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Localized gravity and mass hierarchy inDÄ6 with a Gauss-Bonnet term
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We obtain a 3-brane solution with localized gravity inD56 in the presence of the Gauss-Bonnet term. If the
extra dimensions are compactified with theT2/(Z23Z2) orbifold symmetry, the mass hierarchy between the
Planck scale and the weak scale can be explained by putting our Universe at the positive tension TeV brane
located at the orbifold fixed point.
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I. INTRODUCTION

The recent proposals for fundamental TeV scale phy
@1,2# have been a great surprise in high energy phys
which has not been noted for a long period of superstr
research. Of particular interest is the first Randall-Sundr
~RSI! model @2# in which the warp factor geometry in th
extra direction in five-dimensional~5D! spacetime intro-
duces a large exponential suppression factor, enabling on
introduce a TeV scale from the Planck scale with anO(10)
ratio of the input parameters, through the compactification
the extra dimensiony on S1 /Z2. There are two branes in th
RSI model: brane 1~B1! located aty50 and brane 2~B2!
located aty5y2.

Probably a more interesting proposal is the seco
Randall-Sundrum~RSII! model @3# in which only one brane
~B1! located aty50 is introduced. Thus, the fifth dimensio
is not compactified, but still this model can describe me
ingful effective four-dimensional~4D! physics since gravity
is localized around B1. It is an alternative to the compact
cation idea of the extra dimension~s!. Both Randall-Sundrum
models need AdS spacetime in the bulk.

Subsequently, extensions of the RS type models were
posed toward the hierarchy solution@4–7#, for the study of
localization of gravity @8,10–13,7#, and for other aspect
@14–16#. In particular, the RSII model has been studied w
the aim of finding a self-tuning solution of the cosmologic
constant problem. This is because, from the beginning
these proposals the solution of the cosmological cons
was sought for in the RS models since the Einstein equat
can choose a flat space even with a negative nonvanis
bulk cosmological constant and nonvanishing brane t
sion~s!. But in the first proposals, the nonvanishing para
eters need to be fine tuned for the Universe to be flat in
model@2,3#. It has been suggested that introduction of a b
real scalar field with a coupling to the brane may give
self-tuning of the cosmological constant but this retains
serious fine-tuning problem due to a naked singularity@17#.
There exists an example of a self-tuning solution with
unconventional interaction of a bulk antisymmetric tens
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field @18# which may shed more light toward a final solutio
of the cosmological constant problem. We note that the fi
solution must allow inflation, which seems to be needed
the explanation of homegeneity and isotropy of the obser
universe@19#.

In the intersecting brane world scenarios in higher th
five dimensions@8,9#, our Universe is regarded as a 3-bra
with higher codimensions given by the common intersect
of higher dimensional objects with lower codimension
However, when we consider discrete sources of higher
mensional objects in the bulk space, no additional contri
tion is allowed from the brane-brane interaction to the te
sion of their intersection corresponding to the 3-bra
tension, since the Einstein tensor just gives rise to a o
dimensional delta function from the intersecting branes. T
behavior is well understood in the smooth limit of interse
ing branes. For instance, forn orthogonal (n12)-branes in
D541n, each (n12)-brane has the tensionTn12
5Mn14L while the tension of their intersection isT3
5Mn14Ln by dimensional analysis. @M is the
(41n)-dimensional fundamental scale andL is the brane
thickness.# Therefore, the 3-brane tension shows up with
higher power ofL, so it becomes suppressed in the thin bra
limit, which means that higher curvature terms should
taken into account for better resolution to see such a
3-brane. Without nonzero 3-brane tension, it is difficult
discuss the generation of vacuum energy after a phase
sition on the intersection as in our world. Because the co
sponding nonzero tension of the intersection is not allow
the vacuum energy induced by a phase transition has no
but, at most, to leak away along the intersecting bran
whose tensions are allowed to be nonzero. In this contex
is necessary that the nonzero brane-brane interaction o
nonzero tension of the intersection should appear in a nat
way.

In this paper we consider a RS type solution for the c
of two orthogonally intersectingnonsolitonic4-branes1 and
one 3-brane~or string! on their intersection inD56 when
the Gauss-Bonnet term is added in the bulk action. In t
case, we can regard our world as a common intersectio

1Here,solitonic means supported by gravity only whilenonsoli-
tonic means supported by sources.
©2001 The American Physical Society11-1
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two 4-branes where the localization of gravity arises. In
existence of the Gauss-Bonnet term, in particular, a st
tension should be introduced at the beginning to match
additional boundary condition on the intersection. So our
lution with two 4-branes and one string is based on t
fine-tuning conditions between input parameters, but ther
the possibility for naturally regarding the vacuum energy
our world as the string tension in the intersecting bra
world scenario, which it was not been possible to get with
the Gauss-Bonnet term. Thus, it seems that the higher cu
ture terms are affected by the inner structure of the inters
ing branes while the Einstein-Hilbert term has lower reso
tion.

For the special relation between the bulk cosmologi
constant and the Gauss-Bonnet coupling in our model,
shown that there exists a string solution with codimensio
by considering theZ23Z2 symmetry of the extra dimension
as usually imposed in the case of the two orthogo
4-branes. In that case, the bulk space is found to be a dis
patch of the pure AdS6 space to make the bulk symmet
manifest and the resultant discontinuities of the derivative
the metric across the symmetry axes are shown to be a
matically canceled between those derived from the Einst
Hilbert term and from the Gauss-Bonnet term in the eq
tions of motion without the need to introduce 4-branes alo
the symmetry axes. In other words, it is shown that
Einstein-Gauss-Bonnet~EGB! gravity itself is able to sup-
port singularities produced on orbifolding without the ne
to introduce additionalnonsolitonicsingular sources. From
the point of view of Einstein’s gravity, however, the sing
larities are interpreted as the so calledsolitonic 4-branes
@16#, of which the tensions are determined by the Gau
Bonnet coupling and the 3-brane tension. Nonetheless, s
the solitonic 4-branes are supported by gravity only with
sources inD56, they do not give any fine-tuning condition
Therefore, on patching the AdS6 bulk in theZ23Z2 invari-
ant way, there exists a solution of a string residing on
intersection of two solitonic 4-branes, which is based on o
fine tuning condition between bulk parameters but for wh
the 3-brane cosmological constantL1 can take any positive
value without being involved in any fine-tuning. In partic
lar, it is interesting to see that the confinement of grav
arises for the solitonic 4-branes, which results in exactly t
copies of the 5D RSII model inD56.

