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Path integral derivation of the Brown-Henneaux central charge
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We rederive the Brown-Henneaux commutation relation and central charge in the framework of the path
integral. To obtain the Ward-Takahashi identity, we can use either asymptotic symmetry or its leading part. If
we use asymptotic symmetry, the central charge arises from the transformation law of the charge itself. Thus,
this central charge is clearly different from the quantum anomaly which can be understood as the Jacobian
factor of the path integral measure. Alternatively, if we use the leading transformation, the central charge arises
from the fact that the boundary condition of the path integral is not invariant under the transformation. This is
in contrast with the usual quantum central charge which arises from the fact that the measure of the path
integral is not invariant under the relevant transformation. Moreover, we discuss the implications of our
analysis in relation to the black hole entropy.

DOI: 10.1103/PhysRevD.64.064016 PACS nunifer04.70.Dy, 04.20.Ha, 04.60.Kz, 11.25.Hf

I. INTRODUCTION Natsuume, Okamura, and S4tt6] have generalized the
Brown-Henneaux central charge to include a conformal sca-
To the black hole in general relativity, we can assign anlar field and applied Strominger’s approach to the Marz+
entropy called the Bekenstein-Hawking entropy. There hav&anelli (MZ) black hole[17]. However, since they have ob-
been many attempts to understand the origin of this blackained the same charge and central charge as the case of the
hole entropy. In particular, there are some attempts which argure gravity, the density of states from the Cardy formula
based on the central charge in conformal field theé@¥T).  does not agree with the Bekenstein-Hawking entrdpie
Note that the density of states can be calculated from th@unctional form does agree but the over-all numerical factor
central charge by using the Cardy form{ia2] in conformal  does nof. Thus, they have considered that the Cardy formula
field theory. For example, in the framework of superstringgives the “maximum possible entropy” for a given mass.
theory, it has been shown that the black hole entropy can bgee also Ref18] for the extension to various theories.
calculated from the central charge of the effective supercon- Since the Brown-Henneaux central charge is based on the
formal field theory for D-branef3,4]. asymptotic symmetry at infinity i2+1) dimensions, Carlip
On the other hand, Strominggs] has used the Brown- [19,20] has generalized to the symmetry near the black hole
Henneaux central charge instead of the usual central chargesorizon in any dimensions. This symmetry contains a natural
In the case of(2+1)-dimensional gravity with a negative Virasoro subalgebra and the resulting central charge repro-
cosmological constank = —1/1%, Brown and Henneaup6]  duces the Bekenstein-Hawking entropy by the Cardy for-
have shown that the asymptotic symmetry of an asymptotimula. (However, since the generator of REE9] is not “dif-
cally AdS; spacetime is the conformal group in two dimen- ferentiable”[21,22, it has been proposed by Solovig23]
sions rather than the AdSyroup, SO(2,2). Moreover, they to use a modified Poisson bracket which is applicable to the
have shown that this symmetry is canonically realized by thenondifferentiable” functionals). Similar conclusion was ob-
Poisson brackets algebra of the generatans the Dirac  tained by Solodukhif24] with effective two-dimensional
brackets algebra of the chargegth a central extension. The theories for the spherically symmetric metrics in higher di-

central charge becomes mensions. Moreover, Carli25] has calculated the prefactor
of the Cardy formula and the logarithmic correction to the
3 Bekenstein-Hawking entropy.
=G (1.9 In this paper, we rederive the Brown-Henneaux commu-

tation relation and central charge in terms of the path integral

formulation since it was originally obtained by the canonical
By combining this central charge with the Cardy formula, formulation. In view of the equivalence of these two ap-
Strominger has shown that the resultant entropy agrees witbroaches to the quantum theory, we must obtain the same
the Bekenstein-Hawking entropy of the Balvs-Teitelboim-  result within the path integral. The anomalous commutators
Zanelli (BTZ) black hole[7,8]. Nevertheless, there remain have been obtained also by using the path integral formula-
some open questions in this approdeh In particular, the tion in various gauge theorig26-28. The central charge
physical meaning of the Brown-Henneaux central charge igrises from the quantum anomaly which is understood as the
not clear from the original derivation. Jacobian factor of the path integral measure in the usual case

