
m

PHYSICAL REVIEW D, VOLUME 64, 065006
Discrete symmetry enhancement in non-Abelian models and the existence of asymptotic freedo
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We study the universality between a discrete spin model with icosahedral symmetry and theO(3) model in
two dimensions. For this purpose we study numerically the renormalized two-point functions of the spin field
and the four point coupling constant. We find that those quantities seem to have the same continuum limits in
the two models. This has far reaching consequences, because the icosahedron model isnot asymptotically free
in the sense that the coupling constant proposed by Lu¨scher, Weisz, and Wolff@Nucl. Phys.B359, 221~1991!#
does not approach zero in the short distance limit. By universality this then also applies to theO(3) model,
contrary to the predictions of perturbation theory.
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I. INTRODUCTION

The subject of the enhancement of a discrete symmetr
a continuous one at large distances is important both th
retically and phenomenologically. Indeed, even if there
good grounds to expect that a certain material is well
scribed by some model enjoyingO(N) symmetry, one may
wonder what might be the effect of anisotropies@16#. This
question was addressed in 1977 by Jose´ et al. @1# for the
O(2) nonlinear s model. Nonrigorous renormalizatio
group arguments led them to the conclusion that in two
mensions~2D! the discrete symmetryZN should be enhance
to full O(2) invariance ifN>5 for b ~inverse temperature!
not too large. ForN sufficiently large, the occurrence of th
phenomenon was proven rigorously by Fro¨hlich and Spencer
in 1981 @2#, who showed that there exists a range of te
peratures in which spin correlation functions decay algeb
ically and areO(2) invariant. Fro¨hlich and Spencer prove
also that a similar phenomenon of discrete Abelian symm
enhancement occurs in 4D gauge theories.

For a long time, the consensus was that no symm
enhancement should occur in non-Abelian models. The m
reason appears to have been the belief that, for contin
symmetries, these models exhibit asymptotic freedom~AF!.
The discrete models, known rigorously to undergo ph
transitions at nonzero temperature, did not seem likely to
AF; hence, they had to be different. A proposal for no
Abelian symmetry enhancement came however from N
man and Schulman@3#. Their argument was based on the fa
that if the discrete symmetry group is sufficiently large, a
fourth order polynomial invariant under the discrete group
also invariant under the continuous group in which it is co
tained. While this is an undisputable mathematical fact,
question was why fourth order? Their heuristic answer w
that the renormalization group flow was expected to be f
of bifurcations as the dimension D was varied between 2
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4. So if one started just below D54, where the most one
could have is af4 interaction ~higher powers being irrel-
evant!, this symmetry enhancement should persist down
D52. Since however in D52 all polynomials inf are rel-
evant and it is easy to write down such polynomials posse
ing only a discrete symmetry, and to construct the cor
sponding P(f)2 models, the validity of the argument o
Newman and Schulman remains unclear.

A different heuristic argument in favor of symmetry e
hancement for Abelian as well as non-Abelian groups w
put forward by Patrascioiu in 1985@4#. For spin models, his
argument went as follows: at sufficiently low temperatur
there exists a phase with long-range order~LRO! because, as
Peierls showed long ago, given an ordered state, there is
enough free energy to create a domain in which the s
points elsewhere. Now consider a model likeZ5. As one
increases the temperature, clearly the first abundant dom
to form would be those in which the spin pointed in a dire
tion immediately neighboring the one chosen by the bou
ary conditions for the ordered state. For temperatures not
high, the system could form domains inside domains
neighboring spin values. This would be different from t
phase at high temperature, where no such restriction betw
adjacent domains would be required. This scenario does
seem to have anything do with the model being Abelian
not, and Patrascioiu suggested that, since it was know
happen in Abelian models, it must happen also in no
Abelian cases.

