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Spectral flow of chiral fermions in nondissipative Yang-Mills gauge field backgrounds
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Real-time anomalous fermion number violation is investigated for massless chiral fermions in spherically
symmetric SU(2) Yang-Mills gauge field backgrounds which can be weakly dissipative or even nondissipative.
Restricting consideration to spherically symmetric fermion fields, the zero-eigenvalue equation of the time-
dependent effective Dirac Hamiltonian is studied in detail. For generic spherically symmetric SU(2) gauge
fields in Minkowski spacetime, a relation is presented between the spectral flow and two characteristics of the
background gauge field. These characteristics are the well-known ‘‘winding factor,’’ which is defined to be the
change of the Chern-Simons number of the associated vacuum sector of the background gauge field, and a new
‘‘twist factor,’’ which can be obtained from the zero-eigenvalue equation of the effective Dirac Hamiltonian but
is entirely determined by the background gauge field. For a particular class of~weakly dissipative! Lüscher-
Schechter gauge field solutions, the level crossings are calculated directly and nontrivial contributions to the
spectral flow from both the winding factor and the twist factor are observed. The general result for the spectral
flow may be relevant to electroweak baryon number violation in the early universe.
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I. INTRODUCTION

An important consequence of the triangle anomaly@1,2# is
the violation of fermion number conservation in the ele
troweak standard model if the background gauge field ha
nonvanishing topological chargeQ. This connection between
the triangle anomaly and fermion number violation in t
electroweak standard model was first pointed out in Ref.@3#.
For the background gauge field, the calculation of Ref.@3#
used Euclidean instanton solutions@4# in order to calculate
the tunneling amplitude between topologically differe
vacua. A special feature of the Euclidean~imaginary-time!
approach is that gauge field configurations with finite act
fall into homotopy classes labeled by aninteger Q. This
integerQ then gives the number of fermions produced.

For real-time fermion-number-violating processes@5#,
sphaleronlike gauge field configurations are believed to p
a crucial role@6#. These gauge fields ‘‘interpolate’’ betwee
topologically different vacua and have sufficiently high e
ergy to overcome the energy barrier. But, in contrast with
Euclidean approach, the anomalous fermion production
Minkowski spacetime is not, in general, given by the top
logical chargeQ of the classical gauge field background. T
reason is thatQ may be a noninteger or even, for the case
Yang-Mills-Higgs theory, not well defined; cf. Refs.@7,8#. It
is not clear which quantity, in general, determines
anomalous fermion production for real-time processes.

For pure Yang-Mills theory in Minkowski spacetime, th
authors of Refs.@9,10# have argued that the number of pr
duced fermions is given by the change of winding numbe
the associated vacua of the initial and final gauge field c
figurations. The ‘‘associated vacua’’ of a given classic
gauge field background represent the particular vacuum
figurations that the background field would approach at
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→2` or t→1`. As is clear from the context, the authors
Refs. @9,10# considereddissipativebackground fields in or-
der to be able to quantize the fermion fields att56`.

The question, now, is what happens to fermion num
violation if a powerful energy source creates a nontriv
gauge field background over anextendedspacetime region
~for example, in a high-energy collision experiment or in t
early universe!. In this case, we cannot readily associate
initial high-energy state with a particular vacuum configu
tion and the field-theoretic approach used in Refs.@9,10#
breaks down. For nontrivial classical bosonic backgrou
fields, it is, moreover, not known how to construct a fermi
number operator in terms of the quantized fermionic field

Still, fermion number violation can be directly observe
from the level crossing of the energy eigenvalues of the tim
dependent Dirac Hamiltonian; see Ref.@5# and references
therein. The overall effect of level crossing can be charac
ized by the ‘‘spectral flow,’’ defined to be the number
eigenvalues of the Dirac Hamiltonian that cross zero fr
below minus the number of eigenvalues that cross zero f
above, for a given time interval and direction of time.

In this paper, we study the zero-eigenvalue equation of
effective Dirac Hamiltonian for spherically symmetric chir
fermion fields and classical SU(2) Yang-Mills gauge fie
backgrounds. A relation is found between the spectral fl
and certain features of the spherically symmetric backgro
gauge field. These features are the well-known topolog
‘‘winding factor’’ and a new type of ‘‘twist factor,’’ both of
which will be defined later. The spherically symmetric su
space of (311)-dimensional chiral SU(2) Yang-Mills
theory is equivalent to a (111)-dimensional U(1) gauge
theory coupled to a Higgs-like complex scalar field@11# and
several two-component Dirac fields. This drastic simplific
tion allows us to examine the problem using analytical me
ods.

The (311)-dimensional spherically symmetric SU(2
gauge field backgrounds considered in this paper are, in g
eral, nondissipative, which means that the energy densi
©2001 The American Physical Society24-1
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does not approach zero uniformly ast→6`. For these non-
dissipative gauge field backgrounds, the contribution of
twist factor to the spectral flow is manifest. The general
sult for the spectral flow also applies to dissipative sph
cally symmetric gauge field backgrounds, which will be cla
sified later as ‘‘weakly dissipative’’ and ‘‘strongly
dissipative.’’ It will be shown that the nonvanishing effect
the twist factor for the spectral flow can already appear
weakly dissipativespherically symmetric gauge field bac
grounds, such as certain Lu¨scher-Schechter gauge field sol
tions @12,13#. Our paper may, therefore, be viewed as a c
tinuation of the work of Refs.@5,9,10#.

The outline of this paper is as follows. In Sec. II, w
present the model and the basic formalism. After giving
chiral SU(2) Yang-Mills theory in the spherically symmetr
Ansatz, we briefly review the topological properties of th
gauge field background. The gauge field topology is, in
first place, characterized by the winding factor, defined to
the change of the Chern-Simons number of the associ
vacuum sector of the gauge field configuration.

In Sec. III, we consider the zero-eigenvalue equation
the time-dependent effective Dirac Hamiltonian. By inves
gating the zero-eigenvalue equation directly, we are abl
identify a family of Riccati equations@14,15#, from which
the twist factor of the spherically symmetric SU(2) gau
field configuration can be obtained.

In Sec. IV, we present a result for generic spherica
symmetric SU(2) gauge field backgrounds, which relates
spectral flow to both the winding factor and the twist fact

In Sec. V, we investigate the level crossing phenome
for the particular spherically symmetric SU(2) gauge fie
backgrounds given by certain Lu¨scher-Schechter solution
@12,13# and verify our relation for the spectral flow. Speci
cally, we demonstrate the significant effect of the twist fac
for a class of Lu¨scher-Schechter background gauge fie
with energies far above a sphaleronlike barrier.

In Sec. VI, finally, we summarize our results and brie
discuss the role of dissipation. There is also an Appen
which provides the proof of a result needed in this sectio

For the benefit of the reader, we remark that Secs. I
III C, and IV B form the core of the paper.

II. CHIRAL SU „2… YANG-MILLS THEORY

In this section, we review the spherically symmetricAn-
satzfor massless chiral fermions coupled to classical SU
Yang-Mills gauge fields and establish our notation. Furth
more, we recall the definition of the topological winding fa
tor.

A. Spherically symmetric ansatz

The SU(2) Yang-Mills theory with massless chiral ferm
ons is described by the action
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S5SG1SF , SG52
1

2 g2ER4
d4x Tr~FmnFmn!,

SF5E
R4

d4x C̄ f GmDmC f , ~2.1!

whereSG represents the gauge field action andSF the fermi-
onic action. Latin indicesm, n, etc., run over the coordinat
labels 0, 1, 2, 3, and the metric tensor for flat Minkows
spacetime ishmn5diag(21,1,1,1). Repeated indices a
summed over. The flavor indexf, in particular, is summed
over 1, . . . ,NF . Also, natural units are used for whichc
5\51.

The SU(2) field strength tensorFmn and the covariant
derivativeDm for the fermionic fields are defined as follow

Fmn[]mAn2]nAm1@Am ,An#, Am[Am
a ta/~2i !,

~2.2!
Dm[]m1Am PL , PL[~12G5!/2, PR[~11G5!/2.

The Dirac matricesGm are taken in the chiral~Weyl! repre-
sentation

G052 i S 0 1

1 0D , Ga52 i S 0 sa

2sa 0 D ,

G5[2 i G0G1G2G35S 1 0

0 21D ,

1[S 1 0

0 1D , s1[S 0 1

1 0D ,

s2[S 0 2 i

i 0 D , s3[S 1 0

0 21D . ~2.3!

The conjugate spinor is given byC̄ f[C f
†(2 i G0). Here and

in the following, ta andsa are Pauli matrices carrying iso
spin and spin indices, respectively. The action~2.1! thus cor-
responds to a chiral SU(2) gauge theory, with interact
left-handed fermions (CL f[PLC f) and noninteracting
right-handed fermions (CR f[PRC f).

The total numberNF of flavors in the fermionic action
~2.1! must be even, in order to cancel the nonperturbat
SU(2) anomaly@16#. Henceforth, we focus on a single flavo
and drop the indexf. Since there is no natural mass scale
the classical SU(2) Yang-Mills theory, we also take an ar
trary mass scale to work with.~In the full theory, quantum
effects may, of course, fix the scale.!

In this paper, we concentrate on the spherically symme
subspace of the (311)-dimensional theory. We use the fo
lowing Ansatzfor the gauge fields:

A0~x!5
1

2i
a0~ t,r !tW• x̂, ~2.4a!
4-2
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Aa~x!5
1

2i Fa~ t,r !21

r
eabcx̂ctb1

b~ t,r !

r
~dab2 x̂ax̂b!tb

1a1~ t,r !~tW• x̂!x̂aG , ~2.4b!

wherea, b, a0, anda1 arereal functions oft andr; cf. Refs.
@11,17#. These gauge fields are invariant under spatial SO
rotations, up to a gauge transformation

Am→Am
V[V~]m1Am!V†, ~2.5!

with V(x)PSU(2).
The spherically symmetricAnsatzfor the fermionic fields

is given by~see Ref.@17# and references therein!

C~x!5S CR~x!

CL~x!
D[S t2 C̃R~x!

C̃L~x!
D , ~2.6a!

C̃L~x!5
1

A2
@HL~ t,r !1 i GL~ t,r !tW• x̂#

3S S 0

11D
isospin

S 21

0 D
isospin

D
spin

, ~2.6b!

C̃R~x!5
1

A2
@HR~ t,r !1 i GR~ t,r !tW* • x̂#

3S S 11

0 D
isospin

S 0

11D
isospin

D
spin

, ~2.6c!

whereHL , HR , GL , andGR arecomplexfunctions oft and
r. In components (a for isospin anda for spin!, the two
constant spinors of Eqs.~2.6b,c! can be written aseaa and
daa , respectively, wheree and d are the Levi-Civita and
Kronecker symbols.

