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Spectral flow of chiral fermions in nondissipative Yang-Mills gauge field backgrounds
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Real-time anomalous fermion number violation is investigated for massless chiral fermions in spherically
symmetric SU(2) Yang-Mills gauge field backgrounds which can be weakly dissipative or even nondissipative.
Restricting consideration to spherically symmetric fermion fields, the zero-eigenvalue equation of the time-
dependent effective Dirac Hamiltonian is studied in detail. For generic spherically symmetric SU(2) gauge
fields in Minkowski spacetime, a relation is presented between the spectral flow and two characteristics of the
background gauge field. These characteristics are the well-known “winding factor,” which is defined to be the
change of the Chern-Simons number of the associated vacuum sector of the background gauge field, and a new
“twist factor,” which can be obtained from the zero-eigenvalue equation of the effective Dirac Hamiltonian but
is entirely determined by the background gauge field. For a particular clageeakly dissipative Luscher-
Schechter gauge field solutions, the level crossings are calculated directly and nontrivial contributions to the
spectral flow from both the winding factor and the twist factor are observed. The general result for the spectral
flow may be relevant to electroweak baryon number violation in the early universe.

DOI: 10.1103/PhysRevD.64.065024 PACS nuniderl1.15~q, 03.65.Pm, 11.30.Fs, 11.30.Rd

I. INTRODUCTION ——» 0ort— +o. As is clear from the context, the authors of
Refs.[9,10] considereddissipativebackground fields in or-
An important consequence of the triangle anonjal2] is  der to be able to quantize the fermion fieldg at+ .
the violation of fermion number conservation in the elec- The question, now, is what happens to fermion number
troweak standard model if the background gauge field has @iolation if a powerful energy source creates a nontrivial
nonvanishing topological chargg This connection between gauge field background over axtendedspacetime region
the triangle anomaly and fermion number violation in the(for example, in a high-energy collision experiment or in the
electroweak standard model was first pointed out in [&3f.  early universg In this case, we cannot readily associate the
For the background gauge field, the calculation of R&f. initial high-energy state with a particular vacuum configura-
used Euclidean instanton solutiof in order to calculate tion and the field-theoretic approach used in R¢810]
the tunneling amplitude between topologically differentbreaks down. For nontrivial classical bosonic background
vacua. A special feature of the Euclideémaginary-time  fields, it is, moreover, not known how to construct a fermion
approach is that gauge field configurations with finite actiomumber operator in terms of the quantized fermionic fields.
fall into homotopy classes labeled by ameger Q This Still, fermion number violation can be directly observed
integerQ then gives the number of fermions produced. from the level crossing of the energy eigenvalues of the time-
For real-time fermion-number-violating processgs), dependent Dirac Hamiltonian; see REh] and references
sphaleronlike gauge field configurations are believed to playherein. The overall effect of level crossing can be character-
a crucial role[6]. These gauge fields “interpolate” between ized by the “spectral flow,” defined to be the number of
topologically different vacua and have sufficiently high en-eigenvalues of the Dirac Hamiltonian that cross zero from
ergy to overcome the energy barrier. But, in contrast with thébelow minus the number of eigenvalues that cross zero from
Euclidean approach, the anomalous fermion production imbove, for a given time interval and direction of time.
Minkowski spacetime is not, in general, given by the topo- In this paper, we study the zero-eigenvalue equation of the
logical chargeQ of the classical gauge field background. Theeffective Dirac Hamiltonian for spherically symmetric chiral
reason is tha@Q may be a noninteger or even, for the case offermion fields and classical SU(2) Yang-Mills gauge field
Yang-Mills-Higgs theory, not well defined; cf. Refs,8]. It backgrounds. A relation is found between the spectral flow
is not clear which quantity, in general, determines theand certain features of the spherically symmetric background
anomalous fermion production for real-time processes. gauge field. These features are the well-known topological
For pure Yang-Mills theory in Minkowski spacetime, the “winding factor” and a new type of “twist factor,” both of
authors of Refs[9,10] have argued that the number of pro- which will be defined later. The spherically symmetric sub-
duced fermions is given by the change of winding number okpace of (3-1)-dimensional chiral SU(2) Yang-Mills
the associated vacua of the initial and final gauge field contheory is equivalent to a (#1)-dimensional U(1) gauge
figurations. The “associated vacua” of a given classicaltheory coupled to a Higgs-like complex scalar figld] and
gauge field background represent the particular vacuum corseveral two-component Dirac fields. This drastic simplifica-
figurations that the background field would approacht as tion allows us to examine the problem using analytical meth-
ods.
The (3+1)-dimensional spherically symmetric SU(2)
*Email address: frans.klinkhamer@physik.uni-karlsruhe.de gauge field backgrounds considered in this paper are, in gen-
"Email address: lee@particle.physik.uni-karlsruhe.de eral, nondissipative which means that the energy density
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does not approach zero uniformly as = . For these non- 1

dissipative gauge field backgrounds, the contribution of the S=Sg+Sg, Sg=-— —Zf 4d“x Tr(F™F n),

twist factor to the spectral flow is manifest. The general re- 297k

sult for the spectral flow also applies to dissipative spheri-

cally symmetric gauge field backgrounds, which will be clas- _ 4, T, M

sified later as “weakly dissipative” and “strongly > JR“d XV D, @
dissipative.” It will be shown that the nonvanishing effect of

the twist factor for the spectral flow can already appear fohereSg represents the gauge field action ahdthe fermi-
weakly dissipativespherically symmetric gauge field back- onic action. Latin indicesn, n, etg:., run over the coqrdinate_
grounds, such as certain &zher-Schechter gauge field solu- labels 0, 1, 2, 3, and the metric tensor for flat Minkowski

tions[12,13. Our paper may, therefore, be viewed as a conSPacetime ispn,=diag(-1,1,1,1). Repeated indices are
tinuation of the work of Refg5,9,10. summed over. The flavor indefx in particular, is summed

The outline of this paper is as follows. In Sec. I, we gvgr_i - Ne. Also, natural units are used for whiah

present the model and the basic formalism. After giving the The SU(2) field strength tensd¥,. and the covariant

chiral SU(2) \.(ang—Mll_Is theory in the gphencally s_ymmetnc derivativeD ,, for the fermionic fields are defined as follows:
Ansatz we briefly review the topological properties of the

gauge field background. The gauge field topology is, in the

first place, characterized by the winding factor, defined to be

the change of the Chern-Simons number of the associated
vacuum sector of the gauge field configuration.

In Sec. lll, we consider the zero-eigenvalue equation o . . m
the time-dependent effective Dirac Hamiltonian. By investi-tsrgr?t;ilgic matrices’
gating the zero-eigenvalue equation directly, we are able to
identify a family of Riccati equation§l14,15, from which (0 1) ( 0 a)

, =i :

Fin=9mAn— dnAnt+[An,Anl,  An=A%7%(2i),
(2.2
DmEﬂm-l-AmPL, PLE(:L_F5)/2, PRE(].‘I‘FS)/Z

are taken in the chirgWeyl) repre-

the twist factor of the spherically symmetric SU(2) gauge o= —j 7
field configuration can be obtained.

In Sec. IV, we present a result for generic spherically
symmetric SU(2) gauge field backgrounds, which relates the
spectral flow to both the winding factor and the twist factor.

In Sec. V, we investigate the level crossing phenomenon
for the particular spherically symmetric SU(2) gauge field (1 0) . (0 1)

, 0TS ;

d® 0

1 O

10
— i TOpip2r3_
s=—i T°Tr2r (o _1),

backgrounds given by certain kecher-Schechter solutions 1= 1 0
[12,13 and verify our relation for the spectral flow. Specifi-
cally, we demonstrate the significant effect of the twist factor
for a class of Lscher-Schechter background gauge fields 0_25(0 _') 035(1 0 ) 2.3
with energies far above a sphaleronlike barrier. i 0)’ 0 -1/ '
In Sec. VI, finally, we summarize our results and briefly
discuss the role of dissipation. There is also an Appendix,
which provides the proof of a result needed in this section. The conjugate spinor is given bglelf-fr(—i I'%. Here and
For the benefit of the reader, we remark that Secs. Il B|n the fo”owing, 2 and o2 are Pauli matrices Carrying iso-
IIC, and IV B form the core of the paper. spin and spin indices, respectively. The acti@ri) thus cor-
responds to a chiral SU(2) gauge theory, with interacting
left-handed fermions ¥ ;=P _¥¢) and noninteracting
right-handed fermions¥ ri=PrV¢).

The total numbeNg of flavors in the fermionic action
(2.1) must be even, in order to cancel the nonperturbative
In this section, we review the spherically symmeto-  5y(2) anomaly16]. Henceforth, we focus on a single flavor
satzfor massless chiral fermions coupled to classical SU(2)3nd drop the indek Since there is no natural mass scale for
Yang-Mills gauge fields and establish our notation. Furtherthe classical SU(2) Yang-Mills theory, we also take an arbi-

more, we recall the definition of the tOpOlOgical W|nd|ng fac- trary mass scale to work Wlthln the full theory' quantum
tor. effects may, of course, fix the scale.

