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Hierarchy stabilization in warped supersymmetry
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We show that exponentially large warp factor hierarchies can be dynamically generated in supersymmetric
compactifications. The compactification we consider is the supersymmetric extension of the Randall-Sundrum
model. The crucial issue is the stabilization of the radius modulus for large warp factor. The stabilization sector
we employ is very simple, consisting of two pure Yang-Mills sectors, one in the bulk and the other localized
on a brane. The only fine-tuning required in our model is the cancellation of the cosmological constant,
achieved by balancing the stabilization energy against supersymmetry breaking effects. Exponentially large
warp factors arise naturally, with no very large or small input parameters. To perform the analysis, we derive
the four-dimensional effective theory for the supersymmetric Randall-Sundrum model, with a careful treatment
of the radius modulus. The manifesilgff-shell) supersymmetric form of this effective Lagrangian allows a
straightforward and systematic treatment of the nonperturbative dynamics of the stabilization sector.
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[. INTRODUCTION factors can generate hierarchies required in realistic super-
symmetric theorieg8]. It is also an interesting open question
Following the work of Refs[1,2] there has been a great to ask what patterns of SUSY breaking can arise in warped
deal of interest in the phenomenological possibilities ofspacetimes. In the future we hope to focus on the effect of
warped higher-dimensional spacetimes of the form warping on higher-dimensional SUSY mediation mecha-
nisms such as anomaly-mediated SUSY breakii€g,
ds?= w?(y) 7, dX*dX"+ hp(y)dy™y",  (1.1))  gaugino-mediated SUSY breakifig0], and radion-mediated
SUSY breakind 11].
wherex* (u=0, ... ,3) are thdour noncompact spacetime  In this paper we will study the minimal supersymmetric
dimensions, andy™ are compactified. In particular, the €xtension of the simplest warped compactification, namely,
y-dependent renormalization of effective four-dimensionalRS1. This extension was constructed in R&®]. Our first
mass scales implied by the “warp factots(y) provides a  resultis a derivation of the four-dimensional effective theory
powerful mechanism for generating hierarchies in natureof the supersymmetric RS1 model valid at long wavelengths,
Randall and SundrunfRS) [1] presented a very simple including a careful treatment of the radius moduluBhis
warped five-dimensional compactification with an exponen-£ffective Lagrangian is valid to two-derivative order, but to
tial warp factor (the “RS1” model), which exploited this all orders in the fields, including the radion field. The effec-
mechanism to explain the hierarchy between the weak antive Lagrangian will be presented in terms of off-shell SUSY
the Planck scales, without appealing to supersymmetry. ~ multiplets, which will greatly simplify the analysis of non-
Warped spacetimes may also be important in models witfperturbative effects and SUSY breaking.
supersymmetry(SUSY). One motivation is to allow phe- The other main result of our paper is a dynamical mecha-
nomenological effective field theory approaches to makelism to stabilize the radius modulus in the supersymmetric
contact with warped superstring backgroufik A particu- RS1 model. This mechanism naturally stabilizes the radius at
larly interesting string background A&dS;x S°, which plays @ sufficiently large value that the warp factor hierarchy
a central role in the Maldacena realization of holographicBCross the extra dimension is large. The stabilization sector
duality [4]. In Ref.[5] it is emphasized that such dualities consists of two super-Yang-MilléSYM) sectors, one in the
may have a profound connection to the Randall-SundrunfPulk and the other localized on one of the four-dimensional
mode|s' based on ﬂ'(par“ab AdS5 geometry of these mod- boundaries. The radius of the extra dimension is stabilized by
els. Supersymmetry may allow a more precise understandbe balance between brane and boundary gaugino condensate
ing. Another example is 11-dimensional heterotic M theorycontributions to the supergravitSUGRA potential. We
compactified on a six-dimensional Calabi-Yau space and afirst proposed this mechanism in R¢fL3], where it was
SYz, orbifold [6]. This N'=1 supersymmetric theory has Shown to stabilize the radius in a supersymmetric compacti-
been taken as the starting point for phenomenological studication with negligible warp factor. We stress that for any
ies, where the warp factor may play an important igig ~ value of the warp factor the mechanism is completely natural
There are also purely phenomenological motivations; warp

1A related derivation and discussion of the four-dimensional ef-
*Email address: mluty@physics.umd.edu fective theory by Bagger, Nemeschansky, and Zh@#g will ap-
TEmail address: sundrum@pha.jhu.edu pear at the same time as the present paper.
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(except for the cosmological constant probjeend con- TABLE I. Bosonic fields of five-dimensional SUGRA with their
trolled in an effective field theory expansion. In the nonsu-Z; parity assignments.
persymmetric RS1 model, a simple classical mechanism that

stabilized a large warp factor was presented in Ref]. The Field Z, parity
supersymmetric mechanism we present here is intrinsically G 4+
nonperturbative. GM B
We believe that it is an important development to have a GS” N
supersymmetric model of radius stabilization that is both BSS N
completeand calculable Moduli describing the size and Bf‘ N
5

shape of the extra dimensions are a generic feature of higher-

dimensional compactifications with supersymmetry, and in

particular superstring theory. These moduli must be stabi- ) ) ) ]

lized both to avoid phenomenological and cosmological Y& now couple five-dimensional SUGRA to localized en-

problems of light scalars, and also to select an appropriatg"@y density on the orbifold boundaries:

vacuum. This problem has been extensively discussed in

string-inspired contexts; see, e.g., Hab]. The stabilizati(_)n ALs=—8(9) \/—_91V1— S(9— ) \/—_92sz 2.2

