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Choptuik scaling and quasinormal modes in the anti–de Sitter spaceÕconformal-field
theory correspondence
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We establish an exact connection between the Choptuik scaling parameter for the three-dimensional
Bañados-Teitelboim-Zanelli black hole, and the imaginary part of the quasinormal frequencies for scalar
perturbations. Via the anti–de Sitter space/conformal-field theory correspondence, this leads to an interpreta-
tion of Choptuik scaling in terms of the time scale for return to equilibrium of the dual conformal field theory.

DOI: 10.1103/PhysRevD.64.064024 PACS number~s!: 04.70.Dy, 04.60.Kz, 11.25.Hf
st
lin

itia
r

n

a
-

re
he

o

he
h

e
p

tte

ar
h
ua
re
f
-

ze

n,
be-
al

des
ck
f
vior

xt

n
nal
n-

be

8

eld
ial
e-

of

of
ave
I. INTRODUCTION

Within the context of numerical relativity, one of the mo
significant recent results is the evidence for universal sca
behavior in black hole formation@1,2#. In particular, one
considers a generic smooth one-parameter family of in
data ~labeled byp), such that a black hole is formed fo
values ofp greater than a critical valuep* , while no black
hole is formed forp,p* . The mass of the black hole the
satisfies the scaling relation@1#

M;~p2p* !g, ~1!

whereg is a universal exponent known as the Choptuik sc
ing parameter. In@3#, it was shown that the Gott time ma
chine @4#, namely a two-body collision process, gives a p
cise algebraic mechanism for the formation of t
(211)-dimensional Ban˜ados-Teitelboim-Zanelli ~BTZ!
black hole. This led to an exact analytic determination
Choptuik scaling.

In @5–13#, the quasinormal modes of scalar fields in t
background of anti–de Sitter black holes were studied. T
associated complex quasinormal frequencies describe th
cay of the scalar perturbation, and depend only on the
rameters of the black hole. In terms of the anti–de Si
space/conformal-field theory~AdS/CFT! correspondence
@14–18#, an off-equilibrium configuration in the bulk AdS
space is related to an off-equilibrium state in the bound
conformal field theory. The time scale for the decay of t
scalar perturbation is given by the imaginary part of the q
sinormal frequencies. Thus, by virtue of the AdS/CFT cor
spondence, one obtains a prediction of the time scale
return to equilibrium of the dual conformal field theory. In
terestingly, it was shown numerically@7# that the imaginary
part of the quasinormal frequencies for intermediate-si
black holes in four dimensions,v Im , scaled with the horizon
radius,r 1 . In particular, it was found that

v Im;
1

g
r 1 , ~2!
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where g is the Choptuik scaling parameter. This relatio
although not understood, suggested a deeper connection
tween black hole critical phenomena and quasinorm
modes.

In this paper, we compute exactly the quasinormal mo
of massive scalar fields in the background of the BTZ bla
hole, see also@11,12#. It is shown that the imaginary part o
the quasinormal frequencies has a universal scaling beha
precisely of the form~2!. This leads to a conformal field
theory interpretation of Choptuik scaling within the conte
of the AdS/CFT correspondence.

II. QUASINORMAL MODES OF THE BTZ BLACK HOLE

To begin, we recall that the BTZ black hole is a solutio
of the vacuum Einstein equations of three-dimensio
anti–de Sitter gravity, i.e., with negative cosmological co
stantL521/l 2. The line element can be written in the form
@19,20#

ds252S 2M1
r 2

l 2
1

J2

4r 2D dt21S 2M1
r 2

l 2
1

J2

4r 2D 21

dr2

1r 2S df2
J

2r 2
dtD 2

. ~3!

The mass and angular momentum of the black hole can
expressed in terms of the inner and outer horizon radii,r 6 ,
as

M5
r 1

2 1r 2
2

l 2
, J5

2r 1r 2

l
, ~4!

and we choose units for Newton’s constant such thatG
51.

We wish to study the properties of a massive scalar fi
in the background geometry of the BTZ black hole. A spec
feature of this (211)-dimensional case is that the corr
sponding wave equation can be solved exactly in terms
hypergeometric functions@21,22#. By choosing appropriate
boundary conditions, we are led to an exact determination
the quasinormal modes for the scalar field. The scalar w
equation takes the form
©2001 The American Physical Society24-1
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S ¹22
m

l 2D F50, ~5!

wherem is the mass parameter. Using the ansatz

F5R~r !e2 ivteimf, ~6!

with the change of variables

z5
r 22r 1

2

r 22r 2
2

, ~7!

we are led to the radial equation

z~12z!
d2R

dz2
1~12z!

dR

dz
1S A

z
1B1

C

12zDR50. ~8!