In this paper, we concentrate on the spherically symmetric
subspace of the (81)-dimensional theory. We use the fol-
lowing Ansatzfor the gauge fields:

Il. CHIRAL SU (2) YANG-MILLS THEORY

A. Spherically symmetric ansatz

The SU(2) Yang-Mills theory with massless chiral fermi-

1 N
ons is described by the action Aol = Frao(tT) 7, (2.43
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1la(tr)—1 ~ B(t,r) ~ A

Al(X)= 57 2i r Gachch+—(5ab XaXp) Tp

+ay(t,N(7-X)Xg, (2.4b

wherea, B, a,, anda, arereal functions oft andr; cf. Refs.
[11,17]. These gauge fields are invariant under spatial SO(3)
rotations, up to a gauge transformation

An— A= (0m+ Ay QF, (2.5

with Q(x) e SU(2).
The spherically symmetri@nsatzfor the fermionic fields
is given by(see Ref[17] and references thergin

2 Wr(X)

‘I’R(X))_ (2.6a
T(x) ) '

V(X))

\P(x)=(

PHYSICAL REVIEW B34 065024

a(t,)=1+2, a@(t)ra,
k=1

,8(t,r)= kZO ,8(2“”)(t)r2k+1,
B =a(1),

Hy r(t,r)= kZO H(Lz,ll(a)(t)VZk,

GL,R<t,r>=k§O GEK D(tyr2k+ 1, 2.7

with the expansion coefficients depending on time only.
If we substitute theAnsaze (2.4) and(2.6) into the action

(2.1), the following reduced actions are obtainéat a single

~ 1 s A
Y (x)= E[HL(U)H Gu(t,r)7-x]
5

+1).

isospin

-1 !
o)
isospi i

spin

X (2.6b

—i[HR(t,r)ﬂ Gr(t,r) 7 -x]

Wr(x)= %

+1

isospin

0 ) 1
+1/. )
isospi i

spin

X

N

fermion flavoy:

Qar [+ ® 1 ) v )
SG:?f—ocdt,fo dr Zr fuf +|DMX|

1
ﬁ(lxlz—l)z], (2.8a

v,

— 1
+\I’|( YD+ ?(Re)(+iy5|m)())\lf|]. (2.8b

(2.60 Greek indicesu, v, etc., run over the coordinate labels 0, 1,
and are lowered with the metrig,,=diag(—1,1). The co-
ordinates x° x*) correspond tot(r). The theory(2.8) can
be interpreted as a (11)-dimensional U(1) gauge field

whereH, , Hg, G, andGg arecomplexfunctions oft and ~ theory with a Higgs-like complex scalar fielg(t,r) and
r. In components  for isospin anda for spin), the two  two-component Dirac spinord,(t,r) and¥ (t,r). In terms

constant spinors of Eq$2.6b,0 can be written ag,, and Of the Ansatzfunctions, the U(1) field strengt

the

uvo

.., respectively, where and & are the Levi-Civita and complex scalar and Dirac fields, and the covariant deriva-

Kronecker symbols.

Furthermore, we assume that all physical
(3+1)-dimensional field configurations are described by in-
finitely differentiable functiongthis assumption can be re-
laxed. In order to have regular behavior at the spatial origin
for the (3+1)-dimensional field configurations and their de-
rivatives, theAnsatzfunctions should satisfy the following
r-parity expansions near=0:

o]

]

a;(t,r)=2, a®(tr,

065024-3

tives are given by

f,=d,a,—da,, x=atip,

D, x=(d,~ia,)x,

_(‘I’u(t,r))_(rHL(tur))
\I’|(t,r)= ‘PIZ(t'r) = rG,_(t,r) ,
rHR(t,r)>

Wr(t’r)z(rGR(t,r) '

¥, =T (—iy9),
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D, V\=(9,+i(a,/2)ys)¥,, (2.9 (2.18 of Ref.[17]. For a particulary(t,r) configuration, the
. winding numberN,(t) is unambiguous, providefi(t,r)|
with >0. See Sec. IV B for further discussion.
P=iol, e —03  yem—Oyi=g? (210 For a time interva[t;,t¢] with t;<t;, generic spherically
' ' 5 symmetric SU(2) gauge field backgrounds are characterized

by the change of winding numbeét, between the initial and

The spherically symmetridnsatz(2.4),(2.6) preserves a : .
P Y 5y (24,26 p final configurations

U(1) subgroup of the SU(2) gauge group, with transforma
tion parametersQ(x,t)=exi o(tr)7x/2] in Eq. (2.5 AN [t; t:]=N.(t) — N.(t)). (2.17
above. Under these particular SU(2) gauge transformations, A X A

we have for the (% 1)-_dimensiona| fields the following Henceforth, we calAN, [t;,t;] as defined by Eq2.17) the
U(1) gauge transformations: “winding factor” of the spherically symmetric SU(2) gauge
field. Our definition of the “winding factor” is directly in-

iw —i(w/2)ys
a,—a, o x—€e%, Vi—e A spired by the results of Ref10], obtained for a particular

WP, (2.10) class of background fields that will be discussed further in
Sec. V.
In order to maintain the regularity of the {3L)-dimensional
field configurationsmw(t,r) should have an odd-parity ex- I1l. TIME-DEPENDENT DIRAC HAMILTONIAN AND
pansion near =0, TWIST FACTOR
* In this section, we consider the zero-eigenvalue equation
w(t,r)=> w@*Nt)rzk+t, (2.12  of the time-dependent effective Dirac Hamiltonian for a

given spherically symmetric SU(2) gauge field configuration
where the expansion coefficients are dependent only on tim&t one particular time. The exstencg_of fe”’?'on z€ero mqgjes
is discussed and a necessary condition derived. In addition,

For later reference, the (11)-dimensional fields with " led twist factor is introduced. which will ol
finite energy approach a vacuum configuration at infinity, ¢ SO-Call€d twist factor s introduced, which will piay an
provided important role in Sec. IV.

x—¢€* D,x—0, a,—d,0, f,,—0, A. Fermion zero modes and level crossings

The general solutionl,(t,r) of the (1+ 1)-dimensional
Dirac equation from the actiof2.8b can be expressed as a
and are regular at the spatial origin, provided linear combination of the eigenfunctions of the correspond-

ing time-dependent Dirac Hamiltonian. The eigenvalue equa-
|x|—1, D,x—0, ¥,,—0 for r—0. (2.14 tion of this Hamilton operator is

¥, ,—0 for r—oo, (2.13

See Ref[17] for further details. Throughout this paper, we H(t,NW(tr)=Et)W(t,r), (3.1a
consider regular spherically symmetric SU(2) gauge fields
with finite energy. H(t,r)=vysa¢/2—iysD;

+iy%(Rey+iImy ys)/r, (3.1b

B. Gauge field winding factor

For the description of the topology of spherically symmet-where the covariant derivative,; has been defined in Eq.
ric SU(2) gauge field backgrounds, it is convenient to ex-(2.9) andW¥ now stands for the two-component Dirac spinor
press the (% 1)-dimensional complex fielg(t,r) in polar V¥, of that same equatiofiThe other Dirac fieldV,(t,r) of
form: the action(2.8b has no interactions and will not be consid-

) ered in the followingl The Hamiltonian(3.1b depends or
x(tn=p(t.,nexdi e(t,r)], p(t,r)=0. (219  andr through the background fielggt,r) anda,(t,r), to-
ther with an explicit dependence pin thei y& term.
It is known that the zero crossing of an energy eigenvalue
of the Dirac Hamiltonian is one of the crucial ingredients of
fermion number violation; cf. Ref§5,18]. In our case, the
zero-eigenvalue equatidB.19 at fixed timet can be written

The “associated vacuum sector” of the background gaugéJe
field at a fixed timet is obtained from the configuration with
p(t,r) replaced by 1, but withe(t,r) and a,(t,r) un-
changed[Note that the resulting configuration wig(t,r)
=1 may still have nonzero energy dens{®.83.] For the
gauge choice(t,0)= x(t,)=1, the integer winding num-

ber is then defined as GW=ATY, A=A+ A, (3.2
N, (H)=[e(t,2)—¢(t,0]/(27). 2.1
(O=[e(t,2)—(1,0)]/(2m) (2.16 A== (4 Rex -+ Im i, a2b
This winding numbeN (1) is, in fact, equal to the Chern-
Simons number of the=1 gauge field at tim¢; see Eq. Ap=—iagl2—ivysa,/2, (3.20

065024-4
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where g, stands for the partial derivative with respectrto  with the transformation matrix

For later convenience, we have decomposed the matiak . )

Eg. (3.29 into a Hermitian part4,, and an anti-Hermitian A=—iy exdi¢ys/2] 39
part. A, . Recall that we use two-dimensional Dirac matrices
Y=icl, y'=-0¢3, and ys=0?, with o? the standard 2

X 2 Pauli matrices.

that diagonalizes the Hermitian matrixdy via Ay
—ATALA. We obtain the following zero-eigenvalue equa-

In order to have a regular (81)-dimensional fermionic tion for W'y -
field atr =0, the (1+ 1)-dimensional fermionic fieldV (t,r) W, =(Ag+ ANT, , (3.93
must satisfy the boundary conditioh(t,0)=0, which is al-
ready implemented by th&nsatz(2.9). A fermion zero mode A= ATAGA =\ Y=\ 05, (3.9
is then defined to be amormalizablesolution of Eq.(3.2a
with boundary condition¥ (t,0)=0. Specifically, the nor- Ai=AT(—0,—iysa/2) A
malization condition is given by ) L,
=Riys=Rio*, (3.909
fo dr|Ww(t,r)|?=1. (3.3 with the further definitions
A=p/r=0, R=(a;—d,¢)/2. (3.10

The existence of a fermion zero mode at a particular time
t=t* does not necessarily imply level crossing of the eigen4t follows immediately from the definition2.15 that the
value of the Dirac Hamilton operator. In fact, the energymatrices.A, and A, are invariant under the U(1) gauge
level E(t) could just “touch” the E=0 value instead of transformationg2.11). Moreover, A, and .4, are real matri-
“crossing” it. Therefore, it is necessary to check that level ces and the solutio® , can be taken real, up to an overall
crossing really occurs. This can be done by calculating thgomplex phase factor. In the following, we tade, to be
time gradient of the energy eigenvallgt) at t=t*. If strictly real and drop the subscript.
dE/dt|;,—#0, then there is level crossing &t t*. For finite-energy background gauge fields with the
The overall effect of level crossings can be characterized-parity expansions as given by E@.7), one can show that
by the “spectral flow” [ t;,t;], defined to be the number of the following limits hold:
eigenvalues of the Dirac Hamiltonia(t,r) that cross zero
from below minus the number of eigenvalues that cross zero lim R/N=lim R/X=0. (3.1
from above, for the time intervdlt;,t;] considered. The r—0 r—e
spectral flow will be discussed further in Sec. IV. Here, we
continue the investigation of the zero-eigenvalue equatio
per se

This demonstrates that the diagonal matdy determines
e local structure of the solution of the differential equation
(3.9 in the regions of small and large(see also Ref.19]).

B. Gauge-invariant zero-eigenvalue equation C. Spinor twist number and twist factor
We first express the zero-eigenvalue equati®2g at a
fixed timet in terms of a set of bosonic background fields
that are invariant under the U(1) gauge transformation
(2.12). As can be seen from E3.2), a nonvanishing gauge

field ay contributes only a complex phase factor to the solu- 0
tion V. Up to an overall phase factor, the solution is then W(t,r)=|v(t,r)|exdi y5®(t,r)]( 1), (3.12

Since the solutiont of the transformed zero-eigenvalue
equation(3.9) is taken to be real, one can writg in polar
?‘lotation,

w,(t,r), (3.4  where ® e R measures the relative rotation of the spinor
away from theW, axis in the configuration space of.
Recall thatys=0?, so that the exponential factor in Eq.
(3.12 readsl cos®+ic?sin®.

