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Choptuik scaling and quasinormal modes in the ant-de Sitter spacéconformal-field
theory correspondence
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We establish an exact connection between the Choptuik scaling parameter for the three-dimensional
Barados-Teitelboim-Zanelli black hole, and the imaginary part of the quasinormal frequencies for scalar
perturbations. Via the anti—de Sitter space/conformal-field theory correspondence, this leads to an interpreta-
tion of Choptuik scaling in terms of the time scale for return to equilibrium of the dual conformal field theory.
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[. INTRODUCTION where y is the Choptuik scaling parameter. This relation,
although not understood, suggested a deeper connection be-
Within the context of numerical relativity, one of the most tween black hole critical phenomena and quasinormal
significant recent results is the evidence for universal scalingnodes.
behavior in black hole formatiofil,2]. In particular, one In this paper, we compute exactly the quasinormal modes
considers a generic smooth one-parameter family of initiabf massive scalar fields in the background of the BTZ black
data (labeled byp), such that a black hole is formed for hole, see alsp11,12. It is shown that the imaginary part of
values ofp greater than a critical valug*, while no black the quasinormal frequencies has a universal scaling behavior
hole is formed forp<p*. The mass of the black hole then precisely of the form(2). This leads to a conformal field
satisfies the scaling relatidi] theory interpretation of Choptuik scaling within the context
of the AdS/CFT correspondence.
M~(p—p*)”, (o
1. QUASINORMAL MODES OF THE BTZ BLACK HOLE
wherey is a universal exponent known as the Choptuik scal- To begin, we recall that the BTZ black hole is a solution
ing parameter. 3], it was shown that the Gott time ma- of the vacuum Einstein equations of three-dimensional
chine[4], namely a two-body collision process, gives a pre-anti—de Sitter gravity, i.e., with negative cosmological con-
cise algebraic mechanism for the formation of thestantA=—1/12 The line element can be written in the form
(2+1)-dimensional  Baados-Teitelboim-Zanelli (BTz)  [19,20
black hole. This led to an exact analytic determination of

Choptuik scaling. r2  J2 r2 g2\t

In [5-13, the quasinormal modes of scalar fields in the ds°=—| —M+ —+—|dt?+| —M+ —+—] dr?
background of anti—de Sitter black holes were studied. The | ar 1= 4r
associated complex quasinormal frequencies describe the de- 3 2
cay of the scalar perturbation, and depend only on the pa- +r2( dop— —dt) . (3)
rameters of the black hole. In terms of the anti—de Sitter 2r2

space/conformal-field theory(AdS/CFT) correspondence

[14-18, an off-equilibrium configuration in the bulk AdS The mass and angular momentum of the black hole can be
space is related to an off-equilibrium state in the boundarngexpressed in terms of the inner and outer horizon radii,
conformal field theory. The time scale for the decay of theas

scalar perturbation is given by the imaginary part of the qua-

sinormal frequencies. Thus, by virtue of the AdS/CFT corre- r2+r2 2r.r_

spondence, one obtains a prediction of the time scale for M= > J= T (4)
return to equilibrium of the dual conformal field theory. In- |

terestingly, it was shown numerically] that the imaginary

part of the quasinormal frequencies for intermediate-size@nd we choose units for Newton's constant such th@t 8

black holes in four dimensiong,,, scaled with the horizon =1. _ _ _
radius,r ., . In particular, it was found that We wish to study the properties of a massive scalar field

in the background geometry of the BTZ black hole. A special
feature of this (2-1)-dimensional case is that the corre-
1 sponding wave equation can be solved exactly in terms of

@im yr+’ @ hypergeometric functionf21,22. By choosing appropriate
boundary conditions, we are led to an exact determination of
the quasinormal modes for the scalar field. The scalar wave

*Email address: dannyb@pop3.ucd.ie equation takes the form
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“ sinormal modes are defined as solutions which are purely
V2— = |®=0, (5)  ingoing at the horizon, and which vanish at infinf]. The
| solution which has ingoing flux at the horizon is given by
where i is the mass parameter. Using the ansatz R(z)=z%(1—-2)PF(a,b,c,2). (14)
d=R(r)e" M, (6)  To implement the vanishing boundary condition at infinity,

. . z=1, we use the linear transformation form{iz8
with the change of variables 5]

I'(c)I'(a+b—c)
2_ .2 — a1 _N\B(1_5c¢c-a-b_*"7"" = = “
S r r;, @ R(z)=z%(1-2)"(1—2) T(a)T(b)

2
r2—r
XF(c—a,c—b,c—a—b+1,1-2)+z%(1-2)#

we are led to the radial equation I'(c)T(c—a—b)

X——————F(a,b,atb—c+11-2).

