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Extending the lifetime of 3D black hole computations with a new hyperbolic system
of evolution equations
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We present a new many-parameter family of hyperbolic representations of Einstein’s equations, which we
obtain by a straightforward generalization of previously known systems. We solve the resulting evolution
equations numerically for a Schwarzschild black hole in three spatial dimensions, and find that the stability of
the simulation is strongly dependent on the form of the equations~i.e. the choice of parameters of the
hyperbolic system!, independent of the numerics. For an appropriate range of parameters we can evolve a
single three-dimensional black hole tot.600M –1300M , and we are apparently limited by constraint-violating
solutions of the evolution equations. We expect that our method should result in comparable times for evolu-
tions of a binary black hole system.

DOI: 10.1103/PhysRevD.64.064017 PACS number~s!: 04.25.Dm, 02.70.Hm
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I. INTRODUCTION

A key unsolved problem in general relativity is to provid
a detailed description of the final moments of a binary bla
hole system as the two black holes plunge together
merge. While this problem is interesting in its own right, t
current deployment of the Laser Interferometric Gravi
tional Wave Observatory and other gravitational wave int
ferometers provide additional incentive for finding a time
solution: coalescing compact binaries are expected to be
primary sources of gravitational radiation observable
these instruments. A comparison of observed gravitatio
wave forms to detailed theoretical predictions of bina
black hole evolution may allow one to test general relativ
and other theories of gravitation, to identify black holes
distant galaxies and to measure their masses and spins.

Although both the initial inspiral of a binary black hol
system and the final ringdown of the resulting Kerr bla
hole are well described by perturbation theory, understand
the plunge from the innermost stable quasicircular o
through the coalescence will require numerical solutions
the full Einstein equations in three spatial dimensions. S
numerical computations are in progress@1,2#; however, they
are currently plagued with instabilities that severely limit t
duration of the simulations. Indeed, until recently@3# three-
dimensional~3D! Cauchy evolution codes without built-i
symmetries have had great difficulty evolving even a sin
Schwarzschild black hole for the amount of time that wou
be required for a binary orbit.

Many of the stability difficulties affecting black hole com
putations are undoubtedly due to the technical details of
numerical solution scheme; there are many such difficul
to overcome in any large scale numerical solution of par
differential equations. However, there is also evidence
some of the stability problems are due to properties of
equations themselves, independent of any numerical app
mation. In particular, by rewriting the equations in a differe
manner but leaving the numerical method unmodified, o
can significantly affect the stability of the computatio
@2–7#.
0556-2821/2001/64~6!/064017~13!/$20.00 64 0640
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Einstein’s equations, when written as a Cauchy proble
can be decomposed into two subsystems of equations:
straint equations that must be obeyed on each spacelike
persurface, or time slice, and evolution equations that
scribe how quantities propagate from one hypersurface to
next. An analogous decomposition occurs in electromag
tism, which is naturally split into time-independent~diver-
gence! equations that constrain the fields at a particular tim
and time-dependent~curl! equations that determine their evo
lution. For both electromagnetism and gravitation, the s
tem of equations is overdetermined in the following sense
the constraint equations are satisfied at some initial tim
then the evolution equations guarantee that they will be
isfied at subsequent times. For numerical black hole com
tations, one typically solves the constraint equations only
the initial time slice, and then uses the evolution equation
advance the solution in time.

However, the decomposition of Einstein’s equations in
evolution equations and constraints is not unique. For
ample, one can add any combination of constraints to an
the evolution equations to produce a different decomposit
Indeed, there have been a large number of new formulat
of 311 general relativity proposed in recent years@5,8–27#,
many of which have attractive properties such as symme
hyperbolicity.

All such formulations must have the same physical so
tions since they describe the same underlying theory. H
ever, the set of evolution equations also admits unphys
solutions such as constraint-violating modes, and these
physical solutions will be different for each formulation
Usually one is not interested in unphysical solutions, bu
such a solution grows rapidly with time, any small perturb
tion ~say, caused by numerical errors! that excites this solu-
tion will grow and eventually overwhelm the physical sol
tion. This is one reason why some formulations of Einstei
equations may be better suited for numerical evolution th
others.

In order to explore the extent to which different formul
tions of Einstein’s equations affect the stability of numeric
evolutions, we construct three new formulations of Einstei
equations, following a method similar to that of Ref.@13#.
©2001 The American Physical Society17-1
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~1! A first-order system obtained directly from th
Arnowitt-Deser-Misner~ADM ! @28# system. This system ha
five undetermined constant parameters that specify const
terms to be added to the evolution equations. These pa
eters determine the hyperbolicity of the evolution equatio
and the values of the characteristic speeds. We find that
straining the system to have physical characteristic spe
~i.e., the characteristic fields propagate either along the l
cone or normal to the time slice! still leaves two of the five
parameters free, and guarantees that the evolution equa
are strongly hyperbolic. In this case, the constraint quanti
also evolve in a strongly hyperbolic manner with physic
characteristic speeds.

~2! A 12-parameter system obtained by applying a para
eterized change of variables to system~1!. The additional
seven parameters are completely free, and do not affec
hyperbolicity of either the evolution equations or the evo
tion of the constraint quantities. This system can be redu
to either the Frittelli-Reula formulation@13# or the Einstein-
Christoffel formulation@22# with an appropriate choice o
parameters. The seven additional parameters can be use
ther to simplify the equations or to improve the numeric
behavior of the system.

~3! A two-parameter system that is obtained from syst
~2! by demanding that the principal part of the equations
equivalent to a scalar wave equation for each of the six c
ponents ofgi j . This system is particularly simple, is symm
trizable hyperbolic with physical characteristic speeds, a
includes the Einstein-Christoffel formulation@22# as a spe-
cial case.

