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Predicting the critical density of topological defects inO(N) scalar field theories
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O(N) symmetrich ¢* field theories describe many critical phenomena in the laboratory and in the early
Universe. GiverN andD < 3, the spatial dimension, these models exhibit topological defect classical solutions
that in some cases fully determine their critical behavior. Rer2 andD =3, it has been observed that the
defect density is seemingly a universal quantityrat We prove this conjecture and show how to predict its
value based on the universal critical exponents of the field theory. Analogously, for ghreerdD we predict
the universal critical densities of domain walls and monopoles, for which no detailed thermodynamic study
exists, to our knowledge. Remarkably this procedure can be inverted, producing an algorithm for generating
typical defect networks at criticality, in contrast with the usual procefaehaspati and Vilenkin, Phys. Rev.

D 30, 2036(1984], which applies only in the unphysical limit of infinite temperature.
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O(N) symmetric scalar field theories are a class of mod- In this paper we explore the duality between the critical
els describing the critical behavior of a great variety of im-behavior of the two-point field correlation function and de-
portant physical systems. For example, for=3 they de- fect densities at criticality. We will show that this leads to the
scribe ferromagnets; fdd=1 they describe the liquid vapor result that the critical density of vortex strings, observed in
transition and binary mixtures; and fd¢f=2 they describe recent nonperturbative thermodynamic studie©¢®), is a
superfluid “He and the statistical properties of certain poly- universal number. Among other insigH#] this shows that
mers. In the early Universl=2 describes the phase transi- the phase transition itD(2) in three dimensions occurs
tion associated with the breakdown of Peccei-Quinn symmeyhen a critical density of defects is reached, connecting di-
try, and models of high energy particle physics may belongectly the familiar picture of the Hagedorn transition in vor-
to the universality class oD(N) scalar models, whenever (o gensities to the more abstract critical behavior of the

the mass of the Higgs bosons is larger that of the gaugfe|4s \we also extend our procedure to differéhand D,

bosonsO(N) scalar models are also invoked in mostimple- i predictions for the values of the universal densities

Srzzr:}t::ilggi]of cosmological inflation and topological OlefECtSof domain walls and monopoles, in two and three dimen-

. . sions.
One of the fundamental properties O(N) \|#|* field ; . : . .
theories is the existence, foé<D, of static nonlinear clas- Finally, but very importantly, the inversion of this proce-

sical solutionsdomain walls, vortices, and monopolehat dure allows us to easily generate typical field configurations

we will refer to henceforth as topological defects. At suffi- & criticality. This is of fundamental practical importance.
ciently high temperatures, topological defects can be excite®ecent experiments ifHe [5], and large scale numerical
as nonperturbative fluctuations. Their dominance over thétudies of the theor}6] have lent quantitative support to the
thermodynamics, due to their large configurational entropyldeas, due to Kibblg7] and ZureK 8], that defects form at a

is known to trigger a phase transition @(2) in three and ~second order phase transition due to a critical slowing down

two dimensions, and their persistence at low energies predf the fields response over large length scales, in the vicinity
vents the onset of long range order@(2), D<2, and in  of the critical point. The defect networks hence formed have

O(1) in one dimension. densities and length distributions set by thermal equilibrium
It is therefore natural that universal critical exponentsat T=T_ (note that this picture could change considerably
characterizing the phase transition in terms of defects antbr a first order phase transitign
through the behavior of field correlators must be connected. In contrast most realizations of defect networks used, e.g.,
This connection is made more guantitative whenever one caim cosmological studies are generated using the Vachaspati-
construct dual models, field theories which possess these collenkin [1] (VV) algorithm. This relies on laying down ran-
lective solutions as their fundamental excitatig@s In the  dom field phases on a lattice and searching for their integer
absence of supersymmetry rigorous mappings between theindings along closed paths. The absolute randomness of the
fundamental models and their dual counterparts exist only iphases corresponds to tfie-o limit of the theory. More
very special casg®,3]. Duality has been suggested and em-fundamentally it yields defect networks that are quantita-
pirically observed to be a much more general phenomenoriively distinct from those in equilibrium at criticality, i.e., at
though. formation.
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coincident zeros can be interpreted as either monopoles,
strings, or domain walls. In the particular case of a Gaussian
O(2) theory inD =3, Halperin's formula allows us to com-
pute the density of vortex strings crossing an arbitrary plane
in three-dimensional space, a quantity that is clearly propor-
tional to pyt.