1 d2R+ 1 dR+ A+B+ c )R—O 8 Hemaliemt) | |
2 z)d22 ( Z)dz z 1-z) ®) (15)

Here, Clearly, the first term in Eq(15) vanishes. However, the
vanishing of the second term imposes the restriction
4 2
Azl—(wh_mr) , c—a=-n, or c—b=-n, (16)
4(r% —r2)? |

where f=0,1,2...). This condition leads directly to an
m \2 exact determination of the quasinormal modes. From Eqg.
r+) , 9 (12), we have

a=a+pB+iy—B,
__# (17
=% b=a+p8—iV—B.
We now define Thus, we find that the left and right quasinormal modes,
denoted byw, andwg, are given by
R(z)=z%1-2)PF(z). (10
. . m [ri—r_ 1 1
The radial equation then assumes the standard hypergeomet- o, =——2i n+=+=vltul,
ric form [23] | 12 2 2
(18)
1 d2F+ 1+a+b dF bF=0, (11 Mg T -
Z( z)dZZ [c—(1+a )z]OlZ abF=0, (11 wg=— 7 2 2 Nt o+ oVitpul.
where It is important to stress that this is an exact calculation of all
quasinormal modes for the scalar field in a general BTZ
c=2a+1l, background. The resultl8) agrees with the special cases
considered in[11,12, for =0 and J=0; quasinormal
atb=2a+2, (120 modes for the BTZ black hole were first studied[5]. We
_ ) also note that the imaginary parts of the quasinormal modes
ab=(a+p)"~B, scale linearly with the left and right temperatures, defined by
and [24] T =(ro—r_)2ml? and Tg=(r, +r_)/2mI2.
a2=—A, Ill. CHOPTUIK SCALING AND THE AdS /CFT
CORRESPONDENCE
1 (13
— The aim now is to determine the precise connection be-
,6’=§(1i 1+ p). tween these quasinormal modes and the Choptuik scaling
parameter of the BTZ black hole. Let us first recall that
Without loss of generality, we take=—iA and3=3(1 three-dimensional anti—de Sitter space, Ad%in be charac-
—V1+u). terized in terms of the flat spac@®? with coordinates

In the neighborhood of the horizon=0, the two linearly  (X1,X,,T1,T5,), and line elemenf20]
independent solutions of Eq(ll) are given by [23] ) 5 ) 5
F(a,b,c,z) andz} °F(a—c+1b—c+1,2—c,z). The qua- ds’=dX{+dX;—dT{—dT;. (19
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The induced metric on the submanifold

XE+X5-Ti-T5=—12, (20
then corresponds to the Agl&etric. It is convenient to com-
bine the coordinatesq; ,X,,T;,T,) into anSL(2,R) matrix,

1/ Ti+Xy Trt+X,
X== , 21
I _T2+X2 Tl—Xl ( )

with unit determinant. Thus, AdSmay be viewed as the
group manifold of SL(2,R), with isometry group
[SL(2,R)XSL(2,R)]/Z,. Thus, forXe SL(2,R), the isom-

etry group acts by left and right multiplicationX
—p  Xpr, with the identification p, ,pr)~(—pL,—pRr)-

The essential point to note is that the BTZ black hole

spacetime is locally isometric to AdSAs a result, it can be
obtained as a quotient of the universal covering space
AdS; by a discrete group of isometries of AgS-or the

regionr=r , this can be seen by defining the coordinates o

AdS; by [20,25

X1=I\/Esin?-<r|—+¢—rl—2t),

r r_
X2=I\/a—1cosr<l—;t— |—¢>) ,

(22
T1=I\/Zcosf(r|—+¢— rl—;t) ,
ror_
T,=1 \/a—lsin}‘(l—zt— I—d)) ,
where
r2—r?
a(r)Z(ri_rZ_), (23

and ¢ e (—,), te(—»,%). It is then straightforward to
show that the Ad$ metric (19) transforms into the BTZ
metric (3). However, the coordinaté in Eg. (22) has an
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It is important to note that elements 81.(2,R) are clas-
sified according to the value of their trace, namilg|

[TrT|<2 elliptic,

|TrT|=2 parabolic, (25)

|TrT|>2 hyperbolic.

