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We consider the separate effects on four-fermion processes, in the TeV energy range, produced at one loop
by Sudakov logarithms of universal and nonuniversal kind, working in the 't Hpeft gauge. Summing the
various vertex and box contributions allows us to isolate two quite different terms. The first one is a combi-
nation of vertex and box quadratic and linear logarithms that are universal and independent of the scattering
angled. The second one i@ dependent, not universal, linearly logarithmic, and produced only by weak boxes.
We show that for several observables, measurable at future Eiear colliders, the role of the latter term is
dominant, and we discuss the implications of this fact for what concerns the reliability of a one-loop approxi-
mation.
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I. INTRODUCTION This task was performed in at least two recent papers
[12,13. The conclusion of Ref.13] is that the set of Suda-

The fact that “Sudakov-type 1] double logarithms of kov logarithms can be divided into two subsets that can be
the c.m. energy/g? will affect the asymptotic behavior of distinguished at the level of invariant scattering amplitude,
the weak component of four-fermion processes at one loopince the first subset provides a universal contribution that is
has been known for a decafi&]. Only recently, though, has only dependent on the c.m. energy?, while the second,
it been realized that this effect could be already relevant fononuniversal one, is not only depending ¢g? but also on
c.m. energies in the TeV rand8], which is the case of the the scattering anglé. While for the first subset precise pre-
next generation of lineag™ e~ colliders at 500 Ge\[Linear  scriptions exist that allow one to resum the involved loga-
Collider (LC)] [4] and 3 TeV [CERN Linear Collider rithms to all orders, for th&-dependent part a clean resum-
(CLIC)] [5]. In fact, a first explicit calculation of the double mation prescription does not seem to exist at the moment
logarithms effect$6] showed that their size at TeV energies [13]. Should the role of this angular component become rel-
might well cross the relative 10% value. In a subsequengvant for some specific observables, the problem of, at least,
paper[7], the extra effects at one loop of the subleadingcomputing it to the next two-loop level might arise for the
linear logarithms on a class of observablesoss sections, purpose of a high precision determination of the standard
asymmetrieswere thoroughly computed, showing the exis- model(SM) component of those quantities, and this calcula-
tence of a certain cancellation between the leading and thgon does not appear to be an easy task.
subleading terms in a “preasymptotic” energy region, whose The aim of this paper is precisely that of investigating the
details strongly depend on the considered final state and olpele of the §-dependent nonuniversal components of the
servable[8,9]. As a general conclusion, it was stressed inSudakov logarithms, via an exhaustive analysis of the size of
Refs.[6-9] that the validity of a one-loop approximation for their effect on the class of experimental observables that will
four-fermion processes in the TeV region was not obviouspe measured at the next linear electron-positron colliders LC
and also seemed to depend strongly on the particular chose@md CLIC. This analysis will be performed at the one-loop
observable. level, under realistic assumptions concerning the available

To get rid of the low convergence rate in the perturbativeexperimental accuracy of these machines. Our philosophy
expansion, several papers were recently written with the spewill be that of assuming that any gauge invariant effect that
cific aim of resumming the dangerous leading components of “tolerable,” given the expected experimental accuracy, at
the Sudakov logarithms to all orddi0], or at least to com- the one-loop level, can safely be computed in that approxi-
puting them at two loopEl1]. Since, as already noted in Ref. mation, thus avoiding the hard problem of a two-loop analy-
[7], the role of the subleading logarithms is crucial at the onesis. We shall be working in the familiar 't Hoofi=1 gauge,
loop level, the next effort was that of trying to resum bothwhere all the Sudakov logarithms at one loop are produced
leading and subleading Sudakov logarithms to all ordersby either vertices or boxes. Our analysis will only consider
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what we call “genuine” weak effects, due to exchanges ofthe four independent Lorentz structures of the process, de-
virtual W’'s and Z's (and, possibly, would-be Goldstone noted as
bosons for final “massive” quarksAll other diagrams will

be considered as belonging to the “QED” component, and MP(q?,6)= M,(fl)w(qz,a)+/\/l,(f1)zz(q2,9)
not discussed in this paper. For instance, we shall not include M 1) 2
in our analysis the boxes with one photon and @res done M 2(9%,0)+ MiF, (9%,0), (2.

in Ref.[12]. At the one-loop level, this will create very small
numerical differences that will not change any of our conclu-where the ,Z) indices denote projections of the external
sions, as we will see later on. Lorentz vectors and axial vectors of the process on the pho-
Technically speaking, the paper will be organized as folton andZ structures of the initial and final particlg$or
lows. In Sec. Il we shall discuss the way in which example M {{) (g% 6) and M ({,,(g? 6) have the same
#-independent terms always combine in a special expressidmorentz structure as the photon ari@xchanges at the Born
U(g®)=3Ing>—In>g% This is precisely the combination level]. The technical features were exhaustively discussed in
which was shown to exponentiate in the massless quarkecent referencdd,8], to which we defer the reader for more
approximation[13]. The remaining Sudakov contributions details. Here we shall only repeat that to each of the four
are those of Yukawa origin= mt ,mb) and theg-dependent independent Lorentz structures, that must by construction
ones. In Sec. lIl, we discuss the different roles of the variougvidently by gauge independent, there corresponds at one
terms in the various experimental observables, with specidpop a certain “form factor,” depending og” (the squared
emphasis on the two LC and CLIC situations. We shall se¢.m. energy and ¢ (the c.m. scattering angleThis consists
that there are energies and observables where the role of ti#a precise linear combination of self-energies, vertices, and
¢-independent terms can be totally neglected, so that theoxes that must be, consequently, gauge independent, as one
bulk of the Sudakov effects at one loop is given by the corcan easily verify, e.g., by following the fundamental
responding angular dependent part of the “genuine elecDegrassi-Sirlin approacfil6] to which, as usual, we shall
troweak” boxes. In Sec. IV, we shall discuss the validity of Stick in this paper.
the one-loop approximation for various observables at vari- Following our previous definitions, we shall call these
ous energies. In particular, we shall try to clarify the role offour form factorAa 11(a2,6), Ri(q%6), V,z 11(g2,6), and
some approximations that were used in our approach an\izy”(q ,60) To derive the corresponding contributions from
also in other, similar ones, with which we shall compare ourself-energies, vertices, and boxes is straightforward once the
numerical results. This should allow us to draw a number ofprojection” operations have been defingtls]. This allows
general conclusions. Appendix A will be devoted to an inves-one to derive in an easy way the related contributions to each
tigation of the Sudakov effect in the special case of forward-observable quantity of the process, starting from the defini-
backward asymmetries, that seem to have a peculiar role ition of differential cross sections that can be found, e.g., in
this case. In Appendix B we give the general form of theAppendix B of Ref[7] and that we also repeat, for the sake
polarized differential cross sections in our theoreticalof completeness, in Appendix B of this paper.
scheme, from which it is easy to obtain the prediction for all  After this short and unavoidable preliminary summary, we

