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Discrete symmetry enhancement in non-Abelian models and the existence of asymptotic freedom
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We study the universality between a discrete spin model with icosahedral symmetry ad@3thenodel in
two dimensions. For this purpose we study numerically the renormalized two-point functions of the spin field
and the four point coupling constant. We find that those quantities seem to have the same continuum limits in
the two models. This has far reaching consequences, because the icosahedron nudslisptotically free
in the sense that the coupling constant proposed lsgher, Weisz, and WolfiNucl. Phys.B359, 221(1991)]
does not approach zero in the short distance limit. By universality this then also appliesQ¢3henodel,
contrary to the predictions of perturbation theory.
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. INTRODUCTION 4. So if one started just below =94, where the most one
could have is ap* interaction (higher powers being irrel-
The subject of the enhancement of a discrete symmetry tevanj, this symmetry enhancement should persist down to
a continuous one at large distances is important both thed®=2. Since however in B 2 all polynomials in¢ are rel-
retically and phenomenologically. Indeed, even if there areevant and it is easy to write down such polynomials possess-
good grounds to expect that a certain material is well deing only a discrete symmetry, and to construct the corre-
scribed by some model enjoyi@(N) symmetry, one may sponding P(¢), models, the validity of the argument of
wonder what might be the effect of anisotrop[@®]. This  Newman and Schulman remains unclear.
question was addressed in 1977 by Jesal. [1] for the A different heuristic argument in favor of symmetry en-
O(2) nonlinear o model. Nonrigorous renormalization hancement for Abelian as well as non-Abelian groups was
group arguments led them to the conclusion that in two diput forward by Patrascioiu in 1998]. For spin models, his
mensiong2D) the discrete symmetr¥, should be enhanced argument went as follows: at sufficiently low temperatures,
to full O(2) invariance ifN=5 for B8 (inverse temperatuye there exists a phase with long-range orddRO) because, as
not too large. FoN sufficiently large, the occurrence of this Peierls showed long ago, given an ordered state, there is not
phenomenon was proven rigorously by Riioh and Spencer enough free energy to create a domain in which the spin
in 1981 (2], who showed that there exists a range of tem-points elsewhere. Now consider a model like. As one
peratures in which spin correlation functions decay algebraincreases the temperature, clearly the first abundant domains
ically and areO(2) invariant. Fralich and Spencer proved to form would be those in which the spin pointed in a direc-
also that a similar phenomenon of discrete Abelian symmetryion immediately neighboring the one chosen by the bound-
enhancement occurs in 4D gauge theories. ary conditions for the ordered state. For temperatures not too
For a long time, the consensus was that no symmetryigh, the system could form domains inside domains of
enhancement should occur in non-Abelian models. The maineighboring spin values. This would be different from the
reason appears to have been the belief that, for continoyshase at high temperature, where no such restriction between
symmetries, these models exhibit asymptotic freedéim). adjacent domains would be required. This scenario does not
The discrete models, known rigorously to undergo phasseem to have anything do with the model being Abelian or
transitions at nonzero temperature, did not seem likely to beot, and Patrascioiu suggested that, since it was known to
AF; hence, they had to be different. A proposal for non-happen in Abelian models, it must happen also in non-
Abelian symmetry enhancement came however from NewAbelian cases.
man and Schulma8]. Their argument was based on the fact Except for the papers quoted above, in the 1980’s, while it
that if the discrete symmetry group is sufficiently large, anywas quite fashionable to replace continous groups with dis-
fourth order polynomial invariant under the discrete group iscrete ones in Monte Carlo simulations, everybody seemed to
also invariant under the continuous group in which it is con-be convinced that the discrete and continuous models be-
tained. While this is an undisputable mathematical fact, théonged to different universality classes. Our interest in the
guestion was why fourth order? Their heuristic answer wasubject was rekindled in 1990 when, together with Richard,
that the renormalization group flow was expected to be freeve derived a rigorous inequality relating correlation func-
of bifurcations as the dimension D was varied between 2 antlons in the dodecahedron model to thoseZgf, [5]. Our
result was that for any, the dodecahedron model is more
ordered tharZ,, at 0.6073. Since it is was pretty well es-
*Email address: patrasci@physics.arizona.edu tablished thatZ,, possess an extended intermediate phase,
"Email address: ehs@mppmu.mpg.de which isO(2) invariant, our inequality implied that provided
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Bm(D)>B.(Z,0) the dodecahedron must also possess an inbious, and in our second pagddr3] we stated that we could
termediate massless phase. HepgD) denotes the onset of no longer give a reliable number for the lattice continuum
the LRO phase in the dodecahedron @(lZ,o) the onset of limit value of gg. In the hope of gaining insight into this
algebraic decay irZ,,. We determined numerically these issue, we turned again to the discrete models. Corroborating
values[6] and concluded that the dodecahedron seemed tour previous findings regardinG,(p/m) and G,(x/¢), the
possess an intermediate massless phase fo<g3¥52.8.  data, to be shown later, suggested thatalso agreed in the
We conjectured that this phase must enjoy f(3) invari-  dodecahedron, icosahedron, &d¢3) models.