Thus, we see that the left and right generators of the BTZ
black hole are hyperbolic elements.

In order to discuss the formation process for the BTZ
black hole, we first recall the algebraic construction of par-
ticle spacetimes with vanishing cosmological cons{&Ti.

In this case, the Lorentz groil®Q(2,1) is locally equivalent

to SL(2,R). A point particle spacetime in (21) dimensions

is then defined via identifications by an elliptic generator of
L(2,R). Specifically, the spacetime for a single static point

iparticle is obtained by removing a wedge of deficit angle

and then identifying opposite sides of the wedge. The par-
ticle spacetime is thus defined via the rotation generator with
anglea: namely,

o L
COSE —SInE

R(a)= (26)
L« o
SIHE COSE

The mass of the particle is given loy= «/r, in units with
8G=1, and the resulting spacetime has a naked conical sin-
gularity.

A moving particle spacetime is obtained by boosting to
the rest frame of the particle, rotating, and then boosting
back. The corresponding boost matrix is given by

coshi— - sinhgsimi) sinhgcos¢
B(§)= ¢ ¢ ¢ :
sinhécos¢ coshz— + sinhisin 10
(27)

where & is the boost vector witE=|£, and ¢ is the polar

infinite range, and thus to identify the BTZ black hole, we angle. Thus, the generator for a moving particle takes the

must impose periodicity in theé coordinate. This identifica-

tion is an isometry of Adg§ and corresponds to the element

(pL pr)y Wlth [20]

eﬂ'(rJrfr,)/l 0
pL= 0 g m(ra—r )]

e7T(I’++I’,)/| 0 (24)
PR™ 0 e m(ratr )i

The BTZ black hole is then defined as the quotient of the
universal covering space of Ad®y the group generated by

(pL,pRr)- The other regions with<r, can be dealt with in
a similar fashior[20,25.

form

T=B(§R(a)B X, (28)
where
a a & &
T11=cos; +2sinzcoshysinhcose, (29)
Tio= —sing cosi’?§+sinhz§
+2 sinc—zcos fsin é:sinqS
pooshysintysing,
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L« I - For the right generator, we choogg=TC with ay=ag
Tlesmz cosﬁ§+smhzz —a, ¢pp—dg=r, leading to
a & & i ™ _ o §A+§B)
+2 sinzcostpsintysin ¢, 51PR COS"( p(re+r-) l+28|rF2005H 5
=pPR- (32

a ca & &
T22=C08; —2 sinycosfpsintcose. We see that botlp, andpr become hyperbolic if the input
parametersy, &5, &g Satisfy the appropriate Gott conditions,

To generalize this construction to AglSve simply note namely p,>1 and pg>1. Thus, the critical value of the
that the static and moving particle spacetimes can be definédput parameters ip;' = ps=1. As shown in[3], the Chop-
in an analogous fashion. The essential difference is that thgik scaling parameter can now be simply read off from Eqgs.
particle spacetimes are now defined through left and right31) and (32), by using the formula, arccogh=In[p
generators. IrﬁgG,ZS,ZQ, the formation of BTZ black holes 1 [p7—17. writing p, = p; + €, andpg=p% + €, we find, to
from point particle collisions was investigated. In particular, jeading order,
it was showr 3] that the Gott time machini] (a two-body
collision procesp suitably generalized to anti—-de Sitter ro—r_ 2
space, provides a precise mechanism for the formation of the o 7(DL— pE)Y2
BTZ black hole. Moreover, this purely algebraic process, in
which a product of two elliptic generators becomes a hyper- n V2
bolic generator, leads to an exact analytic determination of Ferl-_ —(pr—pk)*2
the Choptuik scaling parameter. | 7 TROFR
The Gott time machine is defined as a two-body collision _ . )
process, with particles labeled ByandB, such that the mass 1 huS, the Choptuik scaling parameter for.(=r_) is y
and boost parameters obey a certain constraint, known as thel/2- One can equally well express the scaling behavior in
Gott condition[4]. The elliptic generator for each particle is t€rms of the massl and angular momentu by using Eq.
defined in terms of its mass and boost parameters, denoté)- If the Gott condition is not satisfied, then one has an

by « and £. Moreover, the effective generator for the two effective particle spacetime with an elliptic generator. There-
particles is given by ’the produd7,30,31, namely T¢ fore, the nature of the transition described above is between

