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We systematically study induced higher order corrections to the parity violating part in thermal, QED
the static limit, using the method of derivative expansion. We explicitly calculate the parity violating parts of
the quadratic, cubic and the quartic ter(imsfields) of the effective action which is linear in the magnetic field.
We show that each of these actions can be summed, in principle, to all orders in the derivatives. However, such
a structure is complicated and not very useful. On the other hand, at every order in the powers of the
derivatives, we show that the effective action can also be summed to all ordersAg fieéds. The resulting
thermal parity violating actions can be expressed in terms of the leading order effective action in the static
limit. We prove gauge invariance, botdrge andsmall of the resulting effective actions, within the framework
of derivative expansion. Various other features of the theory are also brought out.
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[. INTRODUCTION subtlety was already noted earlier in the Abelian
(2+1)-dimensional moddl16], even at the leading order in

Chern-Simons(CS) theories, in 2-1 dimensions, have the static limit. In Sec. Il, we extend and improve on the
been of interest in recent yedis,2]. Non-Abelian CS theo- analysis of Ref[16] to rederive, within the context of de-

ries are invariant undearge gaugeransformations provided rivative expansion, the leading order parity violating effec-

the coefficient of the CS term is quantized. At finite temperadive action in the static limit which is linear iB, the mag-

ture, however, the induced CS term has a continuous coeffietic field. We also show, within the framework of a

cient (temperature dependentwhich is incompatible with  derivative expansion, that the parity violating part of the ef-

the discreteness of the CS coefficient necessaryld@e  fective action does not contain any higher order terms in
gaugeinvariance to hold3-5]. This puzzle of violation of that limit, so that this action is a complete parity violating
large gaugeinvariance at finite temperature is well under- effective action in that limit, consistent with the results ob-
stood now, at least in Abelian theof§-9. tained in Refs[7-9]. In Sec. Ill, we tackle the question of
As is well known, at finite temperature, amplitudd€¥)]  going beyond the leading order, in the static limit, and evalu-
as well as the effective action become nonanalliit,12, ate the parity violating effective action using a derivative
unlike at zero temperature. As a result, it becomes essentigkpansion in the coordinate spa@ee Appendix A for the
to talk of the effective action only in certain limits—the con- corresponding momentum space calculatioBeyond the
ventional ones being the long wave and static limits. It hadéading order in the static limit, the parity violating part of
already been shown within the context of Abelian CS theorythe effective action will contain nonlinear termsAn How-
in 2+1 dimensions thatarge gaugeinvariance is not an ever, our calculations in this paper are restricted only to
issue in the long wave limit9]. On the other hand, a trun- terms linear inA, for simplicity, although the method of
cation of the effective action at any finite order in the staticderivative expansion can be extended to more general cases
limit leads to a violation ofarge gaugeinvariance, although as well. We calculate a closed form expression for the qua-
the complete action hakrge gaugeinvariance. This has dratic part of the parity violating effective action. In fact, the
been checked for leading order terms in the effective actioeffective action, at any order, can be obtained in a closed
in the static limit. form, but the closed form expressions are not necessarily
The leading order parity violating effective action in the simple. Rather, a power series expansion in the number of
static limit can be determined exactly, either through func-derivatives gives a simpler expression to the quadratic, cubic
tional methods[7,8] or through the use of #arge gauge and quartic(in fields) terms of the effective action. In Sec.
Ward identity[9,13]. This, of course, raises the question of IV, we analyze the general features of our results. In particu-
higher order corrections to this action and the issuafe  lar, we show that from our low ordéin fields) calculations,
gaugeinvariance for such terms. In this paper, we addressve can, in fact, predict the behavior of the effective action
this question. with one, three and five derivatives to all orders in the fields.
Higher order corrections can naturally be obtainedin fact, to all orders, we find that these effective actions are
through a derivative expansiofpowers of momentuin completely determined from the form of the leading order
[4,14,13. However, as is known in simple models, in a parity violating effective action in the static limit. They are
model with large gaugeinvariance, a derivative expansion manifestly invariant undesmallas well adarge gauge trans-
does lead to new subtletigd6,18. In fact, some such formations. We present a brief conclusion in Sec. V. One of
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the features that arises, within the derivative expansion, is t t (B
the fact that expressions for these actions are not manifestly A,—A,+3,Q, Q(t)= —f + Ef dt’Ag(t’),
invariant undersmall gauge transformations, although they 0 0 4
can be brought to a gauge invariant fo(at least for lower

orderg through the use of various algebraic identities. Agen-3 gauge background of the form of E@) can always be
eral proof of gauge invariance and locality of the effectivepyrought to the form

action linear inA undersmall gauge transformations is pre-

sented in Appendix B, where we recast the derivative expan- a 1/(s Lo
sion also in a gauge invariant form. Ao(t)— B ,Efo dtAg(t),  A=A(X), ®)
Il. LEADING ORDER DERIVATIVE EXPANSION so that under #arge gaugetransformation,
IN THE STATIC LIMIT
2mn
Let us consider a fermion interacting with an Abelian a—at = (6)

gauge background described by the Lagrangian defisity

2+1 dimensions We will use the imaginary time formalisrfill,20,2] in

— evaluating the finite temperature determinant, where energy
L=dgly(id,+eA,)—M]y. (D takes discrete values. Rotating to Euclidean space, the effec-

L . tive action takes the form
Here, for simplicity, we will assume thd#l >0. The effec-

tive action following from this is formally given by _
Tl AM]=—2 Trin(p+ yoon+M+eh), (7)
et AM]=—iIndefy*(id,+eA,)—M] n

=—iTrin[y*(id,+eA,)—M], (2 where we have definel=y-p and similarlyA=y-A. Fur-
thermore,
where “Tr” stands for a trace over Dirac indices as well as
over a complete basis of states. As is well known, at finite - ea (2n+1)w ea
temperature, the effective action is not well defined every- wp=wpt E: TJF E )

where[11,12, as a result of which it can be expanded in

powers of derivatives only in some limit. This is a simple yhere g represents the inverse temperature in units where
reflection of the fact that thermal amplitudes are nonanalytighe Boltzmann constant is unity. The momentum in the above
at the origin in the energy-momentum plafied]. This was  expression is to be understood as an operator which does not
explicitly shown in thermal QER,; [9], where we calcu-  commute with coordinate dependent quantities. Let us also

lated the leading term in the parity violating part of the boxnote that we are working with the following representations
diagram at finite temperature, and where we also showed thgf gamma matrices in Euclidean space:

large gaugeinvariance is an issue in the static limit but not

in the long wave limit. In this paper, we systematically cal- Yo=io3, yi=ioy, y,=io,. (9)
culate the higher order corrections to the earlier result, in the

static limit, by using the method of derivative expansion Let us next define

[14,15. Although we earlier summed the leading order terms

in the static limit using a large gauge Ward identig}, in 1

this section we will rederive this result from the derivative Kp=re—. (10
X p+ yow,+M

expansion.

