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Role of universal and nonuniversal Sudakov logarithms in four-fermion processes at TeV energies
The one-loop approximation reexamined
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We consider the separate effects on four-fermion processes, in the TeV energy range, produced at one loop
by Sudakov logarithms of universal and nonuniversal kind, working in the ’t Hooftj51 gauge. Summing the
various vertex and box contributions allows us to isolate two quite different terms. The first one is a combi-
nation of vertex and box quadratic and linear logarithms that are universal and independent of the scattering
angleu. The second one isu dependent, not universal, linearly logarithmic, and produced only by weak boxes.
We show that for several observables, measurable at future lineare1e2 colliders, the role of the latter term is
dominant, and we discuss the implications of this fact for what concerns the reliability of a one-loop approxi-
mation.
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I. INTRODUCTION

The fact that ‘‘Sudakov-type’’@1# double logarithms of
the c.m. energyAq2 will affect the asymptotic behavior o
the weak component of four-fermion processes at one l
has been known for a decade@2#. Only recently, though, has
it been realized that this effect could be already relevant
c.m. energies in the TeV range@3#, which is the case of the
next generation of lineare1e2 colliders at 500 GeV@Linear
Collider ~LC!# @4# and 3 TeV @CERN Linear Collider
~CLIC!# @5#. In fact, a first explicit calculation of the doubl
logarithms effects@6# showed that their size at TeV energi
might well cross the relative 10% value. In a subsequ
paper @7#, the extra effects at one loop of the subleadi
linear logarithms on a class of observables~cross sections
asymmetries! were thoroughly computed, showing the ex
tence of a certain cancellation between the leading and
subleading terms in a ‘‘preasymptotic’’ energy region, who
details strongly depend on the considered final state and
servable@8,9#. As a general conclusion, it was stressed
Refs.@6–9# that the validity of a one-loop approximation fo
four-fermion processes in the TeV region was not obvio
and also seemed to depend strongly on the particular ch
observable.

To get rid of the low convergence rate in the perturbat
expansion, several papers were recently written with the s
cific aim of resumming the dangerous leading component
the Sudakov logarithms to all orders@10#, or at least to com-
puting them at two loops@11#. Since, as already noted in Re
@7#, the role of the subleading logarithms is crucial at the o
loop level, the next effort was that of trying to resum bo
leading and subleading Sudakov logarithms to all orde
0556-2821/2001/64~7!/073008~18!/$20.00 64 0730
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This task was performed in at least two recent pap
@12,13#. The conclusion of Ref.@13# is that the set of Suda
kov logarithms can be divided into two subsets that can
distinguished at the level of invariant scattering amplitud
since the first subset provides a universal contribution tha
only dependent on the c.m. energyAq2, while the second,
nonuniversal one, is not only depending onAq2 but also on
the scattering angleu. While for the first subset precise pre
scriptions exist that allow one to resum the involved log
rithms to all orders, for theu-dependent part a clean resum
mation prescription does not seem to exist at the mom
@13#. Should the role of this angular component become
evant for some specific observables, the problem of, at le
computing it to the next two-loop level might arise for th
purpose of a high precision determination of the stand
model~SM! component of those quantities, and this calcu
tion does not appear to be an easy task.

The aim of this paper is precisely that of investigating t
role of the u-dependent nonuniversal components of t
Sudakov logarithms, via an exhaustive analysis of the siz
their effect on the class of experimental observables that
be measured at the next linear electron-positron colliders
and CLIC. This analysis will be performed at the one-lo
level, under realistic assumptions concerning the availa
experimental accuracy of these machines. Our philoso
will be that of assuming that any gauge invariant effect t
is ‘‘tolerable,’’ given the expected experimental accuracy,
the one-loop level, can safely be computed in that appro
mation, thus avoiding the hard problem of a two-loop ana
sis. We shall be working in the familiar ’t Hooftj51 gauge,
where all the Sudakov logarithms at one loop are produ
by either vertices or boxes. Our analysis will only consid
©2001 The American Physical Society08-1
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what we call ‘‘genuine’’ weak effects, due to exchanges
virtual W8s and Z8s ~and, possibly, would-be Goldston
bosons for final ‘‘massive’’ quarks!. All other diagrams will
be considered as belonging to the ‘‘QED’’ component, a
not discussed in this paper. For instance, we shall not inc
in our analysis the boxes with one photon and oneZ as done
in Ref. @12#. At the one-loop level, this will create very sma
numerical differences that will not change any of our conc
sions, as we will see later on.

Technically speaking, the paper will be organized as f
lows. In Sec. II we shall discuss the way in whic
u-independent terms always combine in a special expres
U(q2)53 lnq22ln2 q2. This is precisely the combinatio
which was shown to exponentiate in the massless qu
approximation@13#. The remaining Sudakov contribution
are those of Yukawa origin (.mt

2 ,mb
2) and theu-dependent

ones. In Sec. III, we discuss the different roles of the vario
terms in the various experimental observables, with spe
emphasis on the two LC and CLIC situations. We shall
that there are energies and observables where the role o
u-independent terms can be totally neglected, so that
bulk of the Sudakov effects at one loop is given by the c
responding angular dependent part of the ‘‘genuine e
troweak’’ boxes. In Sec. IV, we shall discuss the validity
the one-loop approximation for various observables at v
ous energies. In particular, we shall try to clarify the role
some approximations that were used in our approach
also in other, similar ones, with which we shall compare o
numerical results. This should allow us to draw a numbe
general conclusions. Appendix A will be devoted to an inv
tigation of the Sudakov effect in the special case of forwa
backward asymmetries, that seem to have a peculiar ro
this case. In Appendix B we give the general form of t
polarized differential cross sections in our theoreti
scheme, from which it is easy to obtain the prediction for
the considered observables.

II. UNIVERSAL AND NONUNIVERSAL SUDAKOV
LOGARITHMS AT ONE LOOP

In this paper we shall only consider the ‘‘genuinely ele
troweak’’ one-loop component of the invariant scattering a
plitude for the process of electron-positron annihilation in
a f f̄ fermion-antifermion pair, where the mass of the fermi
f will be retained in the two casesf 5b,t. This means that we
shall only consider those one-loop diagrams that add to
Born structure virtual exchanges of weak particles~i.e.,
W,Z,F,H, whereF6,0 are the would-be Goldstone boso
andH is the physical Higgs boson!. In particular, the boxes
with one photon and oneZ will be considered as belongin
to the ‘‘QED’’ component, to be computed separately. T
is, at one loop, a mere conventional division, that appe
justified to us to the extent that such boxes must be in
case combined with initial and final photon emission int
ference in existing computational programs@14#.

For what concerns the practical approach, we shall foll
the prescription originally proposed a few years ago@15# and
called ‘‘Z peak subtracted.’’ In this approach, the invaria
amplitude is decomposed into four terms, corresponding
07300
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the four independent Lorentz structures of the process,
noted as

M l f
(1)~q2,u!5M l f ,gg

(1) ~q2,u!1M l f ,ZZ
(1) ~q2,u!

