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Predicting the critical density of topological defects inO„N… scalar field theories
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O(N) symmetriclf4 field theories describe many critical phenomena in the laboratory and in the early
Universe. GivenN andD<3, the spatial dimension, these models exhibit topological defect classical solutions
that in some cases fully determine their critical behavior. ForN52 andD53, it has been observed that the
defect density is seemingly a universal quantity atTc . We prove this conjecture and show how to predict its
value based on the universal critical exponents of the field theory. Analogously, for generalN andD we predict
the universal critical densities of domain walls and monopoles, for which no detailed thermodynamic study
exists, to our knowledge. Remarkably this procedure can be inverted, producing an algorithm for generating
typical defect networks at criticality, in contrast with the usual procedure@Vachaspati and Vilenkin, Phys. Rev.
D 30, 2036~1984!#, which applies only in the unphysical limit of infinite temperature.
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O(N) symmetric scalar field theories are a class of m
els describing the critical behavior of a great variety of i
portant physical systems. For example, forN53 they de-
scribe ferromagnets; forN51 they describe the liquid vapo
transition and binary mixtures; and forN52 they describe
superfluid 4He and the statistical properties of certain po
mers. In the early UniverseN52 describes the phase trans
tion associated with the breakdown of Peccei-Quinn sym
try, and models of high energy particle physics may belo
to the universality class ofO(N) scalar models, wheneve
the mass of the Higgs bosons is larger that of the ga
bosons.O(N) scalar models are also invoked in most imp
mentations of cosmological inflation and topological defe
scenarios@1#.

One of the fundamental properties ofO(N) lufu4 field
theories is the existence, forN<D, of static nonlinear clas-
sical solutions~domain walls, vortices, and monopoles! that
we will refer to henceforth as topological defects. At suf
ciently high temperatures, topological defects can be exc
as nonperturbative fluctuations. Their dominance over
thermodynamics, due to their large configurational entro
is known to trigger a phase transition inO(2) in three and
two dimensions, and their persistence at low energies
vents the onset of long range order inO(2), D<2, and in
O(1) in one dimension.

It is therefore natural that universal critical exponen
characterizing the phase transition in terms of defects
through the behavior of field correlators must be connec
This connection is made more quantitative whenever one
construct dual models, field theories which possess these
lective solutions as their fundamental excitations@2#. In the
absence of supersymmetry rigorous mappings between
fundamental models and their dual counterparts exist onl
very special cases@2,3#. Duality has been suggested and e
pirically observed to be a much more general phenomen
though.
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In this paper we explore the duality between the critic
behavior of the two-point field correlation function and d
fect densities at criticality. We will show that this leads to t
result that the critical density of vortex strings, observed
recent nonperturbative thermodynamic studies ofO(2), is a
universal number. Among other insights@4# this shows that
the phase transition inO(2) in three dimensions occur
when a critical density of defects is reached, connecting
rectly the familiar picture of the Hagedorn transition in vo
tex densities to the more abstract critical behavior of
fields. We also extend our procedure to differentN and D,
making predictions for the values of the universal densit
of domain walls and monopoles, in two and three dime
sions.

Finally, but very importantly, the inversion of this proce
dure allows us to easily generate typical field configuratio
at criticality. This is of fundamental practical importanc
Recent experiments in3He @5#, and large scale numerica
studies of the theory@6# have lent quantitative support to th
ideas, due to Kibble@7# and Zurek@8#, that defects form at a
second order phase transition due to a critical slowing do
of the fields response over large length scales, in the vici
of the critical point. The defect networks hence formed ha
densities and length distributions set by thermal equilibri
at T5Tc

1 ~note that this picture could change considera
for a first order phase transition!.