the considered observables. are now ready to discuss the contributions of the various

one-loop diagrams to the asymptotic Sudakov logarithms,

1. UNIVERSAL AND NONUNIVERSAL SUDAKOV keeping in mind the fact that our treatment is performed in
LOGARITHMS AT ONE LOOP the t' Hooft §=1 gauge. Quite generally, we shall first divide

the contributions into those “universal” and of “nonuniver-

In this paper we shall only consider the “genuinely elec-sa|” types. Following the conventionally adopted definitions
troweak” one-loop component of the invariant scattering am{13], we shall call those corrections “universal” that only
plitude for the process of electron-positron annihilation intodepend on the quantum numbers of éxéernallines, but are
aff fermion-antifermion pair, where the mass of the fermionotherwise process-independent, and the remaining terms
f will be retained in the two casds=b,t. This means that we “nonuniversal” In practice, the first set will contain all those
shall only consider those one-loop diagrams that add to theontributions that depend only af, and do not depend on
Born structure virtual exchanges of weak particle®., 6. These will always come from vertices and, partially, from
W,Z,®,H, whered® =0 are the would-be Goldstone bosons boxes. The second}-dependent set, will be provided by a
andH is the physical Higgs bosonin particular, the boxes certain component of the box diagrams, both viltW and
with one photon and ong will be considered as belonging ZZ exchanges, although the latter ones will be numerically
to the “QED” component, to be computed separately. Thismuch smaller in the SM. Note that we shall consider, at least
is, at one loop, a mere conventional division, that appearfor a first approach, production of “physicali.e., not chi-
justified to us to the extent that such boxes must be in anyal) fermions, considering observable quantities where one
case combined with initial and final photon emission inter-sums over the final spins. A restriction to a fixed final chiral-
ference in existing computational prografig]. ity is obviously straightforward using the rules for projecting

For what concerns the practical approach, we shall followy*P, andy*Pg terms on the photon aréiLorentz structure
the prescription originally proposed a few years a6 and  [15].
called “Z peak subtracted.” In this approach, the invariant The Feynman diagrams that produce Sudakov logarithms
amplitude is decomposed into four terms, corresponding tare shown in Fig. 1. Rather than writing their explicit con-
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FIG. 1. SM diagrams contributing in the asymptotic regime. Note that foMive box contributions(d), diagram(1) contributes for
I3=— 3, Whereas diagrart2) contributes forl 5;= + 3; for the ZZ box contributionge), both diagrams contribute.

tributions to the componentsertices and boxg®f the scat- ) q? 5 q°

tering amplitude, here the contributions we shall review to Uz(g9)=3 |I’1W—|n M2 (2.3
the four independent form factors that we are using. More z z

precisely, we find the following results. Clearly, in an asymptotic energy regime one will be fully

(a) Ver_tex_with oneW [Fig. ]J(a)_]. This produces a un_iver- entitled to write
sal contribution, always proportional to the combination

Uw(g®)=Uz(a?)

2 2
> d

Mg,

q

M3,

if only the leading squared logarithm has to be retained. For
a more rigorous selection that also includes the subleading
linear logarithms this is, however, not correct, and we shall
treat separately the two effects in our analysis.

(b) Vertex with oneZ [Fig. 1(b)]. This generates a similar (c) Vertex with twoW's [Fig. 1(c)]. This provides a uni-
universal contribution, proportional to the combination versal Sudakov term that is of subleadifigearly logarith-

Uw(g®) =31 —In (2.2
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mic) type. Apparently this breaks the feature of producing "J\/SZ,|M(q2,0)=VS (92,6)

Uw(g?) term like that of Eq.(2.2. In fact, in theé=1 7

gauge, this term is reproduced at one loop by taking into
account the additional contributions coming from boxes with
two W'’s (W box), as we shall now discuss.

(d) W box [Fig. 1(d)]. This produces two quite different
Sudakov terms. The first one is of leadifguadrati¢ loga-
rithmic type, is universal and is onlg? dependent. When
added to the universal and subleading logarithmic term pro-
duced by the vertex with twdV’'s, recomposes the combi-
nationU,y(g?) of Ref.[13]. The second contribution is non-
universal, # dependent, and of subleadinglinearn
logarithmic type. This, in a general analysis like that of Ref.
[13], would not exponentiate.

(e) Z boxes[Fig. 1(e)]. These only produce a nonuniver-
sal, 6-dependent subleading linear logarithm. Generally
speaking, the size of this term, that would also not exponen-

tiate, is much smaller than that of the corresponding Onexs (g2,6)=
a,lu !

produced by théV box.
(f) Would-be Goldstone bosons and Higgs vertifes).
1(f)]. These add extra universal;independent, subleaﬂng

Sudakov logarithms of Yukawa type, that only affect fibal

andtt production. In the treatment given in R¢i.3] they
are grouped together with the set 6findependent loga-
rithms =U(g?), U,(g?), and exponentiate cumulatively
with them.

Our results are exposed in an analytical form in the next
equations, that provide the expressions of the four gauge-

independent form factors for final states x~, uu, anddd.