The last key observation is that in the critical domain of a
second order transition, a(N) theories are effectively ap-
proximately Gaussian, but with nontrivial critical exponents.
In particular renormalization group analysis shows that the
mass and quartic coupling vanishTat[12,13. Higher order
polynomial termge.g.= ¢°) may be generated but are small.
Hence in the critical domain the field two-point function can
be written as
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g 7n<<1 is the universal critical exponent taking into account
deviations from the mean-field resyéf. Ref.[14]).

FIG. 1. The string densities, total, loops, and long string, as a Thus the effective Gaussianity of the theory allows the
function of inverse temperaturg8. At 8., the densities display use of Eg.(1) to compute the critical value op(B.)-
derivative discontinuities, signaling a second order phase transitiotModulo renormalization, the final result depermigy on 7
pod Bc) coincides for different studies, leading to the conjectureestablishing, as conjectured, thg(8.) is a universal quan-
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that it is a universal number. tity. Substituting, Eq(2) into Eq. (1), we obtain
Figure 1 shows the behavior of a system of vortex strings pr1\K3E k37
at a second-order phase transition, @{2) in three dimen- Ptot™ 743 )it ()]
max min

sions. The data were obtained from the study of the nonper-

turbative thermodynamics of the field thed§). At T, the where we have introduced upper and lower momentum cut-

total density of stringo,,; displays a discontinuity in its de- offs k.., and k.. In the case of a lattice of size and

rivativg, signaling a second order phase tra_nsition. _Jattice spacinga, we take k,=2/L and kj=2m/a
A disorder parameter can be constructed in terms of string . 2 L min max

guantities by dividing the string population into long string

(typically string longer than-L?, whereL is the size of the 1(7+1\1—(alL)®"7
computational domajnand loops, comprising of shorter Pt =5 7 . (4)
strings. The corresponding densities are denotegpy and a?\7+3/1—(a/L)t*”

Pioop- IN Fig. 1 we can observe thaf,,q consistently van- . ,

ishes belowT,, except for a small range ¢8 where it in-  FOF large enough lattices/L <1, and we obtain
creases rapidly to a finite critical value. In RE®] we con-

jectured that in the infinite volume limip;,; exhibits a o i(ﬂ (5)
discontinuous transition. Po™ 2| 5+3)

The value of the total string density &., pwi(Bec)
=0.20, coincides with results from studies of different mod-Note thatpy is given in units of 1/area. In the regime of
els in the same universality clafs,10]. This fact lead us to  validity of Eq. (2), a’p,; the defect density per lattice
the conjecturd9] that p;( Bc) is universal. plaquette is independent of the lattice spacing. The defect-
In order to prove this conjecture we appeal to a welldefect mean separation length is then given By
known result, due to Halperin and Liu and Mazer[kd]. xay(n+3)/(»+1). In addition, the form of the spectrum
Halperin's formula expresses,, the density of zeros of a [Eq.(3)]is only valid for smallk. We must therefore adopt a
Gaussian field distribution in terms of its two-point function. physical ultraviolet cutoff that renders E() sensible. This
For anO(N) theory the relevant quantity is th@(N) sym-  scale is the defect’s width. Our statements aboututhiger-
metric correlation functio(x) =($(0)b(x)"), resulting in  sality of p,, rest upon this choice.
In order to generate quantitative predictions we need to
determine the exact proportionality factor in E®). This
@) can be achieved by invoking the other instance when the
interacting theory becomes Gaussian. In the high tempera-
Equation(1) measures the density of coincident zeros of allture limit 83— 0, the effective interaction becomes irrelevant:
N components of the field at a point. Coincident zeros occupn the lattice, fields at different points will be completely
at the core of topological defects. Dependingdrand D,  uncorrelated. This situation corresponds to the VV algorithm