;
lIf(t,r):ex;{—if dr'ag(t,r’)/2
"o

providedW (t,r) satisfies the nontrivial matrix equation

W u=[—i ysa1/2— (y*Rex+iy°Imy)/r ¥y, ~ From Egs.(3.9 and(3.12, one finds tha® and|¥| at
(3.5 fixed timet satisfy the following coupled differential equa-
tions:
with boundary condition
3,0=D[O]+R, (3.133
Wu(t,00=0. (3.6
3| ¥|=\|¥|cos 0, (3.13b

The existence of a fermion zero mode for the linear differ-
ential equatior(3.2) is thus equivalent to having a normaliz- with the definitions
able solution of Eq(3.5) with boundary conditior(3.6).
Next, we apply a unitary transformation to Hg.5), D[O]=—-\sin20, R=(a;—d¢)/2,

Y=V, =ATY,, (3.7 A=p/r=0. (3.19

065024-5
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In order to obtain regular behavior at0, the solutions of @ (t,r)=(N’+ 1/2)x, with N’ e Z, is thusasymptotically un-

the differential equation$3.13 must satisfy the following  staple in the solution space of the differential equation
boundary conditions: (3.17.

The solutions of the complete differential equat{BriL3a

©(1,00=0 mod m, (3153 ith boundary condition(3.153 can thus be classified ac-
_ cording to their asymptotic behavior. At a fixed time slice
[W(t,0)[=0. (3.15h there are two classes:
More specifically, these boundary conditions are needed be- _ ; _
cause is singular at the spatial origin=0; see Eq(2.14. Su() {®(t’r)|rlm Otn=Nm}, (3.193
The nonlinearityof the differential equatiof3.133 origi-
nates from the fact that the linear differential equatidro) Un ()={0(t,r)[lim O(t,r)=(N'+1/2) 7}, (3.199
mixes the components of the spin®#. Furthermore, the r—o

differential equation(3.133 involves only ®, whereas Eq.
(3.13h contains both® and |¥|. These two properties of with N,N'eZ. If ® e Sy (0 e Uy), then® is asymptotically
Eqg. (3.133 will turn out to be crucial for the results of the stable (unstablg in the solution space of the differential

present paper. equation(3.133.
Remarkably, the nonlinear differential equati¢®.13a For any solution® (t,r) e Uy(t) with arbitrary integem,
for a given time slicé can be transformed into a generalized there necessarily exists a fermion zero mode, as follows from
Riccati equatiorf14,15 by settingY(t,r)=tan®(t,r), Egs.(3.13h and(3.15h. [It is clear that the normalizability
condition(3.3) of the fermion zero mode requires the asymp-
aY—=R(1+Y?)+2\Y=0. (3.16  totics of EqQ.(3.19h.] Therefore, itsufficesto study the trans-

o i ) . formed Riccati equatior{3.133 in order to determine the
The analysis is, however, best carried out with the nonlineagyisience of a fermion zero-mode at a particular time

differential equation in the form as given by E(g.133, At this moment, we can explain the use of the terms “de-
where the ternD is called the “deviator” and the terR the  yjiator” and “rotator” in the transformed Riccati equation
“rotator,” for reasons that will become clear shortly. Hence- (3.133. The observation from Eq$3.17) and(3.180 is that
fo.rth, we ref.er. to the single differential equatidd.133, p pulls O(t,r) toward the valueNw asr—c. In other
with the implicit bour)dary conditiorf3.153, as the “trans-  ords; it leads to a deviation 6 (t,r) from the special path
formed Riccati equation. _ _ _approaching the valueN( +1/2)7 asr—, for which a
Let us consider the asymptotic behavior of the solutiongermion zero mode exists. This is the reason for calling the
O(t,r) of the transformed Riccati equati¢d.13a at a fixed  ormp in Eq. (3.134 the “deviator.” In the absence of the
time t. The deviatorD dominates, in general, the right-hand yeviatorD over the intervalr,r,], say, one observes from
side of Eq.(3.133 for larger, according to Eq(3.11). For g4 (3134 that R generates a simple rotation of the spinor
larger, Eq. (3.133 can therefore be approximated by by the angleA® = ["*dr’ R(r'). This is then the reason for
ro )

J,0=—\sin20. (3.17 calling the termR in Eq. (3.133 the “rotator.” The fermion
zero-mode solutions will be discussed further in the next
The differential equatiori3.17) has three types of solutions subsection. Here, we continue the discussion of the trans-

at a fixed time slice, formed Riccati equation from a more general viewpoint.
Using analyticity and the Cauchy-Lipschitz existence and
O(t,r)=Nm, (3.183  uniqueness theorem for ordinary differential equations
[14,15,19, it can be shown that the solutidd(t,r) of the
O(t,r)=(N"+1/2)7, (3.180  transformed Riccati equatiof8.133 with boundary condi-
tion O (t,0)=0 is unique. For the regular finite-energy gauge
taf O(t,r)]=taf ®(t,ry)] fields considered, it can also be shown that the solution
, O (t,r) is bounded.
Xex;{ _zf dr’ )\(t,r’)} (3.180 The uniqueness of the solutién(t,r) and its asymptotic
ro behavior allow us talassifythe gauge field background at

one particular time by the quantity
for arbitrary integerdN andN’.

The nontrivial solution® (t,r) given by Eq.(3.189 is Ne(t)=[0O(t,0)—0O(t,0)]/, (3.20
attracted toward the valugs asr— <, sinceA(t,r) is non-
negative and has a divergent integral toward infinity. Thiswhich can take integer or half-odd-integer values. According
shows that the “point"®(t,r)=Nar, with Ne 7, is asymp- to the definition(3.12), the mappingg(t,r)=exfdi ys0(t,r)]
totically stablein the solution space of the differential equa- € SO(2) gives the twisting of the spinor in the configuration
tion (3.17; cf. Ref. [19]. For the trivial solution®(t,r) space of¥ for fixed timet. We therefore callNg(t) the
=(N’'+1/2)7r, an arbitrarily small deviation will lead to a “spinor twist number.”
nontrivial solution given by Eq(3.189, which asymptoti- It is now convenient to characterize a time-dependent
cally approaches the valug”, with N” e Z. The “point” spherically symmetric SU(2) gauge field background by the
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change of spinor twist number between initial and final con-with |®|= /2 atr=. A necessaryondition for the exis-

figurations. Henceforth, we call tence of a fermion zero mode at one particular timis,

therefore,
ANg[ts,ti]=Ng(t;) —Ng(t)) (3.2
Kma{t)=max{ £, (t),|K_(t)|]= /2. 3.2
the “twist factor” of the spherically symmetric SU(2) gauge mal 1 AR O] (329
field over the time intervalt; ,t;], with t;<t;. Having established the necessary conditigh25), it
It is important to realize that the twist factafNg mea-  would certainly be interesting to obtain also a necessary and

sures arntrinsic propertyof the SU(2) gauge field configu- sufficient condition for the existence of a fermion zero mode

ration. Formally, Eqs(3.93, (3.12, (3.20, and(3.21) give in a given static gauge field background. But, without further
input, it appears difficult to find such a condition. For this

1= t d(d reason, we turn in the next section to the role of time-
ANeltr.ti]= ;fo drﬁi th(EG(t,r)), (3.229 dependent, continuous gauge field backgrounds.
1 r IV. SPECTRAL FLOW
O(t,r)=—=Tr[ ig?In{ lim e Pex f dr'{Ay(t,r") . ) _ .
2 €0 € In this section, we consider the spectrum of the effective

Dirac Hamiltonian (3.1b for time-dependent spherically
+A1(t,r’)}”>, (3.22h symmetric SU(2) gauge fields. In Sec. IVA, we derive a
relation, Eq.(4.32, between level crossing and the change of
winding number or spinor twist number over an infinitesimal
wherepP represents path Ordering_ Hep%(t,r) andAl(t’r) time interval. From this result, we obtain in Sec. IV B the
are defined by Egs.(3.9b,0, in terms of the appropriate relation, Eq4.39, for the spectral flow over a
(1+1)-dimensional gauge field functions(t,r), ¢(t,r), finite time interval. Section IV Ais rather technical and may
anda,(t,r). Whether or not there exists a more direct way tobe skipped on a first reading.
obtainANg remains an open question.
A. Level crossing from changes in winding and twist numbers

D. Necessary condition for fermion zero modes 1. Perturbative expansion

With the results of the previous subsection, it is possible \we start from the transformed Riccati equatich13a,
to find a necessary condition for the existence of fermionyjth poundary condition3.154, at a particular time = t*
zero modes at a particular tinteWe first introduce the fol- 5,4 study the change of the soluti@x{t,r) in the neighbor-

lowing diagnostic: hood oft=t*. For finiter andt=t* + e with € an arbitrarily
small positive constant, one can expand the background
ICt(t)Ef dr R(t,r) fields as follows:
D.(t)
. M(t* T e,r)=N(t*, 1) €d\ |- +O(€?), (4.19
EJ dr 6[ = R(t,r)R(t,r), (3.23 -
0 R(t* = €,1)=R(t*,1) = €5 R|i—rx + O(€), (4.1b

with the domains of positive or negative values7(t,r)

defined by where the upper and lower time derivatives of the back-

D.(t)={r|sgdR(t,r)]=+1}C[0) (3.24) ground fields are defined by
at)\(t,r)h:t’:zllm (9t7\(t,r),

and 6 the usual step functiolg[x]=0 for x<0 and §[x] e

=1 for x>0. Note that, by definitionC, =0 andK_<0.
Note also that the rotatdR(t,r) from Eq.(3.14) is entirely IO o =lim aA(t,1), 4.2
defined in terms of the background fields(t,r) and -
o(t,r)=argyx(t,r).