1M l f ,gZ
(1) ~q2,u!1M l f ,Zg

(1) ~q2,u!, ~2.1!

where the (g,Z) indices denote projections of the extern
Lorentz vectors and axial vectors of the process on the p
ton and Z structures of the initial and final particles@for
example ,M l f ,gg

(1) (q2,u) and M l f ,ZZ
(1) (q2,u) have the same

Lorentz structure as the photon andZ exchanges at the Born
level#. The technical features were exhaustively discusse
recent references@7,8#, to which we defer the reader for mor
details. Here we shall only repeat that to each of the f
independent Lorentz structures, that must by construc
evidently by gauge independent, there corresponds at
loop a certain ‘‘form factor,’’ depending onq2 ~the squared
c.m. energy! andu ~the c.m. scattering angle!. This consists
of a precise linear combination of self-energies, vertices,
boxes that must be, consequently, gauge independent, a
can easily verify, e.g., by following the fundament
Degrassi-Sirlin approach@16# to which, as usual, we sha
stick in this paper.

Following our previous definitions, we shall call thes
four form factor D̃a,l f (q

2,u), Rl f (q
2,u), VgZ,l f (q

2,u), and
VZg,l f (q

2,u) To derive the corresponding contributions fro
self-energies, vertices, and boxes is straightforward once
‘‘projection’’ operations have been defined@15#. This allows
one to derive in an easy way the related contributions to e
observable quantity of the process, starting from the defi
tion of differential cross sections that can be found, e.g.
Appendix B of Ref.@7# and that we also repeat, for the sa
of completeness, in Appendix B of this paper.

After this short and unavoidable preliminary summary, w
are now ready to discuss the contributions of the vario
one-loop diagrams to the asymptotic Sudakov logarithm
keeping in mind the fact that our treatment is performed
the t’ Hooft j51 gauge. Quite generally, we shall first divid
the contributions into those ‘‘universal’’ and of ‘‘nonuniver
sal’’ types. Following the conventionally adopted definitio
@13#, we shall call those corrections ‘‘universal’’ that onl
depend on the quantum numbers of theexternallines, but are
otherwise process-independent, and the remaining te
‘‘nonuniversal’’ In practice, the first set will contain all thos
contributions that depend only onq2, and do not depend on
u. These will always come from vertices and, partially, fro
boxes. The second,u-dependent set, will be provided by
certain component of the box diagrams, both withWW and
ZZ exchanges, although the latter ones will be numerica
much smaller in the SM. Note that we shall consider, at le
for a first approach, production of ‘‘physical’’~i.e., not chi-
ral! fermions, considering observable quantities where o
sums over the final spins. A restriction to a fixed final chir
ity is obviously straightforward using the rules for projectin
gmPL andgmPR terms on the photon andZ Lorentz structure
@15#.

The Feynman diagrams that produce Sudakov logarith
are shown in Fig. 1. Rather than writing their explicit co
8-2
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FIG. 1. SM diagrams contributing in the asymptotic regime. Note that for theWW box contributions~d!, diagram~1! contributes for
I 3 f52

1
2 , whereas diagram~2! contributes forI 3 f51

1
2 ; for the ZZ box contributions~e!, both diagrams contribute.
t
or

-

r

ly

For
ing
all
tributions to the components~vertices and boxes! of the scat-
tering amplitude, here the contributions we shall review
the four independent form factors that we are using. M
precisely, we find the following results.

~a! Vertex with oneW @Fig. 1~a!#. This produces a univer
sal contribution, always proportional to the combination

UW~q2!53 ln
q2

MW
2 2 ln2

q2

MW
2 . ~2.2!

~b! Vertex with oneZ @Fig. 1~b!#. This generates a simila
universal contribution, proportional to the combination
07300
o
e

UZ~q2!53 ln
q2

MZ
2 2 ln2

q2

MZ
2 . ~2.3!

Clearly, in an asymptotic energy regime one will be ful
entitled to write

UW~q2!.UZ~q2!

if only the leading squared logarithm has to be retained.
a more rigorous selection that also includes the sublead
linear logarithms this is, however, not correct, and we sh
treat separately the two effects in our analysis.

~c! Vertex with twoW8s @Fig. 1~c!#. This provides a uni-
versal Sudakov term that is of subleading~linearly logarith-
8-3
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mic! type. Apparently this breaks the feature of producing
UW(q2) term like that of Eq.~2.2!. In fact, in the j51
gauge, this term is reproduced at one loop by taking i
account the additional contributions coming from boxes w
two W8s ~W box!, as we shall now discuss.

~d! W box @Fig. 1~d!#. This produces two quite differen
Sudakov terms. The first one is of leading~quadratic! loga-
rithmic type, is universal and is onlyq2 dependent. When
added to the universal and subleading logarithmic term p
duced by the vertex with twoW8s, recomposes the comb
nationUW(q2) of Ref. @13#. The second contribution is non
universal, u dependent, and of subleading~linear!
logarithmic type. This, in a general analysis like that of R
@13#, would not exponentiate.

~e! Z boxes@Fig. 1~e!#. These only produce a nonunive
sal, u-dependent subleading linear logarithm. Genera
speaking, the size of this term, that would also not expon
tiate, is much smaller than that of the corresponding o
produced by theW box.

~f! Would-be Goldstone bosons and Higgs vertices@Fig.
1~f!#. These add extra universal,u-independent, subleadin
Sudakov logarithms of Yukawa type, that only affect finalbb̄

and t t̄ production. In the treatment given in Ref.@13# they
are grouped together with the set ofu-independent loga-
rithms .UW(q2), UZ(q2), and exponentiate cumulativel
with them.

Our results are exposed in an analytical form in the n
equations, that provide the expressions of the four gau
independent form factors for final statesm1m2, uū, anddd̄.
The extra Yukawa terms that appear must only be retai
when u5t and d5b. In our classification, we have firs
listed theu-independent contributions, putting theW and Z
vertices in the first two terms and the universal contribut
produced by the combination of theW boxes with the 2W
vertex in the third term;u-dependent nonuniversalW andZ
boxes follow in the next terms, and the univers
u-independent Yukawa contributions appear in the last te
The obtained expressions are the following (S[ Sudakov!:

D̃a,lm
S ~q2,u!5

a~12ve
2!

32psW
2 cW

2 UZ~q2!1
a

2p
UW~q2!

2
a

p
lnF12cosu

2 G ln q2

MW
2

1
a~12ve

2!2

256psW
4 cW

4 lnF11cosu

12cosuG ln q2

MZ
2 , ~2.4!

Rlm
S ~q2,u!5

a

4psW
2 UW~q2!2

a~113ve
2!

32psW
2 cW

2 UZ~q2!

2
acW

2

2psW
2 UW~q2!1

acW
2

psW
2 lnF12cosu

2 G ln q2

MW
2

2
ave

2

4psW
2 cW

2 lnF11cosu

12cosuG ln q2

MZ
2 , ~2.5!
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VgZ,lm
S ~q2,u!5VZg,lm

S ~q2,u!

5
a

8psWcW
UW~q2!

2Fave~12ve
2!

128psW
3 cW

3 1
ave

8psWcW
GUZ~q2!

2
acW

2psW
UW~q2!1

acW

psW
lnF12cosu

2 G ln q2

MW
2

2
ave~12ve

2!

32psW
3 cW

3 lnF11cosu

12cosuG ln q2

MW
2 , ~2.6!

D̃a,lu
S ~q2,u!52

a

12p
UW~q2!1

a~22ve
22vu

2!

64psW
2 cW

2 UZ~q2!

1
a

2p
UW~q2!2

a

p
lnF11cosu

2 G ln q2

MW
2

2
3a~12ve

2!~12vu
2!

512psW
4 cW

4 lnF11cosu

12cosuG ln q2

MZ
2

2
a

24psW
2

ln
q2

mt
2F ~322sW

2 !
mt

2

MW
2

12sW
2

mb
2

MW
2 G ,

~2.7!