Except for the papers quoted above, in the 1980’s, whil
was quite fashionable to replace continous groups with
crete ones in Monte Carlo simulations, everybody seeme
be convinced that the discrete and continuous models
longed to different universality classes. Our interest in
subject was rekindled in 1990 when, together with Richa
we derived a rigorous inequality relating correlation fun
tions in the dodecahedron model to those ofZ10 @5#. Our
result was that for anyb, the dodecahedron model is mo
ordered thanZ10 at 0.6072b. Since it is was pretty well es
tablished thatZ10 possess an extended intermediate pha
which isO(2) invariant, our inequality implied that provide
©2001 The American Physical Society06-1



i
f

e
d

he
ly
le
ib

by
to
on
ts
nu
an
ed
e
ar
as

c
ga
o

r

o
k

th
e
s

e

e-
e

rn
b
in

he
a

e

ze

-
a

u

m

ting

in-
mit,
his
y in
ith

er
hat
ame

ors
e

s of

t
.

fratz

ar-
er

ic-
up-

the
e at
si-

um

r-
ata
t

ents
yer

e
ing
-

the
as,
ve a

tudy

s
ort
con-
t

ADRIAN PATRASCIOIU AND ERHARD SEILER PHYSICAL REVIEW D64 065006
bm(D).bc(Z10) the dodecahedron must also possess an
termediate massless phase. Herebm(D) denotes the onset o
the LRO phase in the dodecahedron andbc(Z10) the onset of
algebraic decay inZ10. We determined numerically thes
values@6# and concluded that the dodecahedron seeme
possess an intermediate massless phase for 2.15,b,2.8.
We conjectured that this phase must enjoy fullO(3) invari-
ance.

Intrigued by our findings for the dodecahedron, in t
early 1990’s we looked numerically at the other regular po
hedra. While the cube is obviously equivalent to 3 uncoup
Ising models, and hence is not a good candidate for exh
ing O(3) invariance, the other 3 regular polyhedra~platonic
solids! a priori, are. Actually, in the scenario advocated
Patrascioiu in 1985@4#, the tetrahedron should not be able
simulate spin waves since its spin gradient can take only
nontrivial value ~in fact it is nothing but the 4 state Pot
model!. The octahedron and the icosahedron could. Our
merics suggested that the octahedron had a first order tr
tion. For the icosahedron, the Monte Carlo data suggest
second order transition from the high temperature phas
the low temperature phase exihibiting LRO; in particul
there did not seem to be an extended massless phase,
the dodecahedron.

That the discrete icosahedral symmetry may be enhan
to O(3) began to become manifest in 1998 when we be
extensive numerical investigations of the contiuum limit
the spin 2-point function versusp/m @7# in the dodecahedron
model. The original motivation of that study was to compa
the lattice continuum limit with the form factor~FF! predic-
tion of Balog and Niedermaier@8#. Since it was not to be
expected that the latter could possibly describe the c
tinuum limit of the dodecahedron model, we decided to ta
data on this model too. To our surprise, theO(3) data
seemed to agree with both the FF prediction and with
dodecahedron. Since Balog and Niedermaier had produc
convincing argument@9# that the FF approach incorporate
AF and we could not see how a discrete model, freezing
nonzero temperature, could possibly exhibit AF, we decid
to refine our data by concentrating on the regionp/m,13.
Our results@10# showed small but statistically significant d
viations betweenO(3) and FF, but excellent agreement b
tweenO(3) and the dodecahedron.

The comparison of the FF andO(3) could have been
marred by lattice artifacts, a problem to which we will retu
below. This is why a different comparison was performed
Patrascioiu @11#, who computed the renormalized sp
2-point function versus the physical distancex/j. The results
were very similar with the ones we will report here about t
icosahedron. They suggested that the dodecahedron
O(3) models share the same continuum limit.

Another reason to investigate the discrete spin mod
arose in 1999, while in collaboration with Baloget al., we
decided to compare the FF prediction for the renormali
couplinggR ~to be defined below! with its lattice continuum
limit value. Although our first results@12# suggested excel
lent agreement, as we continued to reduce the error bars
especially to take data at larger correlation lengthj'167,
our original extrapolation to the continuum limit became d
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bious, and in our second paper@13# we stated that we could
no longer give a reliable number for the lattice continuu
limit value of gR . In the hope of gaining insight into this
issue, we turned again to the discrete models. Corrobora
our previous findings regardingGr(p/m) and Gr(x/j), the
data, to be shown later, suggested thatgR also agreed in the
dodecahedron, icosahedron, andO(3) models.

