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Localized gravity and mass hierarchy inD=6 with a Gauss-Bonnet term
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We obtain a 3-brane solution with localized gravityOn=6 in the presence of the Gauss-Bonnet term. If the
extra dimensions are compactified with th&/(Z,X Z,) orbifold symmetry, the mass hierarchy between the
Planck scale and the weak scale can be explained by putting our Universe at the positive tension TeV brane
located at the orbifold fixed point.
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I. INTRODUCTION field [18] which may shed more light toward a final solution
of the cosmological constant problem. We note that the final
The recent proposals for fundamental TeV scale physicsolution must allow inflation, which seems to be needed for
[1,2] have been a great surprise in high energy physicsthe explanation of homegeneity and isotropy of the observed
which has not been noted for a long period of superstringiniverse[19].
research. Of particular interest is the first Randall-Sundrum |n the intersecting brane world scenarios in higher than
(RS) model[2] in which the warp factor geometry in the five dimensiong8,9], our Universe is regarded as a 3-brane
extra direction in five-dimensional5D) spacetime intro- jth higher codimensions given by the common intersection
duces a large exponential suppression factor, enabling one 3 pigher dimensional objects with lower codimensions.
introduce a TeV scale from the Planck scale with@{10) 45 \yever, when we consider discrete sources of higher di-
ratio of the input parameters, through the compactification of,ensional objects in the bulk space, no additional contribu-
the extra dimensiog on S, /Z,. There are wo branes in the i, s allowed from the brane-brane interaction to the ten-
RSI model: brane 1B1) located ay=0 and brane 2B2) sion of their intersection corresponding to the 3-brane

located aty=y,. . . . éension, since the Einstein tensor just gives rise to a one-
Probably a more interesting proposal is the secon

Randall-SundruniRSIl) model[3] in which only one brane dimensional delta function from the intersecting branes. This

(B1) located aly=0 is introduced. Thus, the fifth dimension pehavior is well gnderstood in the smooth limit of intergect-
is not compactified, but still this model can describe meaniNd Dranes. For instance, for orthogonal (1+2)—b.ranes n
ingful effective four-dimensional4D) physics since gravity D=4:ir4n, each (+2)-brane has the tensiorT,,,

is localized around B1. It is an alternative to the compactifi-— Mn+4|—n while the tension of their intersection i$5
cation idea of the extra dimensi@h Both Randall-Sundrum =M" "L" by dimensional ~analysis. [M is the
models need AdS spacetime in the bulk. (4+n)-dimensional fundamental scale aihdis the brane

Subsequently, extensions of the RS type models were prdhickness} Therefore, the 3-brane tension shows up with a
posed toward the hierarchy solutiph—7], for the study of hlg_her power oL, soit becqmes suppressed in the thin brane
localization of gravity[8,10—13,7, and for other aspects limit, vyh|ch means that higher curvature terms should b_e
[14—16. In particular, the RSIl model has been studied withtaken into account for better resolution to see such a thin
the aim of finding a self-tuning solution of the cosmological 3-brane. Without nonzero 3-brane tension, it is difficult to
constant problem. This is because, from the beginning ofiScuss the generation of vacuum energy after a phase tran-
these proposals the solution of the cosmological constariition on the intersection as in our world. Because the corre-
was sought for in the RS models since the Einstein equatior?0nding nonzero tension of the intersection is not allowed,
can choose a flat space even with a negative nonvanishirf§® vacuum energy induced by a phase transition has no way
bulk cosmological constant and nonvanishing brane tenbUt, & most, to leak away along the intersecting branes,
sion(s). But in the first proposals, the nonvanishing param-Whose tensions are allowed to be nonzero. In this context, it
eters need to be fine tuned for the Universe to be flat in thé® nNecessary that the nonzero brane-brane interaction or the
model[2,3]. It has been suggested that introduction of a bulkn"ONZero tension of the intersection should appear in a natural
real scalar field with a coupling to the brane may give aV&y- _ _
self-tuning of the cosmological constant but this retains the N this paper we consider a RS type solution for the case
serious fine-tuning problem due to a naked singuldg]. of two orthogonally intersectingonsolitonic4-brane$ and

There exists an example of a self-tuning solution with anON€ 3-bran€or string on their intersection irD=6 when

unconventional interaction of a bulk antisymmetric tensorth® Gauss-Bonnet term is added in the bulk action. In that
case, we can regard our world as a common intersection of
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two 4-branes where the localization of gravity arises. In theconstant equivalent to a deficit angle in the extra polar coor-
existence of the Gauss-Bonnet term, in particular, a stringlinate in the fifth and the sixth spacg20]. (Note that a
tension should be introduced at the beginning to match asimilar result is known in the case with 3-brane sources in
additional boundary condition on the intersection. So our so6D Einstein gravity without a bulk cosmological constant
lution with two 4-branes and one string is based on twd21] and with a positive bulk cosmological constd2e].)
fine-tuning conditions between input parameters, but there i$his solution has one fine-tuning condition between bulk pa-
the possibility for naturally regarding the vacuum energy infameters and there exists a conical singularity corresponding
our world as the string tension in the intersecting brand© the brane tensiof20].
world scenario, which it was not been possible to get without Based on our string solution in the intersecting brane sce-
the Gauss-Bonnet term. Thus, it seems that the higher curvario, we can compactify the extra dimensions with the
ture terms are affected by the inner structure of the intersectt -/ (Z2X Z,) orbifold symmetry. Then, we can show that the
ing branes while the Einstein-Hilbert term has lower resolu-hierarchy problem can be solved if we put the branes at the
tion. four fixed points of the orbifoldT?/(Z,XZ,) and the two