Rlu
S ~q2,u!5

a

4psW
2 S 12

sW
2

3 DUW~q2!2
a~213ve

213vu
2!

64psW
2 cW

2

3UZ~q2!2
acW

2

2psW
2 UW~q2!1

acW
2

psW
2

3 lnF11cosu

2 G ln q2

MW
2 1

avevu

4psW
2 cW

2

3 lnF11cosu

12cosuG ln q2

MZ
21

a

16psW
2

ln
q2

mt
2

3F S 11
4sW

2

3 D mt
2

MW
2

1S 12
4sW

2

3 D mb
2

MW
2 G , ~2.8!

VgZ,lu
S ~q2,u!5

a~312cW
2 !

24psWcW
UW~q2!2Fave~12ve

2!

128psW
3 cW

3

1
avu

12psWcW
GUZ~q2!2

acW

2psW
UW~q2!

1
acW

psW
lnF11cosu

2 G ln q2

MW
2

8-4
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1
avu~12ve

2!

32psW
3 cW

3 lnF11cosu

12cosuG ln q2

MW
2

2
acW

12psW
ln

q2

mt
2S mt

2

MW
2

2
mb

2

MW
2 D , ~2.9!

VZg,lu
S ~q2,u!5

a~322sW
2 !

24psWcW
UW~q2!2F3avu~12vu

2!

256psW
3 cW

3

1
ave

8psWcW
GUZ~q2!2

acW

2psW
UW~q2!

1
acW

psW
lnF11cosu

2 G ln q2

MW
2

1
3ave~12vu

2!

64psW
3 cW

3 lnF11cosu

12cosuG ln q2

MW
2

2
a

16psWcW
ln

q2

mt
2S 12

4sW
2

3 D S mt
2

MW
2

2
mb

2

MW
2 D ,

~2.10!

D̃a,ld
S ~q2,u!52

a

6p
UW~q2!1

a~22ve
22vd

2!

64psW
2 cW

2 UZ~q2!

1
a

2p
UW~q2!2

a

p
lnF12cosu

2 G ln q2

MW
2

1
3a~12ve

2!~12vd
2!

256psW
4 cW

4 lnF11cosu

12cosuG ln q2

MZ
2

2
a

24psW
2 S ln

q2

mt
2D

3FsW
2 S mt

2

MW
2 D 1~32sW

2 !S mb
2

MW
2 D G , ~2.11!

Rld
S ~q2,u!5

a

4psW
2 S 12

2sW
2

3 DUW~q2!2
a~213ve

213vd
2!

64psW
2 cW

2

3UZ~q2!2
acW

2

2psW
2 UW~q2!1

acW
2

psW
2

3 lnF12cosu

2 G ln q2

MW
2 2

avevd

4psW
2 cW

2 lnF11cosu

12cosuG
3 ln

q2

MZ
21

a

16psW
2 S ln

q2

mt
2D F S 12

2sW
2

3 D S mt
2

MW
2 D

1S 11
2sW

2

3 D S mb
2

MW
2 D G , ~2.12!
07300
VgZ,ld
S ~q2,u!5

a~314cW
2 !

24psWcW
UW~q2!2Fave~12ve

2!

128psW
3 cW

3

1
avd

24psWcW
GUZ~q2!2

acW

2psW
UW~q2!

1
acW

psW
lnF12cosu

2 G ln q2

MW
2

2
avu~12ve

2!

32psW
3 cW

3 lnF11cosu

12cosuG ln q2

MW
2

1
acW

24psW
S ln

q2

mt
2D F S mt

2

MW
2 D 2S mb

2

MW
2 D G ,

~2.13!

VZg,ld
S ~q2,u!5

a~324sW
2 !

24psWcW
UW~q2!2F3avd~12vd

2!

128psW
3 cW

3

1
ave

8psWcW
GUZ~q2!2

acW

2psW
UW~q2!

1
acW

psW
lnF12cosu

2 G ln q2

MW
2

2
3ave~12vd

2!

32psW
3 cW

3 lnF11cosu

12cosuG ln q2

MW
2

2
a

16psWcW
S ln

q2

mt
2D S 12

2sW
2

3 D
3F S mt

2

MW
2 D 2S mb

2

MW
2 D G ~2.14!

wherev f[124sW
2 uQf u.

Before moving to a detailed numerical investigation of t
Sudakov effect on the various experimental observables
the process, there are a few preliminary general remarks
we feel, might be relevant. In particular, the following poin
should be mentioned.

~I! The universal and nonuniversal sets, that we ha
grouped in the various equations, should be in our opini
separately gauge independent. Given the fact that for all
overall listed form factors, by construction, this proper
holds true, the same feature must obtain both for the ove
contributions of nonuniversal kind and for the overall cont
butions of universal kind that are considered. Gauge dep
dence can only affect, separately, the universal contributi
coming from the 2W vertex and from theW box. But their
special combination, that builds the same universal contri
tion UW(q2) produced by the~gauge-independent! singleW
vertex, must necessarily be gauge independent as well.
fact reproduces an analogous well known property@17# of
the 2W vertex. In fact, the so-called ‘‘pinch’’ component@18#
of this vertex is gauge dependent, and combines with a
responding gauge-dependent part in the various (g,Z) self-
energies to make up gauge-independent quantities that
8-5
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grassi and Sirlin called ‘‘gauge-independent’’ self-energi
that produce the correct asymptotic renormalization gro
logarithmic behavior of the running couplings. In our case
combination of the 2W vertex with a box generates the co
rect gauge-independent asymptotic Sudakov logarithmic
havior ~that exponentiates!.

~II ! From practical point of view of the validity of a per
turbative expansion truncated at one loop, we believe
one should consider the terms in the various brackets
discuss the various effects separately in all observables.
instance, a cancellation might arise between
u-independent andu-dependent contributions if they wer
both large and of opposite sign. This, we believe, would
make a one loop approximation reliable.

~III ! As a rather academic feature, we believe that
should be stressed that, for all light~massless! fermion pro-
duction processes, there exists a ‘‘magic energy’’ where
u-independent functionsUW(q2) and UZ(q2) both vanish.
This corresponds to the choice

ln
q2

MW
2 . ln

q2

MZ
2 53, ~2.15!

that selects the magic energy

Aq2.360 GeV ~2.16!

Clearly, in the vicinity of this energy,all of the logarithmic
Sudakov contribution for massless fermions is produced
the u-dependent, nonuniversal components of the w
boxes~which reduces essentially, from the numerical po
of view, to the contribution from theW box!. For bottom
production at this energy, an extra amount of Yukawa Su
kov logarithms must be added~for top production, we be-
lieve that 360 GeV is definitely not an asymptotic ener
and the validity of an asymptotic expansion is strongly d
batable; we shall only treat top production in this paper in
CLIC Aq253 TeV regime!.

After these general remarks, we are now ready to perfo
a numerical investigation of the various asymptotic Suda
logarithm effects on all the observables of the process. T
will be done in Sec. III.