For the string solution with codimension 2 inD56, it has
been shown that the singular global string solution is p
sible with a massless scalar field in the flat bulk by the u
tarity boundary condition at the singularity@4#. Later, it was
pointed out that there exist regular global string solutio
obtained by introducing a bulk cosmological consta
@11,12,7#. One more interesting observation is that the lo
string defects were shown to have localized gravity with
fine tuning of the bulk cosmological constant, but here
components of the string tension are required to satisf
certain relation@13#, which is a fine tuning. Pertinent to ou
study in this paper, we note the work of Corradini a
Kakushadze, in which it has been argued that it is possibl
have localized gravity on a solitonic 3-brane with the Gau
Bonnet term while freely choosing the brane cosmologi
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constant equivalent to a deficit angle in the extra polar co
dinate in the fifth and the sixth spaces@20#. ~Note that a
similar result is known in the case with 3-brane sources
6D Einstein gravity without a bulk cosmological consta
@21# and with a positive bulk cosmological constant@22#.!
This solution has one fine-tuning condition between bulk
rameters and there exists a conical singularity correspon
to the brane tension@20#.

Based on our string solution in the intersecting brane s
nario, we can compactify the extra dimensions with t
T2/(Z23Z2) orbifold symmetry. Then, we can show that th
hierarchy problem can be solved if we put the branes at
four fixed points of the orbifoldT2/(Z23Z2) and the two
neighboring 3-branes are connected to each other by
4-brane. In this case, the positive tension brane diagon
far away from the origin of the extra dimension is regard
as our Universe and some other three 3-branes as the hi
branes.

In Sec. II, we obtain a 3-brane~or string! solution in EGB
theory. It is the most relevant generalization of the RS
model. Solitonic 4-brane solutions appears. In Sec. III, w
consider the metric perturbation near the background ge
etry and ensure that there is no tachyonic mode of the gr
ton. Then, in Sec. IV, we discuss the gravity confinement
the solitonic 4-branes. In Sec. V, we compactify 6D with t
T2/(Z23Z2) orbifold symmetry and obtain four fixed point
where 3-brane sources can be placed. It is the most rele
generalization of the RSI model in which a TeV 3-brane c
occur naturally. Section VI is a conclusion.

II. LOCALIZED GRAVITY ON A 3-BRANE IN 6D

If we impose theZ2 symmetry on each extra dimension
a (D5n14)-dimensional generalization of the RS mod
we should have (n12)-branes orthogonally intersectin
each other to match the boundary conditions of the me
@8,9#. Therefore, the 3-brane as our Universe appears onl
the common intersection of all the (n12)-branes@8#, but
without its tension. However, in the presence of the Gau
Bonnet term, from which no higher than second derivativ
are derived in the equations of motion, the intersection
two orthogonal 4-branes inD56 is required to have a non
zero tension; this will be shown below.

When the Gauss-Bonnet term is added as the n
leading-order ghost-free interaction to the Einstein-Hilb
term in 6 dimensions~6D! with two spacelike extra dimen
sions, we start with the Einstein-Gauss-Bonnet 6D act
with singular brane sources,

S65E d4xdz1dz2A2gFM4

2
R2Lb1

1

2
aM2~R2

24RMNRMN1RMNPQRMNPQ!G1E d4xdz2

3A2g(z150)~2Lz1
!1E d4xdz1A2g(z250)~2Lz2

!

1E d4xA2g(z150,z250)~2L1! ~1!
1-2
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where g,g(z150),g(z250), and g(z150,z250) are the determi-
nants of the metrics in the bulk, orthogonally intersecti
4-branes and a 3-brane,M is the six-dimensional gravita
tional constant, andLb , Lz1

,Lz2
, andL1 are the bulk and

the brane cosmological constants,a is the effective coupling.
We considered the 4-branes to write down general equat
of motion, but we will see later that there is a possibility
getting the string solution without these 4-brane sources
imposing theZ23Z2 symmetry in the bulk.

The equations of motion in this EGB theory are

GMN1HMN5M 24TMN . ~2!

The tensors in the above equation are

GMN[RMN2
1

2
gMNR, ~3!

HMN[
a

M2 F2
1

2
gMN~R224RPQ

2 1RPQSTR
PQST!12RRMN

24RM PRN
P24RK

M PNRK
P12RMQSPRN

QSPG ,
~4!

TMN[2LbgMN2
A2g(z150)

A2g
Lz1

d~z1!dM
p dN

q gpq
(z150)

2
A2g(z250)

A2g
Lz2

d~z2!dM
a dN

b gab
(z250)

2
A2g(z150,z250)

A2g
L1d~z1!d~z2!dM

m dN
n gmn

(z150,z250) ,

~5!

where the indicesM ,N5(0,1,2,3,5,6), p,q5(0,1,2,3,6),
a,b5(0,1,2,3,5), andm,n5(0,1,2,3).

Taking the metric ansatz as a conformally flat one in 6
which is manifestly 4D Poincare´ invariant,

ds6
25A2~z1 ,z2!~hmndxmdxn1dz1

21dz2
2!, ~6!

where (hmn)5diag(21,11,11,11), we obtain the tenso
componentsGMN andHMN as follows:

Gm
n5

2

A2 F S A8

A D 2

1S Ȧ

A
D 2

12
A9

A
12

Ä

A
Gdm

n , ~7!

