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Derivative expansion and the parity violating effective action for thermal„2¿1…-dimensional QED
at higher orders
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We systematically study induced higher order corrections to the parity violating part in thermal QED211, in
the static limit, using the method of derivative expansion. We explicitly calculate the parity violating parts of
the quadratic, cubic and the quartic terms~in fields! of the effective action which is linear in the magnetic field.
We show that each of these actions can be summed, in principle, to all orders in the derivatives. However, such
a structure is complicated and not very useful. On the other hand, at every order in the powers of the
derivatives, we show that the effective action can also be summed to all orders in theA0 fields. The resulting
thermal parity violating actions can be expressed in terms of the leading order effective action in the static
limit. We prove gauge invariance, bothlarge andsmallof the resulting effective actions, within the framework
of derivative expansion. Various other features of the theory are also brought out.
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I. INTRODUCTION

Chern-Simons~CS! theories, in 211 dimensions, have
been of interest in recent years@1,2#. Non-Abelian CS theo-
ries are invariant underlarge gaugetransformations provided
the coefficient of the CS term is quantized. At finite tempe
ture, however, the induced CS term has a continuous co
cient ~temperature dependent!, which is incompatible with
the discreteness of the CS coefficient necessary forlarge
gaugeinvariance to hold@3–5#. This puzzle of violation of
large gaugeinvariance at finite temperature is well unde
stood now, at least in Abelian theory@6–9#.

As is well known, at finite temperature, amplitudes@10#
as well as the effective action become nonanalytic@11,12#,
unlike at zero temperature. As a result, it becomes esse
to talk of the effective action only in certain limits—the co
ventional ones being the long wave and static limits. It h
already been shown within the context of Abelian CS the
in 211 dimensions thatlarge gaugeinvariance is not an
issue in the long wave limit@9#. On the other hand, a trun
cation of the effective action at any finite order in the sta
limit leads to a violation oflarge gaugeinvariance, although
the complete action haslarge gaugeinvariance. This has
been checked for leading order terms in the effective ac
in the static limit.

The leading order parity violating effective action in th
static limit can be determined exactly, either through fun
tional methods@7,8# or through the use of alarge gauge
Ward identity@9,13#. This, of course, raises the question
higher order corrections to this action and the issue oflarge
gauge invariance for such terms. In this paper, we addr
this question.

Higher order corrections can naturally be obtain
through a derivative expansion~powers of momentum!
@4,14,15#. However, as is known in simple models, in
model with large gaugeinvariance, a derivative expansio
does lead to new subtleties@16,18#. In fact, some such
0556-2821/2001/64~6!/065018~15!/$20.00 64 0650
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subtlety was already noted earlier in the Abeli
(211)-dimensional model@16#, even at the leading order in
the static limit. In Sec. II, we extend and improve on t
analysis of Ref.@16# to rederive, within the context of de
rivative expansion, the leading order parity violating effe
tive action in the static limit which is linear inB, the mag-
netic field. We also show, within the framework of
derivative expansion, that the parity violating part of the
fective action does not contain any higher order terms inAW in
that limit, so that this action is a complete parity violatin
effective action in that limit, consistent with the results o
tained in Refs.@7–9#. In Sec. III, we tackle the question o
going beyond the leading order, in the static limit, and eva
ate the parity violating effective action using a derivati
expansion in the coordinate space~see Appendix A for the
corresponding momentum space calculation!. Beyond the
leading order in the static limit, the parity violating part o
the effective action will contain nonlinear terms inAW . How-
ever, our calculations in this paper are restricted only
terms linear inAW , for simplicity, although the method o
derivative expansion can be extended to more general c
as well. We calculate a closed form expression for the q
dratic part of the parity violating effective action. In fact, th
effective action, at any order, can be obtained in a clo
form, but the closed form expressions are not necessa
simple. Rather, a power series expansion in the numbe
derivatives gives a simpler expression to the quadratic, cu
and quartic~in fields! terms of the effective action. In Sec
IV, we analyze the general features of our results. In parti
lar, we show that from our low order~in fields! calculations,
we can, in fact, predict the behavior of the effective acti
with one, three and five derivatives to all orders in the fiel
In fact, to all orders, we find that these effective actions
completely determined from the form of the leading ord
parity violating effective action in the static limit. They ar
manifestly invariant undersmallas well aslargegauge trans-
formations. We present a brief conclusion in Sec. V. One
©2001 The American Physical Society18-1
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the features that arises, within the derivative expansion
the fact that expressions for these actions are not manife
invariant undersmall gauge transformations, although the
can be brought to a gauge invariant form~at least for lower
orders! through the use of various algebraic identities. A ge
eral proof of gauge invariance and locality of the effecti
action linear inAW undersmall gauge transformations is pre
sented in Appendix B, where we recast the derivative exp
sion also in a gauge invariant form.

II. LEADING ORDER DERIVATIVE EXPANSION
IN THE STATIC LIMIT

Let us consider a fermion interacting with an Abelia
gauge background described by the Lagrangian density~in
211 dimensions!

L5c̄@gm~ i ]m1eAm!2M #c. ~1!

Here, for simplicity, we will assume thatM.0. The effec-
tive action following from this is formally given by

Ge f f@A,M #52 i ln det@gm~ i ]m1eAm!2M #

52 i Tr ln@gm~ i ]m1eAm!2M #, ~2!

where ‘‘Tr’’ stands for a trace over Dirac indices as well
over a complete basis of states. As is well known, at fin
temperature, the effective action is not well defined eve
where @11,12#, as a result of which it can be expanded
powers of derivatives only in some limit. This is a simp
reflection of the fact that thermal amplitudes are nonanal
at the origin in the energy-momentum plane@10#. This was
explicitly shown in thermal QED211 @9#, where we calcu-
lated the leading term in the parity violating part of the b
diagram at finite temperature, and where we also showed
large gaugeinvariance is an issue in the static limit but n
in the long wave limit. In this paper, we systematically c
culate the higher order corrections to the earlier result, in
static limit, by using the method of derivative expansi
@14,15#. Although we earlier summed the leading order ter
in the static limit using a large gauge Ward identity@9#, in
this section we will rederive this result from the derivati
expansion.

The leading order behavior in the static limit, as shown
Ref. @9#, is consistent with assuming a specific form of t
background gauge fields, namely@7,8#,

A05A0~ t !, AW 5AW ~xW !. ~3!

@In other words, even though background~3! is not what one
would call a static background, explicit perturbative calcu
tions show@9# that the leading order behavior of the pari
violating amplitudes, in the static limit, corresponds to th
choice of a gauge background.# The parity violating part of
the effective action, in such a background, was already
culated in Refs.@7–9,16,17#, and here, as a warmup, w
rederive the result from a derivative expansion which w
also help settle some subtlety of this method. It is w
known that, by a suitable gauge transformation@8,9,19#
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Am→Am1]mV, V~ t !5S 2E
0

t

1
t

bE0

b D dt8A0~ t8!,

~4!

a gauge background of the form of Eq.~3! can always be
brought to the form

A0~ t !→ a

b
5

1

bE0

b

dt A0~ t !, AW 5AW ~xW !, ~5!

so that under alarge gaugetransformation,

a→a1
2pn

e
. ~6!