III. EFFECTS OF THE DIFFERENT SUDAKOV
LOGARITHMS ON THE EXPERIMENTAL OBSERVABLES

Having examined the way in which theu-independent
Sudakov logarithms always group, for final massless fer
ons, in the combination (3 lnq22 ln2q2), for which precise
rules exist@13# that make its resummation known~these are
also available for the massive Yukawa contributions!, we
shall now proceed to the calculation of the Sudakov effe
on various observables at one loop. With this aim, we s
consider the effects as due to three separate categorie
terms: those which arise fromu-independent quantities an
enter in the two possible combinationsUW(q2) andUZ(q2)
@Eqs. ~2.2! and ~2.3!#, those which arise fromu-dependent
terms ~denoted ‘‘u S’’ !, and those which are of massiv
Yukawa origin~denoted ‘‘YU’’!. Since we are only intereste
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in these specific contributions, we shall only write their~rela-
tive! effects on the different cross sections and their~abso-
lute! effects on the different asymmetries, denoting with
NS ([ non-Sudakov! symbol all the remaining part of the
various observables. For sake of comparison, we shall
include in our formulas the relative and absolute effects d
to the linear logarithms of renormalization group~RG! ori-
gin, already computed~e.g., Ref.@7#!. Also, for simplicity,
we shall group together the twoW and Z functions writing
UW.UZ.U(MW.MZ[M ), which creates a small numer
cal difference that will be irrelevant for the specific purpos
of this paper, given the fact that theZ term is much smaller
than theW one. We shall consider as realistic observa
final states those which contain am1m2 ~or also at1t2)
pair, a bb̄ pair, and at t̄ pair. Also, the cross section fo
production of the five light quarkss5 will be considered.
Note that for what concerns top production our formalis
strictly speaking, only applies to energies in the CLIC ran
@8#, and for this reason this process will not be studied in
LC regime. We shall restrict our attention to cross sectio
for production of a single final statef f̄ (s f), on s5, and to
forward-backward asymmetries (AFB, f) and also longitudi-
nal polarization asymmetries (ALR, f) whose conventiona
definitions are recalled in Appendix B. Starting from the e
pressions given in Appendix B and from Eqs.~2.4!–~2.14! it
is a relatively straightforward task to derive the vario
Sudakov effects. We shall write them in what follows, r
placing the theoretical input weak parameters by their
perimental values, to make the different numerical size of
various terms immediately evident.

We now list the final expressions for the various obse
ables. They read

sm5sm
NSH 11

a~M !

p F S 0.645 ln
q2

M2D
RG

1@1.51U~q2!#

1S 5.49 ln
q2

M2D
uS

G J , ~3.1!

AFB,m5AFB,m
NS 1

a~M !

p F S 21.07 ln
q2

M2D
RG

1@0.021U~q2!#

1S 2.80 ln
q2

M2D
uS

G , ~3.2!

ALR,m5ALR,m
NS 1

a~M !

p F S 23.58 ln
q2

M2D
RG

1@0.92U~q2!#

1S 5.13 ln
q2

M2D
uS

G , ~3.3!

sb5sb
NSH 11

a~M !

p F S 25.30 ln
q2

M2D
RG

1@2.39U~q2!#

1S 15.01 ln
q2

M2D
uS

2S 2.10 ln
q2

mt
2D

YU
G J , ~3.4!
8-6
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AFB,b5AFB,b
NS 1

a~M !

p F S 21.11 ln
q2

M2D
RG

1@0.098U~q2!#

1S 4.25 ln
q2

M2D
uS

2S 0.09 ln
q2

mt
2D

YU
G , ~3.5!

ALR,b5ALR,b
NS 1

a~M !

p F S 23.71 ln
q2

M2D
RG

1@0.72U~q2!#

1S 5.30 ln
q2

M2D
uS

2S 0.60 ln
q2

mt
2D

YU
G , ~3.6!

s55s5
NSH 11

a~M !

p F S 23.26 ln
q2

M2D
RG

1@2.08U~q2!#

1S 7.22 ln
q2

M2D
uS

2S 0.30 ln
q2

mt
2D

YU
G J , ~3.7!

Rb[
sb

s5

5Rb
NS1

a~M !

p F S 20.29 ln
q2

M2D
RG

1@0.045U~q2!#

1S 1.12 ln
q2

M2D
uS

2S 0.26 ln
q2

mt
2D

YU
G , ~3.8!

ALR,55ALR,5
NS 1

a~M !

p F S 24.16 ln
q2

M2D
RG

1@0.92U~q2!#

1S 3.67 ln
q2

M2D
uS

2S 0.13 ln
q2

mt
2D

YU
G , ~3.9!

s t5s t
NSH 11

a~M !

p F S 21.64 ln
q2

M2D
RG

1@1.80U~q2!#

1S 1.18 ln
q2

M2D
uS

2S 3.55 ln
q2

mt
2D

YU
G J , ~3.10!

AFB,t5AFB,t
NS 1

a~M !

p F S 20.88 ln
q2

M2D
RG

1@0.06U~q2!#

2S 0.93 ln
q2

M2D
uS

1S 0.15 ln
q2

mt
2D

YU
G , ~3.11!

ALR,t5ALR,t
NS 1

a~M !

p F S 24.06 ln
q2

M2D
RG

1@1.01U~q2!#

1S 0.76 ln
q2

M2D
uS

1S 0.95 ln
q2

mt
2D

YU
G , ~3.12!
07300
In the case of top production, other observables can
added that depend on the final top helicity. They are listed
the second of Refs.@8#. As already remarked upon in tha
reference, these extra observables only differ from their c
responding ‘‘unpolarized top’’ quantities by linear Sudak
logarithms ofu-dependent box origin. Therefore the concl
sions concerning theu-independent terms will remain un
changed. A more complete discussion of theu-dependent
effects could be given, but it seems to us to be beyond
specific purposes of this paper. We shall defer to a forthco
ing paper devoted to top production@19# for more details.

We may try to compare the above expressions with res
obtained by other authors; see, e.g., Refs.@9,12,13#. How-
ever, the comparison is not obvious because the phot
part is treated differently in these papers, and the observa
are often not defined in the same way. One can neverthe
identify the main terms. The comparison is easier with
results in Ref.@12#. They differ only by the inclusion of the
small u-dependent contribution from thegZ boxes and are
indeed very close to our results, as one can easily verify

We are now ready for a detailed numerical investigat
of the Sudakov effects on the listed observables at one lo
With this aim, we divide our analysis into two parts, sep
rately devoted to the two cases of energies in the LC (Aq2

.500 GeV! regime and in the CLIC (Aq2.3 TeV! regime.
Our main conclusions can be summarized as follows.

~I! LC regime (Aq2.500 GeV).At Aq2.500 GeV, the
Sudakov effects act on the various observables in quit
different way. We have made the following general class
cation.

~a! Cross sections. The relative effect in permille on the
muon cross section is, to good approximation, a25 from the
u-independent term and a146 from theu-dependent term.
For the ‘‘light’’ quark cross sections5 it is a 27 (u inde-
pendent! and a161 (u dependent!. For bottom production,
the relative effect on the cross section is a28 ~u indepen-
dent! and a1126 (u dependent!. In this case also has in thi
case, a negative relative effect of 11 permille coming fro
the extra linear Sudakov logarithm of Yukawa origin.

The general comment that can be made at this poin
that, for all the considered cross sections, the effect of
nonuniversal,u-dependent subleading Sudakov logarithm
at one loop, by far larger than that of theu-independent
combinationsUW(q2) andUZ(q2), and systematically of op-
posite sign. This is, somehow, unfortunate, since a resum
tion prescription for theu-dependent logarithms does n
seem to exist at the moment@13#. In the LC range, this might
not represent a problem for a one-loop approximation if o
considers the relative 1% as a reasonable experime
achievement forsm and s5. In this case, relative effects a
one loop around 5% might be tolerated, with some warn
in the case ofs5. For bottom production, if one expects a
experimental accuracy of a few percent, a 13% effect wo
still be acceptable. If the experimental precision were hig
than the previous qualitative estimates given here, the ne
sity of a two-loop calculation for theu-dependent contribu-
tion would become imperative. Note, incidentally, that t
effects of the resummable termsUW(q2) andUZ(q2), are in
8-7
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this case extremely small at the one-loop level, so tha
their case a one-loop approximation seem to us comple
reliable.

