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Gauge theories of conformal spacetime symmetries are presented which merge features of Yang-Mills theory
and general relativity in a new way. The models are local but nonpolynomial in the gauge fields, with a
nonpolynomial structure that can be elegantly written in terms of a metricielbein composed of the gauge
fields. General relativity itself emerges from the construction as a gauge theory of spacetime translations. The
role of the models within a general classification of consistent interactions of gauge fields is discussed as well.
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I. INTRODUCTION AND CONCLUSION The models are not only interesting for their own sake,
but also in the context of a systematic classification of con-

In this work new gauge theories of conformal spacetimesistent interactions of gauge fields in general, which is quite
symmetries are constructed which merge features of Yanga challenging problem and partly motivated this work. Such
Mills theories and general relativity in an interesting way. a classification was started in Reff$6,17] using the Becchi-
This concerns both the Lagrangians and gauge transform&ouet-Stora-TyutifBRST) cohomological approach to con-
tions of these models. The Lagrangians are local but norsistent deformations of gauge theorigk8]. The starting
polynomial in the gauge fields, as general relativisticpoint of that investigation was the free Maxwell Lagrangian
Lagrangians are local but nonpolynomial in the gravitational (0)= — (1/4)EAF,AWFWA for a set of vector gauge fie|d\5‘:
(metric or vielbein fields. In fact, they are formally very in flat spacetime. In the deformation approach one asks
similar to general relativistic Lagrangians, except that the,hether the action and its gauge symmetries can be nontrivi-

metric and vielbein are polynomials in the conformal 9augeyly deformed, using an expansion in deformation param-
fields; cf. Egs.(25 and (38). Moreover, general relativity ers.

. . t
itself emerges from the construction as a gauge theory 0? In Refs.[16,17 complete results were derived for Poin-

spacetime translatiorisee Sec. VL careinvariant deformations of the free Maxwell Lagrangian

The (infinitesima) conformal gauge transformations con- . . . )
tain a Yang-Mills type transformation and a general coordi-t° first order in the deformation parameters. The result is that

nate transformation, with the remarkable property that botl'%hed moit genedral stt.or,der defforma_tlon Wh'Ch. IS Invariant
parts are tied to each other by the fact that they involve th nder the str;m ar 'Eollncarans_ormatpns ?ont?lns at rTOSt
samegauge parameter fields, cf. E@®3). This unites the four types of nontrivial interaction vertlce_e.) polynomials
symmetry principles of Yang-Mills theory and general rela-M the field strengths and their first or higher order deriva-

tivity in an interesting way and reflects that the models aret'veS; (i) Chern-Simons vertices of the for/AFA ...

gauge theories of spacetime symmetries in a very direc/t\F (prgsent only n Od(,j\ SEacfé'me dimensjortéi) cubic
sense. The latter also manifests itself in the explicit depenlNteraction vertices gcA, A, F#", wherefagc=fiapg are
dence of the Lagrangians and the gauge transformations GH!iSymmetric constant coefficients; afid) vertices of the
conformal spacetime Killing vector fields. This, among other’o'M A,j*, wherej* is a gauge invariant Noether current of
things, distinguishes the models presented here from gaudB® free theory. First order deformations which are not re-
theories of conformal symmetries constructed in the pasduiréd to be Poincarevariant were also investigated. The
such as supergravity moddts—13), or, more recently, mod- results are similar, apart from a fg(\partly unsettlebjdetans
els presented in Ref§14,15. (cf. comments at the eqd of section 13.2 in F{&fl]). o

