[20,21], these statements are also true on
the lattice if one uses staggered fermions. A number of Ward
identities discussed in these references show that lattice for-
mulation with staggered fermions retains the essential chiral
properties of the continuum theory. In particul&y,,, de-

b- fined in Eq.(12) is the only lower-dimensional operator that

ute considerably. Then one should consider an expanded s pears In mixing with the basis operatord.ower-

of operators including those containing the charm quark. Lat_.lmens_lonal operators h‘."w? to be subtracteld honperturba-
tice treatment of the charm quark is possible but in practicé'VGIy since they are mult|pI|ed by powers af '). We em-
quite limited, for example by having to work at much smaller ploy the nonperturbative procedure suggested in P

lattice spacings and having a more complicated set of opera-

tors and contractions. Therefore we have opted to work in L o, 4 N mﬁ—mi
the effective theory in which the charm quark is integrated (m7 77 |Oi|K%) =(77|O— a0 K >m
out. Since we typically usee~2 GeV in our simulations, " (13
this falls into a dangerous region. We hope that the effects of
higher-dimensional operators can still be neglected, b herea: are found from
strictly speaking this issue should be separately investigated. !

O:<O|Oi_aiosutJK0>- (14

C. Calculating { 7| O;|K®)

h g‘s v_vaststhown by Ma:;lpr.' alrt]dt Testat7], ttvvo—pt?]rtlclletf This procedure is equivalent to the lattice version of Egs.
adronic states are very diicult to construct on the 1atlic€q, 11y ang allows subtraction timeslice by timeslice.

(and in genera!, in any Euclidean descripjiowe h.ave to Throughout our simulation we use only degenerate me-
use an alternative procedure to calculate the matrix elemeng%ns i.e.m.=my=m,. Since only the negative parity part
. . y 1.C. s - u-
E‘fsrie.a”ng. 'L‘ lEqS(3t)’ (?’ anho_l (8I). V\/te (k:)h(t)_oset;he m.EthOddof Og,p contributes in Eq(14), one naively expects infinity
In which fowest-order chiral perturbation theory 1S used,, o, calculating «;. However, the matrix elements

to relate (7777|.Oi|K°> to matrix elements involving one- (0]0;|KO) of all basis operators vanish when.=my due to
particle states: invariance of both the Lagrangian and all the operators in
m2 —m2 question under th€ PS symmetry, which is defined as the
(m* w*|Oi|K°>=¥y, (9)  CP symmetry combined with interchange ®&ndd quarks.
Thus calculation ofy; requires taking the first derivative of
(0]0;|K®) with respect to fng—my). In order to evaluate the
— Mg+ My first derivative numerically, we insert another fermion matrix
(m7[Oi|KT)=(p7 PK) Y~ o, (10 . e . Y . :
f inversion in turn into all propagators involving the strange
quark. Detailed expressions for all contractions are given in
(0]0;|K%) =(mg—my) 4, (1)  the Appendices.
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FIG. 1. Five diagram types
needed to be computedia)
“eight,” (b) “eye,” (¢) “annihila-
tion,” (d) “subtraction,” and (e)
two-point function.

()

B. Diagrams to be computed JACKKNIFE is used for statistical analysis.

According to Egs.(13) and (14), we need to compute . As _explain_ed bglow, we have ex_tended the_ lattice _foyr
three diagrams involving four-fermion operatdghown in  tMes in the time dimension by copying gauge links. This is
Fig. 1) and a couple of bilinear contractions. The “eight” done in order to get rid of excited states conta_mmatlon and
contraction typdFig. 1(a)] is relatively cheap to compute. It Wrap-around effects. The largest-volum@] lattices were
is the only contraction needed for thel =3/2 amplitude.  €Xtended only two times. _ _

The “eye” and “annihilation” diagramgFigs. 1b) and 1c)] The quenched I.attlce sc;ale was set as in R, i.e., we
are much more expensive since they involve calculation offemand perturbative scaling of the form
propagators from every point in space-time.

5\ 51/121 82
a(B)=ag ex : (15
C. Lattice parameters and other details 1lg§,|—S 11ng—5

The parameters of simulation are listed in the Table I. We
use periodic boundary conditions in both space and timenormalizing so that the world data for the masspaheson
Our main “reference” ensemble is a set of quenched con{24] is well fit by m,(a)=(770 MeV)1+A%a?(B)). The
figurations atB=6/g°=6.0 (Q,). In addition, we use an lattice spacing for the dynamical ensemble is also set by the
ensemble with a larger lattice volum&4), an ensemble p mass[25].
with 8=6.2 (Q3) for checking the lattice spacing depen- Some other technicalities are as follows. We work in the
dence, and an ensemble with two dynamical flavars ( two flavor formalism. We use local wall sources that create
=0.01) generated by the Columbia group, used for checkingseudoscalar mesons at rest. The mesons are degenerate
the impact of quenching. The quenched ensembles were olm;=my=m,, m_=m). We use staggered fermions and
tained using a 4-to-1 ratio of 3-hit SP) overrelaxed and work with gauge-invariant operators, since the gauge sym-
heatbath algorithms. The configurations were separated hyetry enables significant reduction of the list of possible
1000 sweeps. The dynamical configurations were obtainechixing operators. The staggered flavor structure is assigned
by the R algorithm[22]. depending on the contraction type. Our operators are tadpole
We use the standard staggered fermion action. Fermiommproved. This serves to “improve” the perturbative expan-
matrices are inverted by the conjugate gradient algorithmsion at a later stage when we match the lattice and continuum

TABLE |. Simulation parameters.

Ensemble Number of Quark masses
name N¢ B Size a ! (GeV) L (fm) configurations used

Q; 0 6.0 16x (32x 4) 2.1 1.6 216 0.01-0.05
Q> 0 6.0 32X (64x2) 2.1 3.2 26 0.01-0.05
Q3 0 6.2  24x(48x4) 2.8 1.7 93 0.005-0.03

D 2 5.7 16‘><(32><4) 2.0 1.6 83 0.01-0.05
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FIG. 2. The general setup of the simulation. An “eight” con-

traction is shown for convenience. The kaon source is at the FIG.3. An example of the signal we get for one of Beatios
timeslice 0, while the pion sink is at the timesli€eThe operatoris ~ (in this case, for the “eye” part of théd, operator on theQ,
inserted at a variable time The result of this contraction is pro- €nsemble, using quark mass 0.0lhe wall sources are &t=1 and

portional to the product of two exponentials shown in the figure. t=49. We see that the excited states quickly disappear and a stable,
well-distinguished plateau is observed. We perfamokkNIFE av-

operators. For calculating fermion loops we employ th@)U ﬁrrlzg)lng in the range dffrom 12 to 37(shown with the horizontal

pseudofermion stochastic estimator. More details and an ex-

planation of some of these terms can be found in the Appen-

dix A. ratio (r|O[K)/ ((7|A,|0) - (O|A*|K)). Apart from com-
mon normalization factors, a number of systematic uncer-
tainties also tend to cancel in this ratio, including the uncer-

D. Setup for calculating matrix elements tainty in the lattice spacing, quenching, and in some cases
of four-fermion operators perturbative correction uncertainty. Therefore, it is some-
Consider the setup for calculation of*|O;|K*). Kaons ~ times reasonable to give lattice answers in terms ofBhe
are created at,=0, the operators are inserted at a variable"atios. _ _

timet, and the pion sink is located at the timMidsee Fig. 2, However, eventually t_he physical matrix elgment needs to

whereT is sufficiently large. In principle, a number of states P& reconstructed by using the known experimental param-

with pseudoscalar quantum numbers can be created by tfgers(namelyfy) to compute VSA. In some cases, such as
kaon source. Each state’s contribution is proportional tdOr operatorsOs—Og, the VSA itself is known very impre-

\/Ze—m\t\, so the lightest statékaon dominates at large cisely due_ tp the failure of perturbapve match|@ae Sec.

enought. Analogously, states annihilated by the sink contrib-Y)- Then it is more reasonable to give answers in terms of

ute proportionally toyZe ™71, which is dominated by the matrix elements in physical un|t§. We have adqpted the strat-
pion. egy of expressing all matrix elements in units of

In this work kaon and pion have equal mass. In the middle<7T|Aﬂ|_O> <0|A#|K>:(fll?nt)tzm§/l at an intermediate stage,
of the lattice, wherd is far enough from both 0 an@, we  and using precomputelf” at the given meson mass to con-
expect to see a plateau, correspondin@e ™='(|O|K).

This plateau is our working regiofsee Fig. 3. L I e B A

As concerns the kaon annihilation matrix elements
(0]0;|K®), we only need their ratio tq0|sysd|K®), in
which the factors\Ze ™ cancel. Indeed, we observe a
rather steady platealrig. 4).

E. B ratios

It has become conventional to express the results for ma- A ]
trix elements in terms of so-called ratios, which are the
ratios of desired four-fermion matrix elements to their values L i
obtained by vacuum saturation approximatiQfSA). For " |
example, theB ratios of operator®, andO, are formed by
dividing the full matrix element by the product of axial-
current two-point functionsFig. 5. We expect the denomi-
nator to form a plateau in the middle of the lattice, equal to FIG. 4. An example of the signal foK0|O,K®) /[(mq
Ze ™" (m|A,|0) - (O]A#|K), whereA* are the axial vector —pm,) (0[sysd|K®] on the Q; ensemble with quark mass 0.01.
currents with appropriate flavor quantum numbers for kaorhe kaon source is at=1. We average over the rangetdiom 5
and pion. The factoZe ™=" cancels, leaving the desirable to 12 (shown with horizontal lines
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0(22)20(12)
=3[(s7,(1= y9)W)(UY*(1— y5)d)

+(sy,(1— y5)d) Uy (1— y5)u)

— (57, (1= y)d)dy*(1—ys)d)]. (18

K n . . .
Q X Q In lowest-order chiral perturbation theory the matrix element

(O,), can be expressed as

FIG. 5. B ratio is formed by dividing the four-fermion matrix

element by the product of two-point functions, typically involving m2 — m? <7T+|O(2)|K+>
A, or P bilinears. All the operators involved are inserted at the (0y),= \/E K ki 2 . (19
same timeslice, and the external meson sources are also located at f mfﬂ
the same timeslices. This enables cancellation of various common
factors. So,
vert to physical units. This method is sensitive to the choice m2 — m2
4 . . . K ol
:)If_ {?e lattice spacing. Our raw results are listed in Tables ReAZZGFVudV:}S7 R,, (20)

It is very important to check that the time distance be-
tween the kaon and pion sources large enough so that the \yhereR, is calculated on the lattice and is defined as
excited states do not contribute. That is, the plateau in the
middle of the lattice should be sufficiently flat, and tBe
ratios should not depend dn We have found that in order to
satisfy this requirement the lattice has to be artificially ex-
tended in time direction by using a number of copies of the
gauge links(four in the case of the small volume Iattices, ) . . )
two otherwis¢. We are usingT=72 for the Qs (3=6.2) The latter matrix element_mvolves only “eight” dlagrar_ns,
ensemble, and =48 for the rest. An example of a plateau gn(_i there are no subtractions to pg mgde. Moreover, in the
that we obtain with this choice oF is shown in Fig. 3. To limit of exact SU(3)ayor symmetry it is directly relatef26]
read off the result, we average over the whole extension d© ParameteB [which is theB ratio of the neutral kaon
the plateau, and USBCKKNIFE to estimate the statistical er- mixing operatorOy = (sy,d) (sy_d)], so that
ror in this average.