problem is especially severe because of the constraints of

higher-dimensional local supersymmetry. Our model gives a

simple stabilization mechanism consistent with these conwhereg; , are the induced four-dimensional metrics on the

straints, even if it does not display the full complexity of boundariesy, , are constants, and 7<9<m parametrizes

string compactifications. We hope that some of the tools wéhe fifth dimension. This theory admits the Randall-Sundrum

have developed can be extended to superstring or M theorgolution[1]
This paper is organized as follows. In Sec. Il we describe

the model we will study. In Sec. Il we derive the supersym-

metric four-dimensional effective field theory of the super-

symmetric RS1 model. In Sec. IV we analyze the nonpertur-

bative gauge dynamics needed for stabilization using the By=by, B,=0, 2.3

effective four-dimensional description. These results are

summarized and discussed in Sec. V. In the interest of read-

ability, some details of the derivation of the effective theoryProvided that

in Sec. Il are relegated to the Appendix, which, however,

gives a self-contained account. A V,

k= —g=——5.
6M:  6M:

ds?=e 2kldly | dx* dx’+r3do?,

(2.4)
II. THE MODEL

The theory we are interested in is minimal five- tpic metric is a slice ofAdS .
dimensional SUGRA, where the fifth dimension is a f|n|tee—2kr0|ﬁ| is the “warp factor” that gives rise to mass hierar-

interval realized as a'/Z, orbifold. We will also couple pies across the fifth dimension. The theory including the
this theory_to matter ano_l gauge fields in the bulk or local'zedooundary terms Eq(2.2) can be made supersymmetric by
on the orbifold boundaries. _ _ the addition of suitable fermion terms, and the “vacuum”
_Our starting point is the on-shell Lagrangian for five- oo tion Eq.(2.3) then preserves four real supercharfes.
dimensional SUGRA16] The bulk Lagrangian Eq2.1) is invariant under eight real
supercharges, but half of the supersymmetry is explicitly
broken by the orbifold projection and the boundary terms.
Equation(2.3) is a solution for any value afy andbg; rg
is the radius of the compa&, while b, is the Aharonov-
% Bohm phase of the graviphoton around t8k When we

The exponential factor

Lsucras — M3 V—=G[3R(G)+;C"NCy,\—6k?]

1
+ —=€e"NPRRB, CypCor+fermion term

66 consider fluctuations about the solution E2.3), these inte-

gration constants become propagating massless modes. The
(2.)  mode corresponding ta, (the radion is particularly impor-

tant, since it controls the couplings in the four-dimensional
whereM, N,...=0, ... 3,5, are five-dimensional spacetime effective theory. In this paper we will show how to stabilize
indices, Gy is the five-dimensional metricCyy=dyBy  the radion in the interesting case where the warp factor is a
— dyBy is the field strength for the graviphot@, , andkis  large effect.
a mass scale defined so thaﬁMgk2 is the five-dimensional In addition, we will couple this theory to bulk super-
cosmological constant. Unbroken SUSY requires that theérang-Mills theory. The minimal five-dimensional SYM mul-
cosmological constant havadS sign (k?>0). In order to tiplet consists of a vector fieldy , a real scala, and a
realize this theory on aB'/Z, orbifold, theZ, parity assign- symplectic Majorana gaugina’ (j=1,2). The bulk La-
ments of the bosonic fields must be taken as in Table I.  grangian i§17]
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TABLE II. Fields of five-dimensional super-Yang-Mills sector k 2
with their Z, parity assignments. mﬁK~ 170 (3.1

Field Z2 parity We assume that the theory is weakly interacting at this scale,
A, + justifying the use of classical matching. This will be true as
As — long as the radius of compactificatiog and the radius of

® curvature 1K are larger than the five-dimensional Planck
AL + length.

A2 _ In this section, we will derive the four-dimensional effec-

tive theory below the scale Ed3.1). Our strategy is to
match enough bosonic terms between the five- and four-
dimensional Lagrangians so that we can infer the remaining

Lo=— _GiztrFMNFMN terms usingVV=1 SUSY. The justification of some of the
205 steps is relegated to the Appendix. The Appendix gives a
complete self-contained derivation, including a discussion of
1 some subtleties of classical matching.

MNPQ
€ "B tr FreFor We begin by considering the massless bosonic fields aris-

2693 . y considerir .

ing from the five-dimensional SUGRA sector. The solution
+scalar and gaugino terms. (2.5  Eq. (2.3 has undetermined integration constargsand b,
whose long-wavelength fluctuations are massless moduli.
Also, unbroken four-dimensional Lorentz invariance implies
that there is a massless graviton in the four-dimensional ef-
fective theory. These massless four-dimensional fluctuations
can be parametrized by making the replacemenfs,
—0,u(X), ro—r(x), andby—b(x) in Eq. (2.3):

The SYM fields are taken to transform under the orbifald
as shown in Table Il. The even fields form Af=1 SYM
multiplet.