G//(X: O) N/2

Po%|'G(x=0)
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where a field is thrown randomly at each lattice site and a 0.22 g T Y
network of strings is built by identifying phase windings. g
Figure 1 shows the agreement of the densitie8a0 with 02 E 3
the well known VV result ofpy, = 1/3 (in lattice unitg, with ” g 3
75% long string: Since the totally uncorrelated field corre- 2 B E
0 . = 0.18 —
sponds to a flat power spectru@(k)~k” we normalize 2 E 3
Halperin’s expression by imposing.= pyy for =2, < g 3
0.16 =
5( p+1 -
Po=3| 3P (6) %0.14 3 E
This expression is valid for general lattices, given the corre- ?ﬂ E Proop 3
spondingp,, . For a cubic lattice and setting=0.035, the £ 0.12 3 H—HW E
value corresponding to the universality class of (BE2) i g 3
model in three dimensior42], we obtainp,,;=0.190. This 0.1 F E
is close to the valug,=0.2 observed both in the¢* [9] F
and XY [10] studies in three dimensions. 0.08 E 3
A similar exercise permits the computation of the critical VT I TRRETRRTE IRTTRRTTTe VR ITTTRA =
density of domain walls fo©(1) and monopoles in &(3) 1.9 192 194 196 1.98 2
theory at the critical temperature in three dimensions. The 2-n
density of domain walls per link is
FIG. 2. The string densities from the 50 Gaussian realizations as
5\12( p+1\1? a function of 5 for a lattice withN,,=64. Error bars indicate the
Ptot= 5) m Pvv - (7 standard deviation from the mean.

For a cubic lattice the density in the high-temperature limit iswhereR is a random number from a Gaussian distribution,
pyv=1/2 and at the critical temperature we obtain, witfh with zero mean and unit variance. The field can then be
=0.034 [12], p,,=0.38. For monopoles, for the flat- Fourier transformed to coordinate space, its phases identified
spectrum case we will taka,,=0.1. A better estimate can at each site, and vortices found in the standard way. We will
be obtained from a tetrahedral discretization of the spheregmploy the lattice form o5(|k|):

resulting inpyy=3/32. Using

5)3/2 n+1 312 D 2-n)2
Po=l3) yva] P ® G(|k|>1=[i21 2[1—cos<ki>]} ~ ol k2.
with 7=0.038[12] we obtain the critical valug,,= 0.040. (12
Finally for domain walls in two dimensions, the density per
link at B; is We have performed several tests on the algorithm, by
o comparing it to the results of the nonperturbative thermody-
— 2 7 ) namics of the fields at criticality. We used lattices of digh
Prot nt+2) Pw- with Nj,;=16, 32, 64, and 128. All results are averages over

) _ 50 samples obtained from independent random realizations.
Taking »=0.26[12] and p\, = 1/2, we obtainp;=0.24. Figure 2 shows the string densities for valuesdfetween 0

Remarkably the present procedure can be inverted to geRmd 0.1, including all reasonable valueszpin three dimen-
erate a typical defect network at criticality. The approximatesjons.

GaUSS|an|ty of the fleld theor)./ 5‘;: ImpIIeS that the statisti- The values for the densities depend on the size of the
cal distribution of fieldsP[ ¢] is given by lattice, converging to finite values for larg,,. In Fig. 3 we
13Kl 12 can see the scaling gf; with box size for two choices of
P[¢]=Ne ™ TaHadTe(k), (100 the critical exponent, the mean field valug=0. and the

theoretical result for th€©(2) universality class in three di-
mensions:zy=0.035. We can predict the form and the power
R of this scaling through Eq(4). Writing a/L=1/N,, the
Re( éy), Im( ) = —\G(|K]), (1)  number of points in the lattice, and expanding E4). in

V2 powers of 1N ,; we see that Halperin’s result converges to its
infinite volume limit according to