For the special relation between the bulk cosmologicaneighboring 3-branes are connected to each other by one
constant and the Gauss-Bonnet coupling in our model, it i¢-brane. In this case, the positive tension brane diagonally
shown that there exists a string solution with codimension 4ar away from the origin of the extra dimension is regarded
by considering th&,x Z, symmetry of the extra dimensions as our Universe and some other three 3-branes as the hidden
as usually imposed in the case of the two orthogonaPranes.
4-branes. In that case, the bulk space is found to be a discrete In Sec. Il, we obtain a 3-brarfer string solution in EGB
patch of the pure AdSspace to make the bulk symmetry theory. It is the most relevant generalization of the RSII
manifest and the resultant discontinuities of the derivative offodel. Solitonic 4-brane solutions appears. In Sec. IlI, we
the metric across the symmetry axes are shown to be aut&onsider the metric perturbation near the background geom-
matically canceled between those derived from the Einsteinetry and ensure that there is no tachyonic mode of the gravi-
Hilbert term and from the Gauss-Bonnet term in the equafon. Then, in Sec. IV, we discuss the gravity confinement of
tions of motion without the need to introduce 4-branes alonghe solitonic 4-branes. In Sec. V, we compactify 6D with the
the symmetry axes. In other words, it is shown that thel /(Z2XZ,) orbifold symmetry and obtain four fixed points
Einstein-Gauss-BonnéEGB) gravity itself is able to sup- where 3-brane sources can be placed. It is the most relevant
port singularities produced on orbifolding without the needdeneralization of the RSI model in which a TeV 3-brane can
to introduce additionahonsolitonicsingular sources. From occur naturally. Section VI is a conclusion.
the point of view of Einstein’'s gravity, however, the singu-
larities are interpreted as the so calledlitonic 4-branes Il. LOCALIZED GRAVITY ON A 3-BRANE IN 6D
[16], of which the tensions are determined by the Gauss- Ifwe | he h i L
Bonnet coupling and the 3-brane tension. Nonetheless, since we |mposgt 2 symmetry on eac extra dimension in
the solitonic 4-branes are supported by gravity only without?® (D=n+4)-dimensional generalization of thg RS mo'del,
sources irD =6, they do not give any fine-tuning conditions. we should have r(+2)-branes Orthog"’??‘”y Intersecting
Therefore, on patching the Agulk in the Z,X Z, invari- each other to match the boundary co_ndltlons of the metric
ant way, there exists a solution of a string residing on thi8,9]. Therefore, the 3-brane as our Universe appears only as

intersection of two solitonic 4-branes, which is based on on he common intersection of all then¢ 2)-branes[8], but

fine tuning condition between bulk parameters but for whichw'thom Its tension. Ho_wever, n the presence of the_Ga_uss-
Bonnet term, from which no higher than second derivatives

he 3-bran mological con n take any positiv R . . . .
the 3-brane cosmological constahi can take any positive are derived in the equations of motion, the intersection of

value without being involved in any fine-tuning. In particu- o :
lar, it is interesting to see that the confinement of gravityw\":J ortho_gonal _4-br_anes D=6 is required to have a non-
ero tension; this will be shown below.

arises for the solitonic 4-branes, which results in exactly twd” When the Gauss-Bonnet term is added as the next

Coggrstggtgterir?;)slzﬂlio?(\)/vczterll gir?]énsion 2D=6, it has Ieading—ordgr ghgst-free in.teraction to the Einstein—HiIbert
been shown that the singular global string solution is pos:“?rm in 6 d|men3|qn$6D) W'.th tvs{o spacelike extra d|men-.
sible with a massless scalar field in the flat bulk by the unj->'ons, we start with the Einstein-Gauss-Bonnet 6D action
tarity boundary condition at the singularif¢]. Later, it was with singular brane sources,
pointed out that there exist regular global string solutions

obtained by introducing a bulk cosmological constant Sg= d4xdzldzz\/—_g
[11,12,7. One more interesting observation is that the local

string defects were shown to have localized gravity with no

fine tuning of the bulk cosmological constant, but here the —4RyNRMN+ Ry poRVNPQ)
components of the string tension are required to satisfy a

certain relatior{ 13], which is a fine tuning. Pertinent to our

study in this paper, we note the work of Corradini and Xv—9[21::j(—Azl)+f d*xdz—g%=0(-A,)
Kakushadze, in which it has been argued that it is possible to

have localized gravity on a solitonic 3-brane with the Gauss- 4y [Z=0Z,50)

Bonnet term while freely choosing the brane cosmological +j d*xy=g 2 TR(= Ay @)

