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Extending the lifetime of 3D black hole computations with a new hyperbolic system
of evolution equations
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We present a new many-parameter family of hyperbolic representations of Einstein’s equations, which we
obtain by a straightforward generalization of previously known systems. We solve the resulting evolution
equations numerically for a Schwarzschild black hole in three spatial dimensions, and find that the stability of
the simulation is strongly dependent on the form of the equatioes the choice of parameters of the
hyperbolic system independent of the numerics. For an appropriate range of parameters we can evolve a
single three-dimensional black holette 600M —1300M, and we are apparently limited by constraint-violating
solutions of the evolution equations. We expect that our method should result in comparable times for evolu-
tions of a binary black hole system.
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[. INTRODUCTION Einstein's equations, when written as a Cauchy problem,
can be decomposed into two subsystems of equations: con-
A key unsolved problem in general relativity is to provide straint equations that must be obeyed on each spacelike hy-
a detailed description of the final moments of a binary blackpersurface, or time slice, and evolution equations that de-
hole system as the two black holes plunge together angcribe how quantities propagate from one hypersurface to the
merge. While this problem is interesting in its own right, the Neéxt. An analogous decomposition occurs in electromagne-
current deployment of the Laser Interferometric Gravita-tiSm, which is naturally split into time-independefutiver-
tional Wave Observatory and other gravitational wave inter9€Nc8 equations that constrain the fields at a particular time,
ferometers provide additional incentive for finding a timely 2d time-dependeitéurl) equations that determine their evo-
solution: coalescing compact binaries are expected to be t{4tion- For both electromagnetism and gravitation, the sys-

primary sources of gravitational radiation observable bytem of equations Is o_\/erdetermlngd n the foIIowm_g_s_ens_e: i
tﬂe constraint equations are satisfied at some initial time,

these instruments. A comparison of observed grawtatmnat en the evolution equations guarantee that they will be sat-

wave forms to Qetalled theoretical predictions of b'r.]a.ryisfied at subsequent times. For numerical black hole compu-
black hole evolution may allow one to test general relativity

: L . . 7 tations, one typically solves the constraint equations only on
and other theories of gravitation, to identify black holes iny,q jnitial time slice, and then uses the evolution equations to
distant galaxies and tg measure their masses and spins. advance the solution in time.

Although both the initial inspiral of a binary black hole However, the decomposition of Einstein’s equations into
system and the final ringdown of the resulting Kerr blackeyojution equations and constraints is not unique. For ex-
hole are well described by perturbation theory, Understandingmrﬂe, one can add any combination of constraints to any of
the plunge from the innermost stable quasicircular orbitthe evolution equations to produce a different decomposition.
through the coalescence will require numerical solutions ofndeed, there have been a large number of new formulations
the full Einstein equations in three spatial dimensions. Suclyf 3+ 1 general relativity proposed in recent yefss8—27,
numerical computations are in progr¢4s?]; however, they many of which have attractive properties such as symmetric
are currently plagued with instabilities that severely limit thehyperbolicity.
duration of the simulations. Indeed, until recentB} three- All such formulations must have the same physical solu-
dimensional(3D) Cauchy evolution codes without built-in tions since they describe the same underlying theory. How-
symmetries have had great difficulty evolving even a singleever, the set of evolution equations also admits unphysical
Schwarzschild black hole for the amount of time that wouldsolutions such as constraint-violating modes, and these un-
be required for a binary orbit. physical solutions will be different for each formulation.

Many of the stability difficulties affecting black hole com- Usually one is not interested in unphysical solutions, but if
putations are undoubtedly due to the technical details of theuch a solution grows rapidly with time, any small perturba-
numerical solution scheme; there are many such difficultiesion (say, caused by numerical errpthat excites this solu-
to overcome in any large scale numerical solution of partiation will grow and eventually overwhelm the physical solu-
differential equations. However, there is also evidence thation. This is one reason why some formulations of Einstein’s
some of the stability problems are due to properties of theequations may be better suited for numerical evolution than
equations themselves, independent of any numerical approxothers.
mation. In particular, by rewriting the equations in a different  In order to explore the extent to which different formula-
manner but leaving the numerical method unmodified, ongions of Einstein’s equations affect the stability of numerical
can significantly affect the stability of the computation evolutions, we construct three new formulations of Einstein’s
[2-7]. equations, following a method similar to that of REE3].
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(1) A first-order system obtained directly from the hypersurfaceE,. Then the spacetime metriég uv induces
Arnowitt-Deser-MisnefADM) [28] system. This system has the spatial 3-metrig,,, on eachX; given by
five undetermined constant parameters that specify constraint @)
terms to be added to the evolution equations. These param- 9ur= " Gur T NN, 2.
eters determine the hyperbolicity of the evolution equations o ) )
and the values of the characteristic speeds. We find that cord € timelike vectort” is defined such that‘t, , =1, where
straining the system to have physical characteristic speeds. IS the covariant derivative dfwith respect to the space-
(i.e., the characteristic fields propagate either along the lighime metric. The lapse functioh and shift vectorg* are
cone or normal to the time slicstill leaves two of the five defined by
parameters free, and guarantees that the evolution equations

are strongly hyperbolic. In this case, the constraint quantities N=-t"n,, 2.2
also evolve in a strongly hyperbolic manner with physical
characteristic speeds. Bu=9,.t" (2.3