The leading order behavior in the static limit, as shown i”Then, taking out a factofwhich does not contribute to the

Ref. [9], is consistent with assuming a specific form of the ity violating effective actionwe can write the effective
background gauge fields, namé¢;8], action as

Ap=A A=A(X).

0= Ao, 0 ® TerfAM]=—> Trin(1+eK,A)
[In other words, even though backgrou®l is not what one "
would call a static background, explicit perturbative calcula- “ o (=1)
tions show[9] that the leading order behavior of the parity =—> Ty, -
violating amplitudes, in the static limit, corresponds to this moo=o J+1
fr:]: Igge%];iseg:gt?:nP%d;%rghuh‘:‘dégilf;gtgn\g?\lﬂgggaﬁ:gdsfca[[ his exprefsion shows that the effective action contains all
culated in Refs[7-9,16,17, and here, as a warmup, we Powers ofA. However, let us next show that quadratic and
rederive the result from a derivative expansion which will higher powers ofA do not occur in the parity violating part
also help settle some subtlety of this method. It is wellof the effective action. To this end, let us note that if we
known that, by a suitable gauge transformatigi,19 define[8]

J
(eK AT (11)
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- — J
Yown+M=p,e70%n, (12) F(hlgh&f)[A M]=— Z TrE ( ) (eK A)TL
j=1
_1)J
where == Tr (.
En: j§=:1 j+1
~ X (e— y0¢n/2e Kgo)e_ 70¢n/2A)J +1
pa= @+ M2, po=tan 1on (13 (-1
n l n ! j
n M :—zn: Trj§=:]_ j_’_—l(EKgo)A)]Jrl, (15)

where the intermediate phase factors cancel because of the

we can write gamma matrix algebra, whereas the initial and final phase
factors cancel because of the cyclicity of the trace. It now
follows that the parity violating part of this action is

1 . 1 . .
_ PV(high _ high high
K= oim LeriaMeLAM]= S (DGR AM]=TERM[A, - M])
=0, (16)
=g~ 70%n/2 e~ 70%n2= g~ 70¢n/2K (O~ v0bn/2, . o .
b+ pp, n which follows because expressi@ib) is an even function of

the fermion mass. This shows that the parity violating part of

the effective action is at best linear4n However, as is clear

from this derivation, it says nothing about the parity conserv-

ing part of the effective action, which, in general will contain
Using this, the terms in Eq11) containing higher powers higher powers of\. In fact, as we can see from Ed.5), the

of A can be written as parity conserving part will have a quadratic term of the form

(14)

Fe"ﬁ@)— }n‘, TrKOAK A

:_2 !

n p+pn b+ pn
=—e22 sz o?p (2pipj+i(pi‘9'+pj i)— 5|1[Pn+pk(pk+|t7k)]
(2m)? (P24 pA)[(p+iV)?+p2]
(310,—V?5;)
[—a(l-a)V2+p?]

A

] i

e2
—5 ; f da X a(1— @) A

¢ > J da d®x a(1—@)B ! B (17)
- o X o — - =
T ‘A pi—a(l—a)V?
|
where we have defined the magnetic field as * 1
n:E_w (2n+L)m  0\*
_ -, — Q5 Tt tu
B=Eij(7iAj , |,J:1,2. (18) ,8 ﬂ
B[ 1 . 1 _
and combined the denominators using the Feynman combi- B ﬂ tanhz_(ﬂﬂ_m)Haan(BMﬂe)
nation formula in the intermediate steps. The sum over the 8 4 8 )
discrete frequencies can be done in a simple manner using _P It
the formula Mta tanh-tans |, (19
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and leads to changes by a constant undettaage gaugetransformation.
However, the quadratic effective action involves a derivative
and, therefore, this action is invariant undarge gauge

1
M?— a(1—a)V?2 transformations.

The term in the effective action, linear iﬁ, has to be

1 . evaluated more carefully since this term, as it stdsdg Eq.
tanhz VM~ a(1-a)V ~iea] (11)], needs to be regularized. It was suggested in R

to look alternately at the linear term in the derivative of the

e?
Fgfc}(z):S—fJ da X a(1— @) B

X

1 k alternate
+tanh§[,8 ’Mz—a(l—a)VZ-l-iea] B effective action:
ord) g2
i 2 ! J U= TrK,AK 2
= — — nA\RnYo- (21
27TJ dadX a(1—a)B TR Ja B <
tan- tanhBVMz—a(l—a)V2+ eal This would correspond to making one subtraction. However,

2 ‘ar'? this expression is still not fully regularize@ does not sat-

isfy cyclicity as can be easily checkeso that the effective

action linear inA was derived in Ref[16] in a limiting
This is completely in agreement with the results of R&6],  manner from thigwhere cyclicity was still an issieLet us
and it is clear that this action is manifestly invariant undernote, however, that we are interested in the parity violating
large gaugeransformationgsee Eq(6)]. (That is, the arctan part of the effective action. Thus, from E(), we obtain

(20

et _ g( et AM] el A —M]

da 2 da da
e ST 1 1
=—— r = - =
2B “n p+vowp,+M+eA p+yjo,—M+eA 7o
eMz - 1 (22
=—— ———= ——— ~— 0.
B p2taltMite(p-AtA p—iyoB)+e?Al C
|
The linear term(in ,&) of this expression gives 1 _
+tanhz(,8M+|ea) B
arty  e2m 1 L
= > Tr—— (p-A+A-p ie o BM  ea
da 2 2 2 - |4 —1
B W pP+witM 5= 78 d*x tan tanhTtan? B. (24
—i70B) 5—=5 >%o- (23)  This c_;letermin_es the pari_ty viole_lting effect_ive acti_on Iinear_in
p°+ w,+M B which precisely coincides with the action derived earlier

