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Hierarchy stabilization in warped supersymmetry
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We show that exponentially large warp factor hierarchies can be dynamically generated in supersymmetric
compactifications. The compactification we consider is the supersymmetric extension of the Randall-Sundrum
model. The crucial issue is the stabilization of the radius modulus for large warp factor. The stabilization sector
we employ is very simple, consisting of two pure Yang-Mills sectors, one in the bulk and the other localized
on a brane. The only fine-tuning required in our model is the cancellation of the cosmological constant,
achieved by balancing the stabilization energy against supersymmetry breaking effects. Exponentially large
warp factors arise naturally, with no very large or small input parameters. To perform the analysis, we derive
the four-dimensional effective theory for the supersymmetric Randall-Sundrum model, with a careful treatment
of the radius modulus. The manifestly~off-shell! supersymmetric form of this effective Lagrangian allows a
straightforward and systematic treatment of the nonperturbative dynamics of the stabilization sector.
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I. INTRODUCTION

Following the work of Refs.@1,2# there has been a grea
deal of interest in the phenomenological possibilities
warped higher-dimensional spacetimes of the form

ds25v2~y!hmndxmdxn1hmn~y!dymdyn, ~1.1!

wherexm (m50, . . . ,3) are thefour noncompact spacetim
dimensions, andym are compactified. In particular, th
y-dependent renormalization of effective four-dimensio
mass scales implied by the ‘‘warp factor’’v(y) provides a
powerful mechanism for generating hierarchies in natu
Randall and Sundrum~RS! @1# presented a very simpl
warped five-dimensional compactification with an expon
tial warp factor ~the ‘‘RS1’’ model!, which exploited this
mechanism to explain the hierarchy between the weak
the Planck scales, without appealing to supersymmetry.

Warped spacetimes may also be important in models w
supersymmetry~SUSY!. One motivation is to allow phe
nomenological effective field theory approaches to ma
contact with warped superstring backgrounds@3#. A particu-
larly interesting string background isAdS53S5, which plays
a central role in the Maldacena realization of holograp
duality @4#. In Ref. @5# it is emphasized that such dualitie
may have a profound connection to the Randall-Sundr
models, based on the~partial! AdS5 geometry of these mod
els. Supersymmetry may allow a more precise understa
ing. Another example is 11-dimensional heterotic M theo
compactified on a six-dimensional Calabi-Yau space and
S1/Z2 orbifold @6#. This N51 supersymmetric theory ha
been taken as the starting point for phenomenological s
ies, where the warp factor may play an important role@7#.
There are also purely phenomenological motivations; w
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factors can generate hierarchies required in realistic su
symmetric theories@8#. It is also an interesting open questio
to ask what patterns of SUSY breaking can arise in war
spacetimes. In the future we hope to focus on the effec
warping on higher-dimensional SUSY mediation mech
nisms such as anomaly-mediated SUSY breaking@9#,
gaugino-mediated SUSY breaking@10#, and radion-mediated
SUSY breaking@11#.

In this paper we will study the minimal supersymmetr
extension of the simplest warped compactification, nam
RS1. This extension was constructed in Ref.@12#. Our first
result is a derivation of the four-dimensional effective theo
of the supersymmetric RS1 model valid at long wavelengt
including a careful treatment of the radius modulus.1 This
effective Lagrangian is valid to two-derivative order, but
all orders in the fields, including the radion field. The effe
tive Lagrangian will be presented in terms of off-shell SUS
multiplets, which will greatly simplify the analysis of non
perturbative effects and SUSY breaking.

The other main result of our paper is a dynamical mec
nism to stabilize the radius modulus in the supersymme
RS1 model. This mechanism naturally stabilizes the radiu
a sufficiently large value that the warp factor hierarc
across the extra dimension is large. The stabilization se
consists of two super-Yang-Mills~SYM! sectors, one in the
bulk and the other localized on one of the four-dimensio
boundaries. The radius of the extra dimension is stabilized
the balance between brane and boundary gaugino conde
contributions to the supergravity~SUGRA! potential. We
first proposed this mechanism in Ref.@13#, where it was
shown to stabilize the radius in a supersymmetric compa
fication with negligible warp factor. We stress that for a
value of the warp factor the mechanism is completely natu

1A related derivation and discussion of the four-dimensional
fective theory by Bagger, Nemeschansky, and Zhang@24# will ap-
pear at the same time as the present paper.
©2001 The American Physical Society12-1
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MARKUS A. LUTY AND RAMAN SUNDRUM PHYSICAL REVIEW D 64 065012
~except for the cosmological constant problem! and con-
trolled in an effective field theory expansion. In the nons
persymmetric RS1 model, a simple classical mechanism
stabilized a large warp factor was presented in Ref.@14#. The
supersymmetric mechanism we present here is intrinsic
nonperturbative.

We believe that it is an important development to hav
supersymmetric model of radius stabilization that is b
completeand calculable. Moduli describing the size and
shape of the extra dimensions are a generic feature of hig
dimensional compactifications with supersymmetry, and
particular superstring theory. These moduli must be sta
lized both to avoid phenomenological and cosmologi
problems of light scalars, and also to select an appropr
vacuum. This problem has been extensively discusse
string-inspired contexts; see, e.g., Ref.@15#. The stabilization
problem is especially severe because of the constraint
higher-dimensional local supersymmetry. Our model give
simple stabilization mechanism consistent with these c
straints, even if it does not display the full complexity
string compactifications. We hope that some of the tools
have developed can be extended to superstring or M the

This paper is organized as follows. In Sec. II we descr
the model we will study. In Sec. III we derive the supersy
metric four-dimensional effective field theory of the supe
symmetric RS1 model. In Sec. IV we analyze the nonper
bative gauge dynamics needed for stabilization using
effective four-dimensional description. These results
summarized and discussed in Sec. V. In the interest of re
ability, some details of the derivation of the effective theo
in Sec. III are relegated to the Appendix, which, howev
gives a self-contained account.