In contrast most realizations of defect networks used, e
in cosmological studies are generated using the Vachas
Vilenkin @1# ~VV ! algorithm. This relies on laying down ran
dom field phases on a lattice and searching for their inte
windings along closed paths. The absolute randomness o
phases corresponds to theT→` limit of the theory. More
fundamentally it yields defect networks that are quanti
tively distinct from those in equilibrium at criticality, i.e., a
formation.
©2001 The American Physical Society20-1
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Figure 1 shows the behavior of a system of vortex strin
at a second-order phase transition, forO(2) in three dimen-
sions. The data were obtained from the study of the non
turbative thermodynamics of the field theory@9#. At Tc the
total density of stringr tot displays a discontinuity in its de
rivative, signaling a second order phase transition.

A disorder parameter can be constructed in terms of st
quantities by dividing the string population into long strin
~typically string longer than;L2, whereL is the size of the
computational domain! and loops, comprising of shorte
strings. The corresponding densities are denoted byr long and
r loop. In Fig. 1 we can observe thatr long consistently van-
ishes belowTc , except for a small range ofb where it in-
creases rapidly to a finite critical value. In Ref.@9# we con-
jectured that in the infinite volume limitr inf exhibits a
discontinuous transition.

The value of the total string density atbc , r tot(bc)
.0.20, coincides with results from studies of different mo
els in the same universality class@9,10#. This fact lead us to
the conjecture@9# that r tot(bc) is universal.

In order to prove this conjecture we appeal to a w
known result, due to Halperin and Liu and Mazenko@11#.
Halperin’s formula expressesr0, the density of zeros of a
Gaussian field distribution in terms of its two-point functio
For anO(N) theory the relevant quantity is theO(N) sym-
metric correlation functionG(x)5^f(0)f(x)†&, resulting in

r0}UG9~x50!

G~x50!
UN/2

. ~1!

Equation~1! measures the density of coincident zeros of
N components of the field at a point. Coincident zeros oc
at the core of topological defects. Depending onN and D,

FIG. 1. The string densities, total, loops, and long string, a
function of inverse temperatureb. At bc , the densities display
derivative discontinuities, signaling a second order phase transi
r tot(bc) coincides for different studies, leading to the conjectu
that it is a universal number.
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coincident zeros can be interpreted as either monopo
strings, or domain walls. In the particular case of a Gauss
O(2) theory inD53, Halperin’s formula allows us to com
pute the density of vortex strings crossing an arbitrary pla
in three-dimensional space, a quantity that is clearly prop
tional to r tot .

The last key observation is that in the critical domain o
second order transition, allO(N) theories are effectively ap
proximately Gaussian, but with nontrivial critical exponen
In particular renormalization group analysis shows that
mass and quartic coupling vanish atTc @12,13#. Higher order
polynomial terms~e.g.}f6) may be generated but are sma
Hence in the critical domain the field two-point function ca
be written as

G~x!}E dDk
eik•x

uku22h
. ~2!

h!1 is the universal critical exponent taking into accou
deviations from the mean-field result~cf. Ref. @14#!.

Thus the effective Gaussianity of the theory allows t
use of Eq. ~1! to compute the critical value ofr tot(bc).
Modulo renormalization, the final result dependsonly on h
establishing, as conjectured, thatr tot(bc) is a universal quan-
tity. Substituting, Eq.~2! into Eq. ~1!, we obtain

r tot}S h11

h13D kmax
31h2kmin

31h

kmax
11h2kmin

11h
, ~3!

where we have introduced upper and lower momentum
offs kmax and kmin . In the case of a lattice of sizeL and
lattice spacinga, we take kmin52p/L and kmax52p/a
which leads to

r tot}
1

a2 S h11

h13D12~a/L !31h

12~a/L !11h
. ~4!

For large enough lattices,a/L!1, and we obtain

r tot}
1

a2 S h11

h13D . ~5!