Consider the transformed Riccati equati@®133 with  and similarly forg,R. The solution® (t,r) for t=t* =€ can
boundary condition®(t,0)=0. The integration ofR(t,r) be written as
over the domairD ., (D_) then accounts for the rotation of
the spinor in the %" (* —") direction. But the deviatoD, O(t* xe,r)=0_(t*,r)xef(t*,r)+0(e?). (4.3
for valuesO® e (— 7/2,7/2), brakes the rotation forced by the
rotator R. The crucial point, now, is that in order to have a The functionf(t,r) is continuous at=t*, but the first term
fermion zero mode at timé the total action of the rotator on the right-hand side of E@4.3) allows for a discontinuity.
should overcome the resistance from the deviator in the reFor the moment, we consider the functidis (t*,r) in Eq.
gion —7/2<®<7/2, so that the solutio® (t,r) ends up (4.3) to be equal.

tt*
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By substituting Eqs(4.1) and (4.3) into the transformed
Riccati equation(3.133, one obtains to first order ie the
following linear differential equation fof:

[d,+2N(t*,r)cos 0 (t*,r)]f(t*,r)=j(t*,r),

(4.9
with the definition
j1(1*, 1) =0 R| = — I\ | =+ SiN 20 (4.5
and boundary condition
f,(t*,00=0. (4.6)

The solution of the differential equatidd.4) is found to
be

f1(t%,r)=J,(t* ,0)/| P (t*,r)|?, 4.7
with the definition
r
0= [ ar e e . @9

Here, we have used the solution of £§.13D,
r
|\If(t,r)|o<ex;{f dr'\(t,r’")cos W (t,r')|, (4.9
o

to obtain Eqg.(4.7) in the form shown.

The functionj,(t,r) is continuous at=t* for smooth
background fielda.(t,r) andR(t,r), which implies that the
solutionfy(t,r) of Eq. (4.4) is also continuous at=t*. If,
on the other hand, the time slitet* corresponds to a local
change of the gauge field winding numidéy, the partial
derivatives of\(t,r) and R(t,r) are not well defined at
=t*, as will be shown later. In this case, the functiqft,r)

is not well defined either, which affects the continuity of the

solution f4(t,r) of Eq. (4.4). In Sec. IVA3, we will show
that the functionf(t,r) can be taken to be continuoustat

=t*, provided possible discontinuities are accounted for by

the leading term® _(t*,r) and®, (t*,r) in Eq. (4.3.

2. Time-differentiablex and R
Consider a particular time slice=t*, for which the

A(t,r) and R(t,r) fields are differentiable with respect to

time,

at)\(tar)|t=tj:’?t)\(t-r)|t=t’jr (4.103

atR(t:r)h:tj:‘9tR(t,r)|t:t’j, (4.10n

with upper and lower time derivatives as defined in @).

First, suppose that there is no fermion zero mode at

=t*, so that® (t*,r) —» N asr—oo. For larger and using
Eq. (3.1, one then obtains from Eq@4.4) the results
lim, ..j;/\=0 andf er 2, which imply

lim f,(t*,r)=0.

r—o

(4.1

PHYSICAL REVIEW D 64 065024

This indicates that there is no change of the asymptotic be-
havior of @ (t,r) in the neighborhood df=t*, which corre-
sponds to having a constant spinor twist num{20 at t
=t*,

ONpli=t»=Ng(t* +€) —Ng(t* —€)=0.  (4.12
[We reserve the notatiodNg for the global change of
spinor twist number; see E@.21). Of course,6Ng is in no
way “infinitesimal;” see Eqs(4.14) below|]

Next, consider the case of having a normalized fermion
zero mode at=t* with ®(t*,r) e Uy, thatis, belonging to
the “unstable” class of solution§3.19h. Since the solution
O(t*,r) e Uy is asymptotically unstable, one observes from
Eq. (3.189 that a small positivénegativg perturbation of®
at larger leads to®(t*,r) e Sy;1 [O(t*,r) e Sy]. From
Eqgs.(4.3), (4.7), and(4.8) one deduces that the fermion zero
mode att=t* is at abifurcation pointfor differentNg'’s. In
fact, the local change of spinor twist number

5N@|t:t*EN®(t*+€)_N®(t*_6) (413)

is given by
+1 for Jy(t*,°)>0, (4.143
ONeolex= —1 for Jy(t*,)<0, (4.14H

as long as7;(t*,»)+#0. [The special case qQffy(t*,»)=0
will be discussed in Sec. IV A #For an elementary discus-
sion of bifurcation theory, see Rdf19].

Having a fermion zero mode att*, we are especially
interested in the time gradient of the fermion energy eigen-
value att=t*, in order to check for level crossing. The time
gradient of the energy eigenvalue of the Dirac Hamiltonian
att=t* is calculated up to the first order in

dE
dt

oH
() \I’|(t*,r)>

:<‘I’|(t*,r)

t=t*

:jl(t*,oo), (413

where 7; is defined by Eq(4.8) and¥(t*,r) represents the
(nondegenerajenormalized fermion zero mode a&t* in
the two-component spinor notation of E®.9). The expec-
tation value used in Eq4.15) is defined by

<1I’|(t*,l‘)|0(t*)|\1’|(t*,r))
Efodr«Ifl(t*,r)TO(t*)«If.(t*.r), (4.16
0

for an arbitrary time-dependent Hermitian operafit).
From Egs.(4.14) and(4.15, we obtain

dE
Sg a
with the implicit limit e—0 on the right-hand side. This

establishes the relation between level crossing and the
change of spinor twist number, for the case thdt,r)

t=t*}:5N®|t=t* e{—-1+1}, (4.17)
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and R(t,r) are time differentiable at=t* and generic for O _(t*,r)=Ilim O(t,r). (4.24)
times close to ifso that7,(t*,) #0]. tt*
3. Time-nondifferentiablex and R. Then, if®_(t*,r) belongs to the clasSy, for some integer

) ) ) N, one deduces from Eq$3.133, (4.20, and(4.23 that
Now, consider a gauge field background for whjg(t,r)

vanishes at the spacetime poirit (f*) and the winding 0., (t*,r)=lim O(t,r)
numberN, as defined in Eq(2.16 changes from a valudl £t

to N+ 6N, |;—«. Generally, the fielda (t,r) andR(t,r) are _ * oy %
not differentiable with respect to time: =0 _(t*,r)—a lim 6N, [i—x O(r—r*),

e—0
(9t)\(t,l’)|t=tt7&ﬁt)\(t,r)h:tt, (418a (4.23
) . where 6 is the usual step function. This implies that the
IR =g # R =t (4.18 solution changes from one class to anothet amsses the

value t*. Specifically, if the earlier solutio® _(t*,r) be-

with upper and lower time derivatives as defined in @). longs 0 Sy, then the later solutio® , (t*.r) belongs to
e 1 1

Let us have a closer look at the discontinuities of the tim
derivatives of\ (t,r) andR(t,r) att=t*. First, one observes “N—N, _
from the definition(3.14 of the \(t,r) field that the time ~Equation(4.25 shows that the change of the gauge field
derivative ofx(t,r) is not well defined at the spacetime point Winding numbersN, |,_+ causes the change of the spinor

(t*,r*): twist number at=t* to be given by
I pmpr = = I () 1= pr SN alt=tr = = Ny |i=rx, (4.29
=[x (t*,r*)|/r*. (4.19 regardless of the existence of a fermion zero mode=at
(this contribution is labeled A
Second, introduce the gauge-invariant functiR(t*,r) Before we continue with the evaluation of the change of
defined by spinor twist number, we need to address the continuity issue
for the solutionf; of Eq. (4.4). According to Eqs(4.19 and
R(t*,r)=Ilim[R(t* + &) —R(t* —¢,1)] (4.23, the time derivatives of the gauge-invariart,r) and
€0 R(t,r) fields are not well defined at the spacetime point
= iM [0, @|epr o= 0y @l iopr 1 2. (4.20 (t*,r*). This implies that the functiofp,(t,r), as defined in
€0 Eq. (4.5, does not have a well-defined value either. Note that

all these problems can be traced to the discontinuity of the
Taylor expandingl, ¢(t,r) with respect to bothhandr in the  unitary matrixA in Eq.(3.8), which, in turn, is caused by the
vicinity of the spacetime pointt{,r*) and using the fact ill-defined argumentp(t,r) of the field x(t,r) at the space-
that a(t,r)—0 andB(t,r)—0 as ¢,r)—(t*,r*), one finds time point t*,r*) where y(t,r) vanishes. By performing
thatR(t*,r) shoots up to infinity at =r*, whereas it drops the inverse unitary transformation of E¢3.7), v —V,

to zero for r#r*. Taking the gauge conditiony(t,0) =AWV, one finds that thg; “expectation value”(4.8) is
= x(t,»)=1, one readily proves that again given by
o _ JH
fodrRa*,r):—w lim oNJi—e,  (4.2D Jl(t*,R>=<~P.<t*,r> —e () ~1f.<t*,r>> . (4.2
e—0 R
with the local change of winding number defined as with the implicit integral over on the right-hand side run-
. . ning over[0,R]. The right-hand side of Eq4.27 has a
SN, [i—x =N, (t* + €) =N, (t* —¢). (422 \ell-defined value at=t* for smooth background fields

ao(t,r), a;(t,r), andy(t,r). This shows that the discontinu-
ity of the function ji(t,r) at (t*,r*), caused by an ill-
defined functione(t,r), can be absorbed into the local
R(t*,r)=— lim 5Nx|t=t* S(r—r*). 4.23 qhange of the spinor twist numbéNg.a|;—+ Via the rela-
€0 tion (4.26).
With the discontinuity ofj1(t,r) at (t*,r*) absorbed into

The nonvanishing right-hand side of E@.23 for r=r* the local change of the spinor twist numb#g.a|;-+, the
implies that the time derivative of the rotat®(t,r) is not  solution f4(t,r) of Eq. (4.4), explicitly given by Eq.(4.7),
well defined at the spacetime poirtt (r*). takes a well-defined value &tt* and may produce a local

The delta-function-like behavid#d.23 of R can be used change of spinor twist number that is not associated with the
to derive the effect of the change of the gauge field windingocal change of gauge field winding number.
number on the change of the spinor twist numbet=at*. Finally, we are ready to consider the additional effect on
Start by defining the local change of the spinor twist number due to the pres-