II. THE MODEL

The theory we are interested in is minimal fiv
dimensional SUGRA, where the fifth dimension is a fin
interval realized as anS1/Z2 orbifold. We will also couple
this theory to matter and gauge fields in the bulk or localiz
on the orbifold boundaries.

Our starting point is the on-shell Lagrangian for fiv
dimensional SUGRA@16#

LSUGRA,552M5
3H A2G@ 1

2 R~G!1 1
4 CMNCMN26k2#

1
1

6A6
eMNPQRBMCNPCQR1fermion termsJ ,

~2.1!

whereM, N,...50, . . . ,3,5, are five-dimensional spacetim
indices, GMN is the five-dimensional metric,CMN5]MBN
2]NBM is the field strength for the graviphotonBM , andk is
a mass scale defined so that26M5

3k2 is the five-dimensiona
cosmological constant. Unbroken SUSY requires that
cosmological constant haveAdS sign (k2.0). In order to
realize this theory on anS1/Z2 orbifold, theZ2 parity assign-
ments of the bosonic fields must be taken as in Table I.
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We now couple five-dimensional SUGRA to localized e
ergy density on the orbifold boundaries:

DL552d~q!A2g1V12d~q2p!A2g2V2 , ~2.2!

whereg1,2 are the induced four-dimensional metrics on t
boundaries,V1,2 are constants, and2p,q<p parametrizes
the fifth dimension. This theory admits the Randall-Sundr
solution @1#

ds25e22kr0uquhmn dxm dxn1r 0
2 dq2,

Bq5b0 , Bm50, ~2.3!

provided that

k5
V1

6M5
3 52

V2

6M5
3 . ~2.4!

This metric is a slice ofAdS5 . The exponential factor
e22kr0uqu is the ‘‘warp factor’’ that gives rise to mass hiera
chies across the fifth dimension. The theory including
boundary terms Eq.~2.2! can be made supersymmetric b
the addition of suitable fermion terms, and the ‘‘vacuum
solution Eq.~2.3! then preserves four real supercharges@12#.
The bulk Lagrangian Eq.~2.1! is invariant under eight rea
supercharges, but half of the supersymmetry is explic
broken by the orbifold projection and the boundary terms

Equation~2.3! is a solution for any value ofr 0 andb0 ; r 0
is the radius of the compactS1, while b0 is the Aharonov-
Bohm phase of the graviphoton around theS1. When we
consider fluctuations about the solution Eq.~2.3!, these inte-
gration constants become propagating massless modes
mode corresponding tor 0 ~the radion! is particularly impor-
tant, since it controls the couplings in the four-dimension
effective theory. In this paper we will show how to stabiliz
the radion in the interesting case where the warp factor
large effect.

In addition, we will couple this theory to bulk supe
Yang-Mills theory. The minimal five-dimensional SYM mu
tiplet consists of a vector fieldAM , a real scalarF, and a
symplectic Majorana gauginol j ( j 51,2). The bulk La-
grangian is@17#

TABLE I. Bosonic fields of five-dimensional SUGRA with thei
Z2 parity assignments.

Field Z2 parity

Gmn 1

G5m 2

G55 1

Bm 2

B5 1
2-2
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HIERARCHY STABILIZATION IN WARPED SUPERSYMMETRY PHYSICAL REVIEW D64 065012
L552A2G
1

2g5
2 tr FMNFMN

2
1

2A6g5
2

eMNPQRBM tr FNPFQR

1scalar and gaugino terms. ~2.5!

The SYM fields are taken to transform under the orbifoldZ2
as shown in Table II. The even fields form anN51 SYM
multiplet.

To obtain realistic models we will couple these bulk fiel
to fields localized on the orbifold boundaries. Working o
these couplings and verifying that they preserve supers
metry is nontrivial. An off-shell construction of the bounda
couplings was given by Ref.@18# using the method of Mira-
belli and Peskin@19#. The off-shell couplings of bulk SYM
to SUGRA were constructed in Ref.@20#. It is clearly crucial
for the results of this paper that these couplings exist
preserve SUSY. However, the results of this paper will
derived using only the on-shell bosonic Lagrangian toget
with consistency arguments.

We can now summarize the theory that we will analyze
this paper. The theory consists of minimal five-dimensio
SUGRA, with a SYM sector in the bulk, and an addition
SYM sector on one of the orbifold boundaries, the ‘‘hidd
brane.’’ The bulk Lagrangian has dimensionful paramet
M5 andg5 that we take to be of the order of the Planck sca
Additionally, we assume that there is a SUSY breaking s
tor also localized on the hidden brane. The SYM multipl
together with the SUSY breaking sector will play the role
the radius stabilization sector, as we will see. For a fu
realistic model, one would want to add standard model fie
presumably some or all of them localized on the oth
boundary, the ‘‘visible brane.’’ These play no role in the s
bilization dynamics. We will study complete realistic mode
in future work.

III. THE FOUR-DIMENSIONAL EFFECTIVE
LAGRANGIAN

At sufficiently low energies, the dynamics of the theo
above is approximately four dimensional. The match
scale between the five- and four-dimensional effective th
ries is determined by the mass of the lowest Kaluza-Kl
~KK ! mode, given by@1,2#

TABLE II. Fields of five-dimensional super-Yang-Mills secto
with their Z2 parity assignments.

Field Z2 parity

Am 1

A5 2

F 2

l1 1

l2 2
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mKK
2 ;S k

11epkr0D 2

. ~3.1!

We assume that the theory is weakly interacting at this sc
justifying the use of classical matching. This will be true
long as the radius of compactificationr 0 and the radius of
curvature 1/k are larger than the five-dimensional Plan
length.