Note thatr tot is given in units of 1/area. In the regime o
validity of Eq. ~2!, a2r tot the defect density per lattice
plaquette is independent of the lattice spacing. The def
defect mean separation length is then given byj
}aA(h13)/(h11). In addition, the form of the spectrum
@Eq. ~3!# is only valid for smallk. We must therefore adopt
physical ultraviolet cutoff that renders Eq.~5! sensible. This
scale is the defect’s width. Our statements about theuniver-
sality of r tot rest upon this choice.

In order to generate quantitative predictions we need
determine the exact proportionality factor in Eq.~5!. This
can be achieved by invoking the other instance when
interacting theory becomes Gaussian. In the high temp
ture limit b→0, the effective interaction becomes irrelevan
on the lattice, fields at different points will be complete
uncorrelated. This situation corresponds to the VV algorit

a

n.
0-2



d
s.

-

re

a

h

t i

-
n
er

e

ge
t

n,
be
ified
will

by
dy-

ver
ons.

the

-
er

its

ei
s

ty.

s as

PREDICTING THE CRITICAL DENSITY OF . . . PHYSICAL REVIEW D 64 065020
where a field is thrown randomly at each lattice site an
network of strings is built by identifying phase winding
Figure 1 shows the agreement of the densities atb50 with
the well known VV result ofrVV51/3 ~in lattice units!, with
75% long string.1 Since the totally uncorrelated field corre
sponds to a flat power spectrumG(k);k0 we normalize
Halperin’s expression by imposingr tot5rVV for h52,

r tot5
5

3S h11

h13D rVV . ~6!

This expression is valid for general lattices, given the cor
spondingrvv . For a cubic lattice and settingh.0.035, the
value corresponding to the universality class of theO(2)
model in three dimensions@12#, we obtainr tot50.190. This
is close to the valuer tot.0.2 observed both in thelf4 @9#
andXY @10# studies in three dimensions.

A similar exercise permits the computation of the critic
density of domain walls forO(1) and monopoles in aO(3)
theory at the critical temperature in three dimensions. T
density of domain walls per link is

r tot5S 5

3D 1/2S h11

h13D 1/2

rVV . ~7!

For a cubic lattice the density in the high-temperature limi
rVV51/2 and at the critical temperature we obtain, withh
50.034 @12#, r tot.0.38. For monopoles, for the flat
spectrum case we will takerVV.0.1. A better estimate ca
be obtained from a tetrahedral discretization of the sph
resulting inrVV53/32. Using

r tot5S 5

3D 3/2S h11

h13D 3/2

rVV , ~8!

with h50.038@12# we obtain the critical valuer tot50.040.
Finally for domain walls in two dimensions, the density p
link at bc is

r tot5A2S h

h12D 1/2

rVV . ~9!

Taking h50.26 @12# andrVV51/2, we obtainr tot50.24.
Remarkably the present procedure can be inverted to

erate a typical defect network at criticality. The approxima
Gaussianity of the field theory atTc implies that the statisti-
cal distribution of fields,P@f# is given by

P@f#5Ne2*d3kufku2/G(uku). ~10!

This distribution can be sampled by generating fields as

Re~fk!,Im~fk!5
R

A2
AG~ uku!, ~11!

1This is the result for a field with a continuous phase—in th
original paper@1# Vachaspati and Vilenkin used a discretized pha
which leads to a smaller value of about 0.29 for the total densi
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whereR is a random number from a Gaussian distributio
with zero mean and unit variance. The field can then
Fourier transformed to coordinate space, its phases ident
at each site, and vortices found in the standard way. We
employ the lattice form ofG(uku):

G~ uku!215F(
i 51

D

2@12cos~ki !#G ~22h!/2

; uku→0uku22h.

~12!

We have performed several tests on the algorithm,
comparing it to the results of the nonperturbative thermo
namics of the fields at criticality. We used lattices of sizeNlat

3

with Nlat516, 32, 64, and 128. All results are averages o
50 samples obtained from independent random realizati
Figure 2 shows the string densities for values ofh between 0
and 0.1, including all reasonable values ofh in three dimen-
sions.