MAR A+1 M?%(R?
2 Rt g M

+ f d*xdz
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where g,g(#%=9 g(%2=09) and g(%1=9%2=9 are the determi- o [A\2 [an\2 A7
nants of the metrics in the bulk, orthogonally intersecting GGB:—2 5 A (K) ZX ) (10
4-branes and a 3-bran#] is the six-dimensional gravita- A
tional constant, and,, Azl’AZZ’ and A, are the bulk and and
the brane cosmological constanisis the effective coupling.
We considered the A_f-branes to write down_ general _eq_uations 124 1 A2 [A)V?)? A\ 2ZA”
of motion, but we will see later that there is a possibility of H,"=— — -3 N + a +4 NN
getting the string solution without these 4-brane sources by M* A
imposing theZ, X Z, symmetry in the bulk. D s s .
The equations of motion in this EGB theory are +4 é) é 2A A _ A_ A__ AA S
Al A A2 Al A 2 me
GuntHun=M""*Tyn. 3] (11)
The tensors in the above equation are s 120 1 , AV2[ A2 Al 4+3 NE
1 w2t VAL TAL TEAT LA
Gun=Run=59mnR, 3 o
4 AVLA] A 12
. A *\al Al (12
o
Hun=—| — =gun(RZ—4R%3,+R POST) 4+ 2R : :
MNT 2 2 9vn potRposR Run ) 48a 1 [/A2 A)Z A’+ AA’
* mzafllA] TIA ATz
—4RypRy P = 4RX ypnRk P+ 2Ry os Ry 257, (13
4 o122 1 2A’2A25A43A’4
7 VI N RV AR VNI VN
_ Voo b sq(2=0)
Tun=—ApOun— —F— A, 8(21) 63 639 2 [ a\2] ar
J=g 1 Pq A A\ A
4| =] +| =] | (14
— A Al A
_ LA S 52 5bq(%2=0) . N .
\/—_g 2 (22) 51 NDap where the prime and the overdot denote the derivatives with
respect toz; and z,, respectively. The energy momentum
J=g@=02=0) o tensorTyy iS given by
- g?Alazn&zz) o9 1~0%™0), N
-9 1 1
5 T M= = Apoy— 7 Az, 8(20) 805 93— 3 A2, 8(22) 30,0,
where the indicesM,N=(0,1,2,3,5,6), p,q=(0,1,2,3,6), 1 Y
a,b=(0,1,2,3,5), ande,v=(0,1,2,3). ~ M2 8(22) Gy 8,8, (19
Taking the metric ansatz as a conformally flat one in 6D,
which is manifestly 4D Poincan@variant, Then, the(56) component of the modified Einstein’s equa-
tions is
dsi=A%(2y,2,) (7, dX*dX"+dZ+dZ), (6) L .

4 120 1 |(A"\2 [A A" AA"
where (7,,)=diag(—1,+1,+1,+1), we obtain the tensor 2|~ 2 a2|| A tla _K”Lz A2 =0.
component$sy,y andH,,y as follows: (16)

2lran2z [A\?  A” Therefore, to ensure that the above equation is satisfied, we
G, = (X Ha] 24 t25(00 (7)  require that the second factor vanishes,
[ 2 A +2—AA, 0; a7
2 (A2 [A A A 2
s_ 2| (A A A A
Gs A2_5(A + A +2A, (8)
i.e., the general solution of the metric is given by
Gs® 4 A 2—AA’ 9 A(zy,25) __ (18)
= |- — , Z1,25)%
oAl A Tz L [F(z1) +G(22)]
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where F and G are undetermined functions @ and z,,

respectively. Note that in the case of a vanishing first factor
in Eq. (16), Eq. (17) is automatically satisfied. To determine

the exact solution of the above type, we can rewrite(6&

[or (ii)], (55), and(66) components under the condition Eq.

(17), respectively:

1 1
E+el+ 62+ e3: M —4 _Ab_ KAzlé(Zl)_ KAzza(Zz)

1
—EAle(Zl)&(ZZ) ’ (19
1
E+82=|\/|74 _Ab_ KAzzé(Zz) y (20)
1
E+e,=M"4 —Ap— Az, 8(z) |, (21)
where
gl Be 1 A’2+A2 1 A’2+A2
ST mzazll A LA [ azlVA] AL
(22
4(A\ 12a1-A’2+A2" ’a
“Talm |V wrallal Al @
4 A 112a1'A'2+'A2' o
“"Alw [T wallal Al @
24 1 (A "l A
SEERVEVAYRpE 29

Thus, the bulk equation in all the above componetts,
—Ap/M# can be solved only ifF(z;)=k,z;+c¢,; and
G(z,)=kyz,+c, (Cq,C, are integration constants.e.,

1

Alz1.27)= (kilzq| +kolzo| + 1)

(26)

where theZ, symmetry is used along each extra dimension

and the integration constants are arbitrarily chosenAfoo
be 1 at ¢,,2,)=(0,0). k;,k, are determined by the follow-

ing relations:
M2 [ 12aA,
2 2 —+ = 2
ki+k5 20 1++/1+ T ks, (27
lZaki Azl
|17 | Tame
(28)
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ol 1 lZaki A22 (29)
2 M2 | 8M*4’
K.k Ay (30)
o =,
2 96m2

where the last three equations are derived from the boundary
conditions on the branes in Eq6l9)—(21). The first and
fourth equations determirlg andk, in terms ofa, Ay, and
A4, and they should be such thiat ;| <48 a|k? M2, where
the equality implies the existence of exchange symmetry be-
tween two extra dimensions, and sgn{=sgn(x) to give
real solutions fok, andk,. Then, the second and third equa-
tions give rise to two fine-tuning conditions between input
parameters. Note that the Gauss-Bonnet term requires an ad-
ditional condition, Eq(30), on the 3-brane other than those
the Einstein-Hilbert action imposes on the 4-branes, Egs.
(28) and (29).