In this section, we will derive the four-dimensional effe
tive theory below the scale Eq.~3.1!. Our strategy is to
match enough bosonic terms between the five- and fo
dimensional Lagrangians so that we can infer the remain
terms usingN51 SUSY. The justification of some of th
steps is relegated to the Appendix. The Appendix give
complete self-contained derivation, including a discussion
some subtleties of classical matching.

We begin by considering the massless bosonic fields a
ing from the five-dimensional SUGRA sector. The soluti
Eq. ~2.3! has undetermined integration constantsr 0 and b0
whose long-wavelength fluctuations are massless mod
Also, unbroken four-dimensional Lorentz invariance impli
that there is a massless graviton in the four-dimensional
fective theory. These massless four-dimensional fluctuati
can be parametrized by making the replacementshmn

→gmn(x), r 0→r (x), andb0→b(x) in Eq. ~2.3!:

ds25e22kr~x!uqugmn~x!dxm dxn1r 2~x!dq2,

2p,q<p,

Bq~x,n!5b~x!, Bm~x,q!50. ~3.2!

If this satisfied the five-dimensional equation of motion, o
could obtain the classical four-dimensional effective act
by substituting Eq.~3.2! into the five-dimensional action an
integrating over the fifth dimension. Equation~3.2! does not
satisfy the five-dimensional equations of motion@21#. How-
ever, in the Appendix we show that for the metric in Eq.~3.2!
this ‘‘naive’’ procedure gives a result that differs from th
exact classical effective action only by terms with four
more x derivatives. We can therefore use the metric in E
~3.2! to parametrize the radion at leading order in the deri
tive expansion.2 For the graviphoton, the naive procedu
does not work; the graviphoton can still be parametrized
b(x) defined by Eq.~3.2!, but there is a nontrivial correction
to the classical effective Lagrangian that is computed in
Appendix. However, to determine the effective theory it
sufficient to know the terms that depend only on the radi
which can be determined by substituting Eq.~3.2! into the
five-dimensional action. The terms depending on the gra
photon can then be inferred from SUSY. Therefore, the c
culation of the graviphoton effective Lagrangian carried o
in the Appendix serves only as a redundant check on
results.

2Reference@21# gives an alternative parametrization of the radi
that satisfies the five-dimensional equations of motion at linear
der in fluctuation fields, but to all orders inx derivatives.
2-3
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MARKUS A. LUTY AND RAMAN SUNDRUM PHYSICAL REVIEW D 64 065012
We turn to the five-dimensional SYM sector. It is straigh
forward to verify that

Am~x,q!5am~x!, Au~xq!50 ~3.3!

is a solution to the five-dimensional equations of motion
am(x) is a solution to the four-dimensional YM equation
motion. Therefore,am(x) parametrizes a four-dimension
vector zero mode. The fact that the zero mode is indepen
of q despite the presence of the warp factor can be trace
the classical conformal invariance of four-dimensional Yan
Mills theory. Note that there are no masslessAq or F fluc-
tuations because of the orbifold projection.

We wish to relate the massless bosonic fields defi
above~and their fermionic superpartners! to a manifestlyN
51 supersymmetric formulation of the four-dimensional
fective theory. The massless bosonic fields are two real
lars r (x) and b(x), a real vector multipletam(x), and the
metricgmn(x). Given that these bosonic fluctuations are p
of an N51 locally supersymmetric theory, they can be p
rametrized by one chiral superfieldT, one non-Abelian vec-
tor superfieldV, and the minimal SUGRA multiplet. The
most general effective Lagrangian at two-derivative or
can be written

L4,eff5E d4u f†f f ~T,T†!

1F E d2u S~T!tr~WaWa!1H.c.G . ~3.4!

There is no superpotential forT because the radion modulu
does not have a potential. We are using the superconfo
approach to SUGRA@22#. The fieldf is the superconforma
compensator@23,22# that is responsible for breaking the loc
superconformal symmetry down to local super-Poincare´:

f511u2Ff . ~3.5!

Ff is the scalar auxiliary field of the minimal off-shellN51
SUGRA multiplet. We are using superspace notation a
shorthand for expressions that can be rigorously defined
ing the superconformal tensor calculus approach@22#. In par-
ticular, factors of the metric~or vierbein! are implicit in this
notation.

We now make a holomorphic field redefinitionS(T)
→T/g5

2 in the effective theory so that the effective Lagran
ian has the form

L4,eff5E d4u f†f f ~T,T†!1F E d2u
T

g5
2 tr~WaWa!1H.c.G .

~3.6!

From this, we have

1

2g4
2 5

Re~T!

g5
2 . ~3.7!
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We can also calculate the four-dimensional gauge coup
g4 by substituting the zero mode gauge field Eq.~3.3! into
the five-dimensional action and integrating over the fifth
mension. This yields

1

g4
2 5

2pr

g5
2 . ~3.8!

Therefore, we see that

Re~T!5pr . ~3.9!

Similarly, from Eq.~3.6! we see that Im(T) is proportional
to the four-dimensional theta angle, which in turn is prop
tional to Bq from the mixed Chern-Simons term in the five
dimensional theory:

DL552
1

2A6g5
2

eMNPQRBM tr~FNPFQR!

52
1

2A6g5
2

emnrsBq tr~FmnFrs!1¯ . ~3.10!

This determines

Im~T!5
2p

A6
b. ~3.11!

Thus we have fixed the relation betweenT and the compo-
nent fieldsr (x) andb(x). Note that Eqs.~3.9! and~3.11! are
exactly the same as in flat space@13#. This is ultimately due
to the classical conformal invariance of Yang-Mills theory
four dimensions.