To determine whether modifying the formulation signi
cantly effects the numerical solution of the evolution equ
tions, we perform numerical evolutions of single black ho
using a new 3D code we have developed. We evolve sys
~3! for simplicity. We find that by varying the two paramete
in system~3! while keeping the numerical evolution metho
fixed, we can vary the run time of the simulation by mo
than an order of magnitude. For a single black hole,
optimum choice of parameters yields evolutions that run
t5600M –1300M . This is long enough that, if this resu
carries over to two-black-hole simulations, one could sim
late the last few orbits of a binary system and the fi
merger.

In Sec. II we derive systems 1–3 and conditions for h
perbolicity. We also derive evolution equations for the co
straint quantities and discuss their hyperbolicity. In Sec.
we present numerical evolutions of system~3! for different
choices of parameters, and show that particular choices y
significant improvements. In Sec. IV we discuss our res
and our plans to simulate a binary system.

II. PARAMETRIZED HYPERBOLIC SYSTEM

A. 3¿1 ADM

We begin with the standard 311 formulation of Ref.
@28#, which was discussed in detail in Ref.@29#. Four-
dimensional spacetime is foliated by the level surfacesS t of
a function t(xm). Let nm be the unit normal vector to th
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hypersurfacesS t . Then the spacetime metric(4)gmn induces
the spatial 3-metricgmn on eachS t given by

gmn5 (4)gmn1nmnn . ~2.1!

The timelike vectortm is defined such thattmt ;m51, where
t ;m is the covariant derivative oft with respect to the space
time metric. The lapse functionN and shift vectorbm are
defined by

N[2tmnm , ~2.2!

bm[gmntn. ~2.3!

If we adopt a coordinate system$t,xi% adapted to the spatia
hypersurfaces, the line element is given in the usual 311
form

ds252N2dt21gi j ~dxi1b idt!~dxj1b jdt!. ~2.4!

The extrinsic curvatureKi j of the spatial surfaces is given b

Ki j 52
1

2
£ngi j , ~2.5!

where £ denotes a Lie derivative.
Einstein’s equations are given in covariant form by

(4)Rmn2
1

2
(4)gmn

(4)R58pTmn , ~2.6!

where (4)Rmn and (4)R are the Ricci tensor and Ricci scala
associated with the spacetime metric, andTmn is the stress-
energy tensor. In the 311 decomposition Einstein’s equa
tions are decomposed into the Hamiltonian constraint

C[
1

2
~R2KabK

ab1K2!28pr50, ~2.7!

the momentum constraints

Ci[¹aKi
a2¹ iK28pJi50, ~2.8!

and the evolution equations

]̂0Ki j 52¹ i¹ jN1NRi j 22NKiaK j
a1NKKi j 28pNSi j

24pNgi j ~r2S!, ~2.9!

where K5gabKab , and ¹ i , Ri j , and R are the covariant
derivative, Ricci tensor, and Ricci scalar associated with
spatial 3-metric. The symbol]̂0 is the time derivative opera
tor normal to the spatial foliation, defined by

]̂0[] t2£b . ~2.10!

The matter terms are defined as
7-2
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r[nmnnTmn , ~2.11a!

Ji[2nmgi
nTmn , ~2.11b!

Si j [gi
ngj

mTmn , ~2.11c!

and S5gabSab . Definition ~2.5! of the extrinsic curvature
yields the following evolution equation for the spatial metr

]̂0gi j 522NKi j . ~2.12!

Note that the spatial metric and its inverse are used to lo
and raise the indices of all spatial tensors.

B. First-order form

In order to cast the evolution equations in first-order for
we must eliminate the second derivatives of the spatial m
ric. We define a new variable~symmetric on its last two
indices!

dki j[]kgi j , ~2.13!

and its tracesdk[gabdkab and bk[gabdabk . An evolution
equation fordki j is obtained by taking a spatial derivative
Eq. ~2.12! and using the fact that]k and ]̂0 commute. This
yields

]̂0dki j522N]kKi j 22Ki j ]kN, ~2.14!

where the Lie derivative ofdki j is

£bdki j5ba]adki j1dai j]kb
a12dka( i] j )b

a12ga( i] j )]kb
a.

~2.15!

Since we have introduced a new variable that we w
evolve independently of the metric, we have an additio
constraint

Cki j[dki j2]kgi j 50, ~2.16!

which must be satisfied in order for a solution of the fir
order evolution equations to be a solution of Einstein’s eq
tions. Note that the spatial derivatives ofdki j must satisfy the
constraint

Ckli j [] [kdl ] i j 50, ~2.17!

because second derivatives of the metric commute. There
we make the following substitution when we encounter s
ond derivatives of the metric:

]k] lgi j 5] (kdl ) i j . ~2.18!

In terms of these new variables, the affine connection, R
tensor, and Ricci scalar are given by
06401
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Gki j5d( i j )k2
1

2
dki j , ~2.19!

Ri j 5
1

2
gab~] ( idab j)1]ad( i j )b2]adbi j2] ( idj )ab!

1
1

2
badai j2

1

4
dadai j2bad( i j )a2

1

2
da j

bdbi
a

1
1

2
dad( i j )a1

1

4
di

abdjab1
1

2
dab

i dab j , ~2.20!

R5gabgcd~]ddabc2]adbcd!1bada2baba2
1

4
dada

2
1

2
dabcd

cab1
3

4
dabcd

abc. ~2.21!

The constraint equations are given by

C5
1

2
gabgcd~]ddabc2]adbcd!1

1

2
bada2

1

2
baba2

1

8
dada

2
1

4
dabcd

cab1
3

8
dabcd

abc2
1

2
KabK

ab1
1

2
K228pr,

~2.22!

Ci5gab~]aKib2] iKab!1
1

2
Kabdiab1

1

2
Kiada2Kiaba

28pJi . ~2.23!

Finally, the evolution equation for the extrinsic curvature b
comes

]̂0Ki j 5NF1

2
gab~] ( idab j)1]ad( i j )b2]adbi j2] ( idj )ab!

1
1

2
badai j2

1

4
dadai j2bad( i j )a2

1

2
da j

bdbi
a

1
1

2
dad( i j )a1

1

4
di

abdjab1
1

2
dab

idab j

22KiaK j
a1KKi j G2] i] jN2

1

2
da

i j ]aN

1d( i j )
a]aN28pNSi j 24pNgi j ~r2S!. ~2.24!