The extra Yukawa terms that appear must only be retained
when u=t and d=b. In our classification, we have first
listed the 6-independent contributions, putting thé and Z
vertices in the first two terms and the universal contribution

produced by the combination of th& boxes with the BV
vertex in the third termp-dependent nonuniversW andZ
boxes follow in the next terms, and the universal
#-independent Yukawa contributions appear in the last term.
The obtained expressions are the followirg= Sudakoy:
xs 20_01(1—1)§)U 24 aU 5
w080 =35 2 2 Uz(@7) + 5 Un(d)
a 1—cos# I q?
T n 2 : M\ZN
) a(1-v)? [1+coss I q? »
256msi,ch | 1—cosd| M2’ 24
2
S 2 e & 2 _a(1+306) 2 s 2 gy —
Rr.(a ’0)_4775\2,\,UW(q ) 32msicl, Uz(q“) Vizu(a%0)=
2 2 2
aCy acCy |1l—cosf| ¢
— ——Uw(@?)+—5In|——]|In
2mTSy wla) TSy 2 W\,
av? 1+cos€I q? )
- n n—s, .
Amsics, | 1—cosf| M2 @9
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VS, (G2 6)= a(3+4C\2N)U ~ ave(l—vg)
vzt a4 24msycy WA 1287s3,c3,
N avgy Ua(a? aCy Un (o2
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wherev ;=1—4s3Qq|.

Before moving to a detailed numerical investigation of the
Sudakov effect on the various experimental observables of
the process, there are a few preliminary general remarks that,
we feel, might be relevant. In particular, the following points
should be mentioned.

(I) The universal and nonuniversal sets, that we have
grouped in the various equations, should be in our opinion,
separately gauge independent. Given the fact that for all the
overall listed form factors, by construction, this property
holds true, the same feature must obtain both for the overall
contributions of nonuniversal kind and for the overall contri-
butions of universal kind that are considered. Gauge depen-
dence can only affect, separately, the universal contributions
coming from the 2V vertex and from théV box. But their
special combination, that builds the same universal contribu-
tion Uy (q?) produced by thégauge-independensingle W
vertex, must necessarily be gauge independent as well. This
fact reproduces an analogous well known propé¢ity] of
the 2W vertex. In fact, the so-called “pinch” componelri8]
of this vertex is gauge dependent, and combines with a cor-
responding gauge-dependent part in the variop) self-
energies to make up gauge-independent quantities that De-
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grassi and Sirlin called “gauge-independent” self-energiesjn these specific contributions, we shall only write theéla-

that produce the correct asymptotic renormalization groupive) effects on the different cross sections and tlialyso-
logarithmic behavior of the running couplings. In our case, dute) effects on the different asymmetries, denoting with a
combination of the ¥V vertex with a box generates the cor- NS (= non-Sudakoy symbol all the remaining part of the
rect gauge-independent asymptotic Sudakov logarithmic besarious observables. For sake of comparison, we shall also
havior (that exponentiatgs include in our formulas the relative and absolute effects due

(Il From practical point of view of the validity of a per- to the linear logarithms of renormalization gro(RG) ori-
turbative expansion truncated at one loop, we believe thagin, already computede.g., Ref.[7]). Also, for simplicity,
one should consider the terms in the various brackets andle shall group together the twd&y/ and Z functions writing
discuss the various effects separately in all observables. Fa,=U,=U(M\,=M;=M), which creates a small numeri-
instance, a cancellation might arise between thecal difference that will be irrelevant for the specific purposes
#-independent and)-dependent contributions if they were of this paper, given the fact that ttZeterm is much smaller
both large and of opposite sign. This, we believe, would nothan theW one. We shall consider as realistic observable
make a one loop approximation reliable. final states those which containa’ w~ (or also ar* 77)

(“l) As a rather academic feature, we believe that itpair, abE pair' and att— pair_ AISO, the cross section for
should be stressed that, for all ligithasslessfermion pro- production of the five light quarkss will be considered.
duction processes, there exists a “magic energy” where th@yote that for what concerns top production our formalism,
g-independent functions)\(q?) and Uz(g?) both vanish.  strictly speaking, only applies to energies in the CLIC range

This corresponds to the choice [8], and for this reason this process will not be studied in the
) ) LC regime. We shall restrict our att_ention to cross sections
|nﬂfz|niz:3, (2.15  for production of a single final statef (o¢), on o5, and to
Mw Mz forward-backward asymmetriesA\g ) and also longitudi-
. nal polarization asymmetriesA(g ) whose conventional
that selects the magic energy definitions are recalled in Appendix B. Starting from the ex-
. pressions given in Appendix B and from E¢8.4)—(2.14) it
Vo?=360 GeV (216 s a relatively straightforward task to derive the various

. . . ) ] Sudakov effects. We shall write them in what follows, re-
Clearly, in the vicinity of this energyall of the logarithmic  pjacing the theoretical input weak parameters by their ex-
Sudakov contribution for massless fermions is produced byerimental values, to make the different numerical size of the
the ¢-dependent, nonuniversal components of the weakgrious terms immediately evident.
boxes (which reduces essentially, from the numerical point  \we now list the final expressions for the various observ-
of view, to the contribution from th&V box). For bottom  gpjes. They read
production at this energy, an extra amount of Yukawa Suda-
kov logarithms must be addedor top production, we be- S a(M) g2

UM:U;'\: 1+

lieve that 360 GeV is definitely not an asymptotic energy, 0.645Iny> +[1.51U(q?)]

and the validity of an asymptotic expansion is strongly de- RG
batable; we shall only treat top production in this paper in the 92
CLIC Jg?=3 TeV regime. + 5.49|nW> ” (3.1
After these general remarks, we are now ready to perform 0S
a numerical investigation of the various asymptotic Sudakov M) )
logarithm effects on all the observables of the process. Thi _aNs | @ _ a 2
will be done in Sec. Il iFB*“ FB.u 1.07Inyz|  +[0.021(a%)]
2
IIl. EFFECTS OF THE DIFFERENT SUDAKOV 2.801 q_ 3.2
+|2.80In—| |, (3.2
LOGARITHMS ON THE EXPERIMENTAL OBSERVABLES M 0S