(m*]OP|K*)
my

R=z. (21)

Ro=* 2. (1) By() 2. (22
IV. Al =1/2 RULE RESULTS

Using the data obtained for matrix elements of basis op- The parameteBy is rather well studied(e.g., Refs.
erators(raw results are listed in Tables ll3Mn this section  [23,27)). Quenched chiral perturbation thedr®8] predicts
we report numerical results for Rg and ReA, amplitudes  the chiral behavior of the forrB,=a+bmz+cm? log mz,
as well as their ratio. We discuss these amplitudes separatelyhich fits the data wel(see Fig.  and yields a finite non-
since the statistics for R, are much better and the con- zero value in the chiral limit.
tinuum limit extrapolation is easier. The ratio R, shows a large dependence on the meson
mass used in the simulatidifrig. 7). This is not surprising
since bothBy andfy depend on this mass quite significantly
[see Figs. 6 and 8 and E2)]. Which meson mass should
The expression for R&, can be written as be used to read off th®, value for estimation of RA,
becomes an open question. If known, the higher-order chiral
Ge . terms would remove this ambiguity. Forced to make a
REAZZEvudvusz+(l’“)<02(ﬂ)>2’ (160 choice, we extrapolate t2=(mZ+m2)/2. Using our data
for By in quenched QCD and taking the continuum limit we
obtain ReA,=(1.77+0.07)x 10 8 GeV, where the error is
wherez_ () is a Wilson coefficientwe useu=2 GeV) and ~ Only statistical, to be compared with the experimental result
ReA,=1.23x10 8 GeV.
Higher-order chiral terms, including the meson mass de-
(Ox),=((7),-,| O K). (177 pendence, are the largest systematic error in this determina-
tion (see analysis in Sec. IV)COther uncertaintieglattice
scale determination, perturbative operator matching, and fi-
Here nite lattice volume are much smaller.

A. ReA, results
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TABLE Il. Raw data forK— 77 matrix elements: “eights” E), “eyes” (I) and “annihilation” (A) parts of certain matrix elements, as
well as sum totalO) combined byackkNIFE for the Q; (quenched3=6.0) ensemble. The notation is explained in the Appendices, and in
additionLR meansVA—AV. The data are in units df7|A,|0)-(0|A*|K). Lattice results for meson decay consthare also showitin
units of 14) in order to allow translation into physical units.

Quark mass m=0.01 m=0.02 m=0.03 m=0.04 m=0.05
Neont 216 216 216 23 23
AAgy 1.499+0.018 1.208 0.007 1.1290.004 1.07%0.007 1.056:0.010
AAge 1.465+0.040 0.7180.011 0.522-0.005 0.427%0.008 0.388 0.005
VVey —0.341+0.015 —0.100+0.003 —0.045+0.002 —0.025+0.004 —0.019+0.003
VVee —1.709+0.039 —0.838-0.012 —0.552+0.005 —0.392-0.010 —0.325-0.007
SSy —6.610+0.100 —1.933+0.023 —0.891+0.009 —0.471+0.010 —0.307+0.006
SS —6.592+0.075 —2.042+0.017 —0.989+0.006 —0.547+0.007 —0.360+0.004
PPey —263.040-2.312 —123.693-0.735 —81.633-0.331 —60.7350.606 —48.990+ 0.424
PPer —113.1410.995 —52.578-0.311 —34.491+0.139 —25.562+0.252 —20.572-0.176
LRey 0.005*+0.001 0.006:0.000 0.006 0.000 0.005:0.001 0.005 0.001
LRer 0.064+0.003 0.09% 0.003 0.108 0.002 0.10%0.005 0.108 0.008
AAyL 0.421+0.038 0.292-0.016 0.21%0.010 0.13@:0.015 0.1080.012
AAE 0.860+ 0.062 0.60%0.022 0.422-0.012 0.298 0.020 0.2430.017
VViu —0.107=0.039 —0.029-0.017 —0.03Q-0.010 —0.017+0.016 —0.010-0.011
VVe —6.356-0.261 —4.900+0.121 —3.715-0.073 —2.840+0.118 —2.331+0.160
SSu —240.110-4.887 —148.609-2.487 —108.522+1.659 —80.907-2.847 —68.255+3.475
SSe —101.939-2.078 —62.536 1.046 —45.511£0.695 —33.910-1.198 —28.561+1.456
PPy —3.277£0.088 —0.982+0.024 —0.456+0.010 —0.254-0.016 —0.156-0.012
PP —3.538-0.093 —-1.113+0.021 —0.552+0.011 —0.324+0.012 —0.207+0.011
AV —0.117£0.021 —0.062+0.012 —0.025+0.009 —0.011+0.026 —0.012-0.028
AVpir —5.390* 0.096 —4.789-0.043 —4.323-0.021 —3.946-0.043 —3.647-0.036
VAuy 0.416+0.025 0.2870.011 0.2250.008 0.158 0.021 0.1630.012
VAuF 0.895+0.029 0.61@:0.012 0.48%0.008 0.4210.021 0.368:0.014
AV, 0.001+0.012 0.005: 0.005 0.002-0.003 —0.012+0.006 0.01%0.005
AV por —0.026-0.018 0.002-0.005 0.002-0.003 —0.002+0.006 0.004:0.004
VA —0.000+0.012 0.00%0.004 —0.001+0.002 0.00%0.005 0.00%0.004
VAur 0.020+0.015 0.00%0.005 —0.001+0.003 —0.00Q*0.006 0.003:0.004
SPau 0.176+0.021 0.0330.006 0.0050.003 0.003 0.005 0.003 0.004
SPasr 0.081+0.017 —0.031+0.005 —0.04Q+0.002 —0.033-0.005 —0.024+0.003
PSaau —85.827-0.278 —81.799-0.116 —77.678-0.081 —73.540+0.149 —69.678-0.113
PSaor —35.6800.122 —34.0810.050 —32.381-0.034 —30.664-0.062 —29.058+0.049
012 —0.726-0.067 —0.480+0.031 —0.418-0.018 —0.344-0.025 —0.320-0.036
032 0.304+0.004 0.329:0.002 0.3490.001 0.36@:0.003 0.3670.004
032 2.732:0.272 1.93%+0.077 1.522-0.034 1.146:0.059 1.066:0.051
0372 0.304+0.004 0.328:0.002 0.3490.001 0.36@-0.003 0.3670.004
0372 2.989+0.551 2.082:0.172 1.43%0.092 0.912-0.130 0.7810.159
03? 6.447+0.807 4.4930.234 3.37%0.112 2.402-0.178 2.1610.178
032 —26.059-2.016 —16.133-0.646 —12.336-0.346 —9.918+0.588 —7.353:0.625
0g? —55.625+4.975 —35.402+1.546 —26.976-0.849 —22.2681.365 —16.426+1.495
032 92.079-0.917 41.61%0.327 26.7090.163 19.512-0.319 15.97%0.325
0372 54.195+0.469 25.922-0.151 17.338 0.069 13.05%0.123 10.644:0.089
032 222.384-2.214 100.96% 0.780 65.237% 0.394 47.8580.761 39.424:0.784
032 129.802-1.122 61.658 0.362 40.91+0.164 30.5450.295 24.6980.212
032 —2.584+0.272 —1.761+0.077 —1.346-0.034 —0.972+0.060 —0.87Q-0.052
032 0.456+0.006 0.494:0.003 0.523 0.002 0.53%0.005 0.55@ 0.005
0172 0.8747-0.071 0.65@:0.031 0.594:0.019 0.5180.023 0.516:0.037
037 0.456+0.006 0.494:0.003 0.5230.002 0.539-0.005 0.556:0.005

(627+11)x 104

(739+21)x 1074

(828+11)x 1074

(928+16)x 1074

(1153+24)x 104
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TABLE Ill. Raw data forK— m matrix elements: “eights” E), “eyes” (1), and “annihilation” (A) parts as well as sum tot&D)
combined bysackkniFe for the Q, (8=6.0, higher volumeensemble. The data are in units (@f|A ,|0)- (0| A#|K). Lattice results for

meson decay constahtre also showiin units of 14) in order to allow translation into physical units.