[8,9,14; for future use, let us define
This expression is well defined and satisfies the cyclicity

condition. Evaluating the Dirac trace givé$r” simply de- e BM ea
notes trace over a complete basis I'(a,M)=5—tan 7| tanh——tan--|, (25)
arPY®  2je2m 1 so that we can write
= > tr——— B
Ja B W (pP+oei+M?)?
rg’fV}l):if ?x BI'(a,M). (26)
ie’M , 1
= E f dx=5 B ) )
2B “q wn+M2 [In general, of course, Eq24) determines the effective ac-

tion up to an additive constant. However, if we assume that
the effective action is normalized such that it vanishes when

1 .
tanhz(,BM—|ea) the external fields vanish, then, the additive constant van-

ie?
_ |
877de
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ishes and Eq(26) gives the parity violating part of the ef- 1

fective action linear inA.] Furthermore, as we have already I{A)M]= —eX, Tr = = M A
shown, the parity violating part of the effective action does " P+ volwnt+eho) +

- 32
not contain higher order terms f Consequently, this is the (32
complete parity violating part of the effective action in the It is clear now that if we expand the denominator in powers

particular background we have chosen, consistent with thef A and carry out the trace, we will obtain all the higher
results of Refs[7,8]. _ derivative corrections to the effective action in the static

The particular gauge background, as we argued earliefimit, However, it is also clear that the expansion would
gives the leading terms in the static limit; consequently, thisyring out more and more factors of Dirac matrices in the

action would correspond to the leading order parity violatingnumerator, so that calculations will become increasingly dif-
effective action in that limit. We will next try to extend these ficylt as we go to higher orders. Thus we look for an alter-

calculations to higher orders in derivativémit still to linear  nate method for obtaining the result.

order in ,&). Let us note that we are really interested in the parity vio-
lating part of the effective action, which is obtained as

Ill. DERIVATIVE EXPANSION AT HIGHER ORDERS

1 « -
In trying to determine the higher order terrfis deriva- FZ}/f(l)IE(F(elf)f[Ao,M]—T«(elf)f[Ao,—M])- (33
tives) in the static limit, we let the\, field depend on space
as well[in contrast to the discussion in Sec. I, Eg)] and  Furthermore, let us also note the identity
make the decomposition
1 1 1

2\ B+ yo(@ntePg) +M P+ yo(an+ehg) —M

Ao(t,X)=Ag(t) +Ag(X), fd2xA0(>Z)=o. (27)
M

That is, we separate out the zero mode of the space depen- _ (34)

dent part into the first term, which can always be done using p2+2)§+ M2+L'

a box normalization. Once again, by a suitable gauge trans-

formation[see Eq.(4)], the gauge fields can be brought to where

the form o ~ .
L=2ew,Aq—ieyy(hAy) +e?Al (35)

- a .. N
Ao(t,X)—>E+Ao(X), A=A(X). (28)  contains all the field dependent terms and has a much sim-

pler Dirac matrix structure. Using this, we can write
With such a separation, we have also separated the behavior
of the fields under amalland alarge gauge transformation.
That is, under darge gaugetransformation onlya trans-
forms as

1
rHY®=—eM>, Tr ——————A. 36
et En: p2+ w2+ M2+L 39

2 The denominator can now be expanded, and the effective
a

a—a+—, (29)  action can be calculated for any number A&f fields in a

€ simple and systematic manner.
hil d I o ‘ i M t ‘ As an example, let us note that the part of the parity
while under asmall gaugetransformation onlyA transforms violating action containing ond,, field in addition to aB

as[A, does not transform undersnall gaugetransforma- field arises agin the first two Iinesﬁ represents the momen-

tion in the static limit, since we have already used this free—tum operator. while in the last line it corresponds to the ei-
dom to bringA, to the form in Eq.(28)]: P ' P

genvalues of the operatpt4,15])

A—A+Ve. (30)
PV(1)y(1) = —j A
In this case, the effective actijaee Eq(11)] takes the form (Fefr™) GME i D2t it MZ[ ieyo(FA0)]
Fet AM] 1
~ ~ X p2+32+ M2
== Trin{1+[p+ yo(w,+eAy) +M] L(eA)}. n
n
=-2ie’M T
(3D ; p2+ wﬁ-l—M2

The linear term inMA has the simple fornithere will now be

higher order terms in in the parity violating(PV) action, =3 3 5
but we restrict to linear terms for simplicity (p+iV)*+ oy +M

1 “
(9iA0) €ij A
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d’p 1
(27)? p?+ w2+ M?

=2ie2M >, f d?x
n

O — AoB. (37)
(p+iV)2+ w2+ M?

Here the derivatives act only ol, and not onB. The mo-

PHYSICAL REVIEW D64 065018

ar M g (14T
PV(1))(1)—; 2 A (VU2A N |
(Tees™) |ﬁfde AO%1 6(V AO)&M2<M a
M viA ¢ (1 I 40
teo VA vz M aa) | 40

We note here that this effective action will give an amplitude

mentum integral can be evaluated by combining the denom®f tYP€ Ao-B with any number of insertions which can be
nators using the Feynman combination formula. Even thdhought of as zero momentusy, fields.

sum over the discrete frequency modes can also be exactly Without going into detail, let us simply note here that the
evaluated[see Eq.(19)] and the parity violating effective parity violating effective action containing tw&, fields, in

action containing oné\o field in addition to theB field has
the form

ie?M
(rg}’f“))(l):vﬁf d’x da B

1
VM?—a(1—a)V?

X

1 .
tanhE[B\/Mz— a(l—a)V—iea]

1 o
+tanh§[,8\/M2—a(1—a)V2+iea] A,.

(39)

addition to theB field (and, of course, any number ef
fields), can also be evaluated in a similar manner and has the
form

(I‘Z}/f(l))(@

Wn

=—4ie3M >, tr — — —
; (P?+ w2+ MA)[(p+iV,)?+ w2+ M?]