At this point a comment seems to be in order. Particular _S€lf-interacting theories for vector gauge fields with inter-
models constructed in this work admit field redefinitiqgpg ~ 2ction vertices of typeg), (ii), or (iii) are very well known.
fields that occur in the action, and of gauge parameter jields! N0S€ of typeli) occur, for instance, in the Euler-Heisenberg
which completely remove the explicit dependence of the La-@grangian19] or the Born-Infeld theory20]. Lately, ver-
grangian and gauge transformations on conformal KiIIingt'CeS _of type(l), which are not Lorentz invariant, a_ttracted
vector fields, and cast the models in more conventional form2{t€ntion in the context of so-called noncommutativgl)
In particular, the standard formulation of general relativity 92U9€ theory because interactions in that model can be writ-
arises in this way through field redefinitions which trade met-€n as an infinite sum of such vertices by means of a field
ric or vielbein variables for gauge fields of translations. It is"@definition(“Seiberg-Witten map) [21] (field redefinitions
possible, and quite likely, that th@onsupersymmetric ver-
sion ofy models constructed in Reff1-13| can be repro-
duced analogously. However, it seems to be impossible to!Note the difference from vertices of tyyi ): the latter is also of
eliminate the dependence on conformal Killing vector fieldsthe form A%j%, but the currentgs=f,gcASF~’C are not gauge
in the generic model constructed here. invariant.
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of this type are automatically taken care of by the BRSTPoincaresymmetries; see Sec. VI.
cohomological approach: two deformations related by such a The organization of the paper is the following. Section Il
field redefinition are equivalent in that approachrom the treats a relatively simple example with only one gauge field
deformation point of view, vertices of typés and (i) are  and one vertex of typév) involving a Noether current of a
somewhat less interesting because they are gauge invarigg@nformal symmetry in four-dimensional spacetime. This re-
[in case(ii) modulo a total derivativeunder the original Sults in a prototype model with just one conformal gauge
gauge transformations of Maxwell theory. symmetry. In Sec. Il the prototype model is. rewritten by
In contrast, vertices of type@ii) and (iv) are not gauge Casting its gauge transformations in a more suitable form and
invariant under the gauge transformations of the free modefntroducing a gauge field dependent “metric.” This paves the

rather, they are invariant only on-shéih the free modal road for the generalization of the prototype model in Sec. IV

modulo a total derivative, and therefore they give rise toWhere four-dimensional gauge theories of the full conformal

nontrivial deformations of the gauge transformations. Thisalge_bra or any of its sgbalgebras_, are co_nstructed. These mod-
Is involve not only first order interaction vertices of type

makef,. them particularly interesting. Interaction vertices .Ofiv) but in addition also Yang-Mills-type interaction vertices
type (iii ) are of course well known: they are encountered in

g : ) of type (iii) because in general the involved conformal sym-
Yang-Mllls theories[22,23, and lead to a non-Abelian de- metries do not commute. Then, in Sec. V, the construction is
formation of the commutator algebra of gauge transformay,ther extended by including other field@matter fields and

tions. But what about vertices of tyfir)? Such vertices are  g,qe fields Section VI explains the relation to general rela-
familiar from the coupling of vector gauge fields to matter tjyity.

fields, such as the coupling of the electromagnetic gauge

know about vertices involving gauge invariant currents made
up of the gauge fields themselves? Let us first examine deformations of the Maxwell action

As a matter of fact, it depends on the spacetime dimenfor only one gauge field\,,,
sion whether or not the Poincanevariant vertices of type
(iv) are present at all. In three dimensions such vertices exist
and occur in three-dimensional Freedman-Townsend models
[24,25. In contrast, they do not exist in four dimensions
because Maxwell theory in four dimensions has no symmegnere F,,=9,A,—d,A, is the standard Abelian field
try that gives rise to a Noether current needed for a Poincargirength and indicea are raised with the Minkowski metric
invariant vertex(iv) (this follows from the results of Ref. w=diag(+,—,~,~) [F*"=5""7"F ,,]. Action (1) is

[26]). It.is likely, though not proyed, that this result in four ;yyariant under the gauge transformations,
dimensions extends to higher dimensions.