Here,

A5
l 4

4~r 1
2 2r 2

2 !2 S vr 12
m

l
r 2D 2

,

B52
l 4

4~r 1
2 2r 2

2 !2 S vr 22
m

l
r 1D 2

, ~9!

C52
m

4
.

We now define

R~z!5za~12z!bF~z!. ~10!

The radial equation then assumes the standard hypergeo
ric form @23#

z~12z!
d2F

dz2
1@c2~11a1b!z#

dF

dz
2abF50, ~11!

where

c52a11,

a1b52a12b, ~12!

ab5~a1b!22B,

and

a252A,

~13!

b5
1

2
~16A11m!.

Without loss of generality, we takea52 iAA and b5 1
2 (1

2A11m).
In the neighborhood of the horizon,z50, the two linearly

independent solutions of Eq.~11! are given by @23#
F(a,b,c,z) andz12cF(a2c11,b2c11,22c,z). The qua-
06402
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sinormal modes are defined as solutions which are pu
ingoing at the horizon, and which vanish at infinity@7#. The
solution which has ingoing flux at the horizon is given by

R~z!5za~12z!bF~a,b,c,z!. ~14!

To implement the vanishing boundary condition at infini
z51, we use the linear transformation formula@23#

R~z!5za~12z!b~12z!c2a2b
G~c!G~a1b2c!

G~a!G~b!

3F~c2a,c2b,c2a2b11,12z!1za~12z!b

3
G~c!G~c2a2b!

G~c2a!G~c2b!
F~a,b,a1b2c11,12z!.

~15!

Clearly, the first term in Eq.~15! vanishes. However, the
vanishing of the second term imposes the restriction

c2a52n, or c2b52n, ~16!

where (n50,1,2, . . . ). This condition leads directly to an
exact determination of the quasinormal modes. From
~12!, we have

a5a1b1 iA2B,
~17!

b5a1b2 iA2B.

Thus, we find that the left and right quasinormal mod
denoted byvL andvR , are given by

vL5
m

l
22i S r 12r 2

l 2 D S n1
1

2
1

1

2
A11m D ,

~18!

vR52
m

l
22i S r 11r 2

l 2 D S n1
1

2
1

1

2
A11m D .

It is important to stress that this is an exact calculation of
quasinormal modes for the scalar field in a general B
background. The result~18! agrees with the special case
considered in@11,12#, for m50 and J50; quasinormal
modes for the BTZ black hole were first studied in@5#. We
also note that the imaginary parts of the quasinormal mo
scale linearly with the left and right temperatures, defined
@24# TL5(r 12r 2)/2p l 2 andTR5(r 11r 2)/2p l 2.

III. CHOPTUIK SCALING AND THE AdS ÕCFT
CORRESPONDENCE

The aim now is to determine the precise connection
tween these quasinormal modes and the Choptuik sca
parameter of the BTZ black hole. Let us first recall th
three-dimensional anti–de Sitter space, AdS3, can be charac-
terized in terms of the flat spaceR2,2, with coordinates
(X1 ,X2 ,T1 ,T2), and line element@20#

ds25dX1
21dX2

22dT1
22dT2

2 . ~19!
4-2
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The induced metric on the submanifold

X1
21X2

22T1
22T2

252 l 2, ~20!

then corresponds to the AdS3 metric. It is convenient to com
bine the coordinates (X1 ,X2 ,T1 ,T2) into anSL(2,R) matrix,

X5
1

l S T11X1 T21X2

2T21X2 T12X1
D , ~21!

with unit determinant. Thus, AdS3 may be viewed as the
group manifold of SL(2,R), with isometry group
@SL(2,R)3SL(2,R)#/Z2. Thus, forXPSL(2,R), the isom-
etry group acts by left and right multiplication,X
→rLXrR , with the identification (rL ,rR);(2rL ,2rR).

The essential point to note is that the BTZ black ho
spacetime is locally isometric to AdS3. As a result, it can be
obtained as a quotient of the universal covering space
AdS3 by a discrete group of isometries of AdS3. For the
regionr>r 1 , this can be seen by defining the coordinates
AdS3 by @20,25#

X15 lAasinhS r 1

l
f2

r 2

l 2
t D ,

X25 lAa21coshS r 1

l 2
t2

r 2

l
f D ,

~22!