However, if we chose a relation between bulk parameters
from the beginning,

5M6 '

such thatk? =M?/12« for «>0, nonsolitonic4-brane ten-
sions would not be allowed to exist, viz., E428) and(29).
Then, the 3-brane tensiafi; can take any positive values
without being involved in any fine-tuning relations. In this
case, the remaining equatiof®&) and(30) just determinek;
andk, in terms of @ and A;. This particular point in the
solution space is made possible only with the addition of the
Gauss-Bonnet term, but is not possible with the Einstein-
Hilbert term aloné. In other words, on patching the bulk
space in aZ,XZ, symmetric way as shown in the chosen
metric, we naturally obtain a string solution via the cancel-
lation between those terms derived from the Einstein-Hilbert
term and the Gauss-Bonnet term in the equations of motion.
However, from the point of view of Einstein’s gravity, sin-
gularities on orbifolding should be seen to stem freatito-
nic 4-brane tensions, just as in Iglesias and Kakushadze'’s
method[16]. In our case, the solitonic 4-brane tensidns
(f,) located atz;=0 (z,=0) are determined to be positive
as

f,=8k;M*,  f,=8k,M* (32)
wherek; and k, are given by solving Eqsi27) and (30)
under the condition Eq31).

2In the extension of the RS model with one extra timelike dimen-
sion inD =6 [23], it is shown that there exists a 3-brane solution as
a common intersection of two 4-branes with no fine tuning of the
cosmological constant if the exchanging symmetfy-t’ is as-
sumed between the extra space and time coordinates. However, in
the existence of the Gauss-Bonnet term, there arises a fine tuning
from the necessity for the 3-brane to match the boundary condition.
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Then, after mtegratmg the extra dimensions with the 4Dization of gravity in warped geometifiL5]. Nonetheless, no
part of the metric agw(x) 7, in EQ. (6), we obtain the problem arises in our case since the Gauss-Bonnet term is a
4D effective action as follows: total derivative inD=4 and thus it does not modify the

equation of motion for a graviton in 4D spacetime. There-

P eft [ 4 4 e — fore, we can drop the 4D Gauss-Bonnet term in 89) to
Sett= f d"x g( R+ —(R —4R,, get the 4D effective Einstein gravify5].
P eff
Ill. METRIC PERTURBATION NEAR THE BACKGROUND
+R2,00) (33 GEOMETRY

Now that we have obtained the background solution, it is
where the 4D Planck mass and the 4D Gauss-Bonnet cowf interest to examine the perturbation effects of gravity near
pling are given by the background solution. Since the effects inform us how the

gravitational interaction between matter is described at low
M5 etr=M f dzlf dz,

12a 1 (A’)2 energy scales under a background geometry, it is indispens-
A\ 2 19 - A

4
A 2A2

A able to study the perturbative expansion and compare it with
the well-known gravitational interaction. The perturbation in
higher dimensional spacetime is usually interpreted as the
graviton in the corresponding spacetime dimension, and is,
in the six-dimensional case, decomposed into a four-
dimensional graviton, two kinds of vector, and three kinds of
scalar. In this section, however, we assume that the vector
and scalar modes are decoupled by some physics due to their
absence at the low energy scale, and we focus on the gravi-
tational interaction mediated by the four-dimensional gravi-

’ ton.

Thus, for the study, let us assume the metric to be the

(34)  following:

B 2M*4
 3kqky

12ak?
1+ -
M2

aM*
=
3k2

12ak?
M 2

12ak?
M2

_64aM6
v

ds?=[A%(21,25) 17, + N, (X,21,25) JAXHAX" + A2(24,25)

Wopi= aM? ) dz ) dz,A? (35)
" Lﬁ 1L° ’ X(dZ+d2) (36)

where the AA’)’ and (AA) terms in the first equality of a2 -~ "
Eq. (34) vanish after integration. For a negative Gauss- =A%(21,2)[ (M0t N (x,20,2)) A + Az + dZ ),
Bonnet couplingx, the 4D Planck mass will not be positive (37)
definite due to the contribution from the Gauss-Bonnet termwhere x denotes the four-dimensional coordinate, and we
Therefore, the positivity condition givdsz|<M2/12<§ for  would keep the linear parts in,, in the full expression of
a<0 and any value fow>0. On the other hand, the 4D the Einstein equation. Heré(z,,z,) is the background so-
Gauss-Bonnet coupling is shown to become logarithmicallyution given by Eq.(26) andh,,, represents a small pertur-
divergent after integration. This seems to be a generic featugation near it. With Eq(36), the linearized variations for

of higher curvature terms, which is rephrased as the delocats,,, H,,, andT,,, are given by

2| A

1 20
0+ —(a 9g,) ~ 26(ki+ k) + ;(klé(zmkza(zz))} Ny (38)

a 2 k 8k2

mv M2

8k
- 6(ki+k§>—725<z2>)a§

8k1 3k, ko 8k, [ 3k,
A 5(21) 5(22) sgn(z,)d, T A

1 2, Kq
+E 6(K;+k3) — —5(21) 5(22) 5(21) SgM(z;) dy,

k K, k,k
—96(k3+Kk3)2+ Kl 8(21)(16&3+15%3 RN 8(2,)(16&5+15%3) — 160— 8(21)8(z,) |h (39
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1 1 1
5T,u.1/: _Abh,u.v_ KAZ]_(S(Zl)h,u.V_ KAzzb‘(ZZ)h/.LV_ EAlé(Zl) 5(22)h,u,1/1 (40)

wherel,=75""d,4d,, and we choose the traceless transverse gauge conditibnys=h* ,=0.
The above expressions lead to the linearized Einstein equation