We will use the imaginary time formalism@11,20,21# in
evaluating the finite temperature determinant, where ene
takes discrete values. Rotating to Euclidean space, the e
tive action takes the form

Ge f f@A,M #52(
n

Tr ln~p”1g0ṽn1M1eA” !, ~7!

where we have definedp”5gW •pW and similarlyA” 5gW •AW . Fur-
thermore,

ṽn5vn1
ea

b
5

~2n11!p

b
1

ea

b
, ~8!

whereb represents the inverse temperature in units wh
the Boltzmann constant is unity. The momentum in the ab
expression is to be understood as an operator which doe
commute with coordinate dependent quantities. Let us a
note that we are working with the following representatio
of gamma matrices in Euclidean space:

g05 is3 , g15 is1 , g25 is2 . ~9!

Let us next define

Kn5
1

p”1g0ṽn1M
. ~10!

Then, taking out a factor~which does not contribute to th
parity violating effective action! we can write the effective
action as

Ge f f@A,M #52(
n

Tr ln~11eKnA” !

52(
n

Tr(
j 50

`
~21! j

j 11
~eKnA” ! j 11. ~11!

This expression shows that the effective action contains
powers ofAW . However, let us next show that quadratic a
higher powers ofAW do not occur in the parity violating par
of the effective action. To this end, let us note that if w
define@8#
8-2
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g0ṽn1M5rneg0fn, ~12!

where

rn5Aṽn
21M2, fn5tan21

ṽn

M
, ~13!

we can write

Kn5
1

p”1g0ṽn1M

5e2g0fn/2
1

p”1rn

e2g0fn/25e2g0fn/2Kn
(0)e2g0fn/2.

~14!

Using this, the terms in Eq.~11! containing higher powers
of AW can be written as
b
th
si

06501
Ge f f
(higher)@A,M #52(

n
Tr(

j 51

~21! j

j 11
~eKnA” ! j 11

52(
n

Tr(
j 51

~21! j

j 11

3~e2g0fn/2eKn
(0)e2g0fn/2A” ! j 11

52(
n

Tr(
j 51

~21! j

j 11
~eKn

(0)A” ! j 11, ~15!

where the intermediate phase factors cancel because o
gamma matrix algebra, whereas the initial and final ph
factors cancel because of the cyclicity of the trace. It n
follows that the parity violating part of this action is

Ge f f
PV(higher)@A,M #5

1

2
~Ge f f

(higher)@A,M #2Ge f f
(higher)@A,2M # !

50, ~16!

which follows because expression~15! is an even function of
the fermion mass. This shows that the parity violating part
the effective action is at best linear inAW . However, as is clear
from this derivation, it says nothing about the parity conse
ing part of the effective action, which, in general will conta
higher powers ofAW . In fact, as we can see from Eq.~15!, the
parity conserving part will have a quadratic term of the fo
Ge f f
PC(2)5

e2

2 (
n

Tr Kn
(0)A” Kn

(0)A”

5
e2

2 (
n

Tr
1

p”1rn

A”
1

p”1rn

A”

52e2(
n
E d2x

d2p

~2p!2 S 2pipj1 i ~pi] j1pj] i !2d i j @rn
21pk~pk1 i ]k!#

~pW 21rn
2!@~pW 1 i¹W !21rn

2#
Aj D Ai

52
e2

2p (
n
E da d2x a~12a! Ai

~] i] j2¹2d i j !

@2a~12a!¹21rn
2#

Aj

5
e2

2p (
n
E da d2x a~12a!B

1

rn
22a~12a!¹2

B, ~17!
where we have defined the magnetic field as

B[e i j ] iAj , i , j 51,2. ~18!

and combined the denominators using the Feynman com
nation formula in the intermediate steps. The sum over
discrete frequencies can be done in a simple manner u
the formula
i-
e
ng

(
n52`

`
1

S ~2n11!p

b
1

u

b D 2

1m2

5
b

4m F tanh
1

2
~bm2 iu!1tanh

1

2
~bm1 iu!G

5
b

m

]

]u
tan21S tanh

bm

2
tan

u

2D , ~19!
8-3
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and leads to

Ge f f
PC(2)5

e2b

8p E da d2x a~12a!B
1

AM22a~12a!¹2

3F tanh
1

2
@bAM22a~12a!¹22 iea#

1tanh
1

2
@bAM22a~12a!¹21 iea#GB

5
eb

2pE da d2x a~12a!B
1

AM22a~12a!¹2

]

]a

3tan21S tanh
bAM22a~12a!¹2

2
tan

ea

2 DB.

~20!

This is completely in agreement with the results of Ref.@16#,
and it is clear that this action is manifestly invariant und
large gaugetransformations@see Eq.~6!#. ~That is, the arctan
it

06501
r

changes by a constant under alarge gaugetransformation.
However, the quadratic effective action involves a derivat
and, therefore, this action is invariant underlarge gauge
transformations.!

The term in the effective action, linear inAW , has to be
evaluated more carefully since this term, as it stands@see Eq.
~11!#, needs to be regularized. It was suggested in Ref.@16#
to look alternately at the linear term in the derivative of t
effective action:

]Ge f f
(1)

]a
5

e2

b (
n

Tr KnA” Kng0 . ~21!

This would correspond to making one subtraction. Howev
this expression is still not fully regularized~it does not sat-
isfy cyclicity as can be easily checked! so that the effective
action linear inAW was derived in Ref.@16# in a limiting
manner from this~where cyclicity was still an issue!. Let us
note, however, that we are interested in the parity violat
part of the effective action. Thus, from Eq.~7!, we obtain
]Ge f f
PV

]a
5

1

2S ]Ge f f@A,M #

]a
2

]Ge f f@A,2M #

]a D
52

e

2b (
n

TrS 1

p”1g0ṽn1M1eA”
2

1

p”1g0ṽn2M1eA”
D g0

52
eM

b (
n

Tr
1

p21ṽn
21M21e~pW •AW 1AW •pW 2 ig0B!1e2AW 2

g0 . ~22!
in
ier

-
hat
en

an-
The linear term~in AW ) of this expression gives

]Ge f f
PV(1)

]a
5

e2M

b (
n

Tr
1

p21ṽn
21M2

~pW •AW 1AW •pW

2 ig0B!
1

p21ṽn
21M2

g0 . ~23!

This expression is well defined and satisfies the cyclic
condition. Evaluating the Dirac trace gives~‘‘tr’’ simply de-
notes trace over a complete basis!

