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Gauge theories of spacetime symmetries
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Gauge theories of conformal spacetime symmetries are presented which merge features of Yang-Mills theory
and general relativity in a new way. The models are local but nonpolynomial in the gauge fields, with a
nonpolynomial structure that can be elegantly written in terms of a metric~or vielbein! composed of the gauge
fields. General relativity itself emerges from the construction as a gauge theory of spacetime translations. The
role of the models within a general classification of consistent interactions of gauge fields is discussed as well.
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I. INTRODUCTION AND CONCLUSION

In this work new gauge theories of conformal spaceti
symmetries are constructed which merge features of Ya
Mills theories and general relativity in an interesting wa
This concerns both the Lagrangians and gauge transfo
tions of these models. The Lagrangians are local but n
polynomial in the gauge fields, as general relativis
Lagrangians are local but nonpolynomial in the gravitatio
~metric or vielbein! fields. In fact, they are formally very
similar to general relativistic Lagrangians, except that
metric and vielbein are polynomials in the conformal gau
fields; cf. Eqs.~25! and ~38!. Moreover, general relativity
itself emerges from the construction as a gauge theory
spacetime translations~see Sec. VI!.

The ~infinitesimal! conformal gauge transformations co
tain a Yang-Mills type transformation and a general coor
nate transformation, with the remarkable property that b
parts are tied to each other by the fact that they involve
samegauge parameter fields, cf. Eq.~23!. This unites the
symmetry principles of Yang-Mills theory and general re
tivity in an interesting way and reflects that the models
gauge theories of spacetime symmetries in a very di
sense. The latter also manifests itself in the explicit dep
dence of the Lagrangians and the gauge transformation
conformal spacetime Killing vector fields. This, among oth
things, distinguishes the models presented here from ga
theories of conformal symmetries constructed in the p
such as supergravity models@1–13#, or, more recently, mod-
els presented in Refs.@14,15#.

At this point a comment seems to be in order. Particu
models constructed in this work admit field redefinitions~of
fields that occur in the action, and of gauge parameter fie!
which completely remove the explicit dependence of the
grangian and gauge transformations on conformal Kill
vector fields, and cast the models in more conventional fo
In particular, the standard formulation of general relativ
arises in this way through field redefinitions which trade m
ric or vielbein variables for gauge fields of translations. It
possible, and quite likely, that the~nonsupersymmetric ver
sion of! models constructed in Refs.@1–13# can be repro-
duced analogously. However, it seems to be impossible
eliminate the dependence on conformal Killing vector fie
in the generic model constructed here.
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The models are not only interesting for their own sak
but also in the context of a systematic classification of c
sistent interactions of gauge fields in general, which is qu
a challenging problem and partly motivated this work. Su
a classification was started in Refs.@16,17# using the Becchi-
Rouet-Stora-Tyutin~BRST! cohomological approach to con
sistent deformations of gauge theories@18#. The starting
point of that investigation was the free Maxwell Lagrangi
L (0)52(1/4)(AFmn

A FmnA for a set of vector gauge fieldsAm
A

in flat spacetime. In the deformation approach one a
whether the action and its gauge symmetries can be nont
ally deformed, using an expansion in deformation para
eters.

In Refs. @16,17# complete results were derived for Poin
caréinvariant deformations of the free Maxwell Lagrangia
to first order in the deformation parameters. The result is t
the most general first order deformation which is invaria
under the standard Poincare´ transformations contains at mo
four types of nontrivial interaction vertices:~i! polynomials
in the field strengths and their first or higher order deriv
tives; ~ii ! Chern-Simons vertices of the formA`F` . . .
`F ~present only in odd spacetime dimensions!; ~iii ! cubic
interaction verticesf ABCAm

AAn
BFmnC, wheref ABC5 f [ABC] are

antisymmetric constant coefficients; and~iv! vertices of the
form Am j m, wherej m is a gauge invariant Noether current
the free theory.1 First order deformations which are not re
quired to be Poincare´ invariant were also investigated. Th
results are similar, apart from a few~partly unsettled! details
~cf. comments at the end of section 13.2 in Ref.@17#!.