However, it must be kept in mind that this result on ver- SOA =5 ) )
. . . . . .. N ’
tices of type(iv) in four dimensions concerns only Poincare mooH
invariant interactions. The new gauge theories constructed d und lobal f 't f fi
here contain vertices of typév) that arenot invariant under and under global contormal transtormations,
the standard Poincateansformations because they involve
gauge invariant Noether currents of spacetime symmetries
themselves. Such vertices exist in all spacetime dimensions ) . i
because there is a gauge invariant form of the Noether cui¥here £ is a conformal Killing vector field(no matter
rents of the Poincareymmetried27,28. The corresponding Which one of flat four-dimensional spacetirfie
deformations of the gauge transformations incorporate Poin-
caresymmetries in the deformed gauge transformations. This
promotes global Poincasymmetries to local ones, yielding
gauge theories of Poincasymmetries. In four-dimensional
spacetime, the construction can be extended to the remainirgguation(3) is the gauge covariant forf27,28 of a confor-
conformal transformations because dilatations and speciahal transformation, and gives rise to the gauge invariant No-
conformal transformations also give rise to vertices of typeether current
(iv).2 For this reason | shall focus on models in four-
dimensional spacetime; however, all formulas are also valid 1

in all other dimensions when restricted to gauge theories of jEe=grTe, Th= 7 OVF o FP7+F, F#P. (5)

1
SO=— 7 f d*xF,, F~, 1

5§A,u: §VFV,U, ) (3)

1
Iu€ut 0Eu =5 Mun0p” (64~ 1,,8"). 4

Ther_e are _mfmn?ely many additional vertices of tyfe) thqt are 3The construction is not restricted to flat spacetime but applies
not Poincarenvariant because free Maxwell theory has infinitely ) - )
many inequivalent Noether currerf@9—32. They are not related an@logously to any fixed background metgg, with at least one
to spacetime symmetries. | did not investigate whether or not thegonformal Killing vector field¢”. Then Eq.(4) turns into £.g,,,
also give rise to interesting gauge theories. =(1/2)§WDP§P and subsequent formulas change accordingly.
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A first order deformatiorS*) of action (1) that is of type  Using Eq.(10), as well as Eq(4), it is easy to verify that the
(iv), and the corresponding first order deformatﬁﬁi"? ofthe  LagrangianEq. (7)] transforms under the gauge transforma-

gauge transformation®), are tions[Eq. (8)] into a total derivative
D= | d*A,j#,  SPA,=\g L= HE R 11
S= XA,uJ ’ 6)\ A,u_)\g FV;L' (6) X __Za,u()\g pv ) ( )
Indeed, it can be readily checked tig@ and &{" fulfill the ~ Furthermore, owing to Eq(10), the algebra of the gauge
first order invariance condition transformatiof Eq. (8)] is obviously Abelian, i.e., two gauge
(Ol (DO transformations with different parameter fields, denoted by
sVsH+ sNs0=0. and\’, respectively, commute:
One may now proceed to higher orders. This amounts to [8,,6,/]=0. (12

looking for higher order terms® and &{’ satisfying
I remark that, for notational convenience, | have suppressed
(|) k-)_g B the gauge coupling constatthe deformation paramebein
2 S k=23,.... the formulas given above; it can be easily introduced in the

usual way by substituting rescaled fielda , andx\ for A
It turns out that the deformation exists to all orders, but tha@nd\, respectively, and then dividing the Lagranglan;tf;
one obtains infinitely many terms giving rise to a nonpoly- Expanding the resulting action and gauge transformatéons in
nomial structure. This calls for a more efficient construction<, one obtains S=S©+ xS +0(x?) and 8,= &
of the complete deformation. Let me briefly sketch two strat-+ k8" + O(x?) with S and ") as in Eq.(6). This shows
egies, without going into details. The first one is a detour tathat Egs.(7) and (8) complete the first order deformation
a first order formulation: one casts the original free Lagrang{Eq. (6)] to all orders. Note that the completion contains
ian in first order form (1/4g#*(G,,—2F ,,) whereG,, infinitely many terms and is nonpolynomial but local in the
-G,, are auxiliary fields, deforms this first order model gauge fields, as promised.
analogously to Eq(6), and finally eliminates the auxiliary
fields. Another strategy is the use of a technique applied in || REFORMULATION OF THE PROTOTYPE MODEL
Refs.[33,34: in view of Eqg.(3), one defines a modified field