(2) A 12-parameter system obtained by applying a param- A
eterized change of variables to systé¢im. The additional If we adopt a coordinate systeft,x'} adapted to the spatial
seven parameters are completely free, and do not affect thgypersurfaces, the line element is given in the usuall3
hyperbolicity of either the evolution equations or the evolu-form
tion of the constraint quantities. This system can be reduced
to either the Frittelli-Reula formulatiofiL3] or the Einstein- ds?=—N2dt?+g;;(dX + g'dt)(dx + gldt). (2.9
Christoffel formulation[22] with an appropriate choice of
parameters. The seven additional parameters can be used he extrinsic curvaturi;; of the spatial surfaces is given by
ther to simplify the equations or to improve the numerical
behavior of the system. 1

(3) A two-parameter system that is obtained from system Kij=— §£ngij , (2.9
(2) by demanding that the principal part of the equations is
equivalent to a scalar wave equation for each of the six Com\hhere £ denotes a Lie derivative
ponents ofg;; . This system is particularly simple, is symme- Ei L : . " iant f b
trizable hyperbolic with physical characteristic speeds, and Instein’s equations are given in covariant form by
includes the Einstein-Christoffel formulatid22] as a spe- 1
cial case. @R, — =g DR=87T 2.6)

To determine whether modifying the formulation signifi- pro2 TR rr
cantly effects the numerical solution of the evolution equa-
tions, we perform numerical evolutions of single black holeswhere ()R, and ()R are the Ricci tensor and Ricci scalar
using a new 3D code we have developed. We evolve systemssociated with the spacetime metric, ang, is the stress-
(3) for simplicity. We find that by varying the two parameters energy tensor. In the 81 decomposition Einstein’s equa-
in system(3) while keeping the numerical evolution method tions are decomposed into the Hamiltonian constraint
fixed, we can vary the run time of the simulation by more
than an order of magnitude. For a single black hole, our
optimum choice of parameters yields evolutions that run to C=
t=600M—130M. This is long enough that, if this result
carries over to two-black-hole simulations, one could simu-t
late the last few orbits of a binary system and the final
merger.

In Sec. Il we derive systems 1-3 and conditions for hy-
perbolicity. We also derive evolution equations for the con-
straint quantities and discuss their hyperbolicity. In Sec. Il
we present numerical evolutions of systé®) for different .
choices of parameters, and show that particular choices yield doKij=—V;V;N+NR;; = 2NK;,K;*+NKK;j; —87NS§;
significant improvements. In Sec. IV we discuss our results
and our plans to simulate a binary system. —4mNG;(p=39), 2.9

(R—K,pK?2P+K?)—8mp=0, 2.7

N -

he momentum constraints
=V K#=V,K-87J;=0, (2.8

and the evolution equations

where K=g*°K,,, and V;, R, andR are the covariant
derivative, Ricci tensor, and Ricci scalar associated with the

Il. PARAMETRIZED HYPERBOLIC SYSTEM . . ~ . L
spatial 3-metric. The symbal, is the time derivative opera-

A.3+1 ADM tor normal to the spatial foliation, defined by
We begin with the standard 431 formulation of Ref. R
[28], which was discussed in detail in Rgf29]. Four- do=0d—E£p. (2.10

dimensional spacetime is foliated by the level surfatesf
a functiont(x*). Let n* be the unit normal vector to the The matter terms are defined as
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p=n*n"T,,, (2.11a 1
g Fkij:d(ij)k_zdkija (2.19
Ji=—n*g;"T,,, (2.11b L
§ R;; :Egab( d(idabj) T dad(ij)b— dalpij — d(idj)an)
Si=0;"9{"T.,. (2.119
1
b
and S=g2°S,,,. Definition (2.5 of the extrinsic curvature + Ebadaij_ Zdadaij_bad(ii)a_ Edai dy®
yields the following evolution equation for the spatial metric:
1 1 1
. + =d%dijyat = d,2°di0p+ = d20 dapj, (2.20
&Ogij =—2N K” . (212 2 {ha 4 jab 2 ab]

. . o 1
Note that the §pa_t|al metric and_lts inverse are used to lower  R=g2Pg°d(5,d,pc— dadpcq) +b3d,—bab?— Zdada
and raise the indices of all spatial tensors.
B. First-order form 1 3
. . N - Edabcdcab'l' Zdabcdabc- (2-2])
In order to cast the evolution equations in first-order form,
we must eliminate the second derivatives of the spatial me

ric. We define a new variablésymmetric on its last two tThe constraint equations are given by

ndices C Lo cd(5,d 9a0peg) + 1bad 1b b2 1ol d2
dkion'*kgij , (2.13) 2 dYabc aYbcd 2 a ova 8 a
1 1
and its tracesd,=g?"d,,, and b,=g°d,,. An evolution - Zdabcdcab+ g Jand abe— EKabKab+ EKZ—SWP,
equation ford,;; is obtained by taking a spatial derivative of
Eqg. (2.12 and using the fact that, and f?o commute. This (2.22
yields
ab 1 ab, 1 a a
A Gi=9 (3aKib—3iKab)+§K diap+ EKiad —Kiab
&Odkij:_ZN&kKij_ZKijakNr (214)

where the Lie derivative ofl; is Finally, the evolution equation for the extrinsic curvature be-

. . . . comes

£ 50kij= B0a0yij T dajj B+ 2d a1 9)) B +29a(i'9j)<91(<2,3 :
A R

1
aOKij:N[Egab(a(idabj)+&ad(ij)b_aadbij_&(idj)ab)
Since we have introduced a new variable that we will

evolve independently of the metric, we have an additional 1 1 1y

constraint + 5 0%aij— 70%a; = bd)a 5y dy”
Cuii=0yii — @i =0 2.1 ! 1iabg o Lo

which must be satisfied in order for a solution of the first-

order evolution equations to be a solution of Einstein’s equa- — 2K;oK;*+ KKjj | = 39N — EdaijﬁaN

tions. Note that the spatial derivativesdyf; must satisfy the

constraint +dij)?9aN—87NS;—47Ng;j(p—9S). (2.24

The hyperbolicity of the system of evolution equations
can be determined by examining its principal part. Consider

o ) a system of the form
because second derivatives of the metric commute. Therefore

we make the following substitution when we encounter sec- f?ou+A‘ du=F, (2.25
ond derivatives of the metric:

Criij = dyij =0, (2.17

whereu is a column vector of the fundamental variables, and
9 A' andF are matrices that can depend orbut not on de-
rivatives ofu. For a particular unit 1-forng; , one defines a

. . . . characteristic matrixC in the direction normal t&; :
In terms of these new variables, the affine connection, Riccli @

tensor, and Ricci scalar are given by C=A'¢. (2.2

k1 9ij = Iy - (2.1
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The characteristic speeds in the directigrare the eigenval- D. Addition of constraints: System (1)

ues ofC. If all characteristic speeds are real, then the system By adding terms proportional to the constraints, we can
is said to be weakly hyperbolic. If, in additio€, has a com- modify the evolution equations fdt;; andd,; without af-

plete set of eigenvectors, and the matrix of these €igenvegacting the physical solution. We modify the evolution equa-
tors and its inverse are uniformly bounded functions£af s (2.14) and (2.24) by

the spacetime coordinates, and the solution, then the system
is said to be strongly hyperbolic. If the matricAsare sym- 30K" =(-- )+ yNG;: C+ INGCofiivp (2.30
metric, the system is said to be symmetric hyperbolic. If the N N alinb:
matricesA' can be brought into a symmetric form by multi-

plying by a positive-definite matrix called a symmetrizer, the

system is said to be symmetrizable hyperbolic. Symmetricynere (. . . represents the right-hand side of either equation

symmetrizable, and strongly hyperbolic systems admit 32.14) or (2.24, and the constraint parametérg £, 7, x} are

‘r’]"gt”['gg]sed Cauchy problem; weakly hyperbolic systems doyppitrary constants. The evolution equations are now given
For the systems described in this paper, we explicitly con-by

struct a complete set of eigenvectors that depend uwpon 309 =0 (2.32

the metric, and its inverse. Provided that the matrix norms of ~ °°90

the metric and its inverse remain bounded, then the norms of

bodkij:("')"' 7NGiCj)+ xNg;;Cy, (2.30

o 1
the matr_ix of eigenvectors and its inverse are bounded, so the AoKij=— ENgab[ 9a0pij— (1+ ) dadijyp— (1= £) d(iap)
system is strongly hyperboli@1].
Using the method c_)utllned |ni Append_|x A, and assuming +(1+20) djyan— J’gijQCdﬁadcdb
that the lapseN and shift vectoiB' are arbitrary gauge func-
tions independent of the dynamical variables, we find that +’ygingdaadbcd]1 (2.33

the ADM equations written in first-order form are only
weakly hyperbolic, as the characteristic matrix of the system bodkij: — 2N K + N g?°( 79k 9aKpj+ X9ij 9K bk
has eigenvaluef),* 1}, but does not have a complete set of

eigenvectors. Fortunately, the hyperbolicity of the equations — 79k 9))Kab— X9ij IKab), (2.39
can be changed by “densitizing” the lapse and adding con- o .
straints to the evolution equations. where= denotes equal to the principal part. For brevity, we

show only the principal parts of the evolution equations, as
these are what determine the hyperbolicity of the system.

C. Densitization of the lapse The full evolution equations are lengthy and available from
We densitize the lapse by defining the authors upon request.
We find that the eigenvalues of the characteristic matrix of
Q=log(Ng~ ), (227 the system ar¢0,+1,+c;,*c,,*cg}, where
where g is the determinant of the 3-metric, and is the C1= 20,

densitization parameter, which is an arbitrary constant. The

lapse densityQ and the shift vectop' will be considered as 1

arbitrary gauge functionsndependentof the dynamical Co=——=\n—4no—2x—120x—37¢, (2.395
fields. With this definition we have 242

1

IN=N(2Q+ad), (2.28 C3= ﬁ\/2+47_ n—2yn+2x+ayx—ni.

di9iN=N[d;d;Q+(4Q)(9;Q) +20di9)Q Thus, in order for the system to be weakly hyperbolic, the
+ Ugabﬁ(idj)ab— Udiabdjab+ o?did;]. (229  parameters must satisfy

=0,
Substituting the above expressions into the evolution equa-
tions, and examining the hyperbolicity of the modified evo- n—A4no—2xy—120y—37(=0, (2.36
lution equations, we find that densitizing the lapse is not
sufficient to make the evolution system strongly hyperbolic. 24 4y— p—2yn+2x+4yy— n¢=0.
In order for the system to remain even weakly hyperbolic the
densitization parameter must satisfy=0, as the eigenval- If the above conditions are met, we find a complete set of
ues of the characteristic matrix are nd®,=1,=2c}. In  eigenvectors, so that the system is strongly hyperbolic, un-
Sec. 11D, we will find that densitizing the lapse is a neces-less one of the following conditions occur:
sary condition for strong hyperbolicity, and that if we de-
mand physical characteristic speeds we must chocseg. c;i=0, (2.373
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C;=C3#1, (2.37p  evolved quantities. Furthermore, we find that the constraint
evolution system is strongly hyperbolic whenever the regular
ci=Cz=1+#cC,. (2.3790  evolution system is strongly hyperbolic.