ance. In the course of the debates of our collaboratj&9],
Intrigued by our findings for the dodecahedron, in theNiedermayer raised the intriguing possibility that maybe in-
early 1990’s we looked numerically at the other regular poly-deed all these models do have the same continuum limit,
hedra. While the cube is obviously equivalent to 3 uncoupledvhich however is AF. The present paper is our reply to his
Ising models, and hence is not a good candidate for exhibitsuggestion. The results were communicated to him already in
ing O(3) invariance, the other 3 regular polyhedpdatonic 1999, hence we were surprised by his recent paper with
solids a priori, are. Actually, in the scenario advocated by Hasenfrat414]. In their paper, Hasenfratz and Niedermayer
Patrascioiu in 198%4], the tetrahedron should not be able to claim that indeed they find strong numerical evidence that
simulate spin waves since its spin gradient can take only onthe dodecahedron and icosahedron models have the same
nontrivial value(in fact it is nothing but the 4 state Potts continuum limit ag0(3), butstate that, sincéoverwhelming
mode). The octahedron and the icosahedron could. Our nuevidence exists that the(®) model is AF"the dodecahe-
merics suggested that the octahedron had a first order translfron and icosahedron models must be AF too. The authors
tion. For the icosahedron, the Monte Carlo data suggestedd@ not mention which “overwhelming evidence” they have
second order transition from the high temperature phase tm mind. They might be thinking of the results of R¢L3]
the low temperature phase exihibiting LRO; in particular,that show some rough agreement between the results of
there did not seem to be an extended massless phase, as fkbonta Carlo simulations of th€(3) model and the form
the dodecahedron. factor bootstrap(FFB) construction; since the latter most
That the discrete icosahedral symmetry may be enhancdikely has AF, that would be a point supporting their claim.
to O(3) began to become manifest in 1998 when we begaifhere are, however, some facts not mentioned by Hasenfratz
extensive numerical investigations of the contiuum limit of and Niedermayer, which should have cautioned them:
the spin 2-point function versygm [7] in the dodecahedron The last report of Balo@t al. [13] retracted the original
model. The original motivation of that study was to comparepredictiongg=6.77(2) and stated instead that the lattice ar-
the lattice continuum limit with the form factqFF) predic- tifacts were not sufficiently under control to decide whether
tion of Balog and Niedermaigi8]. Since it was not to be the continuum limit was in agreement with the FFB predic-
expected that the latter could possibly describe the contion. Thus it cannot be claimed that numerical evidence sup-
tinuum limit of the dodecahedron model, we decided to takeports the FFB ansatz, which most likely incorporates AF.
data on this model too. To our surprise, tkE3) data In our recent papefl5], we combined mathematically
seemed to agree with both the FF prediction and with theigorous arguments with some numerics to conclude that the
dodecahedron. Since Balog and Niedermaier had produced@(3) model must undergo a transition to a massless phase at
convincing argumenf9] that the FF approach incorporates finite 8. We then proved rigorously that such a phase transi-
AF and we could not see how a discrete model, freezing dtion rules out the existence of AF in the massive continuum
nonzero temperature, could possibly exhibit AF, we decidedimit.
to refine our data by concentrating on the reg@m<13. Moreover, the 1 fit produced by Hasenfratz and Nieder-
Our resultd 10] showed small but statistically significant de- mayer, would also provide evidence against AF. But the data
viations betweerD(3) and FF, but excellent agreement be-for for g at larger values o€, while in clear disagreement
tweenO(3) and the dodecahedron. with a Symanzik type fit (%? with a possible multiplcative
The comparison of the FF an@(3) could have been logé), do not support their original &/fit either.
marred by lattice artifacts, a problem to which we will return  Since they are based on numerics, any of these statements
below. This is why a different comparison was performed bycould be false, but the paper of Hasenfratz and Niedermayer
Patrascioiu [11], who computed the renormalized spin does not contain any evidence pertinent to these issues.
2-point function versus the physical distandg. The results In this paper we will compare the continuum limit of the
were very similar with the ones we will report here about theO(3) model to that of the icosahedron model by comparing
icosahedron. They suggested that the dodecahedron atite values ofyg and of the renormalized spin 2-point func-
O(3) models share the same continuum limit. tion G,(x/£). The advantage of the icosahedron model is the
Another reason to investigate the discrete spin modelgxistence of a rather well localizable critical point, whereas,
arose in 1999, while in collaboration with Bale al, we  as stated above, the dodecahedral model appears to have a
decided to compare the FF prediction for the renormalizedoft intermediate phase. To address the issue of AF, we study
couplinggk (to be defined beloywith its lattice continuum  the value of the Lecher-Weisz-WolffLWW) coupling con-
limit value. Although our first resultf12] suggested excel- stant at the critical point. According to LWW, AF requires
lent agreement, as we continued to reduce the error bars aigiat the continuum limit of this observable vanishes at short
especially to take data at larger correlation len§thl67, distances. If in fact the icosahedron model has the same con-
our original extrapolation to the continuum limit became du-tinuum limit as O(3), then the LWW coupling constant
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should vanish at the critical point of the former model. We In the icosahedron model the situation seems to be sim-