Quark mass m=0.01 m=0.02 m=0.03 m=0.04 m=0.05
Neont 26 26 26 26 26
AAgy 1.326+0.036 1.1930.031 1.10%0.003 1.0730.002 1.0420.019
AAge 0.927+0.040 0.605:0.019 0.482-0.004 0.4160.002 0.386:0.007
VVey —0.145-0.010 —0.058-0.003 —0.034+0.001 —0.021-0.001 —0.015-0.001
VVee —1.203-0.041 —0.735:0.022 —0.522+0.005 —0.402+0.003 —0.322+0.006
SSu —6.700=0.225 —2.021x0.057 —0.904*0.007 —0.500+0.003 —0.306+0.006
SS¢ —6.670-0.206 —2.122+0.055 —0.990* 0.004 —0.5710.002 —0.360*0.006
PPey —262.478-7.257 —125.277-3.053 —80.496+0.203 —60.811-0.146 —48.791+0.857
PPer —112.841+3.122 —53.246+1.301 —34.006+0.085 —25.595+0.061 —20.485-0.360
LRey 0.001+0.000 0.00%0.000 0.005:0.000 0.006 0.000 0.00%0.000
LRer 0.008*+0.000 0.012-0.000 0.1030.002 0.106:-0.002 0.0130.000
AAy 0.478-0.034 0.302-0.020 0.1830.011 0.1430.005 0.103-0.004
AAE 0.992+0.059 0.6380.024 0.395:0.010 0.304:0.006 0.222-0.007
VViu —0.168-0.041 —0.054+0.020 —0.021+0.011 —0.028+0.006 —0.019+0.005
VVe —6.694+0.209 —4.955+-0.108 —3.561+0.069 —2.818+0.056 —2.214-0.038
SSu —243.216-3.839 —150.952-2.618 —104.282-1.475 —81.935+1.457 —65.920+0.866
SSr —103.122+-1.644 —63.477-1.103 —43.720-0.617 —34.295-0.611 —27.586-0.362
PPy —3.138-0.078 —1.004*0.025 —0.462+0.011 —0.247+0.008 —0.163+0.004
PP —3.373-0.082 —1.147+0.030 —0.557+0.008 —0.330+0.009 —0.213+0.003
AV —0.097+0.042 —0.053-0.018 —0.037+0.011 —0.020+0.008 —0.004*0.007
AVpir —5.294+0.102 —4.690*0.039 —4.348-0.026 —3.978-0.017 —3.659+0.013
VAuy 0.418+0.037 0.27%0.013 0.2210.009 0.198 0.009 0.156:0.005
VAuF 0.824+0.042 0.59%0.016 0.4680.010 0.402-0.009 0.336:0.005
AVpoy —0.038-0.021 0.003:0.007 —0.002+0.004 0.002-0.003 —0.001+0.002
AV por —0.006+0.028 —0.011x0.010 —0.004* 0.005 0.005 0.002 —0.003*0.002
VA —0.027+0.017 0.006:0.005 0.00%0.003 0.002-0.002 —0.001+0.002
VAur —0.014+0.020 0.008:0.006 —0.002+0.004 —0.004+0.002 0.006:0.002
SPau 0.154+0.021 0.0330.007 0.00%0.004 —0.006+0.002 —0.007+0.001
SPar 0.039+0.015 —0.036+0.006 —0.047+0.003 —0.039+0.002 —0.032-0.001
PSaau —85.672-0.221 —81.961-0.168 —77.765-0.050 —73.718-0.039 —69.916-0.033
PSaor —35.660+-0.100 —34.159-0.071 —32.429+-0.021 —30.747-0.016 —29.164-0.013
07?2 —0.800+0.090 —0.503+0.043 —0.411+0.020 —0.378£0.014 —0.378:0.014
032 0.302+0.009 0.335:0.009 0.3430.001 0.3550.001 0.3550.001
032 2.576+0.189 1.8780.079 1.5210.031 1.2580.025 1.2580.025
032 0.302+0.009 0.335:0.009 0.3430.001 0.3550.001 0.3550.001
032 2.591+0.503 1.9030.187 1.472-0.098 1.021+0.063 1.0210.063
032 5.967+0.626 4.2840.241 3.4040.112 2.65%0.077 2.65%0.077
032 —24.182+3.520 —16.199-1.122 —12.605-0.318 —9.853-0.297 —9.853-0.297
02 —52.364+-8.362 —35.350-2.815 —27.803-0.805 —-21.773-0.716 —21.773-0.716
032 93.034+1.444 42.292:0.777 26.055:0.135 19.526:0.141 19.526:0.141
032 53.821+1.480 26.1880.640 17.0780.041 13.059:0.030 13.0590.030
032 224.874-3.524 102.848 1.887 63.7490.320 48.048 0.339 48.0480.339
032 128.954+ 3.550 62.298 1.519 40.298 0.099 30.564:0.072 30.564:0.072
032 —2.496+0.196 —1.706+-0.082 —1.353-0.031 —1.078-0.024 —1.078-0.024
032 0.453-0.013 0.503:0.013 0.515:0.002 0.5330.001 0.533:0.001
0172 0.880+0.102 0.675:0.043 0.58@:0.018 0.558 0.014 0.5580.014
032 0.453+0.013 0.503:0.013 0.515:0.002 0.5330.001 0.533:0.001

(730+8)x 1074

(851+5)x 104

(966+8)x 104

(1073+7)x10°*

(1176-7)x10*
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TABLE IV. Raw data forK— a7 matrix elements: “eights” E), “eyes” (1), and “annihilation” (A) parts as well as sum tot&D)
combined byJackkNIFE for the Q; (8=6.2) ensemble. The data are in units(af|A,|0)-(0|A#|K). Lattice results for meson decay
constant are also showrin units of 18) in order to allow translation into physical units.

Quark mass m=0.005 m=0.01 m=0.015 m=0.02 m=0.03

N cont 93 93 93 93 92
AAzy 1.858+0.040 1.432-0.019 1.254-0.012 1.209-0.009 1.127#0.006
AAzp 2.514+0.131 1.228:0.039 0.77%0.017 0.666:0.011 0.506: 0.006
VVey —0.647+0.044 —0.227+0.014 —0.098+0.007 —0.071+0.004 —0.032+0.002
VVer —2.970+0.105 —1.583+0.041 —1.013+0.019 —0.838+0.014 —0.577+0.008
SSu —26.445+-0.740 —8.394+0.191 —3.913+0.071 —2.280+0.038 —1.004+0.013
SS¢ —21.265-0.511 —7.022+0.121 —3.431+0.046 —2.064+0.025 —0.968+0.008
PPcy —421.688-6.876 —190.010:2.146 —120.956+ 1.050 —89.033+0.658 —59.246+0.279
PPer —186.537-3.188 —83.104-0.975 —52.194+0.478 —38.418+0.287 —25.380+0.120
LRey 0.004+0.001 0.008:0.001 0.012-0.001 0.012-0.001 0.013:0.001
LRer 0.077+0.008 0.155:0.007 0.206:0.011 0.235:0.009 0.265:0.007
AAy 0.651+0.126 0.648 0.055 0.556:0.041 0.4210.024 0.30%0.011
AAE 1.313+0.172 1.2240.072 1.0730.057 0.903:0.042 0.656:0.021
VViy —0.036+0.112 —0.011+0.052 —0.108+0.035 —0.076+0.025 —0.042+0.012
Ve —11.387-1.081 —11.235-0.432 —10.047-0.481 —8.612+0.300 —6.758+0.172
SSu —424.398-12.231 —307.683-7.808 —258.961+9.757 —212.161+6.490 —164.6113.885
SSe —182.318-5.323 —130.996+3.329 —109.181+4.056 —89.852:2.717 —69.605-1.632
PPy —11.640-0.467 —3.821+0.127 —1.958+0.086 —1.165+0.042 —0.562+0.017
PP, —9.974+0.381 —3.501+0.102 —1.965+0.079 —1.188+0.038 —0.628+0.014
AV —0.103+0.031 —0.054+0.016 —0.037+0.015 —0.045+0.013 —0.036+0.010
AVair —4.484+0.249 —4.054+0.099 —3.924+0.054 —3.813+0.032 —3.600+0.018
VAL 0.407+0.033 0.233:0.017 0.222-0.013 0.194:0.011 0.166:0.008
VAuF 0.782+0.053 0.508:0.022 0.436:0.013 0.407%0.010 0.352-0.007
AVou —0.020£0.012 0.006: 0.004 0.003:0.002 0.00%0.002 —0.000+0.001
AV e —0.021+0.026 0.005: 0.006 0.002-0.003 0.006:0.002 0.006:0.001
VAU 0.009+0.015 —0.005+0.004 0.00%0.002 —0.000+0.001 —0.000+0.001
VAuor 0.042+0.019 —0.003+0.005 —0.004+0.003 0.003:0.002 —0.001+0.001
SPay 0.516+0.048 0.135:0.014 0.0310.007 —0.007+0.004 —0.027+0.002
SPaor 0.287+0.032 0.026:0.010 —0.041+0.005 —0.063+0.002 —0.065+0.001
P Sau —75.099+0.315 —75.664+0.130 —74.992-0.072 —73.901+0.046 —71.282-0.027
P Suor —31.270-0.145 —31.802-0.073 —31.396+0.056 —31.133-0.047 —30.041-0.045
07?2 —1.129+0.203 —0.561+0.081 —0.629+0.053 —0.517+0.044 —0.401+0.023
032 0.252+0.010 0.283:0.003 0.305:0.003 0.322:0.002 0.33%0.002
032 3.477+1.315 1.948 0.439 1.8830.228 1.502-0.105 1.226:0.051
032 0.252+0.010 0.283:0.003 0.305:0.003 0.322:0.002 0.33%0.002
03?2 3.279+2.473 1.9210.860 1.558-0.483 1.1230.260 0.898:0.120
032 7.885+3.815 4.42%1.293 4.07@:0.693 3.13%0.336 2.5190.157
032 —32.000+ 4.403 —18.586+1.769 —13.684+1.376 —11.871£0.717 —7.526+0.420
02 —68.245+11.915 —40.623-4.435 —28.721+3.468 —26.246+1.750 —16.554+ 0.965
o¥? 146.448-2.604 65.609-0.959 41.12%0.621 29.642-0.348 19.999 0.200
032 83.888+1.363 38.8710.437 25.05%0.221 18.8170.135 12.786:0.059
03? 350.563-5.938 157.286:2.201 99.768:1.502 71.553:0.874 48.5640.479
032 200.364+3.133 92.214:1.001 59.413-0.497 44.1280.317 29.666:0.137
032 —3.333+1.316 —1.801+0.440 —1.722+0.229 —1.335+0.106 —1.051+0.051
032 0.378+0.014 0.424-0.005 0.4570.004 0.483:0.003 0.50% 0.002
o1z 1.273+0.213 0.70%0.082 0.78%0.054 0.683:0.045 0.576:0.023
o3 0.378+0.014 0.424-0.005 0.4570.004 0.483:0.003 0.50% 0.002

(407+5)x 104

(451+4)x 1074

(492+4)x 1074

(536+4)x 1074

(611+4)x 1074

074502-9



D. PEKUROVSKY AND G. KILCUP PHYSICAL REVIEW D64 074502

TABLE V. Raw data forK— mr matrix elements: “eights” E), “eyes” (1), and “annihilation” (A) parts as well as sum tot&D)
combined byAckkNIFEe for theD (Ny=2, 8=5.7) ensemble. The data are in unitg@fA ,|0) - (0] A#|K). Lattice results for meson decay
constant are also showrfin units of 18) in order to allow translation into physical units.