G5
55

2

A2 F5S A8

A D 2

1S Ȧ

A
D 2

12
Ä

A
G , ~8!

G5
65

4

A2 F2
Ȧ8

A
12

ȦA8

A2 G , ~9!
06501
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G6
65

2

A2 F5S Ȧ

A
D 2

1S A8

A D 2

12
A9

A
G , ~10!

and

Hm
n52

12a

M2

1

A4 H 23F S A8

A D 2

1S Ȧ

A
D 2G2

14S A8

A D 2 A9

A

14S Ȧ

A
D 2

Ä

A
12

A9Ä

A2
22

Ȧ8

A S Ȧ8

A
24

ȦA8

A2 D J dm
n ,

~11!

H5
55

12a

M2

1

A4 H 22S A8

A D 2S Ȧ

A
D 2

25S A8

A D 4

13S Ȧ

A
D 4

24F S A8

A D 2

1S Ȧ

A
D 2G Ä

AJ , ~12!

H5
652

48a

M2

1

A4 F S A8

A D 2

1S Ȧ

A
D 2G S 2

Ȧ8

A
12

ȦA8

A2 D ,

~13!

H6
65

12a

M2

1

A4 H 22S A8

A D 2S Ȧ

A
D 2

25S Ȧ

A
D 4

13S A8

A D 4

24F S A8

A D 2

1S Ȧ

A
D 2G A9

A J ~14!

where the prime and the overdot denote the derivatives w
respect toz1 and z2, respectively. The energy momentu
tensorTMN is given by

TM
N52LbdM

N 2
1

A
Lz1

d~z1!dM
p dq

Ndp
q2

1

A
Lz2

d~z2!dM
a db

Nda
b

2
1

A2
L1d~z1!d~z2!dM

m dn
Ndm

n . ~15!

Then, the~56! component of the modified Einstein’s equ
tions is

4

A2 H 12
12a

M2

1

A2 F S A8

A D 2

1S Ȧ

A
D 2G J S 2

Ȧ8

A
12

ȦA8

A2 D 50.

~16!

Therefore, to ensure that the above equation is satisfied
require that the second factor vanishes,

2
Ȧ8

A
12

ȦA8

A2
50; ~17!

i.e., the general solution of the metric is given by

A~z1 ,z2!}
1

@F~z1!1G~z2!#
~18!
1-3
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where F and G are undetermined functions ofz1 and z2,
respectively. Note that in the case of a vanishing first fac
in Eq. ~16!, Eq. ~17! is automatically satisfied. To determin
the exact solution of the above type, we can rewrite the~00!
@or ~ii !#, ~55!, and~66! components under the condition E
~17!, respectively:

E1e11e21e35M 24F2Lb2
1

A
Lz1

d~z1!2
1

A
Lz2

d~z2!

2
1

A2
L1d~z1!d~z2!G , ~19!

E1e25M 24F2Lb2
1

A
Lz2

d~z2!G , ~20!

E1e15M 24F2Lb2
1

A
Lz1

d~z1!G , ~21!

where

E510H 12
6a

M2

1

A2 F S A8

A D 2

1S Ȧ

A
D 2G J 1

A2 F S A8

A D 2

1S Ȧ

A
D 2G ,

~22!

e15
4

A S A8

A2D 8H 12
12a

M2

1

A2 F S A8

A D 2

1S Ȧ

A
D 2G J , ~23!

e25
4

A S Ȧ

A2D ˙ H 12
12a

M2

1

A2 F S A8

A D 2

1S Ȧ

A
D 2G J , ~24!

e352
24a

M2

1

A2 S A8

A2D 8S Ȧ

A2D ˙

. ~25!

Thus, the bulk equation in all the above components,E5
2Lb /M4, can be solved only ifF(z1)5k1z11c1 and
G(z2)5k2z21c2 (c1 ,c2 are integration constants!, i.e.,

A~z1 ,z2!5
1

~k1uz1u1k2uz2u11!
, ~26!

where theZ2 symmetry is used along each extra dimens
and the integration constants are arbitrarily chosen forA to
be 1 at (z1 ,z2)5(0,0). k1 ,k2 are determined by the follow
ing relations:

k1
21k2

25
M2

12a F16A11
12aLb

5M6 G[k6
2 , ~27!

k1S 12
12ak6

2

M2 D 5
Lz1

8M4
,

~28!
06501
r

n

k2S 12
12ak6

2

M2 D 5
Lz2

8M4
, ~29!

ak1k25
L1

96M2
, ~30!

where the last three equations are derived from the boun
conditions on the branes in Eqs.~19!–~21!. The first and
fourth equations determinek1 andk2 in terms ofa, Lb , and
L1, and they should be such thatuL1u<48uauk6

2 M2, where
the equality implies the existence of exchange symmetry
tween two extra dimensions, and sgn(L1)5sgn(a) to give
real solutions fork1 andk2. Then, the second and third equ
tions give rise to two fine-tuning conditions between inp
parameters. Note that the Gauss-Bonnet term requires an
ditional condition, Eq.~30!, on the 3-brane other than thos
the Einstein-Hilbert action imposes on the 4-branes, E
~28! and ~29!.

However, if we chose a relation between bulk paramet
from the beginning,

12aLb

5M6
521, ~31!

such thatk6
2 5M2/12a for a.0, nonsolitonic4-brane ten-

sions would not be allowed to exist, viz., Eqs.~28! and~29!.
Then, the 3-brane tensionL1 can take any positive value
without being involved in any fine-tuning relations. In th
case, the remaining equations~27! and~30! just determinek1
and k2 in terms of a and L1. This particular point in the
solution space is made possible only with the addition of
Gauss-Bonnet term, but is not possible with the Einste
Hilbert term alone.2 In other words, on patching the bul
space in aZ23Z2 symmetric way as shown in the chose
metric, we naturally obtain a string solution via the canc
lation between those terms derived from the Einstein-Hilb
term and the Gauss-Bonnet term in the equations of mot
However, from the point of view of Einstein’s gravity, sin
gularities on orbifolding should be seen to stem fromsolito-
nic 4-brane tensions, just as in Iglesias and Kakushad
method@16#. In our case, the solitonic 4-brane tensionsf 1
( f 2) located atz150 (z250) are determined to be positiv
as

f 158k1M4, f 258k2M4 ~32!

where k1 and k2 are given by solving Eqs.~27! and ~30!
under the condition Eq.~31!.