find excellent evidence that it does not. Thus our conclusiompler, however, it seems to have a single critical point sepa-

is that either, in spite of the excellent agreement observed faiating the high and low temperature phases, as we will dem-

£~121,0(3) and the icosahedron model have different con-onstrate.

tinuum limits, or neither has AF. To determine the critical point, we proceed as follows: we
The paper is organized as follows: we first describe theletermine the mass gap(L) =1/£(L) in an(ideally infinite)

critical properties of the icosahedon model and in particulastrip of width L; in practice we use a finite strip of size

locate its critical point. This allows us to determine the valuex L, with L;>L and measure the effective correlation length

of the LWW running coupling at the critical point. Then we defined by

move on to the comparison of the icosahedron andx(i&)

models. We compare the renormalized coupling constant and

the renormalized spin-spin correlation function of the two

models and present convincing evidence that they converge

to the same continuum limit. where

1

1
II. CRITICAL BEHAVIOR OF ICOSAHEDRON MODEL
XZL_LHE;‘ (si-sj), (6)

We first describe the critical properties of the icosahedron
model: we locate the critical point and give some estimates
of critical exponents. This allows us to determine the value
of the LWW coupling constant at the critical point, which is
independent ot the siZe of the lattice, as required by scal- ) .
ing. This (nonzerg value is also the short distance limit of e then study the behavior of the quantity
the continuum value of the LWW coupling constant. oL

The icosahedron model is defined by the standard nearest g=— 8
neighbor coupling between the spins (N=1)&(L)

1
61:IZ (sispexd2m(iy—j)/L]. @)
t )

g _2 ss ) which we consider as a functiog(z,£&) of z=L/&(«) and
) ! the infinite volume correlation length(«). The continuum
limit of this quantity for fixedz is the “running coupling
where the spins; are unit vectors forming the vertices of a constant” introduced by Lscher, Weisz, and Wolff16] for
regular icosahedron. In suitable coordinates, those 12 vertthe O(N) models (we refer readers worried about our
ces are given by slightly different definition of the correlation length, E®),
to our recent papdrl7], where the practical equivalence of