This shows that the functioR(t*,r) is proportional to a
Dirac delta function centered at=r*,
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ence of a fermion zero mode &t t* (this contribution will So far, we have considered only the solutidi{t,r) of

be labeled B. Since 7;(t*,~) as given by Eq(4.27) has a  the zero-eigenvalue equatid3.2g, not the full spectrum

well-defined value at=t*, we have a unique time gradient (3.139 of the time-dependent Dirac Hamiltonian. This makes

for the level crossing, it impossible to obtain the relation between the local change
of the spinor twist number and the time derivative&¢f) at

d_E _d_E — T(t% oo 4.2 t=t* beyond the leading-order approximation. Still, the re-
dt t:t*+6_ dt t:t*_f_jl( ,%)- (4.28 lation (4.32 can be shown to hold for generic SU(2) gauge
field backgrounds, since background fields wih(t* )
Now, generic background gauge fields with(t*,<)#0 =0 form a class of measure zero.
produce the following change of spinor twist numbert at Start from the gauge-invariant background fieldg,r)
=t* [see Eqs(4.14 abovd: and R(t,r) at the time slicee=t* where the fermion zero
mode resides, with profile function (t*,r) and ®(t*,r).
SNe;gli=rx =Sgr J1(t*,)], (429 uUnder an infinitesimal time shift=t* —t* + ¢, the generic

. . N , N(t,r) andR(t,r) vary according to Eq4.1), with indepen-
inaddition to the Com_r'EUt'on‘SN@:Ah:t* given by EQ. — gent first-order coefficientépossible differences above and
(4.26. (Note thatoNg,g= =1 for the generic case consid- pejoyt=t* are not important for the present argumefihe

ered) According to Eq.(4.28), the level crossing at=t" is  cpange with time of these background fields is to first order
determined by sdn7; (t*,%0)]. We therefore deduce the fol- i

. . . €
lowing relation between level crossing and the change of the

spinor twist number: ON=€0\|i=tx, OR=€NR|i=t*. (4.39
dE Next, define the following “expectation value” af:
Sg gt = 0Ng,gli=x
. [ Carw e npEan ol sinzo )
ON)i—px= | dr N ) |i=+ SIN ),
= Nl Noalr @30 (Ve -t
. . : (4.35
where the total change of the spinor twist number=at* is
given by the sum of both contributions, with an integration measure weighted by the known function
sin 20(t* r). The analogous “expectation value” &R is
ONeg|i=tx = Ngalt=tx + INe gl t=t*- (4.3) B
Combining Eqs(4.26 and (4.30, we find that the local (M}t:t*zfo dr[ W (t*,1)[?6R(t, 1) |11+, (4.3
spectral flowF t* + ¢,t* — €] is given in terms of the local
winding factor and twist factor, but without extra weight function.

Now, recall that the functional;(t*,) as given by Eq.
(4.33 is proportional to the difference of these “expectation
values” in leading order,

f[t*+61t*_6]:5Nx|t:t*+5N®|t:t*7 (432

which is the main result of the present subsection. H&lxg,
and 6Ng are defined by Eq€4.22 and(4.13), respectively, € Jo(t*,0) = (SR)1—ir —{ SN )iepr + O(€2).  (4.37)
and e is a positive infinitesimal.
Near the origin of the two-dimensional space spanneX by
4. Special and generic gauge field backgrounds =(6R)_+ and Y=(S\);_, the class of background
Let us, finally, discuss the case of having a fermion zerdjauge fields with7;(t*,)=0 therefore coincides with the
mode att=t*, for which the “expectation valuel7,(t*,»)  one-dimensional subspace

vanishes, {(X,Y)|X=Y}, (4.39

jl(t*,oo)zf dr|W(t*,r)[2[ ;R — 9\ Sin 20| -« which is of measure zero. This shows that the quantity
0 J1(t*,) is nonzero for generic background gauge fields

away fromt=t* and that the relation between the local
=0. (433 change of the spinor twist number and level crossing as

This impliesdE/dt|;_+ =0, according to Eq(4.28. A non- given by Eqgs(4.17) and(4.30 holds in general.
vanishing d?E/dt?|,_, with vanishing first-order deriva-
tive, now corresponds to the absence of level crosging
fermion energy eigenvalue just touches-0 att=t*). But
a nonvanishingd®E/dt3|,_«, with vanishing first- and The results of the previous subsection can be summarized
second-order derivatives, again has level crossing. Onas follows. Forgenericregular bosonic fields of the effective
therefore needs to find the first nonvanishing derivative of 1+ 1)-dimensional theory2.8), the spectral flowA t;,t;]

the energy corresponding to the fermion zero mode, in ordefor the time intervalt; ,t¢] is given by the sum of the wind-

to determine whether or not level crossing occurs. ing factor(2.17) and twist factor(3.21):

B. Relation between spectral flow and S(2)
gauge field background
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FLte 4= AN [t 4]+ ANg[ 1y, 4], (4.39 V. SPECTRAL FLOW FOR LU SCHER-SCHECHTER SU(2)
GAUGE FIELDS

) o ) In this section, we discuss the existence of fermion zero
This result is simply the grand total of all level crossings modes and the corresponding spectral flow for certain explic-
(4.32. ity known time-dependent spherically symmetric solutions

As mentioned before, the spectral floWin Eq. (4.39 is  of the SU(2) Yang-Mills equations. This allows for a non-
defined as the number of eigenvalues of the effective Diragrivial check of the relation(4.39 found in Sec. VD 3.

Hamiltonian (3.1b that cross zero from below minus the Throughout this section and in the figures, the sdari-
number of eigenvalues that cross zero from above, for thérary) mass scale is used to make the spacetime coordinates
time interval[ t; ,t;] with t;<<t;. The quantityZ is an integer, and energy dimensionless.
by definition. But the winding factoAN, and the twist fac-
tor ANg also take integer values in general. A. Brief review of the Luscher-Schechter solutions

Let us, nevertheless, discuss the special cases for which g gojutions considered in this section are spherically
relation (4.39 is not applicable. The spectral flow from symmetric solutions of the SU(2) gauge field equations,

Eq. (4.39 would not have a well-defined integer value if the \hich describe collapsing and reexpanding shells of energy.

gauge field winding numbeN, (t) or spinor twist number  The corresponding (& 1)-dimensional field equations from
Ng(t) were ill defined or noninteger at time slides T;; the reduced actiof2.89 read

={t; ,t;}. In order to simplify the discussion, we exclude
static field configurations from our considerations. —d*(r?f,,)=21m(x*D,x), (5.19
The gauge field winding numbéX, (t), in particular, is 5 ) 5
not well defined for a time slice=t!) T;; if the function [=D*+(|x[*=D/r*]x=0. (5.1b
(1) .
x(t.r) has a zergsee Egs(2.15 and(2.16]. Assume that Remarkably, Lgcher and Schechter were able to obtain ana-

the zero ofy oceurs fort®=t, e_md that this is the only lytic solutions of these coupled partial differential equations
problem. In this case, one can simply choose a real numb 72,13

st so that the fieldy(t,r) has no zero at the time slice ~ The Lischer-Schechtdit-S) solutions can be represented
t=tM=t;+ ot For the new time intervalt™ t;], one  as follows(see Refs[7,10] and references thersin

then obtains an integer-valued winding factoN,[t;,t{")].

The other case of having the zero gfat t‘")=t; can be a,=—q(7)d,Ww, (5.29
treated in the same way.

Alternatively, the spinor twist numbeXg(t) can take a
half-odd-integer value for time slide=t® e T;; . Now recall
that a half-odd-integer spinor twist number implies the exis-
tence of a fermion zero modsee the paragraph below Eq. with the new coordinates
(3.19h]. This makes it impossible to properly define the

a=Rey=1+q(7)cosw, (5.2b

B=Im xy=(1/2)q()sin 2w, (5.20

spectral flow for the exact time intervid; ,t;]. Assume that 1+r2—12

the zero mode occurs faf?=t;, and that this is the only TESgr(t)arCC(){ JA+t2=192+4r2)’ (5.3a
problem. In this case, one can choose a real numit}ét, so ( )

thatNg(t) takes a well-defined integer value at the time slice 1—r2412

t=t@=t;+ 5t!?. This is always possible, because a fer- WEarCtaféT : (5.3b

mion zero mode corresponds to an asymptoticaligtable
solution® of Eq. (3.133. For the new time intervait(® t;], Using theAnsatz(5.2), the field equation$5.1) are reduced
one then obtains an integer-valued twist facid¥e[t;,t(?)].  to a single nonlinear second-order differential equation for
The other case of having the zero modet@=t; can be a(7),

treated in the same way.

2
Henceforth, we assume generic spherically symmetric d°q
, : : —+ + +2)=0. .
SU(2) gauge field backgrounds, so that the right-hand side d2 2a(q+1)(q+2)=0 5.4
of Eq. (4.39 is well defined and the sum of two integers. It
is, furthermore, clear that the winding fact&iN, [t ,t;] is The ordinary differential equatiofb.4) can be interpreted

entirely determined by the background gauge fig¢tt® Eqs.  as belonging to a mechanical system consisting of a particle
(2.15 and (2.16)]. But also the twist factoANg[t;,t;] can  trapped in a double-well potential(q)=3q*(q+2)* The

be expressed solely in terms of background gauge fiskels ~ conserved total energy of the particle trapped in the poten-
Eq. (3.22]. The relation(4.39 thus connects a property of tial V is then

the fermions, the spectral flow, to two characteristics of a

generic spherically symmetric SU(2) gauge field back- e= _(_q
ground, the winding and twist factors. This is the main result 2\dr
of the present paper.

2
+V(0), V(9)=9*q+2)%2. (5.5
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The general solution of E@5.4) depends on the energy parametend ther translation parameter, together with a further
discrete parametef==1. The solutions of Eq(5.4) can be divided into two classes, one with eneegyl/2 and the other
with energye>1/2. Explicitly, the LS solutions argl2,13

—1+(1+\2e)Ydn (1+\2e) YA 7— 70)|m~1] for e<1/2, (5.69
= —1+£(1+V2e)Y2en (8€) YA 7— 79)|m] for e>1/2, (5.6b
|
with the modulus defined by reversal (antisymmetry, namely, p(—t,r)=p(t,r) and
R(—t,r)=—"R(t,r), with p(t,r) andR(t,r) defined in Eq.
1+42e (3.14. In the following, we consider the=0 time slice of
m= 22¢ 57D these particular LS background gauge fieldarameters’

=+1, 7o from Eq.(5.11), ande=1/2], for which the zero of

Here, difiulm] and ciiulm] are Jacobi elliptic functions x(O.r) occurs atr =1, according to Eq(5.8).