In the course of the debates of our collaboration@8,9#,
Niedermayer raised the intriguing possibility that maybe
deed all these models do have the same continuum li
which however is AF. The present paper is our reply to
suggestion. The results were communicated to him alread
1999, hence we were surprised by his recent paper w
Hasenfratz@14#. In their paper, Hasenfratz and Niedermay
claim that indeed they find strong numerical evidence t
the dodecahedron and icosahedron models have the s
continuum limit asO(3), butstate that, since‘‘overwhelming
evidence exists that the O(3) model is AF,’’ the dodecahe-
dron and icosahedron models must be AF too. The auth
do not mention which ‘‘overwhelming evidence’’ they hav
in mind. They might be thinking of the results of Ref.@13#
that show some rough agreement between the result
Monta Carlo simulations of theO(3) model and the form
factor bootstrap~FFB! construction; since the latter mos
likely has AF, that would be a point supporting their claim
There are, however, some facts not mentioned by Hasen
and Niedermayer, which should have cautioned them:

The last report of Baloget al. @13# retracted the original
predictiongR56.77(2) and stated instead that the lattice
tifacts were not sufficiently under control to decide wheth
the continuum limit was in agreement with the FFB pred
tion. Thus it cannot be claimed that numerical evidence s
ports the FFB ansatz, which most likely incorporates AF.

In our recent paper@15#, we combined mathematically
rigorous arguments with some numerics to conclude that
O(3) model must undergo a transition to a massless phas
finite b. We then proved rigorously that such a phase tran
tion rules out the existence of AF in the massive continu
limit.

Moreover, the 1/j fit produced by Hasenfratz and Niede
mayer, would also provide evidence against AF. But the d
for for gR at larger values ofj, while in clear disagreemen
with a Symanzik type fit (1/j2 with a possible multiplcative
logj), do not support their original 1/j fit either.

Since they are based on numerics, any of these statem
could be false, but the paper of Hasenfratz and Niederma
does not contain any evidence pertinent to these issues.

In this paper we will compare the continuum limit of th
O(3) model to that of the icosahedron model by compar
the values ofgR and of the renormalized spin 2-point func
tion Gr(x/j). The advantage of the icosahedron model is
existence of a rather well localizable critical point, where
as stated above, the dodecahedral model appears to ha
soft intermediate phase. To address the issue of AF, we s
the value of the Lu¨scher-Weisz-Wolff~LWW! coupling con-
stant at the critical point. According to LWW, AF require
that the continuum limit of this observable vanishes at sh
distances. If in fact the icosahedron model has the same
tinuum limit as O(3), then the LWW coupling constan
6-2
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DISCRETE SYMMETRY ENHANCEMENT IN NON- . . . PHYSICAL REVIEW D 64 065006
should vanish at the critical point of the former model. W
find excellent evidence that it does not. Thus our conclus
is that either, in spite of the excellent agreement observed
j'121,O(3) and the icosahedron model have different co
tinuum limits, or neither has AF.

The paper is organized as follows: we first describe
critical properties of the icosahedon model and in particu
locate its critical point. This allows us to determine the va
of the LWW running coupling at the critical point. Then w
move on to the comparison of the icosahedron and theO(3)
models. We compare the renormalized coupling constant
the renormalized spin-spin correlation function of the tw
models and present convincing evidence that they conv
to the same continuum limit.

II. CRITICAL BEHAVIOR OF ICOSAHEDRON MODEL

We first describe the critical properties of the icosahed
model: we locate the critical point and give some estima
of critical exponents. This allows us to determine the va
of the LWW coupling constant at the critical point, which
independent ot the sizeL of the lattice, as required by sca
ing. This ~nonzero! value is also the short distance limit o
the continuum value of the LWW coupling constant.

The icosahedron model is defined by the standard nea
neighbor coupling between the spins

H52(̂
i j &

si sj ~1!

where the spinssi are unit vectors forming the vertices of
regular icosahedron. In suitable coordinates, those 12 v
ces are given by

ek5S s cos
2pk

10
,s sin

2pk

10
,c cos~pk! D ~k51,2, . . . ,10!;

~2!

where

s5
2

A5
, c5

1

A5
~3!

and

e115~0,0,1! and e125~0,0,21!. ~4!

The model has at least two phases, a high temperature p
with exponential clustering and full symmetry under t
icosahedral groupY, and a low temperature phase with spo
taneous magnetization and 12 coexisting phases, with
magnetization pointing into one of the 12 directions of t
icosahedron. At intermediate temperatures there could b
principle, a phase with partial breaking ofY, but there is no
reasonable candidate for a possible unbroken subgr
There is also the possibility of an extended intermedi
phase with no symmetry breaking, but actual enhanceme
the symmetry fromY to O(3), as well as only algebraic
decay of correlations analogous to theZN models and the
dodecahedron model~see above!.
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In the icosahedron model the situation seems to be s
pler, however, it seems to have a single critical point se
rating the high and low temperature phases, as we will de
onstrate.