Brown-Henneaux's central charge was also obtained by27]. However, the Brown-Henneaux central charge is a clas-

some approaches. Bamos and co-workerg9,10] used the sical one because it exists at the level of the Poisson brack-
Chern-Simons formulation of th@+1)-dimensional gravity. ets. We thus want to clarify the origin of this central charge
See Refs[11-13 in the context of AdS/CFT correspon- in the path integral. Moreover, we want to answer the ques-
dence[14,15. tion if the Brown-Henneaux central charge is concerned with
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the degrees of freedom contained in the system as usual cen- As is well known, the variation of this action with the
tral charges. We also hope that this path integral derivatiomondition 8g,,=0 at3> contains no surface terms and thus
would be useful for exploring the relation betweenwe can obtain Einstein equation. However, if we takgea
Strominger’s approach and Gibbons-Hawking’s approacheric variation of this action, we obtaif82,33

[29,30. This is because the topological consideration is an

advantage of the path integral calculation. 1 ~
One might think that the path integral would be irrelevant 0S=~16-G fM V=9GP ogayd°
to the classical quantity. However, the classical quantity still
exists after the quantization as the zeroth order terri. ilm 1 JyIe )
order to calculate the whol@lassical and quantuntentral - RJ; — Y8 yapd?x, (2.4
charge by the path integral, we need the derivation of its
classical part within the framework of the path integral. Al- where
though the quantum part is difficult to calculate, its origin in
terms of the path integral is quite clear. We thus ignore the G2P=Ra - 1gaR+ A g?", (2.5
guantum part and concentrate on the classical one.
To derive the commutation relation, we must first identify [128b=@2P— @ 2P, (2.6)

the charge. Since the original derivation was based on the
Regge-Teitelboim metho[B1], the charge was obtained in- (Note that y— Y112 has the same form as the canonical
directly by integrating its variation. This process seems to benomentum in Arnowitt-Deser-Misner formulation.

ad hoc in more general situations. Thus, we extract the Next, we consider the coordinate transformation which is
charge from the variation of the action, directly. We then us€yenerated by a vectaf, namely.

two transformations to obtain the Ward-Takahashi identity.

One is the asymptotic symmetry and the other is its leading 8:9ab=EGap="alb+ Vola- 2.7
part. If we use the asymptotic symmetry, we find that the

central charge arises from the transformation law of theBy using Eq.(2.4), we find that

charge itself. Thus, we can see it as a classical central charge.

On the other hand, if we use its leading transformation, we 1 ~ab

find that the central charge arises due to the change of the 0,5=— %ﬁw V=gGV ,px

boundary conditiorof the path integral. This contrasts with

the usual quantum central charge which arises due to the 1

change of themeasureof the path integral. - %Lx V=YV, £dx, 2.9

The paper is organized as follows. In Sec. Il, we summa-
rize the variation and transformation property of the action
In Sec. lll, we review the asymptotically A¢dSpacetime
and calculate some basic quantities. In Sec. IV, we identify 1225y, =125, , (2.9
the Brown-Henneaux charge and derive its transformation
law. In Sec. V, we combine all the results to obtain the com—; .. [12°u,=0. We then decomposé? into 72 and {2,
mutation relation. In Sec. VI, we give another derlvat|onWhere
where the origin of the central charge is more interesting. In
Sec. VII, we discuss the implications of our result.