Furthermore, we assume that all physic
(311)-dimensional field configurations are described by
finitely differentiable functions~this assumption can be re
laxed!. In order to have regular behavior at the spatial orig
for the (311)-dimensional field configurations and their d
rivatives, theAnsatzfunctions should satisfy the following
r-parity expansions nearr 50:

a0~ t,r !5 (
k50

`

a0
(2k11)~ t !r 2k11,

a1~ t,r !5 (
k50

`

a1
(2k)~ t !r 2k,
06502
)

l
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a~ t,r !511 (
k51

`

a (2k)~ t !r 2k,

b~ t,r !5 (
k50

`

b (2k11)~ t !r 2k11,

b (1)~ t !5a1
(0)~ t !,

HL,R~ t,r !5 (
k50

`

HL,R
(2k)~ t !r 2k,

GL,R~ t,r !5 (
k50

`

GL,R
(2k11)~ t !r 2k11, ~2.7!

with the expansion coefficients depending on time only.
If we substitute theAnsätze~2.4! and~2.6! into the action

~2.1!, the following reduced actions are obtained~for a single
fermion flavor!:

SG5
4p

g2 E2`

1`

dtE
0

`

drH 1

4
r 2f mn f mn1uDmxu2

1
1

2 r 2
~ uxu221!2J , ~2.8a!

SF54pE
2`

1`

dtE
0

`

drH C̄ r S gm]m1
1

r DC r

1C̄ l S gmDm1
1

r
~Rex1 ig5Imx! DC l J . ~2.8b!

Greek indicesm, n, etc., run over the coordinate labels 0,
and are lowered with the metrichmn[diag(21,1). The co-
ordinates (x0,x1) correspond to (t,r ). The theory~2.8! can
be interpreted as a (111)-dimensional U(1) gauge field
theory with a Higgs-like complex scalar fieldx(t,r ) and
two-component Dirac spinorsC l(t,r ) andC r(t,r ). In terms
of the Ansatz functions, the U(1) field strengthf mn , the
complex scalar and Dirac fields, and the covariant deri
tives are given by

f mn[]man2]nam , x[a1 ib,

Dmx[~]m2 iam!x,

C l~ t,r ![S C l1~ t,r !

C l2~ t,r !
D[S r H L~ t,r !

r GL~ t,r !
D ,

C r~ t,r ![S r H R~ t,r !

r GR~ t,r !
D ,

C̄ l ,r[C l ,r
† ~2 ig0!,
4-3
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DmC l[„]m1 i ~am/2!g5…C l , ~2.9!

with

g05 is1, g152s3, g552g0g15s2. ~2.10!

The spherically symmetricAnsatz~2.4!,~2.6! preserves a
U(1) subgroup of the SU(2) gauge group, with transform
tion parametersV(x,t)5exp@i v(t,r)t•x̂/2# in Eq. ~2.5!
above. Under these particular SU(2) gauge transformati
we have for the (111)-dimensional fields the following
U(1) gauge transformations:

am→am1]mv, x→eivx, C l→e2 i (v/2)g5C l ,

C r→C r . ~2.11!

In order to maintain the regularity of the (311)-dimensional
field configurations,v(t,r ) should have an oddr-parity ex-
pansion nearr 50,

v~ t,r !5 (
k50

`

v (2k11)~ t !r 2k11, ~2.12!

where the expansion coefficients are dependent only on t
For later reference, the (111)-dimensional fields with

finite energy approach a vacuum configuration at infin
provided

x→eiv, Dmx→0, am→]mv, f mn→0,

C l ,r→0 for r→`, ~2.13!

and are regular at the spatial origin, provided

uxu→1, Dmx→0, C l ,r→0 for r→0. ~2.14!

See Ref.@17# for further details. Throughout this paper, w
consider regular spherically symmetric SU(2) gauge fie
with finite energy.

B. Gauge field winding factor

For the description of the topology of spherically symm
ric SU(2) gauge field backgrounds, it is convenient to e
press the (111)-dimensional complex fieldx(t,r ) in polar
form:

x~ t,r !5r~ t,r !exp@ i w~ t,r !#, r~ t,r !>0. ~2.15!

The ‘‘associated vacuum sector’’ of the background gau
field at a fixed timet is obtained from the configuration wit
r(t,r ) replaced by 1, but withw(t,r ) and am(t,r ) un-
changed.@Note that the resulting configuration withr(t,r )
51 may still have nonzero energy density~2.8a!.# For the
gauge choicex(t,0)5x(t,`)51, the integer winding num-
ber is then defined as

Nx~ t ![@w~ t,`!2w~ t,0!#/~2p!. ~2.16!

This winding numberNx(t) is, in fact, equal to the Chern
Simons number of ther51 gauge field at timet; see Eq.
06502
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~2.18! of Ref. @17#. For a particularx(t,r ) configuration, the
winding numberNx(t) is unambiguous, providedux(t,r )u
.0. See Sec. IV B for further discussion.

For a time interval@ t i ,t f # with t i,t f , generic spherically
symmetric SU(2) gauge field backgrounds are character
by the change of winding numberNx between the initial and
final configurations

DNx@ t f ,t i #[Nx~ t f !2Nx~ t i !. ~2.17!

Henceforth, we callDNx@ t f ,t i # as defined by Eq.~2.17! the
‘‘winding factor’’ of the spherically symmetric SU(2) gaug
field. Our definition of the ‘‘winding factor’’ is directly in-
spired by the results of Ref.@10#, obtained for a particular
class of background fields that will be discussed further
Sec. V.

III. TIME-DEPENDENT DIRAC HAMILTONIAN AND
TWIST FACTOR

In this section, we consider the zero-eigenvalue equa
of the time-dependent effective Dirac Hamiltonian for
given spherically symmetric SU(2) gauge field configurati
at one particular time. The existence of fermion zero mo
is discussed and a necessary condition derived. In addi
the so-called twist factor is introduced, which will play a
important role in Sec. IV.

A. Fermion zero modes and level crossings

The general solutionC l(t,r ) of the (111)-dimensional
Dirac equation from the action~2.8b! can be expressed as
linear combination of the eigenfunctions of the correspo
ing time-dependent Dirac Hamiltonian. The eigenvalue eq
tion of this Hamilton operator is

H~ t,r !C~ t,r !5E~ t !C~ t,r !, ~3.1a!

H~ t,r ![g5a0/22 ig5D1

1 ig0~Rex1 i Im x g5!/r , ~3.1b!

where the covariant derivativeD1 has been defined in Eq
~2.9! andC now stands for the two-component Dirac spin
C l of that same equation.@The other Dirac fieldC r(t,r ) of
the action~2.8b! has no interactions and will not be consi
ered in the following.# The Hamiltonian~3.1b! depends ont
and r through the background fieldsx(t,r ) andam(t,r ), to-
gether with an explicit dependence onr in the ig0 term.

It is known that the zero crossing of an energy eigenva
of the Dirac Hamiltonian is one of the crucial ingredients
fermion number violation; cf. Refs.@5,18#. In our case, the
zero-eigenvalue equation~3.1a! at fixed timet can be written
as

] rC5A C, A[AH1AA , ~3.2a!

AH[2~g1 Rex1 ig0 Im x!/r , ~3.2b!

AA[2 i a0/22 ig5a1/2, ~3.2c!
4-4
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where] r stands for the partial derivative with respect tor.
For later convenience, we have decomposed the matrixA of
Eq. ~3.2a! into a Hermitian partAH and an anti-Hermitian
partAA . Recall that we use two-dimensional Dirac matric
g05 is1, g152s3, and g55s2, with sa the standard 2
32 Pauli matrices.

In order to have a regular (311)-dimensional fermionic
field at r 50, the (111)-dimensional fermionic fieldC(t,r )
must satisfy the boundary conditionC(t,0)50, which is al-
ready implemented by theAnsatz~2.9!. A fermion zero mode
is then defined to be anormalizablesolution of Eq.~3.2a!
with boundary conditionC(t,0)50. Specifically, the nor-
malization condition is given by

E
0

`

druC~ t,r !u251. ~3.3!

The existence of a fermion zero mode at a particular ti
t5t* does not necessarily imply level crossing of the eig
value of the Dirac Hamilton operator. In fact, the ener
level E(t) could just ‘‘touch’’ the E50 value instead of
‘‘crossing’’ it. Therefore, it is necessary to check that lev
crossing really occurs. This can be done by calculating
time gradient of the energy eigenvalueE(t) at t5t* . If
dE/dtu t5t* Þ0, then there is level crossing att5t* .

The overall effect of level crossings can be characteri
by the ‘‘spectral flow’’F@ t f ,t i #, defined to be the number o
eigenvalues of the Dirac HamiltonianH(t,r ) that cross zero
from below minus the number of eigenvalues that cross z
from above, for the time interval@ t i ,t f # considered. The
spectral flow will be discussed further in Sec. IV. Here, w
continue the investigation of the zero-eigenvalue equa
per se.

B. Gauge-invariant zero-eigenvalue equation

We first express the zero-eigenvalue equation~3.2a! at a
fixed time t in terms of a set of bosonic background fiel
that are invariant under the U(1) gauge transformati
~2.11!. As can be seen from Eq.~3.2!, a nonvanishing gauge
field a0 contributes only a complex phase factor to the so
tion C. Up to an overall phase factor, the solution is then

C~ t,r !5expF2 i E
r 0

r

dr8a0~ t,r 8!/2GCM~ t,r !, ~3.4!

providedCM(t,r ) satisfies the nontrivial matrix equation

] rCM5@2 i g5a1/22~g1 Rex1 ig0 Im x!/r #CM ,
~3.5!

with boundary condition

CM~ t,0!50. ~3.6!

The existence of a fermion zero mode for the linear diff
ential equation~3.2! is thus equivalent to having a normaliz
able solution of Eq.~3.5! with boundary condition~3.6!.

Next, we apply a unitary transformation to Eq.~3.5!,

CM→CL[L†CM , ~3.7!
06502
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with the transformation matrix

L52 i g0 exp@ i w g5/2# ~3.8!

that diagonalizes the Hermitian matrixAH via A H
→L†AHL. We obtain the following zero-eigenvalue equ
tion for CL :

] rCL5~A01A1!CL , ~3.9a!

A0[L†AHL5l g152l s3, ~3.9b!

A1[L†~2] r2 ig5a1/2!L

5R ig55R is2, ~3.9c!

with the further definitions

l[r/r>0, R[~a12] rw!/2. ~3.10!

It follows immediately from the definition~2.15! that the
matricesA0 and A1 are invariant under the U(1) gaug
transformations~2.11!. Moreover,A0 andA1 are real matri-
ces and the solutionCL can be taken real, up to an overa
complex phase factor. In the following, we takeCL to be
strictly real and drop the subscriptL.

For finite-energy background gauge fields with t
r-parity expansions as given by Eq.~2.7!, one can show tha
the following limits hold:

lim
r→0

R/l5 lim
r→`

R/l50. ~3.11!