Self-interacting theories for vector gauge fields with inte
action vertices of types~i!, ~ii !, or ~iii ! are very well known.
Those of type~i! occur, for instance, in the Euler-Heisenbe
Lagrangian@19# or the Born-Infeld theory@20#. Lately, ver-
tices of type~i!, which are not Lorentz invariant, attracte
attention in the context of so-called noncommutativeU(1)
gauge theory because interactions in that model can be w
ten as an infinite sum of such vertices by means of a fi
redefinition~‘‘Seiberg-Witten map’’! @21# ~field redefinitions

1Note the difference from vertices of type~iii !: the latter is also of
the form Am

A j A
m , but the currentsj A

m5 f ABCAn
BFmnC are not gauge

invariant.
©2001 The American Physical Society25-1



ST
h

ri

de

t
hi
o
in
-
a

er
ug

d

en

x
de
ns

e
a

.
r

r
re
te

e
tri
io
cu

oi
h

g
l
in
c
p
r-
al
s

II
eld

re-
ge
y

and
he
IV
al
od-

e
s

m-
n is

a-

n

o-

ly

he

lies

FRIEDEMANN BRANDT PHYSICAL REVIEW D 64 065025
of this type are automatically taken care of by the BR
cohomological approach: two deformations related by suc
field redefinition are equivalent in that approach!. From the
deformation point of view, vertices of types~i! and ~ii ! are
somewhat less interesting because they are gauge inva
@in case~ii ! modulo a total derivative# under the original
gauge transformations of Maxwell theory.

In contrast, vertices of types~iii ! and ~iv! are not gauge
invariant under the gauge transformations of the free mo
rather, they are invariant only on-shell~in the free model!
modulo a total derivative, and therefore they give rise
nontrivial deformations of the gauge transformations. T
makes them particularly interesting. Interaction vertices
type ~iii ! are of course well known: they are encountered
Yang-Mills theories@22,23#, and lead to a non-Abelian de
formation of the commutator algebra of gauge transform
tions. But what about vertices of type~iv!? Such vertices are
familiar from the coupling of vector gauge fields to matt
fields, such as the coupling of the electromagnetic ga

field Am to a fermion currentj m5c̄gmc, but what do we
know about vertices involving gauge invariant currents ma
up of the gauge fields themselves?

As a matter of fact, it depends on the spacetime dim
sion whether or not the Poincare´ invariant vertices of type
~iv! are present at all. In three dimensions such vertices e
and occur in three-dimensional Freedman-Townsend mo
@24,25#. In contrast, they do not exist in four dimensio
because Maxwell theory in four dimensions has no symm
try that gives rise to a Noether current needed for a Poinc´
invariant vertex~iv! ~this follows from the results of Ref
@26#!. It is likely, though not proved, that this result in fou
dimensions extends to higher dimensions.

However, it must be kept in mind that this result on ve
tices of type~iv! in four dimensions concerns only Poinca´
invariant interactions. The new gauge theories construc
here contain vertices of type~iv! that arenot invariant under
the standard Poincare´ transformations because they involv
gauge invariant Noether currents of spacetime symme
themselves. Such vertices exist in all spacetime dimens
because there is a gauge invariant form of the Noether
rents of the Poincare´ symmetries@27,28#. The corresponding
deformations of the gauge transformations incorporate P
carésymmetries in the deformed gauge transformations. T
promotes global Poincare´ symmetries to local ones, yieldin
gauge theories of Poincare´ symmetries. In four-dimensiona
spacetime, the construction can be extended to the rema
conformal transformations because dilatations and spe
conformal transformations also give rise to vertices of ty
~iv!.2 For this reason I shall focus on models in fou
dimensional spacetime; however, all formulas are also v
in all other dimensions when restricted to gauge theorie