where we have used

P=yl"= -, (2.10
II. VARIATION OF ACTION ZaE U, (2.11
We consider thé2+1)-dimensional gravity with a nega-
tive cosmological constat <0. We assume that the bound- n=2_%0,. (2.12
ary of the spacetime is only at infinily” whose unit normal

surface tern 29,30, =0 and{? is normal to the boundary becau&&is propor-

tional to the normal vecton®. The tangential part becomes

1 1
S= —J \/—g(R—ZA)d3x+—J’ V—y0d?x,
167G Jwm 87G Js~ aby 7% _1ycd,, a., by 7 _17cdn F
(2 1) I1 Vaé‘b_l_[ Ye Yd Vagb_l_[ chdi (2139
where ., is the induced metric o defined by whereD, is the covariant derivative associated witk,. On
ab the other hand, the normal part becomes
Yab=Yab™ UalUp, (2.2 A
Habvagb: ﬂHabVaub: 77Hab®ab: 77(®ab®ab_ ®2)-
and®2" s the extrinsic curvature &t~ defined by (2.19

03P=,2°Y P @=g,,0%=9*"V,u,. (2.3  Therefore, one finds that
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1 ~ ab 3 of conformal infinity by Penrosg34,35. Briefly, since the
6S=-g-5/ V79C Valpd®X induced metric on the boundary=r, —« is formally writ-
) ten as
1 ~
__8wa V=AIDyL,+ 9(02°0 5~ 0%)]d?x. ox (—dt2+1%d¢?), 3.4
-

(2.15 the conformal transformation on the, §) plane leaves this
' induced metric “invariant,”

. ASYMPTOTICALLY AdS ; SPACETIME oo X (LA (— dt?+12d p?) =00 X (— dt?+12d ¢?).
From now on, we consider the asymptotically AdS 3.9
spacetime which is defined by the boundary condition, We write the next leading terms of the metric as
r2 r2
gtt:_|_2+0(1)1 gtt:_|_2+ett+o(1/r2)!
Ot :O(llr3)1 |3
r 0= 58+ O(L®),
Oip=O(1), 3.
2 Oip=Ers+O(1Ir?), (3.6
grr:r_2+0(1/r4)u |2 |4
9= I’_2+ r_4€rr+0(1/r6),
9rg=0O(1Ir%),
3
Ugpp=r>+0(1). g,¢=r—3e,¢+(9(1/r5),

We treat the boundar;” as ther =r, surface and then take . )
the limit r, —oo. Gy =T"F 1%y + O(1Ir7),

Brown and Henneauj6] ha_ve shown that th_e asymptotic wheree,, depend only ont(¢). Then, one can obtain the
symmetry, namely the coordinate transformation which Pre Ly mressions for some basic quantities
serves the asymptotic boundary conditi@l), becomes P q '

1 1 /1
|3_ t = 4
E=IT(t, )+ 5 T(L,d)+O(1h), ==yt 5| 8t ey | O,
r
12_ It :l—e +O(1hr%)
§r=rR(t,¢)+TR(t,¢>)+(’)(1/r3), (3.2) ¢ 2t ’
12 H¢:—ie +O(1ir % (3.7
E=a(t,¢)+ 5O (t,¢) + O(1r*), oyt ’ '
r
where they satisfy 1 11 4
H¢¢:—I—+—2 Eerr—ett +0O(1r "),
r
10;T(t,p)=0d4P(t,)=—R(L,¢),
2 2
Iat¢(t1¢):a¢T(t1¢)! (33) @ab®ab_®2:_l_2_r_z(ett_err_e¢¢)+0(1/r4)
— I
T(t,¢)=— E&tR(t,gb), Note that the transformation law fe,, is

Scer =T, +Pde, —26,R—4R,

— 1
but ﬁ(t,¢) is arbitrary, and this is the conformal group in

two dimensions. This fact can be understood easily by means +2€,40,0+ 2R+ 20,4, (3.9
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5§et¢: |T(9tet¢+ (I>(9¢et¢+ ettl (9¢T+ et¢l9¢(1)
+ et¢| [?IT+ IZE¢¢(3"[CD - I (34)?4- | Zﬁtq_),

and so on.
Furthermore, the equations of moti@y,=0 say that

|2

2 —
Ea‘e" +1901€ 4= 0 4€14 ,

1
- _(7¢err+(9¢,en:(9tet¢, (39)

2
€€ —€4y=0.