The hyperbolicity of the system of evolution equatio
can be determined by examining its principal part. Consi
a system of the form

]̂0u1Ai] iu5F, ~2.25!

whereu is a column vector of the fundamental variables, a
Ai and F are matrices that can depend onu but not on de-
rivatives ofu. For a particular unit 1-formj i , one defines a
characteristic matrixC in the direction normal toj i :

C[Aij i . ~2.26!
7-3
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The characteristic speeds in the directionj i are the eigenval-
ues ofC. If all characteristic speeds are real, then the sys
is said to be weakly hyperbolic. If, in addition,C has a com-
plete set of eigenvectors, and the matrix of these eigen
tors and its inverse are uniformly bounded functions ofj i ,
the spacetime coordinates, and the solution, then the sy
is said to be strongly hyperbolic. If the matricesAi are sym-
metric, the system is said to be symmetric hyperbolic. If
matricesAi can be brought into a symmetric form by mult
plying by a positive-definite matrix called a symmetrizer, t
system is said to be symmetrizable hyperbolic. Symme
symmetrizable, and strongly hyperbolic systems admi
well-posed Cauchy problem; weakly hyperbolic systems
not @30#.

For the systems described in this paper, we explicitly c
struct a complete set of eigenvectors that depend uponj i ,
the metric, and its inverse. Provided that the matrix norms
the metric and its inverse remain bounded, then the norm
the matrix of eigenvectors and its inverse are bounded, so
system is strongly hyperbolic@31#.

Using the method outlined in Appendix A, and assumi
that the lapseN and shift vectorb i are arbitrary gauge func
tions independent of the dynamical variables, we find t
the ADM equations written in first-order form are on
weakly hyperbolic, as the characteristic matrix of the syst
has eigenvalues$0,61%, but does not have a complete set
eigenvectors. Fortunately, the hyperbolicity of the equati
can be changed by ‘‘densitizing’’ the lapse and adding c
straints to the evolution equations.

C. Densitization of the lapse

We densitize the lapse by defining

Q[ log~Ng2s!, ~2.27!

where g is the determinant of the 3-metric, ands is the
densitization parameter, which is an arbitrary constant.
lapse densityQ and the shift vectorb i will be considered as
arbitrary gauge functionsindependentof the dynamical
fields. With this definition we have

] iN5N~] iQ1sdi !, ~2.28!

] i] jN5N@] i] jQ1~] iQ!~] jQ!12sd( i] j )Q

1sgab] ( idj )ab2sdiabdj
ab1s2didj #. ~2.29!

Substituting the above expressions into the evolution eq
tions, and examining the hyperbolicity of the modified ev
lution equations, we find that densitizing the lapse is
sufficient to make the evolution system strongly hyperbo
In order for the system to remain even weakly hyperbolic
densitization parameter must satisfys>0, as the eigenval-
ues of the characteristic matrix are now$0,61,6A2s%. In
Sec. II D, we will find that densitizing the lapse is a nece
sary condition for strong hyperbolicity, and that if we d
mand physical characteristic speeds we must chooses5 1

2 .
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D. Addition of constraints: System „1…

By adding terms proportional to the constraints, we c
modify the evolution equations forKi j and dki j without af-
fecting the physical solution. We modify the evolution equ
tions ~2.14! and ~2.24! by

]̂0Ki j 5~••• !1gNgi j C1zNgabCa( i j )b , ~2.30!

]̂0dki j5~••• !1hNgk( iCj )1xNgi j Ck , ~2.31!

where (•••) represents the right-hand side of either equat
~2.14! or ~2.24!, and the constraint parameters$g,z,h,x% are
arbitrary constants. The evolution equations are now gi
by

]̂0gi j .0, ~2.32!

]̂0Ki j .2
1

2
Ngab@]adbi j2~11z!]ad( i j )b2~12z!] ( idab j)

1~112s!] ( idj )ab2ggi j g
cd]adcdb

1ggi j g
cd]adbcd#, ~2.33!

]̂0dki j.22N]kKi j 1Ngab~hgk( i]aKb j)1xgi j ]aKbk

2hgk( i] j )Kab2xgi j ]kKab!, ~2.34!

where. denotes equal to the principal part. For brevity, w
show only the principal parts of the evolution equations,
these are what determine the hyperbolicity of the syste
The full evolution equations are lengthy and available fro
the authors upon request.

We find that the eigenvalues of the characteristic matrix
the system are$0,61,6c1 ,6c2 ,6c3%, where

c15A2s,

c25
1

2A2
Ah24hs22x212sx23hz, ~2.35!

c35
1

A2
A214g2h22gh12x14gx2hz.

Thus, in order for the system to be weakly hyperbolic, t
parameters must satisfy

s>0,

h24hs22x212sx23hz>0, ~2.36!

214g2h22gh12x14gx2hz>0.

If the above conditions are met, we find a complete se
eigenvectors, so that the system is strongly hyperbolic,
less one of the following conditions occur:

ci50, ~2.37a!
7-4
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c15c3Þ1, ~2.37b!

c15c351Þc2 . ~2.37c!

If any of the above conditions are met, the system is o
weakly hyperbolic. Note that ifs50, thenc150, so that
densitizing the lapse is a necessary condition for strong
perbolicty. Also note that ifh5x50, thenc250, so that
constraints must be added to the evolution equation fordki j
in order to have a strongly hyperbolic system.

For physical characteristic speeds, each of theci ’s is ei-
ther zero or unity. To make them all unity~the only choice
that yields strongly hyperbolic evolution equations! requires
either

s51/2, ~2.38a!

z52
815h110gh

h~716g!
, ~2.38b!

x52
416g2h23gh

~716g!
~2.38c!

or

$s,g,z,h,x%5H 1

2
,2

7

6
,2

1

9
~23120x!,

6

5
,xJ .

~2.39!