1
X— = = =
[(p+iV,+iV,)2+ w2+ M?]

ALMALB, (42)

Here we have put indices on the derivatives as well af\the
fields to indicate the action of these operators. The momen-
tum integral as well as the sum over the discrete frequencies

This is an exact, closed form expression which can also bgan also be carried out in this case, and the final form can be

expanded in powers of derivatives, and takes the form

B(s+1s+1)

ie’MB .
(g P=——= 2, f dPx—————Bl(~V*)%A]

1
tanhz(ﬂM—iea)

|

X(aMZ)Jm

1
+tanh§(BM+iea)

:lMBE deXWB[(_V2)SAO]
$=0 s!
3 (1 J
X 7 @M 9

obtained in a closed form. However, let us make a power
series expansion in the derivatives, and explicitly write the
first few terms:

1., M__ . .
57 A0 — — 75L2(V A Ag

PV(1IN(2)—; p2 2

1 4°T

+(VA°)'(VA°)]M(MF

M+ Y
+a) 2A0(V*AQ) +4(V<0;Ag) (d;A0)
4 “ 5 ,\
+§(aiajAo)2+§(V2AO)2)

32 ( 1 92T
(42)

><— PR —
(aM2)2\ M da’ -

which can be compared with the result from the momentum

space calculatiofigiven in Appendix A, Eq(A18), recalling

Calculations become algebraically more tedious as we go

that the coefficients of the momentum space amplitudes ar® higher orders. For example, the parity violating part of the
related to those of the real space amplitudes by a factor daéffective action containing thref, fields in addition to thé3
i/B]. Let us explicitly write out the first few terms, which field (and any number oé fields) can also be evaluated, and

have the forms

has the formbefore simplification
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1 " 1 " 1
e ®=2ie*M > tr = A ——— FA = €A
(Ter™) - P2+ w2+ M? °p2+w§+M2(' °)p2+wﬁ+M2 Y
(3iAo) Ry A
~ ~ E“
P+ w24 M2 U2t wie M2 Cpttp2em2 )

) 1 ; 1 3 !
EWN A = A = €ijA;
(Jk O)p2+wn (9 0)p2+wﬁ+M2( i 0)p2+wﬁ+M2 i

p?+ w2+ M?

(43

eij ~ 1 ~ 1 ~
(iAo) = (9;A0) = (dAo) = Agl.
02 o2 em2 T Y g2 g2y M2 T 24 G2 M2

p?+ w2+ M?

It is interesting to note that the expression above does not look manifestly invariantsmdikgauge transformations in
Appendix B. We will give a proof of gauge invariance within the framework of a derivative expansion. For the present, let us
simply note that if we were to evaluate this expression in powers of derivatives, the leading order term, which is linear in the

derivatives, has the form
1 - 6w?
(P?+wi+ M) (p*+wi+M?)

|e4M

BAS

Z f dx dp

|e4M

BAS

~2
4wy,

2+M2)2 ( ﬁ+M2)3

—2>

n

ie?M g2

= Tion 2 | ( +MzB

o o1 5T

[This can again be compared with E&24).]
The term cubidonly odd powers of derivatives arisie the derivatives has the form

|e4M o 8w? -
= f d Xd (p2+;2+M2)5 - (p2+,&)2+M2)4 [(V Ao)A0+(VAO) )]AO
as 14T
= X BA(V?Ag)Ag+(VAo) - (V O)]aMz M 733 (49

[which agrees with EqA32)]. Finally, the term fifth order in the derivatives has the form

Ie4M 2 ~2 2 2\2 7 2 5, 27
= - = W d X (7(1)n_ ) A [(V ) Ao]B+4A0((9kA0)((9kV Ao)B+—A0(V Ao) B+ Ao(ﬁk& Ao) B
n
w2 8M2| . .
3~ 3 ) (A (AA0)(dkdiAg)B

2
+ 112)2—M (9, Ag)2(V2A,) B+
n 3 k20 0

iM 2 3 4R A A 24 A 5. 2"24" "25 A \2(U2A
=120 d?x B| B3 A3(V*Ag) +4Ag(31A0)(V (9iAo)+§A0(V Ao) +§Ao(f9i(9jAo) +§(¢9iAo) (VZAo)
. . . 92 (1 ST\  4e’p i 33 (1 ar
+2(01A0) (3;A0)(9:9;A0) oMEE\M 7 +—3 [(31A0)2(V?Ag) + (31A) (9 Ao)(aaAo)]( M2)3| M aa (46)
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There are several things to note from these results. First, the __ e . 2n+1)m e .
results obtained up to fifth order in the derivatives above = @,=w,+ ,E(a+ BA0)=T+ E(a+BAO)'
agree completely with the momentum space calculations (49)

(given in Appendix A. Second, even though the expression
in Eq. (43) is not manifestly gauge invariant, terms up to fifth
order in derivatives are explicitly invariant undemall
gauge transformations. A gauge invariant form of the effec- —

tive action, derived above, needs the use of various algebraic —_ [>2 2 7 a1 @0

identities, and it is not priori clear that, at higher orders, po=NoptM%, o dp=tan ( M ) (50
gauge invariant expressions will be obtained. In Appendix B,

we will show, within the framework of derivative expansion, Whereﬁ and gn are now coordinate dependent because of

that the PV effective action, linear i, is both gauge invari- e presence ng_ The effective action, in these variables,
ant and local. takes the form

Following Egs.(12) and(13), we can now defing8]

IV. GENERAL FEATURES OF THE EFFECTIVE ACTION [o=— 2 Tr In(p+eA+E1e70"’n)
n

It is clear that, while at every order the effective action
can be determined in a closed form, its structure may not be -
that simple. On the other hand, from the analysis of the ef- =— > Trine?o%n2
fective action up to fourth orde(in fields) brings out some "

i _ —
p+eA+p,— 5 70(‘9¢n)) eYotn/2

nice features that are worth discussing. i _
First, the structures in Eq$40), (42), and (44) suggest =—> [Trln p+eA+p,— 570(3%))
that, to all ordergin ther fields) the leading order term in "
the parity violating part of the effective action has the form ie o | — 1 —
(terms linear in the derivatiye +EJ' d°X| dnejkdjAct Zd’nv Ol (51)