It still remains to fix the relation between the metric th
appears in the four-dimensionalN51 SUGRA multiplet,
and the metricgmn defined by Eq.~3.2!. This is nontrivial
because in the four-dimensional effective theory we have
freedom to make field redefinitionsgmn8 5c(r )gmn , where
c(r ) is an arbitrary function. However, such field redefin
tions in general do not preserve the property thatT trans-
forms independently of the four-dimensional SUGRA mu
tiplet underN51SUSY. In the Appendix, it is shown tha
imposing this condition implies that the two metrics are ide
tical ~as implicitly assumed in the notation used above!.

Expanding the four-dimensional SUGRA Lagrangian E
~3.4! in component fields, we obtain

LSUGRA,45A2gF2
1

6
f R~g!

2
1

4 f
~ f T]mT2H.c.!~ f T]mT2H.c.!

2 f T†T]mT†]mT1fermion termsG , ~3.12!

where f T5] f /]T, etc., andR(g) is the four-dimensional
Ricci scalar associated with the metricg. As discussed
above, the terms depending on the metric and the radior
2-4
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HIERARCHY STABILIZATION IN WARPED SUPERSYMMETRY PHYSICAL REVIEW D64 065012
can be obtained by substituting Eq.~3.2! into the five-
dimensional action and integrating over the fifth dimensi
We can use this procedure to determinef by calculating the
coefficient ofR(g) @see Eq.~3.12!#. One obtains

f 5
3M5

3

k
~e22pkr21!. ~3.13!

Note that forr→r 0 , f is the four-dimensional Planck sca
computed in Ref.@1#. The graviphoton Aharonov-Bohm
phase cannot contribute to the coefficient ofR(g). Using
Eqs.~3.9! and ~3.11! therefore gives

f ~T,T†!51
3M5

3

k
~e2k~T1T†!21!. ~3.14!

Having fixed the functionf, the other two-derivative terms in
Eq. ~3.12! that depend onr andb are fixed. In the Appendix
we show that these agree with a direct matching calculat
giving a highly nontrivial check of this derivation.

We now turn to fields localized on the boundary. No
that, in terms of the component fields, we have chosen c
dinates so that the warp factor is unity atq50 ~the hidden
brane!. Therefore the radion field~as paramtrized above!
does not appear in the hidden brane terms in the Lagrang3

Correspondingly, it is shown in the Appendix that the ter
arising from the hidden brane are independent ofT. There-
fore the general form of the effective Lagrangian involvi
the hidden fields is

L4,hid5E d4u f†f f hid~S,S†!1E d2u@Shid~S!tr W8aWa8

1f3Whid~S!#1H.c., ~3.15!

whereS are hidden sector chiral multiplets andWa8 is the
field strength of the hidden sector gauge multiplets. T
terms arising from the visible brane do have couplings to
radion, since by Eq.~3.2! the induced metric on the brane
e22pkr(x)gmn(x). The unique supersymmetrization of the
terms is

L4,vis5E d4u f†fe2k~T1T†! f vis~Q,Q†!

1E d2u@Svis~Q!tr W̃aW̃a1f3e23kTWvis~Q!#

1H.c., ~3.16!

whereQ is a visible sector chiral multiplet, andW̃a is the
field strength of the visible sector gauge multiplets. Note t
Eq. ~3.16! has the same form as Eq.~3.15! with f replaced
by fe2kT. This is not a coincidence. The radion depende
of L4,vis is entirely due to the fact that the induced metric

3The physical radion mode does couple to the hidden brane
kinetic mixing with the graviton field.
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a Weyl rescaling ofgmn , which is precisely equivalent to a
rescaling of the conformal compensatorf.

Comparing Eqs.~3.15! and ~3.16! one readily sees that
relative to fundamental mass parameters, physical m
scales in the visible sector~including UV regulator and
renormalization scales! are rescaled by a factor ofe2kpr 0,
while scales in the hidden sector are not. Fork.0, mass
scales are suppressed in the visible sector, while fork,0
mass scales are enhanced in the visible sector. This is
warp factor effect that can naturally generate exponenti
large hierarchies.

It is more conventional to describe the kinetic terms
supergravity in terms of the Ka¨hler potential. This is given
by

K[23M4
2 lnF2

f ~T,T†!1 f vis~Q,Q†!1 f hid~S,S†!

3M4
2 G .

~3.17!

The properties of supersymmetry breaking and renormal
tion are easier to see in terms off, but the Kähler potential is
more useful for determining the sigma model couplings
the bosonic fields.

IV. THE RADIUS MODULUS EFFECTIVE POTENTIAL

In this section, we construct the effective potential for t
model described above and minimize the potential to sh
that the the radius is in fact stabilized. The model was a
lyzed in Ref. @13# for the case where the warp factor is
small effect,e2kT.1. We will therefore be interested in th
case where the warp factor is a large effect.

Just below the KK matching scale Eq.~3.1!, the four-
dimensional effective theory is

L4,eff5
3M5

3

k E d4u f†f~e2k~T1T†!21!

1E d2uS T

g5
2 tr WaWa1

1

2g4
2 tr W8aWa8 D

1H.c.1LSB. ~4.1!

Here the first gauge kinetic term arises from the bulk SY
sector, while the second arises from the SYM sector loc
ized on the hidden brane.LSB is the Lagrangian for the
SUSY breaking sector, also assumed to be localized on
hidden brane. We are using coordinates where the warp
tor is unity on the hidden brane~so thatLSB is independent
of T!. There are therefore two cases to consider: the w
factor at the visible brane is either smaller or larger th
unity. In the formulas above, these cases correspondk
.0 and k,0, respectively, so we can analyze both ca
using Eq.~4.1!. Classical matching is justified by assumin
that the asymptotically free gauge forces are weak at the
matching scale, and that the spacetime curvature is
small, uku,M5 .