In the first case, there are two free parameters, and in
second case there is one. In both cases, the evolution e
tions are strongly hyperbolic as long as the free parame
are chosen such that all five parameters are finite.

E. Evolution of the constraints

Taking ]̂0 of the constraints, and replacing all derivativ
of the fundamental variables with the constraints and th
spatial derivatives, we obtain the following equations for t
evolution of the constraints:

]̂0C.2
1

2
~22h12x!Ngpq]pCq , ~2.40!

]̂0Ci.2~112g!N] iC1
1

2
Ngpqgrs@~12z!]qCprsi

1~11z!]pCsiqr2~112s!]pCqirs#, ~2.41!

]̂0Cki j.0, ~2.42!

]̂0Ckli j 5
1

2
hN~gj [ l]k]Ci1gi [ l]k]Cj !1xNgi j ] [kCl ] , ~2.43!

where again for brevity we have only shown the princip
parts of the equations.

The eigenvalues for the constraint evolution system
$0,6c2 ,6c3%. Because this is a subset of the eigenvalues
the evolution equations, the constraints will propagate at
same speeds as some of the characteristic fields of
06401
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evolved quantities. Furthermore, we find that the constra
evolution system is strongly hyperbolic whenever the regu
evolution system is strongly hyperbolic.

F. Redefining the variables: System„2…

The evolution equations can also be modified by rede
ing the variables that are evolved. We define the general
extrinsic curvaturePi j using the relation

Pi j [Ki j 1 ẑgi j K, ~2.44!

whereẑ is an arbitrary parameter. The inverse transformat
is given by

Ki j 5Pi j 1 z̄gi j P, ~2.45!

whereP[gabPab , and

z̄52
ẑ

113ẑ
, ~2.46!

which implies thatẑÞ2 1
3 for the inverse transformation to

exist.
We define the generalized derivative of the metric,Mki j ,

using the relation

Mki j5
1

2
$k̂dki j1êd( i j )k1gi j @ âdk1b̂bk#

1gk( i@ ĉdj )1d̂bj )#%. ~2.47!

The inverse transformation is given by

dki j52$k̄Mki j1ēM ( i j )k1gi j @ āMk1b̄Wk#

1gk( i@ c̄M j )1d̄Wj )#%, ~2.48!

where the tracesMk[gabMkab andWk[gabMabk , and

dā56b̂ĉê26âd̂ê2âê21b̂ê21 ĉê22d̂ê218b̂ĉk̂28âd̂k̂

24âêk̂12b̂êk̂12ĉêk̂24âk̂2, ~2.49a!

db̄528b̂ĉê18âd̂ê12âê222ĉê224b̂ĉk̂14âd̂k̂14âêk̂

22b̂êk̂12d̂êk̂24b̂k̂2, ~2.49b!

d c̄528b̂ĉê18âd̂ê12âê222b̂ê224b̂ĉk̂14âd̂k̂14âêk̂

22ĉêk̂12d̂êk̂24ĉk̂2, ~2.49c!

dd̄54b̂ĉê24âd̂ê24âê2112b̂ĉk̂212âd̂k̂14b̂êk̂14ĉêk̂

24d̂k̂2, ~2.49d!

d0ē52ê, ~2.49e!

d0k̄52ê22k̂, ~2.49f!
7-5
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d05ê22êk̂22k̂2, ~2.49g!

d5d0~10b̂ĉ210âd̂2âê13b̂ê13ĉê1d̂ê1ê226âk̂

22b̂k̂22ĉk̂24d̂k̂2êk̂22k̂2!. ~2.49h!

For the inverse transformation to exist,dÞ0.
Thus we have seven additional redefinition parame

$â,b̂,ĉ,d̂,ê,k̂,ẑ% ~or equivalently$ā,b̄,c̄,d̄,ē,k̄,z̄%) that can
be used to modify the evolution equations. Note that E
~2.46! and ~2.49! remain true under interchange o

$â,b̂,ĉ,d̂,ê,k̂,ẑ% and$ā,b̄,c̄,d̄,ē,k̄,z̄%.
When the principal terms in system~1! are transformed,

terms containing derivatives of the metric appear becaus
the traces in Eqs.~2.45! and ~2.48!. These terms are elimi
nated using Eqs.~2.12! and ~2.13!.

The redefinition parameters do not change the eigenva
of the evolution system, nor do they change whether or
the system is strongly hyperbolic~see Appendix B!. In addi-
tion, they have no effect on the principal part of the co
straint evolution equations. The redefinition paramete
however, do affect the eigenvectors of the evolution sys
and thus also affect the characteristic fields. In addition,
redefinition parameters change the nonlinear terms in
nonprincipal parts of the evolution equations and the c
straint evolution system.

The principal parts of the evolution equations forPi j and
Mki j are

]̂0gi j .0, ~2.50!

]̂0Pi j .2Ngab~m1]aMbi j1m2]aM ( i j )b1m3] ( iMab j)

1m4] ( iM j )ab1m5gi j g
cd]aMcdb

1m6gi j g
cd]aMbcd!, ~2.51!

]̂0Mki j.2N~n1]kPi j 1n2] ( i Pj )k1n3gabgk( i]aPb j)

1n4gi j g
ab]aPbk1n5gabgk( i] j )Pab

1n6gi j g
ab]kPab!, ~2.52!

where

m15 k̄2
1

2
~11z!ē, ~2.53a!

m25
1

2
~12z!ē2~11z!k̄, ~2.53b!

m35~116s!b̄2~12z!k̄2
1

2
~124s23z!d̄

1
1

2
~114s1z!ē, ~2.53c!
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m45~116s!ā1~112s!k̄2
1

2
~124s23z!c̄

2
1

2
~12z!ē, ~2.53d!

m55~112g14ẑ16g ẑ16s ẑ!b̄2~g12ẑ13g ẑ!k̄

2
1

2
~112g14ẑ16g ẑ24s ẑ1z!c̄

1
1

2
~g12ẑ13g ẑ14s ẑ!ē, ~2.53e!