~b! Longitudinal polarization asymmetries. This case pre-
sents strong similarities with that of the corresponding cr
sections, and therefore we treat it immediately in success
The absoluteeffect ~in permille! on the muon asymmetry
ALR,m is a23 ~u independent! and a143 (u dependent!. For
the five light quarks caseALR,5 , the absolute effect is a23
~u independent! and a positive thirty-one (u-dependent!. For
bottom production,ALR,b , the two effects are respectively
22 and145. Again, one notes a strong dominance at o
loop of the positiveu-dependent terms with respect to th
negativeu-independent ones, just as in the case of cr
sections. The reliability of the one-loop approximation w
strongly depend on the aimed experimental accuracies o
measurements. If these will remain at the~absolute! level at
a few percent, there should be no problem for the appro
mation, while higher experimental accuracies would mak
two-loop calculation of theu-dependent terms highly ‘‘desir
able.’’

~c! Forward-backward asymmetries. These specific ob-
servables present a peculiar feature that extremizes the
viously remarked ‘‘u-dependent logarithm dominance.’’ I
fact, in their case, an accurate numerical calculation sh
that, independently of the considered final state, the co
cient of theu-independent.UW(q2), UZ(q2) terms is al-
ways, essentially, negligibly small, i.e., much smaller th
that of theu-dependent term and well below the absolu
percent level. In Appendix A we try to derive in some det
this apparently nontrivial fact, which seems to arise from
multiplets assignment of the fermions in SU(2)3U(1). Nu-
merically and to a good approximation this absolute effec
~in permille! always negative and in magnitude well less th
one for final muons and one forb8s. This feature will persist
at the higher energies involved at CLIC, where it will al
appl to top production~that we do not treat at LC energies!,
and seems to be a very general property of this type of
servables. The consequence is that, at asymptotic ener
the only Sudakov logarithms that must be retained at
loop in the forward-backward asymmetries are t
u-dependent ones of box origin. This generates a stra
situation of ‘‘box dominance’’ for what concerns this type
virtual effects, totally opposite to the situation, e.g., met
top of theZ resonance.1

For what concerns the validity of a one-loop approxim
tion, the u-dependent absolute effects are always posi
and equal, in permille, to 24~final muons! and 36 ~final
bottom!. At the percent level of experimental accuracies, t

1As we already anticipated in Eqs.~2.15,2.16!, a similar and rather
peculiar feature of the Sudakov logarithms arises atAq2.360
GeV.4MZ . Here theu-independent term vanishesexactlyat one
loop, so that the full effect is produced, at that energy, by we
boxes. This situation is again just opposite to that met at theZ peak
where boxes could be safely ignored, and affects not only
forward-backward asymmetries butall observables at this specia
energy value.
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seems to us to make the approximation reliable, even
cases of reasonable improvements in the experimental p
sion.

~II ! CLIC regime (Aq253 TeV).For energies of about 3
TeV, as those aimed for in the first phase of the future CE
CLIC Collider, we have repeated the previous analysis,
cluding top production for which CLIC energies can b
safely considered as ‘‘asymptotic.’’ Here we list the resu
that we found, quoting theu-independent term first, then
giving theu-dependent term effect and finally, whenever i
volved, giving the Yukawa term contribution~in percent this
time, relative for cross sections and absolute for asymm
tries!.

~a! Cross sections. For final muons, we obtain a210 and
a 19 ~percent!. For final light quarks (s5), there appear a
214 and112. For bottom production, we obtain a216 and
a 126 ~plus a23 of Yukawa origin!. For top production, we
obtain a212 and a12 ~with a 25 of Yukawa origin!.

As one sees, the situation at CLIC is strongly differe
from the corresponding one at LC. The role of th
u-independent terms is now slightly more relevant than t
of the u-dependent ones for both muon and for light qua
production; it is largely dominant for top production, an
remains less relevant only for bottom production.

For what concerns the validity of a one-loop approxim
tion, the situation seems to us to be, in a certain sense,
appointing, and also final state dependent. For muon
light quark production, one might take the pragmatic attitu
of considering theoverall Sudakov effect, obtained by sum
ming the negativeu-independent part and the positiv
u-dependent part. This sum is actually small~a few percent!
and apparently under control. A more cautious point of vie
however, that we personally share, is that one is dealing h
with two large and opposite effects, that are both separa
gauge independent and of rather different origin, the posi
one being completely nonuniversal andu dependent. We do
not see any obvious reason why the two large and indep
dent effects should still cancel, e.g., at the next two-lo
level. Thus, in our opinion, one should compute themboth to
higher order. This would not represent a problem for t
u-independent contribution, for which resummation prescr
tions exist@13#. However, as we already stated, these p
scriptions are unclear for theu-dependent term. Given its
rather large size, a calculation of this quantity at the n
two-loop level seems unavoidable to us.

Note that, in our opinion, until a two-loop calculation o
the latter term has been performed, resumming
u-independent effect only, leaving the other terms at the o
loop level, could worsen the situation. This procedure mi
in fact reduce the resummed negative contribution, leavin
much larger positive dominant term. Unfortunately, it see
to us that for light fermion production cross sections at CL
energies, a resummation of the pureu-independent terms
although theoretically valid and remarkable, does not p
vide the full answer to the need for a reliable, complete t
oretical prediction.

This conclusion also remains unchanged, in our opini
for bottom production, from inspection of the numerical e

k

e
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FIG. 2. Separate asymptotic contributions
sm as functions of the energy. The solid line~RG!
is the linear renormalization group logarithm. Th
dotted line (U) is theu independent term propor
tional to the combination 3 log(q2/MZ

2)
2 log2(q2/MZ

2). The dashed line (uS) is the an-
gular dependent linear logarithm. Finally, th
thick dot-dashed line~full ! is the sum of the three
contributions. The same captions apply in all fo
lowing figures showing the effects in all the othe
considered observables.
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fects that we have shown. The only apparent evasion of
negative statement is provided by the cross section for
production. Here theu-independent effect dominates, whi
the other one is small and limited~2%!. The reason for the
weakness of theu-dependent term is the fact that its leadi
contribution, theW box diagram fort t̄ production, has an
angular distribution. ln@(11cosu)/2# which is peaked
backward@as one can guess from the diagram~2! of Fig.
1~d!#, and interferes very little with the forward-peaked Bo
term; in the case ofbb̄ production, diagram~1! of Fig. 1~d!,
conversely, is peaked forward and interferes strongly w
the Born term. Fort t̄ production in this situation, one coul
safely approximate the cross section with a one-loop ca
07300
is
p

h

u-

lation, resumming only theu-independent term. This proces
could therefore be satisfactorily calculated, without extra t
oretical efforts, by a suitable combination of different exis
ing formulas for theu-independent@13# andu-dependent@8#
contributions.