Vi1 _ 1 . Jd"T(a,M) where the terms in the square brackets arise from the Jaco-
(P&t ))1=InZO f dZXn—,B(ﬁAo)”T bian of the (1+1)-dimensional chiral rotatiofi7,8]. Note
that the contribution which is quadratic i, is irrelevant to
. ) - the parity-breaking part, because it is invariant under the
=|fdeF(a+BAO,M). (47) ChangeM—>—M.
The parity violating part of the effective action can be

. L ined from Eq(51) through rivative expansion an
Here the subscript refers to the number of derivatives con(-)bta ed fro a(51) through a derivative expansion and

tained in the effective action. This gives the simple result thafvould have anl odd number qg.” termg. xhe action Is gaug&a
the leading order correction to the static result can be opNvariant[7] (also see Appendix Band, if we are intereste
tained completely from the static result itself. Furthermoren terms linear inA, would depend linearly oB as well as
this action is invariant undelarge gauge transformations terms with derivatives acting op,, and ¢,. From the defi-
whenever the action withy,=0 is. Finally, we note that, at nition of these variables, we see that has the canonical
very high temperaturegg— 0, so that the action reduces to dimension of energy whilg,, is dimensionless. This allows
Eq. (26), which is consistent with the fact that the action in ys to organize the successive terms in the expansion.
Eqg.(26) gives the leading terms of the parity violating action At the order of terms cubic in the derivatives, let us note

at high temperatures. _ _ that the most general local term we can write for the parity
Even the next order terms in the expansionamely, third  yjolating effective action will have the form

order in derivativesin Eqgs.(40), (42), and(45) seem to have

a nice structure and, with a little bit of analysis, suggest that

they can be summed to a simple form. This can be done in (pPV(1)) =" f d?x B
n

Vz—n) 'S—n ! VQ_n
bl(_;ﬁ +b2( p)_é én)

the following way. Let us recall that we are interested in Pn Pn
evaluating the effective actiofup to normalizatioh ~
, (V?Ao)
=> fd x B eMb,| —;
a . n Pn
Cets=— > Trin{ p+eA+ yol o, +e| = +A, | +M
n B 2ew.
ew,
B — =" (VAg)-(VAg)
=—, Trin(p+eA+ yoo,+ M) |, (49 Pn
n J—
+e?Mb, = (VAy) - (VAy) (52)
where we have defined Pn
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It is clear that the contribution of the first term starts with  If we go to the next order, namely terms containing five
terms of the typeBAO, while the second structure has con- derivatives, there are 12 possible structures that arise. How-
tribution starting withBA3. Consequently, the coefficiertts ~ €Ver: let us note from the terms with three derivatives, that
and b, can be identified from our earlier calculatiopsee  terms with¢, appear only in combination witRi 2 acting on
Egs. (40) and (45)] and take the values;=ie/127 andb, them.[This corresponds to finding,=0 in Eq. (52).] If a

=0. Thus the parity violating part of the effective action similar pattern continues to hold at orders higher than the

which is cubic in the derivatives can be written as box amplitude, the parity violating effective action with five
~ derivatives can be uniquely determined from our results for
PV 2 (VZAo) the two and four point amplitudgsee Eqs(40) and (46)],
(Fert )3_ 127 w2+ M?2)2 and takes the simple form
2e0, (VAg)- (VAy)
T = o3 0)- 0
(@t M?)* (rg’fvf“))s———E fdsz
|e2M , o | (VZAy) — R _ —
=~ i f X B | Gt | Tion 300 (V2pn) + 4(G1pn) (3,72 )
_ Pn P
= vztan—lﬂ) 7(V2) (3,002
eM M n)\%iPn
. Pn
——'Mfdz Bl B(V?Ag) = +72

- Upon doing the sum over the discrete frequencies, this deter-
I'a+ ,BAo,M)) (59) mines the following form for the corresponding all ordérs
M ' fields) effective action

d
IM?

5 d Jd d
PV(l) o 2 2 2 2.~ |\ =
(Perr™)s= JdXB{ e?BL(91Ag)?)? + oM M2 93 a2
+e2B| (8:Ag)2(VZAy) 11+5|v|2 J +(3iA0) (9;A0) (d;9;Aq) 20+2|v|2 i i
e — [R— —_—
0 0 3 M 0 0 0 r7|\/|2 (9M2
2 ~
. . 5 . 1 . g B _.. ol o I'(a+BAg,M)
_ p2 . 2 . 2 219 9. 2 & 4 .
B [(&.Ao)(&.V Ao) +75(VA0)+3(did;A0) La 5 (V Ao)]&a PYE: M . (59

This discussion makes it clear that such an analysis can bmalculating the leading order term in this approach. We have
carried out systematically to any order in the derivati\@s shown, in this approach, that the leading order term in the
course, one needs to calculate higher point funcjiomich,  static limit of the parity violating thermal effective action, is

in turn, would determine the corresponding all order effecdinear in theA field. In going beyond the leading order we
tive action. Interestingly, all such effective actions can behave used the derivative expansion in the coordinate space to
determined completely from a knowledge of the leading ordetermine the parity violating effective action up to fourth

der parity violating action in the static limit. order in fields(linear inA) All these actions can be obtained
in closed form (namely, powers of derivatives can be
summedl in principle. However, their forms are neither very
illuminating nor useful. In contrast, at any given order of the

In this paper, we have tried to go beyond the leading ordeglerivatives, we can sum the effective action containing all
term in the static limit of the induced parity violating effec- possibleA, fields. The resulting effective actions are deter-
tive action for thermal QEB), ; using the derivative expan- mined completely by the leading order action in the static
sion. We have discussed the various subtleties that arise linit. We have also shown, within the framework of the de-
using derivative expansion in such a theory, and have imtivative expansion, that all the higher order terms, which are
proved and extended the earlier proposed meftidd for  linear in A, are large gauge invariant and local. We have

V. CONCLUSION
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tried to discuss the possible origin of the interesting structuréty violating parts of thermal amplitudes come only from
of the higher order terms that arise in the derivative expanthose terms in Eq(A2) which involve the trace of an odd
sion. number of Dirac gamma matrices.
Expressing the two terms on the right hand side of Eq.
ACKNOWLEDGMENTS (A4) in terms of the integral in EA1) and performing the

) ) change of variabl@— —p, we can easily verify that
This work was supported in part by U.S. DOE Grant No.