In the remainder of this work | shall first rewrite and then

strengthF,, implicitly through the relatlonsF DAy generalize the prototype model with the Lagrandiaq. (7)]
~D,A, andD,A,=d,A,—~A,EF,,, solves these relations . 5 the gauge transformatiof&q. (8)]. A surprising feature

for FW and f|naIIy constructs the action and gauge transforof the LagrangiafEq. (7)] is that its nonpolynomial struc-

mations in terms OFW andA,, . Both strategies work and ture can be written in terms of the “metric”

yield the same action and gauge transformations:

k

9= Nuv T ELATEALTEEPAA,, (13
L:_Z(l“prAp)FquM' (7) where, againg,=7,,£". The inverse and determinant of
this metric are
SA, = N+NEF,,, 8
NI ™ % 3 v (®) ; ; EFAY+ gVAM+ APA”§“§V
. g v_ v__ ,

with F,, given by 1+&°A,  (1+&°A,)?
- ALEF,,—AEF,, det(g,,)=—(1+£&*A,)?,
F,usz,u,V_ . (9)

1+E9A,

where A#= n»#*"A, . Using these formulas one readily veri-
A fies that the Lagran 7)] can be written as
F., can be interpreted as the field strength for the gauge I grangialq. (7)] i
transformationg Eq. (8)] because its gauge transformation 1
does not contain derivatives af indeed, a straightforward, L=- Z\/§ g“*9"F ,,F oo (14
though somewhat lengthy, computation gives

— — 2_
whereF ,,=d,A,—d,A, and Jg=|det(@,,)|*?>=1+&A,

3%

5x|3MV=—5§AW, (10 (assuming ¥ &*A,>0). Furthermore, it can be easily
1+£7A, checked that the gauge transformati8hcan be rewritten as
where L, is the standard Lie derivative alori: S A, =d,0+wEdA,+d,(0E)A,, (15)
=P F,,+0,6F ,,+3,6F,,. wherew is constructed of, ¢*, andA,, according to
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I

w=— (16)
1+E4A,

Equation(15) is exactly the same transformation as Eg),

but written in terms ofw instead of\. SinceN was com-

pletely arbitrary,w is also completely arbitrary, and can thus

be used as gauge parameter field in plack.dflote that Eq.

(15) is polynomial in the gauge fields, in contrast to E8).

PHYSICAL REVIEW D 64 065025

the full conformal group or any of its subalgebras. Let us
pick a basis off and label its elements by an indéxsince
the conformal group in four dimensions is 15-dimensional,
we haveA=1, ... N with 1<N=<15]. The corresponding
set of conformal Killing vector fields is denoted K¥4}.
Sinced is a Lie algebra, one can choose tfie such that

R El— EL0,ER=TEALE, (20)

To understand the gauge invariance of the model, and tqhere f$; are the structure constants 6fin the chosen

generalize it subsequently, the following observation is cruyasjs. | associate one

cial: under the gauge transformatipiag. (15)] of the gauge
fields, metric(13) transforms according to

1
6o)g,u.1/:£sg,u,v_ zg/“,(x)(?pfp, (17)

whereL,g,,, is the Lie derivative ofy,,, alonge* = wé":
L.9,,=€9,9,,13,8°9,,+ 3,79 ,,,
et=wér