T15 lAacoshS r 1

l
f2

r 2

l 2
t D ,

T25 lAa21sinhS r 1

l 2
t2

r 2

l
f D ,

where

a~r !5S r 22r 2
2

r 1
2 2r 2

2 D , ~23!

and fP(2`,`), tP(2`,`). It is then straightforward to
show that the AdS3 metric ~19! transforms into the BTZ
metric ~3!. However, the coordinatef in Eq. ~22! has an
infinite range, and thus to identify the BTZ black hole, w
must impose periodicity in thef coordinate. This identifica-
tion is an isometry of AdS3, and corresponds to the eleme
(rL ,rR), with @20#

rL5S ep(r 12r 2)/ l 0

0 e2p(r 12r 2)/ l D ,

~24!

rR5S ep(r 11r 2)/ l 0

0 e2p(r 11r 2)/ l D .

The BTZ black hole is then defined as the quotient of
universal covering space of AdS3 by the group generated b
(rL ,rR). The other regions withr<r 1 can be dealt with in
a similar fashion@20,25#.
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It is important to note that elements ofSL(2,R) are clas-
sified according to the value of their trace, namely@26#

uTrTu,2 elliptic,

uTrTu52 parabolic, ~25!

uTrTu.2 hyperbolic.

Thus, we see that the left and right generators of the B
black hole are hyperbolic elements.

In order to discuss the formation process for the B
black hole, we first recall the algebraic construction of p
ticle spacetimes with vanishing cosmological constant@27#.
In this case, the Lorentz groupSO(2,1) is locally equivalent
to SL(2,R). A point particle spacetime in (211) dimensions
is then defined via identifications by an elliptic generator
SL(2,R). Specifically, the spacetime for a single static po
particle is obtained by removing a wedge of deficit anglea,
and then identifying opposite sides of the wedge. The p
ticle spacetime is thus defined via the rotation generator w
anglea: namely,

R~a!5S cos
a

2
2sin

a

2

sin
a

2
cos

a

2

D . ~26!

The mass of the particle is given bym5a/p, in units with
8G51, and the resulting spacetime has a naked conical
gularity.

A moving particle spacetime is obtained by boosting
the rest frame of the particle, rotating, and then boost
back. The corresponding boost matrix is given by

B~j!5S cosh
j

2
2sinh

j

2
sinf sinh

j

2
cosf

sinh
j

2
cosf cosh

j

2
1sinh

j

2
sinf

D ,

~27!

wherej is the boost vector withj5uju, andf is the polar
angle. Thus, the generator for a moving particle takes
form

T5B~j!R~a!B21~j!, ~28!

where

T115cos
a

2
12sin

a

2
cosh

j

2
sinh

j

2
cosf, ~29!

T1252sin
a

2 Fcosh2
j

2
1sinh2

j

2G
12 sin

a

2
cosh

j

2
sinh

j

2
sinf,
4-3
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T215sin
a

2 Fcosh2
j

2
1sinh2

j

2G
12 sin

a

2
cosh

j

2
sinh

j

2
sinf,

T225cos
a

2
22 sin

a

2
cosh

j

2
sinh

j

2
cosf.

To generalize this construction to AdS3, we simply note
that the static and moving particle spacetimes can be defi
in an analogous fashion. The essential difference is that
particle spacetimes are now defined through left and r
generators. In@26,28,29#, the formation of BTZ black holes
from point particle collisions was investigated. In particul
it was shown@3# that the Gott time machine@4# ~a two-body
collision process! suitably generalized to anti–de Sitte
space, provides a precise mechanism for the formation of
BTZ black hole. Moreover, this purely algebraic process,
which a product of two elliptic generators becomes a hyp
bolic generator, leads to an exact analytic determination
the Choptuik scaling parameter.

The Gott time machine is defined as a two-body collis
process, with particles labeled byA andB, such that the mas
and boost parameters obey a certain constraint, known a
Gott condition@4#. The elliptic generator for each particle
defined in terms of its mass and boost parameters, den
by a and j. Moreover, the effective generator for the tw
particles is given by the product@27,30,31#, namely TG

5TBTA . The order parameter of interest is the trace of t
generator, which takes the form@3#

1

2
TrTG52cos

aA

2
cos

aB

2
2sin

aA

2
sin

aB

2

1sin
aA

2
sin

aB

2 Fcosh2S jA1jB

2 D1cosh2S jA2jB

2 D G
2sin

aA

2
sin

aB

2
cos~fA2fB!Fcosh2S jA1jB

2 D
2cosh2S jA2jB

2 D G . ~30!

The original Gott time machine is recovered by choos
particles with equal masses, and equal and opposite bo
namelyaA5aB5a, jA5jB5j, fA2fB5p. Thus, when
the Gott condition is satisfied, namely sin2a/2cosh2j.1, we
see thatTG is a hyperbolic generator. When the Gott con
tion is not satisfied, we have an elliptic generator.