To determine the critical point, we proceed as follows: w
determine the mass gapm(L)51/j(L) in an~ideally infinite!
strip of width L; in practice we use a finite strip of sizeL
3Lt with Lt@L and measure the effective correlation leng
defined by

j~L !5
1

2 sin~p/Lt!
Ax/G121 ~5!

where

x5
1

LLt
(
i , j

^si•sj&, ~6!

G15
1

LLt
(
i , j

^si sj&exp@2p~ i 12 j 1!/Lt#. ~7!

We then study the behavior of the quantity

ḡ[
2L

~N21!j~L !
, ~8!

which we consider as a functionḡ(z,j) of z5L/j(`) and
the infinite volume correlation lengthj(`). The continuum
limit of this quantity for fixedz is the ‘‘running coupling
constant’’ introduced by Lu¨scher, Weisz, and Wolff@16# for
the O(N) models ~we refer readers worried about ou
slightly different definition of the correlation length, Eq.~5!,
to our recent paper@17#, where the practical equivalence o
the two definitions is demonstrated!. In the high temperature
phase, where the model has a mass gapm(`)51/j(`) in the
infinite volume limit, ḡ will grow linearly with L. On the
other hand, in the low temperature magnetized phase,

FIG. 1. The LWW coupling constantḡ as a function ofL for
various values ofb.
6-3
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TABLE I. The LWW running couplingḡ and the renormalized couplinggR as a function ofL for various
values ofb.

b51.665
L 10 20 40 80 160 320

ḡ .9121~14! 1.0651~11! 1.3033~21!

gR 2.216~13! 2.501~12! 3.080~29!

b51.707

ḡ .8156~9! .9312~12! 1.0882~23! 1.3276~35!

gR 1.898~6! 2.213~11! 2.593~23! 3.171~36!

b51.75

ḡ .7221~24! .7902~21!

gR 1.695~14! 1.841~24!

b51.80

ḡ .6083~16! .5989~17! .6018~21! .6158~17! .6337~22!

gR 1.363~9! 1.329~9! 1.357~14! 1.395~9! 1.459~13!

b51.802

ḡ .6015~10! .5951~14! .5919~26! .5938~24! .5955~14! .6000~32!

gR 1.340~4! 1.3330~6! 1.328~5! 1.348~11! 1.360~7! 1.358~14!

b51.803

ḡ .5979~16! .5912~18! .5823~14! .5807~25! .5772~17!

gR 1.335~10! 1.327~10! 1.307~9! 1.306~14! 1.302~10!

b51.805

ḡ .5918~13! .5821~17! .5721~19! .5583~8! .5341~19!

gR 1.308~7! 1.298~8! 1.274~10! 1.242~4! 1.173~11!

b51.82

ḡ .5566~8! .5196~8! .4578~28! .3533~42!

gR 1.213~4! 1.119~4! .964~10! .652~8!
ee

r

e
cou-

l-
mass gap in a finite volume goes to 0 faster than 1/L, so ḡ
will decrease to 0 asL→`. At a critical point, the model
will be scale invariant for large distances andḡ should con-
verge to a finite nonzero limit.

To determineḡ, we took data on lattices of sizeL3Lt
with Lt510L; L was varied from 10 to 320. Figure 1~Table
I! shows clearly the dramatic change in behavior betw
b51.800 andb51.805. Forb51.802, ḡ shows only some
small variation for smallL (L,40) and stabilizes for large
L. So we estimate

bcrt51.802~1! ~9!

where the error is, of course, somewhat subjective.
06500
n

To corroborate this determination of the critical point, w
also measured, on the same lattices, the renormalized
pling defined as

gR5S 5

3
2

g4

g2
2D LLt

j2 . ~10!

Hereg2 is the magnetic susceptibility multiplied by the vo
ume of the latticeL3Lt , i.e.

g25(
i , j

^si sj& ~11!

and
6-4



w
ef

pe

.e

a

rm

of

a
00

rted
.

n

,

son
ior
ich

ot
ads
be

DISCRETE SYMMETRY ENHANCEMENT IN NON- . . . PHYSICAL REVIEW D 64 065006
g45 (
i 1 ,i 2 ,i 3 ,i 4

^~si 1
si 2

!~si 3
si 4

!&. ~12!