1 12, 5 2,12, 12 8a ki 1 , . ko
o 1- W(kﬁkz) [Og+ 0z, + 9, = 6A%(ki+k3) Th,,— 6(z1) V2 A E(Dzﬁ 9z,) T A SINZ2) 0z,
3k1 kl 03 2 2 1 All 8a k2 1 2 kl
_ ngr(zl)ﬂzl + K 10— W(16&1+ 152(2) - K W h,u,,— 5(22) W K E(D4+ (921)+ ngr{zl)azl
3k2 k2 o 2 2 1 Z) 16&1’ k1k2 1 Al
—TSQF(ZZ)&ZZ +K 1O_W(168(2+152(1) —KW h;w_ 8(21)6(25) VE ?—EW hw,=0, (42

where we use Eq27). The above equation fdr,,, is simplified in the conformal coordinate,

L[, 12,
At

5(21) 8a 2
N Wkl(D4+ d3,— 3A{Ky sgr(z1)d;,

[Oa+ ‘931“‘ 532_ 4A{k; sgnzy)d, +k; Sgdzz)azz}]’ﬁﬂv_

8«
Wk2[54+ (751_ 3A{kz sgn(z;)d,, + Ky sgn(z1)d; }]

Az

~ 3(2;)
W _

+k2 Sgr(ZZ)aZZ})+A2 3% A

12« )
8k 1— Wkt

Z2

, 120 ,| Az o
+A“| 8k, :I.—Wki _W h/“,—5(21)5(22)

96a Aq |~
Wklkz— Vo h,=0, (42)

whereh,,, is defined in Eq(37). 4D part of the metric ag, ,(x)=7,,+h,, in Eq. (6), we
The bulk contribution in the above equation comes onlyobtain the 4D effective action as follows:

from the first term of Eq(41). The second and third parts of ,

Eg. (41 and(42) describe the behavior of the graviton on the M5 oft =~

corresponding 4-brane, and the last part of @) just gives Sert=—> j d*xyV—gW[R+- -],

a boundary condition ofh,, at the origin (i.e., at the

3-brane, which is consistent with Eq.30). In general, the

bulk equations, the first part of E41) [or Eq.(42)], cannot

be solved easily, but the solution for the massless mode i

trivial. If we assumed, h,,=d,h,,=0 and put the back-

(49)

whereR is the 4D Ricci scalar. The 4D Planck mass is cal-
ulated by reading off the coefficients @f, in Eq. (41) or
g. (42) and integrating those with respectzpandz,,

ground relations Eqg28)—(30) into the above equation, we - - 120
obtain M,%’eff:M“f dzlf dz,A% 1- Wki
0 _
O4h,,(x)=0. (43 1 160
Hence, the massless graviton has the following profile in the A W[kla(le k2(2;)]
bulk:
2M*4 12ak%

hi’w<x.21,z2>=A2<21,zzﬁw?w(x)=A2<z1,z2>eweipx,( )
44

1+

: (46)

~ 3kik, M?
where € is the polarization tensor of the four-dimensional which gives a finite value. Therefore, we can explain gravi-
graviton. tational interactions consistently even in the noncompact six

As the effective four-dimensional theory would be de-spacetime dimensions. Note that our effective 4D Planck
scribed by the massless graviton predominantly, let us calcunass obtained above from the Einstein equation is the same
late approximately the effective four-dimensional Planckas the one obtained from the action itself by integrating out
massMp o¢¢. After integrating the extra dimensions with the z, andz,, as given in Eq(34).
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In case of the absence of 4-branes, i.&2+k5 b(S) = C1/5Jg/(MS) + Co/S Yao( M.S)
=M?/(12a), the bulk kinetic term in Eq(41) or Eq. (42)
does not contribute to the linearized Einstein equation and [ 2 j 3 )
thus the graviton is not allowed to propagate in the bulk. But = Wmsl (mes)? —1]sin(mgs)
through higher order terms in the,, expansion a certain
“gravity interaction” could exist in the bulk even though the 3
mediating particle cannot be defined as the graviton. — 5 COIMS) [ +Cp| —_sin(ms)
Now let us discuss the Kaluza-KleiiiKK) modes of the mgs MsS
graviton. We will get a bulk solution first using E¢41) or
Eq. (42), and then apply the boundary conditions with the ( —1)cos(m s) ] (53)
delta functions in the above equations. Equatidd) is (mgs)? s ’

easier to treat rather than E@?2) because the former does
not have any first derivative terms in the bulk equation. It is b(t)=dy sin(mit) +d, cogmyt), (54)
possible to separate the variablesh,,(x,z;,2;)

=(21,25)€P %€, , wherex* andp* are the 4D coordinate \yhere ]y, and Yy, are Bessel functiong, , c,, d;, andd,
and momentum, respectively. Then, the bulk part of @),  are arbitrary constants but should be determined by the

which is a two-dimensional differential equation, is boundary conditions. Note that for large.s we have
6(k3+k3) 2
—9% — 32 + 2,,2,) =mM2(21,2,), N_\/: i
2 kol 1) P(21,25) =M"YP(21,25) }(s) —[casin(mgs) +c,codmgs)],  (55)