This demonstrates that the diagonal matrixA0 determines
the local structure of the solution of the differential equati
~3.9! in the regions of small and larger ~see also Ref.@19#!.

C. Spinor twist number and twist factor

Since the solutionC of the transformed zero-eigenvalu
equation~3.9! is taken to be real, one can writeC in polar
notation,

C~ t,r ![uC~ t,r !uexp@ i g5Q~ t,r !#S 0

1D , ~3.12!

where QPR measures the relative rotation of the spin
away from theC2 axis in the configuration space ofC.
Recall thatg55s2, so that the exponential factor in Eq
~3.12! reads1 cosQ1is2sinQ.

From Eqs.~3.9! and ~3.12!, one finds thatQ and uCu at
fixed time t satisfy the following coupled differential equa
tions:

] rQ5D@Q#1R, ~3.13a!

] r uCu5luCucos 2Q, ~3.13b!

with the definitions

D@Q#[2l sin 2Q, R[~a12] rw!/2,

l[r/r>0. ~3.14!
4-5
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In order to obtain regular behavior atr 50, the solutions of
the differential equations~3.13! must satisfy the following
boundary conditions:

Q~ t,0!50 mod p, ~3.15a!

uC~ t,0!u50. ~3.15b!

More specifically, these boundary conditions are needed
causel is singular at the spatial originr 50; see Eq.~2.14!.

Thenonlinearityof the differential equation~3.13a! origi-
nates from the fact that the linear differential equation~3.9!
mixes the components of the spinorC. Furthermore, the
differential equation~3.13a! involves only Q, whereas Eq.
~3.13b! contains bothQ and uCu. These two properties o
Eq. ~3.13a! will turn out to be crucial for the results of th
present paper.

Remarkably, the nonlinear differential equation~3.13a!
for a given time slicet can be transformed into a generaliz
Riccati equation@14,15# by settingY(t,r )5tanQ(t,r ),

] rY2R~11Y2!12 l Y50. ~3.16!

The analysis is, however, best carried out with the nonlin
differential equation in the form as given by Eq.~3.13a!,
where the termD is called the ‘‘deviator’’ and the termR the
‘‘rotator,’’ for reasons that will become clear shortly. Henc
forth, we refer to the single differential equation~3.13a!,
with the implicit boundary condition~3.15a!, as the ‘‘trans-
formed Riccati equation.’’

Let us consider the asymptotic behavior of the solut
Q(t,r ) of the transformed Riccati equation~3.13a! at a fixed
time t. The deviatorD dominates, in general, the right-han
side of Eq.~3.13a! for large r, according to Eq.~3.11!. For
large r, Eq. ~3.13a! can therefore be approximated by

] rQ52l sin 2Q. ~3.17!

The differential equation~3.17! has three types of solution
at a fixed time slicet,

Q~ t,r !5N p, ~3.18a!

Q~ t,r !5~N811/2!p, ~3.18b!

tan@Q~ t,r !#5tan@Q~ t,r 0!#

3expF22E
r 0

r

dr 8 l~ t,r 8!G , ~3.18c!

for arbitrary integersN andN8.
The nontrivial solutionQ(t,r ) given by Eq. ~3.18c! is

attracted toward the valueNp asr→`, sincel(t,r ) is non-
negative and has a divergent integral toward infinity. T
shows that the ‘‘point’’Q(t,r )5Np, with NPZ, is asymp-
totically stablein the solution space of the differential equ
tion ~3.17!; cf. Ref. @19#. For the trivial solutionQ(t,r )
5(N811/2)p, an arbitrarily small deviation will lead to a
nontrivial solution given by Eq.~3.18c!, which asymptoti-
cally approaches the valueN9p, with N9PZ. The ‘‘point’’
06502
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Q(t,r )5(N811/2)p, with N8PZ, is thusasymptotically un-
stable in the solution space of the differential equatio
~3.17!.

The solutions of the complete differential equation~3.13a!
with boundary condition~3.15a! can thus be classified ac
cording to their asymptotic behavior. At a fixed time slicet,
there are two classes:

SN~ t ![$Q~ t,r !u lim
r→`

Q~ t,r !5N p%, ~3.19a!

UN8~ t ![$Q~ t,r !u lim
r→`

Q~ t,r !5~N811/2!p%, ~3.19b!

with N,N8PZ. If QPSN (QPUN), thenQ is asymptotically
stable ~unstable! in the solution space of the differentia
equation~3.13a!.

For any solutionQ(t,r )PUN(t) with arbitrary integerN,
there necessarily exists a fermion zero mode, as follows fr
Eqs.~3.13b! and ~3.15b!. @It is clear that the normalizability
condition~3.3! of the fermion zero mode requires the asym
totics of Eq.~3.19b!.# Therefore, itsufficesto study the trans-
formed Riccati equation~3.13a! in order to determine the
existence of a fermion zero-mode at a particular timet.

At this moment, we can explain the use of the terms ‘‘d
viator’’ and ‘‘rotator’’ in the transformed Riccati equatio
~3.13a!. The observation from Eqs.~3.17! and~3.18c! is that
D pulls Q(t,r ) toward the valueNp as r→`. In other
words, it leads to a deviation ofQ(t,r ) from the special path
approaching the value (N811/2)p as r→`, for which a
fermion zero mode exists. This is the reason for calling
term D in Eq. ~3.13a! the ‘‘deviator.’’ In the absence of the
deviatorD over the interval@r 0 ,r 1#, say, one observes from
Eq. ~3.13a! that R generates a simple rotation of the spin
by the angleDQ5* r 0

r 1dr8R(r 8). This is then the reason fo

calling the termR in Eq. ~3.13a! the ‘‘rotator.’’ The fermion
zero-mode solutions will be discussed further in the n
subsection. Here, we continue the discussion of the tra
formed Riccati equation from a more general viewpoint.

Using analyticity and the Cauchy-Lipschitz existence a
uniqueness theorem for ordinary differential equatio
@14,15,19#, it can be shown that the solutionQ(t,r ) of the
transformed Riccati equation~3.13a! with boundary condi-
tion Q(t,0)50 is unique. For the regular finite-energy gau
fields considered, it can also be shown that the solut
Q(t,r ) is bounded.

The uniqueness of the solutionQ(t,r ) and its asymptotic
behavior allow us toclassify the gauge field background a
one particular timet by the quantity

NQ~ t ![@Q~ t,`!2Q~ t,0!#/p, ~3.20!

which can take integer or half-odd-integer values. Accord
to the definition~3.12!, the mappingG(t,r )[exp@i g5Q(t,r)#
PSO(2) gives the twisting of the spinor in the configurati
space ofC for fixed time t. We therefore callNQ(t) the
‘‘spinor twist number.’’

It is now convenient to characterize a time-depend
spherically symmetric SU(2) gauge field background by
4-6
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change of spinor twist number between initial and final co
figurations. Henceforth, we call

DNQ@ t f ,t i #[NQ~ t f !2NQ~ t i ! ~3.21!

the ‘‘twist factor’’ of the spherically symmetric SU(2) gaug
field over the time interval@ t i ,t f #, with t i,t f .

It is important to realize that the twist factorDNQ mea-
sures anintrinsic propertyof the SU(2) gauge field configu
ration. Formally, Eqs.~3.9a!, ~3.12!, ~3.20!, and~3.21! give

DNQ@ t f ,t i #5
1

pE0

`

drE
t i

t f
dt

]

]t S ]

]r
Q~ t,r ! D , ~3.22a!

Q~ t,r ![2
1

2
TrS is2 lnH lim

e→0
e P expF E

e

r

dr8$A0~ t,r 8!

1A1~ t,r 8!%G J D , ~3.22b!

whereP represents path ordering. Here,A0(t,r ) andA1(t,r )
are defined by Eqs. ~3.9b,c!, in terms of the
(111)-dimensional gauge field functionsr(t,r ), w(t,r ),
anda1(t,r ). Whether or not there exists a more direct way
obtainDNQ remains an open question.

D. Necessary condition for fermion zero modes

With the results of the previous subsection, it is possi
to find a necessary condition for the existence of ferm
zero modes at a particular timet. We first introduce the fol-
lowing diagnostic:

K6~ t ![E
D6(t)

dr R~ t,r !

[E
0

`

dr u@6R~ t,r !#R~ t,r !, ~3.23!

with the domains of positive or negative values ofR(t,r )
defined by

D6~ t ![$r usgn@R~ t,r !#561%#@0,̀ ! ~3.24!

and u the usual step function,u@x#50 for x,0 andu@x#
51 for x.0. Note that, by definition,K1>0 andK2<0.
Note also that the rotatorR(t,r ) from Eq. ~3.14! is entirely
defined in terms of the background fieldsa1(t,r ) and
w(t,r )[argx(t,r ).

Consider the transformed Riccati equation~3.13a! with
boundary conditionQ(t,0)50. The integration ofR(t,r )
over the domainD1 (D2) then accounts for the rotation o
the spinor in the ‘‘1 ’’ ~‘‘ 2 ’’ ! direction. But the deviatorD,
for valuesQP(2p/2,p/2), brakes the rotation forced by th
rotatorR. The crucial point, now, is that in order to have
fermion zero mode at timet the total action of the rotato
should overcome the resistance from the deviator in the
gion 2p/2,Q,p/2, so that the solutionQ(t,r ) ends up
06502
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with uQu>p/2 at r 5`. A necessarycondition for the exis-
tence of a fermion zero mode at one particular timet is,
therefore,

Kmax~ t ![max@K1~ t !,uK2~ t !u#>p/2. ~3.25!

Having established the necessary condition~3.25!, it
would certainly be interesting to obtain also a necessary
sufficient condition for the existence of a fermion zero mo
in a given static gauge field background. But, without furth
input, it appears difficult to find such a condition. For th
reason, we turn in the next section to the role of tim
dependent, continuous gauge field backgrounds.

IV. SPECTRAL FLOW

In this section, we consider the spectrum of the effect
Dirac Hamiltonian ~3.1b! for time-dependent sphericall
symmetric SU(2) gauge fields. In Sec. IV A, we derive
relation, Eq.~4.32!, between level crossing and the change
winding number or spinor twist number over an infinitesim
time interval. From this result, we obtain in Sec. IV B th
appropriate relation, Eq.~4.39!, for the spectral flow over a
finite time interval. Section IV A is rather technical and ma
be skipped on a first reading.

A. Level crossing from changes in winding and twist numbers

1. Perturbative expansion

We start from the transformed Riccati equation~3.13a!,
with boundary condition~3.15a!, at a particular timet5t*
and study the change of the solutionQ(t,r ) in the neighbor-
hood oft5t* . For finiter andt5t* 6e with e an arbitrarily
small positive constant, one can expand the backgro
fields as follows:

l~ t* 6e,r !5l~ t* ,r !6e] tlu t5t
6
* 1O~e2!, ~4.1a!

