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Path integral derivation of the Brown-Henneaux central charge

Hiroaki Terashima
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

~Received 19 February 2001; published 27 August 2001!

We rederive the Brown-Henneaux commutation relation and central charge in the framework of the path
integral. To obtain the Ward-Takahashi identity, we can use either asymptotic symmetry or its leading part. If
we use asymptotic symmetry, the central charge arises from the transformation law of the charge itself. Thus,
this central charge is clearly different from the quantum anomaly which can be understood as the Jacobian
factor of the path integral measure. Alternatively, if we use the leading transformation, the central charge arises
from the fact that the boundary condition of the path integral is not invariant under the transformation. This is
in contrast with the usual quantum central charge which arises from the fact that the measure of the path
integral is not invariant under the relevant transformation. Moreover, we discuss the implications of our
analysis in relation to the black hole entropy.
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I. INTRODUCTION

To the black hole in general relativity, we can assign
entropy called the Bekenstein-Hawking entropy. There h
been many attempts to understand the origin of this bl
hole entropy. In particular, there are some attempts which
based on the central charge in conformal field theory~CFT!.
Note that the density of states can be calculated from
central charge by using the Cardy formula@1,2# in conformal
field theory. For example, in the framework of superstri
theory, it has been shown that the black hole entropy can
calculated from the central charge of the effective superc
formal field theory for D-branes@3,4#.

On the other hand, Strominger@5# has used the Brown
Henneaux central charge instead of the usual central cha
In the case of~211!-dimensional gravity with a negativ
cosmological constantL521/l 2, Brown and Henneaux@6#
have shown that the asymptotic symmetry of an asympt
cally AdS3 spacetime is the conformal group in two dime
sions rather than the AdS3 group, SO(2,2). Moreover, the
have shown that this symmetry is canonically realized by
Poisson brackets algebra of the generators~or the Dirac
brackets algebra of the charges! with a central extension. The
central charge becomes

c5
3l

2G
. ~1.1!

By combining this central charge with the Cardy formu
Strominger has shown that the resultant entropy agrees
the Bekenstein-Hawking entropy of the Ban˜ados-Teitelboim-
Zanelli ~BTZ! black hole@7,8#. Nevertheless, there rema
some open questions in this approach@2#. In particular, the
physical meaning of the Brown-Henneaux central charg
not clear from the original derivation.

Brown-Henneaux’s central charge was also obtained
some approaches. Ban˜ados and co-workers@9,10# used the
Chern-Simons formulation of the~211!-dimensional gravity.
See Refs.@11–13# in the context of AdS/CFT correspon
dence@14,15#.
0556-2821/2001/64~6!/064016~7!/$20.00 64 0640
n
e
k
re

e

be
n-

es.

i-

e

,
ith

is

y

Natsuume, Okamura, and Sato@16# have generalized the
Brown-Henneaux central charge to include a conformal s
lar field and applied Strominger’s approach to the Martı´nez-
Zanelli ~MZ! black hole@17#. However, since they have ob
tained the same charge and central charge as the case o
pure gravity, the density of states from the Cardy formu
does not agree with the Bekenstein-Hawking entropy.~The
functional form does agree but the over-all numerical fac
does not.! Thus, they have considered that the Cardy form
gives the ‘‘maximum possible entropy’’ for a given mas
See also Ref.@18# for the extension to various theories.

Since the Brown-Henneaux central charge is based on
asymptotic symmetry at infinity in~211! dimensions, Carlip
@19,20# has generalized to the symmetry near the black h
horizon in any dimensions. This symmetry contains a natu
Virasoro subalgebra and the resulting central charge re
duces the Bekenstein-Hawking entropy by the Cardy f
mula.~However, since the generator of Ref.@19# is not ‘‘dif-
ferentiable’’ @21,22#, it has been proposed by Soloviev@23#
to use a modified Poisson bracket which is applicable to
‘‘nondifferentiable’’ functionals.! Similar conclusion was ob-
tained by Solodukhin@24# with effective two-dimensional
theories for the spherically symmetric metrics in higher
mensions. Moreover, Carlip@25# has calculated the prefacto
of the Cardy formula and the logarithmic correction to t
Bekenstein-Hawking entropy.