2In the extension of the RS model with one extra timelike dime
sion inD56 @23#, it is shown that there exists a 3-brane solution
a common intersection of two 4-branes with no fine tuning of
cosmological constant if the exchanging symmetryy8↔t8 is as-
sumed between the extra space and time coordinates. Howev
the existence of the Gauss-Bonnet term, there arises a fine tu
from the necessity for the 3-brane to match the boundary condit
1-4
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Then, after integrating the extra dimensions with the
part of the metric asḡmn(x)5hmn in Eq. ~6!, we obtain the
4D effective action as follows:

Se f f5
M P,e f f

2

2 E d4xA2ḡ(4)F R̄1
ae f f

M P,e f f
2 ~R̄224R̄mn

2

1R̄mnrs
2 !G ~33!

where the 4D Planck mass and the 4D Gauss-Bonnet
pling are given by

M P,e f f
2 5M4E

2`

`

dz1E
2`

`

dz2S A4H 11
12a

M2

1

A2 F S A8

A D 2

1S Ȧ

A
D 2G J 2

12a

M2
@~AA8!81~AȦ!

˙
# D

5
2M4

3k1k2
S 11

12ak6
2

M2 D
5

64aM6

L1
S 11

12ak6
2

M2 D >
4M4

3k6
2 S 11

12ak6
2

M2 D ,

~34!

ae f f5aM2E
2`

`

dz1E
2`

`

dz2A2 ~35!

where the (AA8)8 and (AȦ)
˙

terms in the first equality of
Eq. ~34! vanish after integration. For a negative Gau
Bonnet couplinga, the 4D Planck mass will not be positiv
definite due to the contribution from the Gauss-Bonnet te
Therefore, the positivity condition givesuau,M2/12k6

2 for
a,0 and any value fora.0. On the other hand, the 4D
Gauss-Bonnet coupling is shown to become logarithmic
divergent after integration. This seems to be a generic fea
of higher curvature terms, which is rephrased as the delo
06501
u-

-

.

y
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l-

ization of gravity in warped geometry@15#. Nonetheless, no
problem arises in our case since the Gauss-Bonnet term
total derivative inD54 and thus it does not modify th
equation of motion for a graviton in 4D spacetime. The
fore, we can drop the 4D Gauss-Bonnet term in Eq.~33! to
get the 4D effective Einstein gravity@15#.

III. METRIC PERTURBATION NEAR THE BACKGROUND
GEOMETRY

Now that we have obtained the background solution, i
of interest to examine the perturbation effects of gravity n
the background solution. Since the effects inform us how
gravitational interaction between matter is described at
energy scales under a background geometry, it is indisp
able to study the perturbative expansion and compare it w
the well-known gravitational interaction. The perturbation
higher dimensional spacetime is usually interpreted as
graviton in the corresponding spacetime dimension, and
in the six-dimensional case, decomposed into a fo
dimensional graviton, two kinds of vector, and three kinds
scalar. In this section, however, we assume that the ve
and scalar modes are decoupled by some physics due to
absence at the low energy scale, and we focus on the g
tational interaction mediated by the four-dimensional gra
ton.

Thus, for the study, let us assume the metric to be
following:

ds25@A2~z1 ,z2!hmn1hmn~x,z1 ,z2!#dxmdxn1A2~z1 ,z2!

3~dz1
21dz2

2! ~36!

5A2~z1 ,z2!@~hmn1h̃mn~x,z1 ,z2!!dxmdxn1dz1
21dz2

2#,
~37!

where x denotes the four-dimensional coordinate, and
would keep the linear parts inhmn in the full expression of
the Einstein equation. Here,A(z1 ,z2) is the background so
lution given by Eq.~26! and hmn represents a small pertur
bation near it. With Eq.~36!, the linearized variations for
Gmn , Hmn , andTmn are given by
dGmn52
1

2 F 1

A2
h41

1

A2
~]z1

2 1]z2

2 !226~k1
21k2

2!1
20

A
~k1d~z1!1k2d~z2!!Ghmn , ~38!

dHmn5
a

M2 F 1

A2 S 6~k1
21k2

2!2
8k1

A
d~z1!2

8k2

A
d~z2! Dh41

1

A2 S 6~k1
21k2

2!2
8k2

A
d~z2! D ]z1

2

1
1

A2 S 6~k1
21k2

2!2
8k1

A
d~z1! D ]z2

2 1
8k1

A S 3k1

A
d~z1!2

k2

A
d~z2! D sgn~z1!]z1

1
8k2

A S 3k2

A
d~z2!2

k1

A
d~z1! D sgn~z2!]z2

296~k1
21k2

2!21
k1

A
d~z1!~168k1

21152k2
2!1

k2

A
d~z2!~168k2

21152k1
2!2160

k1k2

A2
d~z1!d~z2!Ghmn , ~39!
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dTmn52Lbhmn2
1

A
Lz1

d~z1!hmn2
1

A
Lz2

d~z2!hmn2
1

A2
L1d~z1!d~z2!hmn , ~40!

whereh4[hmn]m]n , and we choose the traceless transverse gauge conditions]mhmn5hm
m50.