]Ge f f
PV(1)

]a
5

2ie2M

b (
n

tr
1

~p21ṽn
21M2!2

B

5
ie2M

2pb (
n
E d2x

1

ṽn
21M2

B

5
ie2

8pE d2xF tanh
1

2
~bM2 iea!
y

1tanh
1

2
~bM1 iea!GB

5
ie

2p

]

]aE d2x tan21S tanh
bM

2
tan

ea

2 DB. ~24!

This determines the parity violating effective action linear
B which precisely coincides with the action derived earl
@8,9,16#; for future use, let us define

G~a,M !5
e

2p
tan21S tanh

bM

2
tan

ea

2 D , ~25!

so that we can write

Ge f f
PV(1)5 i E d2x B G~a,M !. ~26!

@In general, of course, Eq.~24! determines the effective ac
tion up to an additive constant. However, if we assume t
the effective action is normalized such that it vanishes wh
the external fields vanish, then, the additive constant v
8-4
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ishes and Eq.~26! gives the parity violating part of the ef
fective action linear inAW .# Furthermore, as we have alread
shown, the parity violating part of the effective action do
not contain higher order terms inAW . Consequently, this is the
complete parity violating part of the effective action in th
particular background we have chosen, consistent with
results of Refs.@7,8#.

The particular gauge background, as we argued ear
gives the leading terms in the static limit; consequently, t
action would correspond to the leading order parity violat
effective action in that limit. We will next try to extend thes
calculations to higher orders in derivatives~but still to linear
order inAW ).

III. DERIVATIVE EXPANSION AT HIGHER ORDERS

In trying to determine the higher order terms~in deriva-
tives! in the static limit, we let theA0 field depend on spac
as well @in contrast to the discussion in Sec. II, Eq.~3!# and
make the decomposition

A0~ t,xW !5Ā0~ t !1Â0~xW !, E d2x Â0~xW !50. ~27!

That is, we separate out the zero mode of the space de
dent part into the first term, which can always be done us
a box normalization. Once again, by a suitable gauge tra
formation @see Eq.~4!#, the gauge fields can be brought
the form

A0~ t,xW !→ a

b
1Â0~xW !, AW 5AW ~xW !. ~28!

With such a separation, we have also separated the beh
of the fields under asmalland alarge gauge transformation
That is, under alarge gaugetransformation onlya trans-
forms as

a→a1
2pn

e
, ~29!

while under asmall gaugetransformation onlyAW transforms
as @Â0 does not transform under asmall gaugetransforma-
tion in the static limit, since we have already used this fr
dom to bringA0 to the form in Eq.~28!#:

AW →AW 1¹W e. ~30!

In this case, the effective action@see Eq.~11!# takes the form

Ge f f@A,M #

52(
n

Tr ln$11@p”1g0~ṽn1eÂ0!1M #21~eA” !%.

~31!

The linear term inAW has the simple form@there will now be
higher order terms inAW in the parity violating~PV! action,
but we restrict to linear terms for simplicity#
06501
s

e
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Ge f f
(1)@Â0 ,M #52e(

n
Tr

1

p”1g0~ṽn1eÂ0!1M
A” .

~32!

It is clear now that if we expand the denominator in powe
of Â0 and carry out the trace, we will obtain all the high
derivative corrections to the effective action in the sta
limit. However, it is also clear that the expansion wou
bring out more and more factors of Dirac matrices in t
numerator, so that calculations will become increasingly d
ficult as we go to higher orders. Thus we look for an alt
nate method for obtaining the result.

Let us note that we are really interested in the parity v
lating part of the effective action, which is obtained as

Ge f f
PV(1)5

1

2
~Ge f f

(1)@Â0 ,M #2Ge f f
(1)@Â0 ,2M # !. ~33!

Furthermore, let us also note the identity

1

2 S 1

p”1g0~ṽn1eÂ0!1M
2

1

p”1g0~ṽn1eÂ0!2M
D

5
M

p21ṽn
21M21L

, ~34!

where

L52eṽnÂ02 ieg0~]” Â0!1e2Â0
2 ~35!

contains all the field dependent terms and has a much
pler Dirac matrix structure. Using this, we can write

Ge f f
PV(1)52eM(

n
Tr

1

p21ṽn
21M21L

A” . ~36!

The denominator can now be expanded, and the effec
action can be calculated for any number ofÂ0 fields in a
simple and systematic manner.

As an example, let us note that the part of the par
violating action containing oneÂ0 field in addition to aB

field arises as~in the first two linespW represents the momen
tum operator, while in the last line it corresponds to the
genvalues of the operator@14,15#!

~Ge f f
PV(1)!(1)5eM(

n
Tr

1

p21ṽn
21M2

@2 ieg0~]” Â0!#

3
1

p21ṽn
21M2

A”

522ie2M(
n

Tr
1

p21ṽn
21M2

3
1

~pW 1 i¹W !21ṽn
21M2

~] i Â0!e i j Aj
8-5
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52ie2M(
n
E d2x

d2p

~2p!2

1

p21ṽn
21M2

3
1

~pW 1 i¹W !21ṽn
21M2

Â0B. ~37!

Here the derivatives act only onÂ0 and not onB. The mo-
mentum integral can be evaluated by combining the deno
nators using the Feynman combination formula. Even
sum over the discrete frequency modes can also be ex
evaluated@see Eq.~19!# and the parity violating effective
action containing oneÂ0 field in addition to theB field has
the form

~Ge f f
PV(1)!(1)5

ie2Mb

8p E d2x da B
1

AM22a~12a!¹2

3F tanh
1

2
@bAM22a~12a!¹22 iea#

1tanh
1

2
@bAM22a~12a!¹21 iea#G Â0 .

~38!

This is an exact, closed form expression which can also
expanded in powers of derivatives, and takes the form

~Ge f f
PV(1)!(1)5

ie2Mb

8p (
s50

` E d2x
B~s11,s11!

s!
B@~2¹2!sÂ0#

3
]s

~]M2!s H 1

M F tanh
1

2
~bM2 iea!

1tanh
1

2
~bM1 iea!G J

5 iM b(
s50

` E d2x
B~s11,s11!

s!
B@~2¹2!sÂ0#

3
]s

~]M2!s S 1

M

]

]a
G~a,M ! D , ~39!

which can be compared with the result from the moment
space calculation@given in Appendix A, Eq.~A18!, recalling
that the coefficients of the momentum space amplitudes
related to those of the real space amplitudes by a facto
i /b]. Let us explicitly write out the first few terms, whic
have the forms
06501
i-
e
tly

e

re
of

~Ge f f
PV(1)!(1)5 ibE d2x BF Â0

]G

]a
2

M

6
~¹2Â0!

]

]M2 S 1

M

]G

]a D
1

M

60
~¹4Â0!

]2

~]M2!2 S 1

M

]G

]a D1•••G . ~40!

We note here that this effective action will give an amplitu
of type Â0-B with any number ofa insertions which can be
thought of as zero momentumA0 fields.