To obtain realistic models we will couple these bulk fields
to fields localized on the orbifold boundaries. Working out

these couplings and verifying that they preserve supersym- ds?=e ZrMIdlg  (x)dx* dx”+r2(x)d 92,

metry is nontrivial. An off-shell construction of the boundary K’

couplings was given by Ref18] using the method of Mira- — <9<,

belli and Peskir{19]. The off-shell couplings of bulk SYM

to SUGRA were constructed in R¢R0]. It is clearly crucial By(X,»)=b(x), B,(x,9)=0. (3.2)

for the results of this paper that these couplings exist and

preserve SUSY. However, the results of this paper will beif this satisfied the five-dimensional equation of motion, one
derived using only the on-shell bosonic Lagrangian togethegould obtain the classical four-dimensional effective action
with consistency arguments. by substituting Eq(3.2) into the five-dimensional action and
We can now summarize the theory that we will analyze inintegrating over the fifth dimension. Equatié®.2) does not
this paper. The theory consists of minimal five-dimensionakatisfy the five-dimensional equations of moti@1]. How-
SUGRA, with a SYM sector in the bulk, and an additional ever, in the Appendix we show that for the metric in E8}2)
SYM sector on one of the orbifold boundaries, the “hiddenthis “naive” procedure gives a result that differs from the
brane.” The bulk Lagrangian has dimensionful parametersxact classical effective action only by terms with four or
M5 andgs that we take to be of the order of the Planck scale.more x derivatives. We can therefore use the metric in Eq.
Additionally, we assume that there is a SUSY breaking sect3.2) to parametrize the radion at leading order in the deriva-
tor also localized on the hidden brane. The SYM multipletstive expansiorf. For the graviphoton, the naive procedure
together with the SUSY breaking sector will play the role of does not work; the graviphoton can still be parametrized by
the radius stabilization sector, as we will see. For a fullyb(x) defined by Eq(3.2), but there is a nontrivial correction
realistic model, one would want to add standard model fieldsio the classical effective Lagrangian that is computed in the
presumably some or all of them localized on the otherappendix. However, to determine the effective theory it is
boundary, the “visible brane.” These play no role in the sta-sufficient to know the terms that depend only on the radion,
bilization dynamics. We will study complete realistic modelswhich can be determined by substituting Eg.2) into the
in future work. five-dimensional action. The terms depending on the gravi-
photon can then be inferred from SUSY. Therefore, the cal-
culation of the graviphoton effective Lagrangian carried out
in the Appendix serves only as a redundant check on our
results.

Ill. THE FOUR-DIMENSIONAL EFFECTIVE
LAGRANGIAN

At sufficiently low energies, the dynamics of the theory
above is approximately four dimensional. The matching
scale between the five- and four-dimensional effective theo- 2Referencd21] gives an alternative parametrization of the radion
ries is determined by the mass of the lowest Kaluza-Kleirthat satisfies the five-dimensional equations of motion at linear or-
(KK) mode, given by1,2] der in fluctuation fields, but to all orders inderivatives.
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We turn to the five-dimensional SYM sector. It is straight- We can also calculate the four-dimensional gauge coupling

forward to verify that g4 by substituting the zero mode gauge field E8.3) into
the five-dimensional action and integrating over the fifth di-
A (x,0)=a,(x), Ayxd)=0 (3.3 mension. This yields

is a solution to the five-dimensional equations of motion if iz 27771 (3.9

a,(x) is a solution to the four-dimensional YM equation of 9: s

motion. Thereforea,(x) parametrizes a four-dimensional

vector zero mode. The fact that the zero mode is independe

of 9 despite the presence of the warp factor can be traced to Re(T)= . (3.9

the classical conformal invariance of four-dimensional Yang-

Mills theory. Note that there are no masslésg or ® fluc- Similarly, from Eq.(3.6) we see that In{) is proportional

tuations because of the orbifold projection. to the four-dimensional theta angle, which in turn is propor-
We wish to relate the massless bosonic fields definegional toB, from the mixed Chern-Simons term in the five-

above(and their fermionic superpartnér® a manifestlyNV  dimensional theory:

=1 supersymmetric formulation of the four-dimensional ef-

fective theory. The massless bosonic fields are two real sca- VNP

lars r(x) andb(x), a real vector multiple,(x), and the ALs=— 276 5 €"NPRRBy tr(FypFgr)

metricg,,,(x). Given that these bosonic fluctuations are part 9s

of an N=1 locally supersymmetric theory, they can be pa-

A’lherefore, we see that

. ' . s 1
rametrized by one chiral superfield one non-Abelian vec- =— 5 €4PBy tr(F,Fp0)+---. (3.10
tor superfieldV, and the minimal SUGRA multiplet. The 2\/695
most general effective Lagrangian at two-derivative order_ .
can be written This determines
2
Im(T)=—=b. (3.1)

6

L4 e= f d*0 ¢ of(T, T

) . Thus we have fixed the relation betwe&rand the compo-
+U d6 S(T)w(WW,)+H.c.|. (3.4 nent fieldsr (x) andb(x). Note that Eqs(3.9) and(3.11) are
exactly the same as in flat spgde8]. This is ultimately due
There is no superpotential fdrbecause the radion modulus 0 the classical conformal invariance of Yang-Mills theory in
does not have a potential. We are using the superconform#ur dimensions. _ _
approach to SUGRA22). The field ¢ is the superconformal It still remains to fix the relation between the metric that
compensatof23,27 that is responsible for breaking the local appears in the four-dimensional'=1 SUGRA multiplet,

superconformal symmetry down to local super-Poincare ~ and the metricg,,, defined by Eq.(3.2). This is nontrivial
because in the four-dimensional effective theory we have the

¢:1+62F¢. (3.5 freedpm to mfslke field rgdefinitiorgl’wzc(r)gﬂ',,, Where. .
c(r) is an arbitrary function. However, such field redefini-

tions in general do not preserve the property thatans-
orms independently of the four-dimensional SUGRA mul-
i\lplet underN=1SUSY. In the Appendix, it is shown that
imposing this condition implies that the two metrics are iden-
tical (as implicitly assumed in the notation used above

Expanding the four-dimensional SUGRA Lagrangian Eq.
(3.4) in component fields, we obtain

F, is the scalar auxiliary field of the minimal off-shell=1
SUGRA multiplet. We are using superspace notation as
shorthand for expressions that can be rigorously defined u
ing the superconformal tensor calculus apprd@&4. In par-
ticular, factors of the metri¢or vierbein are implicit in this
notation.