(47
) ) _ _ i.e., KK modes behave like free particles.
wherep®=—m?". To separate the bulk variables, let us intro-  On integrating Eq(41) near the extra dimension axes and
duce a new coordinates ), the origin, the boundary conditions for the spin-2 graviton

modes are given respectively as follows:
S= k1|21| + k2|22| + 1,

12ak? 8ak, _

t=ky|zy| —ki|z,[ + 1. (48) 1-—— |+ — [~ & +Alkon—k8)] =0,
M M“A z;=0+
Then Eq.(47) becomes (56)
6|~ - 2
(1) — =+ S| UsH=2h(s D), (49 (1— P NC )| I
> M? MZA 2,0+
-
where Ji(s,t)=y(z,,2,). It is separable as (57)
6 8a _
[_324.? b(S)=m2e(s) (50) M2A3(k17l+ k2&)l(z,=0+.2,-0+)=0
(58)
2 2
—d () =mi (1), (51) where we used the bulk equati¢f?) and

where ¢4(s), ¢(t), m2, andm? are defined as PP o

- §:¢'+2k1A¢:k1(£+g lA//‘H(zE, (59
(s,1)= ds(s) (1),

. g 2\. Y

m2 _ — 4 _ -
———=mZ+m?, (52) n= 9t 2k AP =ke| o+ S)’J/ Sl (60)

(ki+k3)

The zero mode solutioft,=A?=s"2 is shown to satisfy all

%{ the above boundary conditions singe =0 identically,

ed . ¢ ! . L
and it is regarded as the 4D massless graviton since it is a

From Eqgs(50) and(51), we can see than?, m?, and som?
should be positive definite, because they could be regard

“Hamiltonian” in ntum mechani nd hav i- : o
as a “Hamiltonia guantu echanics, and have pos normalizable bound state with its norm beihg||2<<. For

tive and flat “potentials,” respectively. Hence, they have . .
positive “energies” or eigenvalues. Thus we conclude thatthe KK massive modes, t_here are two types of bulk so_Iut|ons
there do not exist any tachyonic KK modes since we have to deal with the zero mode separately:

Equations(50) and (51) are easily solved and have the ~ (1) 2 . _
following solutions: Y’ =S “y(t) =sTdisin(mit) +dycogdmit)], (61)
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PR = p(s) hi(1)
= \/5[0135/2( MsS) + C,Y55(MgS) |

X[dysin(mt) +d,cogmyt) ] (62
where ¢ and ¢, are given by Eqgs(53) and (54), respec-
tively, and we note thamnZ=0 for the case ofj{".

Thus, ! satisfies the boundary condition at the origin
automatically fork;=k, but otherwise only withd,/d;

=cot(m), and the remaining boundary conditions are rewit-

ten as

[ 120K2\ d¢p, Bakqk,m?

1-—= |+ ——s =0, (63
( M? dt M? d)t- 2,=0+

-

[ 12ak2\ dg, Bakik,m?

i e =0. (64
( M2 dt M2 ¢t B ( )
- -lz,=0+

There exist no KK massive modes of typ! satisfying the

above boundary conditions. On the other hand, for the KK

massive modes of the other tygé?), the boundary condi-
tions look complicated to solve, but if we assume tnae-

pendence we can obtain the ratio between coefficients of th

Bessel functions as

PHYSICAL REVIEW D 64 065011

IV. CONFINING GRAVITY TO THE SOLITONIC
4-BRANES

Let us discuss the case with the orthogonal 4-branes re-
garded assolitonic by choosing the relation between bulk
parameters Eq(31), for which there is no six-dimensional
bulk propagation of the graviton but the gravity is confined
to the solitonic 4-branes as shown in Edl) or Eq.(42). In
this case, we can rewrite the linearized equaiié® with

h,,=A"*%)(z,,2,)e" %e,,, as

8akl
M2

2 2 15 272 3
—8(zy) M2+ 9%, — S k5A?+ 3koAS(25) [

2

+ - sgn(z;)Ad(z,)

3 ~
ve (azl+ ki sgr(zoA) b

8ak
M2

W

2

—3(2y)

15
m?+ a5 — T K2AZ+ 3k, A8(z,)

2
2 sgr(z,)AS(2,)

3 ~
+ vE (522+ Ekzsgr(zz)A) y=0.

(68)

Then the above equation is decomposed into two five-
dimensional bulk equations for the graviton and three bound-
ary conditions:

C1_ Yamy) 24 en e (a i
1 32l Mg 7 1A y=m=y (along z; axis), (69
—=- , (65) 14
Cz Jz2(ms)
15 - _
and the boundary conditions on the extra dimension axes are ( - 0§2+ Zk%AZ) y=m?) (along z, axis), (70)
simplified to
3 ~
a oL |fd 2 8akim? Oz, + KA Y =0, (71
1_W(36k1+4k2) d—s‘l'g s TS(;)S z,=0+
2,=0+
=0, (66) 92, * 5 sz)Tp =0,
2,=0+
72
a ) ) 2 8aksm? (72
1- W(4kl+ 36k2) d_S+g s M2 S 3 B 3 B
2,0+ { Op,+ S KAt | 0y, + EkZA) 14 =0 (73
(z2y=2,=0+)
=0. (67)

where we note that the last equation is a necessary conse-
However, the above boundary conditions are not satisfied bguence if the third and fourth ones are satisfied and vice
KK massive modes that are a function £bnly except for  versa for our case, as will be shown later. From E68) and
mgzo, i.e., the zero mode. Moreover, the situation would(70), the zero mode solution fan?=0 becomes the same as

not be different for more general KK modes of tygé?).  in the nonsolitonic case,
Therefore, even though the bulk equation for 4D massive
gravitons is exactly solvable, there will not exist bulk solu-
tions satisfying the boundary conditions along the extra di-
mension axes with the simple ansatz for separation of variwhich automatically satisfies the boundary conditions Egs.
ables, Eq(48). It is shown that this situation does not change(71)—(73). Note that the zero mode wavl, is chosen to be
even without the Gauss-Bonnet term. nonvanishing only along the solitonic 4-branes.

Po=(Kq|zg] +Ka|zo| +1) 72, (74)
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On the other hand, by solving Eq&9) and(70), the KK  dimensional RSII model. In addition, since gravity does not
mode solutions are given as linear combinations of Bessgiropagate into the bulk, one fine-tuning condition between
functions of order 2 as in the RS case, propagating alongpulk parameters, Eq31), remains intact at the quantum

solitonic 4-branes located at tlzg andz, axes: level of linearized gravity.
Pm=NDB(| 21| + 1k ) ¥ Yo (m(| 2] + 1/k7)) V. THE MASS HIERARCHY WITH THE ORBIFOLD
TY(Z,XZ,)

+BpJo(m(]ze|+1/k,))]  (along z; axis),
(75) We have just shown that there exist two orthogonal
4-brane solutions with nonzero tension of the intersedton
~ 3-brang in 6D with the Gauss-Bonnet term. Therefore, it is
_N@) 1 '

Ym=Ni (|Za] + o) A Yo(m(|22] + L)) possible to put another 3-brane in the appropriate position of
+Cpda(m(|zy]+ 1k,))]  (along z, axis), (76)  the bulk as the additional intersection of 4-branes to solve
the hierarchy problem as in the RSI case. But it should be
whereN(}? B, andC,, are constants to be determined by guaranteed that the additional brane is located at the fixed
modes with small masses, i.e1(|z, 4 + 1/k; ) <1, the con- the position of the additional brane. Thus, we assume that

stantsB,, and C,, are determined approximately from the there exist compact extra dimensions with the orbifold

boundary conditions Eq$71) and(72), as follows: T?/(Z,XZ,), whereZ, acts on each extra dimension once.
Let us set the range of the extra coordinates zas
4ki 4k§ e(—a,a) andz,e (—h,b). Here we assumed the periodic-
Bn=—"%, Cn=—7. (77 ity of 2a(2b) along thez; (z,) direction. Then, with the
mm mm Z,XZ, symmetric solution Eq(26), we need four 3-branes

o to match the boundary conditions at the four fixed points of
Furthermore, from plane wave normalization such that the torus, £;,2,)=(0,0), @0), (a,b), and (Ob). Let us
2 2 denote the 3-brane tensions/asg, A,, A3, andA, in order,
1=f d21|<~ﬂm|2+f dz,| |2, (78  and the neighboring two 3-branes are connected to each
0 0 other by one 4-brane denoted &s,, A,3, Ass, andA,; in
cyclic order. If the boundary equations in E¢$9)—(21) are

we also obtain the normalization constatff? as changed to the following:

- m kz —1/2
M-ty S 10

ky
Therefore, the Newtonian potential for two point sourngs 1
andm, separated by on the 3-brane is found in a conven- e=—M _4K[A125(Zz) +A346(z,—-b)], (82
tional way to be

k 3/2 1
H :(k_i) No (79 er= M~ [Audlz) +Apdz-a)], (8D

4
Gymym _ ey L — S0y 5(2.— 20)
V(r):¥+(16ak2|v|2)*l e;=—M ElAzAié(zl ) 8(z,—28), (83

" mymye” ™" _ ) whereZz{") andz}) are the positions of the branes, then we
X 0 m r | m(0)] obtain the following relations between the 4-brane tensions
and similarly for the 3-brane tensions:

-1 mymae” ™" 2
+(160k,M?) [ Cam (0| 1202
° Ap=—Ap=kq| 1— e |’ (84)
Gymim, +( K2 )2 1 @0
oo kika) (k.r)2 12ak%
- A= —Ag=ky| 1- e |’ (85
where we usedsy=M ;2= (3k;k,)/(4M?) from Eq. (34),
|m(0)|2~m/(k;+k,), and the effective 5D gravity cou- Ay=A3=—A,=—A,=96ak k,M?2. (86)

plings for KK modes are read off from the coefficients of the

5D kinetic terms in Eq(68). As a result, corrections due to In general, in view of Eqs(27)—(30), for fixed bulk param-

the KK massive modes afere dimensionatlue to the con- eters, two orthogonal 4-brane tensions should be fine tuned
finement of gravity to the solitonic 4-branes and suppressedith the 3-brane tension on their intersecti@ng., between

in comparison with the Newton force at larger length scales\,; (A1) andA;, etc]. When we adopt the string solution
than the curvature scales. Consequently, the confinement @fith two solitonic4-branes, each 3-brane tension can take an
gravity gives rise to exactly two copies of the five- arbitrary value of either sign irrespective of the bulk param-
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eters, as argued in the previous section, but they should be _

fine tuned to one another as shown in E8&6). Then, to SviSDJ dx*\—gC®[g#",Ha,H—(H2—m})?]