2mk 27K ) the two definitions is demonstrajedn the high temperature
Ck=| 8€057 5587 ¢ cog k) (k=12,....10; phase, where the model has a massmép) = 1/£(«) in the
2 infinite volume limit, g will grow linearly with L. On the
Where other hand, in the low temperature magnetized phase, the
2 l (3) O? I T T T T T T T T T T ‘ T I“
S=—, Cc=—&= L .
V5 V5 i ]
and 0.6 @02 4
L =1.803
ell=(0,0,1) and 612:(0,0,_ 1) (4) :\\92\1‘805

The model has at least two phases, a high temperature phase

with exponential clustering and full symmetry under the
icosahedral groupy, and a low temperature phase with spon-
taneous magnetization and 12 coexisting phases, with the
magnetization pointing into one of the 12 directions of the
icosahedron. At intermediate temperatures there could be, in
principle, a phase with partial breaking ¥f but there is no
reasonable candidate for a possible unbroken subgroup.
There is also the possibility of an extended intermediate
phase with no symmetry breaking, but actual enhancement of
the symmetry fromY to O(3), aswell as only algebraic

5(L)

0.4

0.3

N

T

\ f=1.82

P N T WS N SN S N TR NN ST W

decay of correlations analogous to tAg models and the
dodecahedron modésee above

FIG. 1. The LWW coupling constarﬁ as a function ofL for
various values of3.
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TABLE I. The LWW running couplingg_and the renormalized couplirgk as a function ot for various

values of3.
5=1.665
L 10 20 40 80 160 320
5 .9121(14) 1.065111) 1.303321)
gr 2.21613) 2.50112) 3.08029)
B=1.707
5 .81549) .931212) 1.088223) 1.327635)
gr 1.8986) 2.2131)) 2.593293) 3.17136)
B=1.75
] 722124)  .790221)
gr 1.69514) 1.84124)
5=1.80
a .608316) .598917) .601821) .615817) .6337122)
Or 1.3639) 1.3299) 1.35714) 1.3959) 1.45913)
B=1.802
a .601510) .5951(14) .591926) .5938§24) .595514) .600Q32)
(o] 1.34Q4) 1.333@6) 1.3285) 1.34811) 1.36Q7) 1.35814)
5=1.803
a .597916) .591418) .582314) .580725) 577417)
gr 1.33510) 1.327110) 1.3079) 1.30614) 1.30210)
B=1.805
5 .591813) .5821(17) 572119 .55838) .5341(19)
gr 1.3087) 1.2988) 1.27410) 1.2424) 1.17311)
B=1.82
5 .55648) .51948) .457828) .353342)
gr 1.2134) 1.1194) .964(10) .6528)
mass gap in a finite volume goes to O faster thaﬂ sbg To corroborate this determination of the critical pOint, we

will decrease to 0 ak—c. At a critical point, the model &lso measured, on the same lattices, the renormalized cou-

will be scale invariant for large distances agahould con- pling defined as

verge to a finite nonzero limit. 5

To determineg, we took data on lattices of siZexL, gR:(__ g_;)
with L,=10L; L was varied from 10 to 320. Figure(Table 3 9
I) shows clearly the dramatic change in behavior between
5=1.800 andB=1.805. Forg=1.802,g shows only some Hereg, is the magnetic susceptibility multiplied by the vol-
small variation for small (L<40) and stabilizes for larger ume of the latticeL XL, i.e.
L. So we estimate

LL,

Be=1.8021) ) 92:%: (sis;) (12)

where the error is, of course, somewhat subjective. and
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[t T 77 ‘ B= B, it should be essentially scale invariant and go to a
] constant less thag*. In other words, we expect
g=1.802
" lim lim gg(B,L)< Ilim limggr(B,L)=0*
4 Lo B—Bert B—=Bert—0 Lo
- (13
a ] whereas
L ] lim lim gg(8,L)> lim  limgg(B,L)=0. (14)
| £ L—oo :B_’Bcrt ﬁ—>ﬁcrt+0 L—oo
I 1 The data presented in Table | and displayed in Fig. 2 confirm
0.8 | & this nicely and suggest a value of |im..gr(Becrt,L)~1.3;
r A the data also corroborate our estimate &f,=1.802(1)
I ) given above.
A H N B B Finally we want to see if our determination ¢, is
To 100 200 300 consistent with a singularity in the thermodynamic values of

the correlation lengtt¥ and the susceptibility. We there-
fore measured and y on lattices withL/&~7 for various
values of3<<1.802; our data are given in Table Il. There is a
row listing the number of runs; a run consists of 100000
single cluster updates for thermalizatigoorresponding to
between 1000 and 2000 lattice updatfesiowed by 20 000
sweeps of the lattice for measurements. Each run is started
independently with a randomly chosen new configuration.