Having examined the way in which thé-independent a(M) q?
Sudakov logarithms always group, for final massless fermip , =ANS + [( ~358 |n_2) +[0.92U(g?)]
ons, in the combination (3 g’ —In%q?), for which precise i o M
rules exist 13] that make its resummation knowthese are 9
also available for the massive Yukawa contributionse +(5.13|nq_2) } (3.3
shall now proceed to the calculation of the Sudakov effects M) sl
on various observables at one loop. With this aim, we shall
consider the effects as due to three separate categories of NS (M) q°
terms: those which arise fro-independent quantities and 0= 0y, [1+ T[( —5.30Iny +[2.30(q?)]
enter in the two possible combinatiobl,(g?) andU,(g?) RG
[Egs. (2.2 and (2.3)], those which arise fron#-dependent ( qz) ( qz)

+ - ,
0S YU} ]

terms (denoted ‘9 S”), and those which are of massive lS'Olan 2.10In—
Yukawa origin(denoted “YU”). Since we are only interested t

(3.9
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™ RG
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q q
+ 7.22|nW)05—(0.30|nE2> H (3.7
YU
Op
sza—s
2
_ NS a(M) _ a 2
=RyS+ —— H 0.29In5|  +[0.048)(q)]
2 2
+ 1.12Inq—2) —(0.26Inq—2> } (3.9
M t/yu
M 2
Alre=ANS 4 & )(—4.16|niz +[0.92U(q?)]
’ ' T M RG
q° q°
+ 3.67InW) _(0'13IHHZ>YJ' (3.9
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a(M 2

o= o> gy M —1.641n
t w

RG

<

q° q°
+ 1.18In—2) —(3.55In—2) H (3.10
M S my YU
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' ' T M
q? q°
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' ’ ™ M%) e

q2
+|0.76 In—2) +
M 6S

(3.12

2
0.95 Inq—z) }
t/yu
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In the case of top production, other observables can be
added that depend on the final top helicity. They are listed in
the second of Refd.8]. As already remarked upon in that
reference, these extra observables only differ from their cor-
responding “unpolarized top” quantities by linear Sudakov
logarithms ofé-dependent box origin. Therefore the conclu-
sions concerning th&@-independent terms will remain un-
changed. A more complete discussion of the&lependent
effects could be given, but it seems to us to be beyond the
specific purposes of this paper. We shall defer to a forthcom-
ing paper devoted to top producti¢h9] for more details.

We may try to compare the above expressions with results
obtained by other authors; see, e.g., R€812,13. How-
ever, the comparison is not obvious because the photonic
part is treated differently in these papers, and the observables
are often not defined in the same way. One can nevertheless
identify the main terms. The comparison is easier with the
results in Ref[12]. They differ only by the inclusion of the
small #-dependent contribution from thgZ boxes and are
indeed very close to our results, as one can easily verify.

We are now ready for a detailed numerical investigation
of the Sudakov effects on the listed observables at one loop.
With this aim, we divide our analysis into two parts, sepa-
rately devoted to the two cases of energies in the LG*(
=500 Ge\J regime and in the CLIC{q?=3 TeV) regime.

Our main conclusions can be summarized as follows.

(1) LC regime (/o?=500 GeV).At \/g?=500 GeV, the
Sudakov effects act on the various observables in quite a
different way. We have made the following general classifi-
cation.

(a) Cross sectionsThe relative effect in permille on the
muon cross section is, to good approximation; & from the
#-independent term and #46 from the #-dependent term.
For the “light” quark cross sectiorrg it is a —7 (6 inde-
pendent and a+61 (# dependent For bottom production,
the relative effect on the cross section is-8 (6 indepen-
dend and a+126 (§ dependent In this case also has in this
case, a negative relative effect of 11 permille coming from
the extra linear Sudakov logarithm of Yukawa origin.

The general comment that can be made at this point is
that, for all the considered cross sections, the effect of the
nonuniversal g-dependent subleading Sudakov logarithm is,
at one loop, by far larger than that of theindependent
combinationdJ,y(g?) andU;(q?), and systematically of op-
posite sign. This is, somehow, unfortunate, since a resumma-
tion prescription for thed-dependent logarithms does not
seem to exist at the momerit3]. In the LC range, this might
not represent a problem for a one-loop approximation if one
considers the relative 1% as a reasonable experimental
achievement fowr, and os. In this case, relative effects at
one loop around 5% might be tolerated, with some warning
in the case ofrs. For bottom production, if one expects an
experimental accuracy of a few percent, a 13% effect would
still be acceptable. If the experimental precision were higher
than the previous qualitative estimates given here, the neces-
sity of a two-loop calculation for th@-dependent contribu-
tion would become imperative. Note, incidentally, that the
effects of the resummable terrak,(q?) andU,(q?), are in

073008-7



M. BECCARIA, F. M. RENARD, AND C. VERZEGNASSI PHYSICAL REVIEW 54 073008

this case extremely small at the one-loop level, so that irseems to us to make the approximation reliable, even in
their case a one-loop approximation seem to us completelyases of reasonable improvements in the experimental preci-
reliable. sion.

(b) Longitudinal polarization asymmetrie¥his case pre- (I1) CLIC regime (/g%=3 TeV).For energies of about 3
sents strong similarities with that of the corresponding crossey, as those aimed for in the first phase of the future CERN
sections, and therefore we treat it immediately in successiorg| |c Collider, we have repeated the previous analysis, in-
The absoluteeffect (in permille) on the muon asymmetry, ¢j,ding top production for which CLIC energies can be
ALr,, is a—3(#independentand a+43 (6 dependent For  gafaly considered as “asymptotic.” Here we list the results
the five light quarks casé, g, the absolute effect is &3 ¢ e found, quoting thed-independent term first, then
(6 mdepender)tgnd a positive thirty-oned-dependent I_:or giving the #-dependent term effect and finally, whenever in-
bottom productionf g, the two effects are respectively volved, giving the Yukawa term contributidin percent this