2There are infinitely many additional vertices of type~iv! that are
not Poincare´ invariant because free Maxwell theory has infinite
many inequivalent Noether currents@29–32#. They are not related
to spacetime symmetries. I did not investigate whether or not t
also give rise to interesting gauge theories.
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Poincare´ symmetries; see Sec. VI.
The organization of the paper is the following. Section

treats a relatively simple example with only one gauge fi
and one vertex of type~iv! involving a Noether current of a
conformal symmetry in four-dimensional spacetime. This
sults in a prototype model with just one conformal gau
symmetry. In Sec. III the prototype model is rewritten b
casting its gauge transformations in a more suitable form
introducing a gauge field dependent ‘‘metric.’’ This paves t
road for the generalization of the prototype model in Sec.
where four-dimensional gauge theories of the full conform
algebra or any of its subalgebras are constructed. These m
els involve not only first order interaction vertices of typ
~iv! but in addition also Yang-Mills-type interaction vertice
of type ~iii ! because in general the involved conformal sy
metries do not commute. Then, in Sec. V, the constructio
further extended by including other fields~matter fields and
gauge fields!. Section VI explains the relation to general rel
tivity.

II. PROTOTYPE MODEL

Let us first examine deformations of the Maxwell actio
for only one gauge fieldAm ,

S(0)52
1

4E d4xFmnFmn, ~1!

where Fmn5]mAn2]nAm is the standard Abelian field
strength and indicesm are raised with the Minkowski metric
hmn5diag(1,2,2,2) @Fmn5hmrhnsFrs#. Action ~1! is
invariant under the gauge transformations,

dl
(0)Am5]ml, ~2!

and under global conformal transformations,

djAm5jnFnm , ~3!

where jm is a conformal Killing vector field~no matter
which one! of flat four-dimensional spacetime3:

]mjn1]njm5
1

2
hmn]rjr ~jm5hmnjn!. ~4!

Equation~3! is the gauge covariant form@27,28# of a confor-
mal transformation, and gives rise to the gauge invariant N
ether current

j m5jnTn
m , Tn

m52
1

4
dn

mFrsFrs1FnrFmr. ~5!

y

3The construction is not restricted to flat spacetime but app

analogously to any fixed background metricĝmn with at least one

conformal Killing vector fieldjm. Then Eq.~4! turns intoLjĝmn

5(1/2)ĝmnD̂rjr and subsequent formulas change accordingly.
5-2
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GAUGE THEORIES OF SPACETIME SYMMETRIES PHYSICAL REVIEW D64 065025
A first order deformationS(1) of action ~1! that is of type
~iv!, and the corresponding first order deformationdl

(1) of the
gauge transformations~2!, are

S(1)5E d4xAm j m, dl
(1)Am5ljnFnm . ~6!

Indeed, it can be readily checked thatS(1) anddl
(1) fulfill the

first order invariance condition

dl
(0)S(1)1dl

(1)S(0)50.

One may now proceed to higher orders. This amounts
looking for higher order termsS(k) anddl

(k) satisfying

(
i 50

k

dl
( i )S(k2 i )50, k52,3, . . . .

It turns out that the deformation exists to all orders, but t
one obtains infinitely many terms giving rise to a nonpo
nomial structure. This calls for a more efficient constructi
of the complete deformation. Let me briefly sketch two str
egies, without going into details. The first one is a detour
a first order formulation: one casts the original free Lagra
ian in first order form (1/4)Gmn(Gmn22Fmn) whereGmn5
2Gnm are auxiliary fields, deforms this first order mod
analogously to Eq.~6!, and finally eliminates the auxiliary
fields. Another strategy is the use of a technique applied
Refs.@33,34#: in view of Eq.~3!, one defines a modified field
strength F̂mn implicitly through the relationsF̂mn5DmAn

2DnAm andDmAn5]mAn2AmjrF̂rn , solves these relation
for F̂mn and finally constructs the action and gauge trans
mations in terms ofF̂mn andAm . Both strategies work and
yield the same action and gauge transformations:

L52
1

4
~11jrAr!F̂mnF̂mn, ~7!

dlAm5]ml1ljnF̂nm , ~8!

with F̂mn given by

F̂mn5Fmn2
AmjrFrn2AnjrFrm

11jsAs

. ~9!