Quark mass m=0.01 m=0.02 m=0.03 m=0.04 m=0.05
Ncont 83 83 32 33 33
AAzy 1.593+0.039 1.233:0.014 1.133-0.013 1.087%0.009 1.062-0.006
AAzr 1.595+0.088 0.738:0.016 0.508:0.012 0.425:0.007 0.384:0.004
VVey —0.375:0.031 —0.115+0.006 —0.049+0.004 —0.028+0.002 —0.018+0.001
VVer —1.867+0.084 —0.820+0.019 —0.515+0.015 —0.377+0.009 —0.300+0.005
SSu —5.520+0.192 —1.435+0.032 —0.625+0.018 —0.346+0.008 —0.215+0.005
SS¢ —5.937+0.151 —1.659+0.027 —0.775+0.015 —0.448+0.007 —0.289+0.004
PPcy —289.852:5.473 —129.095-1.377 —85.485+1.009 —64.048-0.570 —51.605+-0.373
PPer —125.605+-2.369 —55.361+0.590 —36.469+0.428 —27.245-0.240 —21.911+0.157
LRey 0.002+0.001 0.004:0.000 0.003:0.001 0.002-0.000 0.002-0.000
LRgr 0.040+0.003 0.059-0.003 0.05%0.004 0.056:0.003 0.052-0.002
AAy 0.483+0.082 0.378:0.033 0.193:0.036 0.1230.017 0.095:0.015
AAE 1.022+0.104 0.7230.046 0.438:0.041 0.306:0.020 0.216:0.015
VViy 0.023+0.094 —0.075+0.040 —0.030+0.035 —0.026+0.017 —0.020+0.014
V'V —8.735:0.742 —6.268+0.259 —4.314+0.280 —3.136+0.162 —2.374+0.106
SSy —294.011+11.938 —167.898-4.893 —115.824:5.170 —86.549+3.057 —68.230+2.059
SSe —125.822+5.060 —71.428-2.086 —49.094+2.189 —36.664+1.293 —28.897-0.871
PPy —2.590+0.135 —0.761+0.038 —0.299+0.029 —0.192+0.013 —0.120+0.012
PP, —3.015-0.131 —0.965+0.045 —0.492+0.039 —0.294+0.017 —0.185+0.012
AV —0.102+0.030 —0.055+0.021 —0.047+0.027 —0.031+0.017 —0.036+0.021
AVair —6.464+0.156 —5.606+=0.052 —4.999+0.047 —4.523+0.031 —4.090+0.020
VAL 0.488+0.034 0.305:0.020 0.21%0.026 0.18%:0.016 0.154:0.014
VAuF 1.012+0.036 0.672:0.022 0.576:0.025 0.4710.013 0.382:0.012
AV o0, —0.012+0.016 0.001-0.008 —0.001+0.009 —0.002+0.006 —0.006+0.005
AV e —0.014+0.024 —0.007+£0.008 0.016-0.009 0.004:0.006 0.005: 0.006
V Asoy —0.010=0.016 0.0110.006 0.002-0.007 —0.000+0.003 0.002-0.003
VAnor 0.012+0.020 0.004:0.008 0.004:0.009 —0.000+0.004 —0.003+0.005
SPay —0.009+0.031 —0.055+0.007 —0.045+0.006 —0.035+0.003 —0.024+0.002
SPar —0.102+0.028 —0.123+0.006 —0.094+0.006 —0.068+0.003 —0.050+0.002
P Sau —99.624+0.485 —92.338-0.199 —85.628-0.182 —79.8970.121 —74.8010.090
P Suor —42.080-0.213 —39.033-0.087 —36.209-0.078 —33.783-0.052 —31.632-0.038
072 —0.886+0.139 —0.482+0.068 —0.387+£0.070 —0.359+0.036 —0.300+0.028
032 0.315+0.011 0.345:0.004 0.35%0.004 0.36%0.003 0.376:0.002
032 4.558+0.621 2.304:0.139 1.61%0.097 1.32%0.061 1.13%0.042
032 0.315+0.011 0.345:0.004 0.359:0.004 0.36%0.003 0.376:0.002
032 6.193+1.236 2.802-0.318 1.686-0.291 1.205:0.171 0.998:0.126
03? 11.636+1.833 5.588:0.419 3.683:0.327 2.8910.204 2.435:0.144
0y? —46.800+ 3.109 —24.184-1.182 —16.060+0.834 —11.625+0.550 —8.890+0.433
03? —99.356+ 7.610 —52.041+2.682 —34.328+-1.825 —25.144+1.227 —19.409+0.956
o¥? 94.131+1.816 40.842-0.582 26.982-0.442 20.369:0.275 16.607%0.192
032 60.818+1.141 27.525:0.290 18.438:0.213 13.956:0.121 11.35%0.079
03? 224.179-4.337 97.842-1.388 65.316:1.079 49.4840.673 40.4730.474
032 143.897:2.705 64.609:0.686 42.94%0.506 32.252-0.285 26.03%0.186
032 —4.425+0.623 —2.125+0.141 —1.423+0.097 —1.142+0.061 —0.949+0.043
032 0.473+0.016 0.518:0.005 0.53%0.006 0.5540.004 0.563:0.003
o1z 1.019+0.145 0.662-0.070 0.5750.073 0.545:0.037 0.487-0.029
o3 0.473+0.016 0.518:0.005 0.53%0.006 0.554:0.004 0.563:0.003

(541+11)x 104

(676+10)x 104

(800+9)x 104

(936+12)x 104

(1035+14)x 104
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FIG. 6. ParameteBy in NDR MS scheme at 2 GeV on the FIG. 8. Pseudoscalar decay constahkt,£93 MeV in con-
dynamical ensemble vs the meson mass squared. The fit is of tH§uum on the dynamicab (squaresand quenche®; (diamonds
form B =a+bmZ+cm? logm? . The vertical line here and in the €nsembles vs meson mass squared.
other plots below marks the physical kaon mass.

B, ReA. results 0= (s7,(1- 75))(UY*(1—y5)d)
. 0

Using Egs.(13) and(14), ReA, can be expressed as —1(57,(1— y5)d)(UY*(1— y5)u)+ 5 (57,(1

mg —m? —5)d)(dy*(1- ys)d). (29

Ge
Ro. (23

ReAO:EVudV:s—
All contraction types are needéds opposed to the cal-
culation of ReA,), including the expensive “eyes” and “an-
nihilations.” The results for quenche@=6.0 and 3=6.2
<ﬁ_+|oi(o)|K+>S ensembles are shown in Fig. 9 Depgndenc@@fon the
ROEE Z———. meson mass is small, so there is no big ambiguity about the
i m mass prescription as in tH®, case. Considerable cutoff de-
] o e pendence is preseffig. 10.
Here z; are Wilson coefficients, and the subscrit”indi- ~ * \\e have checked the lattice volume dependence by com-
cates+that theie ma}'([)r)lx ele_ment_s already include subtractlo‘paring ensemble®; andQ, (1.6 and 3.2 fm aB=6.0). The
of (77|OsdK™). O] are isospin 0 parts of operato®  gependence was found to be small, so we congitiérfm)?

where

2

(given in Appendix B for completeness=or example, as a volume large enough to contain the system. We have
©0)_ 2= — also checked the effect of quenching and found it to be small
07 /=5(sy,(1—y5)d)(Uuy*(1— ys)u) compared to noisésee Fig. 11 In addition, there is an op-
L — — erator matching uncertainty coming from mixing ©§ with
—3(87,(1= y5)u)(uy*(1-ys5)d) in di i i
3\ 5 5 Og operators through penguin diagrams in lattice perturba-
37,1y DAy (1-ye)d), (24 —————
L S I 015 — Quenched ]
0.04 — ® — B @E 1
- m i - o o 4
- 3 o
- f 1 0.10 9 B i
i ] - L % g x ]
0.02 __ __ 0.05 :_ 0 B =6.0, L=3.2 fm_:
| © B=6.0, N;=0 : L O@ =6.0, L=1.6 fm -|
L 0 =57, Nj=2 i i X § =6.2, L=1.7 fm |
0‘00 v 1 0.00 L 1 1 1 1 | 1 1 1 1 ‘ 1 1 ]
C 1 1 1 1 | 1 1 1 1 | 1 1 1 1 - O_O 0,5 1.0
0.0 0.5 1.0 1.5 m?,, GeV*
mMa, GeV?

FIG. 9. Matrix elementR, for quenched ensembles plotted
FIG. 7. Matrix elementR, computed on the dynamicdD against the meson mass squaredARés proportional to this quan-
(squaresand quenche@; (diamond$ ensembles. R&, is propor- tity in the lowest order in chiral perturbation theory. The upper
tional to this quantity in the lowest order in chiral perturbation group of points is for ensembl€3; andQ,, while the lower group
theory. The horizontal line shows the value corresponding to thés for Q5. Only statistical errors are shown. The horizontal line
experiment. shows the value corresponding to the experiment.
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FIG. 12. Contribution of various operators to Rg

FIG. 10. ReA, for quenched ensembles plotted against lattice
spacing squared. A naive extrapolation to the continuum limit isunknowns can lead to vastly different results. So we can only
made. The horizontal line corresponds to the experimental result astimate the order of magnitude of higher-order chiral terms,
27.8<10°° GeV. Only statistical errors are shown. for example by choosing a reasonable valueXaand evalu-

ating only chiral loggsetting the contact terms to zero
tion theory. This is explained in Sec. V A. We estimate that For Al =1/2 amplitude, the final state interactions tend to
this uncertainty does not exceed 20% for all ensembles. jncrease RA, by about 30%, according to Rel29]. The

The breakdown of contributions of various basis operatorgne-loop chiral corrections also change the relative weights
to ReA, is shown in Fig. 12. By farO, plays the most of K7 and K—0 matrix elements, and since these two
important role, whereas penguins have only a small influxontributions have different signs, the total Reamplitude
ence. is extremely sensitive to these corrections. It tends to de-
crease considerably after the one-loop corrections have been
put in.

For the AI=3/2 amplitude, the effect of neglecting
Qigher—order chiral terms is present in the large dependence
the amplitude on the meson mass, as well as in the neglect
final state interactions. One-loop chiral terms, if included,
would bring the values for R&, down by approximately
30% or more(according to estimates in Rdfl9]).