This distribution can be sampled by generating fields as

This is the result for a field with a continuous phase—in their 1
original papef1] Vachaspati and Vilenkin used a discretized phase Pot(®) = prot Njap) =iy + O(l/N|2at (13
which leads to a smaller value of about 0.29 for the total density. Niat

065020-3



ANTUNES, BETTENCOURT, AND YATES

JII\IIIEHIIHHIHHHHH\HIIHIII||||||||||||||H||\H|IHHHHHH7
0.215 |- -
0.21 |- =
< . 3
0.205 F . m=0.035 3
Eop=0N\. e S ]
0.2 |- -
:IIHIIIH‘IIHHIH‘HHHH\‘\IIIIHII|II|IIIII||IIIIIHIllHHlHHlHHHH:

0 20 40 60 80 100 120 140 160

N

lat

FIG. 3. The total string density for two values &f for N
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Ploop=0.121+0.004. These compare well with the nonper-
turbative resultsp|o,q=0.076+0.005, pjoop=0.120+0.004.
Even more impressive is that the string length distribution at
criticality can also be reproduced by our Gaussian field al-
gorithm. This distribution can be successfully fitted to an
expression of the forr9]

n(l)y=Al"re £, (15)

The fit to the results of the Gaussian field algorithm shows a
small variation of the parameterd,y, and o for »
~0.0-0.1.0 is consistently zero, reflecting the fact that the
spectrum is always scale invariant. The valueyofaries
between 2.34 and 2.40. For the critical exponert0.035

we obtainedy=2.35. Once again this is in good agreement
with the result from the lattice nonperturbative thermody-
namics atT; [9], y=2.36.

Finally the predictions forp,, from Halperin’s formula,
when compared to the accuracy of the Gaussian algorithm,
seem rather poor. The expression is meant to apply for con-
tinuum distributions, while all other values pf,; were ob-
tained on the lattice. A straight substitution of the lattice

=16, 32, 64, and 128 and respective fits to a power law. Statisticatorrelator[Eq. (12)] into Eq. (1) increaseg;,; to 0.21 from

errors are much larger than the deviation of the points to the fits.

0.19, covering our full range of results. To perform a precise
comparison however Halperin’'s formula should be rederived

To check these scalings we fitted the data of Fig. 3 to dor a field theory on the lattice. Despite these shortcomings

power law of the form

A
Prot Nia) = pror( ) + — (14

Niat
For »=0 and»=0.035, we found

7=0.0, pul®)=0.1969, A=0.3259, a=1.060,

7=0.035, p(*)=0.2012, A=0.3422, a=1.124.

These values o& are indeed close to 1, with a larger cor-
rection for »=0.035 as expected from E(L3).

In Ref. [9] for a lattice of sizeN,;;=100 we measured
Pio( Bc) =0.198-0.004. For a Gaussian field withy
=0.035 we obtaimp,;=0.203+0.003. The agreement of the
two results is very satisfactory.

The results forpigng and pjeep USIiNg these two different

Halperin’s formula has the merit of being the only analytical
way of estimating the critical densities of defects in theories
where nonperturbative thermodynamic results are scarce.

We have therefore established the connection between the
universal critical exponent characterizing the behavior of the
O(N) field two-point correlator and the critical density of
defects. This relation implies that defect densitie$ afor a
system undergoing a second order phase transition are uni-
versal numbers. Their physical values can be obtained by
specifying the defect’s width. We predicted them for several
O(N) models in two and three dimensions. Based on these
insights we proposed an algorithm for generating networks
of defects at the time of formation. In particular, we have
shown that this algorithm reproduces accurately all the fea-
tures of a string network in three dimensions at criticality.
This procedure, instead of the more usual algorithm of Ref.
[1], should be used to generate typical defect networks at the
time of their formation.

methods are also in good agreement. In this case we were not We thank R. Durer and W. Zurek for useful discussions.
able to find a reasonable scaling expression. The results fdarhis work was partially supported by the ESF and by the

Nj= 100, using »=0.035 are pjy,q=0.080=0.004 and

DOE, under Contract No. W-7405-ENG-36.
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