These equations arise from the r ¢, andrr components.
The other components become trivial up to this order.

IV. CURRENT AND CHARGE

We can obtain the Brown-Henneaux chafé¢ from the
tensorl12P,

1
J &]l=— ﬁ lim

r*—mo

f dor(I1%—11%)8%n,,
) 4.1

wheren? is the unit normal vector of the time slice ang,,
is the induced metric on the boundary=r, of the time
slice. The hat means that it is evaluated by AdBacetime
so that the charge becomes zero in AdPacetime. This is
similar to the charge defined by Brown and Y¢@83] in the
context of the quasilocal energy,

1
Jevl €)=~ 87G lim

r*ﬂoo

f oI T1%)n,.
' 4.2

However, these are different becaudé, £+ 1125, in the
subtraction term.
By using the expansion@.6) and (3.2), this becomes

1 r2 S
1= g im | dadty- Ty

r*ﬂw

1 1
:%J d¢>{ et 1) tey,

IT+et¢<I>],

4.3

for the asymptotic symmetry of the asymptotically AdS

PHYSICAL REVIEW D 64 064016

J€]= lim j do o &ln,. (4.5

M —® r=ry

By using equations of motiofB.9), one can find that the
charge is actually conserved,
dJ[£]=0, (4.9

where we have used the conditi@3) for £2.
The charge for the Lie bracket of two vectors becomes

1
E(e”+1)+e¢¢

1
e | d¢{ (12T,

FID 19, T, 12T 20,T1—1®,34Ty)

+etd,(|T1(9th2+ (I)l(?(/)(l)z_ ITzﬁt(I)l
—¢2a¢q>l)]. 4.7

On the other hand, by using Eq®8.8 and (3.3), one can
obtain

IT,

1 1
0 [ &1]= %I d¢[ [5(5§29rr)+(5§29¢¢)

+(5§23t¢)<b1} =J[[€1,6]1+ K[, 6]+ -,

4.9

whereK[ &,,£,] is the Brown-Henneaux central charid,

K[ &]1=(J[&1] at  gap=0abtE£,dan)

1
=— %J dp[To(dy+ %) +P4(14,

+1%363)]1 D5, (4.9
and “- - -” means the terms which vanish by using the equa-
tions of motion(3.9). Note that there is the central term in
the transformation law of the charge itself, which is explic-
itly derived from our definition of the charge without using
the Dirac brackets algebra. However, we must supply the
commutator by using the path integral in order to identify it

as the central charge. This is because other contributions

might arise from somewhere. Indeed, in Sec. VI, we will see

that there is another possible source of the classical central

charge.

V. COMMUTATION RELATION

spacetime. In fact, one can check that, by using the same
expansions, the Brown-Henneaux charge also becomes this To derive the commutation relation of two charges, we

expression.
The current for the transformation is considered as

1 L
flel=- g g%, (44

and the charge is then written as

begin with the path integral,

&)= deMJ[fl]eiS. (5.1

wheredu andB denote the measure and boundary condition

of the path integral, respectively. We first replace the integra-
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tion variableg,, everywhere in Eq(5.1) with g,,. This step _
is mathematically trivial, similar to the replacement == | doJ[&]+ -, (5.7
. where “- - -” again means the terms which vanish by using
f f(x)dx f fly)dy. (52 the equations of motiofB.9). Note that
We recognize this new integration variable as the trans- (0@ b_®z)_(@ab® b—2)=0(1/r4)
formed metric by the infinitesimal asymptotic symmetry a é '
transformationé,,

Dy(T1%—T13,) = O(1r %),

9ab=Yant 9¢,9an- 53 by the equations of motion.