To describe the critical behavior of the data foand y,
two types of fits were tried: first a Kosterlitz type fit with an
exponential singularity

FIG. 2. The renormalized coupling for asymmettie<L, lat-
tices as a function of for various values of3.

04= 2 (s, si)(si,8i,))- (12
i1,p,i3,i4
This quantity is also a renormalization gro(lRG) invariant
and therefore should also go to a constant@er B, -

The behavior of this quantity as a funcction gfand L
nearf. is a little tricky; therefore we want to make a few
remarks about it. The main point is that one has to be careful
about the order of the limitd —oo and B— B¢, Which
cannot be interchanged. For fixed finite gr(B,L) is a
smooth funtion ofB, which however gets steeper and steeper
near B.,; asL increases. In the limit —o, it develops a
jun?tp' i known that in the high t ture phase, i

is well known that in the high temperature phase, i.e. _ v _ P
for B<PBen, lim _..gr(B,L) is a nontrivial numberwith ¢=ClBen= )" X=Cy(Ben=B) (16
some dependence g8) which has a nontrivial limitg* if  or similar ones in 18. Both types of fit are not very good,
we sendg to B, from below. This limit is the value of the yith similar quite large values of?, and they do not allow a
four point coupling constant in theassivecontinuum limit — yery precise determination of the fit parameters. The reason
and has a value above 6(3ee Sec. Il In the magnetized geems to be the following: the asymptotic singular behavior
low temperature phase, og_the other hand, limgr(B,L)  seems to have significant subleading contributions, which
=0, because the fact@(L)“ in the denominator of E{10)  however cannot be well determined with only 5 valuegsof
is growing rapidly withL. So one expects fayg a qualita-  Trying to fit our very precise data with functions that do not
tively similar picture as fog; the values ofjr at differentL  describe the behavior with similar accuracy, necessarily leads
for fixed B< B are growing withL, while for 8> B,; they  to a poor fit quality, even though visually the data may be
are decreasing towards 0. Sirggis a RG invariant, right at  very well describedsee Fig. 3.

—ag —aX
&=C ex;{— , =C exp(—),
¢ Vﬂcrt_ﬂ X X \/ﬁcrt_ﬁ (15)

and second a power law fit of the type

TABLE II. Correlation lengthé, susceptibilityy and renormalized couplingg in the high temperature
phase of the icosahedron model.

B 1.470 1.550 1.610 1.665 1.707
L 80 140 250 500 910

¢ 11.2035) 19.62712) 33.65521) 63.62833) 122.0916)
Y 181.8810) 479.4336) 1228.0491) 3774.52.1) 1200917)

9r(2) 6.40428) 6.48735) 6.54639) 6.68436) 6.71588)

gr(7.25) 6.41228) 6.49535) 6.53539) 6.65136) 6.70288)

# runs 200 100 100 149 28
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0.8 e : - ‘ T — ; , —
I 6.6 -
L 6.4 I .
0.2 - i ]
i 6.2 — -
i el 1
=11} I 4
6 - _
0.1 - - 4
- 5.8 .
| 5.6 -
o L I AT AT TR T I o e
0.55 0.6 0.65 0.7 0 0.02 0.04 0.06
z exp(-2z)

FIG. 3. Thermodynamic values of " and y~*” with v

=1.717 andy=23.002 as functions oB; the lines are fits. FIG. 4. Finite size scaling afr -

The Kosterlitz type fit leads to predictions gf,~1.93, renor_malized coupling c.onstag;:Q on Iattice; .of fi>.<ed physi-
which is unacceptably large—this value is deeply in thecal sizez=L/é~7. At this value ofz, the finite size effects

magnetized phase. The power law fits, on the other hand'e already very weak; to account for the remaining small
give values ofg.,, quite close to our preferred value 1.802. differences irz between the measurements at different values

By playing with the number of parameters and fitting i1/ ©f B, we used a finite size scaling technique. Our procedure
as well asB, we obtain quite a spread in the values of theWas the following.