If any of the above conditions are met, the system is only
weakly hyperbolic. Note that ir=0, thenc,;=0, so that ) ) - )
densitizing the lapse is a necessary condition for strong hy- The evolution equations can also be modified by redefin-
perbolicty. Also note that ifp=y=0, thenc,=0, so that INg fche. variables that are evolved. We define the generalized
constraints must be added to the evolution equatiordfgr ~ €XrNSIC curvatureP;; using the relation
in order to have a strongly hyperbolic system. -

For physical characteristic speeds, each ofdf=is ei- Pij=Kij+2g;K, (2.44
ther zero or unity. To make them all unitshe only choice “ ) ) ]
that yields strongly hyperbolic evolution equatibmequires wherez is an arbitrary parameter. The inverse transformation

F. Redefining the variables: Systen(2)

either is given by
8+57+10 whereP=g?"P_,, and
SR ARl & (2.380 9" ab
n(7+6y) 5
7=- =, 2.4
— w (2.380 1+3z (2:49
X (7+67) ' )
which implies thatz# — 3 for the inverse transformation to
or exist.
1 7 1 6 We define the generalized derivative of the methilg; ,

(2.39

In the first case, there are two free parameters, and in the
second case there is one. In both cases, the evolution equa- ~ ~
tions are strongly hyperbolic as long as the free parameters + gyl ed)+dby)];. (2.47)
are chosen such that all five parameters are finite.

1. n n “
Myij :E{kdkij +edj+gij[ady+bby]

The inverse transformation is given by

E. Evolution of the constraints dkij ZZ{KM il +gM(ij)k+9ij[5Mk+HWk]
Taking d, of the constraints, and replacing all derivatives — -
of the fundamental variables with the constraints and their + Gl eMjy +dWy) 1, (2.48

spatial derivatives, we obtain the following equations for the _ b _ _ab
evolution of the constraints: where the traced =g "Myap andWic=g™"Mapy, and

sa=6bce—6ade—ae?+be?+ ce?— de?+ 8bck— 8adk

. 1
doC=— 5(2—n+2x)Ng*99,Cy, (2.40 SO U
2 — 4aek+ 2bek+ 2cek— 4ak?, (2.493
99Ci== (1+2y)NGiC+ NG (1= ) IoCorsi sb=—8bce+ 8ade+ 2ae?—2ce?— 4bck+ 4adk+ 4aek
— 2bek+ 2dek — 4bk?, 2.49
+(1+g)apcsiqr_(1+20')07pcqirs]v (2.4)) € € ( b
56Cais =0, (247  0c=—8bce+8ade+2ae’~ 2be”—4bck+adk+4aek
—2cek+2dek—4ck?, (2.499

~ 1
30Cuiij =3 7N(Qj19gCi+ ipdigCi) + xNg;;j 9 Ciy» (2.43 L

5d=4bce—4ade— 4ae®+ 12bck— 12adk + 4bek + 4cek
where again for brevity we have only shown the principal

A2
parts of the equations. Adke, (2.499
The eigenvalues for the constraint evolution system are .
{0,+¢,, = c5}. Because this is a subset of the eigenvalues of%€=2€, (2.49¢
the evolution equations, the constraints will propagate atthe
same speeds as some of the characteristic fields of thégk=—e— 2k, (2.499
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_22_ Ah_ o2 _ _ 1 _
dp=e"—ek—2k%, (2499 pa=(1+60)a+ (14 20)k— 5(1-do—3¢)c

5= 5,(10bc— 10ad— ae+ 3be+ 3ce+ de+e?— 6ak

1 _
RO —5(1-0e, (2.539
—2bk—2ck—4dk—ek—2k?). (2.49h
For the inverse transformation to exigi# 0. ps=(1+2y+4z+6yz+602)b—(y+2z+3y2)k
Thus we have seven additional redefinition parameters 1 R R o
{a,b,c,d,ek,z} (or equivalently{a,b,c,d,e k,z}) that can —5(1+2y+4z+6yz—4dozt{)c

be used to modify the evolution equations. Note that Eqs.

(2.46 and (2.49 remain true under interchange of 1 - - a—
AAAAAAAAAAA +§(7+22+3yz+4oz)e, (2.53¢

When the principal terms in syste(f) are transformed,
terms containing derivatives of the metric appear because of, . (1+42y+47+6y2+602)a+ (y+22+3y2+202)k
the traces in Eq92.495 and (2.48. These terms are elimi-
nated using Eqg2.12 and(2.13.

The redefinition parameters do not change the eigenvalues
of the evolution system, nor do they change whether or not

1 N N n _
- §(1+ 2v+4z+6yz—4oz+{)d

the system is strongly hyperbolisee Appendix R In addi- 1 - A

tion, they have no effect on the principal part of the con- B §(7+ 2z+3yz)e, (2.530
straint evolution equations. The redefinition parameters,

however, do affect the eigenvectors of the evolution system v =k (2.539

and thus also affect the characteristic fields. In addition, the

redefinition parameters change the nonlinear terms in the -

nonprincipal parts of the evolution equations and the con- V2=, (2.53h

straint evolution system. 1 . L L
The principal parts of the evolution equations Ry and = (2= 27— )= = ( -+ o Z(p+2v)e— = 1k
My are v3=5(2=2n=x)d=5(n+3x)c— 7 (n+2x)e— 57k,
(2.53)
509”20, (25@ 1 1 1 1.
va=5(2=2n=x)b=5(n+3x)a- ;ne—5xk, (2.53)
IoPij=— NG 1119aMpij + 129aM (ijyb+ 139 M ap))
1 — = —.
+ 140GM jyan+ 159i9°9aM cap vs=>(2+ 7+ 3+ 62+ 292+ 6x2)C
+ 160i;9°%aM peq), (2.5)