The above expressions lead to the linearized Einstein equation

2
1

2A2 S 12
12a

M2
~k1

21k2
2!D @h41]z1

2 1]z2

2 26A2~k1
21k2

2!#hmn2d~z1!F 8a

M2

k1

A S 1

A2
~h41]z2

2 !1
k2

A
sgn~z2!]z2

2
3k1

A
sgn~z1!]z1D 1

k1

A S 102
a

M2
~168k1

21152k2
2!D 2

1

A

Lz1

M4Ghmn2d~z2!F 8a

M2

k2

A S 1

A2
~h41]z1

2 !1
k1

A
sgn~z1!]z1

2
3k2

A
sgn~z2!]z2D 1

k2

A S 102
a

M2
~168k2

21152k1
2!D 2

1

A

Lz2

M4Ghmn2d~z1!d~z2!F160a

M2

k1k2

A2
2

1

A2

L1

M4Ghmn50, ~41!

where we use Eq.~27!. The above equation forhmn is simplified in the conformal coordinate,

2
1

2 S 12
12a

M2
k6

2 D @h41]z1

2 1]z2

2 24A$k1 sgn~z1!]z1
1k2 sgn~z2!]z2

%#h̃mn2
d~z1!

A F 8a

M2
k1~h41]z2

2 23A$k1 sgn~z1!]z1

1k2 sgn~z2!]z2
%!1A2S 8k1H 12

12a

M2
k6

2 J 2
Lz1

M4D G h̃mn2
d~z2!

A F 8a

M2
k2@h41]z1

2 23A$k2 sgn~z2!]z2
1k1 sgn~z1!]z1

%#

1A2S 8k1H 12
12a

M2
k6

2 J 2
Lz2

M4D G h̃mn2d~z1!d~z2!F96a

M2
k1k22

L1

M4G h̃mn50, ~42!
nl
f

he

e

e

th

a

e-
lc
ck
e

al-

vi-
six
ck

ame
out
whereh̃mn is defined in Eq.~37!.
The bulk contribution in the above equation comes o

from the first term of Eq.~41!. The second and third parts o
Eq. ~41! and~42! describe the behavior of the graviton on t
corresponding 4-brane, and the last part of Eq.~42! just gives
a boundary condition ofhmn at the origin ~i.e., at the
3-brane!, which is consistent with Eq.~30!. In general, the
bulk equations, the first part of Eq.~41! @or Eq.~42!#, cannot
be solved easily, but the solution for the massless mod
trivial. If we assume]z1

h̃mn5]z2
h̃mn50 and put the back-

ground relations Eqs.~28!–~30! into the above equation, w
obtain

h4h̃mn
0 ~x!50. ~43!

Hence, the massless graviton has the following profile in
bulk:

hmn
0 ~x,z1 ,z2!5A2~z1 ,z2!h̃mn

0 ~x!5A2~z1 ,z2!emneipx,
~44!

where e is the polarization tensor of the four-dimension
graviton.

As the effective four-dimensional theory would be d
scribed by the massless graviton predominantly, let us ca
late approximately the effective four-dimensional Plan
massM P,e f f . After integrating the extra dimensions with th
06501
y

is

e

l

u-

4D part of the metric asg̃mn(x)[hmn1h̃mn in Eq. ~6!, we
obtain the 4D effective action as follows:

Se f f5
M P,e f f

2

2 E d4xA2g̃(4)@R̃1•••#, ~45!

whereR̃ is the 4D Ricci scalar. The 4D Planck mass is c
culated by reading off the coefficients ofh4 in Eq. ~41! or
Eq. ~42! and integrating those with respect toz1 andz2,

M P,e f f
2 5M4E

2`

`

dz1E
2`

`

dz2A4F12
12a

M2
k6

2

1
1

A

16a

M2
@k1d~z1!1k2d~z2!#G

5
2M4

3k1k2
S 11

12ak6
2

M2 D , ~46!

which gives a finite value. Therefore, we can explain gra
tational interactions consistently even in the noncompact
spacetime dimensions. Note that our effective 4D Plan
mass obtained above from the Einstein equation is the s
as the one obtained from the action itself by integrating
z1 andz2, as given in Eq.~34!.
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In case of the absence of 4-branes, i.e.,k1
21k2

2

5M2/(12a), the bulk kinetic term in Eq.~41! or Eq. ~42!
does not contribute to the linearized Einstein equation
thus the graviton is not allowed to propagate in the bulk. B
through higher order terms in thehmn expansion a certain
‘‘gravity interaction’’ could exist in the bulk even though th
mediating particle cannot be defined as the graviton.

Now let us discuss the Kaluza-Klein~KK ! modes of the
graviton. We will get a bulk solution first using Eq.~41! or
Eq. ~42!, and then apply the boundary conditions with t
delta functions in the above equations. Equation~41! is
easier to treat rather than Eq.~42! because the former doe
not have any first derivative terms in the bulk equation. I
possible to separate the variableshmn(x,z1 ,z2)
5c(z1 ,z2)eip•xemn , wherexm andpm are the 4D coordinate
and momentum, respectively. Then, the bulk part of Eq.~41!,
which is a two-dimensional differential equation, is

F2]z1

2 2]z2

2 1
6~k1

21k2
2!

~k1uz1u1k2uz2u11!2Gc~z1 ,z2!5m2c~z1 ,z2!,

~47!

wherep252m2. To separate the bulk variables, let us intr
duce a new coordinate (s,t),

s[k1uz1u1k2uz2u11,

t[k2uz1u2k1uz2u11. ~48!

Then Eq.~47! becomes

~k1
21k2

2!F2]s
22] t

21
6

s2G ĉ~s,t !5m2ĉ~s,t !, ~49!

whereĉ(s,t)[c(z1 ,z2). It is separable as

F2]s
21

6

s2Gfs~s!5ms
2fs~s! ~50!

2] t
2f t~ t !5mt

2f t~ t !, ~51!

wherefs(s), f t(t), ms
2 , andmt

2 are defined as

ĉ~s,t !5fs~s!f t~ t !,

m2

~k1
21k2

2!
5ms

21mt
2 . ~52!