(18

In order to verify Eq.(17), one has to use the conformal
Killing vector equationg4). Equationg15) and(17) make it

now easy to understand the gauge invariance of the action

with Lagrangian(14). Note that the last two terms on the
right-hand side of Eq(15) are nothing but the Lie derivative
LA, of A, alonge*:

SuP,=d,0+ LA,

Hence the gauge transformation Af, is the sum of a stan-
dard Abelian gauge transformation with paramebteand a
general coordinate transformation with parametets|of
course, these two transformations are related becausé of
=wé"]. As a consequence, the gauge transformatioR of

is given just by the Lie derivative along*: §,F,,
=L.F,,. Equation(17) has the form of a general coordinate
transformation ofy,,,, with parameterg* plus a Weyl trans-
formation with parameter- (1/2)wd,&°. As the Lagrangian
is invariant under Wey! transformations gf,, (we are still
discussing the four-dimensional casé transforms under
gauge transformationg,, just like a scalar density under
general coordinate transformations  with
gt 6,L=d,(e"L). This is exactly Eq.(11), owing to
el=w&*=NEM(1+EYA) and L/(1+E&"A,)

= — (1/4)F , ,F#*. Afinal remark on the prototype model is

parameters

gauge fiél@ and one gauge param-
eter fieldw” with each element of, and introduce the fol-
lowing generalization of gauge transformatir®):

8,AL=D 0"+ 0BE5a, AL+, (0BEHAL,  (21)

where
D#wAZ&MwA—FAEféCwC. (22

The partDMwA of 5wAﬁ is familiar from Yang-Mills theory;
the remaining part is the Lie derivative Aﬁ along a vector
field # containing the gauge parameter field$:

S,AL=D, 0"+ LAL,  et=wBEs. (23

The commutators of the two gauge transformations are
[501 15(»’]: 5 "y

"= wa’CféAc-i- w’Bfé“&MwA— wsfgﬂﬂw’A.
(24)
The crucial step for constructing an action which is invariant

under these gauge transformations is the following generali-
zation of the prototype metriceq. (13)],

g,u,V: 77Mv+ gAuAﬁ+ gAvAﬁ+ gApggAﬁAE ’

with &, = 7,,€x. This metric behaves under gauge trans-
formation (21) similarly as the prototype metridEq. (13)]
under gauge transformatid@b),

(25

1
5a)g,u1/: Esg,uv_ Egpvaapgﬁv (26)
with e* as in Eq.(23). To verify Eq.(26), one has to use Eq.
(4) (which holds for eactty) and Eq.(20). Note that Eq.
(21) is the sum of a Yang-Mills gauge transformation with

that the gauge transformations no longer commute When €5, ameter fields® and a general coordinate transformation

pressed in terms ab rather than in terms aof:

[60:0,]1=0y, 0"=0'"d,0—wéd, 0.

19

The reason for this is that the redefinitipBg. (16)] of the
gauge parameter field involves the gauge fig|d

IV. GENERALIZATION

The prototype model found above will now be general-

with parameter field$“=wB§§, while Eq. (26) has the
form of a general coordinate transformation with parameters
e* plus a Weyl transformation with parameter
- (1/2)wAap§ﬁ. This immediately implies that the following
Lagrangian is invariant modulo a total derivative under
gauge transformatiof21):

1
L=-2Vgg*"g (27

A B
V(rFlu,VFpo'dAB ,

ized by gauging more than only one conformal symmetry in

four-dimensional flat spacetime. Létbe the Lie algebra of

whered,g is a symmetrigj-invariant tensor,
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dag=dga, f2.dps+ fRadap=0, 28 1 1
AB BA cAYDB cBYAD ( ) L¢:§\/§gMV(9M¢F7V¢_ 1—2\/§R¢2, (35)

and Fﬁ,, are field strengths familiar from Yang-Mills theory:
with g,,,, andg”” as before in Eqs25) and(31), andR the