R~ t* 6e,r !5R~ t* ,r !6e] tRu t5t
6
* 1O~e2!, ~4.1b!

where the upper and lower time derivatives of the ba
ground fields are defined by

] tl~ t,r !u t5t
1
* [ lim

t↓t*
] tl~ t,r !,

] tl~ t,r !u t5t
2
* [ lim

t↑t*
] tl~ t,r !, ~4.2!

and similarly for] tR. The solutionQ(t,r ) for t5t* 6e can
be written as

Q~ t* 6e,r !5Q6~ t* ,r !6e f 1~ t* ,r !1O~e2!. ~4.3!

The functionf 1(t,r ) is continuous att5t* , but the first term
on the right-hand side of Eq.~4.3! allows for a discontinuity.
For the moment, we consider the functionsQ6(t* ,r ) in Eq.
~4.3! to be equal.
4-7
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By substituting Eqs.~4.1! and ~4.3! into the transformed
Riccati equation~3.13a!, one obtains to first order ine the
following linear differential equation forf 1:

@] r12 l~ t* ,r !cos 2Q~ t* ,r !# f 1~ t* ,r !5 j 1~ t* ,r !,
~4.4!

with the definition

j 1~ t* ,r ![] tRu t5t* 2] tlu t5t* sin 2Q ~4.5!

and boundary condition

f 1~ t* ,0!50. ~4.6!

The solution of the differential equation~4.4! is found to
be

f 1~ t* ,r !5J1~ t* ,r !/uC~ t* ,r !u2, ~4.7!

with the definition

J1~ t* ,r ![E
0

r

dr8uC~ t* ,r 8!u2 j 1~ t* ,r 8!. ~4.8!

Here, we have used the solution of Eq.~3.13b!,

uC~ t,r !u}expF E
r 0

r

dr8l~ t,r 8!cos 2Q~ t,r 8!G , ~4.9!

to obtain Eq.~4.7! in the form shown.
The function j 1(t,r ) is continuous att5t* for smooth

background fieldsl(t,r ) andR(t,r ), which implies that the
solution f 1(t,r ) of Eq. ~4.4! is also continuous att5t* . If,
on the other hand, the time slicet5t* corresponds to a loca
change of the gauge field winding numberNx , the partial
derivatives ofl(t,r ) and R(t,r ) are not well defined att
5t* , as will be shown later. In this case, the functionj 1(t,r )
is not well defined either, which affects the continuity of t
solution f 1(t,r ) of Eq. ~4.4!. In Sec. IV A 3, we will show
that the functionf 1(t,r ) can be taken to be continuous att
5t* , provided possible discontinuities are accounted for
the leading termsQ2(t* ,r ) andQ1(t* ,r ) in Eq. ~4.3!.

2. Time-differentiablel andR
Consider a particular time slicet5t* , for which the

l(t,r ) and R(t,r ) fields are differentiable with respect t
time,

] tl~ t,r !u t5t
1
* 5] tl~ t,r !u t5t

2
* , ~4.10a!

] tR~ t,r !u t5t
1
* 5] tR~ t,r !u t5t

2
* , ~4.10b!

with upper and lower time derivatives as defined in Eq.~4.2!.
First, suppose that there is no fermion zero mode at

5t* , so thatQ(t* ,r )→Np as r→`. For larger and using
Eq. ~3.11!, one then obtains from Eq.~4.4! the results
limr→` j 1 /l50 and f 1}r 22, which imply

lim
r→`

f 1~ t* ,r !50. ~4.11!
06502
y

This indicates that there is no change of the asymptotic
havior ofQ(t,r ) in the neighborhood oft5t* , which corre-
sponds to having a constant spinor twist number~3.20! at t
5t* ,

dNQu t5t* [NQ~ t* 1e!2NQ~ t* 2e!50. ~4.12!

@We reserve the notationDNQ for the global change of
spinor twist number; see Eq.~3.21!. Of course,dNQ is in no
way ‘‘infinitesimal;’’ see Eqs.~4.14! below.#

Next, consider the case of having a normalized ferm
zero mode att5t* with Q(t* ,r )PUN , that is, belonging to
the ‘‘unstable’’ class of solutions~3.19b!. Since the solution
Q(t* ,r )PUN is asymptotically unstable, one observes fro
Eq. ~3.18c! that a small positive@negative# perturbation ofQ
at large r leads toQ(t* ,r )PSN11 @Q(t* ,r )PSN#. From
Eqs.~4.3!, ~4.7!, and~4.8! one deduces that the fermion ze
mode att5t* is at abifurcation pointfor different NQ’s. In
fact, the local change of spinor twist number

dNQu t5t* [NQ~ t* 1e!2NQ~ t* 2e! ~4.13!

is given by

dNQu t* 5H 11 for J1~ t* ,`!.0, ~4.14a!

21 for J1~ t* ,`!,0, ~4.14b!

as long asJ1(t* ,`)Þ0. @The special case ofJ1(t* ,`)50
will be discussed in Sec. IV A 4.# For an elementary discus
sion of bifurcation theory, see Ref.@19#.

Having a fermion zero mode att5t* , we are especially
interested in the time gradient of the fermion energy eig
value att5t* , in order to check for level crossing. The tim
gradient of the energy eigenvalue of the Dirac Hamilton
at t5t* is calculated up to the first order ine:

dE

dt U
t5t*

5 K C l~ t* ,r !U ]H

]t
~ t* !UC l~ t* ,r !L

5J1~ t* ,`!, ~4.15!

whereJ1 is defined by Eq.~4.8! andC l(t* ,r ) represents the
~nondegenerate! normalized fermion zero mode att5t* in
the two-component spinor notation of Eq.~2.9!. The expec-
tation value used in Eq.~4.15! is defined by

^C l~ t* ,r !uO~ t* !uC l~ t* ,r !&

[E
0

`

dr C l~ t* ,r !†O~ t* !C l~ t* ,r !, ~4.16!

for an arbitrary time-dependent Hermitian operatorO(t).
From Eqs.~4.14! and ~4.15!, we obtain

sgnFdE

dt U t5t* G5dNQu t5t* P$21,11%, ~4.17!

with the implicit limit e→0 on the right-hand side. This
establishes the relation between level crossing and
change of spinor twist number, for the case thatl(t,r )
4-8
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SPECTRAL FLOW OF CHIRAL FERMIONS IN . . . PHYSICAL REVIEW D64 065024
and R(t,r ) are time differentiable att5t* and generic for
times close to it@so thatJ1(t* ,`)Þ0#.

3. Time-nondifferentiablel andR
Now, consider a gauge field background for whichx(t,r )

vanishes at the spacetime point (t* ,r * ) and the winding
numberNx as defined in Eq.~2.16! changes from a valueN
to N1dNxu t5t* . Generally, the fieldsl(t,r ) andR(t,r ) are
not differentiable with respect to time:

] tl~ t,r !u t5t
1
* Þ] tl~ t,r !u t5t

2
* , ~4.18a!

] tR~ t,r !u t5t
1
* Þ] tR~ t,r !u t5t

2
* , ~4.18b!

with upper and lower time derivatives as defined in Eq.~4.2!.
Let us have a closer look at the discontinuities of the ti

derivatives ofl(t,r ) andR(t,r ) at t5t* . First, one observes
from the definition~3.14! of the l(t,r ) field that the time
derivative ofl(t,r ) is not well defined at the spacetime poi
(t* ,r * ):

] tl~ t,r * !u t5t
1
* 52] tl~ t,r * !u t5t

2
*

5u] tx~ t* ,r * !u/r * . ~4.19!

Second, introduce the gauge-invariant functionR(t* ,r )
defined by

R~ t* ,r ![ lim
e→0

@R~ t* 1e,r !2R~ t* 2e,r !#

5 lim
e→0

@] rwu t5t* 2e2] rwu t5t* 1e#/2. ~4.20!

Taylor expanding] rw(t,r ) with respect to botht andr in the
vicinity of the spacetime point (t* ,r * ) and using the fact
that a(t,r )→0 andb(t,r )→0 as (t,r )→(t* ,r * ), one finds
that R(t* ,r ) shoots up to infinity atr 5r * , whereas it drops
to zero for rÞr * . Taking the gauge conditionx(t,0)
5x(t,`)51, one readily proves that

E
0

`

dr R~ t* ,r !52p lim
e→0

dNxu t5t* , ~4.21!

with the local change of winding number defined as

dNxu t5t* [Nx~ t* 1e!2Nx~ t* 2e!. ~4.22!

This shows that the functionR(t* ,r ) is proportional to a
Dirac delta function centered atr 5r * ,

R~ t* ,r !52p lim
e→0

dNxu t5t* d~r 2r * !. ~4.23!

The nonvanishing right-hand side of Eq.~4.23! for r 5r *
implies that the time derivative of the rotatorR(t,r ) is not
well defined at the spacetime point (t* ,r * ).

The delta-function-like behavior~4.23! of R can be used
to derive the effect of the change of the gauge field wind
number on the change of the spinor twist number att5t* .
Start by defining
06502
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Q2~ t* ,r ![ lim
t↑t*

Q~ t,r !. ~4.24!

Then, if Q2(t* ,r ) belongs to the classSN , for some integer
N, one deduces from Eqs.~3.13a!, ~4.20!, and~4.23! that

Q1~ t* ,r ![ lim
t↓t*

Q~ t,r !

5Q2~ t* ,r !2p lim
e→0

dNxu t5t* u~r 2r * !,

~4.25!

where u is the usual step function. This implies that th
solution changes from one class to another ast crosses the
value t* . Specifically, if the earlier solutionQ2(t* ,r ) be-
longs to SN , then the later solutionQ1(t* ,r ) belongs to
SN2dNx

.
Equation~4.25! shows that the change of the gauge fie

winding numberdNxu t5t* causes the change of the spin
twist number att5t* to be given by

dNQ;Au t5t* 52dNxu t5t* , ~4.26!

regardless of the existence of a fermion zero mode att5t*
~this contribution is labeled A!.

Before we continue with the evaluation of the change
spinor twist number, we need to address the continuity is
for the solutionf 1 of Eq. ~4.4!. According to Eqs.~4.19! and
~4.23!, the time derivatives of the gauge-invariantl(t,r ) and
R(t,r ) fields are not well defined at the spacetime po
(t* ,r * ). This implies that the functionj 1(t,r ), as defined in
Eq. ~4.5!, does not have a well-defined value either. Note t
all these problems can be traced to the discontinuity of
unitary matrixL in Eq. ~3.8!, which, in turn, is caused by the
ill-defined argumentw(t,r ) of the fieldx(t,r ) at the space-
time point (t* ,r * ) where x(t,r ) vanishes. By performing
the inverse unitary transformation of Eq.~3.7!, C→C l
[LC, one finds that thej 1 ‘‘expectation value’’ ~4.8! is
again given by

J1~ t* ,R!5 K C l~ t* ,r !U ]H

]t
~ t* !UC l~ t* ,r !L

R

, ~4.27!

with the implicit integral overr on the right-hand side run
ning over @0,R#. The right-hand side of Eq.~4.27! has a
well-defined value att5t* for smooth background fields
a0(t,r ), a1(t,r ), andx(t,r ). This shows that the discontinu
ity of the function j 1(t,r ) at (t* ,r * ), caused by an ill-
defined functionw(t,r ), can be absorbed into the loca
change of the spinor twist numberdNQ;Au t5t* via the rela-
tion ~4.26!.