m65~112g14ẑ16g ẑ16s ẑ!ā1~g12ẑ13g ẑ12s ẑ!k̄

2
1

2
~112g14ẑ16g ẑ24s ẑ1z!d̄

2
1

2
~g12ẑ13g ẑ!ē, ~2.53f!

n15 k̂, ~2.53g!

n25ê, ~2.53h!

n35
1

2
~222h2x!d̂2

1

2
~h13x!ĉ2

1

4
~h12x!ê2

1

2
h k̂,

~2.53i!

n45
1

2
~222h2x!b̂2

1

2
~h13x!â2

1

4
hê2

1

2
x k̂, ~2.53j!

n55
1

2
~21h13x16z̄12h z̄16x z̄!ĉ

1
1

2
~2h1x12z̄14h z̄12x z̄!d̂1

1

2
~h12h z̄!k̂

1
1

4
~h12x14z̄12h z̄14x z̄!ê, ~2.53k!

n65
1

2
~21h13x16z̄12h z̄16x z̄!â1

1

2
~2h1x12z̄

14h z̄12x z̄!b̂1
1

4
~h12h z̄!ê1

1

2
~x12z̄12x z̄!k̂.

~2.53l!

Again, the full evolution equations are available from t
authors upon request.

Furthermore, we note that ifm i5kn i for all i and constant
k, the system is symmetrizable hyperbolic using the ene
norm argument of Ref.@13#. However, these conditions d
not have to be met for the system to be well-posed. It
possible to construct a symmetrizer for any of the stron
hyperbolic systems.
7-6
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G. Evolving with contravariant indices

So far, we have written all of our fundamental variabl
with covariant indices. Alternatively, we could have defin
the new variable

Dk
i j []kg

i j . ~2.54!

Note thatdki j52Dki j . If we evolve$gi j ,Pi j ,Mk
i j % instead

of $gi j ,Pi j ,Mki j%, it would result in only trivial changes to
the principal parts of the equations. The characteristic spe
would be unchanged, as would the nature of the hyperbo
ity of the system, since the principal part of the metric ev
lution equation is zero~see Appendix B!. The only changes
would occur in the nonlinear terms of the evolution equ
tions.

H. Frittelli-Reula system

We recover the system of Ref.@13# if we make the fol-
lowing choices for our parameters:

$s,g,z,h,x%5H 2 ē
113ā

2
,

2ḡ

113b̄
,1,4,

24ā

113ā
J ,

~2.55a!

$ẑ,k̂,â,b̂,ĉ,d̂,ê%5$b̄,1,ā,0,0,0,0%, ~2.55b!

where $ā,b̄,ḡ,ē% corresponds to$a,b,g,e% in Ref. @13#.
However, as pointed out in Ref.@31#, this system is not sym
metric hyperbolic unless the term22hl ( iM j )k

l ,k in Eq. ~16!
of Ref. @13# is replaced with22hl ( iM j )k

k,l by adding a term
proportional to constraint~2.17!. In our system this corre
sponds to changingz51 to z521 in Eq. ~2.55!.

In Refs. @8,31,32#, this correction has been made for th

parameter choice$ā,b̄,ḡ,ē%5$21,21,1,12 %; we recover this
system if we choose our parameters to be

$s,g,z,h,x%5H 1

2
,21,21,4,22J , ~2.56a!

$ẑ,k̂,â,b̂,ĉ,d̂,ê%5$21,1,21,0,0,0,0%. ~2.56b!

The system of Refs.@8,31,32# was further generalized in
Ref. @27#, where the constraints were used to modify t
evolution equations in a manner similar to that in Sec. II
We recover the system of Ref.@27# by choosing

$s,g,z,h,x%5H 1

2
,2g̃,2Q̃21,4h̃,22h̃J , ~2.57a!

$ẑ,k̂,â,b̂,ĉ,d̂,ê%5$21,1,21,0,0,0,0%, ~2.57b!

where$g̃,Q̃,h̃% correspond to$g,Q,h% in Ref. @27#.

I. Einstein-Christoffel system

We recover the system of Ref.@22# if we make the fol-
lowing choices for our parameters:
06401
ds
c-
-

-

.

$s,g,z,h,x%5H 1

2
,0,21,4,0J , ~2.58a!

$ẑ,k̂,â,b̂,ĉ,d̂,ê%5$0,1,0,0,2,22,0%. ~2.58b!

This system is symmetrizable hyperbolic and has v
simple principal parts

]̂0Pi j .2Ngab]aMbi j , ~2.59a!

]̂0Mki j.2N]kPi j . ~2.59b!

Essentially this system is a set of six~one for each$ i , j % pair!
coupled quasilinear scalar wave equations with nonlin
source terms.

J. Generalized Einstein-Christoffel system: System„3…

If we examine the principal part of system~2!, and de-
mand thatm15n151 and all otherm i and n i vanish, we
obtain a two-parameter system$h,ẑ% that has the same
simple wave-like form~2.59! as the Einstein-Christoffel sys
tem. This system is obtained by setting

$s,g,z,h,x%5H 1

2
,
241h

2h
,21,h,

241h

4 J ,

~2.60a!

$ẑ,k̂,â,b̂,ĉ,d̂,ê%5H ẑ,1,
241h212ẑ19h ẑ

2h
,

42h112ẑ27h ẑ

2h
,2,22,0J , ~2.60b!

whereẑÞ2 1
3 andhÞ0. This system has physical characte

istic speeds and is symmetrizable hyperbolic. The free
rameterh will affect the principal part of the constraint evo
lution equations, while the parameterẑ will affect only the
nonlinear terms in the evolution equations and the constr
evolution equations. It is this system that we will explo
numerically in Sec. III. The complete equations for this sy
tem are available upon request from the authors.

The characteristic eigenfields of this system are parti
larly simple, and can be obtained from Eq.~2.59! without the
use of the lengthy decomposition procedure described in
pendix A. In a directionj i , the eigenfields are

Ui j
0 [gi j , ~2.61a!