Without going into detail, let us simply note here that t
parity violating effective action containing twoÂ0 fields, in
addition to theB field ~and, of course, any number ofa
fields!, can also be evaluated in a similar manner and has
form

~Ge f f
PV(1)!(2)

524ie3M(
n

tr
ṽn

~p21ṽn
21M2!@~pW 1 i¹W 1!21ṽn

21M2#

3
1

@~pW 1 i¹W 11 i¹W 2!21ṽn
21M2#

Â0
(1)Â0

(2)B. ~41!

Here we have put indices on the derivatives as well as theÂ0
fields to indicate the action of these operators. The mom
tum integral as well as the sum over the discrete frequen
can also be carried out in this case, and the final form can
obtained in a closed form. However, let us make a pow
series expansion in the derivatives, and explicitly write t
first few terms:

~Ge f f
PV(1)!(2)5 ib2E d2x BF 1

2!
Â0

2 ]2G

]a2
2

M

12
@2~¹2Â0!Â0

1~¹W Â0!•~¹W Â0!#
]

]M2 S 1

M

]2G

]a2 D
1

M

60S 2Â0~¹4Â0!14~¹2] i Â0!~] i Â0!

1
4

3
~] i] j Â0!21

5

3
~¹2Â0!2D

3
]2

~]M2!2 S 1

M

]2G

]a2 D1•••G . ~42!

Calculations become algebraically more tedious as we
to higher orders. For example, the parity violating part of t
effective action containing threeÂ0 fields in addition to theB
field ~and any number ofa fields! can also be evaluated, an
has the form~before simplification!
8-6
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~Ge f f
PV(1)!(3)52ie4M(

n
trF 1

p21ṽn
21M2

Â0
2 1

p21ṽn
21M2

~] i Â0!
1

p21ṽn
21M2

e i j Aj

1
1

p21ṽn
21M2

~] i Â0!
1

p21ṽn
21M2

Â0
2 1

p21ṽn
21M2

e i j Aj

1
4ṽn

2

p21ṽn
21M2

Â0

1

p21ṽn
21M2

Â0

1

p21ṽn
21M2

Â0

1

p21ṽn
21M2

B

2
1

p21ṽn
21M2

~]kÂ0!
1

p21ṽn
21M2

~]kÂ0!
1

p21ṽn
21M2

~] i Â0!
1

p21ṽn
21M2

e i j Aj

2
e i j

p21ṽn
21M2

~] i Â0!
1

p21ṽn
21M2

~] j Â0!
1

p21ṽn
21M2

~]kÂ0!
1

p21ṽn
21M2

AkG . ~43!

It is interesting to note that the expression above does not look manifestly invariant undersmall gauge transformations in
Appendix B. We will give a proof of gauge invariance within the framework of a derivative expansion. For the present
simply note that if we were to evaluate this expression in powers of derivatives, the leading order term, which is linea
derivatives, has the form

52
ie4M

3p2 (
n
E d2x d2pF 1

~p21ṽn
21M2!3

2
6ṽn

2

~p21ṽn
21M2!4GBÂ0

3

52
ie4M

6p (
n
E d2xF 1

~ṽn
21M2!2

2
4ṽn

2

~ṽn
21M2!3GBÂ0

3

5
ie2Mb2

12p (
n
E d2x

]2

]a2 S 1

ṽn
21M2D BÂ0

3

5 ib3E d2x
1

3!
BÂ0

3 ]3G

]a3
. ~44!

@This can again be compared with Eq.~A24!.#
The term cubic~only odd powers of derivatives arise! in the derivatives has the form

5
ie4M

2p2 (
n
E d2x d2pS 8ṽn

2

~p21ṽn
21M2!5

2
1

~p21ṽn
21M2!4D @~¹2Â0!Â01~¹W Â0!•~¹W Â0!#Â0B

52
iM b3

12 E d2x BÂ0@~¹2Â0!Â01~¹W Â0!•~¹W Â0!#
]

]M2 S 1

M

]3G

]a3 D ~45!

@which agrees with Eq.~A32!#. Finally, the term fifth order in the derivatives has the form

52(
n

ie4M

20p~ṽn
21M2!5E d2xF ~7ṽn

22M2!S Â0
2@~¹2!2Â0#B14Â0~]kÂ0!~]k¹

2Â0!B1
5

3
Â0~¹2Â0!2B1

4

3
Â0~]k] l Â0!2BD

1S 11ṽn
22

7M2

3 D ~]kÂ0!2~¹2Â0!B1S 40ṽn
2

3
2

8M2

3
D ~]kÂ0!~] l Â0!~]k] l Â0!BG

52
iM

120E d2x BFb3F Â0
2~¹4Â0!14Â0~] i Â0!~¹2] i Â0!1

5

3
Â0~¹2Â0!21

4

3
Â0~] i] j Â0!21

5

3
~] i Â0!2~¹2Â0!

12~] i Â0!~] j Â0!~] i] j Â0!G ]2

~]M2!2 S 1

M

]3G

]a3 D1
4e2b

3
@~] i Â0!2~¹2Â0!1~] i Â0!~] j Â0!~] i] j Â0!#

]3

~]M2!3 S 1

M

]G

]a D G .
~46!
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There are several things to note from these results. First
results obtained up to fifth order in the derivatives abo
agree completely with the momentum space calculati
~given in Appendix A!. Second, even though the expressi
in Eq. ~43! is not manifestly gauge invariant, terms up to fif
order in derivatives are explicitly invariant undersmall
gauge transformations. A gauge invariant form of the eff
tive action, derived above, needs the use of various algeb
identities, and it is nota priori clear that, at higher orders
gauge invariant expressions will be obtained. In Appendix
we will show, within the framework of derivative expansio
that the PV effective action, linear inAW , is both gauge invari-
ant and local.

IV. GENERAL FEATURES OF THE EFFECTIVE ACTION

It is clear that, while at every order the effective acti
can be determined in a closed form, its structure may no
that simple. On the other hand, from the analysis of the
fective action up to fourth order~in fields! brings out some
nice features that are worth discussing.

First, the structures in Eqs.~40!, ~42!, and ~44! suggest
that, to all orders~in the Â0 fields! the leading order term in
the parity violating part of the effective action has the fo
~terms linear in the derivative!

~Ge f f
PV(1)!15 i (

n50
E d2x

1

n!
B~bÂ0!n

]nG~a,M !

]an

5 i E d2x B G~a1bÂ0 ,M !. ~47!

Here the subscript refers to the number of derivatives c
tained in the effective action. This gives the simple result t
the leading order correction to the static result can be
tained completely from the static result itself. Furthermo
this action is invariant underlarge gauge transformation
whenever the action withÂ050 is. Finally, we note that, a
very high temperatures,b→0, so that the action reduces
Eq. ~26!, which is consistent with the fact that the action
Eq. ~26! gives the leading terms of the parity violating actio
at high temperatures.