To construct the BTZ black hole, we simply take the i
dependent left and right generatorsrL ,rR to be defined in
terms of two-particle Gott generators. Thus, we takerL
5TG in Eq. ~30! with aA5aB5a, fA2fB50. This gives

1

2
TrrL5coshS p

l
~r 12r 2! D52112sin2

a

2
cosh2S jA2jB

2 D
[pL . ~31!
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For the right generator, we chooserR5TG with aA5aB
5a, fA2fB5p, leading to

1

2
TrrR5coshS p

l
~r 11r 2! D52112sin2

a

2
cosh2S jA1jB

2 D
[pR . ~32!

We see that bothrL andrR become hyperbolic if the inpu
parametersa,jA ,jB satisfy the appropriate Gott condition
namely pL.1 and pR.1. Thus, the critical value of the
input parameters ispL* 5pR* 51. As shown in@3#, the Chop-
tuik scaling parameter can now be simply read off from E
~31! and ~32!, by using the formula, arccoshp5 ln@p
1Ap221#. Writing pL5pL* 1e, andpR5pR* 1e, we find, to
leading order,

r 12r 2

l
5

A2

p
~pL2pL* !1/2,

~33!
r 11r 2

l
5

A2

p
~pR2pR* !1/2.

Thus, the Choptuik scaling parameter for (r 16r 2) is g
51/2. One can equally well express the scaling behavio
terms of the massM and angular momentumJ, by using Eq.
~4!. If the Gott condition is not satisfied, then one has
effective particle spacetime with an elliptic generator. The
fore, the nature of the transition described above is betw
a BTZ black hole spacetime and a particle spacetime wit
naked conical singularity. By definition, the BTZ black ho
is defined in terms of a hyperbolic generator. Thus, irresp
tive of which type of matter is used to produce such a bla
hole, the ultimate result is that the order parameter is defi
as the trace of this hyperbolic generator. As we have seen
long as the spacetime on the other side of the transition
particle spacetime, the formation process will be charac
ized by a scaling parameter of 1/2. Indeed, such a sca
exponent of 1/2 was found for collapsing dust shells in@32#.
Other aspects of Choptuik scaling for the BTZ black ho
have been investigated in@33–36#, although in these case
the nature of the transition is different from the above.

We can now compare this result with the quasinorm
frequencies~18!. We see immediately that the negative of t
imaginary part of vL and vR , denoted by (vL) Im and
(vR) Im , scales with (r 12r 2) and (r 11r 2), respectively.
In particular, we have

~vL! Im5
1

g S r 12r 2

l 2 D S n1
1

2
1

1

2
Am11D ,

~34!

~vR! Im5
1

g S r 11r 2

l 2 D S n1
1

2
1

1

2
Am11D .

We have thus established an exact connection between
Choptuik scaling parameter and the imaginary part of
quasinormal modes. It is satisfying that in th
(211)-dimensional case, these exact calculations lead
4-4
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result precisely of the form noticed in@7#. The Choptuik
scaling parameter ofg51/2 used to establish this connectio
will be present for any type of matter, when the transition
between a BTZ black hole phase~defined by a hyperbolic
generator! and a particle spacetime~defined by an elliptic
generator!. It should be stressed that we have verified
connection between this Choptuik scaling parameter and
quasinormal modes of a scalar perturbation of the black h
Of course, one can also consider quasinormal modes as
ated with other forms of matter, as well as those associa
with the gravitational perturbations of the black hole. It r
mains to be seen if there is a similar connection between
Choptuik scaling parameter and the imaginary part of th
modes. The quasinormal modes of electromagnetic and W
perturbations have been calculated in@12#. For the electro-
. B

,
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magnetic case, the modes are the same as those of a ma
scalar field, and thus exhibit the connection with Choptu
scaling. For the Weyl perturbation, the modes have been
culated numerically, and exhibit a similar connection.

By virtue of the AdS/CFT correspondence, the imagina
part of the quasinormal modes has a direct interpretation
the dual conformal field theory. In the case at hand,
boundary conformal field theory of AdS3 contains both left-
moving and right-moving sectors@37#, with Virasoro genera-
tors L̄05(r 12r 2)2/2l and L05(r 11r 2)2/2l , respectively.
Thus, the return to equilibrium of the conformal field theo
is specified in terms of the left and right time scales given
tL51/(vL) Im and tR51/(vR) Im . Further analysis of BTZ
black hole formation within the context of the AdS/CFT co
respondence has been presented in@38–41#.
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