We now make a holomorphic field redefinitio®(T)
—>T/g§ in the effective theory so that the effective Lagrang- 1
ian has the form Lsucra s~ \/—_g - ng(g)

L4 o= f d* ¢t pf(T, T+

T 1
f dzaaztr(W“Wa) + H.C.}. = 27 (frd"T=H.c)(f1d,T—H.c)
5
(3.6)

—frt70#TT9 T+ fermion term% 3.1
From this, we have T n (3.12

where f;=0f/JT, etc., andR(g) is the four-dimensional

%zﬁg_)_ (3.77  Ricci scalar associated with the metrgg As discussed
29; 9s above, the terms depending on the metric and the radion
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can be obtained by substituting E¢(3.2) into the five- a Weyl rescaling ofj,,, which is precisely equivalent to a

dimensional action and integrating over the fifth dimensionrescaling of the conformal compensatpr

We can use this procedure to determfriy calculating the Comparing Eqgs(3.15 and (3.16 one readily sees that,

coefficient ofR(g) [see Eq(3.12]. One obtains relative to fundamental mass parameters, physical mass

scales in the visible sectofincluding UV regulator and

B 5 ok renormalization scalg¢sare rescaled by a factor @ ™o,
f‘T(e —1). (313 while scales in the hidden sector are not. kor0, mass

scales are suppressed in the visible sector, whilekfoO
Note that forr_)ro, f is the four-dimensional Planck scale Mass scales are enhanced in the visible sector. This is the

computed in Ref[1]. The graviphoton Aharonov-Bohm Wwarp factor effect that can naturally generate exponentially
phase cannot contribute to the coefficientRfg). Using large hierarchies.

3

Egs. (3.9 and(3.11) therefore gives It is more .conventional to describe tr_le kint_—:‘tk_: terms in
supergravity in terms of the Kder potential. This is given
3ME by
FTTH=+——(e T T—1). (3.14 ) . .
o 3M2|n f(T!T )+fvis(QiQ )+fhid(212 )
=—3MjIn| — > .
Having fixed the functior, the other two-derivative terms in 3M3
Eq. (3.12 that depend om andb are fixed. In the Appendix (3.17
we show that these agree with a direct matching calculationpe roperties of supersymmetry breaking and renormaliza-
giving a highly nontrivial check of this derivation. tion are easier to see in termsfpbut the Kaler potential is

We now turn to fields localized on the boundary. Note g e yseful for determining the sigma model couplings of
that, in terms of the component fields, we have chosen cook o phosonic fields.

dinates so that the warp factor is unity&t&0 (the hidden
brang. Therefore the radion fieldas paramtrized aboye
does not appear in the hidden brane terms in the Lagrargian.
Correspondingly, it is shown in the Appendix that the terms In this section, we construct the effective potential for the
arising from the hidden brane are independenTofhere- model described above and minimize the potential to show
fore the general form of the effective Lagrangian involving that the the radius is in fact stabilized. The model was ana-
the hidden fields is lyzed in Ref.[13] for the case where the warp factor is a
small effect,e”¥T=1. We will therefore be interested in the

IV. THE RADIUS MODULUS EFFECTIVE POTENTIAL

o by ot e + 2 _ L an case where the warp factor is a large effect.
Lapid Jd 0 ¢ PThia(2.% Hf A0 Snig ) tr W' W, Just below the KK matching scale E¢B.1), the four-
dimensional effective theory is
+ ¢ Whid(2)]+H.c., (3.15
3
i i i o 3M5 4 41 —K(T+Th
where 3, are hidden sector chiral multiplets aid), is the £4,eﬁ=T d*o ¢'p(e -1)
field strength of the hidden sector gauge multiplets. The
terms arising from the visible brane do have couplings to the LT 1
radion, since by Eq(3.2) the induced metric on the brane is +f d°0| 5 tr W*W,+ —— tr W W,
—2mkr(x) : N Js 29;
e 9u»(X). The unique supersymmetrization of these
terms is +H.c+ Lgp. (4.
_ Here the first gauge kinetic term arises from the bulk SYM
L 4, 41 k(T+TH s t . .
Lais= J d*0 ¢'ge fis(Q, Q%) sector, while the second arises from the SYM sector local-
ized on the hidden brane.Lgg is the Lagrangian for the
T 2 ‘ Wl + B3e3KT) SUSY breaking sector, also assumed to be localized on the
f AL Su(QUWW, + ¢7e Wi Q)] hidden brane. We are using coordinates where the warp fac-

tor is unity on the hidden brango thatLgg is independent
of T). There are therefore two cases to consider: the warp
) . . ) ~ factor at the visible brane is either smaller or larger than
whereQ is a visible sector chiral multiplet, and/, is the ity | the formulas above, these cases corresponkl to
field strength of the visible sector gauge mt_JIt|pIets. Note that. 5" 4nd k<0, respectively, so we can analyze both cases
Eq. (3'_13) has the same form as E(.15 with ¢ replaced qing Eq.(4.1). Classical matching is justified by assuming
by ¢e*". This is not a coincidence. The radion dependencey,; the asymptotically free gauge forces are weak at the KK
of L,4is is entirely due to the fact that the induced metric IS matching scale, and that the spacetime curvature is also
small, |k| <Ms5.
The SYM sectors become strong in the infrared of the

3The physical radion mode does couple to the hidden brane vifour-dimensional effective theory and give rise to a dynami-

kinetic mixing with the graviton field. cal superpotential from gaugino condensation. In addition,