Using results of Ref[30] (accounting only chiral logs
we obtain that for the meson mass equal to kaon mass the
ratio ReA,/ReA, increases(i.e., Al=1/2 rule becomes
weakej roughly by two times compared to the lowest order

C. Al =1/2 rule results and errors

Shown in Fig. 13 is the ratio R&,/ReA, as directly
computed on the lattice for quenched and dynamical dat
sets. The data exhibit strong dependence on the meson mag%
primarily due to the chiral behavior of Re (compare with 0
Fig. 7). Taking the meson mass &% /2 we obtain

eA,
ReAq

=0.044+0.010 (stap +0.024 (sys}. (26)

The central value is based on the dynamial 5.7 results. . . .
The predominant source of systematic error in this ratio igh Chlra_ll_expansmn. _

higher-order chiral terms. Unfortunately a rigorous study of Additional systematic errors are rather small compared to

these terms is impossible at present because they involvetge chiral approximation error. The lattice cutoff dependence

cutoff parameter\ which is known only approximately, and

. : 0.4 T T T T T T T T T T j—
the higher-order momentum expansi@ontact termps pa- - ! | 1
rameters are not known at all. Various combinations of these - 1
~ 03 -]
50 ——r—— — —— = L :
C | | ] o - E
L ] 241 - 4
40 F ] S 0RE ]
r ] 3 " ]
- N ﬁ ] = L E O D: g=5.7, N=2 -
[ C ] [ B b
© _F ] o B X @, =60, N=0 ]
@ 30 o o X @* - 0.1 o Qg f=6.2, N;=0 —|
S ¥ "¢ © 1 Y ]
<:é 20 [ ] 0.0 ¥ 1 ( ( 1 | ( ( ( I ‘ 1 1 1 ( ]

e X N=2 ] 0.0 0.5 1.0 1.5

10 = O N=0 — m’, GeV?
o N FIG. 13. ReA,/ReA, vs the meson mass squared for quenched
0.0 0.5 1.0 15 and dynamical ensembles. Ensemb@sand D have comparable
m,°, GeV? lattice spacings. Solid lines correspond to fits made thra&pghnd

FIG. 11. Comparison of quenche®{) and dynamical results

for ReA, at comparable lattice spacings.

D data. The horizontal dashed line shows the experimental value of

JACKKNIFE.
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____________

(a) ! FIG. 14. Example of four kinds of diagrams
(b) with an arbitrary number of loops arising in
; . renormalization of four-fermion operators: {a)
5 and(b) no propagator crosses the box or the axis;
; (c) and (d) exemplify the rest of the diagrams.
The rectangle drawn in dotted line iib) corre-
sponds to operator structuRePg .

(d)

does not appear significant for this ratio, as opposed to eackhereby the same coupling constant as in the continuum

individual amplitude. Finite volume effects are smaller than(gwys) is used. The operators are matched at an intermediate

noise. The error due to operator matching is estimated to bscaleq* and evolved using the continuum renormalization

about 20%(see previous subsection and Sec. ¥ A group equations to the reference scalewhich we take to
Keeping in mind the above systematic uncertainties, oube 2 GeV.

results are broadly consistent with experiment. They confirm In calculation of Re\, and ReA,, the main contributions

the understanding that most of thel =1/2 enhancement come from left-left operators. One-loop renormalization fac-

comes from the “eye” and “annihilation” diagrams. tors for such(gauge-invariantoperators were computed by
Ishizuka and Shizaw81] (for current-current diagramsind
V. OPERATOR MATCHING by Patel and Sharg@2] (for penguin diagrams These fac-

tors are fairly small, so at the first glance the perturbation

As mentioned before, we have computed the matrix eletheory seems to work well, in contrast with the case of left-
ments of all relevant operators with reasonable statistical agight operators essential for estimatisg/e, as described
curacy. These are regulated in the lattice renormalizatiomelow. However, even in the case of Rgthere is a certain

scheme. To get physical results, operators need to bgmpiguity due to mixing ofO, with O4 through penguin
matched to the same scheme in which the Wilson coefficientgjagrams. The matrix element @ is rather large, so it

were computed in the continuum, name\TS NDR. While
perturbative matching works quite well for Rg and ReA,, 30

it seems to break down severely for matching operators rel- s ' o S ' ]
evant fore'/e. 20 - o A
% C A4 @ @ o 7
[ - 4
A. Perturbative matching and ReA, © 10 |~ zi‘yge“ 1
. . . % C x Sub ]
Conventionally, lattice and continuum operators are S - [ Total .
matched using lattice perturbation theory: » 0 — .
© I i
m - ] o o o
conty % lat gz(q*a) * lat -0 » % X x x_—
Of°"(g*)=0; +—22 (7ij In(g*a)+C;;)O; - 1
16m" i P SR I I B
4 n 0.0 0.5 1.0
+0(g")+0(a", 27 D e
where y;; is the one-loop anomalous dimension maftixe FIG. 15. Three contributions tbr*|Og|K™): “eight” (boxes,

same in the continuum and on the latlicandC;; are finite  “eye” (diamond$, and “subtraction” (crosses These data repre-
coefficients calculated in one-loop lattice perturbation theorysent bare operators for the dynamical ensemble. The fit is done for
[31,32. We use the “horizontal matching” proceduf83],  the sum total of all contributions.
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TABLE VI. (7" 7 |0g|K® for the Q; ensemble in units of (GeV)with tree-level matchingbare; with one-loop perturbative
matching using two values af* ; and with matching obtained by the partially nonperturbative procedure. The errors are statistical, except
for the last line, where the first error is statistical, the second one comes from uncertainty in our determinatien@f,, and the third
one is an estimate of higher-order diagrams. As mentioned in the text, there is an unknown uncertainty in the partially nonperturbative
procedure.

Quark 0.01 0.02 0.03 0.04 0.05
mass

Bare —2.95-0.27 —2.61x0.11 —2.50+=0.08 —2.60£0.16 —2.94+0.27
g*=mla —0.69+0.10 —0.66-0.04 —0.66+0.03 —0.73£0.06 —0.83£0.09
g*=1/a 0.01+0.07 —0.07£0.03 —0.11+0.02 —0.19£0.04 —0.20+£0.03

Partially 2.03+0.07+0.42+0.62 0.74-0.03+=0.37+-0.02 0.44:0.02t£0.31+0.03 0.23:0.03+0.28+0.02 0.25-0.05*+0.36*+0.02
nonpert.

heavily influencegO,) in spite of the small mixing coeffi- which are main parts of, correspondingly, “eight,” “eye,”
cient. The operatoOg receives enormous renormalization and “subtraction” components ddg and Og (see Appendix
corrections in the first order, as discussed below. ThereforeB). The finite renormalization coefficients for these operators
there is an ambiguity as to whether the mixing should beéhave been computed in R¢B2]. The diagonal coefficients
evaluated with renormalized or ba@;. That is, the higher- are very large, so the corresponding one-loop corrections are
order diagram$such as Figs. 1) and 14d)] may be quite in the neighborhood of-100% and strongly depend on

important here. which g* is used (refer to Table V). Thus perturbation
In order to estimate the uncertainty of neglecting highertheory fails in reliably matching the operators in E¢28).
order diagrams, we evaluate the mixing witly renormal- The finite coefficients for othefsubdominantoperators,

ized by the partially nonperturbative procedure described befor example PP)er, (S9ey, and SSgr, are not known
low, and compare it with results obtained by evaluatingfor formulation with gauge-invariant operatdr§or illustra-
mixing with bareOg. The first method amounts to resumma- tion purposes, in Table VI we have used coefficients for
tion of those higher-order diagrams belonging only to typegauge noninvariant operators computed in R&R], but

(b) in Fig. 14, while the second method ignores all higher-strictly speaking this is not justified.

than-one-order corrections. Results quoted in the previous To summarize, perturbative matching does not work and
section were obtained by the first method, which is also clossome of the coefficients are even poorly known. A solution
to using tree-level nondiagonal matching. The secondvould be to use a nonperturbative matching procedure, such
method would produce values of Rg lower by about 20%. as described in Ref34]. We have not completed this proce-
Thus we consider 20% a reasonable estimate of the matchirdure. Nevertheless, can we say anything akdut at this

uncertainty. moment?
In calculatings '/ e the operator matching issue becomes a
much more serious obstacle as explained below. C. Partially nonperturbative matching

As a temporary solution, we have adopted a partially non-
B. Problems with perturbative matching perturbative operator matching procedure, which makes use
f bilinear renormalization coefficien, andZg. We com-
ute the latter{35] following the nonperturbative method
uggested by Martinellet al. [36]. Namely we study the
pverse of the ensemble-averaged quark propagator at large

The value ofe'/e depends on a number of subtle cancel-°
lations between matrix elements. In particular, in the existin
literature Og and Og have been so far considered the mos;[]i
important operators whose contributions have opposite sig ) ) ;
and almost cancel. Furthermore, the matrix elements of indi(—)ﬁ'She” momenta in a flxeﬂ_anda_l) gauge. An estimate of
vidual operators contain three main componefisghts,” thg renormalization of four-fermion operators can be ob-
“eyes,” and “subtractions’), which again conspire to almost talncednaisdfcr)llom:s.n rmalization - q lar-
cancel each other oysee Fig. 15 Thuse'/e is extremely onside enormaiizatio 0 € pseudoscaia

seudoscalar operator in E@83. At the one-loop level, the

sensitive to each of these components, and in particular tg. | lizati fficierE.p (involving di
their matching. iagonal renormalization coefficien€pp (involving dia-

Consider fermion contractions with operators such as grams shown in Fig. 16is almost equal to twice the pseu-

(PP)ey=(sys5®&s5u)(Uuys® &sd), (289
Ipatel and Sharpg32] have computed corrections for gauge-
_ _ noninvariant operators. Operators in E&8) have zero distances,
(S9u=(sleld)(dixld), (28b) so the corrections are the same for gauge-invariant and the nonin-
variant operators. Renormalization of other operattitsse having
nonzero distanceésgenerally differs from the gauge-noninvariant

(PS)azu=(575® &5d) (d1®1d), (280  operators.
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E estimate of PP){’™ is obtained. This procedure is quite

! similar to the tadpole improvement idea: the bulk of diagonal

: renormalization is calculated nonperturbatively, while the
rest is reliably computed in perturbation theory. Analogously

E we obtain diagonal renormalization of operato&y,, and

: (PS a2y by using

2

9% —
Csst 0(94))

(a) _ 52
Zss=2g 1+ @

and

» Zps=Zslp

(Note thatZp+# Zg, even though they are equal in perturba-
(b) tion theory) We match operators at the scajg=1/a and
FIG. 16. Example of one-loop diagrams arising in renormaliza-YS€ the continuum two-loop anomalous dimension to evolve
tion of four-fermion operators: in typ@) no propagator crosses the tou=2 GeV.
axis, and typeb) includes the rest of the diagrams. Unfortunately, the above procedure does not completely
solve the problem of operator renormalization, since it deals

doscalar bilinear correctio@p . This suggests that, at least at ©Nly with diagonal renormalization of the zero-distance op-
one-loop level, the renormalization dPP) g, comes mostly ~ €rators in Eqs(2_8). Even though these operators are domi-
from diagrams in which no gluon propagator crosses the vefant in contributing ta:'/e, other operatorgsuch as $9ey
tical axis of the diagranffor example, diagranta) in Fig. ~ @nd (PP)gg] can be important due to mixing with the domi-
16], and very little from the rest of the diagrarfisuch as nant ones. The mixing coefficients for these operators are not
diagram(b) in Fig. 16]. In other words, the renormalization known even in pe_rt_urbanon theory. For a reasongble estimate
of (PP)g, would be identical to the renormalization of prod- We use the coefficients obtained for gauge-noninvariant op-
uct of two pseudoscalar bilinears, were it not for the dia-€rator mixing[32].