The SYM sectors become strong in the infrared of t
four-dimensional effective theory and give rise to a dynam
cal superpotential from gaugino condensation. In additi

ia
2-5
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MARKUS A. LUTY AND RAMAN SUNDRUM PHYSICAL REVIEW D 64 065012
the hidden SUSY breaking sector is assumed to dynamic
generate a nonzero vacuum energy. This vacuum energy
be positive provided that SUGRA is a perturbation to t
SUSY breaking dynamics. We also assume that the SU
breaking dynamics has a mass gap, except for the Golds
The effective Lagrangian below the scale where these eff
occur is then

L4,eff5
3M5

3

k E d4u f†f~e2k~T1T†!21!

1F E d2u f3~ae2zT1c!1H.c.G
2VSB1Goldstino terms. ~4.2!

If the bulk SYM gauge group is SU(N), we have

a5OS 1

N4g5
6D , z5

16p2

3Ng5
2 . ~4.3!

The exactT dependence in the superpotential term of E
~4.2! is fixed by holomorphy and the anomalous shift sy
metry in T @13#.

It is straightforward to integrate out the auxiliary fields f
T andf to obtain the effective potential. However, addition
insight into the form of the answer is given by writing th
Lagrangian in terms of the ‘‘warp factor superfield’’

v[fe2kT ~4.4!

in place ofT. This gives

L4,eff5
3M5

3

k E d4u~v†v2f†f!

1F E d2u~af32nvn1cf3!1H.c.G
2VSB1Goldstino terms, ~4.5!

where

n[
z

k
. ~4.6!

From Eq.~4.5! one can immediately read off the potentia

Veff5
k

3M5
3 @n2uau2~v†v!n212u~32n!avn13cu2#1VSB

~4.7!

5
k

3M5
3 @n2uau2vu2~n21!2~n23!2uau2uvu2n29ucu2

26~n23!uauucuuvun cosg#1VSB, ~4.8!

where

g[arg~a!2arg~c!1n arg~v!. ~4.9!

We now minimize the potential as a function ofuvu andg.
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We first considerk.0, corresponding to the case whe
the warp factor is smaller than unity on the visible brane
the warp factor is an important effect, thenuvu!1 and we
can neglect the second term in Eq.~4.8! compared to the
first. ~We assume thatn is not much larger than unity.! Mini-
mizing with respect tog simply sets cosg5sgn(n23). There
is a nontrivial minimum provided thatn.3, which is satis-
fied provided that the bulk SYM sector is weakly coupled
the KK matching scale. We then obtain

uvu5e2pkr5S 3~n23!

n~n21!

ucu
uau D

1/~n22!

. ~4.10!

We see that for any givenn we can obtainuvu!1 provided
that ucu/uau is sufficiently small.4 This is perfectly natural,
since ucu is exponentially small in terms of the fundament
couplings. Thus, if we want to use the small warp factor
explain some mass hierarchy in nature, the small warp fa
itself can be explained in terms of order-1 fundamental
rameters in this model of stabilization.

To complete our analysis of this case, we find the ot
extrema of the potential. There is an obvious extrem
whereuvu→0. It is easy to check that this has higher ener
than the solution Eq.~4.10!. We must also look for solutions
with uvu;1. In this case we can neglect the last term of E
~4.8! sinceucu!uau. This gives another extremum

uvu5S n~n21!

~n23!2 D 1/2

. ~4.11!

However, forn.1 this solution hasuvu.1, which is outside
the physical regionr .0.5 It is therefore unphysical for the
values ofn we are considering. It is also easy to see that t
extremum has higher energy than the solution Eq.~4.10!.

Combining the results above, we conclude that Eq.~4.10!
is in fact the true~global! minimum. In order to cancel the
four-dimensional cosmological constant, we note that
term 29ucu2 in Eq. ~4.8! dominates the vacuum energy
the solution, so we must fine-tune

VSB.
3ucu2

M4
2 , ~4.12!

whereM4
25M5

3/k. Note that this givesVSB.0, as desired.
We obtain

m3/2
2 5

ucu2

M4
4 ;

VSB

M4
2 . ~4.13!

The mass of the radion fields at the minimum of the poten
is straightforward to work out using the component Lagran
ian given above, or in terms of the standard four-dimensio

4This assumes thatn is not too large. The regimen@1 corre-
sponds tok!z, i.e., small bulk curvature. As shown in Ref.@13#,
the model also stabilizes the radius in this regime.

5We are consistently using the convention that the proper dista
in the 1q direction is1rq, which fixesr .0.
2-6
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supergravity potential. Parametrizing the radion byv greatly
simplifies the calculation. We find

mscalar
2 5

ucu2

M4
4

~n22!~n23!2

n21
, mpseudoscalar

2 5
ucu2

M4
4

n~n23!2

n21
.

~4.14!

Note that mscalar;mpseudoscalar;m3/2. The radion is lighter
than the KK matching scale Eq.~3.1! provided thatucu/M5

3

!uvu, which is guaranteed by Eq.~4.10! since ucu!uau
!M5

3.
We now considerk,0, corresponding to the case that t

warp factor is larger than unity on the visible brane. No
that in this casen,0. We again look for solutions where th
warp factor is a large effect, so thatuvu@1. We can therefore
neglect the first term of Eq.~4.8! compared to the second
Because the factor in front of Eq.~4.8! is now negative,
minimizing with respect to the phaseg now gives cosg5
2sgn(n23). We then obtain the solution

uvu5S un23u
3

uau
ucu D

1/unu

. ~4.15!

We see thatuvu@1 provided thatucu!uau. Again, Eq.~4.11!
is an extremum, as isuvu→1`. As before, Eq.~4.11! is
outside the physical region, and both Eq.~4.11! and the
‘‘runaway’’ solution uvu→1` have higher energy than th
solution Eq.~4.15!.