With the discontinuity ofj 1(t,r ) at (t* ,r * ) absorbed into
the local change of the spinor twist numberdNQ;Au t5t* , the
solution f 1(t,r ) of Eq. ~4.4!, explicitly given by Eq.~4.7!,
takes a well-defined value att5t* and may produce a loca
change of spinor twist number that is not associated with
local change of gauge field winding number.

Finally, we are ready to consider the additional effect
the local change of the spinor twist number due to the pr
4-9
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ence of a fermion zero mode att5t* ~this contribution will
be labeled B!. SinceJ1(t* ,`) as given by Eq.~4.27! has a
well-defined value att5t* , we have a unique time gradien
for the level crossing,

dE

dt U
t5t* 1e

5
dE

dt U
t5t* 2e

5J1~ t* ,`!. ~4.28!

Now, generic background gauge fields withJ1(t* ,`)Þ0
produce the following change of spinor twist number at
5t* @see Eqs.~4.14! above#:

dNQ;Bu t5t* 5sgn@J1~ t* ,`!#, ~4.29!

in addition to the contributiondNQ;Au t5t* given by Eq.
~4.26!. ~Note thatdNQ;B561 for the generic case consid
ered.! According to Eq.~4.28!, the level crossing att5t* is
determined by sgn@J1(t* ,`)#. We therefore deduce the fo
lowing relation between level crossing and the change of
spinor twist number:

sgnFdE

dt U
t5t*

G5dNQ;Bu t5t*

5dNQu t5t* 2dNQ;Au t5t* , ~4.30!

where the total change of the spinor twist number att5t* is
given by the sum of both contributions,

dNQu t5t* 5dNQ;Au t5t* 1dNQ;Bu t5t* . ~4.31!

Combining Eqs.~4.26! and ~4.30!, we find that the local
spectral flowF@ t* 1e,t* 2e# is given in terms of the loca
winding factor and twist factor,

F@ t* 1e,t* 2e#5dNxu t5t* 1dNQu t5t* , ~4.32!

which is the main result of the present subsection. Here,dNx

anddNQ are defined by Eqs.~4.22! and~4.13!, respectively,
ande is a positive infinitesimal.

4. Special and generic gauge field backgrounds

Let us, finally, discuss the case of having a fermion z
mode att5t* , for which the ‘‘expectation value’’J1(t* ,`)
vanishes,

J1~ t* ,`![E
0

`

druC~ t* ,r !u2@] tR2] tl sin 2Q#u t5t*

50. ~4.33!

This impliesdE/dtu t5t* 50, according to Eq.~4.28!. A non-
vanishing d2E/dt2u t5t* , with vanishing first-order deriva
tive, now corresponds to the absence of level crossing~the
fermion energy eigenvalue just touchesE50 at t5t* ). But
a nonvanishingd3E/dt3u t5t* , with vanishing first- and
second-order derivatives, again has level crossing.
therefore needs to find the first nonvanishing derivative
the energy corresponding to the fermion zero mode, in or
to determine whether or not level crossing occurs.
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So far, we have considered only the solutionC(t,r ) of
the zero-eigenvalue equation~3.2a!, not the full spectrum
~3.1a! of the time-dependent Dirac Hamiltonian. This mak
it impossible to obtain the relation between the local chan
of the spinor twist number and the time derivatives ofE(t) at
t5t* beyond the leading-order approximation. Still, the r
lation ~4.32! can be shown to hold for generic SU(2) gau
field backgrounds, since background fields withJ1(t* ,`)
50 form a class of measure zero.

Start from the gauge-invariant background fieldsl(t,r )
and R(t,r ) at the time slicet5t* where the fermion zero
mode resides, with profile functionsC(t* ,r ) and Q(t* ,r ).
Under an infinitesimal time shiftt5t* →t* 1e, the generic
l(t,r ) andR(t,r ) vary according to Eq.~4.1!, with indepen-
dent first-order coefficients~possible differences above an
below t5t* are not important for the present argument!. The
change with time of these background fields is to first or
in e

dl[e ] tlu t5t* , dR[e ] tRu t5t* . ~4.34!

Next, define the following ‘‘expectation value’’ ofdl:

^dl& t5t* [E
0

`

druC~ t* ,r !u2dl~ t,r !u t5t* sin 2Q~ t* ,r !,

~4.35!

with an integration measure weighted by the known funct
sin 2Q(t* ,r). The analogous ‘‘expectation value’’ ofdR is

^dR& t5t* [E
0

`

druC~ t* ,r !u2dR~ t,r !u t5t* , ~4.36!

but without extra weight function.
Now, recall that the functionalJ1(t* ,`) as given by Eq.

~4.33! is proportional to the difference of these ‘‘expectatio
values’’ in leading order,

e J1~ t* ,`!5^dR& t5t* 2^dl& t5t* 1O~e2!. ~4.37!

Near the origin of the two-dimensional space spanned bX
[^dR& t5t* and Y[^dl& t5t* , the class of background
gauge fields withJ1(t* ,`)50 therefore coincides with the
one-dimensional subspace

$~X,Y!uX5Y%, ~4.38!

which is of measure zero. This shows that the quan
J1(t* ,`) is nonzero for generic background gauge fie
away from t5t* and that the relation between the loc
change of the spinor twist number and level crossing
given by Eqs.~4.17! and ~4.30! holds in general.

B. Relation between spectral flow and SU„2…
gauge field background

The results of the previous subsection can be summar
as follows. Forgenericregular bosonic fields of the effectiv
(111)-dimensional theory~2.8!, the spectral flowF@ t f ,t i #
for the time interval@ t i ,t f # is given by the sum of the wind
ing factor ~2.17! and twist factor~3.21!:
4-10
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SPECTRAL FLOW OF CHIRAL FERMIONS IN . . . PHYSICAL REVIEW D64 065024
F@ t f ,t i #5DNx@ t f ,t i #1DNQ@ t f ,t i #. ~4.39!

This result is simply the grand total of all level crossin
~4.32!.

As mentioned before, the spectral flowF in Eq. ~4.39! is
defined as the number of eigenvalues of the effective D
Hamiltonian ~3.1b! that cross zero from below minus th
number of eigenvalues that cross zero from above, for
time interval@ t i ,t f # with t i,t f . The quantityF is an integer,
by definition. But the winding factorDNx and the twist fac-
tor DNQ also take integer values in general.

Let us, nevertheless, discuss the special cases for w
relation ~4.39! is not applicable. The spectral flowF from
Eq. ~4.39! would not have a well-defined integer value if th
gauge field winding numberNx(t) or spinor twist number
NQ(t) were ill defined or noninteger at time slicetPTi f

[$t i ,t f%. In order to simplify the discussion, we exclud
static field configurations from our considerations.

The gauge field winding numberNx(t), in particular, is
not well defined for a time slicet5t (1)PTi f if the function
x(t (1),r ) has a zero@see Eqs.~2.15! and~2.16!#. Assume that
the zero ofx occurs for t (1)5t i and that this is the only
problem. In this case, one can simply choose a real num
dt i

(1) , so that the fieldx(t,r ) has no zero at the time slic
t5t i

(1)[t i1dt i
(1) . For the new time interval@ t i

(1) ,t f #, one
then obtains an integer-valued winding factorDNx@ t f ,t i

(1)#.
The other case of having the zero ofx at t (1)5t f can be
treated in the same way.

Alternatively, the spinor twist numberNQ(t) can take a
half-odd-integer value for time slicet5t (2)PTi f . Now recall
that a half-odd-integer spinor twist number implies the ex
tence of a fermion zero mode@see the paragraph below E
~3.19b!#. This makes it impossible to properly define th
spectral flow for the exact time interval@ t i ,t f #. Assume that
the zero mode occurs fort (2)5t i and that this is the only
problem. In this case, one can choose a real numberdt i

(2) , so
thatNQ(t) takes a well-defined integer value at the time sl
t5t i

(2)[t i1dt i
(2) . This is always possible, because a fe

mion zero mode corresponds to an asymptoticallyunstable
solutionQ of Eq. ~3.13a!. For the new time interval@ t i

(2) ,t f #,
one then obtains an integer-valued twist factorDNQ@ t f ,t i

(2)#.
The other case of having the zero mode att (2)5t f can be
treated in the same way.

Henceforth, we assume generic spherically symme
SU(2) gauge field backgrounds, so that the right-hand s
of Eq. ~4.39! is well defined and the sum of two integers.
is, furthermore, clear that the winding factorDNx@ t f ,t i # is
entirely determined by the background gauge fields@see Eqs.
~2.15! and ~2.16!#. But also the twist factorDNQ@ t f ,t i # can
be expressed solely in terms of background gauge fields@see
Eq. ~3.22!#. The relation~4.39! thus connects a property o
the fermions, the spectral flowF, to two characteristics of a
generic spherically symmetric SU(2) gauge field ba
ground, the winding and twist factors. This is the main res
of the present paper.
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V. SPECTRAL FLOW FOR LÜ SCHER-SCHECHTER SU„2…
GAUGE FIELDS

In this section, we discuss the existence of fermion z
modes and the corresponding spectral flow for certain exp
itly known time-dependent spherically symmetric solutio
of the SU(2) Yang-Mills equations. This allows for a no
trivial check of the relation~4.39! found in Sec. V D 3.
Throughout this section and in the figures, the same~arbi-
trary! mass scale is used to make the spacetime coordin
and energy dimensionless.

A. Brief review of the Lüscher-Schechter solutions

The solutions considered in this section are spheric
symmetric solutions of the SU(2) gauge field equatio
which describe collapsing and reexpanding shells of ene
The corresponding (111)-dimensional field equations from
the reduced action~2.8a! read

2]m~r 2f mn!52 Im~x* Dnx!, ~5.1a!

@2D21~ uxu221!/r 2#x50. ~5.1b!

Remarkably, Lu¨scher and Schechter were able to obtain a
lytic solutions of these coupled partial differential equatio
@12,13#.

The Lüscher-Schechter~LS! solutions can be represente
as follows~see Refs.@7,10# and references therein!:

am52q~t!]mw, ~5.2a!

a[Rex511q~t!cos2 w, ~5.2b!

b[Im x5~1/2!q~t!sin 2w, ~5.2c!

with the new coordinates

t[sgn~ t !arccosS 11r 22t2

A~11t22r 2!214r 2D , ~5.3a!

w[arctanS 12r 21t2

2r D . ~5.3b!

Using theAnsatz~5.2!, the field equations~5.1! are reduced
to a single nonlinear second-order differential equation
q(t),

d2q

dt2
12 q~q11! ~q12!50. ~5.4!