=TgTa. The order parameter of interest is the trace of thi* BTZ black hole spacetime and a particle spacetime with a
generator, which takes the forfg] naked conical singularity. By definition, the BTZ black hole
' is defined in terms of a hyperbolic generator. Thus, irrespec-

(33

1 an ap . an  ag tive of which type of matter is used to produce such a black
ETrTG= —cos?cos?—gn?sm? hole, the ultimate result is that the order parameter is defined
as the trace of this hyperbolic generator. As we have seen, as
Can  ag Entép En—&p long as the spacetime on the other side of the transition is a
+sm73|n? cosﬁ( 5 +cosﬁ’-( > ” particle spacetime, the formation process will be character-
ized by a scaling parameter of 1/2. Indeed, such a scaling
Cap | ag Ent &g exponent of 1/2 was found for collapsing dust shell§38].
—SinZsinS-cod a— ¢p) COSW( > Other aspects of Choptuik scaling for the BTZ black hole

have been investigated {183—34, although in these cases

the nature of the transition is different from the above.

: (30 We can now compare this result with the quasinormal
frequencieg18). We see immediately that the negative of the

The original Gott time machine is recovered by choosingmaginary part ofw,  and wg, denoted by ), and

particles with equal masses, and equal and opposite boosfsyr)im, scales with (. —r_) and (,+r_), respectively.

namely ap=ag=a, éx=E&=£&, dpa— dpg=. Thus, when In particular, we have

the Gott condition is satisfied, namely &2cosié>1, we

- cosﬁ( @)

see thafT® is a hyperbolic generator. When the Gott condi- S Lo 1 1
tion is not satisfied, we have an elliptic generator. (@ )m= ;, |2 n+ §+ 2 ptl],
To construct the BTZ black hole, we simply take the in- 34)

dependent left and right generatqgss,pr to be defined in 10 +r 1 1

terms of two-particle Gott generators. Thus, we take (WR)m= — Rl I w+1].

=TC in Eq. (30) with apx=ag=a, ¢pp— ¢g=0. This gives AN G 2 2

1 T L Ea— &g We have thus established an exact connection between the

ETTPLICOSf(l—(H—f)) =—1+ Zsszcoer( > ) Choptuik scaling parameter and the imaginary part of the

guasinormal modes. It is satisfying that in the

=p.. (3D (2+1)-dimensional case, these exact calculations lead to a
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result precisely of the form noticed if¥]. The Choptuik magnetic case, the modes are the same as those of a massless
scaling parameter of=1/2 used to establish this connection scalar field, and thus exhibit the connection with Choptuik
will be present for any type of matter, when the transition isscaling. For the Weyl perturbation, the modes have been cal-
between a BTZ black hole phasdefined by a hyperbolic culated numerically, and exhibit a similar connection.
generator and a particle spacetim@lefined by an elliptic By virtue of the AdS/CFT correspondence, the imaginary
generator. It should be stressed that we have verified thePart of the quasinormal modes has a direct interpretation in
connection between this Choptuik scaling parameter and th&e dual conformal field theory. In the case at hand, the
quasinormal modes of a scalar perturbation of the black hold2oundary conformal field theory of AdSontains both left-

Of course, one can also consider quasinormal modes asso&0ving and right-moving sectof87], with Virasoro genera-
ated with other forms of matter, as well as those associatetbrs Lo=(r, —r_)?/2l andLy=(r,+r_)?/2l, respectively.
with the gravitational perturbations of the black hole. It re-Thus, the return to equilibrium of the conformal field theory
mains to be seen if there is a similar connection between this specified in terms of the left and right time scales given by
Choptuik scaling parameter and the imaginary part of these, =1/(w ), and 7r=1/(wg)m. Further analysis of BTZ
modes. The quasinormal modes of electromagnetic and Weyllack hole formation within the context of the AdS/CFT cor-
perturbations have been calculated I2]. For the electro- respondence has been presenteB38+41.
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