Together, these results imply that Eq.~4.15! is in fact the
true ~global! minimum. In order to cancel the four
dimensional cosmological constant, we note that the fi
term in Eq.~4.8! dominates the vacuum energy, and we m
fine-tune

VSB.
3ucu2

M4
2

n2

~n23!2 , ~4.16!

whereM4
25M5

3uvu2/uku. Again VSB.0 as desired. We find

m3/2
2 5

ucu2

M4
4

~n26!2

~n23!2 >
VSB

M4
2 . ~4.17!

The radion masses are

mscalar
2 5mpseudoscalar

2 5
ucu2

M4
4 unu2uvu4. ~4.18!

Note thatmscalar5mpseudoscalar@m3/2 in this case. The radion
is lighter than the KK matching scale Eq.~3.1! provided only
that ucu/M5

3!1.
We conclude that the simple model we are consider

does in fact stabilize the radius modulus in the regime wh
the warp factor is large, provided only thatucu!uau. This
works both where the warp factor is largest on the hidd
brane and where it is largest on the visible brane. In b
cases, the cosmological constant can be canceled by pos
vacuum energy from the SUSY breaking sector.
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V. DISCUSSION

Let us summarize what has been accomplished. The f
dimensional effective Lagrangian describing the supersy
metric Randall-Sundrum model at long distances was
rived. Like the nonsupersymmetric Randall-Sundrum mod
it has a vanishing potential for the radius modulus, now
chiral superfield. We also showed that the mechanism p
posed in Ref.@13# stabilizes this modulus in the interestin
regime where the warp factor is a large effect.

The stabilizing sector consists of two types of supersy
metric Yang-Mills sector, one in the bulk and the other
one of the boundaries, the ‘‘hidden brane.’’ These two sec
become strongly coupled in the infrared, where the dynam
can be controlled using holomorphy in the four-dimensio
description. The two resulting nonperturbative gaugino c
densates were shown to provide a stabilizing potential for
radius modulus. In order to cancel the effective fou
dimensional cosmological constant a source of spontane
supersymmetry breaking is required. We analyzed the s
plest possibility that a supersymmetry breaking sector is a
localized on the hidden brane.

The stabilized radius is in the regime where the wa
factor effect is large provided that~i! the hidden brane
gaugino condensate is small compared to the fi
dimensional Planck scale, and~ii ! the bulk radius of curva-
ture 1/k is not much larger than the bulk super-Yang-Mil
coupling g5

2. Neither condition requires any fine-tuning. I
particular, the first condition is very natural, since the no
perturbative gaugino condensate is exponentially suppre
in terms of the fundamental gauge coupling.

We emphasize that the fact that the radius potentia
dominated by nonperturbative super-Yang-Mills dynamics
crucially dependent on supersymmetry. In a nonsupers
metric theory, there would be perturbative contributions
the radius potential at the compactification scale from C
simir energy that would dominate the exponentially sma
contribution from nonperturbative bulk Yang-Mills dynam
ics. In our model, these effects are absent because super
metry is unbroken at the compactification scale.

A heuristic understanding of how stabilization is achiev
in our model is to note that the infrared confinement of t
bulk Yang-Mills theory gives a field-theoretic realization
composite extended states in the bulk, namely, the confi
hadrons. The spectrum of such extended states is certa
sensitive to the radius and it is not surprising that their virt
effects can generate a radius potential. It is indeed poss
that the stabilization role could instead be played byfunda-
mentalextended objects, in a string or M theory descriptio
A virtue of our mechanism is that it involves only the infra
red dynamics of point particles, and is therefore under
theoretical control.

We hope to use the stabilization mechanism presente
this paper as the basis for further studies of supersymme
and supersymmetry breaking physics in warped compac
cations.
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APPENDIX: DERIVATION OF EFFECTIVE THEORY

In this appendix, we give a complete and self-contain
derivation of the four-dimensional effective Lagrangian.

1. Matching and heavy tadpoles

We begin by explaining the formalism we will use
integrate out heavy fields at tree level. We consider a gen
classical and local theory of some light fieldsL(x) interact-
ing with some heavy fieldsH(x). We will truncate the effec-
tive Lagrangian at two-derivative order, higher derivativ
being subdominant at long wavelengths. Whilex denotes a
point in a spacetime of fixed dimensionality~4 in the case of
interest! this spacetime need not be exactly flat but may h
small curvatures relative to the heavy masses. We will
interested in the case where the heavy fields are an infi
tower of KK states; however, we will suppress indices on
fields since it will be obvious where they go at the end.

Let S@H,L# denote a local classical action that we st
with. We will assume~by shifting the definitions of fields if
necessary! that L5H50 is a classical solution, and we wi
expand our theory about this ‘‘vacuum’’ solution. Expandi
the action in heavy fields andx derivatives gives

S@H,L#5Slight@L#1E d4x@l~L !H2 1
2 M2~L !H21F~L !

3~]L !H1O~]2H !1O~H]H !1O~H3!#. ~A1!

Slight@L# consists of the part of the fundamental action tha
independent ofH; by assumption the mass terms inSlight are
small compared toM2(L50), the mass scale of the heav
fields. Note that the remaining terms in the action cont
terms linear inH, which we call ‘‘heavy tadpole’’ terms. The
first two terms in the integral contain all terms linear a
quadratic inH but containing no derivatives. The third ter
contains all terms linear inH with at least one derivative
which by integration by parts can be taken to act only
light fields. The remaining terms contain terms linear inH
with two or more derivatives, terms quadratic inH with one
or more derivatives, and terms of cubic and higher orde
H.

Without loss of generality we can setl[0, by making the
field redefinition

H→H1
1

M2~L !
. ~A2!

Since the fieldsH are heavy by assumption we can expa
this in powers ofL, with higher-order terms suppressed
M2(L50), the mass scale of the heavy fields. With th
choice, the only heavy tadpoles involve derivatives.