1 — -  —. 1 —
. +§(277+X+22+47IZ+2XZ)d+ 5(77+27]Z)k
JoM i = — N(v1Pyj + 120 Pyt 13971 9aPo

1 - - —.
+ 149,92 9aPoict ¥59* (i 7)) Pab + Z( p+2x+4z+2nz+4x2)e, (2.53K
+ 160, 0% kPap). (2.52
1 - - .1 _
where v6=§(2+ n+3x+6z+275z+6yxz)a+ 5(27]4-)(4-22
— 1 — — — 1 — 1 _ — .
Ml:k_§(1+§)e' (2.533 +4nz+2xz)b+ Z(7]+2772)e+ E<X+22+2X2)k'
(2.53)
1 — _
/,Lzzz(l—g)e—(l'f' )k, (2.53D  Again, the full evolution equations are available from the

authors upon request.
Furthermore, we note that if; = xv; for all i and constant

_ 1 _
#3=(1+60)b—(1-Dk=5(1-40-3{)d norm argument of Ref{13]. However, these conditions do

k, the system is symmetrizable hyperbolic using the energy

not have to be met for the system to be well-posed. It is

1 —
+5(+4ot e, (2.539 hyperbolic systems.

064017-6

possible to construct a symmetrizer for any of the strongly



EXTENDING THE LIFETIME OF 3D BLACK HOLE . ..

G. Evolving with contravariant indices

So far, we have written all of our fundamental variables
with covariant indices. Alternatively, we could have defined
the new variable

Dkij E&kg” . (254)
Note thatdy;;=—Dy; . If we evolve{g",P",M,/1} instead
of {gij ,Pij ;M\jj}, it would result in only trivial changes to

the principal parts of the equations. The characteristic speeds

PHYSICAL REVIEW D 64 064017

1
{0’,)/,{,77,)(}={§,0,—1,4,0], (2.583

{z,k.a,b,c,d,e}={0,1,0,0,2--2,0}. (2.58b

This system is symmetrizable hyperbolic and has very
simple principal parts

50Pij:_Ngab§aMbij f (2593

would be unchanged, as would the nature of the hyperbolic-

ity of the system, since the principal part of the metric evo-
lution equation is zerdsee Appendix B The only changes

would occur in the nonlinear terms of the evolution equa-

tions.

H. Frittelli-Reula system
We recover the system of Rdfl3] if we make the fol-
lowing choices for our parameters:
—4a
1+3a)’
(2.553

P _1+3a 2y
O-! 1 H 1 = _6 1 -
AR 2 '1+3p

(2.55h

where {«,3,7,€} corresponds td«,B,v,¢e} in Ref. [13].
However, as pointed out in Rd31], this system is not sym-
metric hyperbolic unless the term2h'(MY¥, | in Eq. (16)
of Ref.[13] is replaced with—2h'MP¥, | by adding a term
proportional to constrain€2.17). In our system this corre-
sponds to changing=1 to /=—1 in Eq.(2.55.

In Refs.[8,31,33, this correction has been made for the
parameter choicga, 8,y,€}={—1,—1,15}; we recover this
system if we choose our parameters to be

1
{a’,y,é’,n,)(}Z[E,—l,— 1,4,—2], (2.56a

{z,k,a,b,c,d,e}={-1,1-1,0,0,0,Q. (2.56h

The system of Refd.8,31,33 was further generalized in
Ref. [27], where the constraints were used to modify the
evolution equations in a manner similar to that in Sec. Il D.
We recover the system of R¢R7] by choosing

1 - - ~ ~
{01y1§!771X}: 51_712(9_114771_277 il (2573

{z,k.a,b,c,d,8}={-1,1-1,0,0,0,0, (2.57h

where{>,0,7} correspond tdy,0, 7} in Ref.[27].

I. Einstein-Christoffel system

We recover the system of Rgf22] if we make the fol-
lowing choices for our parameters:

boMkijz_NakPij . (259b
Essentially this system is a set of $one for eacHi,j} pairn
coupled quasilinear scalar wave equations with nonlinear
source terms.

J. Generalized Einstein-Christoffel system: Systen(3)

If we examine the principal part of syste(R), and de-
mand thatu,;=v,=1 and all othery; and »; vanish, we
obtain a two-parameter systef;,z} that has the same
simple wave-like form(2.59 as the Einstein-Christoffel sys-
tem. This system is obtained by setting

|1 —4+n 1 —4+ 7
{0',')’1517],)(}_ EITI ynyT )
(2.603
AAAAAAA —4+ 9—122+99z
{z,k,a,b,c,d,e}=1 z,1; ,
27
A—p+122—T9z
U - U ,2,—2,0], (2.60b

wherez# — % and7#0. This system has physical character-
istic speeds and is symmetrizable hyperbolic. The free pa-
rametery will affect the principal part of the constraint evo-

lution equations, while the parametemwill affect only the
nonlinear terms in the evolution equations and the constraint
evolution equations. It is this system that we will explore
numerically in Sec. lll. The complete equations for this sys-
tem are available upon request from the authors.

The characteristic eigenfields of this system are particu-
larly simple, and can be obtained from Eg8.59 without the
use of the lengthy decomposition procedure described in Ap-
pendix A. In a directiorg;, the eigenfields are

US=0;. (2.613
Ui =Mij— &E'My; (2.61b
Ui =Pij £ &My . (2.619

The U° quantities propagate along the normal to the time
slice (coordinate speed- 3'), and theU™ quantities propa-
gate along the light coneoordinate speee- '+ N¢').
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III. NUMERICAL RESULTS

In this section we present results from a numerical code
that solves the evolution equations of syst€®h in three
spatial dimensions plus time. This code, which will be de-
scribed in detail elsewhef@3], is a three-dimensional gen-
eralization of a spherically symmetric code discussed previ-
ously [34], and is based on pseudospectral collocation
methods. Our code works in full three dimensions; we do not
exploit any symmetries of the black hole solutions that we
evolve.