grams of type(b), which give a subdominant contribution. _ Second, since renormalization of operator8P)ey,
Mathematically, (S9u, and P,y is dramatic their influence on other

operators through nondiagonal mixing is ambiguous at one-
(PP)S=(PP)& Zpp+ -+, loop order, even if the mixing coefficients are known. The
ambiguity is due to higher-order diagranior example,
with those shown in Fig. D4In order to partially resum them we
use operatorsRP) gy, (S9,u, and P S) A,y multiplied by
9% — . factorsZ2, ZZ, andZpZs, correspondingly, whenever they
16W2CPP+O(9 )| (29) appear in nondiagonal mixing with other operators. This is
equivalent to evaluating the diagrams of ty(a and (b) in
Fig. 14 at all orders, but ignoring the rest of the diagrams
CpotO(g") (30 [such as diagram&) and(d) in Fig. 14] at all orders higher
' than first. A completely analogous procedure was used for
mixing of Og with O, through penguins when evaluating
and dots indicate mixing with other operatdroondiagonal ReA,. To estimate a possible error in this procedure we com-
part. The factorfj\p;chp—ch contains diagrams of type Pare it v_vith a simpler o_ne,_whereby bare operators are used
(b) in Fig. 16 and is quite small. in nondlqgonal correcpone.e., we apply strictly one-loop
In order to proceed, it may be reasonableagsumethat renormallzan_om The difference ine’/e between these two
the same holds at all orders in perturbation theory; namelfPProaches is of the same order or even less than the error
the diagrams of typéc) in Fig. 14 give subdominant contri- dué to uncertainties in determination @ and Zs (see
bution compared to typ) of the same figure. This assump- rables Vil and VII).
tion should be verified separately by performing nonpertur-
bative renormalization procedure for four-fermion operators.
If this ansatz is true, we can substitute the nonperturbative 2For example, am,=0.01 andu=2 GeV for theQ; ensemble
value of Zp into Eqg. (29) instead of using the perturbative we obtain Zpp=0.055=0.007, Zps=0.088+0.007, and Zgg
expression from Eq(30). Thus a partially nonperturbative =0.142+0.010.

9° —
1+ @CPS_’_ o(g")

2

Zpp=23| 1+

2

Zo=1+
P 1672
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TABLE VII. &'/¢ in units of 10 % for Q; ensemble, computed in three wayk1 1) with ReA, and ReA, taken from experiment;\j 2)
with  taken from experiment, and Rg amplitude from our simulation;\ 3) with both ReAy and ReA, from our simulation. In all cases,
partially nonperturbative matching has been used to obtain the results. In all perturbative corrections we have used one-loop nondiagonal
coefficients computed for gauge-noninvariant operators, which are assumed to be of the same order as those for gauge-invariant operators.
The first error is statisticdlbbtained by combining the individual errors in matrix elementSAQKKNIFE). The second error is the diagonal
operator matching error due to uncertainty in the determinatioB0énd Zg. In order to estimate the nondiagonal matching error we
compare two renormalization procedures: using strictly one-loop nondiagonal corrdat@rsted {(1-loop” ], and resumming part of
higher-order corrections in nondiagonal mixing by using nonperturbative renormalization fAgtarslZg (as explained in Sec. V)CThe
latter method is denoted(.r.).” Some other parameters used in obtaining these results ae;#h.5x 10”4, m=170 GeV,m,=4.5 GeV,
m,=1.3 GeV, ), ,,=0.25, a%:(”(z GeV)=0.195 (the latter is based on setting the lattice scalepbgneson mags Short distance
coefficients were obtained by two-loop running using the anomalous dimension and threshold matrices computed diyaB{it&$

Quark 0.01 0.02 0.03 0.04 0.05
mass
M1 (p.r) —61.2-2.8+10.6 —27.4+0.9+8.9 —16.8-0.5+8.0 —8.0£0.9£7.2 —4.4x0.9x7.2
M1 (1-loop —52.3:2.2+10 —22.0+0.8+8.3 —12.2-0.5+6.9 —4.2+1.1+6.5 —1.2+1.0+6.6
M2 (p.r) —38.6-2.1£6.0 —18.7+-0.3£7.0 —11.7£0.2+6.0 —6.1+0.5+5.3 —3.1£0.5+4.9
M2 (1-loop —45.4+-3.5£8.6 —18.8-0.4£7.0 —10.3£0.3+6.0 —3.7£0.8+5.8 —0.9£0.8+5.2
M3 (p.r) —97£14+13 —81+4+23 —79£2+27 —81+5+38 —74+4+38
M3 (1-loop —142+28+29 —88+5+35 —75£2*+39 —64+4+52 —55£5+51
VI. ESTIMATES OF &'/¢ There are several ways to make a numerical prediction for

e'le. One can use the experimental values ofAgeand
ReA, in Eq.(6) (M1), or one can use the values obtained on
3he lattice M3). One can also adopt an intermediate strategy
Vo using the experimental amplitude rati® and computed
ReAy (M2). All three methods are presented in Tables VI
i ; nd VIII and Fig. 17. When the higher-order chiral correc-
compared fo noise. Lattice cutoff dependence also seems ns are taken into account and the continuum limit is taken

b?/ small(seef Fig. 18 TTe mal? ;]J.ncerga}mty ml estlrdnat|ngd (so thatw=22), these three methods should converge. In the
& /e comes from operator matching, diagonal, and NoNdhy,q5ntime  the spread can be taken as an error estimator. In
agonal. For diagonal matching the uncertainty comes from:

_ X ) L rder to quote the central value we prefer the intermediate
(Zl) ;ﬁ'gtm:r!f?rgﬁ ('2) tgskggnwaeggg?zgvgf ?/Ztlgi?;'%aftf:r Of?M 2) method, since herein the overall error due to final state
P S

.interactions cancels between real and imaginary par#s,of

ansatz. in Sec. VC. For nondiagonal matching, the error '%mplitude, while the relative size df, andIl, contributions
due to:(3) unknown nondiagonal coefficients in the mixing is given by the physicab. Thereby we obtain

matrix and(4) ambiguity of accounting higher-order correc-
tions. The error1), as well as the statistical error, is quoted Re(e'/e)=(—38.6+2.1 (stay=9.1 (sysh)x 10 *.

in Tables VII and VIII. The size of the errof4) can be (31
judged by the spread im’/e between two different ap-
proaches to higher-order correctiofstrictly one-loop and
partial resummation also presented in Tables VIl and VIII.
The error(3) is likely to be of the same order as the er¢éy.
The error(2) is uncontrolled at this point, since it is difficult
to rigorously check our assumptions made in Sec. V C. In
Fig. 17 we combine the statistical error with err¢is and We have presented in detail the setup of our calculation of
(4) in quadrature. hadronic matrix elements. Statistically reliable numbers for

Within the procedure outlined in Sec. V we have found
that(Og) has a different sign from the expected one due to
large renormalization factor. This translates into the negati
sign of Re ¢'/¢) (Tables VII and VIII and Fig. 1),

Finite volume and quenching effects were found small

The central value is based on quenclied6.0 data, taken at
the kaon mass. The quoted systematic error includes only the
errors(1) and(4) discussed above.

VII. CONCLUSIONS

TABLE VIII. ¢'/e results for theQ; ensemble g=6.2). See caption of Table VII for details.

Quark mass 0.005 0.010 0.015 0.020 0.030
M1 (p.r) —68.1+6.9x36.0 —33.6£2.9£23.9 —24.9+1.8£22.0 —14.8£1.0+24.8 —10.3£0.6£19.6
M1 (1-loop —60.9+6.9+31.2 —29.3£2.9£21.0 21.4-1.9+194 —11.8£1.1+£21.9 —7.9£0.7£17.3
M2 (p.r) —43.9+9.5+16.5 —33.1+3.8£18.3 —22.1+1.2+16.4 —14.2£0.4£20.3 —9.5£0.3£16.1
M2 (1-loop) —53.6£16.9-25.0 —37.9£6.0£25.3 —23.0£1.5£20.0 —13.6£0.6:24.3 —8.5£0.5+18.0
M3 (p.r) —63.3+35.1+15.5 —103.9:31.7+45.2 —82.4+12.9+51.0 —74.9+5.7-88.0 —80.4+3.9-92.3
M3 (1-loop —98.3+72.9+46.2 —138.1+53.1+101.5 —92.4+16.3-86.3 —72.6+5.7-142.0 —73.5+£4.0=131.0
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ing (estimated 20% lattice cutoff dependencédess than
- noise, finite volume(less than noise
To summarize, we find thakl=1/2 transitions are en-

[0 —
T - % % ¥ & 1 hanced with respect thl = 3/2 onedthe ratio above is much
- i _% ] less than }, and that “eye” and “annihilation” diagrams are
N | | essential to such enhancement. The degree of enhancement,
“ _jo0l— g _ while estimated with sizable systematic error, is consistent

L - with experiment.

- L xwt owe owms 1 As mentioned in the previous section, our numerical esti-
mates ofe'/e in Tables VII and VIII as well as Figs. 17 and

18 are also subject to considerable systematic uncertainties.
As our “best” value, we quote

0.5 1.0
mKZ, GeV?

FIG. 17. An estimate ot'/e for the Q; (B8=6.0) ensemble
using the partially nonperturbative procedure described in the text.
Three sets of points correspond to using experimentahRand
ReA, in Eqg. (6) (crosses using our R&\, but experimentako
(diamond$, or using ReA, and ReA, obtained from our calcula-
tions (squares All other details are the same as in Table VII. The
error shown is a combination of the statistical error, a matchingThe central value is based on quencl#z€6.0 data, taken at
error coming from uncertainties in the determinatiorzpfandZg,  the kaon mass. The quoted systematic error includes the er-
and an estimated uncertainty in nondiagonal mixing of subdominantors that can be estimated as discussed in Sec. VI. In addi-
operators. The horizontal dashed line indicates the experimentgjon, the following errors are not includddue to difficulty
value from Fermilab. of estimation: (1) the validity of assumptions made in partial
nonperturbative operator matching, aj higher-order chi-

?;!n%%ergtgézénot:?htgse's dg?;'r\];g ;:;\/Ee@%:ggengriee?iggesrﬁl terms. The effects of quenching, finite volume, and finite
' , Itattice cutoff are found small compared to noise and other
mates of Ré\y, ReA,, ande'/e.