A _ A A A BAC . . .
Fl=duA, =3, A, +TecAA, . (29 Riemannian curvature scalar built fromy,, -
Oyving to Eq.(28)_, Lagrar/lgiar(27) is invari_ar_lt l_,lnde_r Yang- R=g“'R"_,,
Mills transformations of,, . Furthermore it is invariant un-
i i o _ o o T\
der Weyl transformation of,,, . Hence it transforms under RY,,= 3,00 +T0 I —(ne),

gauge transformatioii21) just like a scalar density under

general coordinate transformations with parameters 1
= wAgx . FZV: Egpo( a,ugva_l— avg;ur_ aogp,v)-
— A
SuL =0, (0 E5L). (30 Using Eq.(26), one easily derives the gauge variationRof
Again, the Lagrangian is local but nonpolynomial in the 1 3
gauge fields because it contains the inverse mgttic The o,R=¢"d,R+ ER(‘)A‘;,ugA_ Eg’”(ﬁ#&,—l“ﬁyap)
latter is
X(@09,€7). (36)

g*r= M — XA = AN EREgADARY, (3D)
This makes it is easy to verify the gauge invariance of Eq.

whereA*#= AR with (35): L transforms as a scalar density under standard gen-
R eral coordinate transformations gf,, and ¢; therefore the
AL=ACER, Eg(0g+EEAN)=55. (32 first term in Eq.(34) and the first term in Eq(26) make a

contributiond, (e#L,) to §,L4; the second terms in Egs.
The second equation in E(B2) expresses that tH&g are the  (34) and (26) contribute a total derivative té,L, because
entries of a matriX which inverts the matrix + M where L, is invariant modulo a total derivative under Weyl trans-
M is the matrix with entrief’B‘Aﬁ. E can thus be written as  formations ofg,,, and ¢ with weights of ratio—2 (in four
an infinite (geometri¢ series of matrix products d¥l: dimensiong The complete transformation reads

Q k A A 5'_—& A,U-L +}\/—,U,V 201 Ao—, P 3
Ezkzo(—M), Mp=¢4A% . (33 wbg=0u @"ExLy+ gV99* %0, (0"d,E0) | (37)

A gauge coupling constamt can be introduced as before by 10 include fermions, I introduce the “vierbein”

means of the substitutionAﬁHKAﬁ,che /goA, and L o' = 5" 4 EUAR (39
—L/k* Equivalently, one may usé,s— «fxg, and & rooR K

— &, . Of course, the zeroth order Lagrangian is positiveThe term vierbein is used becausgis related to metri¢25)
definite only for appropriate choices gf For instance, one through

may choose & that is Abelian or compact; then there is a

basis ofG, such thad,z= d55. The simplest case is a one- 9uv™= Mpo€pEY - (39
dimensionalg and reproduces the prototype model. Choices ) _

such asG=s0(2,4) (full conformal algebraor G=so0(1,3) Furthe_rmore the V|er_be|n transforms under the gauge trans-
(Lorentz algebrado not give a positive definite zeroth order formation(21) according to

Lagrangian because these algebras are not corfquaeican-

; 1
not achievedpg= dap)- - _ = A
AB= Ong) Bu€,=e0,€)+ d,e0e)+Clel— 7enwhd,Eh, (40
V. INCLUSION OF MATTER FIELDS AND FURTHER

. u )
GAUGE FIELDS with ¢* as in Eq.(23) and

Using metric(25), it is straightforward to extend the mod- v_ E A v_ v g b 41
els of Sec. IV so as to include further fields. First | discuss Cu 2¢ (0u&A= 1" Mupdo€a): (41)
the case of just onéea) scalar field¢, and introduce the . ”
gauge transformation Note that Eq(40) has indeed the familiar form of the trans-

formation of vierbein fields in general relativity: the lower
_ A 1 4 " index ofe;, transforms as a “world index{it sees only the
Sup=w 5A8M¢+Z¢‘” Iu€h - (34) “general coordinate transformation with parameter§’)
while the upper index transforms as a “Lorentz indekt
A contribution to the Lagrangian which is gauge invariantsees only “Lorentz transformations with parameters
modulo a total derivative is C,'—the Lorentz character is due t€*"=—C"* where