The values for the densities depend on the size of
lattice, converging to finite values for largeNlat . In Fig. 3 we
can see the scaling ofr tot with box size for two choices of
the critical exponent, the mean field valueh50. and the
theoretical result for theO(2) universality class in three di
mensions:h50.035. We can predict the form and the pow
of this scaling through Eq.~4!. Writing a/L51/Nlat , the
number of points in the lattice, and expanding Eq.~4! in
powers of 1/Nlat we see that Halperin’s result converges to
infinite volume limit according to

r tot~`!2r tot~Nlat!5
1

Nlat
11h

1O~1/Nlat
2 ! ~13!

r
e

FIG. 2. The string densities from the 50 Gaussian realization
a function ofh for a lattice withNlat564. Error bars indicate the
standard deviation from the mean.
0-3
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To check these scalings we fitted the data of Fig. 3 t
power law of the form

r tot~Nlat!5r tot~`!1
A

Nlat
a

~14!

For h50 andh50.035, we found

h50.0, r tot~`!50.1969, A50.3259, a51.060,

h50.035, r tot~`!50.2012, A50.3422, a51.124.

These values ofa are indeed close to 1, with a larger co
rection forh50.035 as expected from Eq.~13!.

In Ref. @9# for a lattice of sizeNlat5100 we measured
r tot(bc)50.19860.004. For a Gaussian field withh
50.035 we obtainr tot50.20360.003. The agreement of th
two results is very satisfactory.

The results forr long and r loop using these two differen
methods are also in good agreement. In this case we wer
able to find a reasonable scaling expression. The results
Nlat5100, using h50.035 are r long50.08060.004 and

FIG. 3. The total string density for two values ofh for Nlat

516, 32, 64, and 128 and respective fits to a power law. Statis
errors are much larger than the deviation of the points to the fi
cs

cs

s.
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r loop50.12160.004. These compare well with the nonpe
turbative resultsr long50.07660.005, r loop50.12060.004.
Even more impressive is that the string length distribution
criticality can also be reproduced by our Gaussian field
gorithm. This distribution can be successfully fitted to
expression of the form@9#

n~ l !5Al2ge2bs l . ~15!

The fit to the results of the Gaussian field algorithm show
small variation of the parametersA,g, and s for h
;0.0–0.1.s is consistently zero, reflecting the fact that th
spectrum is always scale invariant. The value ofg varies
between 2.34 and 2.40. For the critical exponenth50.035
we obtainedg.2.35. Once again this is in good agreeme
with the result from the lattice nonperturbative thermod
namics atTc @9#, g.2.36.

Finally the predictions forr tot from Halperin’s formula,
when compared to the accuracy of the Gaussian algorit
seem rather poor. The expression is meant to apply for c
tinuum distributions, while all other values ofr tot were ob-
tained on the lattice. A straight substitution of the latti
correlator@Eq. ~12!# into Eq. ~1! increasesr tot to 0.21 from
0.19, covering our full range of results. To perform a prec
comparison however Halperin’s formula should be rederiv
for a field theory on the lattice. Despite these shortcomin
Halperin’s formula has the merit of being the only analytic
way of estimating the critical densities of defects in theor
where nonperturbative thermodynamic results are scarce

We have therefore established the connection between
universal critical exponent characterizing the behavior of
O(N) field two-point correlator and the critical density o
defects. This relation implies that defect densities atTc for a
system undergoing a second order phase transition are
versal numbers. Their physical values can be obtained
specifying the defect’s width. We predicted them for seve
O(N) models in two and three dimensions. Based on th
insights we proposed an algorithm for generating netwo
of defects at the time of formation. In particular, we ha
shown that this algorithm reproduces accurately all the f
tures of a string network in three dimensions at criticali
This procedure, instead of the more usual algorithm of R
@1#, should be used to generate typical defect networks at
time of their formation.
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