=1.550 corresponding té~19.7. To describe the finite size
v=16-2.0 and y=2.9-35. (17) effects we used ansatze of the form
This is consistent with a value of Or(2)=ggr(»)(1—dze ?). (20
77:2_1% 25 (18) This type of ansatz is suggested by the spherical model,
v where it holds withp=1/2. Since it is to be expected that

o o _is model dependent, we tried to see if our data favored a
which is also favored by the data for spin-spin correlationcertain value of that parameter; it turns out that the fit is best

function (see below. for p=1. We then used the above ansatz with1 and the
In Fig. 3 we use the best values produced by the poweparameters determined At=1.55 to renormalize the values
law fit in 1/8 with no subleading corrections, namely, at other values toz=7.25.

In Fig. 4 we show the data @=1.55 together with the
fit, which has ay? per degree of freedom of 0.3; the constant
d is determined to be

»=1.717, y=3.002. (19

We plot £ and y Y7 vs B together with the fits, which
are straight lines intersecting the abscissg8at1.802. So
even though the thermodynamic data foand y do not lead
to a precise prediction of the critical point and the critical . )
exponents, they are certainly consistent with our determinalVe then used this ansatz wii=1 and the parameters de-
tion based on the LWW coupling constant. termined above to “renormalize” the values at othewal-
We also investigated the possibility that the transitionues toz=7.25. In Table Il we present our data together with
from the high temperature phase to the one with long rangéhe ‘renormalized” values.

order is first order, but we did not find any signal for phase For the comparison with th®(3) model, we took data
coexistence. for this model atB=1.6 (corresponding also tg~19) at

different values ot; these data can also be described by the
Ill. THE RENORMALIZED COUPLING IN THE ansatz Eq(20) and againp=1 is the preferrgd vglue gf the
ICOSAHEDRON AND O(3) MODELS exponent. We used the parameters determined in this way to
renormalize thegg values of theO(3) model obtained ear-
To check whether the icosahedron and @€3) model lier to physical size=7 [14]. Those data together with the
define the same continuum limit, we also determined theenormalized values are given in Table Ill.

d=2.327+.075. (22)
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TABLE lll. Correlation lengthé and renormalized couplingg in the high temperature phase of th@J)
model (from Ref.[14]).

B 15 1.6 1.7 1.8 1.9 1.95
L 80 140 250 500 910 1230
¢ 11.03q7)  18.95G14)  34.50G415)  64.79426)  122.33074)  167.7117)
9r(2) 6.55316)  6.61715) 6.66514) 6.69115) 6.73721) 6.79240)
gr(7.25) 6.55816)  6.60315) 6.66514) 6.66315) 6.72421) 6.78640)
# runs 344 370 367 382 127 68

Figure 5 shows the renormalized data for the two modelgorresponding te¢~65, 122, and 168. In Fig. 6 we show
for various values of. Even though the lattice artifacts are G(x)x** for the O(3) model together with the 2-loop per-
quite different for the two models, and in spite of the factturbation theory prediction
that we are not quite sure how one should extrapolate to the

continuum limit, the data show that the two models approach G(x) = 1.000 | 1116t 1I 116
each other with increasing (decreasing lattice spacipgnd (x)= 3731002 t+Int+1. ?nt+ <
suggest that they will have the same continuum limit. (24)
IV. SPIN CORRELATION FUNCTION wheret= —In(x/8)— 1. This expression was taken from Ref.
IN THE ICOSAHEDRON AND O(3) MODELS [18], the constants in front were communicated to us by Ba-