Uki j
0 [Mki j2jkj

lM li j , ~2.61b!

Ui j
6[Pi j 6jkMki j . ~2.61c!

The U0 quantities propagate along the normal to the tim
slice ~coordinate speed2b i), and theU6 quantities propa-
gate along the light cone~coordinate speed2b i6Nj i).
7-7
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III. NUMERICAL RESULTS

In this section we present results from a numerical co
that solves the evolution equations of system~3! in three
spatial dimensions plus time. This code, which will be d
scribed in detail elsewhere@33#, is a three-dimensional gen
eralization of a spherically symmetric code discussed pr
ously @34#, and is based on pseudospectral collocat
methods. Our code works in full three dimensions; we do
exploit any symmetries of the black hole solutions that
evolve.

In this paper, we will concern ourselves only with sing
black hole spacetimes. In this case, we solve the evolu
equations in a spherical shell extending from inside the
rizon to some artificial outer boundary. Although we u
standard spherical polar coordinates (r ,u,f), we evolve the
Cartesian components of our variables; this allows us to
scalar spherical harmonicsYlm(u,f) as angular basis func
tions for all quantities. We use Chebyshev polynomials as
basis functions in radius.

As described in Ref.@34#, we use the method of lines i
order to integrate forward in time with a fourth-order Rung
Kutta method. Boundary conditions are imposed by c
structing the characteristic fields that propagate normal to
boundary, and imposing conditions only on those fields t
propagate into the computational domain. Since all cha
teristic fields at the inner boundary are outgoing~into the
hole!, no boundary condition is needed there and none
imposed. At the outer boundary, we impose] tU

250 on
each of the characteristic fieldsU2 that is ingoing there. We
use analytic initial data corresponding to time-independ
slicings of a single black hole, and fix the gauge quantitieQ
and b i to their analytic values for all time. Note that th
constraint equations are not solved explicitly, but are inst
used as a check on the accuracy of our numerical inte
tions.

A. Einstein-Christoffel system

Figure 1 shows thel 2 norm of a component of the mo
mentum constraint for several evolutions of a Schwarzsc
black hole using the Einstein-Christoffel system, which
equivalent to system~3! with h54 and ẑ50. Initially the
fields are given analytically on a Painleve´-Gullstrand time
slice @35–38#. Explicit formulas for our variables on the ini
tial slice can be found in Ref.@34#.

As is evident from Fig. 1, the constraint increases w
time until the simulation terminates. The evolutions w
higher radial resolution run longer, but increase at appro
mately the same rate. In addition, for a fixed resolution,
see no significant dependence onDt, and for a fixed radial
resolution and time step we see no significant dependenc
the angular resolution. This suggests that the growth of
constraints may be due to an unphysical solution of the eq
tions rather than a numerical instability. Numerical instab
ties typically become worse when one increases the res
tion or decreases the time step. In contrast, our results ap
consistent with an unphysical solution of the equations t
initially has a nonzero amplitude because of small numer
errors.
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B. Generalized Einstein-Christoffel system

Because we suspected that the instability shown in Fig
is related to the equations rather than the numerical meth
we repeated the above evolutions for various values of
free parametersh and ẑ, searching the two-dimensional pa
rameter space for systems of evolution equations that m
be better behaved. We found that forh.4/33 andẑ.21/4,
our numerical simulations ran for an order of magnitu
longer than for the basic Einstein-Christoffel system. Typi
results are plotted in Fig. 2. Although a growing mode is s
present, its growth rate is much smaller than in Fig. 1, a
the momentum constraint is less than 1023 until approxi-
mately 600M .

FIG. 1. Momentum constraintCx vs time for evolutions of a
Painlevé-Gullstrand time slicing of a Schwarzschild black hole u
ing the Einstein-Christoffel system. Results are plotted for sev
radial resolutions ranging fromNr510 to 40, a fixed angular reso
lution l 57, and a fixed time resolutionDt50.015M . Higher radial
resolutions correspond to smaller errors.

FIG. 2. Momentum constraintCx vs time for the same evolution

shown in Fig. 1 excepth54/33 andẑ521/4, and we plot more
radial resolutions. If the outer boundary is moved out tor 540M ,
the run time extends to;1300M for the same accuracy.
7-8
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EXTENDING THE LIFETIME OF 3D BLACK HOLE . . . PHYSICAL REVIEW D 64 064017
We see no evidence that the growth is due to a numer
instability. In contrast, the evolutions in Fig. 2 appear
converge to a well-defined solution. This solution is the s
of two components: a roughly time-independent compon
and an exponentially growing component. By extrapolat
backwards along the growing component in Fig. 2, one
see that this component has magnitude;10216 at t50,
which is on the order of machine roundoff error.

As in the Einstein-Christoffel case, we see no depende
on angular resolution or onDt. Our results do depend upo
the location of the outer boundary. In the evolution shown
Fig. 2, the spherical domain extends fromr 51.9M to r
511.9M . Moving the outer boundary further out results
longer evolutions, increasing the run time from around 600M
up to 1300M with the outer boundary atr 540M . Moving
the outer boundary beyondr 540M , however, does not hav
any effect.

In addition to Painleve´-Gullstrand slicings, we have ru
Kerr-Schild @39,40# and harmonic-time@41,42# slicings of a
Schwarzschild black hole with similar qualitative results. F
example, using the parameters of Fig. 2 with a Kerr-Sch
slicing as initial data, we were able to evolve up tot
5500M with the outer boundary atr 511.9M , and up tot
5900M with the outer boundary atr 540M . We have also
evolved a Kerr black hole witha5M /2 to t5400M , with a
spherical shell extending fromr 51.5M to r 511.5M .

IV. DISCUSSION

We have constructed a 12-parameter family of hyperb
formulations of Einstein’s equations that is strongly hyp
bolic for a wide range of the parameter space, and that
cludes the systems of Refs.@13# and@22#. By restricting our-
selves to a two-parameter subset of these equations, we
demonstrated how the choice of parameters can have a
matic effect upon the amount of time a numerical simulat
of a black hole can run before being swamped by an
physical solution.