This quantity is also a renormalization group~RG! invariant
and therefore should also go to a constant forb5bcrt .

The behavior of this quantity as a funcction ofb and L
nearbcrt is a little tricky; therefore we want to make a fe
remarks about it. The main point is that one has to be car
about the order of the limitsL→` and b→bcrt , which
cannot be interchanged. For fixed finiteL, gR(b,L) is a
smooth funtion ofb, which however gets steeper and stee
near bcrt as L increases. In the limitL→`, it develops a
jump atbcrt .

It is well known that in the high temperature phase, i
for b,bcrt , limL→`gR(b,L) is a nontrivial number~with
some dependence onb) which has a nontrivial limitg* if
we sendb to bcrt from below. This limit is the value of the
four point coupling constant in themassivecontinuum limit
and has a value above 6.7~see Sec. III!. In the magnetized
low temperature phase, on the other hand, limL→`gR(b,L)
50, because the factorj(L)2 in the denominator of Eq.~10!
is growing rapidly withL. So one expects forgR a qualita-
tively similar picture as forḡ; the values ofgR at differentL
for fixed b,bcrt are growing withL, while for b.bcrt they
are decreasing towards 0. SincegR is a RG invariant, right at

FIG. 2. The renormalized coupling for asymmetricL3Lt lat-
tices as a function ofL for various values ofb.
06500
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b5bcrt , it should be essentially scale invariant and go to
constant less thang* . In other words, we expect

lim
L→`

lim
b→bcrt

gR~b,L !, lim
b→bcrt20

lim
L→`

gR~b,L !5g*

~13!

whereas

lim
L→`

lim
b→bcrt

gR~b,L !. lim
b→bcrt10

lim
L→`

gR~b,L !50. ~14!

The data presented in Table I and displayed in Fig. 2 confi
this nicely and suggest a value of limL→`gR(bcrt ,L)'1.3;
the data also corroborate our estimate ofbcrt51.802(1)
given above.

Finally we want to see if our determination ofbcrt is
consistent with a singularity in the thermodynamic values
the correlation lengthj and the susceptibilityx. We there-
fore measuredj and x on lattices withL/j'7 for various
values ofb,1.802; our data are given in Table II. There is
row listing the number of runs; a run consists of 100 0
single cluster updates for thermalization~corresponding to
between 1000 and 2000 lattice updates! followed by 20 000
sweeps of the lattice for measurements. Each run is sta
independently with a randomly chosen new configuration

To describe the critical behavior of the data forj andx,
two types of fits were tried: first a Kosterlitz type fit with a
exponential singularity

j5CjexpS 2aj

Abcrt2b
D , x5CxexpS 2ax

Abcrt2b
D ,

~15!

and second a power law fit of the type

j5Cj~bcrt2b!2n, x5Cx~bcrt2b!2g ~16!

or similar ones in 1/b. Both types of fit are not very good
with similar quite large values ofx2, and they do not allow a
very precise determination of the fit parameters. The rea
seems to be the following: the asymptotic singular behav
seems to have significant subleading contributions, wh
however cannot be well determined with only 5 values ofb.
Trying to fit our very precise data with functions that do n
describe the behavior with similar accuracy, necessarily le
to a poor fit quality, even though visually the data may
very well described~see Fig. 3!.
TABLE II. Correlation lengthj, susceptibilityx and renormalized couplinggR in the high temperature
phase of the icosahedron model.

b 1.470 1.550 1.610 1.665 1.707

L 80 140 250 500 910
j 11.203~5! 19.627~12! 33.655~21! 63.628~33! 122.09~16!

x 181.88~10! 479.43~36! 1228.04~91! 3774.5~2.1! 12009~17!

gR(z) 6.404~28! 6.487~35! 6.546~39! 6.684~36! 6.715~88!

gR(7.25) 6.412~28! 6.495~35! 6.535~39! 6.651~36! 6.702~88!

# runs 200 100 100 149 28
6-5
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ADRIAN PATRASCIOIU AND ERHARD SEILER PHYSICAL REVIEW D64 065006
The Kosterlitz type fit leads to predictions ofbcrt'1.93,
which is unacceptably large—this value is deeply in t
magnetized phase. The power law fits, on the other ha
give values ofbcrt quite close to our preferred value 1.80
By playing with the number of parameters and fitting in 1b
as well asb, we obtain quite a spread in the values of t
exponents; they fall into the intervals

n51.622.0 and g52.923.5. ~17!