explain the large mass hierarchy for both the string solution

with nonsolitonic4-branes fora>0 and the string solution —@ _ 2

with solitonic4-branes, we may take the; brane with posi- - f dx=gATATE(9H)?~ (H?=m)?], (90)

tive tension as the visible brane, whereasAhérane can be

considered as the hidden brane of the Planck scale. In addithich becomes of a canonical form by redefining the scalar
tion, if the A, brane andA, branes are considered as the field asH =AH,

second and third generation family branes while the

brane is interpreted as the first family brane, we may under- @ AT ~ 2
stand the mass hierarchy between families and neutrino os- f dx*y=g*[(aH)*~ (H*-m3)7],
cillation. In this case, the gauge fields are required to exist in

the bulk. But we do not digress into this family problem Where the Higgs mass parameter on the visible brane is given

91

here. by
Before considering how the mass hierarchy is generated Kb o kob .
in this model, let us rewrite the metric as Mg=Amg=(e""1+e"2"2—1)""mg. (92

Similarly, we obtain the effective mass scales on the other

dsg=A%(21,2,) (77, dx"dx"+ dZ +d7;) branesA, and A4, respectively:

=A2(y1,y,) 7,,dx*dx"+ B2(y,,y,)dy?
+C2(yy,y2)dy3 (87)

my=e *11m,, m,=e kP2m,. (93

Therefore, when we regard the; brane as our Universe, we
can obtain the hierarchy between the Planck scailg (and

the weak scalerti;) by choosingk;b; and/ork,b, as about

37. It is interesting to see that the mass parameters on the

B C
dzl:KdyL dZZZKdyL (88)  branes are related by
1 1 1 1

e, kyzy=sgnly) (€M~ 1) kyz,=sgnfy,) (ke — 1). m, T, e g’ ®4
Then, we can have the metric functions in the new coordi-
nate: A=(ekilVilyekelal—1)=1  B=gkilvilA, and C  wherem, is the mass scale of order of the Planck mass at the

by the following bulk coordinate transformations:

=ekalV2lA. So the 4D Planck mass becomes 3-brane located at (0,0). Since the right-hand side of &4).
is negligible, the magnitudes of at least tworo§,m5, and
a b 120 11/A7\2 m, are of the same order, which may allow a deeper under-
M2 =M*| dz;| dz| AY 1+ — —||— standing of the family structure. Instead of putting different
, 2 a2\ A L2 - :
-a -b M A families in the different 3-branes, one can put all the fermi-

A\2 12 _ ons and the Higgs doublet in tha,p) brane or in the §,b)
+ = T AA) - (AA and (Ob) branes withb>a. Then the &,0) brane can be
A S L(AA) +(AA) ] . . > ¢
M used for an intermediate scale brane. However, it is not nec-
5 essarily needed as proposed[24#] for a solution of theu
w41 12ak? | b1 d b2 AV AZBC problem with supersymmetify25], because the visible sector
- + M2 b, Y1 b, Y2 fields here are already put at the TeV brane. On the other
hand, if the visible sector fields with supersymmetric exten-
2M4 12ak2i b ., sion are put at the two Planck scale branes at (0,0) ar@) (
=gk | 1T o[ (e et with b>a, then it is necessary to introduce intermediate
12 M scale brang) at (0p) and (a,b) [24]. In this case, there can
— g 2kib1_ g 2koby] (89) be two intermediate scales in principle due to the two

3-branes at the intermediate scales.

where the AA")" and (AA) terms in the first equality van-
ish after integration due to the periodicity of the extra dimen-
sions,b, andb, are the range of the extra dimensions in the |n this paper we obtained the localized gravity on the
new coordinate, and in the limit df; —% andb,—> Eq. intersection of two orthogonal nonsolitonic or solitonic
(34) can be reproduced. Note that the 4D Planck mass hasfbranes in the Einstein-Gauss-Bonnet theory in 6D. Non-
finite value ifk k,#0, i.e., A;#0 for all i from Egs.(30)  zero 3-brane tension is allowed, which has been made pos-
and (83) and its positiveness is assured for1<M2/12<2: sible due to the presence of the Gauss-Bonnet term. The
for «<0 and any value foer>0. In this new coordinate, let Gauss-Bonnet term can contain a product of two terms with
us consider the action for the Higgs scalar field at e  two derivatives of the metric on each term. Therefore, in the
brane, EGB theory 3-brane solutions are not possible beyond 6D.

VI. CONCLUSION
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To have 3-brane solutions beyond 6D, we have to introduc&?/(Z,X Z,) orbifold symmetry gives four fixed points

higher derivative gravity than the Gauss-Bonnet term. where 3-branes reside on intersections of two 4-branes. In
The solution has a warp factor that decreases exponeithis case, the electroweak scale versus the Planck scale hier-

tially at large distance from the origin in the extra dimension.archy can be understood. We also pointed out the possibility

If Z,XZ, symmetry is assumed on the bulk space even withef understanding the family structure, which will be studied

out nonsolitonic 4-branes, one can consider a solution of & a future publication.

3-brane residing on the intersection of two solitonic 4-branes
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