DE-FG 02-91ER40685, and by CNPq and FAPSEP, Brazil. oy Nil PV
Ayl A=KEM)= (=DM AT (kM.
APPENDIX A: MOMENTUM SPACE CALCULATIONS (A5)

In this appendix we will present the main results of the
perturbative momentum space one-loop amplitudes whicfThis result confirms that the procedure of antisymmetrization
can be derived from the Lagrangian density given by(@&y. in the mass gives a result which is in agreement with the
in the framework of finite temperature field theory usual concept of parity violation, according to which the
[11,20,21. The main results are given in Eq&18), (A24), N-point amplitude is odd under the concomitant interchange
(A32), and(A33). of the sign of all external gauge fields as well as their respec-
In order to simplify the presentation of the results, wetive momenta.
express théN-point amplitudes in terms of Bose symmetric ~ Of course, we do not expect to be able to compute the
combinations of the basic quantities amplitudesAz\l’_ . for general arbitrary momenta at finite

temperature. This is because, at finite temperature, ampli-
N o0
€ > &5 tudes are nonanalytic and, therefore, one can at best describe
(2m)2B = P them in some limit. In what follows, we will calculate the
thermal amplitudes in the static limk;;=0, wherelarge
N (PAKEM) gaugeinvariance is known to be an issue. In this limit, the
X——— r 8 ——-,  parity violating part of the basic amplitudes can be written as
(p*=M?)- - [(p+kyn-1))"—M7]

A (TKEM) = =

(A1)
statlc PV _(_ N+1__ —
where{k}=k, ... ky_1 represents the set ®i—1 inde- A ({k} M)=(-1) )23 nEw f P
pendent external 3-momente,;=k;+k,+---+k;, and
NStatIC PV(p k M)
Nﬂl,,,ﬂN=Tr[yﬂl(p+k1+M) ik

>< _)2 2 y
(p>+M2)- - ‘[(p+kl(N—1)) +Mg]

The external bosonic lines in EGAL) are such that the zero
component of its 3-momenta is quantized and purely imagiwhereM?2 = w2+ M?, with w,, given by Eq.(A3), and
nary (for instancek,g=2iw /B, with [=0,=1,=2,...).
Similarly, the zero component of the 3-momenta associated
with a fermion loop is given by aticpy L )
Nsalc n E[NM"'MN(p’{k}'M)
im(2n+1) 1

po:—lB =1 [OF n=0,_1,_2, e (A3) _N/”l"‘/”N(p’{k};_M)NklO _____ k(N71)0=O'
. . . . (A7)
Every thermalN-point amplitude is the sum of a parity
violating and a parity conserving part. In what follows, we
will concentrate only on the former, which can be written as  To evaluate the two dimensional integral in E46), we
[also see Eq(16)] can use the standard Feynman parametrization to combine

oy the N denominators. After performing appropriate shifts, the

Aﬂl"'MN({k};M) integration overﬁ can be easily performed. A closed form
expression for the Feynman parameter integrals can be ob-
u AKEM) = A, (K= M)T. tained in the limitk;|<M,,, in which case we can employ a
derivative expansiofthe term “derivative” is reminiscent of
(A4)  the configuration space transformatikn- —io"xi).

In the Abelian theory all the odd point amplitudes vanish
simply because of charge conjugation invariance. Let us con-
sider the even functions. From E@A6), with N=2, the
. Consequently, the par- self-energy is given by

_1 A
_E[

Since the denominator in E¢A1) is an even function oM
only the odd powers oM from the numeratoN

Eq. (A4) will contribute toAZ\ll. oy

065018-10
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HStatiC, PV( k) = A static, PV( k, M )

Hiko Kiko

I -
- (2m?B >3 fd P

Nstatic,PV(p,k; M)

« Hqkn
(P?+M2)[(p+k)2+M2]

(A8)

Using the Feynman combination formula, we can write

2 oo

. € 1 -
[ static, PVk — f d J’ d?
Kak2 ( ) (277)2B n;w 0 @ P

Nstatic, PV( p , k, M )

> Mk
[(p+ak)®+a(1—a)k?+M2]?

(A9)

PHYSICAL REVIEW D64 065018

o0

1 1 m
S EE —:—tanl‘(—), Al4
(= 2 Wt ol 2uT 2T (Al4)

with u=a(1— a)k?+M2. Using the latter approach, we

obtain
2
. e‘M r1
Hg’%atlc,PV(k): _Eijk]' _4 f da
™ Jo

’_(B\/a(l—a)lzz-l— M?
tan >

X . (Al15)

\/a(l—a)lzz+ M?

This expression shows that even in the simplest case of the
one-loop self-energy in the static limit, one cannot obtain a

simple closed form expression. Of course, the integration

over the Feynman parameter can be performed order by or-
der using a derivative expansion of E¢A13) or (A15). Itis

Performing the simple trace of three gamma matrices on&léar from Eq.(A15) that, at any 2+1 order, the polyno-

easily obtains

Nstati(:‘PV: (2M kaé

static_ .
H1my )= 2M K€ -

(A10)

Wrfrg a2

Since we are in the static limit, nameky=0, either the

index uq or u, has to be in the time direction. Choosing

u1=0 andu,=i, and noting that

€0ij = €ij » (A11)

we obtain

, 2e°M 1 -
HSt'atIC'PVk — k— f d f d2
0i ( ) €ij J(ZW)ZB n:Z_oo 0 @ P

1
>< Y ., 1
[p?+ a(1—a)k?+M?2]2

(A12)

where we have performed the shj?{eﬁ—alz. The integra-
tion in 5 is now elementary, giving the result

. M o (L
tatic,P\V/ |\ _ _
TSt (k)= —€ijk; 27 B nzz_oc fo da

1
X .2 2 2°
a(l—a)k“+ M+ wj

(A13)

mial in the Feynman parameter can be systematically ex-
pressed in terms of Euler’s beta function B which is defined
as