This is consistent with a value of

h522
g

n
'.25 ~18!

which is also favored by the data for spin-spin correlat
function ~see below!.

In Fig. 3 we use the best values produced by the po
law fit in 1/b with no subleading corrections, namely,

n51.717, g53.002. ~19!

We plot j21/n and x21/g vs b together with the fits, which
are straight lines intersecting the abscissa atb51.802. So
even though the thermodynamic data forj andx do not lead
to a precise prediction of the critical point and the critic
exponents, they are certainly consistent with our determ
tion based on the LWW coupling constant.

We also investigated the possibility that the transiti
from the high temperature phase to the one with long ra
order is first order, but we did not find any signal for pha
coexistence.

III. THE RENORMALIZED COUPLING IN THE
ICOSAHEDRON AND O„3… MODELS

To check whether the icosahedron and theO(3) model
define the same continuum limit, we also determined

FIG. 3. Thermodynamic values ofj21/n and x21/g with n
51.717 andg53.002 as functions ofb; the lines are fits.
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renormalized coupling constantgR on lattices of fixed physi-
cal sizez5L/j'7. At this value ofz, the finite size effects
are already very weak; to account for the remaining sm
differences inz between the measurements at different valu
of b, we used a finite size scaling technique. Our proced
was the following.

First we took data at various values ofz5L/j at b
51.550 corresponding toj'19.7. To describe the finite siz
effects we used ansatze of the form

gR~z!5gR~`!~12dzpe2z!. ~20!

This type of ansatz is suggested by the spherical mo
where it holds withp51/2. Since it is to be expected thatp
is model dependent, we tried to see if our data favore
certain value of that parameter; it turns out that the fit is b
for p51. We then used the above ansatz withp51 and the
parameters determined atb51.55 to renormalize the value
at otherb values toz57.25.

In Fig. 4 we show the data atb51.55 together with the
fit, which has ax2 per degree of freedom of 0.3; the consta
d is determined to be

d52.3276.075. ~21!

We then used this ansatz withp51 and the parameters de
termined above to ‘‘renormalize’’ the values at otherb val-
ues toz57.25. In Table II we present our data together w
the ‘‘renormalized’’ values.

For the comparison with theO(3) model, we took data
for this model atb51.6 ~corresponding also toj'19) at
different values ofL; these data can also be described by
ansatz Eq.~20! and againp51 is the preferred value of the
exponent. We used the parameters determined in this wa
renormalize thegR values of theO(3) model obtained ear
lier to physical sizez57 @14#. Those data together with th
renormalized values are given in Table III.

FIG. 4. Finite size scaling ofgR .
6-6
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TABLE III. Correlation lengthj and renormalized couplinggR in the high temperature phase of the (O3)
model ~from Ref. @14#!.

b 1.5 1.6 1.7 1.8 1.9 1.95

L 80 140 250 500 910 1230
j 11.030~7! 18.950~14! 34.500~15! 64.790~26! 122.330~74! 167.71~17!

gR(z) 6.553~16! 6.612~15! 6.665~14! 6.691~15! 6.737~21! 6.792~40!

gR(7.25) 6.553~16! 6.603~15! 6.665~14! 6.663~15! 6.724~21! 6.786~40!

# runs 344 370 367 382 127 68
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Figure 5 shows the renormalized data for the two mod
for various values ofj. Even though the lattice artifacts ar
quite different for the two models, and in spite of the fa
that we are not quite sure how one should extrapolate to
continuum limit, the data show that the two models appro
each other with increasingj ~decreasing lattice spacing! and
suggest that they will have the same continuum limit.

IV. SPIN CORRELATION FUNCTION
IN THE ICOSAHEDRON AND O„3… MODELS

In this section we compare the renormalized spin-s
correlation functions of the icosahedron and theO(3) mod-
els. They are defined as

G~ i /j![
j2

x
^s~0! s~ i !&. ~22!

The physical distance is

x5
i

j
. ~23!