In this paper, we will concern ourselves only with single
black hole spacetimes. In this case, we solve the evolution /
equations in a spherical shell extending from inside the ho- 10-15 |
rizon to some artificial outer boundary. Although we use ' ' ! '
standard spherical polar coordinatesé ¢), we evolve the 0 20, M 40
Cartesian components of our variables; this allows us to use
scalar spherical harmonic§,,(6,¢) as angular basis func- FIG. 1. Momentum constrainf, vs time for evolutions of a
tions for all quantities. We use Chebyshev polynomials as th@ainleveGulistrand time slicing of a Schwarzschild black hole us-
basis functions in radius. ing the Einstein-Christoffel system. Results are plotted for several

As described in Ref[34], we use the method of lines in radial resolutions ranging from, =10 to 40, a fixed angular reso-
order to integrate forward in time with a fourth-order Runge-lution 1=7, and a fixed time resolutioAt=0.013\. Higher radial
Kutta method. Boundary conditions are imposed by con+esolutions correspond to smaller errors.
structing the characteristic fields that propagate normal to the
boundary, and imposing conditions only on those fields that B. Generalized Einstein-Christoffel system

propagate into the computational domain. Since all charac- Because we suspected that the instability shown in Fig. 1

therllstlc f|e:;js aé the |nn3.rt_bou'ndary ;rg ?hutgommg the .is related to the equations rather than the numerical method,
olg), no boundary condition is neede €ré and none I3, q repeated the above evolutions for various values of the

imposed. At the outer boundary, we impogg) =0 on - ) , .
b b posg) free parameterg andz, searching the two-dimensional pa-

each of the characteristic fields™ that is ingoing there. We ¢ ‘ luti : h iah
use analytic initial data corresponding to time-independenfamEter space for systems of evolution equations that might

slicings of a single black hole, and fix the gauge quantiiles be better behaved. We found that fgr=4/33 andz~ — 1/4,
and B' to their analytic values for all time. Note that the our numerical simulations ran for an order of magnitude
constraint equations are not solved explicitly, but are insteaéPnger than for the basic Einstein-Christoffel system. Typical

used as a check on the accuracy of our numerical integrdesults are plotted in Fig. 2. Although a growing mode is still
tions. present, its growth rate is much smaller than in Fig. 1, and

the momentum constraint is less than™fQuntil approxi-
A. Einstein-Christoffel system mately 600/.

Figure 1 shows thé, norm of a component of the mo-
mentum constraint for several evolutions of a Schwarzschild
black hole using the Einstein-Christoffel system, which is
equivalent to systeni3) with =4 andz=0. Initially the
fields are given analytically on a Painle@ullstrand time

10-t

slice[35-38. Explicit formulas for our variables on the ini- 10-5
tial slice can be found in Ref34]. N

As is evident from Fig. 1, the constraint increases with o
time until the simulation terminates. The evolutions with =
higher radial resolution run longer, but increase at approxi- 10-°

mately the same rate. In addition, for a fixed resolution, we
see no significant dependence Ab, and for a fixed radial
resolution and time step we see no significant dependence on
the angular resolution. This suggests that the growth of the

. . . 10-13
constraints may be due to an unphysical solution of the equa-

tions rather than a numerical instability. Numerical instabili- 0 200 /M 400 600

ties typically become worse when one increases the resolu-

tion or decreases the time step. In contrast, our results appear FIG. 2. Momentum constrai, vs time for the same evolutions
consistent with an unphysical solution of the equations thaghown in Fig. 1 excepty=4/33 andz= —1/4, and we plot more
initially has a nonzero amplitude because of small numericaladial resolutions. If the outer boundary is moved out t040M,
errors. the run time extends te- 1300M for the same accuracy.
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We see no evidence that the growth is due to a numerical
instability. In contrast, the evolutions in Fig. 2 appear to | —— | ——
converge to a well-defined solution. This solution is the sum / AN /] AN
of two components: a roughly time-independent component
and an exponentially growing component. By extrapolating O O
backwards along the growing component in Fig. 2, one can
see that this component has magnitugd 0 at t=0, \\ // \\ //
which is on the order of machine roundoff error.

As in the Einstein-Christoffel case, we see no dependence
on angular resolution or oAt. Our results do depend upon  FIG. 3. Two-dimensional illustration of multiple computational
the location of the outer boundary. In the evolution shown indomains that might be used to solve the binary black hole problem.
Fig. 2, the spherical domain extends fram=1.9M to r Each black holéshaded grayis surrounded by a single domain in
=11.9M. Moving the outer boundary further out results in the shape of a spherical shell, with the inner boundary of the shell
longer evolutions, increasing the run time from around\d00 just inside the horizon. Multiple cubical c_iomains _overla_p the spheri-
up to 13001 with the outer boundary at=40M. Moving cal shells. There_ are 16 shown here in t\{vo dimensions; the two
the outer boundary beyorrd=40M, however, does not have CuPes that contain the black holes are excised.

any effect. o o particular time-independent slicing that we used as initial
In add_ltlon to Pamlevé;ullstran_d slicings, we have run yata. In order to perform a time-dependent evolution, how-
Kerr-Schild[39,40] and harmonic-tim¢41,42 slicings of & ayer it will be necessary to allow the gauge to change as the
Schwarzsch[ld black hole with S|m|la( quahtgmve results. F‘_)revolution proceeds. If this is done by choosing the gauge
example, using the parameters of Fig. 2 with a Kerr-Schild ariables as functions of the dynamical variables, the hyper-
slicing as initial data, we were able to evolve up 0 pgjicity of the evolution equations may be affected. We are
=500M with the outer boundary at=11.9M, and up tot  ¢yrrently investigating how the imposition of more compli-
=900M with the outer boundary at=40M. We have also  cated gauge conditions can be done in a manner that does not
evolved a Kerr black hole withi=M/2 to t=400M, with a spoil the hyperbolicity of the system. In RéB4], we were

spherical shell extending from=1.5M to r=11.5M. able to impose dynamical gauge conditions by solving ellip-
tic equations for the shift and densitized lapse prior to each
IV. DISCUSSION time step, and holding these quantities fixed during each

step.

