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Noncommutative quantum mechanics
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A general noncommutative quantum mechanical system in a central podati(r) in two dimensions is
considered. The spectrum is bounded from below and, for large values of the anticommutative pataweter
find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these character-
istics is equivalent to a commutative one in such a way that the interatt{ioh is replaced byV
=V(Hyo.,L,), whereH, is the Hamiltonian of the two-dimensional harmonic oscillator énds the z
component of the angular momentum. For other finite valueg tife model can be solved by using pertur-
bation theory.
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Recent results in string theofiL] suggest that spacetime IP(x,t) p?
could be nonconmutativi2]. This intriguing possibility im- = |om TV [P (x1) (4)

plies new and deep changes in our concept of spacetime that

could be visualized at the quantum mechanical level. Fofg {5 replace
example, unitarity in quantum mechanics is assured if time is
commutative, but spatial nhoncommutativity, although it is P
completely consistent with the standard rules of quantum V(X)*‘I’(X,t)HV(X—E)\I’, (5)
mechanics, implies the new Heisenberg relation

AXAy~ 0, (1)  wherep; = 6'kp; , and ;= Oe;; with €;; the antisymmetric
tensor. This formula, which appeared recently in connection
where 0 is the Strength of the noncommutative effects andv\”th String theory’ was written ”ﬁg] a|though there is an
plays an analogous role #in the usual quantum mechan- oider version also known as Bopp's sHif.
ICS. The next step is to consider a central potential in two

In this Brief Report we would like to discuss a general dimensions. The right hand side of E&) becomes
noncommutative quantum mechanical system, stressing the

differences from the equivalent commutative case. More pre- (
\Y,

p
X__

cisely, we show that any two-dimensional noncommutative >

system in a central potentidf=V(r) wherer=[x? is
equivalent to a commutative system decribed by the potential

0 &
\Ifzv(zp)z(+x2+ Zp§+y2— oL,

=V(R), (6)
V:V(HHO,I: ), (2) ~
‘ where theX operator is defined as

whereHyo is the Hamiltonian of the usudtommutative
two-dimensional harmonic oscillator ag is the z compo-
nent of the angular momentum.

In noncommutative space one replaces the ordinary pro
uct with the Moyal or star product:

&:ﬂHO_GI:Z’ (7)

qqnd corresponds to a two-dimensional harmonic oscillator
with effective masam=2/6?, frequencyw= 6, and angular
momentumL,=xp,—yp,. The symmetry group for this

AxB(x) = e8P p By N 3 system is S(R) and the spectrum of can be computed
(x) CACBO) g (@) YRS S
The only modification to the Schdinger equation

L 1(aJ‘a —ala,)
x (A aydy)s
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1 : : The second term of the Hamiltonian can be treated as a
L,= z(axay_ayax) perturbation for largebut finite) values of 6. For regular,
polynomial-like potentials, the situation is similar to the soli-

are symmetry generators satisfying the Lie algdhral;] tonic case as ifi6]. _
. a2 I We will concentrate on the expectation values of the full
=ie€jLy and, thereforelN,L<,J,= 5L} is a complete set of

conmuting observables. If we denote the eigenvalues angamiltonian,Ejm=(j,m[H|j,m), i.e.,

eigenvectors by;,, and |j,m), respectively, then we have

the selection rules LA 2 )
Seeston Ejm= (3 mlFioj m)—| =}, mir?j,m)

j=0m12, .., s
22 + rgdmiLim),
m=j,j—1j—-2,...,—]. 9) )
The eigerlfunctionisj ,m) are well known[5] and the eigen- = W[zj +1]+V[6(2j+1-2m)]
values ofX are given by
Njm=6[2] +1—2m]. (10) —Mi02<j,mlr2|i,m>- (15)

EJsing these results, the calculation of the eigenvalues Of'he next to last term in the right hand side in EZf) can be
V(R) is straightforward. Indeed, if the eigenvalues of thecgculated using perturbation theory for large valuesfof

operatorA area,, then the functiorf (A), after expanding Indeed, in this case|j,m) corresponds to the two-

for small values ofe, is dimensional harmonic oscillator eigenvectors
" " ) 1 AN 2 aTj+maTj—m
f(A+e) = F(A)+T'(A)e+ Ef (A)es- - |, lj,m)= _+ = 10,0), (16)
' N +m(j—m)!
1 . . .
= f(a)+f'(a)e+ —f"(a.)e?- . - where in Eq(16) we have used the Schwinger representation
(@)t @yt 5 (an)e )l/f“ for the two-dimensional harmonic oscillatof5] and
(j,m|r?|j,m) becomes
=f(an+e)y—f(an) vy, (11 )
~ i 2| = — i
and, as a consequence, the eigenvalue equatidf{Xy is (o mirel,m) Z[ZJ 1] (7
V(§)|j ,my=V[6(2j+1-2m)][j,m). (12) Let us consider now two kinds of singular potential.

@ If V(r)=—«/r*, then V(0)=-—9[0(2j+1
Once Eq.(12) is found, one must compute the spectrum of —2m)]~“2. Note that this term varies a& “’2, and there-

the full Hamiltonian given by fore the relevant contribution to the spectrum teor-2 is
given by the first term in Eq(15). In fact, the difference
p? R between the levelsj2and 2 +1 is 2M 6.
H= WJFV(N) (b) From the physical point of view, probably the most

interesting case is the Coulomb potent(r)=yIn(r)
2 by s 2 . 2 which corresponds toV(6)=y/2In[6(2j+1—-2m)]. This
VY Z POl - M—azf +V(R)+ Mal? could have a relation to the quantum Hall effect where elec-
trons are confined in a plane. We would like to remark that

5 A 2 2 spectroscopy in two-dimensional systems could be a sensible
=—R+VR)— ——r2+—1L, mechanism for detecting noncommutative corrections to
M 6° M 6° M6 guantum mechanid¥].

Finally, we would like to point out that our results seem to

_ 2 2, (13) indicate that the connection between the commutative and

2

=Ho~ M2  Me-E noncommutative regimes is abrupt, i.e., the ligit:0 can-
not be taken directly8].
Using Egs.(10) and(12) one find that the eigenvalues ki We would like to thank V. O. Rivelles and F. Mdez for
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