F̂mn can be interpreted as the field strength for the ga
transformations@Eq. ~8!# because its gauge transformatio
does not contain derivatives ofl: indeed, a straightforward
though somewhat lengthy, computation gives

dlF̂mn5
l

11jsAs

LjF̂mn , ~10!

whereLj is the standard Lie derivative alongjm:

LjF̂mn5jr]rF̂mn1]mjrF̂rn1]njrF̂mr .
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Using Eq.~10!, as well as Eq.~4!, it is easy to verify that the
Lagrangian@Eq. ~7!# transforms under the gauge transform
tions @Eq. ~8!# into a total derivative

dlL52
1

4
]m~ljmF̂rnF̂rn!. ~11!

Furthermore, owing to Eq.~10!, the algebra of the gaug
transformation@Eq. ~8!# is obviously Abelian, i.e., two gauge
transformations with different parameter fields, denoted bl
andl8, respectively, commute:

@dl ,dl8#50. ~12!

I remark that, for notational convenience, I have suppres
the gauge coupling constant~the deformation parameter! in
the formulas given above; it can be easily introduced in
usual way by substituting rescaled fieldskAm andkl for Am
andl, respectively, and then dividing the Lagrangian byk2.
Expanding the resulting action and gauge transformation
k, one obtains S5S(0)1kS(1)1O(k2) and dl5dl

(0)

1kdl
(1)1O(k2) with S(1) anddl

(1) as in Eq.~6!. This shows
that Eqs.~7! and ~8! complete the first order deformatio
@Eq. ~6!# to all orders. Note that the completion contai
infinitely many terms and is nonpolynomial but local in th
gauge fields, as promised.

III. REFORMULATION OF THE PROTOTYPE MODEL

In the remainder of this work I shall first rewrite and the
generalize the prototype model with the Lagrangian@Eq. ~7!#
and the gauge transformations@Eq. ~8!#. A surprising feature
of the Lagrangian@Eq. ~7!# is that its nonpolynomial struc
ture can be written in terms of the ‘‘metric’’

gmn5hmn1jmAn1jnAm1jrjrAmAn , ~13!

where, again,jm5hmnjn. The inverse and determinant o
this metric are

gmn5hmn2
jmAn1jnAm

11jsAs

1
ArArjmjn

~11jsAs!2
,

det~gmn!52~11jmAm!2,

whereAm5hmnAn . Using these formulas one readily ver
fies that the Lagrangian@Eq. ~7!# can be written as

L52
1

4
AggmrgnsFmnFrs , ~14!

whereFmn5]mAn2]nAm andAg5udet(gmn)u1/2511jmAm
~assuming 11jmAm.0). Furthermore, it can be easil
checked that the gauge transformation~8! can be rewritten as

dvAm5]mv1vjn]nAm1]m~vjn!An , ~15!

wherev is constructed ofl, jm, andAm according to
5-3
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FRIEDEMANN BRANDT PHYSICAL REVIEW D 64 065025
v5
l

11jmAm

. ~16!

Equation~15! is exactly the same transformation as Eq.~8!,
but written in terms ofv instead ofl. Sincel was com-
pletely arbitrary,v is also completely arbitrary, and can thu
be used as gauge parameter field in place ofl. Note that Eq.
~15! is polynomial in the gauge fields, in contrast to Eq.~8!.

To understand the gauge invariance of the model, an
generalize it subsequently, the following observation is c
cial: under the gauge transformation@Eq. ~15!# of the gauge
fields, metric~13! transforms according to

dvgmn5L«gmn2
1

2
gmnv]rjr, ~17!

whereL«gmn is the Lie derivative ofgmn along«m5vjm:

L«gmn5«r]rgmn1]m«rgrn1]n«rgmr ,

«m5vjm. ~18!

In order to verify Eq.~17!, one has to use the conform
Killing vector equations~4!. Equations~15! and~17! make it
now easy to understand the gauge invariance of the ac
with Lagrangian~14!. Note that the last two terms on th
right-hand side of Eq.~15! are nothing but the Lie derivative
L«Am of Am along«m:

dvAm5]mv1L«Am .