The ordinary differential equation~5.4! can be interpreted
as belonging to a mechanical system consisting of a par
trapped in a double-well potentialV(q)[ 1

2 q2(q12)2. The
conserved total energye of the particle trapped in the poten
tial V is then

e5
1

2 S dq

dt D 2

1V~q!, V~q![q2~q12!2/2. ~5.5!
4-11
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The general solution of Eq.~5.4! depends on the energy parametere and thet translation parametert0, together with a further
discrete parameterz561. The solutions of Eq.~5.4! can be divided into two classes, one with energye<1/2 and the other
with energye.1/2. Explicitly, the LS solutions are@12,13#

q~t!5H 211z~11A2e!1/2dn@~11A2e!1/2~t2t0!um21# for e<1/2, ~5.6a!

211z~11A2e!1/2cn@~8e!1/4~t2t0!um# for e.1/2, ~5.6b!
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with the modulus defined by

m[
11A2e

2A2e
. ~5.7!

Here, dn@uum# and cn@uum# are Jacobi elliptic functions
@20,21#.

For e,1/2, there exists no spacetime point wherex(t,r )
vanishes. Fore>1/2, on the other hand, there are zeros
x(t,r ) at @10#

tn5tanS t01
112n

~8e!1/4
K~m!D , r n5A11tn

2, ~5.8!

wheren is an integer that satisfies the condition

2
p

2
<S t01

112n

~8e!1/4
K~m!D <

p

2
. ~5.9!

Here,K(m) is the complete elliptic integral of the first kind

K~m![E
0

1

du@~12u2!~12mu2!#21/2. ~5.10!

The existence of a spacetime point (t* ,r * ) wherex(t,r )
vanishes is, in general, associated with the change of
winding numberNx(t). It has been shown in Ref.@10# that
the change of the winding numberNx(t) plays an important
role in fermion number violation~see also Ref.@18# for re-
lated results!. Indeed, we have studied several LS solutio
with e,1/2 and found that the necessary condition~3.25! for
the existence of a fermion zero mode is never satisfied. In
following, we shall therefore only consider LS solutions wi
e>1/2. But, before we turn to the fermion zero modes,
mention one particular aspect of the LS gauge field ba
ground fore>1/2.

B. LS quasisphaleron

For energy parametere>1/2, the fieldx(t,r ) has at least
one zero at a particular spacetime point. In order to simp
the analysis, we take for thez and t0 parameters in the
solution ~5.6b! the following values:

z511, t052~8e!21/4K~m!, ~5.11!

with m defined by Eq.~5.7!. For the choice oft0 from Eq.
~5.11!, one of the zeros ofx(t,r ) occurs at the time slicet
5t050. Also note that for thist0 the LS solution has time
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reversal ~anti!symmetry, namely, r(2t,r )5r(t,r ) and
R(2t,r )52R(t,r ), with r(t,r ) andR(t,r ) defined in Eq.
~3.14!. In the following, we consider thet50 time slice of
these particular LS background gauge fields@parametersz
511, t0 from Eq.~5.11!, ande>1/2#, for which the zero of
x(0,r ) occurs atr 51, according to Eq.~5.8!.

The LS gauge field background att50 is represented by

am~0,r !50, x~0,r !5sinw~0,r !, ~5.12!

up to a U(1) gauge transformation~2.11!. Given that the real
function x(0,r ) vanishes and changes sign atr 51, the con-
figuration of Eq.~5.12! qualitatively resembles the sphalero
solution of the electroweak SU(2) Yang-Mills-Higgs theo
@6,17#. For this reason, we call the configuration given
Eq. ~5.12! the ‘‘LS quasisphaleron.’’ Note that the LS qua
sisphaleron does not satisfy the static field equations, s
the energy changes under a scale transformation of the fi
~there is no natural mass scale for classical Yang-M
theory!.

We will now show that this LS quasisphaleron corr
sponds to the top of a potential energy barrier which se
rates configurations with differentNx , just like the elec-
troweak sphaleron@6#. The energy functional@7,10# for (1
11)-dimensional gauge field solutions can, in fact, be w
ten as

E5EK~ t !1EP~ t !, ~5.13!

with

EK~ t !5
8p

g2 E0

`

drF 1

8r2
~] tr

2!21
1

2r2
~] tc!2

1
1

2r2
~] rc!21

c2

r 2 G , ~5.14a!

EP~ t !5
8p

g2 E0

`

drF 1

8r2
~] rr

2!21
~r221!2

4r 2 G ,

~5.14b!

where r(t,r ) equals ux(t,r )u and c(t,r ) is the ~bosonic!
gauge-invariant field defined by

22 emnc~ t,r ![r 2f mn~ t,r !. ~5.15!

Here, we have divided the energy into the kinetic partEK
and potential part EP . The reason for putting the
c-dependent terms into the kinetic part of the energy is th
4-12
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for the gauge choicea050, the scalar fieldc becomes pro-
portional to the time derivative of thea1 field, namely,c5
2r 2]0a1.

Consider then the potential energyEP(t) associated with
our particular LS gauge field solutions. Using the basic pr
erties @20# of the Jacobi elliptic function cn@uum#, one can
prove that the potential energyEP(t) has a local maximum a
t50, that is, for the LS quasisphaleron configuration. F
thermore, the conserved total energy of the LS solution w
t0 parameter~5.11! is given by

E52 e Equasisph, ~5.16!

in terms of the energy parametere and the static energy o
the LS quasisphaleron,Equasisph[EP(0).

Figure 1 shows the time development ofEP(t) for the LS
background withe51, z511, andt0'21.4271 from Eq.
~5.11!. The corresponding topological chargeQ'20.70 is
noninteger; see Ref.@7# for further details. More importantly
the potential barrier of Fig. 1 separates two regions w
different winding numbers (DNx521). The LS qua-
sisphaleron att50 resembles in this respect also the spha
ron of the electroweak standard model@6#.

For comparison, consider the LS gauge field backgro
given by the trivial solutionq521 of Eq. ~5.4!, with the
(111)-dimensional field configurations

c~ t,r !50, x~ t,r !5sinw~ t,r !, ~5.17!

as follows from Eqs.~2.11!, ~5.2!, and ~5.15!. This corre-
sponds to the de Alfaro, Fubini, and Furlan~AFF! solution
@22#. Note that the AFF gauge field coincides with the L
quasisphaleron~5.12! at t50. On the other hand, the AF
solution has complete time-reversal symmetry and the
netic energyEK(t) as given by Eq.~5.14a! is zero att50
~see Fig. 2!. This result suggests that the AFF solution pr
vides the time-dependent gauge field solution with minim
total energy to form the LS quasisphaleron. In other wor
the AFF gauge field simulates an ‘‘imploding and explodi
LS quasisphaleron;’’ cf. Ref.@23#. ~For the electroweak

FIG. 1. Time development of the total energyE and potential
energyEP(t) for the Lüscher-Schechter~LS! gauge field solution
~2.4!,~5.2!,~5.6b! with parameters e51, z511, and t0'
21.4271 from Eq.~5.11!. The potential energyEP(t), given by Eq.
~5.14b!, is differentiable for all times and has a global maximum
t50. The configuration att50 is called the LS quasisphaleron.
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sphaleron, the dynamics of the gauge and Higgs fields
been studied numerically. See, for example, Refs.@24,25#.!

C. Fermion zero mode of the LS quasisphaleron

We now turn to the fermion zero-eigenvalue equati
~3.9! for the t50 LS gauge field of the previous subsectio
i.e., the LS quasisphaleron~5.12!. Note that the gauge
invariant functionl(0,r )[r(0,r )/r is nondifferentiable at
r 51, which is the only point wherer(0,r )[ux(0,r )u van-
ishes. For this reason, we introduce a differentiable fi
l̃(0,r ), defined by

l̃~0,r ![k~0,r !/r , ~5.18a!

k~0,r ![sgn~12r !ux~0,r !u. ~5.18b!

Then,x(0,r ) can be represented by

x~0,r !5k~0,r !exp@ i w̃~0,r !#, ~5.19!

wherew̃(0,r ) is a differentiable function ofr.
It is a simple exercise to verify that the LS fieldk(0,r )

has the following inversion symmetry:

k~0,1/r !52k~0,r !. ~5.20!

This inversion symmetry, most likely, traces back to the co
formal symmetry transformationxm→xm/x2 of classical
Yang-Mills theory. Without loss of generality, we consider,
the following, smooth background fields withk(0,0)51 and
w̃(0,0)50.

In terms of the differentiable fieldsl̃ and R̃[(a1

2] r w̃)/2, one finds that the zero-energy fermion equatio
~3.13! at t50 become

] rQ52l̃ sin 2Q1R̃, ~5.21a!

] r uCu5l̃uCucos 2Q, ~5.21b!

with boundary conditions

Q~0,0!5uC~0,0!u50. ~5.22!

t

FIG. 2. Time development of the total energyE and potential
energyEP(t) for the de Alfaro, Fubini, and Furlan~AFF! gauge
field solution~2.4!,~5.2!,~5.17!. The AFF configuration att50 co-
incides with the LS quasisphaleron att50 in Fig. 1.
4-13
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Using the inversion symmetry~5.20! and the asymptotics
~3.11! of the rotator, it follows from Eq.~5.21b! that there
exists a fermion zero mode if and only if limr→`Q(0,r )
5Np, with N an integer.

We can now explicitly construct the fermion zero mo
for the LS background att50. Using the field equations
@7,10#, it is relatively straightforward to show that

R̃~0,r !}
d2q

dt2 U
t50

}cn@K~m!um#50, ~5.23!

where the last identity can be found, for example, in R
@20#. @Note that vanishingR̃ does not contradict the nece
sary condition~3.25! that was derived for Eqs.~3.13! with a
function l>0, whereas Eqs.~5.21! have a functionl̃ that
changes sign.#

For R̃50, the solutions to Eqs.~5.21! are simply given
by

Q~0,r !50, ~5.24a!

uC~0,r !u5uC~0,r 0!uexpF E
r 0

r

dr8l̃~0,r 8!G . ~5.24b!

The argument following Eq.~5.22! ensures that the solutio
represented by Eqs.~5.24a,b! is normalizable, which com-
pletes the construction of the fermion zero mode. The inv
sion symmetry~5.20!, together with the result~5.23!, pro-
vides asufficientcondition for the existence of the fermio
zero mode.