~b! Polarization asymmetries. Again, one finds as in the
LC case, a situation that is similar to that of the correspo
ing cross sections. The absolute numbers~in percent! are
26 and19; for final muons,ALR,m ; 26 and16 for light
quarks,ALR,5 ; 25 and19 for final bottom; and27 and11
for final top. Assuming~approximately! a percent level for
the related experimental precisions, we believe that the s
conclusions, drawn in~IIa! for what concerns the one-loo
approximation at CLIC energies for the various light ferm
to
re
FIG. 3. Separate asymptotic contributions
AFB,m as functions of the energy. The captions a
the same as in Fig. 2.
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FIG. 4. Separate asymptotic contributions
ALR,m as functions of the energy. The captions a
the same as in Fig. 2.
th

-
u

a

i
l b
-

ew

on
ffect
s

ith-

two
e
rth-

s of
’t
ons and bottom and top cross sections, still apply for all
corresponding longitudinal polarization asymmetries.

~c! Forward-backward asymmetries. At CLIC energies,
the absolute overall contribution of theu-independent Suda
kov terms is, for both massless and massive fermion prod
tion, systematically irrelevant~one permille for muons, and
few permille for either light or massive quarks! at the level
of realistic expectable experimental accuracy. This is
agreement with our general previous observation, that wil
discussed separately in Appendix A. Theu-dependent abso
lute box effects are, respectively, 5%~final muons!, 7% ~bot-
tom production!, and22% ~top production!. With an experi-
mental accuracy of 1% for muons and top, and of a f
07300
e

c-

n
e

percent for bottom production, a one-loop approximati
seems to us fully acceptable. In this case, the relevant e
would be fully provided by existing one-loop calculation
@7,8# of the angular dependent component of the terms, w
out need of any extra theoretical effort.

We have thus completed our numerical analysis in the
~LC, CLIC! different considered ‘‘asymptotic’’ energies. Th
main results and conclusions are summarized in the fo
coming and final Sec. IV.

IV. CONCLUSIONS

In this paper we have performed a systematic analysi
the weak Sudakov logarithmic effects at one loop in the
to
re
FIG. 5. Separate asymptotic contributions
sb as functions of the energy. The captions a
the same as in Fig. 2.
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FIG. 6. Separate asymptotic contributions
AFB,b as functions of the energy. The captions a
the same as in Fig. 2.
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Hooft j51 gauge for a large class of experimental obse
ables, in two different energy configurations that correspo
to the regimes to be explored at the next linear colliders
~500 GeV! and CLIC ~3 TeV!. We have divided the set o
effects into two essentially different gauge-independent s
sets. The first one is ‘‘angular independent,’’ universal, a
comes from vertices and boxes; the second one is ‘‘ang
dependent,’’ nonuniversal, and comes only from boxes. T
main motivation for our analysis was to study the spec
effects of this last term, for which no clean resummati
prescription beyond the one-loop level seems to exist at
moment@13#.

Our numerical analysis were explicitly performed at tw
07300
-
d

b-
d
ar
e
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e

selected energies, 500 GeV and 3 TeV, but it can easily
repeated for any arbitrary value, e.g., beyond 500 GeV o
TeV. This is summarized pictorially in Figs. 2–11, where w
show the various contributions from the angular independ
term and from the angular dependent term on all the cho
observables, when the energy varies. For the sake of c
pleteness we have also included the universal linear loga
mic contribution of RG origin, which was computed in pr
vious references@7,8# and does not seem to becom
‘‘dangerous’’ at the considered energies. From inspection
these figures~and Figs. 12 and 13!, one sees, e.g., that ou
conclusions remain essentially valid whenAq2 ranges be-
tween .3 and .5 TeV, a possible larger CLIC range, o
to
re
FIG. 7. Separate asymptotic contributions
ALR,b as functions of the energy. The captions a
the same as in Fig. 2.
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FIG. 8. Separate asymptotic contributions
s t as functions of the energy. The captions are t
same as in Fig. 2.
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between 500 GeV and 1 TeV in the LC case.
Our general conclusion is that, for each considered

servable, in both considered energy configurations, the
of the angular dependent term isalways essential. In the
cases of cross sections and longitudinal polarization as
metries, our analysis has led to very similar conclusions
the ‘‘corresponding’’ quantities~i.e., the cross section fo
production of a certain final state and the related longitud
polarization asymmetry!. In practice, at LC, the angular de
pendent logarithms are dominant but ‘‘small,’’ i.e., ‘‘und
control’’ at the one-loop approximation, assuming an expe
mental accuracy of the percent size. At CLIC, a strong c
cellation appears at one loop between the large~i.e., *10%)
07300
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negative angular independent effect and the ‘‘large’’ posit
angular dependent one. So both should not be taken, in
opinion, in the one-loop approximation, which does not re
resent a problem for the first term, but requires a new ca
lation of at least two loops for the second one. An except
to this statement is provided by the cross section for
production, the only case that we found where the angu
dependent effect turns out to be negligible.

A completely separate role is played by the forwar
backward asymmetries. In these observables, independ
of the considered high energy, the angular independent e
at one loop is essentially vanishing, for reasons that seem
be accidental. Thus the angular dependent Sudakov lo
to
re
FIG. 9. Separate asymptotic contributions
AFB,t as functions of the energy. The captions a
the same as in Fig. 2.
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FIG. 10. Separate asymptotic contributions
ALR,t as functions of the energy. The captions a
the same as in Fig. 2.
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rithm remains, for these special quantities, the only relev
effect. Luckily, if one assumes realistic experimental accu
cies, this effect appears to be under control both at LC an
CLIC energies, which would allow one to avoid a hard tw
loop calculation in all cases.

As a matter of fact, the need for a two-loop calculation
the angular dependent term only appears for calculation
cross sections~for which longitudinal polarization asymme
tries are essentially a special case!. The possibility that a
simpler calculational approach can be found for these w
defined cases is, at the moment, being investigated.
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A numerical simplification has occurred, in fact, in o
approach, and we want to discuss it briefly now. In our c
culation of the size of the effect of theu-independent Suda
kov terms on the various observables, we fully retained
asymptotic expressions given in Eqs.~2.4!–~2.14!. In the two
limiting situations of forward and backward scatterin
cosu→61, the asymptotic expressions formally diverge li
a logarithm. Clearly, this would not be the case if we h
used the complete expression, which would be necessa
the low q2 range. For the specific purposes of this pap
where onlyu-integrated quantities have been considered
to
re
FIG. 11. Separate asymptotic contributions
s5 as functions of the energy. The captions a
the same as in Fig. 2.
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FIG. 12. Separate asymptotic contributions
Rb as functions of the energy. The captions a
the same as in Fig. 2.
u
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e
estimates of effects are essentially indicative~i.e. aimed at
identifying ‘‘dangerous’’ potential contributions!, this ap-
proximation seems to us satisfactory in the large-q2 regime
in which we are interested. First of all, a logarithmic sing
larity produces a finite integrated quantity in any case. S
ond, one must remember that in a realistic experiment th
is always a finite value of the scattering angle,u5u0, below
which no experimental observation is allowed. Starting fro
these considerations we first recomputed the integration
theu-dependent logarithms with a cut at6 cosu0, and com-
pared these values with those obtained performing a full
tegration that would correspond tou050. More precisely,
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we have considered the two quantities which appear in thW
box is contribution to the cross sections:

I 15E
2cosu0

cosu0
d cosu ~11cos2u!ln~17 cosu!, ~4.1!

I 257E
2cosu0

cosu0
d cosu cosu ln~17 cosu!. ~4.2!
to
re
FIG. 13. Separate asymptotic contributions
ALR,5 as functions of the energy. The captions a
the same as in Fig. 2.
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These can be computed analytically, leading to the exp
sions

I 152
8

3
cosu02

2

9
cos3u01

1

3
~2413 cosu01cos3u0!