Hence the gauge transformation ofAm is the sum of a stan
dard Abelian gauge transformation with parameterv and a
general coordinate transformation with parameters«m @of
course, these two transformations are related because o«m

5vjm#. As a consequence, the gauge transformation ofFmn

is given just by the Lie derivative along«m: dvFmn

5L«Fmn . Equation~17! has the form of a general coordina
transformation ofgmn with parameters«m plus a Weyl trans-
formation with parameter2(1/2)v]rjr. As the Lagrangian
is invariant under Weyl transformations ofgmn ~we are still
discussing the four-dimensional case!, it transforms under
gauge transformationsdv just like a scalar density unde
general coordinate transformations with paramet
«m: dvL5]m(«mL). This is exactly Eq.~11!, owing to
«m5vjm5ljm/(11jnAn) and L/(11jnAn)
52(1/4)F̂mnF̂mn. A final remark on the prototype model i
that the gauge transformations no longer commute when
pressed in terms ofv rather than in terms ofl:

@dv ,dv8#5dv9 , v95v8jm]mv2vjm]mv8. ~19!

The reason for this is that the redefinition@Eq. ~16!# of the
gauge parameter field involves the gauge fieldAm .

IV. GENERALIZATION

The prototype model found above will now be gener
ized by gauging more than only one conformal symmetry
four-dimensional flat spacetime. LetG be the Lie algebra of
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the full conformal group or any of its subalgebras. Let
pick a basis ofG and label its elements by an indexA @since
the conformal group in four dimensions is 15-dimension
we haveA51, . . . ,N with 1<N<15]. The corresponding
set of conformal Killing vector fields is denoted by$jA

m%.
SinceG is a Lie algebra, one can choose thej ’s such that

jA
n ]njB

m2jB
n ]njA

m5 f BA
C jC

m , ~20!

where f AB
C are the structure constants ofG in the chosen

basis. I associate one gauge fieldAm
A and one gauge param

eter fieldvA with each element ofG, and introduce the fol-
lowing generalization of gauge transformation~15!:

dvAm
A5DmvA1vBjB

n ]nAm
A1]m~vBjB

n !An
A , ~21!

where

DmvA5]mvA1Am
B f BC

A vC. ~22!

The partDmvA of dvAm
A is familiar from Yang-Mills theory;

the remaining part is the Lie derivative ofAm
A along a vector

field «m containing the gauge parameter fieldsvA:

dvAm
A5DmvA1L«Am

A , «m5vBjB
m . ~23!

The commutators of the two gauge transformations are

@dv ,dv8#5dv9 ,

v9A5vBv8Cf BC
A 1v8BjB

m]mvA2vBjB
m]mv8A.

~24!

The crucial step for constructing an action which is invaria
under these gauge transformations is the following gene
zation of the prototype metric@Eq. ~13!#,

gmn5hmn1jAmAn
A1jAnAm

A1jArjB
r Am

AAn
B , ~25!

with jAm5hmnjA
n . This metric behaves under gauge tran

formation ~21! similarly as the prototype metric@Eq. ~13!#
under gauge transformation~15!,

dvgmn5L«gmn2
1

2
gmnvA]rjA

r , ~26!

with «m as in Eq.~23!. To verify Eq.~26!, one has to use Eq
~4! ~which holds for eachjA

m) and Eq.~20!. Note that Eq.
~21! is the sum of a Yang-Mills gauge transformation wi
parameter fieldsvB and a general coordinate transformati
with parameter fields«m5vBjB

m , while Eq. ~26! has the
form of a general coordinate transformation with paramet
«m plus a Weyl transformation with paramete
2(1/2)vA]rjA

r . This immediately implies that the following
Lagrangian is invariant modulo a total derivative und
gauge transformation~21!:

L52
1

4
AggmrgnsFmn

A Frs
B dAB , ~27!

wheredAB is a symmetricG-invariant tensor,
5-4
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GAUGE THEORIES OF SPACETIME SYMMETRIES PHYSICAL REVIEW D64 065025
dAB5dBA , f CA
D dDB1 f CB

D dAD50, ~28!

andFmn
A are field strengths familiar from Yang-Mills theory

Fmn
A 5]mAn

A2]nAm
A1 f BC

A Am
BAn

C . ~29!

Owing to Eq.~28!, Lagrangian~27! is invariant under Yang-
Mills transformations ofFmn

A . Furthermore it is invariant un
der Weyl transformation ofgmn . Hence it transforms unde
gauge transformation~21! just like a scalar density unde
general coordinate transformations with parameters«m

5vAjA
m :

dvL5]m~vAjA
mL !. ~30!