Even the next order terms in the expansion~namely, third
order in derivatives! in Eqs.~40!, ~42!, and~45! seem to have
a nice structure and, with a little bit of analysis, suggest t
they can be summed to a simple form. This can be don
the following way. Let us recall that we are interested
evaluating the effective action~up to normalization!

Ge f f52(
n

Tr lnH p”1eA” 1g0Fvn1eS a

b
1Â0D1M G

52(
n

Tr ln~p”1eA” 1g0v̄n1M !J , ~48!

where we have defined
06501
he
e
s

-
ic

,

e
f-

-
t
-
,

t
in

v̄n5vn1
e

b
~a1bÂ0!5

~2n11!p

b
1

e

b
~a1bÂ0!.

~49!

Following Eqs.~12! and ~13!, we can now define@8#

r̄n5Av̄n
21M2, f̄n5tan21S v̄n

M
D , ~50!

where r̄n and f̄n are now coordinate dependent because
the presence ofÂ0. The effective action, in these variable
takes the form

Ge f f52(
n

Tr ln~p”1eA” 1 r̄neg0f̄n!

52(
n

Tr lneg0f̄n/2S p”1eA” 1 r̄n2
i

2
g0~]” f̄n! Deg0f̄n/2

52(
n

H Tr lnS p”1eA” 1 r̄n2
i

2
g0~]” f̄n! D

1
ie

2pE d2xF f̄ne jk] jAk1
1

4
f̄n¹2f̄nG J , ~51!

where the terms in the square brackets arise from the J
bian of the (111)-dimensional chiral rotation@7,8#. Note
that the contribution which is quadratic inf̄n is irrelevant to
the parity-breaking part, because it is invariant under
changeM→2M .

The parity violating part of the effective action can b
obtained from Eq.~51! through a derivative expansion an
would have an odd number off̄n terms. The action is gaug
invariant@7# ~also see Appendix B! and, if we are interested
in terms linear inAW , would depend linearly onB as well as
terms with derivatives acting onr̄n and f̄n . From the defi-
nition of these variables, we see thatr̄n has the canonica
dimension of energy whilef̄n is dimensionless. This allows
us to organize the successive terms in the expansion.

At the order of terms cubic in the derivatives, let us no
that the most general local term we can write for the pa
violating effective action will have the form

~Ge f f
PV(1)!35(

n
E d2x BFb1

~¹2f̄n!

r̄n
2

1b2

~¹W r̄n!•~¹W f̄n!

r̄n
3 G

5(
n
E d2x BFeMb1S ~¹2Â0!

r̄n
4

2
2ev̄n

r̄n
6 ~¹W Â0!•~¹W Â0!D

1e2Mb2

v̄n

r̄n
6 ~¹W Â0!•~¹W Â0!G . ~52!
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It is clear that the contribution of the first term starts w
terms of the typeBÂ0, while the second structure has co
tribution starting withBÂ0

3. Consequently, the coefficientsb1

and b2 can be identified from our earlier calculations@see
Eqs. ~40! and ~45!# and take the valuesb15 ie/12p andb2
50. Thus the parity violating part of the effective actio
which is cubic in the derivatives can be written as

~Ge f f
PV(1)!35

ie2M

12p (
n
E d2x BF ~¹2Â0!

~v̄n
21M2!2

2
2ev̄n

~v̄n
21M2!3

~¹W Â0!•~¹W Â0!G
52

ie2M

24p (
n
E d2x B

]

]M2 F ~¹2Â0!

~v̄n
21M2!

1
1

eM
S ¹2 tan21

v̄n

M
D G

52
iM

12E d2x BFb~¹2Â0!
]

]a
1¹2G

3
]

]M2 S G~a1bÂ0 ,M !

M
D . ~53!
n

c
b
or

de
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e
im

06501
If we go to the next order, namely terms containing fi
derivatives, there are 12 possible structures that arise. H
ever, let us note from the terms with three derivatives, t

terms withf̄n appear only in combination with¹2 acting on
them. @This corresponds to findingb250 in Eq. ~52!.# If a
similar pattern continues to hold at orders higher than
box amplitude, the parity violating effective action with fiv
derivatives can be uniquely determined from our results
the two and four point amplitudes@see Eqs.~40! and ~46!#,
and takes the simple form

~Ge f f
PV(1)!552

ie

60p(
n
E d2x B

3F¹4f̄n

r̄n
4

2
3~¹2f̄n!~¹2r̄n!14~] i r̄n!~] i¹

2f̄n!

r̄n
5

1
7~¹2f̄n!~] i r̄n!2

r̄n
6 G . ~54!

Upon doing the sum over the discrete frequencies, this de
mines the following form for the corresponding all orders~in
fields! effective action
~Ge f f
PV(1)!552

iM

30E d2x BH e2b2@~] i Â0!2#2S 13

8
1

5

12
M2

]

]M2D ]

]a

]

]M2

1e2bF ~] i Â0!2~¹2Â0!S 11

2
1

5

3
M2

]

]M2D 1~] i Â0!~] j Â0!~] i] j Â0!S 20

3
12M2

]

]M2D G ]

]M2

2b2F ~] i Â0!~] i¹
2Â0!1

5

12
~¹2Â0!21

1

3
~] i] j Â0!2G ]

]a
2

b

2
~¹4Â0!J ]

]a S ]

]M2D 2S G~a1bÂ0 ,M !

M
D . ~55!
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This discussion makes it clear that such an analysis ca
carried out systematically to any order in the derivatives~of
course, one needs to calculate higher point functions!, which,
in turn, would determine the corresponding all order effe
tive action. Interestingly, all such effective actions can
determined completely from a knowledge of the leading
der parity violating action in the static limit.

V. CONCLUSION

In this paper, we have tried to go beyond the leading or
term in the static limit of the induced parity violating effe
tive action for thermal QED211 using the derivative expan
sion. We have discussed the various subtleties that aris
using derivative expansion in such a theory, and have
proved and extended the earlier proposed method@16# for
be

-
e
-

r

in
-

calculating the leading order term in this approach. We h
shown, in this approach, that the leading order term in
static limit of the parity violating thermal effective action,
linear in theAW field. In going beyond the leading order w
have used the derivative expansion in the coordinate spac
determine the parity violating effective action up to four
order in fields~linear inAW ) All these actions can be obtaine
in closed form ~namely, powers of derivatives can b
summed! in principle. However, their forms are neither ve
illuminating nor useful. In contrast, at any given order of t
derivatives, we can sum the effective action containing
possibleA0 fields. The resulting effective actions are dete
mined completely by the leading order action in the sta
limit. We have also shown, within the framework of the d
rivative expansion, that all the higher order terms, which
linear in AW , are large gauge invariant and local. We hav
8-9
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tried to discuss the possible origin of the interesting struct
of the higher order terms that arise in the derivative exp
sion.
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APPENDIX A: MOMENTUM SPACE CALCULATIONS

In this appendix we will present the main results of t
perturbative momentum space one-loop amplitudes wh
can be derived from the Lagrangian density given by Eq.~1!,
in the framework of finite temperature field theo
@11,20,21#. The main results are given in Eqs.~A18!, ~A24!,
~A32!, and~A33!.