+H.c, (3.16
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the hidden SUSY breaking sector is assumed to dynamically We first consideik>0, corresponding to the case where
generate a nonzero vacuum energy. This vacuum energy wilhe warp factor is smaller than unity on the visible brane. If
be positive provided that SUGRA is a perturbation to thethe warp factor is an important effect, then|<1 and we
SUSY breaking dynamics. We also assume that the SUS¥an neglect the second term in E¢.8) compared to the
breaking dynamics has a mass gap, except for the Goldstinéirst. (We assume that is not much larger than unifyMini-
The effective Lagrangian below the scale where these effecisizing with respect toy simply sets coy=sgnfi—3). There

occur is then is a nontrivial minimum provided that>3, which is satis-
3 fied provided that the bulk SYM sector is weakly coupled at
‘. ff:3M5 f d40¢"¢(e‘k(”ﬂ)—1) the KK matching scale. We then obtain
,€
k 3(n-3) |c| 1U(n-2)

|: —mkr —

— 4.1
+U d26 ¢3(ae ¢T+c)+H.c. @ n(n—1) |a| 410

We see that for any given we can obtaifjw|<1 provided

~VsgtGoldstino terms. 42 that |c|/|a| is sufficiently smalft This is perfectly natural,
If the bulk SYM gauge group is SK(), we have since]c| is expon(_antially small in terms of the fundamental
couplings. Thus, if we want to use the small warp factor to
1 1672 explain some mass hierarchy in nature, the small warp factor
a=0 NgEl ¢TaNg (4.3 itself can be explained in terms of order-1 fundamental pa-
5 5

rameters in this model of stabilization.

The exactT dependence in the superpotential term of Eq. 10 complete our analysis of this case, we find the other
(4.2) is fixed by holomorphy and the anomalous shift sym-€xtrema of the potential. There is an obV|ou_s extremum
metry in T [13]. where|w|—0. It is easy to check that this has higher energy
It is straightforward to integrate out the auxiliary fields for than the solution Eq4.10. We must also look for solutions

T and ¢ to obtain the effective potential. However, additional With ||~ 1. In this case we can neglect the last term of Eq.
insight into the form of the answer is given by writing the (4.8 since|c|<|al. This gives another extremum

Lagrangian in terms of the “warp factor superfield” n(n—1)

o=

(n—3)?

1/2

4.11)

w=g¢e KT (4.4)

in place ofT. This gives However, forn>1 this solution ha$w|> 1, which is outside
3 the physical region>02° It is therefore unphysical for the
La eﬁ:%f d*6(w'w—oTd) values ofn we are considering. It is also easy to see that this
‘ K extremum has higher energy than the solution @dL0.
Combining the results above, we conclude that @qLO
+U d26(ag3 "w"+cp3) +H.c. is in fact the true(global) minimum. In order to cancel the
four-dimensional cosmological constant, we note that the
—Vep+ Goldstino terms, 45 term —9|_c|2 in Eq. (4.8) dominates the vacuum energy in
the solution, so we must fine-tune
where

= (4.12
(4.9 4

whereM3=M?3/k. Note that this gived/sg>0, as desired.
From Eq.(4.5 one can immediately read off the potential \We obtain

0
Pl
<
2]
(o8]
|
.

K B cl? Vv
Vert= 3—|\Ag[n2|a|2(wTw)” 1—](8=n)aw"+3c|?]+Vsg m%/f%NM_S; (4.13
(4.7)

The mass of the radion fields at the minimum of the potential
is straightforward to work out using the component Lagrang-

— 2[a12,,12(0=1) _ (n— 2)2[a|2|,,[|2n _ 2 ! : _ ! c
3|\/|g[n |al%e] (n=3)%al*w|*"~9[c] ian given above, or in terms of the standard four-dimensional
—6(n—3)[ac[|w|" cosy]+ Vg, (4.8

where “This assumes that is not too large. The regime>1 corre-

sponds tk</, i.e., small bulk curvature. As shown in Réf.3],
y=arga)—argc)+nargw). (4.9 the model also stabilizes the radius in this regime.
SWe are consistently using the convention that the proper distance

We now minimize the potential as a function |of and y. in the + o direction is+r 9, which fixesr >0.
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supergravity potential. Parametrizing the radiondogreatly V. DISCUSSION

simplifies the calculation. We find Let us summarize what has been accomplished. The four-

2 2 dimensional effective Lagrangian describing the supersym-
m2 :ﬁ n(n—3) metric Randall-Sundrum model at long distances was de-
n—1 ' pseudoscaldm M2 n—1 ° rived. Like the nonsupersymmetric Randall-Sundrum model,
(4.14 it has a vanishing potential for the radius modulus, now a
chiral superfield. We also showed that the mechanism pro-
Note that Mgcqiar~ Mpseudoscaisr Mar2- The radion is lighter  posed in Ref[13] stabilizes this modulus in the interesting
than the KK matching scale E3.1) provided thatc|/M2  regime where the warp factor is a large effect.