For the ratio of theAl =3/2 andAl=1/2 amplitudes we Inaddition, our estimates of both'/e and

Re(e'/e)=(—38.6+2.1 (stah=9.1 (sysh)x 10 4.
(33

errors.

obtain ReA,/ReA, are subject to uncertainty due to the treatment
of charm quark. This uncertainty includes higher-order QCD
ReA, corrections and neglect of higher-dimensional charm quark

ReA, =0.044+0.010 (stah+0.024 (sysh.  (32)  operators, and is estimated to be on the order of 10%.

Due to the presence of potentially large systematic uncer-

The central value is based on the dynamjgai5.7 estimate  tainties in the above results, at present it is difficult to pro-
at M=my/\/2. The systematic error includes mainly an es-Vide rigorous constraints on the standard model parameters.
timated 50% uncertainty from higher-order chiral terms, in-However, the negative sign of'/¢ seems to be a stable
cluding quenching effects. This estimation is based on a briefeature in our numerical estimates and deserves some atten-
study of the effect of including the one-loop chiral logee tion. Taken at face value, this result would contradict the
Sec. IV Q. Additional systematic errors are operator match-experiment, which would mean that the minimal standard
model does not describe direCtP violation adequately.

In order to decrease the above systematic errors a fully

50 — — : ;
- 8 nonperturbative operator matching procedure should be per-
i ] formed and higher-order chiral terms should be calculated.
+ ol B These developments, together with the statistically signifi-
2 - 5 % B cant values foK— 7 andK— 0 matrix elements obtained in
9 r E % ] this work, can be used to achieve reliable numerical esti-
o - g 1 mates both for the'/e andAl=1/2 rule in the future, thus
—e0 - } -] providing more rigorous tests of the standard model.
= O B=6.0 o f=6.2 E
—poolie 1 P E——
0.0 05 ‘o ACKNOWLEDGMENTS
m,?, Gev?

We acknowledge Lakshmi Venkataraman’s help in devel-

FIG. 18. A study of lattice cutoff dependence of Réfg). ~ OPINg supercomputer software. The Ohio Supercomputing
Plotted data were obtained ¢@h- 6.0 andg=6.2 ensembles for the Center and National Energy Research Scientific Computing
M2 method. The error bars show only the statistical error in matrixC€Nter(NERSQ have made this work possible by providing
elements and iZg andZp constants. Systematic errors are signifi- Cray-T3E computer time. We are grateful to the Columbia
cant but common to both ensembles. The horizontal dashed ling/niversity group for access to their dynamical configura-
indicates the experimental value from Fermilab. tions.
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APPENDIX A: EXPLICIT EXPRESSIONS This is equivalent to Computing
FOR FERMION CONTRACTIONS
1. Quark operators xﬁ(y>=§ £4(X;,0)Gga(Y;%,0), (A3)

We work in the two flavor traces formalism when calcu-
lating contractions with four-fermion operators: for each . )
contraction separately the operators are rendered in the fortiihereé G(y:x) is the propagator from four-point to four-
(if necessary, by Fierz transformatjoof two bilinears with pomt y. For the staggered fermions description we I_ab(_el the
the flavor flow in the form of a product of two flavor traces. 1€lds by Qypem”be indetxand the hypercube corner indices
To be more precise, for “eight” contractions the operators”u € 10,11 instead ofy. The two-point function is con-

are rendered in the forns[u)(ul'd), while for the “eye” structed as follows:
and “annihilation” contractions the appropriate form is

(sI'd)(qr'q). This is done in the continuum, before assign- TP= Y, x%(h,A)U,4(h,AA+A)xs(h,A+A)
ing the staggered fermion flavor. h.A
The operator transcription in flavor space for staggered X (A)(—1)A (A%)

fermions is now standar®1], and we give it here for com-

pleteness. The Goldstone bosons have spin-flavor StrUCtu\rﬁhere¢(A) andA , are phases and distances appropriate for

v5® &s. The flavor structure of the operators is defined bya given staggered fermion operatot) (h,A,A+A) is the

requiring nonvanishing of the flavor traces, and so it dependg,1 ropriate gauge connectsee below modulo 2 summa-
on the contraction type: the flavor structureisin “eights” Pprop gaug '

and two-point functions] in “eyes.” and “subtractions.” In tion is implied for hypercube indices, andh runs over all
MR P ” . yes, ' hypercubes in a given timeslidewhere the operator is in-
annihilation” contractions the flavor structure is for the

bilinear in the quark loop trace arid for the one involved in serted. The factor £ 1)* takes into account that for stag-
. ' qu P 4 involvedt gered fermionsG(x;y)=G"(y;x)(—1)*(—1)Y. Equation
the external trace.

Either one or two color traces may be appropriate for a(A4) corresponds to
particular contraction with a given operat(see the next
Appendix' section for detailsIn one trace contractiorigype TPx >, Gap(ZY)T G (Y. X)(—1)?ER(2)€,(X),
“F” for “fierzed” ) the color flow is exchanged between the xy.z
bilinears, while in two trace contractiotiype “U” for “un- (AS5)
fierzed”) the color flow is contained within each bilinear so
that the contraction is the product of two color traces. Inwherel is used for simplicity to show the appropriate op-
either contraction type, when the distance between staggerédator structure. The summation oveandz over the entire
fermion fields being color connected is nonzero, a gaugépatia| volume averages over the noise, so the last equation is
connector is inserted in the gauge-invariant fashion. The corgquivalent to
nector is computed as the average of products of gauge links
along all shortest paths connecting the two sites. We also
implement tadpole improvement by dividing each link in ev-
ery gauge connector byi,=[1/3Tr(Up)]"4 whereU; is
the average plaquette value.

TP > trG(x,y) I G(y,x)(—1)% (A6)
X,y

Therefore, using the pseudofermion wall source is equivalent
. to summation of contractions obtained with independent lo-
2. Sources and contractions cal delta-function sources. Note that the facter1()* and
We use local 1) pseudofermion wall sources. Explicitly, zero distance in the staggered fermions language are equiva-
we set up a field of () phasest,(x;ty) (|¢|=1) for each lent to spin-flavor structures® §s. This means the source
color and each site at a given timeslige which are chosen creates pseudoscalar mesons at rest, which includes Gold-

at random and satisfy stone bosons. Strictly speaking, this source also creates me-
sons with spin-flavor structurgsy,® &5&,4, Since it is de-
(€8 (X;t0) €p(Yit0)) =0 g Oxy- (A1)  fined only on one timeslice. However, as explained in the

first footnote in Sec. 2.3 of Ref21], these states do not
(Boldface characters designate spatial parts of the 4-vectaontribute.
with the same nameWe proceed to explain how this setup ~ We have used one copy of pseudofermion sources per
works in the case of the two-point function calculation, with configuration. Analogously, we construct the pion sink at
trivial generalization to “eight” and “annihilation” contrac-
tions.

Consider the propaggtor frpm a wall =0 In. a glv_en 3For a given bilinear with spin-flavor structufe®I'r , these are
background gauge configuration, computed by inverting the,.termined  as  follows: A=|S,~F,2 and ¢(A)
equation = iTr(TATsT oA T'L), whereS, andF, are spin and flavor vec-

tors such thal'g= yfly?y?yf“ andTg= 7517527233/54, andT

(D -+ )3 xa(Y) = £4(X.0) 8y, 0. (A2) Ao
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time T by using another set of @) random noise where y,(x) is the propagator from the wall source gt
(€5 (T ép(Y;T))=6, 6xy, |€|=1). The propagatob is =0 defined in Eq(A2). We use the following expression for

computed as follows: evaluating the “subtraction” diagram:
af _ .
(D+m)sy p(y)=Ea(XT) Sy, 7 (A7) Socg\ XN AV 5(h,AA+A) g(h,A+A) G(A)(— 1A,
Suppose\;, A,e{0,1}* and¢,(A), ¢,(A) are distances (A11)

and phases of the two staggered fermion bilinears making u
a given four-fermion operator. The expression for the
“eight” contraction [Fig. 1(a)] with two color traceg*“ U”
type) is given by

Rgain, averaging over the noise leaves only local connec-
tions in both sources, so in the continuum language we get

Sx >, trG(x,0:2,)G(z,ty, T)G(Y, T;x,0(—1)X(—1)Y.

X,y,Z

Eu= 2 x5(h,A)U4(h,AA+A) xa(hA+A;) (A12)
h,A,B

[In fact, we are mostly interested in subtracting the operator

X G (A (D D7 (hB)U,(hB.B+A,) Sleld, so in Eq.(A11) A=0,0,0,0 and(A)=1 ]

XD (h,B+A,) do(B)(—1)8, (A8) In order to efficiently compute fermion loops for “eye”
and “annihilation” diagrams[Figs. 1b) and Xc)], we use
up to various normalization factors which cancel in e U(1) noise copieg™, i=1,... N, at every point in space-

ratio. In this expressiod, B e {0,1* run over 16 hypercube time. We computep() by inverting @ +m) " =¢®. It is
corners(modulo 2 summation is implied for these indizes €asy to convince oneself that the propagator frprto x
The hypercube indek, as before, runs over the entire spatial equals

volume of the timeslice of the operator insertion. The gauge .

connectorU(h,A,B) is the identity matrix whem\=B, oth- GOGY)=(mdy)- (A13)
erwise it is the average of products of gauge links in th
given configuration along all shortest paths frénto B in a
given hypercubéh. The expression EqA8), as well as all

eIn practice we average oveM=10 noise copies. This in-
cludes two or four copies of the lattice in time extension, so

other contractions, is computed for each background gaugge real number of noise copies is 20 or 40, with another

configuration and is subject to averaging over the configura; ctor of 3 for color. Thg gff|C|ency 9f this method is crucial
tions. (Whenever several contractions are combined in a{or obtaining gqod statls:t!’cal pr?0|§|on. o
single quantity, such asBratio, we USEJIACKKNIFE to esti- The expres§|ons forg” and “ F” type “eye” diagrams
mate the statistical error. are as follows:

The expression for one color tra€eF" type) contraction
is similar: 'U“h;B X% (h,AU ,5(h, A A+ A grg(h, A+ Ay)

N

1 .
XA (~DAS 2 (0 (hB)U,,(h,B,B+A4,)
i=1

Erx > x5(h,A)U,4(h,AB+A,) x,(hA+A,)
h,A,B

X ¢1(A)(—1)AD% (h,B)U,,(h,B,A+Ay)
X ® p(h,B+A,) py(B)(—1)°, (A9)

X 70(h,B+A) ¢,(B)(— 1), (A14)