[20,21]. The LS gauge field background it 0 is represented by
For e<1/2, there exists no spacetime point whg(e,r)

vanishes. Foe=1/2, on the other hand, there are zeros of

x(t,r) at[10]

a,(0r)=0, x(0Or)=sinw(0yr), (5.12

up to a U(1) gauge transformati¢®.11). Given that the real
1+2n f_unctio_n x(0r) vanishes and _changes signrat1, the con-
tnztar< To+ —K(m)) . r,=\1+t2, (5.8 figuration of Eq.5.12 qualitatively resembles the sphaleron
(8e)V4 solution of the electroweak SU(2) Yang-Mills-Higgs theory
[6,17]. For this reason, we call the configuration given by
wheren is an integer that satisfies the condition Eq. (5.12 the “LS quasisphaleron.” Note that the LS qua-
sisphaleron does not satisfy the static field equations, since
the energy changes under a scale transformation of the fields
(there is no natural mass scale for classical Yang-Mills
theory).
Here,K(m) is the complete elliptic integral of the first kind, ~ We will now show that this LS quasisphaleron corre-
sponds to the top of a potential energy barrier which sepa-
e ) i rates configurations with differeri¥l, , just like the elec-
K(m)=f0 dul(1-u’)(1-m)] 2 (510 yoweak sphalerofi6]. The energy functiondl7,10] for (1
+1)-dimensional gauge field solutions can, in fact, be writ-

The existence of a spacetime poitt {*) wherey(t,r)  t€nas
vanishes is, in general, associated with the change of the
winding numberN, (t). It has been shown in Reff10] that
the change of the winding numbkt, (t) plays an important
role in fermion number violatiorisee also Ref{18] for re-
lated results Indeed, we have studied several LS solutions 8 (= 1 1
with e<1/2 and found that the necessary conditidr25 for Ex(t)= _f df{—(ﬁtpz)“ ——(8yh)?
the existence of a fermion zero mode is never satisfied. In the g>Jo [8p? 2p?
following, we shall therefore only consider LS solutions with

™ ( +1+2 <(m
- =< —K(m
70 (8¢) (

il 5.9
= —. .
5 5 (5.9

E=E«(t)+Ep(1), (5.13

with

€=1/2. But, before we turn to the fermion zero modes, we + i(a )2+ f (5.143
mention one particular aspect of the LS gauge field back- 2p? r 2|’ '
ground fore=1/2.
8 (= 1 (p>—1)°2
B. LS quasisphaleron Ep(t)=—| dr —Z(L?rpz)er—2 ,
, g°Jo [8p 4r
For energy parameter=1/2, the fieldy(t,r) has at least (5.14b

one zero at a particular spacetime point. In order to simplify
the analysis, we take for th¢ and 7, parameters in the where p(t,r) equals|x(t,r)| and (t,r) is the (bosonig
solution (5.6b the following values: gauge-invariant field defined by

[=+1, 79=—(8¢e) YK(m), (5.11) —2¢€,,p(t,r)=rf,(t,r). (5.15

with m defined by Eq(5.7). For the choice ofr, from Eq.  Here, we have divided the energy into the kinetic gt
(5.11), one of the zeros of(t,r) occurs at the time slice and potential partEp. The reason for putting the
=1,=0. Also note that for this, the LS solution has time- -dependent terms into the kinetic part of the energy is that,

065024-12
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2.5 _E 1.5
2r 1
1.5 0
1r 0
0.5F Er 0.3F
O | | | 1 1 t O | | | | | t
-4 -2 0 2 4 -4 -2 0 2 4
FIG. 1. Time development of the total enerByand potential FIG. 2. Time development of the total enerByand potential
energyEp(t) for the Luscher-SchechteLS) gauge field solution energyEp(t) for the de Alfaro, Fubini, and FurlapAFF) gauge
(2.9,(5.2,(5.6b with parameters e=1, ¢(=+1, and 7y~ field solution(2.4),(5.2),(5.17). The AFF configuration at=0 co-

—1.4271 from Eq(5.11). The potential energip(t), given by Eq.  incides with the LS quasisphalerontat0 in Fig. 1.

(5.14b, is differentiable for all times and has a global maximum at

t=0. The configuration at=0 is called the LS quasisphaleron.  sphaleron, the dynamics of the gauge and Higgs fields has
been studied numerically. See, for example, Rg#4,25.)

for the gauge choicay=0, the scalar fields becomes pro-

portional to the time derivative of the; field, namely,s= C. Fermion zero mode of the LS quasisphaleron

2
—r%dpa;. i i i
0”1 We now turn to the fermion zero-eigenvalue equation

Consider then the potential energy(t) associated with - . . .
our particular LS gauge field solutions. Using the basic prop=(3'9) for thet=0 LS gauge field of the previous subsection,

erties[20] of the Jacobi elliptic function ¢mui|m], one can .., the LS quasisphalerob.12. Note that the gauge-

prove tht e polentialener@s () has ol masimum at_ 73147 Gelen M0 Z0r)r i ponaereriabe
t=0, that s, for the LS quasisphaleron configuration. Fur'isﬁes: For this reasor¥ F\)/ve introdfce,a _dif)f(eréntiable field
thermore, the conserved total energy of the LS solution withty ‘ '

7o parameter5.11) is given by A(Oyr), defined by
E=2 € Equasisph (5.16 ANOr)=x(0r)/r, (5.183
Or)=sgnl-r 0,)]. 5.18
in terms of the energy parameterand the static energy of «(Or)=sgrt )x(0r)] (5.18h
the LS quasisphaleroi,qasispi= Ep(0). Then, x(0,r) can be represented by
Figure 1 shows the time developmentEj(t) for the LS
background withe=1, {=+1, andry~ —1.4271 from Eq. ¥(0,)= k(0 )exdi E(O,r)], (5.19

(5.11. The corresponding topological char@e~ —0.70 is
noninteger; see Reff7] for further details. More importantly, wherep(0r) is a differentiable function of.
the potential barrier of Fig. 1 separates two regions with |t js a simple exercise to verify that the LS fiek{O,)

different winding numbers AN,=—1). The LS qua- has the following inversion symmetry:
sisphaleron at=0 resembles in this respect also the sphale-

ron of the electroweak standard modlé]. k(0,1F)=—k(0y). (5.20
For comparison, consider the LS gauge field background
given by the trivial solutiong=—1 of Eq. (5.4), with the  This inversion symmetry, most likely, traces back to the con-

(1+1)-dimensional field configurations formal symmetry transformatiorx“—x*/x? of classical
Yang-Mills theory. Without loss of generality, we consider, in
Y(t,r)=0, x(t,r)=sinw(t,r), (5.17) t~he following, smooth background fields wi{0,0)=1 and
¢(0,0)=0.
as follows from Eqgs(2.11), (5.2, and (5.15. This corre- In terms of the differentiable fields. and R=(a
sponds to the de Alfaro, Fubini, and FurléAFF) solution  —¢,¢)/2, one finds that the zero-energy fermion equations

[22]. Note that the AFF gauge field coincides with the LS (3.13 att=0 become
guasisphalerort5.12 att=0. On the other hand, the AFF

solution has complete time-reversal symmetry and the ki- ar@):—X Sin20+7R, (5.213
netic energyEx(t) as given by Eq(5.143 is zero att=0
(see Fig. 2 This result suggests that the AFF solution pro- a,| | =X|\If|cosza, (5.21b

vides the time-dependent gauge field solution with minimum

total energy to form the LS quasisphaleron. In other wordswith boundary conditions

the AFF gauge field simulates an “imploding and exploding

LS quasisphaleron;” cf. Ref[23]. (For the electroweak 0(0,00=|¥(0,0|=0. (5.22

065024-13
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/
/ \ Ep
0.1~ , \ 10+~
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FIG. 3. Profile function|W(0yr)| of the fermion zero mode FIG. 4. Time development of the total enerfyand potential

(5-2‘}5 of .the LS .quasisphaleron, which CofreSpO”dS to tth® energy Ep(t) for the Lischer-Schechter gauge field solution
configuration of Fig. 1. The dashed curve givas(0r)| with an (2 4) (5.2 (5.6h with parameters e=20, (=+1, and 7o~

arbitrary normalization. The inversion symmetry-1/r is made _( 54197 from Eq(5.11). See Fig. 5 below for a close-up B(t)
manifest by use of the compact radial coordinage(r—1)/(r neart=0.
+1).

case, the functio® (0,r) is found to have a step function at
r=1, but so does the transformation matelx from Eg.
(3.8.]

To summarize, the LS quasisphaleroriatd has a chiral
fermion zero mode and resembles in this respect the elec-
troweak sphaleron which also has a chiral fermion zero mode
(see Refs[26—-28 and references thereginrhe fermion zero
modes of the LS quasisphaleron and the electroweak sphale-

Using the inversion symmetry5.20 and the asymptotics
(3.11) of the rotator, it follows from Eq(5.21b that there
exists a fermion zero mode if and only if [jm..®(0r)
=N, with N an integer.