<|w|, which is guaranteed by E¢4.10 since |c|<|a] The stabilizing sector consists of two types of supersym-
<M3. metric Yang-Mills sector, one in the bulk and the other on

We now considek<0, corresponding to the case that the one of the boundaries, the “hidden brane.” These two sectors
- : : - become strongly coupled in the infrared, where the dynamics

warp factor is larger than unity on the visible brane. Note ; hl ) :
thatpin this case1<g0. We again)llook for solutions where the o- be controlled using holomorphy in the four-dimensional

f s al f 1 Wi heref description. The two resulting nonperturbative gaugino con-
warp factor is a large effect, so thiai|>1. We can therefore jonqates were shown to provide a stabilizing potential for the
neglect the first term of Eq4.8) compared to the second. [54ius modulus. In order to cancel the effective four-

Because the factor in front of Eq4.8) is now negative, gimensional cosmological constant a source of spontaneous

, el (n=2)(n-3)?
m =
scalar Mi

minimizing with respect to the phasgnow gives coy=  gypersymmetry breaking is required. We analyzed the sim-
—sgnfi—3). We then obtain the solution plest possibility that a supersymmetry breaking sector is also
o localized on_t.he hiddgn brane. _
|w|:(|”_3| @ (4.1 The stabilized radius is in the regime where the warp
3 c| ' factor effect is large provided thai) the hidden brane

gaugino condensate is small compared to the five-
We see thatw|>1 provided thatc|<|a|. Again, Eq.(4.11)  dimensional Planck scale, afid) the bulk radius of curva-
is an extremum, as ikw|— +«. As before, Eq.(4.11) is  ture 1k is not much larger than the bulk super-Yang-Mills
outside the physical region, and both Eg.11) and the couplingg2. Neither condition requires any fine-tuning. In
“runaway” solution |w|— + have higher energy than the particular, the first condition is very natural, since the non-
solution Eq.(4.15. perturbative gaugino condensate is exponentially suppressed

Together, these results imply that E4.15 is in fact the in terms of the fundamental gauge coupling.

true (globa) minimum. In order to cancel the four- We emphasize that the fact that the radius potential is
dimensional cosmological constant, we note that the firstominated by nonperturbative super-Yang-Mills dynamics is
term in Eq.(4.8) dominates the vacuum energy, and we mustcrucially dependent on supersymmetry. In a nonsupersym-

fine-tune metric theory, there would be perturbative contributions to
the radius potential at the compactification scale from Ca-
3c|? n? simir energy that would dominate the exponentially smaller

Vsg= M_i (n—3)2 (4.16 contribution from nonperturbative bulk Yang-Mills dynam-

ics. In our model, these effects are absent because supersym-
whereM2=M23lw|/Ikl. Again Vea>0 as desired. We fing Metry is L_Jnl_:)roken at the _compactlflcatlo_n_ scale._ _
4 slol7Ik|. Ag SB A heuristic understanding of how stabilization is achieved
in our model is to note that the infrared confinement of the

|C|2 (I’l—6)2 VSB . . . . . .
= (4.17 bulk Yang-Mills theory gives a field-theoretic realization of

2

32 % A2 2 . . .
My (n—3) M3 composite extended states in the bulk, namely, the confined
_ hadrons. The spectrum of such extended states is certainly
The radion masses are sensitive to the radius and it is not surprising that their virtual

) effects can generate a radius potential. It is indeed possible
S =ﬁ|n|2|w|4 (418 that the stabilization role could instead be playedfinyda-
scalar ™ " 'pseudoscalar MZ‘ ' ' mentalextended objects, in a string or M theory description.
A virtue of our mechanism is that it involves only the infra-

Note thatMgcaia™ Mpseudoscald Marz iN this case. The radion red dynamics of point particles, and is therefore under full

is lighter than the KK matching scale E@.1) provided only ~ theoretical control. o _ .
that|c|/M§< 1 We hope to use the stabilization mechanism presented in

his paper as the basis for further studies of supersymmetric
%nd supersymmetry breaking physics in warped compactifi-
cations.

We conclude that the simple model we are considerin
does in fact stabilize the radius modulus in the regime wher
the warp factor is large, provided only that|<|a|. This
works both where the warp factor is largest on the hidden
brane and where it is largest on the visible brane. In both
cases, the cosmological constant can be canceled by positive We are very grateful to J. Bagger for discussions of
vacuum energy from the SUSY breaking sector. closely related work prior to publication. We also thank H.
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APPENDIX: DERIVATION OF EFFECTIVE THEORY

(iln the O(4) terms, the derivatives act on light fielfihis
equation can be solved iteratively by expanding in powers of
L, starting with the leading order solution

In this appendix, we give a complete and self-containe
derivation of the four-dimensional effective Lagrangian.

; d(L)dL
1. Matching and heavy tadpoles _ ( +0( (92)_ (Ad)

=— -
We begin by explaining the formalism we will use to MA(L)

integrate out heavy fields at tree level. We consider a gener
classical and local theory of some light fieldéx) interact-
ing with some heavy fieldsl(x). We will truncate the effec-
tive Lagrangian at two-derivative order, higher derivatives

be!n?.subdommtgnt atflfqngdvglgvelen'gthsl.. V\(h(tlﬁenotes 6; for the light fields. To determine the long-wavelength action
point in a spacetime of fixed dimensionalt in the case o up to two-derivative order, only the leading order solution

interes} this spacetime need not be exactly flat but may _haveEq. (A4) for H is required. At this order, we therefore obtain
small curvatures relative to the heavy masses. We will be

interested in the case where the heavy fields are an infinite
tower of KK states; however, we will suppress indices on the Seil L 1= Siignd L1+ j d*x
fields since it will be obvious where they go at the end.

'thei/vS[H"h] denoteba I%C.f"f[l.l cla;f]s%al f_aq:_mn th??.v‘l'g S.tfartWe see that at two-derivative order there is a correction to
with. We will assume( y shitting the definitions oT I€lds T 0 najve effective actio®;gn[ L ] when the original action
necessarythatL =H=0 is a classical solution, and we will has heavy tadpoles with one derivative
expand our theory about this “vacuum” solution. Expanding '

the action in heavy fields andderivatives gives

@ubleading terms are suppressed by additional powers of
M2(L).

We now substitute the solution fét back into the funda-
mental action, thereby obtaining an effective action purely

[®(L)dL]?