3 ln~12cosu0!1
1

3
~413 cosu01cos3u0!

3 ln~11cosu0!, ~4.3!

I 25cosu02
1

2
sin2u0 ln

11cosu0

12cosu0
, ~4.4!

and, for example, one findsI 1521.04, 20.90, 20.67,
20.44, andI 251, 0.91, 0.74, and 0.54 whenu050, 10 °,
20 °, and 30 °, respectively. As one sees, the ‘‘cut’’ quan
ties, for values ofu0 as large as.20 °, only differ from the
complete integration by a relative 20–30 % difference, a
will essentially reproduce its main features, so that this
effect will be irrelevant for our conclusions. In this regio
our logarithmic approximation should be satisfactory. In fa
in the expressions to be integrated we made the assump

u@
MW

Aq2
, ~4.5!

which ensures that the terms ln2(t/MW
2 ) and ln2(u/MW

2 ) are
large and can safely be estimated by neglecting th
q2-independent parts.

At CLIC energies, the right-hand side of Eq.~4.5! is equal
to .1.5 °, while in the LC range it reaches a value of abo
9 ° ~or less, forAq2.500 GeV!. In both cases, from wha
previously shown, an estimate of the angular cut that mus
performed in the different observables, based on the loga
mic approximation truncated, say, at a corresponding rea
tic cut, would reproduce essentially the numbers that
gave, to a degree of accuracy that should be fixed by a d
cated analysis of the special experimental features of the
lated experiments.

We note at this point that the same logarithmic appro
mation that we followed was also used in Ref.@12#, where a
detailed numerical analysis was performed, with prec
numbers, for some of the observables that we conside
Since the analysis of Ref.@12# also includes, as we alread
mentioned, theu-dependent contribution from thegZ boxes,
slight differences appear in the various results.

A final comment should now be made concerning the r
played by other possible asymptotic logarithms in the exa
ined processes. Those~linear ones! of RG origin have been
listed in our formulas, and the reader can very easily ve
that their effect at one loop will never be dangerous at
considered energies. There is another interesting possib
due to virtual Sudakov effects at one loop of supersymme
origin. They were exhaustively discussed in a recent pa
@20# for the MSSM case, in the casef Þt, in the few-TeV
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regime. They turn out to be only linearly logarithmic, an
systematically under control at CLIC energies with a po
sible exception for bottom production@assuming a typical
supersymmetry~SUSY! mass of a few hundred GeV#. So,
for f Þt production, SUSY does not add technical proble
at the theoretical one-loop level in the MSSM case. N
that, also in the MSSM case, the extra SUSYu-independent
contributions to the considered forward-backward asymm
tries are systematically negligible, exactly as in the SM ca

In the f 5t case, discussed in the second of Refs.@8#, the
situation is slightly less straightforward. The size of the li
ear Sudakov logarithm, that contains a large componen
Yukawa origin, depends strongly on the SUSY parame
tanb. For the lowest allowed values of tanb, its numerical
value in the cross section can be larger than the 1
‘‘safety’’ limit. However, a strong reduction of the effect i
achievable by adding in the asymptotic expansion a reas
able extra SUSY constant.2 A full and detailed discussion on
this important point will appear soon in a forthcoming ded
cated paper@19#.
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APPENDIX A: THE SPECIAL BEHAVIOR
OF THE FORWARD-BACKWARD ASYMMETRIES

In this short appendix we investigate the origin of the fa
that theu-independent contributions toAFB, f turn out to be
small in the high energy limit (s@M2).

In the separate production of chiral fermions (f L or f R) a
u-independent correctionCL,R

f does obviously not modify
the Born values ofAFB, f L,R

as it gives the same effect in th

forward and in the backward domains. However, sinceCL
e

ÞCR
e , CL

f ÞCR
f , and since the integrated Born cross sectio

in the forward or in the backward domainssF,B
Born(eL,R , f L,R)

are non-equal, it is apparently not obvious that the forwa
backward asymmetry for unpolarized initial electrons a
final fermions,

2As a matter of fact, in Refs.@7,8# an asymptotic expansion at th
one-loop level, in the TeV range, was used of the more comp
form aU(q2)1buS (log q2/M2)uS1bRG (log q2/M2)RG1c. The nu-
merical values of the constantsc in the various cases turned out t
correspond systematically to a negative few percent~relative or
absolute! effect, with a and b in agreement with the theoretica
Sudakov and RG values. For LC energies, this decreased in
cases the overall logarithmic one-loop effect, that was alread
our philosophy under control, being the sum of two separately sm
effects. From this fact we would be led to reinforce the conclus
that for LC energies the complete one loop approximation should
satisfactory, at least at the percent experimental level of accura
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AFB, f5
sF2B~eL , f L!1sF2B~eL , f R!1sF2B~eR , f L!1sF2B~eR , f R!

sF1B~eL , f L!1sF1B~eL , f R!1sF1B~eR , f L!1sF1B~eR , f R!

5@sF2B
Born~eL , f L!~11CL

e1CL
f !1sF2B

Born~eL , f R!~11CL
e1CR

f !1sF2B
Born~eR , f L!~11CR

e1CL
f !1sF2B

Born~eR , f R!

3~11CR
e1CR

f !#@sF1B
Born~eL , f L!~11CL

e1CL
f !1sF1B

Born~eL , f R!~11CL
e1CR

f !1sF1B
Born~eR , f L!~11CR

e1CL
f !

1sF1B
Born~eR , f R!~11CR

e1CR
f !#21, ~A1!

remains so close to its Born value.
The condition is that

@CL
f 2CR

f #$sF
Born~eL , f L!@sB

Born~eL , f R!1sB
Born~eR , f R!#2sB

Born~eL , f L!@sF
Born~eL , f R!1sF

Born~eR , f R!#

2sF
Born~eL , f R!sB

Born~eR , f L!1sB
Born~eL , f R!sF

Born~eR , f L!1sF
Born~eR , f L!sB

Born~eR , f R!2sB
Born~eR , f L!sF

Born~eR , f R!%

.@CR
e2CL

e#$sF
Born~eL , f L!@sB

Born~eR , f L!1sB
Born~eR , f R!#2sB

Born~eL , f L!@sF
Born~eR , f L!1sF

Born~eR , f R!#

1sF
Born~eL , f R!sB

Born~eR , f L!2sB
Born~eL , f R!sF

Born~eR , f L!1sF
Born~eL , f R!sB

Born~eR , f R!

2sB
Born~eL , f R!sF

Born~eR , f R!%, ~A2!
is
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y
ha

ss
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e of
and it is not trivially satisfied.
We have tried to analyze the contents of Eq.~A2!, and to

look for the origin of the cancellations which appear in th
expression or in the equivalent one,@Eq. ~B10!#, given at the
end of Appendix B, which can be used in the case of ang
independent contributions:

AFB, f5
3

4

U12

U11
, ~A3!

in which the photon andZ exchange terms are explicitl
written. Simplifications arise when one uses the fact t
sW

2 . 1
4 , which makes the vector coupling of theZ boson to

l 1l 2 ( l 5e,m,t) vanish ~all the results obtained below
would not be valid for an arbitrary value ofsW

2 ).
In the sW

2 . 1
4 approximation we first consider the proce

e1e2→m1m2, where the photon Born term is purely vect
and theZ Born term purely axial. One easily sees that t
one-loop corrections factorize out in the same way
12CL

l 12CR
l ) in the numeratorU12 ~only given by the

photon-Z interference! and in the denominatorU11 ~only
given by the squared photon and the squaredZ terms!, so
that their total effect inAFB, f vanishes. So, in practice, thes
u-independent one-loop corrections should be proportio
to (124sW

2 ) and indeed very small.