In order to simplify the presentation of the results, w
express theN-point amplitudes in terms of Bose symmetr
combinations of the basic quantities

Am1•••mN
~$k%;M !52

eN

~2p!2b
(

n52`

` E d2pW

3
Nm1•••mN

~p,$k%;M !

~p22M2!•••@~p1k1(N21)!
22M2#

,

~A1!

where $k%[k1 , . . . ,kN21 represents the set ofN21 inde-
pendent external 3-momenta,k1i[k11k21•••1ki , and

Nm1•••mN
5Tr@gm1

~p”1k” 11M !

3gm2
~p”1k” 121M !•••gmN

~p”1M !#. ~A2!

The external bosonic lines in Eq.~A1! are such that the zer
component of its 3-momenta is quantized and purely ima
nary ~for instancek1052ip l /b, with l 50,61,62, . . . ).
Similarly, the zero component of the 3-momenta associa
with a fermion loop is given by

p05
i p~2n11!

b
[ i vn , n50,61,62, . . . . ~A3!

Every thermalN-point amplitude is the sum of a parit
violating and a parity conserving part. In what follows, w
will concentrate only on the former, which can be written
@also see Eq.~16!#

A m1•••mN

PV ~$k%;M !

5
1

2
@Am1•••mN

~$k%;M !2Am1•••mN
~$k%;2M !#.

~A4!

Since the denominator in Eq.~A1! is an even function ofM,
only the odd powers ofM from the numeratorNm1•••mN

in

Eq. ~A4! will contribute toA m1•••mN

PV . Consequently, the par
06501
e
-

.

.

h

i-

d

s

ity violating parts of thermal amplitudes come only fro
those terms in Eq.~A2! which involve the trace of an odd
number of Dirac gamma matrices.

Expressing the two terms on the right hand side of E
~A4! in terms of the integral in Eq.~A1! and performing the
change of variablep→2p, we can easily verify that

A m1•••mN

PV ~$2k%;M !5~21!N11A m1•••mN

PV ~$k%;M !.

~A5!

This result confirms that the procedure of antisymmetrizat
in the mass gives a result which is in agreement with
usual concept of parity violation, according to which th
N-point amplitude is odd under the concomitant interchan
of the sign of all external gauge fields as well as their resp
tive momenta.

Of course, we do not expect to be able to compute
amplitudesA m1•••mN

PV for general arbitrary momenta at finit

temperature. This is because, at finite temperature, am
tudes are nonanalytic and, therefore, one can at best des
them in some limit. In what follows, we will calculate th
thermal amplitudes in the static limitki050, where large
gaugeinvariance is known to be an issue. In this limit, th
parity violating part of the basic amplitudes can be written

A m1•••mN

static,PV~$k%;M !5~21!N11
eN

~2p!2b
(

n52`

` E d2pW

3
N m1•••mN

static,PV~p,$k%;M !

~pW 21Mv
2 !•••@~pW 1kW1(N21)!

21Mv
2 #

,

~A6!

whereMv
2 [vn

21M2, with vn given by Eq.~A3!, and

N m1•••mN

static,PV5
1

2
@Nm1•••mN

~p,$k%;M !

2Nm1•••mN
~p,$k%;2M !#uk10 , . . . ,k(N21)050 .

~A7!

To evaluate the two dimensional integral in Eq.~A6!, we
can use the standard Feynman parametrization to com
the N denominators. After performing appropriate shifts, t
integration overpW can be easily performed. A closed form
expression for the Feynman parameter integrals can be
tained in the limitukW i u!Mv , in which case we can employ
derivative expansion~the term ‘‘derivative’’ is reminiscent of
the configuration space transformationki→2 i ]xi

!.
In the Abelian theory all the odd point amplitudes vani

simply because of charge conjugation invariance. Let us c
sider the even functions. From Eq.~A6!, with N52, the
self-energy is given by
8-10



on

g

he
pe

e

the
a

ion
or-

ex-
ed

li-
tic
ct

ed

DERIVATIVE EXPANSION AND THE PARITY . . . PHYSICAL REVIEW D64 065018
Pm1m2

static,PV~k![A m1m2

static,PV~k;M !

52
e2

~2p!2b
(

n52`

` E d2pW

3
N m1m2

static,PV~p,k;M !

~pW 21Mv
2 !@~pW 1kW !21Mv

2 #
. ~A8!

Using the Feynman combination formula, we can write

Pm1m2

static,PV~k!52
e2

~2p!2b
(

n52`

` E
0

1

daE d2pW

3
N m1m2

static,PV~p,k;M !

@~pW 1akW !21a~12a!kW21Mv
2 #2

.

~A9!

Performing the simple trace of three gamma matrices
easily obtains

N m1m2

static,PV5~2M kaea,m1 ,m2
!static52M kje j m1m2

.

~A10!

Since we are in the static limit, namelyk050, either the
index m1 or m2 has to be in the time direction. Choosin
m150 andm25 i , and noting that

e0i j [e i j , ~A11!

we obtain

P0i
static,PV~k!52e i j kj

2e2M

~2p!2b
(

n52`

` E
0

1

daE d2pW

3
1

@pW 21a~12a!kW21Mv
2 #2

, ~A12!

where we have performed the shiftpW→pW 2akW . The integra-
tion in pW is now elementary, giving the result

P0i
static,PV~k!52e i j kj

e2M

2pb (
n52`

` E
0

1

da

3
1

a~12a!kW21M21vn
2

. ~A13!

We can now proceed in one of two ways, namely, eit
perform a derivative expansion, as described earlier, or
form the sum overn, using the formula
06501
e

r
r-

S~m![ (
n52`

`
1

m21vn
2

5
1

2mT
tanhS m

2TD , ~A14!

with m5Aa(12a)kW21M2. Using the latter approach, w
obtain

P0i
static,PV~k!52e i j kj

e2M

4p
E

0

1

da

3

tanhS bAa~12a!kW21M2

2
D

Aa~12a!kW21M2
. ~A15!

This expression shows that even in the simplest case of
one-loop self-energy in the static limit, one cannot obtain
simple closed form expression. Of course, the integrat
over the Feynman parameter can be performed order by
der using a derivative expansion of Eqs.~A13! or ~A15!. It is
clear from Eq.~A15! that, at any 2s11 order, the polyno-
mial in the Feynman parameter can be systematically
pressed in terms of Euler’s beta function B which is defin
as

B~s11,s11!5E
0

1

da as~12a!s, ~A16!

so that the expansion of the integrand in Eq.~A13! in powers
of (kW )2 yields

P0i
static,PV~k!52e i j kj

e2M

2p (
s50

`

~21!sB~s11,s11!