We then find that Then, the right-hand side of the identif§.5) is

<J[§1]>=fédﬁ3[§l]e‘5 <T*J[§1]5528>=—<T*J[§1]f dtﬁtJ[§2]+~->

- deuu[gl]wgza[gl])(lﬂ%s)eis - f dta T* I £:1I[E]+ )

- j dta(TILEJIE]+ )

=([I &) &+ -), (5.8

= (L&D +(8IE) +i(T*I[£416,,9), (5.4 o
where we have simply identified the* Tproduct as the T
where we have used the fact that the boundary condition igroduct after extracting the time derivative by the standard
invariant under the asymptotic symmefB=B. We also as-  Biorken-Johnson-Low argumef6,37. . .
sumed that the measure of the path integral is invariant under Finally, by using Eq.(4.8 and the equations of motion
(3.9, we can obtain the commutation relation,
this transformationdz=dpu, since we want to see the clas-
sical cent.rgl chgrge. Therefore, we can obtain the Ward- (MINENIEID =I[£1,E11+iK[E,6]. (5.9
Takahashi identity

= de,U«(J[fl] + 6., [ 1]+13[ £116,,9)€'°

. This is consistent with the result of Brown and Henneggix
_ *
(0, [ £2]) =~ (T I[£119,,9)- (59 if we identify the Dirac brackets as the commutator,

By using Eq.(2.15, we can evaluate the right-hand side 1
of this identity. However, the result becomes infinite in the {A,B}ps— ~[A,B]. (5.10
limit of r=r,_—oo. In order to get a finite result, it is usual to :
subtract a functionab, of the boundary data,,, from the

action. In this case, we choose so tfad] Note that the classical central charge comes from the trans-

formation law of the chargé4.8) rather than the Jacobian
factor of the path integral measure. This is analogous to the
8:S0=— 87TGJ V=AT13,D 2+ n(02°0 ,,— ©?)]d?x,  central charge itN=2 supersymmetric theor28].
(5.9
VI. ANOTHER DERIVATION
where the hats again mean that they are evaluated by AdS

spacetime. For notational simplicity, we wri@-S, as S We can derive this central charge in another W8] if

we use only the leading part of the asymptotic symmetry,

anew.
Then, one finds that 1= 1T(t,)
1 . ~
55— gog I | dtdg =117 DE ET=IR(L9) 6
Fe—* r=r,
rg_—
+.. £'0=d(t, ),
o whereT,R,® again satisfy the conditio8.3). This transfor-
= 8qu lim —f dtd¢Da[(Hab—Hab)§2]+ e mation isnot the asymptotic symmetry since it breaks the
boundary conditions fog,, andg,,
_ 1o T t _ Yt VEb |2
T swerl'TwTJ,_r*dtth[(H o= ') &+ - £4gy = T AR+ O(1h),
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|2 ; ’ . ’
£:0r4= —d4,R+O(1Ir3). f d/LJ[§1]e'S=f dp(I[€:1]-13[€116-S
r B+ 5B B 2
Note that - 5%3[51])@5, (6.10

AEN=E, ALE1=I6.6], 62 |
| dmatenes= | ducren-iorenss

and
8:/S=6,S, (6.3 - 5§2J[§;])e‘5. (6.11)
since the nonleading parts do not contribute to these quantiyote that the boundary condition of both of the path integral
ties. On the other hand, we have become the same. By using Eqg.8) and (6.4), we can
S EN=IEL ST K 8+, 6a TN

A[£1,£5]1= (0 1]~ 9 [ £1])
=(K[£1,6]-K'[£1.63])- (6.12

1
K& &2]=~ %] dd[T1dyt ol a]l®2. 65 Thus we can again obtain the Brown-Henneaux commuta-
tion relation,

This is not a nontrivial central charge since we can eliminate
this term by adding a constant to the chargetually, it can ([I€11, 306211 =(1I[[ €1, €11 +1K[é1,&,]), (6.13
be achieved by choosing tiv=J=0 BTZ black hole as the ] ) ]
background rather than AdSspacetime[38].) This is the PY Using the equations of motion. .
interesting aspect of this leading transformatiérl). Since Therefore, the nontrivial part of 'the central che}rge arises
the remaining quantities in the Ward-Takahashi ider(6t) from the fact that théoundary conditiorof the path integral

are equal, one might think that one could obtain the commuB is not invariant under the leading transformatigh This
tator without the nontrivial central charge, phenomenon is in contrast to the usual quantum case where

the anomaly arises from the fact that thheasureof the path
integraldw is not invariant under the relevant transforma-
tion.