M) +0(3%. (A5)

2. Radion effective field theory

_c n 4 _1nm2 24 We now apply the ideas above to derive the effective La-
SIHLLT=Signl L] f IXMLH = MALHT+ 0(L) grangian for the radion. We parametrize the light modes by
generalizing the solution for the metric ER.3) by ry

—>r(x), 77;“/_)g,uv(x):

ds?=e 2l¥lg (x)dx* dx"+r4(x)d92.  (AB)

X(ILYH+O(3?H)+ O(HIH) + O(H®)]. (Al)

Siignd L ] consists of the part of the fundamental action that is
independent oH; by assumption the mass termsSgy, are
small compared tM2(L=0), the mass scale of the heavy
fields. Note that the remaining terms in the action contai
terms linear inH, which we call “heavy tadpole” terms. The

first two terms in the integral contain all terms linear andderivative counlinas o rovided we cancel the four-
guadratic inH but containing no derivatives. The third term . . piing Tgl” P ;
dimensional cosmological constant. Also note th@t) is

contains all terms linear i with at least one derivative, o : . )
derivatively coupled, since(x)=rg is a solution for any

which by integration by parts can be taken to act only on ) . .
light fields. The remaining terms contain terms linearHn constant . Therefore the actiogn: obtained by substitut-

with two or more derivatives, terms quadraticHiwith one ing the metric Eq(A6) into the five-dimensional action does

or more derivatives, and terms of cubic and higher order 'Ot contain mass terms for the light f|e|_ds. ,
We parametrize the heavy modes in terms of the five-

Note thatg,,,(x) transforms under four-dimensional general
coordinate transformations as a two-index tensor, and there-
Tore its couplings in the four-dimensional action are precisely
those of the four-dimensional metric. There are no non-

H. . ) .
Without loss of generality we can se&0, by making the dimensional metric
field redefinition dsz=e‘2k“x)‘l’|[gw(x)+HW(x,ﬂ)]dxf’“dx“
1 +2H 5, (x,9)d 9 dx*+r2(x)[ 1+ H g 5(x,9) ]d 9.

This must be supplemented with a restrictiontp, to en-
Since the fieldH are heavy by assumption we can expandsure that it is “orthogonal” to the zero modg,,, and we
this in powers ofL, with higher-order terms suppressed by must impose a gauge on the fluctuatithgy . The details of
M?(L=0), the mass scale of the heavy fields. With thisthis will not be needed for our discussion.
choice, the only heavy tadpoles involve derivatives. As explained in Sec. 1 of this appendix, the correct effec-
The equations of motion fad then read tive action at two-derivative order differs fro®gy, if there
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are heavy tadpoles containing a singlderivative. By four- S
dimensional Lorentz invariance, the only terms of this form AS, ef= —ZWZMEKJ d4x\/__g€2?krTMl- (A15)
involve the metric fluctuatiorH,, e.g., d“rHy,. Direct
calculation shows that this vanishes in the metric &(.).
Therefore, there are no corrections to the effective action at 4. The radiation supermultiplet
two-derivative order, and the correct effective action is ob- e have derived the low-energy effective theory in terms
tained simply by using the metric EGAG). This gives of r(x) andg,,,(x) [defined by Eq(A6)] andb(x) [defined
M3 by Eqg. (A9)]. In a manifestly supersymmetric description,
_ 5 4 Comkr(x these degrees of freedom can be parametrized hj=anl
Stef= "~ Tf d'xy=gl(1-e “IR(@)+-]. supergravity multiplet and a chiral superfield We wish to
(A8)  find the relation between the fields,,(x), r(x), andb(x),
and the components of the supermultiplets in an off-shell
supersymmetric formulation. To do this it is useful to couple
the five-dimensional theory to various probes, and track how
We now turn to the graviphotoBy, . In this case, there is these probes appear in the four-dimensional effective action.
a classical solutio ,=0, By=Db, for constant,. In anal-  Matching the component and manifestly supersymmetric
ogy with the radion, we parametrize the light modes by genforms of the four-dimensional action gives the relation be-

3. The graviphoton

eralizing this solution byoy— b(x): tween the component fields and superfields.
B We first couple the SUGRA theory to a bulk SYM mul-
B,=0, By(x,9)=b(x). (A9) tiplet. The additional massless bosonic fields in the four-

. ) . dimensional effective theory are then the gauge ffejdand
In this case there ar®(d,) heavy tadpoles involving the o agjoint scalad. Because these both transform in the

massive modes, : adjoint representation of the gauge group, there is no possi-
bility of mixing between the gauge and gravitational modes
:_Msf d5X 9 /_—GG’“’G”&VBl B + (B2 in the four-dimensional effective theory. The SYM zero
S5 > ol 1B, + O(BL) modes form a four-dimensiondl'=1 SYM multiplet. The

+(9(ai). (A10) vector zero mode is given by

_ o _ _ AL (X, 0)=a,(x). (A16)
Here Gy is the five-dimensional metric EQA6), which
includes the light modeg,,,(x) andr(x). The fact that the zero mode is independent of the warp factor

As explained in Sec. 1 of this appendix, the presence ofs due to the classical conformal invariance of Yang-Mills

the tadpole Eq(A10) means that there are corrections to thetheory.
effective Lagrangian adi)(ﬁi). We must therefore integrate In the four-dimensional theory effective theory, the gauge
out the heavy field8, , including the effects of the tadpole kinetic term can be written in the manifestly supersymmetric
in Eq. (A10). The fieldsB, have nonzero KK masses be- form
cause they are odd under the orbifdgl;, the mass terms are
contained in theO(#5B%) terms in the action. Including AE“FI d20 S(THr(W'W,)+ H.e.,  (AL7)
these mass terms and tBg, tadpole in Eq.(A10), the B, ’

equation of motion is ) ) ] ]
where S(T) is holomorphic. We will make a holomorphic

aﬂ{e‘z““’“(x)[aﬁBM(x,ﬂ)—aﬂb(x)]}=0. (A11)  field redefinitionS(T) — T/gZ so that the action becomes