Again, the Lagrangian is local but nonpolynomial in th
gauge fields because it contains the inverse metricgmn. The
latter is

gmn5hmn2jA
mÂAn2jA

n ÂAm1jA
mjB

n Âr
AÂBr, ~31!

whereÂAm5hmnÂn
A , with

Âm
A5Am

BEB
A , EB

C~dC
A1jC

mAm
A!5dB

A . ~32!

The second equation in Eq.~32! expresses that theEB
A are the

entries of a matrixE which inverts the matrix 11M where
M is the matrix with entriesjB

mAm
A . E can thus be written as

an infinite ~geometric! series of matrix products ofM:

E5 (
k50

`

~2M !k, MB
A[jB

mAm
A . ~33!

A gauge coupling constantk can be introduced as before b
means of the substitutionsAm

A→kAm
A , vA→kvA, and L

→L/k2. Equivalently, one may usef AB
C →k f AB

C , and jA
m

→kjA
m . Of course, the zeroth order Lagrangian is posit

definite only for appropriate choices ofG. For instance, one
may choose aG that is Abelian or compact; then there is
basis ofG, such thatdAB5dAB . The simplest case is a one
dimensionalG and reproduces the prototype model. Choic
such asG5so(2,4) ~full conformal algebra! or G5so(1,3)
~Lorentz algebra! do not give a positive definite zeroth ord
Lagrangian because these algebras are not compact~one can-
not achievedAB5dAB).

V. INCLUSION OF MATTER FIELDS AND FURTHER
GAUGE FIELDS

Using metric~25!, it is straightforward to extend the mod
els of Sec. IV so as to include further fields. First I discu
the case of just one~real! scalar fieldf, and introduce the
gauge transformation

dvf5vAjA
m]mf1

1

4
fvA]mjA

m . ~34!

A contribution to the Lagrangian which is gauge invaria
modulo a total derivative is
06502
s
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t

Lf5
1

2
Aggmn]mf]nf2

1

12
AgRf2, ~35!

with gmn andgmn as before in Eqs.~25! and~31!, andR the
Riemannian curvature scalar built fromgmn :

R5gmnRmrn
r ,

Rmnr
s 5]mGnr

s 1Gml
s Gnr

l 2~m↔n!,

Gmn
r 5

1

2
grs~]mgns1]ngms2]sgmn!.

Using Eq.~26!, one easily derives the gauge variation ofR:

dvR5«m]mR1
1

2
RvA]mjA

m2
3

2
gmn~]m]n2Gmn

r ]r!

3~vA]sjA
s!. ~36!

This makes it is easy to verify the gauge invariance of E
~35!: Lf transforms as a scalar density under standard g
eral coordinate transformations ofgmn and f; therefore the
first term in Eq.~34! and the first term in Eq.~26! make a
contribution]m(«mLf) to dvLf ; the second terms in Eqs
~34! and ~26! contribute a total derivative todvLf because
Lf is invariant modulo a total derivative under Weyl tran
formations ofgmn andf with weights of ratio22 ~in four
dimensions!. The complete transformation reads

dvLf5]mFvAjA
mLf1

1

8
Aggmnf2]n~vA]rjA

r !G . ~37!

To include fermions, I introduce the ‘‘vierbein’’

em
n 5dm

n 1jA
n Am

A . ~38!

The term vierbein is used becauseem
n is related to metric~25!

through

gmn5hrsem
r en

s . ~39!

Furthermore the vierbein transforms under the gauge tra
formation ~21! according to

dvem
n 5«r]rem

n 1]m«rer
n1Cr

nem
r 2

1

4
em

n vA]rjA
r , ~40!

with «m as in Eq.~23! and

Cm
n 52

1

2
vA~]mjA

n 2hnshmr]sjA
r !. ~41!