We have constructed a 12-parameter family of hyperbolic At present, we have no explanation as to why the particu-

formulations of Einstein’s equations that is strongly hyper- . X .
: . . lar choice of parameters used to produce Fig. 2 is so much
bolic for a wide range of the parameter space, and that in:

=, better than the Einstein-Christoffel system. This choice was
cludes the systems of Re{d.3] and[22]. By restrlctlng our  found empirically by running our code for various values of
selves 1o a two-parameter subset of these equations, we hat\ﬁee parameters. It would be extremely useful to have some

demonstrated how the choice of parameters can have a drﬁfeoretical understanding of why one particular parameter

matic effect upon the amount of time a numerical simulation_, "

. choice behaves much better than another, as the cost of per-

of a black hole can run before being swamped by an unz h he full |

hysical solution orming a parameter search on the full twelve-parameter sys-
P ' tem would be prohibitive.

Our runs with our best parameter choices appear to be Having found a system of equations and a numerical

limited only by the growth of constraint-violating modes ; ) ;
. . .~ method capable of evolving a single black hole for a physi-

which grow from the level of numerical roundoff errors. This X . .
cally interesting length of time, we now plan to turn our

is consistent with the results of R¢8], in which an unstable . . ’
S ; 3 ; attention to the evolution of a binary black hole system. For
mode limited the evolution of a single Schwarzschild black . X ) : e
evolutions of two black holes with excised horizons it will be

hole to aboutt=500M. A detailed comparison with their . . : :
ecessary to use multiple computational domasee Fig.

results is difficult to make, however, as they used a differen ). Each domain is evolved independently except at the do-
set of evolution equations and a different numerical imple-

mentation. as well as different aauae conditions and boundmain boundaries; there the incoming characteristic fields in
: gaug each domain are filled with the corresponding outgoing char-

ary conditions. A key feature of _thelr approach_ IS to use % cteristic fields from neighboring domains. We expect our
simple but stable boundary condition at the excision bound- . . X

. -, computational method to be capable of evolving the binary
ary, where physically no boundary condition should be

needed. In our aporoach. we do not need to anply anv boun ystem to times on the order of several hundwdnce the
ar conditions atptrr)1e exc;ision boundar pply any ifficult problem of determining appropriate gauge condi-

yln our analvsis of the hvperbolicit o)f/.the evolution e LIa_tions is solved. When we realize this, we will be able to
. y yp Y . U3 simulate the last orbit or two prior to the plunge as well as
tions we have assumed that the gauge varialiles shift .

" h : : the coalescence itself.

vector and the densitized laps@re given arbitrary functions
that are independent of the dynamical varialitee metric,
generalized extrinsic curvature, and generalized metric de-
rivatives. In our numerical simulations, we achieved this by ~ We thank Harald Pfeiffer, Manuel Tiglio, and James W.
setting the gauge variables to their analytic values for therork, Jr. for helpful discussions. This work was supported in
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For a symmetric second-rank tensor Pj; ,
APPENDIX A: HYPERBOLICITY

—pn-1
To determine the characteristic speeds and eigenvectors of Pij=D""v
a system of the form of Eq2.25, we proceed in two steps. 1
Instead of directly finding the eigenvalues and eigenvectors = Pi(jTTs)+2§(iP,()LT)+ (3§ &—g;)PtH
of C=A'¢§;, we first construct a transformatidh such that
C’'=DA¢D 1 is independent of the directiaf) and of the 1
metric quantitiesy;; . We then solveC’'w;=\;w;. The ei- +5(Gi—&g)P,
genvalues of the original matri€ are)\;, and the eigenvec-
tors areD ~tw; . where
TransformatiorD is the decomposition of each of the fun-
damental tensafor tensor-likg¢ quantities into its irreducible P=9""Pmn,
parts, as we now describe. SupposeDu. Then ifu andv (LL)_ zmen
are scalarsp is the identity operatory =u. For a vector PTH=E0¢ P,

quantityu=V,, D is defined by P(LT=gm| np
i - it mn

(A2b)

(A3)

(A4)

(A5a)
(A5Db)

(A5c)

(A5d)

its last

(A6)

Vi=D o=V +gVvO), (A1)
pITI=( L m 21 1|
where the longitudinal and transverse partsVpfare given e U mn-
by
For a third-rank objecu=M;;, symmetric on
v =gmy (A2a)  two indices,
|
Mkij:Dilv
(TTT) (TTLY (TTLa) (LTT) 1 (TLL) 1 (TLL)
=Myij T+ 2EMj) T+ 28M iy T+ M +ZMk (7fi§j—39ij)+§M(i (9j)k— &)
1o wn (LLT) 3 (TRR 1 (TrRR
+§Mk (9ij— &i&) + My (3§j)§k_gj)k)+ZMk (gij_figj)+§M(i (&hé—aj)
1 (RRT (RRT) 1 (LLL) . (LRR)
o MITTEE T 9i) FMETT(G)K €y dd + 5 M58 €5 6kdij — 20k €)) + 5 M (&9ij — &éié)
+MERY (g &5y — E&i),
where