I T
The solution is ALy o= f d20?tr(w’1wq)+ H.c. (A18)
5

e 9.8 ,(x,8)—3d,b(x)]=c,(x) (A12)
Expanding this in components, we see that
wherec,,(x) is independent of). The functionc,,(x) is de-

' i iodici in & T 1 i0
termined by demanding the periodicity Bf, in - N . (A19)
5 b(x) g5 29; 167
= _ S
Cu(X)=—2mkr(x) @2mkr(x) _ 1~ (AL3) where g, is the gauge coupling an® is the gauge theta

angle. Substituting Eqs(A6) and (Al6) into the five-
We now substitute this back into the action using the resulflimensional SYM action and integrating ovérgives
for the graviphoton field strength

1 2ar
Cyu(x,9) =2 (x). (A14) A (A20)

In this way, we obtain which yields
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ReT)=mr. (A21) We can now make a field redefinition to sé{T)=1.
This can be done by means of alar transformation. In the
The gauge theta angle gets a contribution from the graviphosuperconformal formalism, this is a redefinition of the con-

ton from the five-dimensional SUGRA coupli7] formal compensator
1 o ¢’ =[/(T)]"° (A29)
ALg=— eMNPRRB . trF\pFoRr,  (A22
° 2\/59§ M NPT QR (A22) that is madeprior to fixing the superconformal gauge Eg.
(3.5). That is, we break the superconformal invariance by the
which gives choice
¢'=1+6°F. (A30)
5= 2_77 ] (A23)  Note that since the gauge kinetic term is classically scale
167 6 invariant it is independent op. Therefore this does not af-
fect the field definition made in EA18). In components,
We therefore obtain this field redefinition involves a Weyl rescaling of the metric

9.», and fixes its definition completely.
T With this choice, we now compare the effective action for
Im(T)= %b- (A24) the brane superpotential to what is obtained by substituting
the metric Eq.(A6) into the component form. In the super-
symmetric form, the brane action is independentoénd in
5. Supersymmetry and Weyl rescaling the component form it is independent ofand b. This can

At two-derivative order, the most general localj=1  Only be the case if

supersymmetric Lagrangian for the radion chiral multigiet

—

can be written 9u,=9"" (A31)
Having established this, we can read off the functfon

‘CSUGRAA:j d*0 ¢Tpf(T, TT) (A25)  from Eq. (A8). Note that the graviphoton Aharonov-Bohm

phase does not contribute to the coefficientRffy) in the
effective action. Therefore,

1
=V—§[——fR(§) 3M3
6 f= (e ™™ Ty, (A32)
1_
— 279" (frd,T-H.c)(frd,T—H.c) Having determined, the remaining terms in EqA26) are

fixed. With the identification ofl in Egs.(A21) and (A24),

we have checked that these terms agree with the direct com-
—fr119"*3,T'9,T +fermion term% (A26)  ponent calculation of thedf)2 and (#b)?2 terms. In particu-

lar, both the nontrivial functional form and the coefficient of

Note that the metrig,,, that appears here is not assumed tothe graviphoton kinetic term EGALS) agree with Eq(A26)

be the same as the met,, introduced above. The most with f given by Eq.(A32).
general relation between them compatible with general coor-

dinate invariance fs 6. Brane couplings
_ We now consider arbitrary couplings localized on the hid-
9uy=h(r,b)g,, . (A27) " den brane. In the four-dimensional effective theory, local

L i ) ) N=1 SUSY implies that these take the form
The functionh is not well defined until we completely fix the

definition of g,, in the manifestly supersymmetric theory. r, hid:J d*0 T pfig(S, 31T, T
We do this by considering a probe consisting of a superpo-
tential termfd?6 J localized on the hidden brane &&= 0. In

the four-dimensional effective theory, this gives rise to +f d20[ Spig(S, T)tr(W’ W)+ W2,
+H.c.
ALy o= f d?6 ¢3/(T)J+H.c., (A28) H.c (A33)
In the coordinates we have chosen, the induced metric on the

hidden brane is independent ofsee Eq.(A6)]. Therefore,

whereg is the conformal compensator a#dT) is holomor- by locality £, 4 is independent of. SinceSyq and Wiy are

phic. holomorphic, this immediately implies that they are indepen-
dent of T. For the nonholomorphic functiofy,y, the argu-
ment requires a few steps. Because there are no derivative
5By four-dimensional parityh must be an even function f couplings involvingr, we have
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visible brane will depend off. Using arguments similar to
those above, it is easy to see that the result is

wherec is a constant. Because the four-dimensional Planck
scale is independent of the Aharonov-Bohm phbge we
havec=0. Thereforef;q is also independent of, and we
have

frig=Cc(T—T") +terms independent of, (A34)

£4,vis:f d40¢T¢e_k(T+TT)fvis(QuQT)

2 \A /A 34— 3KT:
Lane= [ 60819103 30+ [ @SS 0W W) * | ST e T )

+ W) ]+ Hec. (A35) +H.c. (A36)

For couplings localized on the visible brane, the inducedSummarizing, the full four-dimensional effective Lagrangian
metric ise"27")g , (x), and the couplings localized on the is the sum of Eqs(A25), (A35), and (A36).
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