Note that Eq.~40! has indeed the familiar form of the trans
formation of vierbein fields in general relativity: the lowe
index of em

n transforms as a ‘‘world index’’~it sees only the
‘‘general coordinate transformation with parameters«m’’ !
while the upper index transforms as a ‘‘Lorentz index’’’@it
sees only ‘‘Lorentz transformations with paramete
Cm

n ’’—the Lorentz character is due toCmn52Cnm where
5-5
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FRIEDEMANN BRANDT PHYSICAL REVIEW D 64 065025
Cmn5hmrCr
n]. In addition, Eq.~40! contains a Weyl trans

formation with parameter2(1/2)vA]rjA
r . I now define a

‘‘spin connection’’vm
nr ,

vm
nr5Es

n El
rhskhltvmkt ,

vmnr5v [mn]r2v [nr]m1v [rm]n , ~42!

v [mn]r5
1

2
er

shsl~]men
l2]nem

l !

whereEm
n is the inverse vierbein (Em

n en
r5dm

r ),

Em
n 5dm

n 2Âm
AjA

n ~43!

with Âm
A as in Eq.~32!. Sincevm

nr is constructed ofem
n in

exactly the same manner as one constructs the spin con
tion of the vierbein in general relativity, one infers from E
~40! thatvm

nr transforms under the gauge transformation~21!
according to

dvvm
nr5]mCnr2vm

snCs
r 1vm

srCs
n 1«s]svm

nr1]m«svs
nr

1
1

4
~em

r Es
n 2em

n Es
r !hsl]l~vA]tjA

t ! ~44!

whereCnr5hnsCs
r with Cs

r as in Eq.~41!. I denote a fer-
mion field byc ~without displaying its spinor indices!, and
introduce the gauge transformations

dvc5vAjA
m]mc2

1

2
Cmnsmnc1

3

8
cvA]mjA

m , ~45!

where 4smn is the commutator ofg matrices, using the con
ventions

gmgn1gngm52hmn,

smn5
1

4
~gmgn2gngm!,

gm5hmngn.

A contribution to the Lagrangian which is invariant modulo
total derivative under the gauge transformations~21! and
~45! is

Lc5 iAgc̄gnEn
mS ]mc1

1

2
vm

srssrc D . ~46!

Lc transforms under the gauge transformations like a sc
density under general coordinate transformations with
rameters«m5vAjA

m because the ‘‘Lorentz’’ and ‘‘Weyl’’
parts of the gauge transformation of the fermion, vierb
and spin connection cancel each other completely:

dvLc5]m~vAjA
mLc!. ~47!
06502
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The inclusion of standard Yang-Mills gauge fields,Am
I is

even simpler: the contribution to the Lagrangian is just
standard Yang-Mills~YM ! Lagrangian in metric~25!,

LYM52
1

4
AggmrgnsFmn

I Frs
J dIJ , ~48!

Fmn
I 5]mAn

I 2]nAm
I 1 f JK

I Am
J An

K , ~49!

wheref JK
I anddIJ are the structure constants and an invari

symmetric tensor of some Lie algebraGYM . Note that the
difference from Eq.~27! is that now the field strengthsFmn

I

involve the gauge fields ofGYM while the metricgmn is com-
posed of the gauge fields ofG. The conformal gauge trans
formations ofAm

I are just the standard Lie derivatives alon
«m5vAjA

m :

dvAm
I 5vBjB

n ]nAm
I 1]m~vBjB

n !An
I . ~50!

SinceLYM is invariant under Weyl transformations ofgmn , it
transforms under the conformal gauge transformations@Eqs.
~21! and~50!# like a scalar density under general coordina
transformations with parameters«m:

dvLYM5]m~vAjA
mLYM !. ~51!

In addition LYM is invariant under the usual Yang-Mill
gauge transformationsdaAm

I 5]ma I1Am
J f JK

I aK for arbitrary
gauge parameter fieldsa I .

It is straightforward to construct further interaction term
such asAgf4 or Yukawa interactionsAgfc̄c, and to extend
the construction to scalar fields or fermions transform
nontrivially underGYM . In fact, it is even possible to con
struct models where the ‘‘matter fields’’ transform underG
according to a nontrivial representation. I shall only discu
the case of scalar fields transforming under a nontrivial r
resentation ofG; the extension to fermions is straightforwar
Of course, the notion scalar fields should be used cautio
when these fields sit in a nontrivial representation ofG as
they may or may not transform nontrivially under Loren
transformations~depending on the choice ofG and its repre-
sentation!. I denote these scalar fields byf i . The correspond-
ing representation matrices ofG are denoted byTA and cho-
sen such that they representG with the same structure
constantsf AB

C as in Eq.~20!, i.e.,

TAk
i TB j

k 2TBk
i TA j

k 5 f AB
C TC j

i . ~52!