065025-5
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Cr’=q9#*C.]. In addition, Eq.(40) contains a Weyl trans- The inclusion of standard Yang-Mills gauge field&%l is
formation with paramete&(llZ)wAapg,’i\. | now define a even simpler: the contribution to the Lagrangian is just the

“spin connection”w,’, standard Yang-Mill{YM) Lagrangian in metri¢25),
w;ﬂ: EZEQ?]UKW)\T(UMKT’ L _ E\/— ~p VO'F| FJ d (48)
YMT T ZVI9TO L et
O uvp= Ouv]p ™ PlupluT Ofpulvs (42 | | L el a3k
F#V=<9MAV—(9,,A#+fJKAMAV, (49
1
Oluv]p= Eegnok(a,uel):_ 5Ve,ﬁ) wheref'JK andd,; are the structure constants and an invariant
symmetric tensor of some Lie algeb@,,. Note that the
whereE” is the inverse vierbeing’e?= &) difference from Eq(27) is that now the field strengts,,,
a ek involve the gauge fields dyy while the metricg,,, is com-
E’=5"— AR (43) posed of the gauge fields ¢t The conformal gauge trans-
poTh THSA formations ofAL are just the standard Lie derivatives along
~ m—  Agu .
with A% as in Eq.(32). Sincew!” is constructed ok}, in  © ¢ Ea
exactly the same manner as one constructs the spin connec- 5wA'ﬂ=wB§EﬁyAL+t%,(wB&E)A'V- (50)

tion of the vierbein in general relativity, one infers from Eq.
(40) thatw,” transforms under the gauge transformatit)

i Sincelyy, is invariant under Weyl transformations @f , , it
according to M Y ol

transforms under the conformal gauge transformatj@&us.
(21) and(50)] like a scalar density under general coordinate
vp _ vp__  OVAp apv o vp o, vp / .
8o, =9,C" =0, Cot 0, Cote?d,w, + 3 e"0, transformations with parametes#:
1
+ Z(EZEZ_ e,Ep) 77\ (0™,£R) (44) SuLym= 3, (0 ERLyp). (51)
In addition Ly, is invariant under the usual Yang-Mills
gauge transformations, A}, =d,a'+A’ o for arbitrary
gauge parameter fields .
It is straightforward to construct further interaction terms,

3 such as|/gé* or Yukawa interactions/gé ¢, and to extend
S,= wAgﬁ&Mzﬂ—EC“”awwnL gwwA&Mﬁ(, (45 the construction to scalar fields or fermions transforming
nontrivially undergGy,, . In fact, it is even possible to con-
struct models where the “matter fields” transform undger
according to a nontrivial representation. | shall only discuss
the case of scalar fields transforming under a nontrivial rep-
resentation ofj; the extension to fermions is straightforward.
Of course, the notion scalar fields should be used cautiously
when these fields sit in a nontrivial representationGoas

whereC"?= 7"?CP with C? as in Eq.(41). | denote a fer-
mion field by ¢ (without displaying its spinor indicgsand
introduce the gauge transformations

where 47, is the commutator oy matrices, using the con-
ventions

Yy vyt =29",

1 -

Our= Z(),#%_ YoV, they may or may not t_ransform nont_nwally uno_ler Lorentz
transformationgdepending on the choice ¢fand its repre-
sentation. | denote these scalar fields iy. The correspond-

Yu= Nun?’- ing representation matrices gfare denoted by 5, and cho-

o _ S sen such that they represegt with the same structure
A contribution to the Lagrangian which is invariant modulo a constants $; as in Eq.(20), i.e.,

total derivative under the gauge transformatidd4) and
(45) is TaTs;~ TokTaj=fasTc) - (52)