The equations of motion forH then read
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H5
1

M2~L !
@F~L !]L1O~]2!1O~]H !1O~H]L !

1O~H2!#. ~A3!

@In theO(]2) terms, the derivatives act on light fields.# This
equation can be solved iteratively by expanding in powers
L, starting with the leading order solution

H5
F~L !]L

M2~L !
1O~]2!. ~A4!

Subleading terms are suppressed by additional power
M2(L).

We now substitute the solution forH back into the funda-
mental action, thereby obtaining an effective action pur
for the light fields. To determine the long-wavelength acti
up to two-derivative order, only the leading order soluti
Eq. ~A4! for H is required. At this order, we therefore obta

Seff@L#5Slight@L#1E d4x
@F~L !]L#2

2M2~L !
1O~]3!. ~A5!

We see that at two-derivative order there is a correction
the naive effective actionSlight@L# when the original action
has heavy tadpoles with one derivative.

2. Radion effective field theory

We now apply the ideas above to derive the effective L
grangian for the radion. We parametrize the light modes
generalizing the solution for the metric Eq.~2.3! by r 0
→r (x), hmn→gmn(x):

ds25e22kr~x!uqugmn~x!dxm dxn1r 2~x!dq2. ~A6!

Note thatgmn(x) transforms under four-dimensional gener
coordinate transformations as a two-index tensor, and th
fore its couplings in the four-dimensional action are precis
those of the four-dimensional metric. There are no no
derivative couplings ofgmn provided we cancel the four
dimensional cosmological constant. Also note thatr (x) is
derivatively coupled, sincer (x)5r 0 is a solution for any
constantr 0 . Therefore the actionSlight obtained by substitut-
ing the metric Eq.~A6! into the five-dimensional action doe
not contain mass terms for the light fields.

We parametrize the heavy modes in terms of the fi
dimensional metric

ds25e22kr~x!uqu@gmn~x!1Hmn~x,q!#dxm dxn

12Hqm~x,q!dq dxm1r 2~x!@11Hqq~x,q!#dq2.

~A7!

This must be supplemented with a restriction onHmn to en-
sure that it is ‘‘orthogonal’’ to the zero modegmn , and we
must impose a gauge on the fluctuationsHMN . The details of
this will not be needed for our discussion.

As explained in Sec. 1 of this appendix, the correct eff
tive action at two-derivative order differs fromSlight if there
2-8
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are heavy tadpoles containing a singlex derivative. By four-
dimensional Lorentz invariance, the only terms of this fo
involve the metric fluctuationHqm , e.g., ]mrH qm . Direct
calculation shows that this vanishes in the metric Eq.~A7!.
Therefore, there are no corrections to the effective actio
two-derivative order, and the correct effective action is o
tained simply by using the metric Eq.~A6!. This gives

S4,eff52
M5

3

k E d4xA2g@~12e22pkr~x!!R~g!1¯#.

~A8!

3. The graviphoton

We now turn to the graviphotonBM . In this case, there is
a classical solutionBm[0, Bq[b0 for constantb0 . In anal-
ogy with the radion, we parametrize the light modes by g
eralizing this solution byb0→b(x):

Bm[0, Bq~x,q!5b~x!. ~A9!

In this case there areO(]m) heavy tadpoles involving the
massive modesBm :

S552M5
3E d5X ]q@A2GGmnGqq]nBq#Bm1O~Bm

2 !

1O~]m
2 !. ~A10!

Here GMN is the five-dimensional metric Eq.~A6!, which
includes the light modesgmn(x) and r (x).

As explained in Sec. 1 of this appendix, the presence
the tadpole Eq.~A10! means that there are corrections to t
effective Lagrangian atO(]m

2 ). We must therefore integrat
out the heavy fieldsBm , including the effects of the tadpol
in Eq. ~A10!. The fieldsBm have nonzero KK masses be
cause they are odd under the orbifoldZ2 ; the mass terms ar
contained in theO(]q

2 Bm
2 ) terms in the action. Including

these mass terms and theBm tadpole in Eq.~A10!, the Bm
equation of motion is

]q$e22kuqur ~x!@]qBm~x,q!2]mb~x!#%50. ~A11!

The solution is

e22kuqur ~x!@]qBm~x,q!2]mb~x!#5cm~x! ~A12!

wherecm(x) is independent ofq. The functioncm(x) is de-
termined by demanding the periodicity ofBm in q:

cm~x!522pkr~x!
]mb~x!

e2pkr~x!21
. ~A13!

We now substitute this back into the action using the re
for the graviphoton field strength

Cqm~x,q!5e12kuqur ~x!cm~x!. ~A14!

In this way, we obtain
06501
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DS4,eff522p2M5
3kE d4xA2g

]mb]mb

e2pkr21
. ~A15!

4. The radiation supermultiplet

We have derived the low-energy effective theory in ter
of r (x) andgmn(x) @defined by Eq.~A6!# andb(x) @defined
by Eq. ~A9!#. In a manifestly supersymmetric descriptio
these degrees of freedom can be parametrized by anN51
supergravity multiplet and a chiral superfieldT. We wish to
find the relation between the fieldsgmn(x), r (x), andb(x),
and the components of the supermultiplets in an off-sh
supersymmetric formulation. To do this it is useful to coup
the five-dimensional theory to various probes, and track h
these probes appear in the four-dimensional effective act
Matching the component and manifestly supersymme
forms of the four-dimensional action gives the relation b
tween the component fields and superfields.

We first couple the SUGRA theory to a bulk SYM mu
tiplet. The additional massless bosonic fields in the fo
dimensional effective theory are then the gauge fieldAm and
an adjoint scalarF. Because these both transform in th
adjoint representation of the gauge group, there is no po
bility of mixing between the gauge and gravitational mod
in the four-dimensional effective theory. The SYM ze
modes form a four-dimensionalN51 SYM multiplet. The
vector zero mode is given by

Am~x,q!5am~x!. ~A16!