—2 and +45. Again, one notes a strong _domlnance at One[ime, relative for cross sections and absolute for asymme-
loop of the positived-dependent terms with respect to the iries

n ive 6-in ndent ones, just as in the case of cross . . .
egative ¢-independe J (a) Cross sectionsFor final muons, we obtain & 10 and

sections. The reliability of the one-loop approximation will , ) K h
strongly depend on the aimed experimental accuracies of thz +9 (Percent. For final light quarks ¢s), there appear a

measurements. If these will remain at fabsolute level at ~ — 14 and+12. For bottom production, we obtain-a16 and
a few percent, there should be no problem for the approxi@ +26 (plus a—3 of Yukawa origir). For top production, we
mation, while higher experimental accuracies would make #btain a—12 and a+2 (with a —5 of Yukawa origin.
two-loop calculation of theé-dependent terms highly “desir- ~ As one sees, the situation at CLIC is strongly different
able.” from the corresponding one at LC. The role of the
(c) Forward-backward asymmetrie§hese specific ob- #-independent terms is now slightly more relevant than that
servables present a peculiar feature that extremizes the pref the §-dependent ones for both muon and for light quark
viously remarked ¥-dependent logarithm dominance.” In production; it is largely dominant for top production, and
fact, in their case, an accurate numerical calculation showgemains less relevant only for bottom production.
that, independently of the considered final state, the coeffi- For what concerns the validity of a one-loop approxima-
cient of the #-independent=U,(q?), Uz(g?) terms is al- tion, the situation seems to us to be, in a certain sense, dis-
ways, essentially, negligibly small, i.e., much smaller thanappointing, and also final state dependent. For muon and
that of the #-dependent term and well below the absolutelight quark production, one might take the pragmatic attitude
percent level. In Appendix A we try to derive in some detail of considering theoverall Sudakov effect, obtained by sum-
this apparently nontrivial fact, which seems to arise from theming the negative6-independent part and the positive
multiplets assignment of the fermions in SUEY(1). Nu-  g-dependent part. This sum is actually snialfew percent
merically and to a good approximation this absolute effect isand apparently under control. A more cautious point of view,
(in permille) always negative and in magnitude well less thanhowever, that we personally share, is that one is dealing here
one for final muons and one for's. This feature will persist  with two large and opposite effects, that are both separately
at the higher energies involved at CLIC, where it will also gauge independent and of rather different origin, the positive
appl to top productiorithat we do not treat at LC energjes one being completely nonuniversal aAdiependent. We do
and seems to be a very general property of this type of obnot see any obvious reason why the two large and indepen-
servables. The consequence is that, at asymptotic energiefent effects should still cancel, e.g., at the next two-loop
the only Sudakov logarithms that must be retained at ongevel. Thus, in our opinion, one should compute thaothto
loop in the forward-backward asymmetries are thehigher order. This would not represent a problem for the
#-dependent ones of box origin. This generates a strangg-independent contribution, for which resummation prescrip-
situation of “box dominance” for what concerns this type of tions exist[13]. However, as we already stated, these pre-
virtual effects, totally opposite to the situation, e.g., met onscriptions are unclear for thé-dependent term. Given its
top of theZ resonancé. rather large size, a calculation of this quantity at the next
For what concerns the validity of a one-loop approxima-two-loop level seems unavoidable to us.
tion, the #-dependent absolute effects are always positive Note that, in our opinion, until a two-loop calculation of
and equal, in permille, to 24final muong and 36 (final  the latter term has been performed, resumming the
bottom. At the percent level of experimental accuracies, thisg-independent effect only, leaving the other terms at the one-
loop level, could worsen the situation. This procedure might
in fact reduce the resummed negative contribution, leaving a
As we already anticipated in Eq®.15,2.16, a similar and rather much larger pOSitive dpminant ter,m' Unfortuna’gely, it seems
peculiar feature of the Sudakov logarithms arises|gf=360 O US t.hat for light ferm|'on production cross sections at CLIC
GeV=4M, . Here thed-independent term vanishesactlyat one ~ €nergies, a resummation of the pufendependent terms,

loop, so that the full effect is produced, at that energy, by weak@lthough theoretically valid and remarkable, does not pro-
boxes. This situation is again just opposite to that met aZtheak  Vide the full answer to the need for a reliable, complete the-

where boxes could be safely ignored, and affects not only théretical prediction. _ .
forward-backward asymmetries ball observables at this special This conclusion also remains unchanged, in our opinion,
energy value. for bottom production, from inspection of the numerical ef-
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fects that we have shown. The only apparent evasion of thiktion, resumming only thé-independent term. This process
negative statement is provided by the cross section for topould therefore be satisfactorily calculated, without extra the-
production. Here th&-independent effect dominates, while oretical efforts, by a suitable combination of different exist-
the other one is small and limite@%). The reason for the ing formulas for thef-independenf13] and #-dependent8]
weakness of th@-dependent term is the fact that its leading contributions.

contibuton, heW box diagram ot producion, has an (5 FITZELSD SSTIECROn, o e e
angular_distribution =In[(1+ cos0)/2] Wh'Ch IS peaked ing cross sections. The absolute numbeérs percent are
backward[as one can guess from the diagré® of Fig.

. . ) —6 and +9; for final muonsA g ,; —6 and+6 for light
1(d)], and mterfereslery little with the forward-peaked Born quarks A ps; —5 and-+9 for final bottom; and-7 and-+1

term; in the case dbb production, diagrantl) of Fig. 1(d),  for final top. Assuming(approximately a percent level for
conversely, is peaked forward and interferes strongly withnhe related experimental precisions, we believe that the same
the Born term. Fott production in this situation, one could conclusions, drawn irlla) for what concerns the one-loop
safely approximate the cross section with a one-loop calcuapproximation at CLIC energies for the various light fermi-
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ons and bottom and top cross sections, still apply for all thepercent for bottom production, a one-loop approximation

corresponding longitudinal polarization asymmetries. seems to us fully acceptable. In this case, the relevant effect
(c) Forward-backward asymmetrieét CLIC energies, would be fully provided by existing one-loop calculations

the absolute overall contribution of theindependent Suda- [7,8] of the angular dependent component of the terms, with-

kov terms is, for both massless and massive fermion produc@ut need of any extra theoretical effort. o

tion, systematically irrelevaripbne permille for muons, anda  We have thus completed our numerical analysis in the two

few permille for either light or massive quajkat the level ~ (LC, CLIC) different considered “asymptotic” energies. The

of realistic expectable experimental accuracy. This is infMain results and conclusions are summarized in the forth-

agreement with our general previous observation, that will b&°Ming and final Sec. V.

discussed separately in Appendix A. Thalependent abso-

lute box effects are, respectively, 5§tnal muons, 7% (bot- V. CONCLUSIONS

tom production, and— 2% (top production. With an experi- In this paper we have performed a systematic analysis of

mental accuracy of 1% for muons and top, and of a fewthe weak Sudakov logarithmic effects at one loop in the 't

0.4 T T T T T T T T T T T

0.2 r

FIG. 5. Separate asymptotic contributions to
oy, as functions of the energy. The captions are
the same as in Fig. 2.
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FIG. 6. Separate asymptotic contributions to
Agg p as functions of the energy. The captions are
the same as in Fig. 2.