The case of the processese1e2→uū and e1e2→dd̄ is
less obvious. One still uses the fact that the photon B
term is purely vector and that the initialZ Born coupling to
e1e2 is purely axial in the limitsW

2 5 1
4 . In this limit, another

essential ingredient is the numerical value of

4

3
AFB, f

Born5S U12

U11
D Born

5
3uQf u

12uQf u15uQf u2
, ~A4!

which is close to 1 for both up and down quarks, i.e.,18
23 for

u and 9
11 for d.
07300
ar

t

al

n

Including the angular independent corrections at first
der leads to

4

3
AFB, f5S 3uQf u

12uQf u15uQf u2D S 11c1
f 1c2

f

11c1
f 1c3

f D , ~A5!

where

c1
f 5CL

l 1CR
l 1CL

f 1CR
f , ~A6!

c2
f 5S 12uQf u

uQf u
D F uQf u~CL

f 2CR
f !1

1

3
~CL

l 2CR
l !G ,

~A7!

c3
f 5S 3~12uQf u!

~12uQf u15uQf u2! D F uQf u~CL
l 2CR

l !1
1

3
~CL

f 2CR
f !G .
~A8!

One sees now that, in addition to the termc1
f which would

factorize out like in the casef 5 l , there appear additiona
correctionsc2

f and c3
f ~which vanish for f 5 l ). However

these additional corrections turn out to be both of the sa
size,c2

f .c3
f , and smaller thanc1

f in each of the casesf 5u
and f 5d. So at the end the total correction to the Born val
is again rather small. One can trace the origin of the relat
c2

f .c3
f !c1

f in the fact that, using the notations of Ref.@13#
for the u-independent terms, the left-handed correctio
. 3

4 1(YL
2/4) tan2uW are larger than the right-handed on

.(Qf
2/4)tan2uW ~this is the usual electroweak feature!, and

also in the fact that 3uQf u.12uQf u15uQf u2 ~leading to
4
3 AFB, f

Born.1 for both f 5u,d).
So in conclusion it appears that the angular independ

electroweak corrections toAFB, f turn out to be small for
accidental reasons related to the left versus right structur
the electroweak multiplets and to the valuesW

2 . 1
4 . We do not

see any deeper physical reason.
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APPENDIX B: GENERAL FORM OF THE POLARIZED
e¿eÀ\f f̄ CROSS SECTION IN THE Z-PEAK

SUBTRACTED REPRESENTATION

The general expression of thee1e2→ f f̄ cross section
can be written as

ds f

d cosu
~P,P8!5

4p

3
N fq

2H 3

8
~11cos2u!@~12PP8!U11

1~P82P!U21#1
3

4
cosu@~12PP8!U12

1~P82P!U22#J , ~B1!

where

U115
a2~0!Qf

2

q4 @112D̃a
( l f )~q2,u!#12@a~0!uQf u#

3
q22MZ

2

q2
„~q22MZ

2!21MZ
2GZ

2
…

F3G l

MZ
G1/2F 3G f

NfMZ
G1/2

3
ṽ l ṽ f

~11 ṽ l
2!1/2~11 ṽ f

2!1/2F11D̃a
( l f )~q2,u!2R( l f )~q2,u!

24slcl H 1

ṽ l

VgZ
( l f )~q2,u!1

uQf u

ṽ f

VZg
( l f )~q2,u!J G

1

F3G l

MZ
GF 3G f

NfMZ
G

~q22MZ
2!21MZ

2GZ
2 F122R( l f )~q2,u!

28slclH ṽ l

11 ṽ l
2

VgZ
( l f )~q2,u!1

ṽ f uQf u

~11 ṽ f
2!

VZg
( l f )~q2,u!J G ,

~B2!

U1252@a~0!uQf u#
q22MZ

2

q2
„~q22MZ

2!21MZ
2GZ

2
…

F3G l

MZ
G1/2

3F 3G f

NfMZ
G1/2 1

~11 ṽ l
2!1/2~11 ṽ f

2!1/2

3@11D̃a
( l f )~q2,u!2R( l f )~q2,u!#

1

F3G l

MZ
GF 3G f

NfMZ
G

~q22MZ
2!21MZ

2GZ
2 F 4ṽ l ṽ f

~11 ṽ l
2!~11 ṽ f

2!
G

3F122R( l f )~q2,u!24slcl

3H 1

ṽ l

VgZ
( l f )~q2,u!1

uQf u

ṽ f

VZg
( l f )~q2,u!J G , ~B3!
07300
U2152@a~0!uQf u#
q22MZ

2

q2
„~q22MZ

2!21MZ
2GZ

2
…

3F3G l

MZ
G1/2F 3G f

NfMZ
G1/2 ṽ f

~11 ṽ l
2!1/2~11 ṽ f

2!1/2

3F11D̃a
( l f )~q2,u!2R( l f )~q2,u!

2
4slcl uQf u

ṽ f

VZg
( l f )~q2,u!G1

F3G l

MZ
GF 3G f

NfMZ
G

~q22MZ
2!21MZ

2GZ
2

3F 2ṽ l

~11 ṽ l
2!

GF122R( l f )~q2,u!24slcl

3H 1

ṽ l

VgZ
( l f )~q2,u!1

2ṽ f uQf u

~11 ṽ f
2!

VZg
( l f )~q2,u!J G , ~B4!

U2252@a~0!uQf u#
q22MZ

2

q2~~q22MZ
2!21MZ

2GZ
2!

3F3G l

MZ
G1/2F 3G f

NfMZ
G1/2 ṽ l

~11 ṽ l
2!1/2~11 ṽ f

2!1/2

3F11D̃a
( l f )~q2,u!2R( l f )~q2,u!2

4slcl

ṽ l

VgZ
( l f )~q2!G

1

F3G l

MZ
GF 3G f

NfMZ
G

~q22MZ
2!21MZ

2GZ
2 F 2ṽ f

~11 ṽ f
2!

GF122R( l f )~q2,u!

24slclH 2ṽ l

~11 ṽ l
2!

VgZ
( l f )~q2,u!1

uQf u

ṽ f

VZg
( l f )~q2,u!J G .

~B5!

HereP andP8 are thelongitudinalpolarization degrees o
the initial lepton and antilepton, andNf is the color factor for
the f f̄ channel which includes the appropriate QCD corre
tions to the input.

From this general expression one obtains the unpolar
integrated cross section

s f5E
21

11

d cosu
ds f

d cosu
~0,0! ~B6!

the forward backward asymmetry

AFB, f5S E
0

11

d cosu
ds f

d cosu
~0,0!

2E
21

0

d cosu
ds f

d cosu
~0,0! D Y s f ~B7!

and the longitudinal polarization asymmetry
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ALR, f5S E
21

11

d cosu
ds f

d cosu
~21,0!2E

21

11

d cosu

3
ds f

d cosu
~11,0! DY2s f ~B8!

Note that for u-independent contributions these integra
simplify, and allow one to write
s.

cl.
,

.

n-
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o
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7
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C.

07300
s f5
4p

3
N fq

2U11, ~B9!

AFB, f5
3

4

U12

U11
, ~B10!

ALR, f5
U21

U11
. ~B11!
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