Our runs with our best parameter choices appear to
limited only by the growth of constraint-violating mode
which grow from the level of numerical roundoff errors. Th
is consistent with the results of Ref.@3#, in which an unstable
mode limited the evolution of a single Schwarzschild bla
hole to aboutt5500M . A detailed comparison with thei
results is difficult to make, however, as they used a differ
set of evolution equations and a different numerical imp
mentation, as well as different gauge conditions and bou
ary conditions. A key feature of their approach is to use
simple but stable boundary condition at the excision bou
ary, where physically no boundary condition should
needed. In our approach, we do not need to apply any bo
ary conditions at the excision boundary.

In our analysis of the hyperbolicity of the evolution equ
tions we have assumed that the gauge variables~the shift
vector and the densitized lapse! are given arbitrary functions
that are independent of the dynamical variables~the metric,
generalized extrinsic curvature, and generalized metric
rivatives!. In our numerical simulations, we achieved this
setting the gauge variables to their analytic values for
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particular time-independent slicing that we used as ini
data. In order to perform a time-dependent evolution, ho
ever, it will be necessary to allow the gauge to change as
evolution proceeds. If this is done by choosing the gau
variables as functions of the dynamical variables, the hyp
bolicity of the evolution equations may be affected. We a
currently investigating how the imposition of more comp
cated gauge conditions can be done in a manner that doe
spoil the hyperbolicity of the system. In Ref.@34#, we were
able to impose dynamical gauge conditions by solving el
tic equations for the shift and densitized lapse prior to e
time step, and holding these quantities fixed during e
step.

At present, we have no explanation as to why the parti
lar choice of parameters used to produce Fig. 2 is so m
better than the Einstein-Christoffel system. This choice w
found empirically by running our code for various values
the parameters. It would be extremely useful to have so
theoretical understanding of why one particular parame
choice behaves much better than another, as the cost of
forming a parameter search on the full twelve-parameter s
tem would be prohibitive.

Having found a system of equations and a numeri
method capable of evolving a single black hole for a phy
cally interesting length of time, we now plan to turn o
attention to the evolution of a binary black hole system. F
evolutions of two black holes with excised horizons it will b
necessary to use multiple computational domains~see Fig.
3!. Each domain is evolved independently except at the
main boundaries; there the incoming characteristic fields
each domain are filled with the corresponding outgoing ch
acteristic fields from neighboring domains. We expect o
computational method to be capable of evolving the bin
system to times on the order of several hundredM once the
difficult problem of determining appropriate gauge con
tions is solved. When we realize this, we will be able
simulate the last orbit or two prior to the plunge as well
the coalescence itself.
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APPENDIX A: HYPERBOLICITY

To determine the characteristic speeds and eigenvecto
a system of the form of Eq.~2.25!, we proceed in two steps
Instead of directly finding the eigenvalues and eigenvec
of C[Aij i , we first construct a transformationD such that
C8[DAij iD

21 is independent of the directionj i and of the
metric quantitiesgi j . We then solveC8wi5l iwi . The ei-
genvalues of the original matrixC arel i , and the eigenvec
tors areD21wi .

TransformationD is the decomposition of each of the fun
damental tensor~or tensor-like! quantities into its irreducible
parts, as we now describe. Supposev[Du. Then if u andv
are scalars,D is the identity operator,v5u. For a vector
quantityu5Vi , D is defined by

Vi5D21v5Vi
(T)1j iV

(L), ~A1!

where the longitudinal and transverse parts ofVi are given
by

V(L)[jmVm , ~A2a!
06401
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Vi
(T)[' i

mVm , ~A2b!

where' i j is the projection operator:

' i j [gi j 2j ij j . ~A3!

For a symmetric second-rank tensoru5Pi j ,

Pi j 5D21v

5Pi j
(TTs)12j ( i Pj )

(LT)1
1

2
~3j ij j2gi j !P

(LL)

1
1

2
~gi j 2j ij j !P, ~A4!

where

P[gmnPmn , ~A5a!

P(LL)[jmjnPmn , ~A5b!

Pi
(LT)[jm' i

nPmn , ~A5c!

Pi j
(TTs)[S' ( i

m' j )
n2

1

2
' i j'

mnD Pmn . ~A5d!

For a third-rank objectu5Mki j , symmetric on its last
two indices,
Mki j5D21v

5Mki j
(TTT)12j ( iM j )k

(TTLs)12j ( iM j )k
(TTLa)1jkM i j

(LTT)1
1

4
Mk

(TLL)~7j ij j23gi j !1
1

2
M ( i

(TLL)~gj )k2j j )jk!

1
1

2
Mk

(LLT)~gi j 2j ij j !1M ( i
(LLT)~3j j )jk2gj )k!1

3

4
Mk

(TRR)~gi j 2j ij j !1
1

2
M ( i

(TRR)~j j )jk2gj )k!

1
1

2
Mk

(RRT)~j ij j2gi j !1M ( i
(RRT)~gj )k2j j )jk!1

1

2
M (LLL)~5jkj ij j2jkgi j 22gk( ij j )!1

1

2
M (LRR)~jkgi j 2jkj ij j !

1M (RRL)~gk( ij j )2jkj ij j !, ~A6!

where

M (RRL)[gcajbMcab , ~A7a!

M (LRR)[gabjcMcab , ~A7b!

M (LLL)[jcjajbMcab , ~A7c!

Mi
(RRT)[gca' i

bMcab , ~A7d!

Mi
(TRR)[gab' i

cMcab , ~A7e!

Mi
(LLT)[jcja' i

bMcab , ~A7f!

Mi
(TLL)[jajb' i

cMcab , ~A7g!
7-10
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Mi j
(LTT)[jcS' i

a' j
b2

1

2
' i j'

abD Mcab , ~A7h!

Mi j
(TTLs)[jbS' ( i

c' j )
a2

1

2
' i j'

caD Mcab , ~A7i!