3~kW2!s
~21!s

s!

]s

~]M2!s F 1

2M
tanhS M

2TD G .
~A17!

Using Eqs.~19! and ~25!, we finally obtain

P0i
static,PV~k!52e i j kjM (

s50

`
B~s11,s11!

s!
~kW2!s

]s

~]M2!s

3S 1

M

]

]a
G~a,M !U

a50
D . ~A18!

Equation~A18! gives the momentum space two point amp
tude which is obtained from the parity violating, quadra
effective action by taking functional derivative with respe
to A0(kW ) andAi(2kW ).

Let us next consider the box diagram which is obtain
from Eq. ~A6! with N54:
8-11
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A m1m2m3m4

static,PV ~k1 ,k2 ,k3 ;M !52
e4

~2p!2b
(

n52`

` E d2pW
N m1m2m3m4

static,PV ~p,k1 ,k2 ,k3 ;M !

~pW 21Mv
2 !@~pW 1kW1!21Mv

2 #@~pW 1kW12!
21Mv

2 #@~pW 1kW123!
21Mv

2 #
.

~A19!
el
q

ra
u
on

in

on

ric
ro
tr

e

se

he

u-
nta
From our experience with the previous example the s
energy, we do not expect to obtain a closed form for E
~A19! for arbitrary values ofkW . Therefore, right from the
beginning we will adopt the derivative approximationkW i
!Mv . Furthermore, instead of trying to obtain the gene
term of the series, we will separately analyze each individ
order up to the fifth order in the external momenta and c
sider the specific componentsm15m25m350 and m45 i ,
which correspond to the part of the effective action conta
ing threeA0 fields and one magnetic field.

The parity violating numerator in Eq.~A19! is an odd
function of the external momenta which can have degree
or three@this can easily be verified from Eq.~A2! and the
definition of parity violating numerator as an antisymmet
function of M #. Making the external momenta equal to ze
inside the denominators, and keeping only the linear con
bution from the numerator in Eq.~A19!, we obtain the lead-
ing linear contribution

A 000i
static,PVu(1)52

e4

~2p!2b
(

n52`

` E d2pW

3
N 000i

static,PV~p,k1 ,k2 ,k3 ;M !u(1)

~pW 21M21vn
2!4

, ~A20!

where

N 000i
static,PVu(1)52Me i j @~3k114k213k3! jvn

2

2~k11k3! j~pW 21M2!# ~A21!

comes from the trace computation. Substituting Eq.~A21!
into Eq. ~A20!, and performing the six permutations of th
06501
f-
.

l
al
-

-

e

i-

external momenta and indices yields the following Bo
symmetric expression for the box diagram (P000i

static,PV is the
sum of six permutations ofA 000i

static,PV)

P000i
static,PVu(1)528e i j k4 j

e4M

~2p!2b
(

n52`

` E d2pW

3
pW 21M225vn

2

~pW 21M21vn
2!4

, ~A22!

where we have used the momentum conservationk11k2

1k352k4. Performing the integration overpW in Eq. ~A22!,
we obtain

P000i
static,PVu(1)522 e i j k4 j

e4M

2pb

3 (
n52`

` F 4M2

~M21vn
2!3

2
3

~M21vn
2!2G .

~A23!

Using Eq. ~A14! we can perform the sum and express t
result in terms of derivatives of Eq.~25! in the following
way:

P000i
static,PVu(1)5e i j k4 j b2

]3

]a3
G~a,M !U

a50

. ~A24!

In order to obtain the higher order derivative contrib
tions, we will have to take into account the external mome
dependence inside the denominators of Eq.~A19!. Using the
Feynman combination formula we can write
A 000i
static,PV52

6e4

~2p!2b
(

n52`

` E
0

1

da1E
0

12a1
da2E

0

12a2
da3E d2pW

N 000i
static,PV~p0 ,pW 2a1kW12a2kW122a3kW13,kW1 ,kW2 ,kW3 ;M !

~pW 21M21vn
21K2!4

,

~A25!
in
lar
ns
wherekW12[kW11kW2 , kW13[kW11kW21kW3 and

K2[kW1
2a1~12a1!1kW12

2 a2~12a2!1kW13
2 a3~12a3!

22~kW1•kW12a1a21kW2•kW13a2a31kW1•kW13a1a3!.

~A26!

Except for structures like
Mpipjkle j l or Mplplkje i j

which appear in the numeratorN 000i
static,PV, the d2pW integration

in Eq. ~A25! is as straightforward as the ones that arose
the self-energy calculation. In order to obtain a simple sca
integral we first perform the elementary angular integratio
with the help of
8-12
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E
0

2p

du pi pj5ppW 2d i j . ~A27!

In this way, Eq.~A25! leads to

A 000i
static,PV52

6e4

2pb (
n52`

` E
0

1

da1E
0

12a1
da2E

0

12a2
da3

3E
0

`

pdp
ni

(1)pW 21Ni
(1)1Ni

(3)

~pW 21M21vn
21K2!4

. ~A28!

The compact notation in the numerator of Eq.~A28! means
that ni

(1) andNi
(1) are of first order in the external moment

while Ni
(3) is of third order in the external momenta.@Of

course, the algebra has become very much involved by n
Just to give an idea of how involved it is, the numerator
Eq. ~A28! contains 242 terms.# Performing the integration in
dp and expanding the result up to fifth order in the exter
momenta yields the following third and fifth order expre
sions:

A 000i
static,PVu(3)52

e4

2pb (
n52`

` E
0

1

da1E
0

12a1
da2E

0

12a2
da3

3FNi
(3)2K2ni

(1)

~M21vn
2!3

23
K2Ni

(1)

~M21vn
2!4G ~A29!

and

A 000i
static,PVu(5)52

e4

2pb (
n52`

` E
0

1

da1E
0

12a1
da2E

0

12a2
da3

3F 6K4Ni
(1)

~M21vn
2!5

1
3

2

K4ni
(1)22K2Ni

(3)

~M21vn
2!4 G .

~A30!

The parametric integrals in the above expressions are
involved, but straightforward, since there are only powers
the Feynman parameters. As in the previous cases, the
over discrete energy can also be performed using Eq.~A14!
06501
w.

l

ry
f

um

and the result can be expressed in terms of derivative
G(a,M ) defined in Eq.~25!. The complete four photon am
plitude is then obtained adding the six permutations of ex
nal momenta and indices.

Of course, the final result must preserve the small ga
invariance, being proportional toe i j k4 j , like the leading or-
der result given by Eq.~A24!, so that the contraction withk4i
gives zero@this is a consequence of the invariance unde
small gauge transformationAW (k4)→AW (k4)1kW4 in the mo-
mentum space#. However, at this higher order, our explic
calculation shows that the small gauge invariance will o
be explicitly manifest, when we make use of some identit
involving the two-dimensional vectors. A simple example
the Jacobi identity

~k1lk2mk3i1k2lk3mk1i1k3lk1mk2i !e lm50. ~A31!