For e>1/2, the fermion zero-mode amplitudeuC(0,r )u of
Eq. ~5.24b! is shown in Fig. 3, with an arbitrary normaliza
tion. Specifically, the (311)-dimensional fermion zero
mode is purely left handed and given by Eqs.~2.6! and~2.9!,
with the two-component spinorC l5C from Eqs. ~3.7!,
~3.12!, and ~5.24!. These last equations are to be evalua
with the functionsk(0,r ) and w̃(0,r ) defined in Eq.~5.19!.
@Of course, the solution can also be obtained from E
~3.13!, which are given in terms ofl(0,r ) andw(0,r ). In this

FIG. 3. Profile functionuC(0,r )u of the fermion zero mode
~5.24b! of the LS quasisphaleron, which corresponds to thet50
configuration of Fig. 1. The dashed curve givesuC(0,r )u with an
arbitrary normalization. The inversion symmetryr→1/r is made
manifest by use of the compact radial coordinateh[(r 21)/(r
11).
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case, the functionQ(0,r ) is found to have a step function a
r 51, but so does the transformation matrixL from Eq.
~3.8!.#

To summarize, the LS quasisphaleron att50 has a chiral
fermion zero mode and resembles in this respect the e
troweak sphaleron which also has a chiral fermion zero m
~see Refs.@26–28# and references therein!. The fermion zero
modes of the LS quasisphaleron and the electroweak sph
ron are qualitatively the same. Moreover, there is spec
flow associated with both the electroweak sphaleron~see
Refs. @27–29#! and the LS quasisphaleron~see Sec. V D 3
below!. This behavior differs from that of the AFF solutio
~an ‘‘imploding and exploding LS quasisphaleron’’!, for
which the fermion zero mode exists at all times@23#, without
level crossing.

D. Level crossings for large energy parametere

Throughout this subsection, we consider the specific
gauge field solution with parameterse520, z511, andt0
'20.54197 from Eq.~5.11!. Figures 4 and 5 give the be
havior of the potential energyEP(t) of this solution. The
corresponding topological chargeQ'20.13 is noninteger;
cf. Ref. @7#. The LS quasisphaleron att50 is the same as fo
the e51 case, but no longer corresponds to a global ma
mum of EP(t).

FIG. 4. Time development of the total energyE and potential
energy EP(t) for the Lüscher-Schechter gauge field solutio
~2.4!,~5.2!,~5.6b! with parameters e520, z511, and t0'
20.54197 from Eq.~5.11!. See Fig. 5 below for a close-up ofEP(t)
neart50.

FIG. 5. Same as Fig. 4. Close-up of the potential energyEP(t)
neart50. The LS quasisphaleron att50 is only a local maximum
of EP(t), unlike the case of Fig. 1.
4-14
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In order to determine the spectral flow for this particu
gauge field background,all fermion zero modes need to b
determined, to which we turn first.

1. Extra fermion zero modes from changes in winding number

According to Eq.~5.8!, there are zeros of this LS fiel
x(t,r ) at the spacetime points

~ t21 ,r 21!'~21.889,2.137!, ~ t0 ,r 0!5~0,1!,

~ t11 ,r 11!'~11.889,2.137!. ~5.25!

The winding numberNx(t) takes the following values in the
different time regions:

Nx~ t !55
21 for tP~2`,t21!,

0 for tP~ t21 ,t0!,

21 for tP~ t0 ,t11!,

0 for tP~ t11 ,1`!.

~5.26!

This gives the global winding factor

DNx@1`,2`#502~21!51. ~5.27!

As discussed in Sec. V C, there exists a fermion z
mode att5t050 ~see Fig. 3!. But there are two more fer
mion zero modes precisely att5t21 and t5t11. Three pre-
liminary steps are necessary for the proof.

First, define smooth fieldsl̃(tn ,r ) and R̃(tn ,r ) at the
time slicest5tn , for n561,

l̃~ tn ,r ![k~ tn ,r !/r , ~5.28a!

R̃~ tn ,r ![@a1~ tn ,r !2] r w̃~ tn ,r !#/2, ~5.28b!

with the differentiable functionk(tn ,r )[r(tn ,r )3sgn(r n

2r ) and the smooth argumentw̃(tn ,r ) of the Higgs-like
field x5k exp@i w̃#.

Second, perform a scale transformationx5r /r n , so that
the radial pointr 5r n where the fieldx(tn ,r ) vanishes cor-
responds tox51.

Third, establish that the Lu¨scher-Schechter solution fo
the parameters chosen has the following inversion symm
at fixed time slicest5tn :

l̃~ tn,1/x!52x2l̃~ tn ,x!, ~5.29a!

R̃~ tn,1/x!52x2R̃~ tn ,x!, ~5.29b!

for n561. The existence of this inversion symmetry h
been verified analytically with the help ofMATHEMATICA 4.0
@21#.

After these preliminaries, we turn to the possible ex
tence of fermion zero modes at the time slicest5t61. Con-
sider the zero-energy fermion equations given by Eqs.~3.13!
at t5tn , for n561, with the smooth background field
l̃(tn ,r ) and R̃(tn ,r ). The chiral Yang-Mills theory~2.1! is
06502
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scale invariant and the rescalingx5r /r 61 at t5t61 does not
alter the structure of Eqs.~3.13!:

dQ

dx
52l̃~x!sin 2Q~x!1R̃~x!, Q~0!50, ~5.30a!

duCu
dx

5l̃~x!uC~x!ucos 2Q~x!, uC~0!u50, ~5.30b!

with the dependence ont61 temporarily dropped. The differ-
ential equations~5.30! are symmetric under the inversio
transformationx↔1/x and so are their solutionsQ(x) and
uC(x)u. The inversion symmetry implies

lim
x→0

Q5 lim
x→`

Q50, lim
x→0

uCu5 lim
x→`

uCu50, ~5.31!

with uCu}1/x for largex. This shows that there exist fermio
zero modes at botht5t21 and t5t11.

The inversion symmetry~5.29!, after the appropriate scal
transformation, provides again asufficientcondition for the
existence of fermion zero modes att5t61. For Lüscher-
Schechter gauge field backgrounds with arbitraryt0 and e
>1/2, the inversion symmetry~5.29! holds, in fact, at any
time slicet5tn wherex(t,r ) has a zero. This then proves th
existence of fermion zero modes at alltn .

Figure 6 gives the profile functions of the fermion ze
mode att5t21, obtained from the numerical solution of Eq
~5.30!. The profile functions of the fermion zero mode att
5t11 are identical, except for a change of sign ofQ. These
functions are quantitatively different from those of the L
quasisphaleron@see Eqs.~5.24! and Fig. 3#, but qualitatively
the same.

2. Extra fermion zero modes from changes in twist number

In order to locate all possible level crossings, we a
guided by the change of the spinor twist numberNQ(t). The
spinor twist numberNQ(t) takes the following values in the
different time regions:

FIG. 6. Numerical solutions for the profile functionsQ(t21 ,r )
and uC(t21 ,r )u of the fermion zero mode att5t21'21.889 for
the Lüscher-Schechter background gauge field~2.4!,~5.2!,~5.6b!
with parameterse520, z511, and t0'20.54197. The solid
curve corresponds toQ(t21 ,r )32/p and the dashed curve t
uC(t21 ,r )u with an arbitrary normalization. The inversion symm
try x→1/x, with x[r /r 21, is made manifest by use of the compa
radial coordinateh[(x21)/(x11).
4-15
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NQ~ t !5H 11 for tP~2`,2ta!,

0 for tP~2ta ,1ta!,

21 for tP~1ta ,1`!,

~5.32!

with the numerical estimateta'2.924. The correspondin
twist factor is thus given by

DNQ@1`,2`#52121522. ~5.33!

In addition to the fermion zero modes att0 andt61, which
are associated with the change of the gauge field wind
number Nx(t), there exist two more fermion zero mode
precisely at t56ta . The analysis of these fermion zer
modes is straightforward and the normalizability condition
found to hold, providedQ(6 ta ,r ) approaches a half-odd
integer multiple ofp as r→`; see Eq.~3.13b!. Note that
the exact value ofta is defined implicitly by the relation
limR→` Q(6 ta ,R)57p/2, where the solution
Q(6 ta ,R) of the differential equation~3.13a! with bound-
ary condition~3.15a! can be obtained by the method of su
cessive approximations@14,15#.

Figure 7 gives the profile functions of the fermion ze
mode att52ta , obtained from the numerical solution o
Eqs. ~3.13! and ~3.15!. The profile functions of the fermion
zero-mode att51ta are identical, except for a change
sign of Q. Figures 8 and 9 show the time variation of th
solutionsQ(t,r ) of the transformed Riccati equation~3.13a!
around t56ta , which demonstrates that the fermion ze
modes att56ta sit at bifurcation points for differentNQ’s.
@These results provide an example for the general discus
leading up to Eqs.~4.14! in Sec. IV A 2.# Obviously, Figs. 8
and 9 are related, because of the time-reflection propertie
the background fields mentioned below Eq.~5.11!.

The fermion zero modes att56ta are qualitatively dif-
ferent from the ones att0 andt61 ~compare Fig. 7 with Figs
3 and 6!. These fermion zero modes occur, in fact, for Higg
like fields x(6ta ,r ) without zeros. This differs from the
cases discussed in the literature@10,18,30#. Apparently, the
long-range behavior of the background SU(2) gauge fie
plays a crucial role for the existence of these extra ferm
zero modes~see also the discussion in Sec. VI!.

FIG. 7. Same as Fig. 6, but for the fermion zero mode att5
2ta'22.924. The solid curve corresponds toQ(2ta ,r )32/p and
the dashed curve touC(2ta ,r )u with an arbitrary normalization.
Both functions are plotted against the compact radial coordinath
[(x21)/(x11), with x[r /2.
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3. Spectral flow

For the fermion zero modes att52ta , t21 , t0 , t11, and
1ta , we calculate the following time gradients of the ener
eigenvalue of the effective Dirac Hamiltonian:

dE

dt U
t52ta

5
dE

dt U
t51ta

'20.03,0,

dE

dt U
t5t21

5
dE

dt U
t5t11

'10.08.0,

dE

dt U
t5t0

'25.00,0. ~5.34!

In addition, we have checked that there are no further
mion zero modes, at least for the time interval@2200,
1200#.

FIG. 8. Numerical solutionsQ(t,r ) of the transformed Riccat
equation~3.13a!, with boundary conditionQ(t,0)50, at different
times aroundt52ta'22.924 for the Lu¨scher-Schechter back
ground gauge field~2.4!,~5.2!,~5.6b! with parameterse520, z5
11, andt0'20.54197. Fort52ta , there is a normalizable fer
mion zero mode, with limr→`Q(2ta ,r )5p/2 ~see Fig. 7!. The
different solid curves forr>10, from top to bottom, correspond t
t1ta520.50, 20.05, 20.01, 0.00, 0.01, 0.05, and 0.50. Wit
increasing time, theQ values at larger movetoward the constantQ
value atr 50.

FIG. 9. Same as Fig. 8, but for times aroundt5ta'2.924. For
t5ta , there is a normalizable fermion zero mode, wi
limr→`Q(ta ,r )52p/2. The different solid curves forr>10, from
top to bottom, correspond tot2ta520.50, 20.05, 20.01, 0.00,
0.01, 0.05, and 0.50. With increasing time, theQ values at larger
moveaway from the constantQ value atr 50.
4-16
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The level crossings corresponding to Eq.~5.34! give the
following value for the spectral flow~starting fromt52ta
and ending att51ta):

F@1`,2`#52111211121521. ~5.35!