We can now explicitly construct the fermion zero mode
for the LS background at=0. Using the field equations
[7,10], it is relatively straightforward to show that

42 ron are qualitatively the same. Moreover, there is spectral
7~z(0r)oc—q e K(m)|m]=0 (5.23 flow associated with both the electroweak sphale(see
"dr o ’ Refs.[27-29) and the LS quasisphalerasee Sec. VD 3

below). This behavior differs from that of the AFF solution
where the last identity can be found, for example, in Ref.@n “imploding and exploding LS quasisphalergn’for

[20]. [Note that vanishingR does not contradict the neces- :Nhiclh the f_ermion zero mode exists at all tinj@s], without
sary condition(3.25 that was derived for Eq$3.13 with a evel crossing.

function A\=0, whereas Eqs5.21) have a function\ that

changes sigi. D. Level crossings for large energy parameteie
For R=0, the solutions to Eqg5.21) are simply given Throughout this subsection, we consider the specific LS
by gauge field solution with paramete¢s- 20, {=+1, andrg

~—0.54197 from Eq(5.1)). Figures 4 and 5 give the be-

havior of the potential energip(t) of this solution. The

corresponding topological charge~ —0.13 is noninteger;
(5.24 cf. Ref.[7]. The LS quasisphaleron &0 is the same as for

' ' the e=1 case, but no longer corresponds to a global maxi-

mum of Ep(t).
The argument following Eq5.22 ensures that the solution
represented by Eq$5.24a,b is normalizable, which com- Ep

0(0r)=0, (5.243

|w(0r)|= |\P(O,ro)|exr{ Jrr dr'’x(0r’)

0

pletes the construction of the fermion zero mode. The inver- t.2r
sion symmetry(5.20), together with the resul5.23, pro-
vides asufficientcondition for the existence of the fermion 0.9
zero mode.
For e=1/2, the fermion zero-mode amplitud (0,r)| of 0.6
Eq. (5.24b is shown in Fig. 3, with an arbitrary normaliza-
tion. Specifically, the (3-1)-dimensional fermion zero 0.3F
mode is purely left handed and given by E@&6) and(2.9),
with the two-component spino¥,=¥ from Egs. (3.7), o Ly ! ! ! Lot
(3.12, and(5.24). These last equations are to be evaluated -0.2 -0.1 0 0.1 0.2
with the fUﬂCtiOﬂSK(O,I’) and (p(o,l') defined in Eq.(5.19). FIG. 5. Same as Fig, 4. Close-up of the potential enﬁg&)

[Of course, the solution can also be obtained from EqQsneart=0. The LS quasisphaleron &t 0 is only a local maximum
(3.13, which are given in terms of(0,r) ande(0,r). Inthis  of Ep(t), unlike the case of Fig. 1.
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In order to determine the spectral flow for this particular
gauge field backgroundll fermion zero modes need to be
determined, to which we turn first.

1. Extra fermion zero modes from changes in winding number

According to Eq.(5.9), there are zeros of this LS field
x(t,r) at the spacetime points

(t_;,r_1)~(—1.889,2.137, (to,ro)=(0,1),
(5.25

The winding numbeN, (t) takes the following values in the
different time regions:

(ti1,0+1)~(+1.889,2.137.

-1 for te(—o»,t_y),
for tE(t,l,to),
NAO=0 21 for te(tg,tyq), .29
0 for te(t,q,+).
This gives the global winding factor
AN,[+o,—o]=0—(—1)=1. (5.2

PHYSICAL REVIEW B34 065024

0.4
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FIG. 6. Numerical solutions for the profile functio@s(t_,,r)
and|W¥(t_,,r)| of the fermion zero mode dt=t_,~ —1.889 for
the Lischer-Schechter background gauge fi€kl4),(5.2),(5.6b
with parameterse=20, {=+1, and 7o~ —0.54197. The solid
curve corresponds t®(t_,,r)x2/7 and the dashed curve to
| ¥ (t_,,r)| with an arbitrary normalization. The inversion symme-
try x— 1/x, with x=r/r _4, is made manifest by use of the compact
radial coordinatep=(x—1)/(x+1).

scale invariant and the rescalirg-r/r .., att=t.; does not
alter the structure of Eq$3.13):

doe ~ . =
—=—\(X)Sin20(X)+ R(X),

dx 0(0)=0,

(5.303

As discussed in Sec. VC, there exists a fermion zero v

mode att=ty=0 (see Fig. 3 But there are two more fer-
mion zero modes precisely 6t _; andt=t ;. Three pre-
liminary steps are necessary for the proof.

First, define smooth field&(t,,r) and R(t,,r) at the
time slicest=t,,, forn=*+1,

Nty 1) =«(t,,r)/r, (5.283

R(ta.r)=[as(tn,1) = dre(ty,n]2, (5.28
with the differentiable functionx(t,,r)=p(t,,r)xsgnf,
—r) and the smooth argumen(t,,r) of the Higgs-like
field y=x exdi ¢l.

Second, perform a scale transformationar/r,,, so that
the radial pointr =r,, where the fieldy(t,,r) vanishes cor-
responds tx=1.

Third, establish that the lacher-Schechter solution for

—— =X (0| ¥ (x)|cos M (x),

ax [w(0)[=0,

(5.30b

with the dependence dn ; temporarily dropped. The differ-
ential equationg5.30 are symmetric under the inversion
transformationx< 1/x and so are their solution®(x) and

| W (x)|. The inversion symmetry implies

ImM®=Ilim®=0,

x—0

lim|W|= lim |¥|=0,

x—0

(5.32)

X— 00 X— 00

with |W| e 1/x for largex. This shows that there exist fermion
zero modes at both=t_; andt=t_;.

The inversion symmetr{s.29, after the appropriate scale
transformation, provides againsafficientcondition for the
existence of fermion zero modes &tt. ;. For Luscher-
Schechter gauge field backgrounds with arbitragyand e
=1/2, the inversion symmetr{s.29 holds, in fact, at any

the parameters chosen has the following inversion symmetriime slicet=t, wherey(t,r) has a zero. This then proves the

at fixed time slicegs=t,:

Nt 1K) = — XN (t,,X), (5.293

R(t,, 1K) = —x2R(t,,X), (5.29H

for n==1. The existence of this inversion symmetry has
been verified analytically with the help efaTHEMATICA 4.0
[21].

After these preliminaries, we turn to the possible exis-

tence of fermion zero modes at the time slited . ;. Con-
sider the zero-energy fermion equations given by E84.3
at t=t,, for n==x1, with the smooth background fields

X(ty.r) and R(t,,r). The chiral Yang-Mills theory(2.1) is

existence of fermion zero modes at gl

Figure 6 gives the profile functions of the fermion zero
mode at=t_,, obtained from the numerical solution of Egs.
(5.30. The profile functions of the fermion zero modetat
=t,, are identical, except for a change of sign@f These
functions are quantitatively different from those of the LS
guasisphalerofsee Eqs(5.24 and Fig. 3, but qualitatively
the same.

2. Extra fermion zero modes from changes in twist number

In order to locate all possible level crossings, we are
guided by the change of the spinor twist numbigy(t). The
spinor twist numbeNg(t) takes the following values in the
different time regions:

065024-15
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o o O O

N O N Y N

-0.

FIG. 7. Same as Fig. 6, but for the fermion zero modé=at
—t,~—2.924. The solid curve correspondsq—t,,r) X 2/ and
the dashed curve tp¥(—t,,r)| with an arbitrary normalization.
Both functions are plotted against the compact radial coordinate
=(x—1)/(x+1), with x=r/2.

+1 for
0

-1

tE(_m,_ta),
te(—ty,+1a),
te(+ty,+0),

No(t)= for (5.32

for

with the numerical estimaté,~2.924. The corresponding
twist factor is thus given by

ANg[+%,—0]=—1—1=—2. (5.33

In addition to the fermion zero modestgtandt.. ;, which

are associated with the change of the gauge field winding

numberN,(t), there exist two more fermion zero modes
precisely att==*t,. The analysis of these fermion zero
modes is straightforward and the normalizability condition is
found to hold, providedd(=* t,,r) approaches a half-odd-
integer multiple ofm asr—«; see Eq.(3.13h. Note that
the exact value ot, is defined implicitly by the relation
limg_... O(xt,,R)=F=n/2, where the solution

0 (= t,,R) of the differential equatiori3.13a with bound-
ary condition(3.153 can be obtained by the method of suc-
cessive approximatiord4,15.

Figure 7 gives the profile functions of the fermion zero
mode att=—t,, obtained from the numerical solution of
Egs.(3.13 and(3.15. The profile functions of the fermion
zero-mode at= +t, are identical, except for a change of
sign of ®. Figures 8 and 9 show the time variation of the
solutions® (t,r) of the transformed Riccati equati¢d.13a
aroundt= *t,, which demonstrates that the fermion zero
modes at= =t sit at bifurcation points for differenig’s.

[These results provide an example for the general discussion

leading up to Eqs(4.14) in Sec. IV A 2] Obviously, Figs. 8

and 9 are related, because of the time-reflection properties of

the background fields mentioned below Eg.11).

The fermion zero modes &t *t, are qualitatively dif-
ferent from the ones df andt.., (compare Fig. 7 with Figs.
3 and 6. These fermion zero modes occur, in fact, for Higgs-
like fields xy(=t,,r) without zeros. This differs from the
cases discussed in the literatldd,18,30. Apparently, the

long-range behavior of the background SU(2) gauge fieldgop to bottom, correspond to-t,

PHYSICAL REVIEW D 64 065024
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FIG. 8. Numerical solution® (t,r) of the transformed Riccati
equation(3.133, with boundary conditior®(t,0)=0, at different
times aroundt=—t,~—2.924 for the Lscher-Schechter back-
ground gauge field2.4),(5.2),(5.6b with parameterse=20, {=
+1, andry~—0.54197. Fott=—t,, there is a normalizable fer-
mion zero mode, with lim,..®(—t,,r)=m/2 (see Fig. J. The
different solid curves for =10, from top to bottom, correspond to
t+t,=—0.50, —0.05, —0.01, 0.00, 0.01, 0.05, and 0.50. With
increasing time, th@® values at large movetowardthe constan®
value atr=0.

3. Spectral flow

For the fermion zero modes &t —t,, t_4, ty, t,,, and
+t,, we calculate the following time gradients of the energy
eigenvalue of the effective Dirac Hamiltonian:

dE dE 0.05-0

dt t=—t, dt t=+t, . ,

dE _dE +0.08>0

dtf_ “dtl_,

dE

gp| ~—5.00<0. (5.34

t=t,
In addition, we have checked that there are no further fer-
mion zero modes, at least for the time interyat 200,
+200].

o/r

30

T

0 10 20 40 50

FIG. 9. Same as Fig. 8, but for times aroundt,~2.924. For
t=t,, there is a normalizable fermion zero mode, with
lim,_.0O(t,,r)=—m/2. The different solid curves far=10, from
—0.50, —0.05, —0.01, 0.00,

plays a crucial role for the existence of these extra fermiorp.01, 0.05, and 0.50. With increasing time, Bevalues at large

zero modegsee also the discussion in Sec) VI

move away from the constan® value atr =0.
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The level crossings corresponding to E§.34) give the
following value for the spectral flowstarting fromt=—t,
and ending at=+t,):

F+0o,—w]=—1+1-1+41-1=-1. (5.39

PHYSICAL REVIEW B34 065024

above the electroweak phase transitisee Ref[31] for a
review).