*
For “eye” and “subtraction” diagrams[Figs. 1b) and IFoch%B Xa(N AU oo (NAB+Az) gg(h, A+ Ay)

1(d)] the source setup is a little more involved, since the
kaon and pion are directly connected by a propagator. In A ()
order to construct a wall source we need to compute the X1 (A(-DY .21 & (h,B)U 5(h,B,A+AY)
product

N

X 70(h,B+A) ¢,(B)(—1)B. (A15)

Ply) = ; G(y,t;xT)-G(x,T;0,0(—1)* The computation of “annihilation” diagram&ig. 1(c)] is
similar to the two-point function, except the fermion loop is
In order to avoid computing propagators from every paint added and the derivative with respect to the quark mass dif-

at the timesliceT, we first compute propagat@(x,T:0,0), ferencemy—mq ?s ihserted in turn in every strange quark
cut out the timeslicd, and use it as the source for calculat- Propagator. Derivatives of the propagators are given by in-

ing the propagator toy(t). This amounts to inverting the Verting equations

equation (D+m)x' =x, (A16)

(D+m)gls(y)=xa(¥) Sk, m(—1)%,  (A10) (D+m)y O=yn0, (AL17)
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We have, therefore, four kinds of “annihilation” contrac-

tions, which should be combined in an appropriate way for O%)=(s¥,(1— 75)0') E (qv"“(l ¥5)0), (B3)
each operator depending on the quark flavor strudthis is

spelled out in Appendix B

O =(eru(1-79)dp) 2 ([@7*(1-75)d0). (B4
A= 2 X (LA a0 AA+ A xs(hA+AY) -
h,A,B

LN Of=(syu(1-ys)d) X (@y*(1+7ys)), (85)
X1 A(-DAG 3 L% (NB)U,,(h,B,B+A,) o

X pW(h,B+A,) da(B)(—1)B, (A18) (3%()):(;0(7’#(1_7’5)0|ﬁ)q:§d’S @gy"(1+75)d,),  (B6)
o 3 AU (A B A xh A+ Ay) O =3 (57,1~ ¥ DY (1 + y)u)~ (1
| ~ 79U+ y5)d) = (57,(1- 75)d)
1 ' —
XGu(AN (DG 2 )" (1B)U5(h,BA+AY) X (sy*(1+¥5)9)], (B7)
X7 (n,B+A2)$2(B)(—1)°, (A19)  Of=3[(S.7,u(1~ 75)dp)(Ugy"(1+ y5)Us)

—(Sa¥u(1— y5)ug) (Ugy*(1+ ¥5)d,)
Agu 2 XE(N AU 5(hAA+A) xs(hA+AL)
h,A,B

~ (Sa7u(1= 75 dp) (557" (1+ ¥5)S,)], (B8)
N _ —
X by (A)(— 1)’% S, (0% (h,B)U,,(h,B,B+A,) 0= 3[(sy,(1~¥5)d)(Uy*(1~ ys)u)
i=1 _ —
X 7, 0(h,B+A,) dy(B)(—~1)P, (A20) BCR
—(syu(1=vy5)d)(sy*(1—-vs)9)], (B9)

A *(h,A)U,,(h,A,B+A h,A+A - —
2 2 XM Aol xpAT A 0= (57,1~ YW UY*(1-y9)d)

N —(sy,(1—ys)d)(uy*(1-
X¢1(A)(—1)A%Zl§g)*(h,B)Upﬁ(h,B,A+Al) (57,(1= 75)d) Uy (1= y5)u)

—(sy,(1—y5)d)(sy*(1—y5)9)]. (B10)
(1) —1)B .
X775 (h,B+A4;) ¢o(B)(—1)°. (A21) Expressions for thé=2 parts are as follows:
2)_ 2 _2~02)_2~(2
APPENDIX B: EXPLICIT EXPRESSIONS FOR MATRIX O(l )_0(2 )= %O(g )= %O(lo)

ELEMENTS IN TERMS OF FERMION CONTRACTIONS 1r = —
=3[(syu(1—ys)u)(uy*(1—ys)d)
Operators in Eqs(2) can be decomposed inte=0 and

|=2 parts, which contribute, correspondingly, Ad =1/2 +(5y,(1— y5)d)(Uy“(1— ys)u)
and Al =3/2 transitions. Here we give the expressions for — -
these parts for completeness, sinceAge ReA,, ands’/e = (s7,(1=y5)d)(dy*(1~ys)d)], (B11)
are directly expressible in terms of their matrix elements. @) 1pi= _
Thel =0 parts are given as follows: O =3[(syu(1=ys)u)(uy*(1+ ys5)d)
O =2(57,(1= ) DUy (1= y5)U) = 3(57,(1= y5)W) T (57,(1= 79 UY*(1+ v5)U)
X (U'y'“(l— yg)d)+ %(g,y (1— v5)d) —(syu,(1—y5)d)(dy*(1+ ys5)d)] (B12)
"
X (dy*(1- ys)d), (B1) OF)=3[(Suyu(1 = ¥9)up(ugy*(1+ 75)d,)

0= 3(57,(1- ¥ WU*(1~y5)d) =~ 3(57,(1 - y5)d) (1750 gy (L y5)u)
X (U’}/M(l_ '}/5)U)+ %(g'yﬂ(l_ '}/5)d) - (Sa’yM(l_ yS)dﬁ)(dﬁ7M(1+ 75)da):| (813)

X(dy*(1=ys)d), (B2) o{P=0P=0P=0{=0. (B14)
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(Whenever the color indices are not shown, they are con- E@=vvg +AAg, (B20)
tracted within each bilinear, i.e., there are two color trgces.
As mentioned in Sec. Il B, in order to compute matrix E(SO):2(PPEF_S&F), (B21)
elements of =0 operators one needs to evaluate three types
of diagrams: “eight”[Fig. 1(a)], “eye” [Fig. 1(b)], and “an- EQ=2(PPey—SSu), (B22)
nihilation” [Fig. 1(c)]. In Appendix A we have given detailed
expressions for computation of these contractions, giventhe E()=gg _— PP+ 1(VVey—AAzy), (B23)
spin-flavor structure. Here we assign this structure to all con-
tractions required for each operator, i.e., we express each Ego)zs%u—PPEUJF%(VVEF—AAEF), (B24)
matrix element in terms of contractions which were “built”
in the previous section. EQ@=_EO@=1n\/V_ +AA-.—VVe, —AA
Let us introduce some notation. The matrix element of the o 10 = 2(VVer EF EY ev). (B25)
above operators has three components:
2 £~ £~ 3EP-3ER)
_ o\ K T
(a7 |O|KD) = Ei+ li=S(2map) =% = L(VWey+AAgy+ VVer+AAgr), (B26)
(B15)
EP=eP=e@=gP=0, (B27)
wherem is the common quark mass ferd, andu, and
R E?)=3(AAeu—VVey) + SSr— PP, (B28)
i
“Tpe (816 EP)=3(AAze—VVgp) +SSu—PPey. (B29)
HereE; andl; stand for “eight” and “eye” contractions of ‘Eye” parts:
the (*|Oj|K™) matrix element, Ai~(0|O;|K°) /(my ©0)_
—my) is the “annihilation” diagram,S= (" |sd|K™) is the 7=VVip+AAY, (B30)
“subtraction” diagram, andP=(0|sysd|K°) is the two- 1O =V, + AA (B31)
point function. We compute; by averaging the ratio on the 2 ’
right-hand side of Eq(B16) over a suitable time range. 1O = 3(VVii + AA )+ 2(VVe + AA B32
Detailed expressions fd; , |;, andA; are given below in 3 =3V W) +2(VVie e (B32)
terms of the basic contractions on the lattice. We label basic (0)_ I n I
contractions by two letters, each representing a bilinear. For l7=3(VVie + Afp) F2(VWVip FAAY), - (B39
example,P P stands for contraction of the operator with spin (0)_ _ n _
structure ¢s)(ys), SSis for (1)(1), VV stands for l5’=3(VViu—AAy) +4(PP—SSF), (B34
(v,)(v*), andAAis for (y,vs)(v*vs). The staggered fla- 0)_ . B
vor is determined by the type of contraction, as explained in 67 =3(VVir—AAR) +4(PPy—SSy), (B39
Appendix A. Basic contractions are also labeled by their sub- 0)_ _
script. The first letter indicates whether it is an “eight,” 177 =2(PPir=SSp), (B36)
“eye,” or “annihilation” contraction, and the second isU” ) _ _
for two, or “F” for one color trace. For example? Pgy lg7=2(PPiy=S3u), (B37)
stands for the “eight” contraction of the operator with spin- ©)_
flavor structure {5® &s)(ys®&s) with two color traces; lg"=VVie+AAE, (B3g)
VA, stands for the “annihilation” contraction of the first
AL miatl ! ! 1Q=VV,,+AAy . (B39)

type, in which the derivative is taken with respect to quark
mass on the external le@ee Appendix A the spin-flavor
structure is ¢, ® &s) (v*ys®1), and one color trace is taken.
What follows are the full expressiofis.

“Annihilation” parts are obtained by inserting the deriva-
tive with respect to ifhy— m,) into every propagator involv-
ing the strange quark:

“Eight” parts:
AP = —(VAsu+AVaL), B40
EO=3(VWert A~ H(WetAAgy,  BL7) 1 AuTAYAL) (B840
AP = — (VA +AVarr), B41)
ED= 5 (Weut Ay~ 3 (Wert ARge),  (BLy o LA (
0 A= —3(VAyy+AVa) — (VAwy T AVay)
EQ=VVee+AAE, (B19)

—2(VAarr +AVarp) = (VApr +AVpor),  (B42)

A=~ 3(VAp1E+AVare) = (VAxze + AVpze)
4Signs of operator®, andOg have been changed in order to be N

consistent with the sign convention of Buresal. [3]. —2(VAp1u FAVa1y) — (VAU HAVaoy), (B4J)
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A(SO): 3(VAa1u—AVaru) + (VAsu—AVasy)

+2(PSnor — SPaze), (B44)
AL =3(VApE—AVare) + (VApzr— AVase)
+2(PSaou—SPazu), (B45)
AP =3 (VAU —AVa2y) +(PSar—SPa),  (B46)
AP =3 (VA e~ AVpoe) +(PSou—SPau),  (B47)

PHYSICAL REVIEW D64 074502

AL =VAu g+ AVase
+3(VAsu+ AVasy+ VA +AVase),
(B48)
A=V Axy+AVary
+3(VAxr +AVage +VAuy+AVayy). (B49)

Of course, “eye” and “annihilation” contractions are not
present inl =2 operators.
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