From Eqs.~50! and~51!, we can see thatms
2 , mt

2 , and som2

should be positive definite, because they could be rega
as a ‘‘Hamiltonian’’ in quantum mechanics, and have po
tive and flat ‘‘potentials,’’ respectively. Hence, they ha
positive ‘‘energies’’ or eigenvalues. Thus we conclude th
there do not exist any tachyonic KK modes.

Equations~50! and ~51! are easily solved and have th
following solutions:
06501
d
t

s

ed
-

t

fs~s!5c1AsJ5/2~mss!1c2AsY5/2~mss!

5A 2

pms
H c1F S 3

~mss!2
21D sin~mss!

2
3

ms
2s2

cos~mss!G1c2F 3

mss
sin~mss!

1S 3

~mss!2
21D cos~mss!G J , ~53!

f t~ t !5d1 sin~mtt !1d2 cos~mtt !, ~54!

whereJ5/2 andY5/2 are Bessel functions.c1 , c2 , d1, andd2
are arbitrary constants but should be determined by
boundary conditions. Note that for largemss we have

fs~s!'2A2

p
@c1sin~mss!1c2cos~mss!#, ~55!

i.e., KK modes behave like free particles.
On integrating Eq.~41! near the extra dimension axes an

the origin, the boundary conditions for the spin-2 gravit
modes are given respectively as follows:

F S 12
12ak6

2

M2 D j1
8ak1

M2A
@2j81A~k2h2k1j!#G

z1501

50,

~56!

F S 12
12ak6

2

M2 D h1
8ak2

M2A
@2ḣ2A~k2h2k1j!#G

z2501

50,

~57!

8a

M2A3
~k1h1k2j!u(z1501,z2501)50

~58!

where we used the bulk equation~47! and

j5c812k1Ac5k1S ]

]s
1

2

sD ĉ1k2

]ĉ

]t
, ~59!

h5ċ12k2Ac5k2S ]

]s
1

2

sD ĉ2k1

]ĉ

]t
. ~60!

The zero mode solutionĉ05A25s22 is shown to satisfy all
of the above boundary conditions sincej5h50 identically,
and it is regarded as the 4D massless graviton since it
normalizable bound state with its norm beingic0i2,`. For
the KK massive modes, there are two types of bulk solutio
since we have to deal with the zero mode separately:

ĉm
(1)5s22f t~ t !5s22@d1sin~mtt !1d2cos~mtt !#, ~61!
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ĉm
(2)5fs~s!f t~ t !

5As@c1J5/2~mss!1c2Y5/2~mss!#

3@d1sin~mtt !1d2cos~mtt !# ~62!

wherefs and f t are given by Eqs.~53! and ~54!, respec-
tively, and we note thatms

250 for the case ofĉm
(1) .

Thus, ĉm
(1) satisfies the boundary condition at the orig

automatically for k15k2 but otherwise only withd2 /d1
5cot(mt), and the remaining boundary conditions are rew
ten as

F S 12
12ak6

2

M2 D df t

dt
1

8ak1k2mt
2

M2
sf tGU

z1501

50, ~63!

F S 12
12ak6

2

M2 D df t

dt
2

8ak1k2mt
2

M2
sf tGU

z2501

50. ~64!

There exist no KK massive modes of typeĉm
(1) satisfying the

above boundary conditions. On the other hand, for the
massive modes of the other typeĉm

(2) , the boundary condi-
tions look complicated to solve, but if we assume not de-
pendence we can obtain the ratio between coefficients of
Bessel functions as

c1

c2
52

Y3/2~ms!

J3/2~ms!
, ~65!

and the boundary conditions on the extra dimension axes
simplified to

F S 12
a

M2
~36k1

214k2
2!D S d

ds
1

2

sDfs1
8ak1

2ms
2

M2
sfsGU

z1501

50, ~66!

F S 12
a

M2
~4k1

2136k2
2!D S d

ds
1

2

sDfs1
8ak2

2ms
2

M2
sfsGU

z2501

50. ~67!

However, the above boundary conditions are not satisfied
KK massive modes that are a function ofs only except for
ms

250, i.e., the zero mode. Moreover, the situation wou

not be different for more general KK modes of typeĉm
(2) .

Therefore, even though the bulk equation for 4D mass
gravitons is exactly solvable, there will not exist bulk sol
tions satisfying the boundary conditions along the extra
mension axes with the simple ansatz for separation of v
ables, Eq.~48!. It is shown that this situation does not chan
even without the Gauss-Bonnet term.
06501
-

he

re

y

e

i-
i-

IV. CONFINING GRAVITY TO THE SOLITONIC
4-BRANES

Let us discuss the case with the orthogonal 4-branes
garded assolitonic by choosing the relation between bu
parameters Eq.~31!, for which there is no six-dimensiona
bulk propagation of the graviton but the gravity is confin
to the solitonic 4-branes as shown in Eq.~41! or Eq.~42!. In
this case, we can rewrite the linearized equation~42! with
h̃mn5A23/2c̃(z1 ,z2)eip•xemn as

2d~z1!
8ak1

M2 Fm21]z2

2 2
15

4
k2

2A213k2Ad~z2!G c̃
1

24ak1
2

M2
sgn~z1!Ad~z1!S ]z1

1
3

2
k1 sgn~z1!AD c̃

2d~z2!
8ak2

M2 Fm21]z1

2 2
15

4
k1

2A213k1Ad~z1!G c̃
1

24ak2
2

M2
sgn~z2!Ad~z2!S ]z2

1
3

2
k2 sgn~z2!AD c̃50.

~68!

Then the above equation is decomposed into two fi
dimensional bulk equations for the graviton and three bou
ary conditions:

S 2]z1

2 1
15

4
k1

2A2D c̃5m2c̃ ~along z1 axis!, ~69!

S 2]z2

2 1
15

4
k2

2A2D c̃5m2c̃ ~along z2 axis!, ~70!