Mi j
(TTLa)[jb' [ i

c' j ]
aMcab , ~A7j!

Mki j
(TTT)[F'k

c' i
a' j

b2
1

4
' i j ~3'ab'k

c2'ca'k
b2'cb'k

a!

2
1

4
'k j~3'cb' i

a2'ca' i
b2'ab' i

c!

2
1

4
'ki~3'ca' j

b2'ab' j
c2'cb' j

a!GMcab . ~A7k!

Finally for a four-index objectCkli j , symmetric on its last two indices and antisymmetric on its first two indices,

Ckli j 5D21v

5C kli j
(TF)1

3

5
C kl

(TTRRa)gi j 1
4

5
C kl

(RTTRa)gi j 1
2

5
~C i [k

(TTRRa)gl ] j1C j [k
(TTRRa)gl ] i !1

6

5
~C i [k

(RTTRa)gl ] j1C j [k
(RTTRa)gl ] i !

2
2

3
~C i [k

(RTTRs)gl ] j1C j [k
(RTTRs)gl ] i !2

6

5
C [k

(LTRR)j l ]gi j 1
4

5
C [k

(LTRR)gl ]( jj i )1
4

5
C ( i

(LTRR)gj )[kj l ]2
4

5
C [k

(RLTR)j l ]gi j

5C kli j
(TF)1

3

5
C kl

(TTRRa)gi j 1
4

5
C kl

(RTTRa)gi j 1
2

5
~C i [k

(TTRRa)gl ] j1C j [k
(TTRRa)gl ] i !1

6

5
~C i [k

(RTTRa)gl ] j1C j [k
(RTTRa)gl ] i !

2
2

3
~C i [k

(RTTRs)gl ] j1C j [k
(RTTRs)gl ] i !2

6

5
C [k

(LTRR)j l ]gi j 1
4

5
C [k

(LTRR)gl ]( jj i )1
4

5
C ( i

(LTRR)gj )[kj l ]2
4

5
C [k

(RLTR)j l ]gi j

1
8

15
C [k

(RLTR)gl ]( jj i )1
28

15
C ( i

(RLTR)gj )[kj l ]1
4

5
C [k

(RTLR)j l ]gi j 2
28

15
C [k

(RTLR)gl ]( jj i )2
8

15
C ( i

(RTLR)gj )[kj l ]12j ( igj )[kj l ]C (RLLR),

~A8!

where

C (RLLR)[gcbjdjaCcdab, ~A9a!

C i
(RTLR)[gcbja' i

dCcdab, ~A9b!

C i
(RLTR)[gcbjd' i

aCcdab, ~A9c!

C i
(LTRR)[gabjc' i

dCcdab, ~A9d!

C i j
(RTTRs)[gcbS' ( i

d' j )
a2

1

2
' i j'

daD Ccdab, ~A9e!

C i j
(RTTRa)[gcb' [ i

d' j ]
aCcdab, ~A9f!

C i j
(TTRRa)[gab' [ i

c' j ]
dCcdab, ~A9g!

C kli j
(TF)[S gk

cgl
dgi

agj
b2

28

15
gcbga

( igj )[kgl ]
d1

8

15
gcbgd

( igj )[kgl ]
a

2
4

5
gabgd

( igj )[kgl ]
c2

4

5
gi j g

cbgd
[kgl ]

a2
3

5
gi j g

abgk
cgl

dD Ccdab. ~A9h!
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Strictly speaking, Eqs.~A6! and ~A8! are not complete irre-
ducible decompositions. However, they are sufficient for
purposes.

If u consists of several tensor~or tensorlike! objects, then
the effect ofD is to transform each object independen
according to the above definitions. In matrix language, t
means thatD is block diagonal.

APPENDIX B: CHANGE OF VARIABLES AND
HYPERBOLICITY

In this section we show that for a system of the form
Eq. ~2.25!, a change of variables@such as the transformatio
from system~1! to system~2!, or the raising and lowering o
tensor indices of fundamental variables# does not change ei
ther the characteristic speeds or whether the system
strongly hyperbolic, provided that the following condition
are met:

~1! The change of variables is linear in all dynamical va
ables except possibly the metric.

~2! The change of variables is invertible.
~3! Time and space derivatives of the metric can be w

ten as a sum of only non-principal terms@for example, using
Eqs.~2.12! and ~2.13!#.

For a system of the form of Eq.~2.25!, we choose an
arbitrary directionj i and we define the matrixC according to
Eq. ~2.26!. The system hask characteristic speedsl (k) and
eigenvectorsw(k) that obey

Cw(k)5l (k)w(k). ~B1!
. I

rk

ss

ev

p

06401
r

s

f

is

-

If M is the matrix whose columns are the eigenvectorsw(k),
then strong hyperbolicity is equivalent to detMÞ0, with all
l (k) real.

Now consider a change of variablesv5Tu, whereT is a
matrix. If we multiply Eq.~2.25! on the left byT, we obtain

]̂0v1TAiT21] iv5TF1~ ]̂0T!u1TAiT21~] iT!u

5F8. ~B2!

In the last step, we have used property~1! above to rewrite
] iT and ]̂0T in terms of derivatives of the metric, and w
have used property~3! to eliminate these derivatives, absor
ing the resulting non-principal terms into the new right-ha
sideF8.

The characteristic matrix for Eq.~B2! in the directionj i is
C8[TAiT21j i . Note that

C8Tw(k)5TAiT21j iTw(k)5TAij iw
(k)5l (k)Tw(k),

~B3!

so Eqs.~B2! and ~2.25! have the same characteristic spee
l (k), and the eigenvectors of Eq.~B2! areTw(k).

Furthermore, the matrix of eigenvectors for Eq.~B2! is
M 85(TM)T, so

detM 85det~TM!T5detT detM . ~B4!

If the transformationT is invertible, detM 8Þ0 if and only if
detMÞ0, so Eq.~B2! is strongly hyperbolic if and only if
Eq. ~2.25! is hyperbolic.
qc/
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