Hooft £=1 gauge for a large class of experimental observselected energies, 500 GeV and 3 TeV, but it can easily be
ables, in two different energy configurations that correspondepeated for any arbitrary value, e.g., beyond 500 GeV or 3
to the regimes to be explored at the next linear colliders LCTeV. This is summarized pictorially in Figs. 2—11, where we
(500 GeV} and CLIC (3 TeV). We have divided the set of show the various contributions from the angular independent
effects into two essentially different gauge-independent subterm and from the angular dependent term on all the chosen
sets. The first one is “angular independent,” universal, andobservables, when the energy varies. For the sake of com-
comes from vertices and boxes; the second one is “angulgsleteness we have also included the universal linear logarith-
dependent,” nonuniversal, and comes only from boxes. Thenic contribution of RG origin, which was computed in pre-
main motivation for our analysis was to study the specificvious references[7,8] and does not seem to become
effects of this last term, for which no clean resummation“dangerous” at the considered energies. From inspection of
prescription beyond the one-loop level seems to exist at ththese figuresand Figs. 12 and J3one sees, e.g., that our

moment[13].
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conclusions remain essentially valid whefgy? ranges be-
Our numerical analysis were explicitly performed at twotween =3 and =5 TeV, a possible larger CLIC range, or

FIG. 7. Separate asymptotic contributions to
A_rp as functions of the energy. The captions are
the same as in Fig. 2.
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between 500 GeV and 1 TeV in the LC case. negative angular independent effect and the “large” positive

Our general conclusion is that, for each considered obangular dependent one. So both should not be taken, in our
servable, in both considered energy configurations, the rolepinion, in the one-loop approximation, which does not rep-
of the angular dependent term &ways essential. In the resent a problem for the first term, but requires a new calcu-
cases of cross sections and longitudinal polarization asyniation of at least two loops for the second one. An exception
metries, our analysis has led to very similar conclusions foto this statement is provided by the cross section for top
the “corresponding” quantitiedi.e., the cross section for production, the only case that we found where the angular
production of a certain final state and the related longitudinatlependent effect turns out to be negligible.
polarization asymmetjy In practice, at LC, the angular de- A completely separate role is played by the forward-
pendent logarithms are dominant but “small,” i.e., “under backward asymmetries. In these observables, independently
control” at the one-loop approximation, assuming an experi-of the considered high energy, the angular independent effect
mental accuracy of the percent size. At CLIC, a strong canat one loop is essentially vanishing, for reasons that seem to
cellation appears at one loop between the ldrge, =10%)  be accidental. Thus the angular dependent Sudakov loga-
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rithm remains, for these special quantities, the only relevant A numerical simplification has occurred, in fact, in our
effect. Luckily, if one assumes realistic experimental accuraapproach, and we want to discuss it briefly now. In our cal-
cies, this effect appears to be under control both at LC and atulation of the size of the effect of th¢independent Suda-
CLIC energies, which would allow one to avoid a hard two-kov terms on the various observables, we fully retained the
loop calculation in all cases. asymptotic expressions given in EG8.4)—(2.14). In the two

As a matter of fact, the need for a two-loop calculation oflimiting situations of forward and backward scattering,
the angular dependent term only appears for calculations afos¢— =1, the asymptotic expressions formally diverge like
cross sectiongfor which longitudinal polarization asymme- a logarithm. Clearly, this would not be the case if we had
tries are essentially a special cas€he possibility that a used the complete expression, which would be necessary in
simpler calculational approach can be found for these welthe low g? range. For the specific purposes of this paper,

defined cases is, at the moment, being investigated. where only#-integrated quantities have been considered and
O
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FIG. 12. Separate asymptotic contributions to
Ry, as functions of the energy. The captions are
the same as in Fig. 2.
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estimates of effects are essentially indicatize. aimed at
identifying “dangerous” potential contributions this ap-
proximation seems to us satisfactory in the lagjeregime

Vg’ (Tev)

we have considered the two quantities which appear iMthe
box is contribution to the cross sections:

in which we are interested. First of all, a logarithmic singu-
larity produces a finite integrated quantity in any case. Sec-

ond, one must remember that in a realistic experiment there
is always a finite value of the scattering angles; 6,, below

dcosé (1+cog)In(1F cosh), (4.1

cosf
Il:
—cosb

which no experimental observation is allowed. Starting from
these considerations we first recomputed the integration of

the 6-dependent logarithms with a cut atcosé,, and com-
pared these values with those obtained performing a full in-
tegration that would correspond t,=0. More precisely,

0.10

cosfy
l,=7F J' d cosé cosé In(1F cosh). (4.2
—cosfg
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FIG. 13. Separate asymptotic contributions to
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These can be computed analytically, leading to the expresegime. They turn out to be only linearly logarithmic, and
sions systematically under control at CLIC energies with a pos-
sible exception for bottom productigmssuming a typical
supersymmetryfSUSY) mass of a few hundred GgVSo,
- §Cosgo_ gco§'¢90+%(—4+3 cosfy+ coS6,) for f#t production, SUSY does not add technical problems

1 3 at the theoretical one-loop level in the MSSM case. Note
1 that, also in the MSSM case, the extra SU&¥dependent
xln(l—coseo)+§(4+3 C0Sfy+ COS 6) contributions to the considered forward-backward asymme-
tries are systematically negligible, exactly as in the SM case.
X In(1+coséy), (4.3 In the f=t case, discussed in the second of RE3$, the

situation is slightly less straightforward. The size of the lin-
ear Sudakov logarithm, that contains a large component of