The emergence of these identities is, in fact, expected,
cause the very nature of the sub-leading contributio
~higher powers of the external momenta! leaves room to
write the two-dimensional structures involvinge i j and the
vectorskW1 , kW2, andkW3 in many equivalent ways. Our strateg
to single out the unique gauge invariant form, was to deco
pose each vector in a two-dimensional basis and verify~by
brute force, using the computer! that the unique function of
the components is indeed gauge invariant. Then, from
expressions in terms of components, we were able to iden
the two-dimensional scalar functions which multiplie
e i j k4 j . This leads to the following results:

P000i
static,PVu(3)5

e4

3p
e i j k4 j~kW1

21kW2
21kW3

21kW1•kW21kW2•kW3

1kW2•kW3!
M

b (
n52`

` M225vn
2

~M21vn
2!4

5
e i j k4 j

6
~kW1

21kW2
21kW3

21kW1•kW21kW2•kW31kW2•kW3!

3Mb2
]

]M2 F 1

M

]3

]a3
G~a,M !G

a50

~A32!

and
P000i
static,PVu(5)5

e4M

30pb
e i j k4 j H ~kW1

2kW2•kW31kW1•kW2kW2•kW3! (
n52`

`
2

~M21vn
2!4

2@kW1
2~3kW1

216kW1•kW216kW1•kW315kW2
215kW2•kW3!

14~kW1•kW2!216kW1•kW2kW2•kW3] (
n52`

` 7vn
22M2

~M21vn
2!5J 1~ two cyclic permutations of! kW1 , kW2 , and kW3
8-13
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52
M

60
e i j k4 j H ~kW1

2kW2•kW31kW1•kW2kW2•kW3!
4e2

3

]3

~]M2!3 S 1

M

]G

]a D
a50

1@kW1
2~3kW1

216kW1•kW216kW1•kW315kW2
215kW2•kW3!

14~kW1•kW2!216kW1•kW2kW2•kW3]
b2

3

]2

~]M2!2 S 1

M

]3G

]a3 D J
a50

1~ two cyclic permutations of! kW1 , kW2 , and kW3 .

~A33!
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APPENDIX B: SMALL GAUGE INVARIANCE
AND LOCALITY

It is known @7# that the effective action resulting from
fermion interacting with a gauge background is small gau
invariant. However, as we saw in Sec. III, within the fram
work of derivative expansion, gauge invariance is not ma
fest. There is also an issue of locality of the resulting eff
tive action in this approach. In this appendix we show, with
the derivative expansion, that the PV action linear inAW is
both small gauge invariant and local.

Let us consider the effective action in Eq.~32! which is
linear in AW . If we now make a gauge transformation,A”→A”
1]”a, wherea is the parameter of transformation, then t
change in the effective action is given by

dGe f f
(1)52e(

n
Tr

1

p”1g0~ṽn1eÂ0!1M
~]”a!. ~B1!

Let us now use the standard canonical commutation rela

@pi ,a#52 i ~] ia!

as well as the cyclicity of the trace~we note here that the
zeroth order term in this expression is the only term t
needs regularization and we have already seen that it is m
festly gauge invariant. The higher order terms are well
fined and satisfy cyclicity of trace.! to write

dGe f f
(1)5 ie(

n
TrF p” ,

1

p”1g0~ṽn1eÂ0!1M
Ga. ~B2!

Let us next write

p”5p”1g0~ṽn1eÂ0!1M2@g0~ṽn1eÂ0!1M #.
~B3!

Using this leads to
06501
e
-
i-
-

n

t
ni-
-

dGe f f
(1)5 ie(

n
TrF2@g0~ṽn1eÂ0!1M #

3
1

p”1g0~ṽn1eÂ0!1M
1

1

p”1g0~ṽn1eÂ0!1M

3@g0~ṽn1eÂ0!1M #Ga

5 ie(
n

TrF2@g0~ṽn1eÂ0!1M #

3
1

p”1g0~ṽn1eÂ0!1M
@g0~ṽn1eÂ0!1M #

3
1

p”1g0~ṽn1eÂ0!1M
Ga

50. ~B4!

Here we have used the cyclicity of the trace in the seco
term and the fact that the factor in the numerator is a mu
plicative operator which commutes witha. This proves that
the expression that we are interested in is invariant un
small gauge transformations, even though it may not
manifest.

This, therefore, raises the question as to whether we
have a derivative expansion which will give a manifes
~small! gauge invariant expression for the effective actio
The answer, not surprisingly, is in the affirmative. Let
recall that

Ge f f@A,M #52(
n

Tr ln@p”1g0~ṽn1eÂ0!1M1eA” #.

~B5!

In two dimensions, the vector field has the simple decom
sition

Ai5] is1e i j ] jr,

from which it can be determined that

~]2r!52e i j ] iAj52B. ~B6!
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Using this decomposition and the familiar properties
gamma matrices in two dimensions, we can write

Ge f f@A,M #52(
n

Tr ln e2 ies@p”1eg0~]”r!

1g0~ṽn1eÂ0!1M #eies

52(
n

Tr ln@p”1eg0~]”r!1g0~ṽn1eÂ0!1M #.

~B7!

From the definition of the parity violating effective action
Eq. ~33!, it now follows that
et

06501
f ]Ge f f
PV

]a
52

e

2b(
n

TrF 1

p”1eg0~]”r!1g0~ṽn1eÂ0!1M

2
1

p”1eg0~]”r!1g0~ṽn1eÂ0!2M
Gg0

52
eM

b (
n

Tr
1

p21ṽn
21M21N

g0 , ~B8!

where we have defined

N5@2 ieg0~]” Â0!12eṽnÂ01e2Â0
2#

1 ieg0~]2r!2e2~] ir!~] ir! ~B9!

Using Eq.~B6!, the last two terms inN can be expressed in
terms of B and while the last one has a nonlocal form
terms of B, the penultimate term is local. Expression~B8!
can now be expanded to linear order in theB field to give
ver, this
rices or
ver
]Ge f f
PV(1)

]a
52

e2M

b (
n

TrF 1

p21ṽn
21M21@2 ieg0~]” Â0!12eṽnÂ01e2Â0

2#
~ ig0B!

3
1

p21ṽn
21M21@2 ieg0~]” Â0!12eṽnÂ01e2Â0

2#
Gg0

5
2ie2M

b (
n

tr
1

~p21ṽn
21M212eṽnÂ01e2Â0

2!22e2~] i Â0!2
B. ~B10!

To any order in theÂ0 fields, the denominator can be expanded in a systematic manner, as discussed earlier. Howe
form has the advantage that it is manifestly gauge invariant to begin with. Furthermore, there are no Dirac mat
momentum operators in the numerator to complicate the calculation. The only complication may be that integrating oa to
obtain the action may be nontrivial.
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