We measured the two-point functions in the icosoahed
model atb51.47, 1.55, 1.61, 1.665, and 1.707 correspo
ing to j'11, 20, 34, 64, 122~see Table II!. For theO(3)
model, we used the data from Ref.@12# at b51.8, 1.9, 1.95

FIG. 5. Comparison ofgR in the icosahedron andO(3) models.
Full symbols: icosahedron; open symbols:O(3).
06500
ls

t
e
h

n

n
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corresponding toj'65, 122, and 168. In Fig. 6 we show
G(x)x1/4 for the O(3) model together with the 2-loop per
turbation theory prediction

G~x!5
1.000

3p31.0022 F t1 ln t11.1161
1

t
ln t1

.1162

t G
~24!

wheret52 ln(x/8)21. This expression was taken from Re
@18#, the constants in front were communicated to us by B
log and Niedermaier; they were computed via the form fac
approach@9# and take in account our different definition o
the correlation length. It can be seen that the data appro
their continuum limit from above and deviate considerab
from the PT prediction. Forx.0.4, barring some very slow
convergence to the continuum limit, our data suggest that
lattice artifacts are quite small for the large correlati
lengths we are using.

In Fig. 7 we presentG(x)x1/4 for the icosahedron mode
together with the same expression forO(3) at approximately
the largest value ofj'122. The lattice artifacts have th
opposite sign at least for the lattices withj,122, i.e. the
data are increasing with decreasing lattice spacing. Aj
'122, they are already quite close to the corresponding
relation function in theO(3) model. It is therefore reason
able to expect that if we could further refine the lattice w
would see that the data follow the behavior of theO(3)

FIG. 6. The renormalized spin-spin correlation for theO(3)
model for various lattice spacings.
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model, i.e. the lattice artifacts would change sign and
final approach to the continuum limit would be from abov

It should be stressed that already atj'122, the icosahe-
dron andO(3) data are much closer to each other than
O(3) data are to the PT prediction.

V. CONCLUSION: UNIVERSALITY
BETWEEN THE

ICOSAHEDRON AND O„3… MODELS
AND ASYMPTOTIC FREEDOM

We have accumulated strong evidence that the continu
limits of the discrete icosahedron model and the continu
classical Heisenberg@O(3)# model describe the same qua
tum field theory.

As discussed in the introduction, this is one more f
which puts the asymptotic freedom of theO(3) model se-
verely into doubt. The point of view advocated by Hasenfr
and Niedermayer@14#, namely, that the continuum limit o
the discrete icosahedron model should be asymptotic
free, is untenable in view of our results about the LW
running couplingḡ; our data~see Fig. 1! indicate thatḡ(L)
runs to a fixed point valueg* '.59 at small distances. Actu
ally to determine the true running coupling, one should ta
first the continuum limit at fixedz5L/j and then the limit
z→0. Since this is not feasible, we instead studied the fin
size scaling at and around the critical point, and took as
estimate ofg* the apparent limit

lim
L→`

m~L !L ~25!

@1# V. José, L. Kadanoff, S. Kirkpatrick, and D. Nelson, Phys. Re
B 16, 1217~1977!.

@2# J. Fröhlich and T. Spencer, Commun. Math. Phys.83, 411
~1982!.

FIG. 7. The renormalized spin-spin correlation for the icosa
dron model for various lattice spacings: solid lineO(3) model for
j'122.
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at the critical point. Somebody might wonder if it is no
possible that the continuum limit shows asymptotic freed
after all; in other words, if it is possible that

lim
z→0

lim
j→`

ḡ~z,j!50? ~26!

Our data make this extremely unlikely; for fixedb,bcrt

'1.802, ḡ is increasingwith L ~except for very small lat-
tices! and it is always larger than .59, even atb51.802, our
estimated critical point. To claim that in the continuum lim
ḡ(z,`) would go to 0, one would have to assume some tr
bizarreL dependence at fixedb. This is illustrated in Fig. 8,
which shows some of our data forḡ as a function ofz
5L/j(`). We used data atb51.665 and 1.707, where w
know the correlation lengthj(`) quite well, together with
the data taken slightly below the estimated critical poi
where we used the fit appearing in Fig. 3 to estimatej(`).
The solid curve is a fit of the form

ḡ~z!5g* 1az1/21bz. ~27!

Since we did not make any effort to control the lattice ar
facts and estimate the precise continuum values, this fig
should be taken with some caution. It does, however, ill
trate nicely the qualitative behavior of the LWW runnin
coupling near the critical point.

To sum up, the universality observed between the ico
hedron and theO(3) model gives strong evidenceagainst
asymptotic freedom of the latter.
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FIG. 8. The LWW running coupling for the iscosahedron mod
as a function ofL/j(`).
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