S ]z1
1

3

2
k1AD c̃U

z1501

50, ~71!

S ]z2
1

3

2
k2AD c̃U

z2501

50,

~72!

F S ]z1
1

3

2
k1AD c̃1S ]z2

1
3

2
k2AD c̃ GU

(z15z2501)

50 ~73!

where we note that the last equation is a necessary co
quence if the third and fourth ones are satisfied and v
versa for our case, as will be shown later. From Eqs.~69! and
~70!, the zero mode solution form250 becomes the same a
in the nonsolitonic case,

c̃05~k1uz1u1k2uz2u11!23/2, ~74!

which automatically satisfies the boundary conditions E
~71!–~73!. Note that the zero mode wavec̃0 is chosen to be
nonvanishing only along the solitonic 4-branes.
1-8
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On the other hand, by solving Eqs.~69! and~70!, the KK
mode solutions are given as linear combinations of Be
functions of order 2 as in the RS case, propagating al
solitonic 4-branes located at thez1 andz2 axes:

c̃m5Nm
(1)~ uz1u11/k1!1/2@Y2„m~ uz1u11/k1!…

1BmJ2„m~ uz1u11/k1!…# ~along z1 axis!,

~75!

c̃m5Nm
(2)~ uz2u11/k2!1/2@Y2„m~ uz2u11/k2!…

1CmJ2„m~ uz2u11/k2!…# ~along z2 axis!, ~76!

whereNm
(1,2) , Bm , andCm are constants to be determined

boundary conditions and normalization. Then, for the K
modes with small masses, i.e.,m(uz1,2u11/k1,2)!1, the con-
stantsBm and Cm are determined approximately from th
boundary conditions Eqs.~71! and ~72!, as follows:

Bm.
4k1

2

pm2
, Cm.

4k2
2

pm2
. ~77!

Furthermore, from plane wave normalization such that

15E
0

zc
dz1uc̃mu21E

0

zc
dz2uc̃mu2, ~78!

we also obtain the normalization constantNm
(1,2) as

Nm
(1);Bm

21Apm

zc
S 11

k2

k1
D 21/2

5S k2

k1
D 3/2

Nm
(2) . ~79!

Therefore, the Newtonian potential for two point sourcesm1
andm2 separated byr on the 3-brane is found in a conven
tional way to be

V~r !.
GNm1m2

r
1~16ak2M2!21

3E
0

`

dm
m1m2e2mr

r
uc̃m~0!u2

1~16ak1M2!21E
0

`

dm
m1m2e2mr

r
uc̃m~0!u2

.
GNm1m2

r F11S k6
2

k1k2
D 2 1

~k6r !2G ~80!

where we usedGN5M P
225(3k1k2)/(4M4) from Eq. ~34!,

uc̃m(0)u2;m/(k11k2), and the effective 5D gravity cou
plings for KK modes are read off from the coefficients of t
5D kinetic terms in Eq.~68!. As a result, corrections due t
the KK massive modes arefive dimensionaldue to the con-
finement of gravity to the solitonic 4-branes and suppres
in comparison with the Newton force at larger length sca
than the curvature scales. Consequently, the confineme
gravity gives rise to exactly two copies of the fiv
06501
el
g

d
s
of

dimensional RSII model. In addition, since gravity does n
propagate into the bulk, one fine-tuning condition betwe
bulk parameters, Eq.~31!, remains intact at the quantum
level of linearized gravity.

V. THE MASS HIERARCHY WITH THE ORBIFOLD
T2Õ„Z2ÃZ2…

We have just shown that there exist two orthogon
4-brane solutions with nonzero tension of the intersection~or
3-brane! in 6D with the Gauss-Bonnet term. Therefore, it
possible to put another 3-brane in the appropriate positio
the bulk as the additional intersection of 4-branes to so
the hierarchy problem as in the RSI case. But it should
guaranteed that the additional brane is located at the fi
point of the orbifold to be stable, i.e., the bulk should end
the position of the additional brane. Thus, we assume
there exist compact extra dimensions with the orbifo
T2/(Z23Z2), whereZ2 acts on each extra dimension onc
Let us set the range of the extra coordinates asz1
P(2a,a) andz2P(2b,b). Here we assumed the periodic
ity of 2a(2b) along thez1 (z2) direction. Then, with the
Z23Z2 symmetric solution Eq.~26!, we need four 3-branes
to match the boundary conditions at the four fixed points
the torus, (z1 ,z2)5(0,0), (a,0), (a,b), and (0,b). Let us
denote the 3-brane tensions asL1 , L2 , L3, andL4 in order,
and the neighboring two 3-branes are connected to e
other by one 4-brane denoted asL12, L23, L34, andL41 in
cyclic order. If the boundary equations in Eqs.~19!–~21! are
changed to the following:

e152M 24
1

A
@L41d~z1!1L23d~z12a!#, ~81!

e252M 24
1

A
@L12d~z2!1L34d~z22b!#, ~82!

e352M 24(
i 51

4
1

A2
L id~z12z1

( i )!d~z22z2
( i )!, ~83!

wherez1
( i ) and z2

( i ) are the positions of the branes, then w
obtain the following relations between the 4-brane tensi
and similarly for the 3-brane tensions:

L4152L235k1S 12
12ak6

2

M2 D , ~84!

L1252L345k2S 12
12ak6

2

M2 D , ~85!

L15L352L252L4596ak1k2M2. ~86!