1 1+ cosé, Yukawa origin, depends strongly on the SUSY parameter
| ,=cosfy— 55”1200 In 1—cosf,’ (4.4 tang. For the lowest allowed values of t# its numerical
value in the cross section can be larger than the 10%
and, for example, one finds;=—1.04, —0.90, —0.67, “safety” limit. However, a strong reduction of the effect is

—0.44, andl,=1, 0.91, 0.74, and 0.54 whef,=0, 10°, achievable by adding in the asymptotic expansion a reason-
20°, and 30°, respectively. As one sees, the “cut” quanti-able extra SUSY constaft full and detailed discussion on
ties, for values o, as large as=20 °, only differ from the  this important point will appear soon in a forthcoming dedi-
complete integration by a relative 20—-30 % difference, anctated papef19].

will essentially reproduce its main features, so that this cut

effect will be irrelevant for our conclusions. In this region,

our logarithmic approximation should be satisfactory. In fact, ACKNOWLEDGMENTS

in the expressions to be integrated we made the assumption
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(4.9

APPENDIX A: THE SPECIAL BEHAVIOR

: 2 2
which ensures that the terms(tYMy,) and Irf(u/Mg,) are OF THE FORWARD-BACKWARD ASYMMETRIES

large and can safely be estimated by neglecting their
g?-independent parts.

At CLIC energies, the right-hand side of E¢.5) is equal
to =1.5°, while in the LC range it reaches a value of abou : ; o 2
9° (or less, forJaz>500 GeV. In both cases, from what small in the high energy I|m|ts(>M .)' .
previously shown, an estimate of the angular cut that must be _In the separate proo_lucufon of chiral fgrmmrfg orig) a
performed in the different observables, based on the logarith?-iNdependent correctio€,  does obviously not modify
mic approximation truncated, say, at a corresponding realidn® Born values oReg ¢ _ as it gives the same effect in the
tic cut, would reproduce essentially the numbers that wdorward and in the backward domains. However, si@fe
gave, to a degree of accuracy that should be fixed by a dedi Cg, C[# ch, and since the integrated Born cross sections
cated analysis of the special experimental features of the rén the forward or in the backward domain‘gfg“(e,_’R,fL’R)
lated experiments. are non-equal, it is apparently not obvious that the forward-

We note at this point that the same logarithmic approxi-backward asymmetry for unpolarized initial electrons and
mation that we followed was also used in Ref2], where a  final fermions,

detailed numerical analysis was performed, with precise
numbers, for some of the observables that we considered————
Since the analysis of Reff12] also includes, as we already
mentioned, the)-dependent contribution from thgZ boxes,

slight differences appear in the various results. form aU(q?) +bys (109 /M) o+ b (109 BMP)gac. The nu-

A final comment ShOUId now be .made C.oncemmg the rOIemerical values of the constantdn the various cases turned out to
played by other poss't?'e asymptotic Iogarthms in the examE:orrespond systematically to a negative few perdeelative or
I'ned processes. Thogknear ones of RG origin have'been' absolute effect, with a and b in agreement with the theoretical
listed in our formulas, and the reader can very easily verifyg,qakoy and RG values. For LC energies, this decreased in all
that their effect at one loop will never be dangerous at theases the overall logarithmic one-loop effect, that was already in
considered energies. There is another interesting possibilityur philosophy under control, being the sum of two separately small
due to virtual Sudakov effects at one loop of supersymmetrigffects. From this fact we would be led to reinforce the conclusion
origin. They were exhaustively discussed in a recent papeahat for LC energies the complete one loop approximation should be
[20] for the MSSM case, in the cade#t, in the few-TeV  satisfactory, at least at the percent experimental level of accuracy.

In this short appendix we investigate the origin of the fact
tthat the 6-independent contributions t#gg ¢ turn out to be

2As a matter of fact, in Ref$7,8] an asymptotic expansion at the
one-loop level, in the TeV range, was used of the more complete
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oe_g(e,,f)+or_gle,fr) +or_g(er.f)+or_g(er,fR)
origleL,f)+opiple,fr)+orip(er,fL)+0or p(ER,TR)

=[of° (e ,f)(L+CE+C))+ R 8(e, ,fr)(1+CE+Ch) + 0B B(er, fL)(1+Ci+C)) + oEB(er, fr)

AFB,f:

X (1+C&+CRIoR8(eL , f(L+CE+C)+opd8(e, , fr)(1+CE+Ch) + oEB(er, fL)(1+Ca+Cl)
+0B9(er, fR)(1+CE+CH) 17, (A1)

remains so close to its Born value.
The condition is that

[CfL_CfR]{UEom(eL ,fL)[US‘”“(eL ,fR)+US"'”(eR,fR)]—UE‘””(eL ,fL)[UE"”‘(eL 1fR)+0'Eom(eRafR)]

—UE‘””(eL afR)Ugom(eRrfL)+UEom(eL :fR)UEmn(eRafL)"‘UEmn(eRafL)Ugom(eR,fR)_Ugom(eR,fL)UEmn(eRafR)}

=[Cg— E]{O'Eom(eL 1fL)[0'Eom(eR1fL)+O'Eom(eRafR)]_U'Eom(eL afL)[UEom(eRafL)+0'E0m(eR:fR)]

Born Born Born Born

+ap°(eL,fr) o (er, fL) — 08" (6L fR)0E (e, fL) + 0 (6L ,fR) o5 (€r, fR)
—05°"(eL,fR) ot (er,fR)}, (A2)
|
and it is not trivially satisfied. Including the angular independent corrections at first or-

We have tried to analyze the contents of B&2), and to  der leads to
look for the origin of the cancellations which appear in this

expression or in the equivalent ori&g. (B10)], given at the 4 3/Qq] 1+cy+c)
end of Appendix B, which can be used in the case of angular §AFB’f= 1—|Q¢|+5|Q4|? 1+cf1+ ct)’ (AS)
independent contributions:
where
A =§U—12 (A3) f_ Al [ f f
FB,f 4Uy’ c;=C_ +Cgr+C| +Cxg, (AB)

in which the photon and exchange terms are explicitty ~— , [1—[Qy] N |
written. Simplifications arise when one uses the fact that ©2~| o[~ [Qil(CL-CRrI+ 3(CL-CR) |,
5\2,\,2%, which makes the vector coupling of tiZeboson to (A7)
"1~ (I=e,u,7) vanish (all the results obtained below
would not be valid for an arbitrary value sf,). ; 3(1—]Q¢)) oo o