Since we adopt an approach different from the one of
previous work[5,9,10, we are able to observe certain new
features of real-time fermion number violation within the
spherically symmetricAnsatz These features include the

It would certainly be interesting to calculate the spectrum Ofspinor twist numbeNg(t) obtained from the Riccati equa-

the time-dependent effective Dirac Hamiltonian numerically

(cf. Ref.[24]) in order to see whether or not the pattern
(5.35 corresponds to aingle energy level crossinge=0
five times. Anyway, the total valués.35 agrees with the
spectral flow obtained from the relatiga.39:

F[+00,—0]=AN, [+, — %]+ ANg[ +%, ]

=1-2=-1, (5.3
where the result$5.27 and (5.33 have been used. This
demonstrates the role of the twist factoNg for the spectral
flow, which has not been noticed before to our knowledge.

tion (3.16 at a single fixed tim& and the corresponding
twist factor ANg[t;,t;] which is the change of the spinor
twist number over the time intervét; ,t;], with t;<t;. Re-
lation (4.39 then gives the spectral flow as the sum of this
twist factorANg and the winding factoAN, , which is the
change of the Chern-Simons numiéy of the associated
vacuum sectors of the gauge field background. Mathemati-
cally, the relation(4.39 takes the form of an index theorem,
restricted to spherically symmetric fields; cf. RE5).

In order to get better insight into the meaning of this
relation (4.39, we have investigated level crossings for a
particular class of Lscher-SchechtelLS) gauge field solu-

Recall that the explicit results of the present subsectioions[12,13. The results clearly demonstrate the role of the
are for the particular LS gauge field background with energy,ist factor for the spectral flow. See, in particular, Egs.

parametere= 20, together with{ and 4 from Eg. (5.11).

(5.35 and(5.36). The nonvanishing global effect of the twist

The spectral flow for LS background gauge fields turns ou, ooy on the spectral flow is partly due to the fact that the LS

to be solely given by the winding fact&N, if € is smaller
than €*~5.37071, which is the numerical solution of the
following equation:

A %\ 14
*:l i i (5 37)
8|7 | 2y2¢* || '

gauge fields form propagatingplitonsin the effective (1
+1)-dimensional theory; cf. Reff7,10]. The fields are thus
nondissipative in the (% 1)-dimensional world. For such
background gauge fields, the field-theoretic approach
adopted in Refd[9,10] is, strictly speaking, not applicable.
Although nondissipative in the (#1)-dimensional con-
text, these LS gauge field solutions are dissipative in (3

Briefly, the argument runs as follows. First, the numerical*1)-dimensional spacetime. The {3)-dimensional en-

results(and a heuristic argumengive t,=t, ;. Second, the
timest..; move toward+c ase approacheg* from above;
see Eqgs(5.8) and(5.11). Together, this implies that the con-
tribution of the twist factor to the spectral flow vanishes for
ese®, giving F[ +%,—*]=AN,[+%,—<]. (The winding
factor AN,[ +,—] is, of course, identically zero foe
<1/2)

To summarize, the twist factédtNg can play a significant
role for the spectral flow in certain LS gauge field back-

ergy density, which is obtained from the{1)-dimensional
energy density5.14) by dividing by 4sr?, approaches zero
uniformly for early and late timest{- * «).

At this moment, we propose to classify dissipative spheri-
cally symmetric SU(2) gauge field solutions into two cat-
egories. A spherically symmetric SU(2) gauge field solution
is calledstrongly dissipativef both the (3+ 1)-dimensional
and (1+1)-dimensional energy densities approach zero uni-
formly for large times {— *«). On the other hand, a

grounds, provided the energy parameter is large enough (Spherically symmetric SU(2) gauge field solution is called

>€e*).

VI. DISCUSSION

weakly dissipativeif the (3+ 1)-dimensional energy density

dissipates with time, but not the ¢11)-dimensional energy
density. Note that the LS gauge field solutions considered in
Sec. VD are weakly dissipative, according to this terminol-

In this paper, we have studied real-time anomalous ferogy.

mion number violation by directly investigating the zero-
eigenvalue equatioi3.1g of the time-dependent effective

For strongly dissipative spherically symmetric SU(2)
gauge field solutions, the rotat@(t,r) in the transformed

Dirac Hamiltonian for spherically symmetric massless chiralRiccati equation(3.13a lacks the strength to give a nonzero

fermions and SU(2) Yang-Mills gauge field backgrounds.

spinor twist numbeNg at large timegsee Appendix A for

For these spherically symmetric SU(2) gauge field backthe prooj. The relation(4.39 then predicts that the spectral

grounds, we have found a relation between the spectral floflow F is solely given by the winding factoAN

v» Which

and two characteristics of the gauge fields. Physics applicaeproduces the known resu®,10]. An isolated change of
tions of this result are based on the assumption that anomapinor twist number can still contribute to tleeal pattern of

lous production of fermions is confined to the spherically
symmetric partial wave; cf. Ref17]. Perhaps the most im-

level crossing4.32.
For weakly dissipative or nondissipative spherically sym-

portant application would be for electroweak baryon numbemetric SU(2) gauge field solutions, a nonvanishing twist fac-
violation in the early universe, in particular at temperaturesor ANg can even make global contribution to the spectral
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flow F. As mentioned above, this has been verified for cerprovided|t| is sufficiently large.

tain LS solutiong12,13. This behavior does not follow di- ~ With the inequality(A4) in hand, we are able to establish
rectly from the perturbative triangle anomdly—3], which  that the spinor twist numbee(t) vanishes asymptotically.
detects only thénoninteger topological charge. Recall that This can be shown by contradiction. Consider the trans-
the standard perturbative calculatiofleynman diagramis formed Riccati equation

essentially neglect the interactions of incoming and outgoing
particles, i.e., the interactions are “turned off” in the
asymptotic region$32].

To summarize, the spectral flow resi#.39 does not
assume strongly dissipative spherically symmetric SU(2) D(t,r)=—\(t,r)sin 20(t,r), (A5b)
Yang-Mills gauge field backgrounds, in contrast to previous
studies[5,9,10. It may, therefore, be applied to real-time
anomalous fermion number violation for weakly dissipativeat sufficiently larggt|. Now, assume that there exists a time
or nondissipative spherically symmetric SU(2) Yang-Mills slicet=t where the background fields obey inequaliy4)
gauge field backgrpunds. Moreover, preliminary results indiyng that the solutio(r)(t_,r) of Eq. (A5) belongs to the class
cate that the relatioi4.39 can be adapted to the case of S\(1), with positiveintegerN (the case of negativid will be

chiral fermions interacting with spherically symmetric . X :
SU(2) Yang-Mills and Higgs fields. deglt. YVIth latey. See.Eq.(S.lga in the main text for the
gefmmon of the solution class,.

The main outstanding problem is, of course, to understan o ) N
the role of the(appropriately generalizédwist factor in the Strong dissipation give$x(t,r)[+#0, so that the back-
full (3+1)-dimensional SU(2) Yang-Mills theory, not just ground fieldsx(t,r) and R(t,r) are smooth. This implies
the subspace of spherically symmetric configurations. Alsothat the solution®(t,r) e Sy(t), with N=1, is continuous
the corresponding index theorem needs to be established fahd must cross the value /4 at least once. Define, to

the long-range Yang-Mills gauge fields considered; cf. Refy . 1 largest radial distance for whi€h(t,r)=+ /4. In
[30] and references therein. Finally, the proper definitiibn der for® (1.1 t hth o 0 the s|
at all possiblg of the second-quantized fermion number op—Or er for@(t,r) to reach the asymptotic va , the slope

erator in general nondissipative Yang-Mills gauge field backof ©(t,r) atr=r. clearly must be non-negative,
grounds requires further study.

3, 0(t,r)=D(t,r)+R(t,r), O(t,00=0, (A5a)

tr.)=
APPENDIX: SPINOR TWIST NUMBER AND STRONGLY <9r®(t,l'+) 0, (AB)

DISSIPATIVE SU(2) GAUGE FIELDS

In this appendix, we calculate the asymptotic spinor twis@S long asd e Sy(t), with N=1. .
numberNg(t), defined by Eqgs(3.133, (3.153, and(3.20 On the other hand, Eq¢A4) and(A5), together with the
in the main text, for strongly dissipative spherically symmet-fact that sin ®(t,r ,)=-+1, give the following inequality:
ric SU(2) gauge field solutions.

From the (I+1)-dimensional energy densitp.14) and — _ _
the corresponding field equatiorisee, in particular Egs. 3 O(t,r)=—N(t,ry)+R(t,r,)<0. (A7)
(3.8) and (3.10 of Ref.[10]), the condition of strong dissi-

pation implies that there exists a small positive QUaNtitypis ast result contradicts the earlier req#l6), which was
e(t)<1 at largelt| , so that

based on the assumption th@t(t,r) e Sy(t), with N=1.
Irt=\(t,r)[<e(t) and |R(t,r)|<e(t) (Al)  Hence,O(t,r) ¢ Sy(t), for positive integem. The case of
negativeintegerN is ruled out in the same way. The conclu-
sion is thus tha® (t,r) belongs toSy(t).
lim e(t)=0. (A2) For strongly dissipative spherically symmetric SU(2)
[t]|—o gauge field solutions, we find that the rotaf®d(t,r) at large
times lacks the strength to overcome the resistance of the
See Egs(2.9), (2.19, and (3.14 in the main text for the deviatorD(t,r), so as to give a nonzero spinor twist number

definition of A(t,r) andR(t,r). at large times. In short, we have
From the bound¢Al), we immediately obtain

for 0=r <, together with the limit

0<r 1-2e(t)<\(t,r)—|R(t,r)], (A3) lim Ng(t)= lim Ng(t)=0. (A8)
t——o0 t—+o
for 0<r<R_=[2 €(t)] . Since regular finite-energy gauge
fields obey lim_,.R/A=0 [see Eq(3.11) in the main tex},

we have from Eq(A3) the following inequality for arbitrary ~ ThiS result shows that the twist factakNg[ +,—]
r = Ng(+*)—Ng(—>)=0 does not contribute to the spec-

tral flow (4.39, at least for the case of strongly dissipative
O<|R(t,r)|<A\(t,r), (A4) spherically symmetriSU(2) gauge field solutions.
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