It would certainly be interesting to calculate the spectrum
the time-dependent effective Dirac Hamiltonian numerica
~cf. Ref. @24#! in order to see whether or not the patte
~5.35! corresponds to asingle energy level crossingE50
five times. Anyway, the total value~5.35! agrees with the
spectral flow obtained from the relation~4.39!:

F@1`,2`#5DNx@1`,2`#1DNQ@1`,2`#

5122521, ~5.36!

where the results~5.27! and ~5.33! have been used. Thi
demonstrates the role of the twist factorDNQ for the spectral
flow, which has not been noticed before to our knowledg

Recall that the explicit results of the present subsec
are for the particular LS gauge field background with ene
parametere520, together withz and t0 from Eq. ~5.11!.
The spectral flow for LS background gauge fields turns
to be solely given by the winding factorDNx if e is smaller
than e* '5.37071, which is the numerical solution of th
following equation:

e* 5
1

8 F 4

p
KS 11A2e*

2A2e*
D G 4

. ~5.37!

Briefly, the argument runs as follows. First, the numeri
results~and a heuristic argument! give ta>t11. Second, the
timest61 move toward6` ase approachese* from above;
see Eqs.~5.8! and~5.11!. Together, this implies that the con
tribution of the twist factor to the spectral flow vanishes f
e<e* , giving F@1`,2`#5DNx@1`,2`#. ~The winding
factor DNx@1`,2`# is, of course, identically zero fore
,1/2.!

To summarize, the twist factorDNQ can play a significant
role for the spectral flow in certain LS gauge field bac
grounds, provided the energy parameter is large enouge
.e* ).

VI. DISCUSSION

In this paper, we have studied real-time anomalous
mion number violation by directly investigating the zer
eigenvalue equation~3.1a! of the time-dependent effectiv
Dirac Hamiltonian for spherically symmetric massless ch
fermions and SU(2) Yang-Mills gauge field background
For these spherically symmetric SU(2) gauge field ba
grounds, we have found a relation between the spectral
and two characteristics of the gauge fields. Physics app
tions of this result are based on the assumption that ano
lous production of fermions is confined to the spherica
symmetric partial wave; cf. Ref.@17#. Perhaps the most im
portant application would be for electroweak baryon num
violation in the early universe, in particular at temperatu
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above the electroweak phase transition~see Ref.@31# for a
review!.

Since we adopt an approach different from the one
previous work@5,9,10#, we are able to observe certain ne
features of real-time fermion number violation within th
spherically symmetricAnsatz. These features include th
spinor twist numberNQ(t) obtained from the Riccati equa
tion ~3.16! at a single fixed timet and the corresponding
twist factor DNQ@ t f ,t i # which is the change of the spino
twist number over the time interval@ t i ,t f #, with t i,t f . Re-
lation ~4.39! then gives the spectral flowF as the sum of this
twist factorDNQ and the winding factorDNx , which is the
change of the Chern-Simons numberNx of the associated
vacuum sectors of the gauge field background. Mathem
cally, the relation~4.39! takes the form of an index theorem
restricted to spherically symmetric fields; cf. Ref.@5#.

In order to get better insight into the meaning of th
relation ~4.39!, we have investigated level crossings for
particular class of Lu¨scher-Schechter~LS! gauge field solu-
tions @12,13#. The results clearly demonstrate the role of t
twist factor for the spectral flow. See, in particular, Eq
~5.35! and~5.36!. The nonvanishing global effect of the twis
factor on the spectral flow is partly due to the fact that the
gauge fields form propagatingsolitons in the effective (1
11)-dimensional theory; cf. Refs.@7,10#. The fields are thus
nondissipative in the (111)-dimensional world. For such
background gauge fields, the field-theoretic approa
adopted in Refs.@9,10# is, strictly speaking, not applicable.

Although nondissipative in the (111)-dimensional con-
text, these LS gauge field solutions are dissipative in
11)-dimensional spacetime. The (311)-dimensional en-
ergy density, which is obtained from the (111)-dimensional
energy density~5.14! by dividing by 4pr 2, approaches zero
uniformly for early and late times (t→6`).

At this moment, we propose to classify dissipative sphe
cally symmetric SU(2) gauge field solutions into two ca
egories. A spherically symmetric SU(2) gauge field soluti
is calledstrongly dissipativeif both the (311)-dimensional
and (111)-dimensional energy densities approach zero u
formly for large times (t→6`). On the other hand, a
spherically symmetric SU(2) gauge field solution is call
weakly dissipative, if the (311)-dimensional energy densit
dissipates with time, but not the (111)-dimensional energy
density. Note that the LS gauge field solutions considere
Sec. V D are weakly dissipative, according to this termin
ogy.

For strongly dissipative spherically symmetric SU(2
gauge field solutions, the rotatorR(t,r ) in the transformed
Riccati equation~3.13a! lacks the strength to give a nonze
spinor twist numberNQ at large times~see Appendix A for
the proof!. The relation~4.39! then predicts that the spectra
flow F is solely given by the winding factorDNx , which
reproduces the known result@9,10#. An isolated change of
spinor twist number can still contribute to thelocal pattern of
level crossing~4.32!.

For weakly dissipative or nondissipative spherically sy
metric SU(2) gauge field solutions, a nonvanishing twist fa
tor DNQ can even make aglobal contribution to the spectra
4-17
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flow F. As mentioned above, this has been verified for c
tain LS solutions@12,13#. This behavior does not follow di
rectly from the perturbative triangle anomaly@1–3#, which
detects only the~noninteger! topological charge. Recall tha
the standard perturbative calculations~Feynman diagrams!
essentially neglect the interactions of incoming and outgo
particles, i.e., the interactions are ‘‘turned off’’ in th
asymptotic regions@32#.

To summarize, the spectral flow result~4.39! does not
assume strongly dissipative spherically symmetric SU
Yang-Mills gauge field backgrounds, in contrast to previo
studies@5,9,10#. It may, therefore, be applied to real-tim
anomalous fermion number violation for weakly dissipati
or nondissipative spherically symmetric SU(2) Yang-Mi
gauge field backgrounds. Moreover, preliminary results in
cate that the relation~4.39! can be adapted to the case
chiral fermions interacting with spherically symmetr
SU(2) Yang-Mills and Higgs fields.

The main outstanding problem is, of course, to underst
the role of the~appropriately generalized! twist factor in the
full (311)-dimensional SU(2) Yang-Mills theory, not jus
the subspace of spherically symmetric configurations. A
the corresponding index theorem needs to be establishe
the long-range Yang-Mills gauge fields considered; cf. R
@30# and references therein. Finally, the proper definition~if
at all possible! of the second-quantized fermion number o
erator in general nondissipative Yang-Mills gauge field ba
grounds requires further study.

APPENDIX: SPINOR TWIST NUMBER AND STRONGLY
DISSIPATIVE SU „2… GAUGE FIELDS

In this appendix, we calculate the asymptotic spinor tw
numberNQ(t), defined by Eqs.~3.13a!, ~3.15a!, and ~3.20!
in the main text, for strongly dissipative spherically symm
ric SU(2) gauge field solutions.

From the (111)-dimensional energy density~5.14! and
the corresponding field equations~see, in particular Eqs
~3.8! and ~3.10! of Ref. @10#!, the condition of strong dissi
pation implies that there exists a small positive quan
e(t)!1 at largeutu , so that

ur 212l~ t,r !u,e~ t ! and uR~ t,r !u,e~ t ! ~A1!

for 0<r ,`, together with the limit

lim
utu→`

e~ t !50. ~A2!

See Eqs.~2.9!, ~2.15!, and ~3.14! in the main text for the
definition of l(t,r ) andR(t,r ).

From the bounds~A1!, we immediately obtain

0,r 2122 e~ t !,l~ t,r !2uR~ t,r !u, ~A3!

for 0<r ,Re[@2 e(t)#21. Since regular finite-energy gaug
fields obey limr→`R/l50 @see Eq.~3.11! in the main text#,
we have from Eq.~A3! the following inequality for arbitrary
r:

0<uR~ t,r !u,l~ t,r !, ~A4!
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providedutu is sufficiently large.
With the inequality~A4! in hand, we are able to establis

that the spinor twist numberNQ(t) vanishes asymptotically
This can be shown by contradiction. Consider the tra
formed Riccati equation

] rQ~ t,r !5D~ t,r !1R~ t,r !, Q~ t,0!50, ~A5a!

D~ t,r ![2l~ t,r !sin 2Q~ t,r !, ~A5b!

at sufficiently largeutu. Now, assume that there exists a tim
slice t5 t̄ where the background fields obey inequality~A4!

and that the solutionQ( t̄ ,r ) of Eq. ~A5! belongs to the class
SN( t̄ ), with positiveintegerN ~the case of negativeN will be
dealt with later!. See Eq.~3.19a! in the main text for the
definition of the solution classSN .

Strong dissipation givesux( t̄ ,r )uÞ0, so that the back-
ground fieldsl( t̄ ,r ) and R( t̄ ,r ) are smooth. This implies
that the solutionQ( t̄ ,r )PSN( t̄ ), with N>1, is continuous
and must cross the value1 p/4 at least once. Definer 1 to
be the largest radial distance for whichQ( t̄ ,r )51 p/4. In
order forQ( t̄ ,r ) to reach the asymptotic valueNp, the slope
of Q( t̄ ,r ) at r 5r 1 clearly must be non-negative,

] rQ~ t̄ ,r 1!>0, ~A6!

as long asQ P SN( t̄ ), with N>1.
On the other hand, Eqs.~A4! and~A5!, together with the

fact that sin 2Q( t̄,r1)511, give the following inequality:

] rQ~ t̄ ,r 1!52l~ t̄ ,r 1!1R~ t̄ ,r 1!,0. ~A7!

This last result contradicts the earlier result~A6!, which was
based on the assumption thatQ( t̄ ,r )PSN( t̄ ), with N>1.
Hence,Q( t̄ ,r )¹SN( t̄ ), for positive integerN. The case of
negativeintegerN is ruled out in the same way. The conclu
sion is thus thatQ( t̄ ,r ) belongs toS0( t̄ ).

For strongly dissipative spherically symmetric SU(2
gauge field solutions, we find that the rotatorR(t,r ) at large
times lacks the strength to overcome the resistance of
deviatorD(t,r ), so as to give a nonzero spinor twist numb
at large times. In short, we have

lim
t→2`

NQ~ t !5 lim
t→1`

NQ~ t !50. ~A8!

This result shows that the twist factorDNQ@1`,2`#
[ NQ(1`)2NQ(2`)50 does not contribute to the spe
tral flow ~4.39!, at least for the case of strongly dissipativ
spherically symmetricSU(2) gauge field solutions.
4-18
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