In general, in view of Eqs.~27!–~30!, for fixed bulk param-
eters, two orthogonal 4-brane tensions should be fine tu
with the 3-brane tension on their intersection@e.g., between
L41 (L12) andL1, etc.#. When we adopt the string solutio
with two solitonic4-branes, each 3-brane tension can take
arbitrary value of either sign irrespective of the bulk para
1-9
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eters, as argued in the previous section, but they shoul
fine tuned to one another as shown in Eq.~86!. Then, to
explain the large mass hierarchy for both the string solut
with nonsolitonic4-branes fora.0 and the string solution
with solitonic4-branes, we may take theL3 brane with posi-
tive tension as the visible brane, whereas theL1 brane can be
considered as the hidden brane of the Planck scale. In a
tion, if the L2 brane andL4 branes are considered as t
second and third generation family branes while theL3
brane is interpreted as the first family brane, we may und
stand the mass hierarchy between families and neutrino
cillation. In this case, the gauge fields are required to exis
the bulk. But we do not digress into this family proble
here.

Before considering how the mass hierarchy is genera
in this model, let us rewrite the metric as

ds6
25A2~z1 ,z2!~hmndxmdxn1dz1

21dz2
2!

5A2~y1 ,y2!hmndxmdxn1B2~y1 ,y2!dy1
2

1C2~y1 ,y2!dy2
2 ~87!

by the following bulk coordinate transformations:

dz15
B

A
dy1 , dz25

C

A
dy2 , ~88!

i.e., k1z15sgn(y1)(ek1uy1u21),k2z25sgn(y2)(ek2uy2u21).
Then, we can have the metric functions in the new coo
nate: A5(ek1uy1u1ek2uy2u21)21, B5ek1uy1uA, and C
5ek2uy2uA. So the 4D Planck mass becomes

M P,e f f
2 5M4E

2a

a

dz1E
2b

b

dz2S A4H 11
12a

M2

1

A2 F S A8

A D 2

1S Ȧ

A
D 2G J 2

12a

M2
@~AA8!81~AȦ!

˙
# D

5M4S 11
12ak6

2

M2 D E
2b1

b1
dy1E

2b2

b2
dy2A2BC

5
2M4

3k1k2
S 11

12ak6
2

M2 D @11~ek1b11ek2b221!22

2e22k1b12e22k2b2# ~89!

where the (AA8)8 and (AȦ)
˙

terms in the first equality van
ish after integration due to the periodicity of the extra dime
sions,b1 andb2 are the range of the extra dimensions in t
new coordinate, and in the limit ofb1→` and b2→` Eq.
~34! can be reproduced. Note that the 4D Planck mass h
finite value if k1k2Þ0, i.e., L iÞ0 for all i from Eqs.~30!
and ~83! and its positiveness is assured foruau,M2/12k6

2

for a,0 and any value fora.0. In this new coordinate, le
us consider the action for the Higgs scalar field at theL3
brane,
06501
be

n

di-

r-
s-

in

d

i-

-

a

Sv is.E dx4A2g(v is)@ ḡmn]mH]nH2~H22m0
2!2#

5E dx4A2g(4)A4@A22~]H !22~H22m0
2!2#, ~90!

which becomes of a canonical form by redefining the sca
field asH̃5AH,

E dx4A2g(4)@~]H̃ !22~H̃22m3
2!2#, ~91!

where the Higgs mass parameter on the visible brane is g
by

m35Am05~ek1b11ek2b221!21m0 . ~92!

Similarly, we obtain the effective mass scales on the ot
branesL2 andL4, respectively:

m25e2k1b1m0 , m45e2k2b2m0 . ~93!

Therefore, when we regard theL3 brane as our Universe, w
can obtain the hierarchy between the Planck scale (m0) and
the weak scale (m3) by choosingk1b1 and/ork2b2 as about
37. It is interesting to see that the mass parameters on
branes are related by

1

m2
1

1

m4
2

1

m3
5

1

m0
, ~94!

wherem0 is the mass scale of order of the Planck mass at
3-brane located at (0,0). Since the right-hand side of Eq.~94!
is negligible, the magnitudes of at least two ofm2 ,m3, and
m4 are of the same order, which may allow a deeper und
standing of the family structure. Instead of putting differe
families in the different 3-branes, one can put all the ferm
ons and the Higgs doublet in the (a,b) brane or in the (a,b)
and (0,b) branes withb@a. Then the (a,0) brane can be
used for an intermediate scale brane. However, it is not n
essarily needed as proposed in@24# for a solution of them
problem with supersymmetry@25#, because the visible secto
fields here are already put at the TeV brane. On the o
hand, if the visible sector fields with supersymmetric exte
sion are put at the two Planck scale branes at (0,0) and (a,0)
with b@a, then it is necessary to introduce intermedia
scale brane~s! at (0,b) and (a,b) @24#. In this case, there can
be two intermediate scales in principle due to the t
3-branes at the intermediate scales.

VI. CONCLUSION

In this paper we obtained the localized gravity on t
intersection of two orthogonal nonsolitonic or soliton
4-branes in the Einstein-Gauss-Bonnet theory in 6D. N
zero 3-brane tension is allowed, which has been made
sible due to the presence of the Gauss-Bonnet term.
Gauss-Bonnet term can contain a product of two terms w
two derivatives of the metric on each term. Therefore, in
EGB theory 3-brane solutions are not possible beyond
1-10
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To have 3-brane solutions beyond 6D, we have to introd
higher derivative gravity than the Gauss-Bonnet term.

The solution has a warp factor that decreases expo
tially at large distance from the origin in the extra dimensio
If Z23Z2 symmetry is assumed on the bulk space even w
out nonsolitonic 4-branes, one can consider a solution o
3-brane residing on the intersection of two solitonic 4-bra
for the localization of gravity and also for a possible soluti
of the cosmological constant problem as in the RSII mo
@18#. With this solution, it is interesting to make possible t
confinement of gravity to the solitonic 4-branes, which
sults in nothing but two copies of the 5D RSII model.
addition, the extra dimension can be compactified. T
B

r,

y

06501
e

n-
.
-
a
s

l

-

e

T2/(Z23Z2) orbifold symmetry gives four fixed points
where 3-branes reside on intersections of two 4-branes
this case, the electroweak scale versus the Planck scale
archy can be understood. We also pointed out the possib
of understanding the family structure, which will be studi
in a future publication.
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