log and Niedermaier; they were computed via the form factor
rhpproacl‘[Q] and take in account our different definition of
the correlation length. It can be seen that the data approach
their continuum limit from above and deviate considerably
2 from the PT prediction. Fox>0.4, barring some very slow
G(i/¢)=—(s(0) s(i)). (220  convergence to the continuum limit, our data suggest that the
X lattice artifacts are quite small for the large correlation
lengths we are using.
In Fig. 7 we presenG(x)x** for the icosahedron model
X= —. (23) together with the same expression @»(3) at gpproximately
& the largest value oE~122. The lattice artifacts have the
opposite sign at least for the lattices wigk< 122, i.e. the
ata are increasing with decreasing lattice spacing.£At
'~122, they are already quite close to the corresponding cor-
relation function in theO(3) model. It is therefore reason-
able to expect that if we could further refine the lattice we
would see that the data follow the behavior of tB¢3)

In this section we compare the renormalized spin-spi
correlation functions of the icosahedron and @¢3) mod-
els. They are defined as

The physical distance is

We measured the two-point functions in the icosoahedro
model at3=1.47, 1.55, 1.61, 1.665, and 1.707 correspond
ing to é~11, 20, 34, 64, 122see Table IJ. For theO(3)
model, we used the data from R¢i2] at =1.8, 1.9, 1.95
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FIG. 5. Comparison ofy in the icosahedron an@(3) models. FIG. 6. The renormalized spin-spin correlation for t©¢3)
Full symbols: icosahedron; open symbdi(3). model for various lattice spacings.
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FIG. 7. The renormalized spin-spin correlation for the icosahe- z

dron model for various lattice spacings: solid li©€¢3) model for
£~122.

FIG. 8. The LWW running coupling for the iscosahedron model
as a function ol/&().

model, i.e. the lattice artifacts would change sign and theyt the critical point. Somebody might wonder if it is not

final approach to the continuum limit would be from above.possible that the continuum limit shows asymptotic freedom
It should be stressed that alreadyéat 122, the icosahe- after all; in other words, if it is possible that

dron andO(3) data are much closer to each other than the

O(3) data are to the PT prediction. lim limg(z,&)=07?

z—0 -

(26)

V. CONCLUSION: UNIVERSALITY
BETWEEN THE
ICOSAHEDRON AND O(3) MODELS
AND ASYMPTOTIC FREEDOM

Our data make this extremely unlikely; for fixe8< B

~1.802,5is increasingwith L (except for very small lat-
tices and it is always larger than .59, evengt 1.802, our

) ) estimated critical point. To claim that in the continuum limit
We have accumulated strong evidence that the continuurs

limits of the discrete icosahedron model and the continuou (z,%¢) would go to 0, one would have to assume some truly

classical HeisenbergD(3)] model describe the same quan- izarreL dependence at fixed. Thisi_s illustrated in Fig. 8,
tum field theory. which shows some of our data fay as a function ofz

As discussed in the introduction, this is one more fact=L/&(). We used data a8=1.665 and 1.707, where we
which puts the asymptotic freedom of ti(3) model se- know the correlation lengti() quite well, together with
verely into doubt. The point of view advocated by HasenfratZhe data taken slightly below the estimated critical point,
and Niedermayef14], namely, that the continuum limit of Where we used the fit appearing in Fig. 3 to estingte).
the discrete icosahedron model should be asymptoticallyhe solid curve is a fit of the form
free, is untenable in view of our results about the LWW

running coupling& our data(see Fig. 1 indicate thaﬁ(L) (27)

runs (o a fixed point valug® ~.59 at small distances. Actu- Since we did not make any effort to control the lattice arti-
ally to determine the true running coupling, one should takeT d esti h y . | his fi
first the continuum limit at fixecz=L/¢ and then the limit '2CtS and estimate the precise continuum values, this figure
z—0. Since this is not feasible, we instead studied the finit sh?uld.bel tatI:]en W|tr|1_ts?me t():a#tlo_n. Itfd?r(]es,l_r\\/syvever, |_Ilus-
size scaling at and around the critical point, and took as oucguili?mlgcen)éar tehgl::?itlic?z;lvp?oin? avior ot the running

; . . .
estimate ofg™ the apparent limit To sum up, the universality observed between the icosa-
hedron and théD(3) model gives strong eviden@gainst
asymptotic freedom of the latter.

9(z2)=g* +az'?+bz

limm(L)L

Lo

(29)
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