The fact that the zero mode is independent of the warp fa
is due to the classical conformal invariance of Yang-Mi
theory.

In the four-dimensional theory effective theory, the gau
kinetic term can be written in the manifestly supersymme
form

DL4,eff5E d2u S~T!tr~WaWa!1H.c., ~A17!

where S(T) is holomorphic. We will make a holomorphi
field redefinitionS(T)→T/g5

2 so that the action becomes

DL4,eff5E d2u
T

g5
2 tr~WaWa!1H.c. ~A18!

Expanding this in components, we see that

T

g5
2 5

1

2g4
2 1

iU

16p2 1¯ , ~A19!

where g4 is the gauge coupling andQ is the gauge theta
angle. Substituting Eqs.~A6! and ~A16! into the five-
dimensional SYM action and integrating overq gives

1

g4
2 5

2pr

g5
2 , ~A20!

which yields
2-9
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Re~T!5pr . ~A21!

The gauge theta angle gets a contribution from the gravip
ton from the five-dimensional SUGRA coupling@17#

DL552
1

2A6g5
2

eMNPQRBM tr FNPFQR , ~A22!

which gives

Q

16p2 5
2p

A6
b. ~A23!

We therefore obtain

Im~T!5
2p

A6
b. ~A24!

5. Supersymmetry and Weyl rescaling

At two-derivative order, the most general locallyN51
supersymmetric Lagrangian for the radion chiral multipleT
can be written

LSUGRA,45E d4u f†f f ~T,T†! ~A25!

5A2ḡF2
1

6
f R~ ḡ!

2
1

4 f
ḡmn~ f T]mT2H.c.!~ f T]nT2H.c.!

2 f T†Tḡmn]mT†]nT1fermion termsG . ~A26!

Note that the metricḡmn that appears here is not assumed
be the same as the metricgmn introduced above. The mos
general relation between them compatible with general co
dinate invariance is6

ḡmn5h~r ,b!gmn . ~A27!

The functionh is not well defined until we completely fix th
definition of ḡmn in the manifestly supersymmetric theor
We do this by considering a probe consisting of a super
tential term*d2u J localized on the hidden brane atq50. In
the four-dimensional effective theory, this gives rise to

DL4,eff5E d2u f3l ~T!J1H.c., ~A28!

wheref is the conformal compensator andl (T) is holomor-
phic.

6By four-dimensional parity,h must be an even function ofb.
06501
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We can now make a field redefinition to setl (T)[1.
This can be done by means of a Ka¨hler transformation. In the
superconformal formalism, this is a redefinition of the co
formal compensator

f85@ l ~T!#1/3f ~A29!

that is madeprior to fixing the superconformal gauge Eq
~3.5!. That is, we break the superconformal invariance by
choice

f8511u2Ff8 . ~A30!

Note that since the gauge kinetic term is classically sc
invariant it is independent off. Therefore this does not af
fect the field definition made in Eq.~A18!. In components,
this field redefinition involves a Weyl rescaling of the metr
ḡmn , and fixes its definition completely.

With this choice, we now compare the effective action f
the brane superpotential to what is obtained by substitu
the metric Eq.~A6! into the component form. In the supe
symmetric form, the brane action is independent ofT, and in
the component form it is independent ofr and b. This can
only be the case if

ḡmn5gmn. ~A31!

Having established this, we can read off the functionf
from Eq. ~A8!. Note that the graviphoton Aharonov-Bohm
phase does not contribute to the coefficient ofR(g) in the
effective action. Therefore,

f 5
3M5

3

k
~e2pk~T1T†!21!. ~A32!

Having determinedf, the remaining terms in Eq.~A26! are
fixed. With the identification ofT in Eqs. ~A21! and ~A24!,
we have checked that these terms agree with the direct c
ponent calculation of the (]r )2 and (]b)2 terms. In particu-
lar, both the nontrivial functional form and the coefficient
the graviphoton kinetic term Eq.~A15! agree with Eq.~A26!
with f given by Eq.~A32!.

6. Brane couplings

We now consider arbitrary couplings localized on the h
den brane. In the four-dimensional effective theory, lo
N51 SUSY implies that these take the form

L4,hid5E d4u f†f f hid~S,S†,T,T†!

1E d2u@Shid~S,T!tr~W8aWa8 !1f3Whid~S,T!#

1H.c. ~A33!

In the coordinates we have chosen, the induced metric on
hidden brane is independent ofr @see Eq.~A6!#. Therefore,
by locality L4,hid is independent ofr. SinceShid andWhid are
holomorphic, this immediately implies that they are indepe
dent of T. For the nonholomorphic functionf hid , the argu-
ment requires a few steps. Because there are no deriva
couplings involvingr, we have
2-10
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f hid5c~T2T†!1terms independent ofT, ~A34!

wherec is a constant. Because the four-dimensional Pla
scale is independent of the Aharonov-Bohm phaseb0 , we
havec50. Therefore,f hid is also independent ofT, and we
have

L4,hid5E d4u f†f f hid~S,S†!1E d2u@Shid~S!tr~W8aWa8 !

1f3Whid~S!#1H.c. ~A35!

For couplings localized on the visible brane, the induc
metric ise22pkr(x)gmn(x), and the couplings localized on th
s.

B

ri

s.

h

06501
k

d

visible brane will depend onT. Using arguments similar to
those above, it is easy to see that the result is

L4,vis5E d4u f†fe2k~T1T†! f vis~Q,Q†!

1E d2u@Svis~Q!trW̃aW̃a1f3e23kTWvis~Q!#

1H.c.. ~A36!

Summarizing, the full four-dimensional effective Lagrangi
is the sum of Eqs.~A25!, ~A35!, and~A36!.
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