MERD=gae"M cqp,
MERR=g2¢ M ¢y,
M =562 M ¢,
M{RRD=g°2L M ap,
M{TRR=g2°1 M 4p,
Mi(LLT)EgctfaJ_ ichab’
Mi(TLL)Egang-iCMcabv
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1
Mi(jLTnE'f°<lialjb— EJ—ijJ-ab>Mcabv (A7h)
1 .
Mi(jTTLS)_gb( (|CJ~ _ELijica)Mcaby (A7|)
M{TT =1 1%L, *Mcap, (A7)

1
M(k':'JTU [J_kcj_iaj_jb_ZJ_ij(SJ_abJ_kc_J_caJ_kb_J_ch_ka)
1 cb, a ca; b ab, ¢
—ZJ_kj(3J_ 1= L% P —1%017)

1
—ZJ_ki(3J_°aJ_jb—J_abJ_jc—J_CbJ_ja) M cap. (A7K)

Finally for a four-index objecty;;;, symmetric on its last two indices and antisymmetric on its first two indices,

Cklij =Dflv

2
:Cf(lTiJF)+_C(TTRRag|]+_C(RTTRa)glj+E(CI([TKTRRag]J+C(TTRRag| 3t (C(RTTRa)g +C(RTTR&)g]i)
2 (RTTR$ (RTTR$ 6 4 (LTR
—g(ci[k 91t Cjx 9|]|)_ RR¢ 9|J+—C RRanién+ € i é— _C[k Rén0ij
2 6
:C(leiJF)+—C(TTRRag|1 _C(RTTRa)glj+E(CI([TKTRRag]j+CJ(-[rkTRRag|]i)+g(ci([Ff(TTRag C(RTTRag]i)
_E(C(RTTRS) 4+ C(RTTR3 .)_§C(LTRR)§ _._i_fC(LTRR '§.+EC(LTRR)‘ £ _fC(RLTR)g B
3 ik 91 ik 9iji 5& [k 119ij 5¢ [k 911¢j Siy T 9ihHkén 5 [k 119ij

8 28 4 28 8
RLT RLT RTL
+1_5€fk Bongén+ 1_SCE| R)gj)[k&ﬁgcfk F<)§|]gij_1—5(/1 PonGéy— 1= (KT Rg)y +2€40)pénC RHR

(A8)
where
CRER=gPLILaC, 1, (A9a)
CRTER=goPga) 9C g, (A9b)
CRETR=geb¢d] 1 2C, o, (A9c)
C{-TRR=g0¢C)  Cogap, (A9d)
(RTTR$__ ~cb d a 1 da
Cii =97\ L Ly —35LijL " |Cedans (A9e)
Ci(jRTTRaEQCbJ-[idJ-j]aCcdabi (A9F)
Ci(jTTRRaEgabJ-[iCJ-j]dCcdab, (A9g)
28 8
C(leijF)E ( gkcgldgiagjb_ Engga(igj)[kgl]d+ Enggd(igj)[kgl]a
4 4 3
- ggabgd(igj)[kguc_ ggiJQCbgd[kgua_ ggijgabgkcgld Cedab- (A9h)
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Strictly speaking, Eq9.A6) and (A8) are not complete irre- If M is the matrix whose columns are the eigenvectots,
ducible decompositions. However, they are sufficient for outhen strong hyperbolicity is equivalent to de# 0, with all
purposes. A0 real.

If u consists of several tens@or tensorlike objects, then Now consider a change of variables- Tu, whereT is a
the effect of D is to transform each object independently matrix. If we multiply Eq.(2.25 on the left byT, we obtain
according to the above definitions. In matrix language, this R . R .
means thaD is block diagonal. v+ TAT L90=TF+(doT)u+TAT 1(4,T)u
APPENDIX B: CHANGE OF VARIABLES AND =F". (B2)

HYPERBOLICITY In the last step, we have used propefty above to rewrite

In this section we show that for a system of the form of 3, T and d,T in terms of derivatives of the metric, and we
Eq. (2.29, a change of variablgsuch as the transformation have used propert{8) to eliminate these derivatives, absorb-
from system(1) to system(2), or the raising and lowering of ing the resulting non-principal terms into the new right-hand
tensor indices of fundamental variabjemes not change ei- sideF’.
ther the characteristic speeds or whether the system is The characteristic matrix for E4B2) in the directioné; is
strongly hyperbolic, provided that the following conditions C'=TA T 1¢ . Note that
are met: . :

(1) The change of variables is linear in all dynamical vari- ~ C'TW=TAT HETw=TA GO =1OTW,
ables except possibly the metric. (B3)

(2) The change of variables is invertible.

(3) Time and space derivatives of the metric can be writ-
ten as a sum of only non-principal teriifsr example, using

so Egs.(B2) and(2.25 have the same characteristic speeds
A&, and the eigenvectors of EB2) are Twk,
Furthermore, the matrix of eigenvectors for E§2) is

Egs.(2.12 and(2.13]. r_ T
For a system of the form of Eq2.25, we choose an M*=(TM)", so
arbitrary directioré; and we define the matrig according to detM’=de{(TM)"=detT detM. (B4)
Eq. (2.26. The system hak characteristic speeds and
eigenvectorsv® that obey If the transformatiori is invertible, deM =0 if and only if
detM #0, so Eq.(B2) is strongly hyperbolic if and only if
Cw =\ O, (B1)  Eg.(2.29 is hyperbolic.
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