where

(ILEIEDD) I, &1 +IK [E,.85]), (6.6

if we use this leading transformatid6.1). However, this is
not correct. Since the leading transformation breaks the VIl. DISCUSSION
boundary condition of the path integrg] we cannot obtain

the Ward-Takahashi identity(5.5. Instead. the Ward- We have reproduced the Brown-Henneaux commutation

relation in the context of the path integral. The origin of the
Meentral charge is not the Jacobian factor of the path integral
measure as the quantum anomaly. If we use the asymptotic
T _ roer symmetry to derive the Ward-Takahashi identity, it arises
(g dle1]) =~ 1T 61105, 9) —Al&1.&51. (6.7 from the transformation law of the charge. Thus, it can be
considered as a classical anomaly even though the path inte-
gral formulation has been used to obtain the commutator of
two charges. This is similar to the central charge in the
A[gi,gé]z(f _f dud[£]]1€'S, (6.9 =2 supersymmetric theory. In order to apply to the black
BtogB JB hole entropy, we want to relate this central charge with some
ignorance. It would be considered as follows. We could see
and the boundary conditioB + 5§éB denotes that the trans- the tensofd” as a tensor in two dimensions on the bound-
formed metricg,,+ 5§égab must satisfy the asymptotically ary 3% since it can be obtained as the conjugate variable to

" . - the induced metriey,p, on the boundary. The charggé] is
Qr?dsgihc;[ndnlon(&l). Repeating the derivation as above, Wemade from this tensor and boundary value ol this sense,

the charge is a quantity on the two-dimensional boundary.
([IENIEN =L E, ENTFIKTELL EFIALE] £]. However, the transformatiog is in the three-dimensional
(6.9

due to the change of the boundary condit®nnamely,

where

spacetime. This transformation consists of the two-
dimensional transformation with some additional terms. Es-
In order to evaluaté\[ £ ,£5], we perform the infinitesi- pecially, T and® terms, which are required to maintain the
mal change of the integration variable corresponding to théoundary condition, give rise to the central charge. This gap
inverse transformation of; in the first integral and that of corresponds to the ignorance due to the limit—oo.
&, in the second integral, similar to the calculations in Eq.  Alternatively, in order to derive the Ward-Takahashi iden-
(5.4). The integrals then become tity, we can use the leading part of the asymptotic symmetry.
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Then, we can find that the central charge arises from the fadiased on the Regge-Teitelboim method where the charge
that theboundary conditiorof the path integral is not invari- J[ £] was derived from its variatiodJ[ £]. However, in more
ant under the leading transformation. This is in contrast tageneral casekl9,16, it is not straightforward to do this in-
the quantum central charge which arises from the fact thategration. On the other hand, since the present analysis can
the measureof the path integral is not invariant under the identify the charge directly, it would be straightforward to
relevant transformation. From this picture, we could see thaapply in such cases. The other advantage of the present
the Brown-Henneaux central charge does not count the denalysis would be the topological consideration. We hope
grees of freedom in the system. Moreover, we could underthat we could relate Strominger’s approach to the Gibbons-
stand other classical central charges, such as inNthe Hawking approachH?29] by using this path integral deriva-
supersymmetric theory, as above in the path integral formution.
lation. Our analysis also suggests the possibility that the clas-
sical central charge may arise in more general theories if the
boundary condition of the path integral is nontrivial.

Finally, one of the advantages of the present analysis is The author thanks K. Fujikawa for introducing him to this
that the charge is identified directly and it is thus easy tosubject and for helpful discussions. The author also thanks Y.
apply to more general situations. The past approaches we&hibusa for comments and discussions.
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