(46) Further properties of the representation will not matter.to the
construction. In place of Eq34), the gauge transformations
now read

L, transforms under the gauge transformations like a scalar

density under general coordinate transformations with pa-

rameterse*=w” &4 because the “Lorentz” and “Weyl”
parts of the gauge transformation of the fermion, vierbein
and spin connection cancel each other completely: Accordingly, one introduces covariant derivatives

. 1
Ly=iNgyy'EY| 9,4+ Ewﬂ"a(,pzp .

i AT j Agun i 1 i A M
0,¢'=— 0" Tpjp'+ 0" ERd, ¢ +Z¢w d,éxn. (53

Sl y= (0 ERL ). (47) D¢ =d,¢ +ALTy . (54)
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These covariant derivatives transform under gauge transfors invariant under the gauge transformati@i) because Eq.

mations(21) and (53) according to (26) reduces to a general coordinate transformatiorg of
i A j _— AL with parameters:*= "¢k . Now, consider the special case

0uDu¢' == " TrDud' + LD, ¢ +3(D,¢) 073,64 of an action given just by Eq58) (without any additional

+%¢.aﬂ(a)AﬁV§Z> termg, and assume thdtA))} contains(at least the gauge

fields of all spacetime translations. Then we may interpret
where ESDM¢>i=8Vr9VDM¢i+r9M8VDV¢i with ¢* as in Eq. Ed. (25 as a field redefinition which just substitutes new
(23). The generalization of LagrangidB5) is simply fieldsg,,, for certain combinations of the original field vari-
ables. Since the action depends on the gauge fields only via
~ 1T 4 1 oo the new fieldsy,, , it reproduces the standard theory of pure
Ly= \/5 59” D,¢'D,¢ - 1_2R¢' ¢'|d; (59 gravitation as gescribed by general relativity.
In fact, the argument is even more transparent when one

whered;; is ag-invariant symmetric tensor: works with the vielbeirfEq. (38)] rather than with the metric
‘ " [Eq. (25)] [according to Eq(39), the metric can be written in
dij=dji, dyjTai+diTa;=0. (56)  terms of the vielbein, and thus actiB8) can also be written

in terms of the vielbein, as usyallhat is, we may label the
Yranslations by an index and choose the corresponding
Killing vector fields as¢h= 6% . Accordingly, the gauge
_ 1 o fields of translations are denoted By, . Equation(38) may
Sl =0, @ EAL 4+ g@g%' #'dij0,(0"d,€3) |. then be interpreted as a field redefinition that substitafes
for A, . This field redefinition is clearly local and invertible
(at least locally, as Eq.(38) can obviously be solved fdk;
in terms ofe,, and the gauge fields of Lorentz transforma-
So far we have worked in four-dimensional spacetimetions.
Actually the whole construction goes through without any The same argument applies when we add to the integrand
change in an arbitrary dimension if we restrict it to isome-of Eq. (58) the first term of the matter Lagrangifiq. (35)]
tries of the flat metric rather than considering all conformal(the second term is not needed since we consider only
symmetries. In other words, all formulas given above hold ingauged Poincargansformations hejethe fermion Lagrang-
arbitrary dimension if we impose ian[Eqg. (46)], or the Yang-Mills type LagrangiafEq. (48)].
Since these contributions also depend on the gauge ﬁ@ds
only viae,,, the same field redefinition implies the equiva-
lence to general relativity coupled to matter fields in the
§tandard way.

Using Eq.(56) and arguments analogous to those that led t
Eq. (37), one infers that

VI. RELATION TO GENERAL RELATIVITY

3, E4=0. (57)

When Eq.(57) holds, the gauge transformatiog are local

Poincareransformations. This raises the question of whethe
there is a relation to general relativity. The answer to this
guestion is affirmative and easily obtained from the follow-
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