B(s+1s+1)= flda a’(1—a)?, (A16)
0

so that the expansion of the integrand in E&L3) in powers
of (k)? yields

- M
tatic, PV, _
[5ate (k)——eijkjﬁgo(—1)SB(S+1,5+1)

w2 S(—l)s o 1 M
X (k?) o BYEL syitanh 5= |
(A17)
Using Eqgs.(19) and(25), we finally obtain

4 “ B(s+1s+1) - &°
HSFatIC,PV k - . k M k2 S
8= ek 2 —— UEYEE

1 9

X
M da

(A18)

I'(a,M) )
a=0

Equation(A18) gives the momentum space two point ampli-
tude which is obtained from the parity violating, quadratic
effective action by taking functional derivative with respect

We can now proceed in one of two ways, namely, eithetto AO(IZ) andAi(—IZ).
perform a derivative expansion, as described earlier, or per- Let us next consider the box diagram which is obtained

form the sum oven, using the formula

from Eq. (A6) with N=4:
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e4 NSIatIC PV (pyk11k21k3;M)

MMMz My

AStath Py (k11k21k3;M):

MqMoMgMy

(Zw)zﬁn__mf P e 2)(p+K)>+ME][( p+|212)2+Mi][(5+|2123)2+'\/|¢20](;6\19)

From our experience with the previous example the selfexternal momenta and indices yields the following Bose
energy, we do not expect to obtain a closed form for Eqsymmetric expression for the box diagrafl """ is the

(A19) for arbitrary values ofk. Therefore, right from the sum of six permutations QAS?&“'P

beginning we will adopt the derivative approximatidq

<M, . Furthermore, instead of trying to obtain the general Hstatlc PYW)=_g 2 p
term of the series, we will separately analyze each individual €i 4’(2 )28 n=7x

order up to the fifth order in the external momenta and con- R

sider the specific componenjs; = u,=u3=0 and u,=i, p?+M2-502

which correspond to the part of the effective action contain- X(52+M—2+w2)4'

ing threeA, fields and one magnetic field. n
f T?e paffittr)]/ Vio!(atingl numerattor 'r? Equgg is fz‘jn odd  where we have used the momentum conservakiph k,
unction of the external momenta which can have degree one |, _ _ : : : ¥

or three[this can easily be verified from E¢gA2) and the i(la(gobtaii:l4. Performing the integration overin Eq. (A22),
definition of parity violating numerator as an antisymmetric

(A22)

function of M]. Making the external momenta equal to zero T e*M
inside the denominators, and keeping only the linear contri-  loog \T( )=-2 E.Jk4127TB
bution from the numerator in E§A19), we obtain the lead-
ing linear contribution * 4M?2 3
ol (M21 023 (M2+ 02)2
AP (1) f 5 n ( wp)® o})
0oa (2m)28 (A23)
Nstatlc PVp,ky Ko kg M) Using Eqg.(A14) we can perform the sum and express the
— 12' 2 23’4 (A20)  result in terms of derivatives of EG25) in the following
(p*+M*+wp) way:
where static P\1(1) 2 073
_ IM3sg" =¢€iky BF—=1'(a,M) (A24)
NP1 = 2M ;5[ (3ky + 4k, + Bkg) 2 o8 1T 5a3 e
—(ky+ ka)j(l32+ M?)] (A21) In order to obtain the higher order derivative contribu-

tions, we will have to take into account the external momenta
comes from the trace computation. Substituting Es21) dependence inside the denominators of &d.9). Using the
into Eq. (A20), and performing the six permutations of the Feynman combination formula we can write

At P\ 6e' o Jldalflialdazjlwzd%f dzﬁNgtoaéic'Pv(poﬁ_fYﬂZl_a2|212_ agkiz K1 Ko kg M)
(2m2B ne 0 (p2+ M2+ w2+ K2)*

(A25)

WhereElZE E1+R2, E13E El+|22+|23 and Mpipjklfjl or Mp|p|k] €ijj

K?= Eial(l— ay)+ E%zaz( l-—ay)+ |253a3(1— a3)

which appear in the numeratar§es®FV, the ¢p integration

in Eq. (A25) is as straightforward as the ones that arose in

(A26) the self-energy calculation. In order to obtain a simple scalar
integral we first perform the elementary angular integrations

Except for structures like with the help of

—2(ky-kypagast Ky Kizapazt+ ke Kz as).
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27 - and the result can be expressed in terms of derivatives of
fo dé p; p;=mp“J; . (A27)  T(a,M) defined in Eq(25). The complete four photon am-
plitude is then obtained adding the six permutations of exter-
In this way, Eq.(A25) leads to nal momenta and indices.

Of course, the final result must preserve the small gauge
invariance, being proportional tg;k,;, like the leading or-
g statiePV_ _ d 1- ald 1- azd der result given by EqfA24), so that the contraction witky,
00a 27-,3 n_foc @1 *2 @3 gives zero[this is a consequence of the invariance under a

small gauge transformatioA(k,)—A(k,)+K4 in the mo-

" n-(l)f)2+N-(1)+N-(3) mentum spack However, at this higher order, our explicit
xf ! ! . ! (A28)  calculation shows that the small gauge invariance will only
(P*+ M2+ wi+K2)* be explicitly manifest, when we make use of some identities

involving the two-dimensional vectors. A simple example is
The compact notation in the numerator of E428) means the Jacobi identity
thatn® andN(® are of first order in the external momenta,
while N&® is of third order in the external momentgOf
course, the algebra has become very much involved by now.
Just to give an idea of how involved it is, the numerator in
Eq. (A28) contains 242 termgPerforming the integration in  The emergence of these identities is, in fact, expected, be-
dp and expanding the result up to fifth order in the externalcause the very nature of the sub-leading contributions
momenta yields the following third and fifth order expres- (higher powers of the external momentaaves room to
sions: write the two-dimensional structures involving, and the

vectorslzl, IZZ, andl23 in many equivalent ways. Our strategy
ot L 1-ay 1-ay to single out the unique gauge invariant form, was to decom-
ASePY3) = > f da’lf dazf das pose each vector in a two-dimensional basis and vehify
2P 0= brute force, using the compujehat the unique function of
the components is indeed gauge invariant. Then, from the
expressions in terms of components, we were able to identify
1 (A29) the two-dimensional scalar functions which multiplies
€jK4j . This leads to the following results:

(Kq KomKsi + Ko KgmKyi + Kg KimKoi) €m=0.  (A31)

N§3>—K2ni(1)_ K2NM
(MZ+02)° " (M2+wd)?

and static, PV 3) e’ .
360" =3 €ijkaj (Ki+ Ko+ K3+ Ky ko + Kz Ky
4
. e 1 1-ay 1-ay
A(S)?(FJIC’P%(S):_ZWIB 2 fdalf dazf day R Y M2—5w§
= o o ° ko ke X

BnE=w (M?+ 02)*
BKAN 3 K4 —2K2N®
X +=

(M?+w))® 2 (M?+w))*

" ks L (K2 + K2+ K3+ Ky - K+ Ko+ K+ Ko Ks)

(A30)
g |1
The parametric integrals in the above expressions are very X l\/lﬁz—2 Vi —'(@aM) (A32)
involved, but straightforward, since there are only powers of IM oa a=0
the Feynman parameters. As in the previous cases, the sum
over discrete energy can also be performed using(&ty4) and
|
statlc P\1(5) 4M 21, L C Ll i 2 1,2
36y 30m3 g €ijKaj (k1k2'k3+k1'k2k2'k3)n_% F_[k 2(3k2+ 6Ky - Ko+ 6Ky - k3 + 5K+ 5k, - kg)
wz_ 2
+4(Ky - Ko) 2+ 6Ky - KoKy - k] E — 4+ (two cyclic permutations of k;, K,, and K,

wp)®
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M 4e? L I I . Lo
~ 5ociKai (K2Ky- Ky + Ky - KoKy Kg)—— 3 ((;M—z)s(ﬁa_ =0+[k§(3k§+6k1-k2+6k1-k3+5k§+5k2-k3)
- I & (92 1 4°r . _ I R
+4(ky-Ky) 2+ 6Ky - Koks- K] = +(two cyclic permutations of k;, k,, and kj.

3 (oM M a3

(A33)

APPENDIX B: SMALL GAUGE INVARIANCE
AND LOCALITY ST Gh=ie2 Tr| —[yo(wn+ehy)+M]
It is known[7] that the effective action resulting from a
fermion interacting with a gauge background is small gauge 1 1

invariant. However, as we saw in Sec. lll, within the frame- % _ _ + _ _
work of derivative expansion, gauge invariance is not mani- P+ yo(w,+eA)+M  p+ys(w,+ehy)+M
fest. There is also an issue of locality of the resulting effec-
tive action in this approach. In this appendix we show, within 5 .
the derivative expansion, that the PV action linearAiris X[yo(wpteAy) +M]|a
both small gauge invariant and local.

Let us consider the effective action in E®2) which is

linear in A. If we now make a gauge transformatiak,— A =ie2 Tr| —[yo(@ +ef%)+ M]
+da, wherea is the parameter of transformation, then the "
change in the effective action is given by
1 ~ -
X = = w,teAy)+M
) |b+y0(wn+e,%)+M[70( n Ao) ]
rO=—e> Tr — ba). (B
Feii— ; P+ yo(wn+eAy) +M ( 1

X

b+ yolanteAg)+M] "

Let us now use the standard canonical commutation relation ~0 (B4)

Here we have used the cyclicity of the trace in the second
term and the fact that the factor in the numerator is a multi-
plicative operator which commutes with This proves that

as well as the cyclicity of the traceve note here that the the expression that we are interested in is invariant under
zeroth order term in this expression is the only term thaSMall gauge transformations, even though it may not be
needs regularization and we have already seen that it is marjpanifest.

festly gauge invariant. The higher order terms are well de- This, therefore, raises the question as to whether we can
fined and satisfy cyclicity of traceto write have a derivative expansion which will give a manifestly

(smal) gauge invariant expression for the effective action.
The answer, not surprisingly, is in the affirmative. Let us

[pi.a]=—i(da)

recall that
1
ST g=ie2 Trl p — «. (B2) o
D+ Yolw,teAy)+M et AM]= —}n) Trin[p+ yo( @, +eA)) + M +eAl.
(BS)

Let us next write . . ) .
In two dimensions, the vector field has the simple decompo-
sition

p=p+ Yol wnt+eAg)+M—[ yo(wy+ehg) +M]. . Ai=dio+ € dip,
B3

from which it can be determined that

Using this leads to (9°p)=—€&;3,Aj= —B. (B6)
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Using this decomposition and the familiar properties of JaTeY. e 1
gamma matrices in two dimensions, we can write ALE 25 Tr = =
Ja B*w p+eyo(dp)+ yo(wn+ehy)+M
1
| T prevoldp)+ volanteng)-M|°
el AM]=—3 Trine T p+eyy(4p) Peyoldp)+ volwnteho)
n ST (89
-~ A 1 = s y
+ Yol @+ eAg) + M]e'®” B 5 P2t M2iN

- R where we have defined
== 2 Trin[p+eyo(dp) + yo(wn+eAg) +M]. A o
n N=[—ieyy(dAq)+ 2ew,Ag+ ?Aj]

(B7) +ieyy(a%p) —€%(3ip)(dip) (B9)

Using Eq.(B6), the last two terms iN can be expressed in
terms of B and while the last one has a nonlocal form in
From the definition of the parity violating effective action in terms of B, the penultimate term is local. Expressi¢B8)

Eq. (33), it now follows that can now be expanded to linear order in Bideld to give
aref® M 1 _
___zTr ~2 . “ ~ A ~2 (I’)/OB)
da B P2+ wi+ M2+ [ —ieyy(hAg) +2ew,Ag+ eA]]

1
X ~2 112 - A ~ 2727 |70
P2+ wi+ M2+ [ —ieyy(dAg) +2ew,Ag+ €%Af]

2ie’M S 1 5 (810
= r = = = = .

B W (PPt 0i+ M2+ 2ew,Aq+€2A3)2—e?(9;A,)?
To any order in the&o fields, the denominator can be expanded in a systematic manner, as discussed earlier. However, this
form has the advantage that it is manifestly gauge invariant to begin with. Furthermore, there are no Dirac matrices or
momentum operators in the numerator to complicate the calculation. The only complication may be that integratirtg over
obtain the action may be nontrivial.
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