In the s3,=1 approximation we first consider the process 3~ (1—|Qf|+5|Qf|2)) IQil(CL=Cr)+ 3(CL=CR)|.
e"e —u' u~, where the photon Born term is purely vector (A8)

and theZ Born term purely axial. One easily sees that the ] N )

one-loop corrections factorize out in the same way (1 One sees now that, in addition to the terfnwhich would
+2C! +2Cl) in the numeratorU;, (only given by the factorize out like in the casé=I, there appear additional
photonZ interferencg and in the denominatot;, (only ~ correctionsc, and c; (which vanish forf=I). However
given by the squared photon and the squaZerms, so these additional corrections turn out to be both of the same
that their total effect irAgg ¢ vanishes. So, in practice, these Size,cy=c5, and smaller thae} in each of the caseb=u
¢-independent one-loop corrections should be proportionadndf=d. So at the end the total correction to the Born value
to (1_43\2/\,) and indeed very small. is again rather small. One can trace the origin of the relation
ch=cl<c! in the fact that, using the notations of REE3]

The case of the processese”—uu ande*e”—dd is : _
for the ¢-independent terms, the left-handed corrections

less obvious. One still uses the fact that the photon Bor

term is purely vector and that the initidl Born coupling to Z?TJFZ(YE/A') tarf 6 are larger than the right-handed ones
e*e" is purely axial in the limits2,= L. In this limit, another ~ =(Qf/4)tarf 6, (this is the usual electroweak feathrand
essential ingredient is the numerical value of also in the fact that ®/=1—|Q;|+5|Q|* (leading to
$ARRT=1 for bothf=u,d).
sorm_ [ Y12 BO”‘_ 3|Qql So in conclusion it appears that the angular independent
§AFB,f_ U_11 _W’ (A4) electroweak corrections tAgg ¢ turn out to be small for

accidental reasons related to the left versus right structure of
which is close to 1 for both up and down quarks, i#.for  the electroweak multiplets and to the vakfg= . We do not
uand 7 for d. see any deeper physical reason.
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APPENDIX B: GENERAL FORM OF THE POLARIZED
e —ff CROSS SECTION IN THE Z-PEAK
SUBTRACTED REPRESENTATION

The general expression of thee™—ff cross section
can be written as

dcosa(P P’ )__qu [—(1+cos’-0)[(1 PP)Uy,

3
+(P'=P)Uz ]+ cosb[(1-PP")Uy,
+(P'=P)Uyl, (BD)

where
2
(0)Q7
Ull_q—f[1+2A(”)(q ,6)1+2[a(0)]Qf]]
o*— M3 3r,|¥7 31y |
CR(P-MDHZ+MITD | M5 | MM,
Vs ~
% _ _ 1+A0D 2 9 _Rr(H 20
RUGEICRNGENT: o (A% 0) (a%6)

—4s|c,[1v(”)(q 0)+ IQfIv(”’(q 9)”

Ug
3r][ 3ry
Mz[[ViMz

(9?=M35)?+M32I'Z

—~2R10(q?,0)

0| Qs
(1+ f)

—8s|c|[1+~2V(7'9( 2,0)+ ———- ngy)( 2 9)]

(B2)

_ 31’* 1/2
U= 2[a(0)[Q; il | '}

2= z>2+M§F§>lM_z

[ 3T,

1
X = =
NfMJ (1+v)MA(1+v5)M?

x[1+A19(q2,6)-R(q?,6)]

3r,][ 3ry
Mz | NiM
(M7 Mz

40,0
(1+03)(1+03)

x| 1-2R(N(g?,0)—4sc

|Qf|

{ =V (0% 0)+ = VQLN 20)] (B3)
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q f—
z)2+ MZT2)

Uz1=2[(0)|Q4]] (o=

X[sr.r”{ 3l } vy
Mz| |NiMz (1+5|2)1/2(1+5?)l/2

x| 1+34%(¢% 6)-R1(q?, 6)

3| 3r;
Mz [ NiM,
(@*=M2)*+M3I7

4S|C||Qf|

Uf

V(If)( 2 )

1-2R(N(g?,6)—4sc

Sl

2

|:
X

1
X{:V(y'?(qz,ew (B4)

U

q —

ez @=wy) +M%F§>
3r }1’2 v
NiMz| 1+ YA 1+v)H)Y2

C
#vg@mz)}

Uj

U22:2[0(0)|Qf

3F| 1/2]
X[M_z}

x| 1+24"(¢2,0)-RM(q?,0) -

3F|H 3l¢ }
Mg || MM 2v
2 Z2 2f Zz 2 v'jz 1—2R('f)(q2,0)
(q°=M2)“+M37I'7| (1+vF)
%,
—4s|c|{ Vi (q? a)+|Qf|v<'f)( 2 a)”
(1+vp)

(B5)

HereP andP’ are thelongitudinalpolarization degrees of
the initial lepton and antilepton, anid; is the color factor for
the ff channel which includes the appropriate QCD correc-
tions to the input.

From this general expression one obtains the unpolarized

integrated cross section

+1 do
af—fildcosedc 0(0 0) (B6)
the forward backward asymmetry
Arg = fﬂd 9700
FBi=| ], Cosadcosa( 0
fo d cost--T_ (0,0 B7
-] dcostyisg 00 /oo (B

and the longitudinal polarization asymmetry
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+1 doy +1 A7 )
AR = ﬁl dcosadcosﬂ(_l’o)_ J:l d cosé crf=?J\/fq U1, (B9)
<97 10| /2 (B8) _3Yp
dcosd : I AFB,f_Z Uy’ (B10)
Note that for #-independent contributions these integrals ALRf:U_ﬂ_ (B11)
simplify, and allow one to write " Ug
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