Further properties of the representation will not matter to
construction. In place of Eq.~34!, the gauge transformation
now read

dvf i52vATA j
i f j1vAjA

m]mf i1
1

4
f ivA]mjA

m . ~53!

Accordingly, one introduces covariant derivatives

Dmf i5]mf i1Am
ATA j

i f j . ~54!
5-6
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These covariant derivatives transform under gauge trans
mations~21! and ~53! according to

dvDmf i52vATA j
i Dmf j1L«Dmf i1 1

4 ~Dmf i !vA]njA
n

1 1
4 f i]m~vA]njA

n !

whereL«Dmf i5«n]nDmf i1]m«nDnf i with «m as in Eq.
~23!. The generalization of Lagrangian~35! is simply

L̃f5AgF1

2
gmnDmf iDnf j2

1

12
Rf if j Gdi j ~55!

wheredi j is a G-invariant symmetric tensor:

di j 5dji , dk jTAi
k 1dikTA j

k 50. ~56!

Using Eq.~56! and arguments analogous to those that led
Eq. ~37!, one infers that

dvL̃f5]mFvAjA
mLf1

1

8
Aggmnf if jdi j ]n~vA]rjA

r !G .
VI. RELATION TO GENERAL RELATIVITY

So far we have worked in four-dimensional spacetim
Actually the whole construction goes through without a
change in an arbitrary dimension if we restrict it to isom
tries of the flat metric rather than considering all conform
symmetries. In other words, all formulas given above hold
arbitrary dimension if we impose

]mjA
m50. ~57!

When Eq.~57! holds, the gauge transformationsdv are local
Poincare´ transformations. This raises the question of whet
there is a relation to general relativity. The answer to t
question is affirmative and easily obtained from the follo
ing observation: when Eq.~57! holds, the ‘‘Einstein-Hilbert
~EH! action’’ constructed from metric~25!,

SEH52
1

2E dnxAgR, ~58!
ys

u

ys

ys
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is invariant under the gauge transformation~21! because Eq.
~26! reduces to a general coordinate transformation ofgmn

with parameters«m5vAjA
m . Now, consider the special cas

of an action given just by Eq.~58! ~without any additional
terms!, and assume that$Am

A% contains~at least! the gauge
fields of all spacetime translations. Then we may interp
Eq. ~25! as a field redefinition which just substitutes ne
fields gmn for certain combinations of the original field var
ables. Since the action depends on the gauge fields only
the new fieldsgmn , it reproduces the standard theory of pu
gravitation as described by general relativity.

In fact, the argument is even more transparent when
works with the vielbein@Eq. ~38!# rather than with the metric
@Eq. ~25!# @according to Eq.~39!, the metric can be written in
terms of the vielbein, and thus action~58! can also be written
in terms of the vielbein, as usual#. That is, we may label the
translations by an indexn and choose the correspondin
Killing vector fields asjn

m5dn
m . Accordingly, the gauge

fields of translations are denoted byAm
n . Equation~38! may

then be interpreted as a field redefinition that substitutesem
n

for Am
n . This field redefinition is clearly local and invertibl

~at least locally!, as Eq.~38! can obviously be solved forAm
n

in terms ofem
n and the gauge fields of Lorentz transform

tions.
The same argument applies when we add to the integr

of Eq. ~58! the first term of the matter Lagrangian@Eq. ~35!#
~the second term is not needed since we consider o
gauged Poincare´ transformations here!, the fermion Lagrang-
ian @Eq. ~46!#, or the Yang-Mills type Lagrangian@Eq. ~48!#.
Since these contributions also depend on the gauge fieldAm

A

only via em
n , the same field redefinition implies the equiv

lence to general relativity coupled to matter fields in t
standard way.
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