In this paper, we rederive the Brown-Henneaux comm
tation relation and central charge in terms of the path integ
formulation since it was originally obtained by the canonic
formulation. In view of the equivalence of these two a
proaches to the quantum theory, we must obtain the s
result within the path integral. The anomalous commutat
have been obtained also by using the path integral form
tion in various gauge theories@26–28#. The central charge
arises from the quantum anomaly which is understood as
Jacobian factor of the path integral measure in the usual
@27#. However, the Brown-Henneaux central charge is a c
sical one because it exists at the level of the Poisson br
ets. We thus want to clarify the origin of this central char
in the path integral. Moreover, we want to answer the qu
tion if the Brown-Henneaux central charge is concerned w
©2001 The American Physical Society16-1
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the degrees of freedom contained in the system as usual
tral charges. We also hope that this path integral deriva
would be useful for exploring the relation betwee
Strominger’s approach and Gibbons-Hawking’s appro
@29,30#. This is because the topological consideration is
advantage of the path integral calculation.

One might think that the path integral would be irreleva
to the classical quantity. However, the classical quantity s
exists after the quantization as the zeroth order term in\. In
order to calculate the whole~classical and quantum! central
charge by the path integral, we need the derivation of
classical part within the framework of the path integral. A
though the quantum part is difficult to calculate, its origin
terms of the path integral is quite clear. We thus ignore
quantum part and concentrate on the classical one.

To derive the commutation relation, we must first ident
the charge. Since the original derivation was based on
Regge-Teitelboim method@31#, the charge was obtained in
directly by integrating its variation. This process seems to
ad hoc in more general situations. Thus, we extract
charge from the variation of the action, directly. We then u
two transformations to obtain the Ward-Takahashi ident
One is the asymptotic symmetry and the other is its lead
part. If we use the asymptotic symmetry, we find that
central charge arises from the transformation law of
charge itself. Thus, we can see it as a classical central ch
On the other hand, if we use its leading transformation,
find that the central charge arises due to the change of
boundary conditionof the path integral. This contrasts wit
the usual quantum central charge which arises due to
change of themeasureof the path integral.

The paper is organized as follows. In Sec. II, we summ
rize the variation and transformation property of the acti
In Sec. III, we review the asymptotically AdS3 spacetime
and calculate some basic quantities. In Sec. IV, we iden
the Brown-Henneaux charge and derive its transforma
law. In Sec. V, we combine all the results to obtain the co
mutation relation. In Sec. VI, we give another derivati
where the origin of the central charge is more interesting
Sec. VII, we discuss the implications of our result.

II. VARIATION OF ACTION

We consider the~211!-dimensional gravity with a nega
tive cosmological constantL,0. We assume that the bound
ary of the spacetime is only at infinityS` whose unit normal
vector isua. We thus begin with the Hilbert action with th
surface term@29,30#,

S5
1

16pGE
M
A2g~R22L!d3x1

1

8pGE
S`

A2gQd2x,

~2.1!

wheregab is the induced metric onS` defined by

gab[gab2uaub , ~2.2!

andQab is the extrinsic curvature ofS` defined by

Qab5gac¹cu
b, Q5gabQ

ab5gab¹aub . ~2.3!
06401
en-
n

h
n

t
ll

s

e

e

e
e
e
.
g
e
e
ge.
e
he

he

-
.

y
n
-

n

As is well known, the variation of this action with th
conditiondgab50 at S` contains no surface terms and th
we can obtain Einstein equation. However, if we take age-
neric variation of this action, we obtain@32,33#

dS52
1

16pGE
M
A2gG̃abdgabd

3x

2
1

16pGE
S`

A2gPabdgabd
2x, ~2.4!

where

G̃ab5Rab2 1
2 gabR1Lgab, ~2.5!

Pab5Qab2Qgab. ~2.6!

„Note thatA2gPab has the same form as the canonic
momentum in Arnowitt-Deser-Misner formulation.…

Next, we consider the coordinate transformation which
generated by a vectorza, namely,

dzgab5£zgab5¹azb1¹bza . ~2.7!

By using Eq.~2.4!, we find that

dzS52
1

8pGE
M
A2gG̃ab¹azbd3x

2
1

8pGE
S`

A2gPab¹azbd2x, ~2.8!

where we have used

Pabdgab5Pabdgab , ~2.9!

since Pabua50. We then decomposeza into z̃a and ẑa,
where

z̃a[ga
bzb5za2hua, ~2.10!

ẑa[hua, ~2.11!

h5zaua . ~2.12!

Note that z̃a is tangential to the boundaryS` since z̃aua

50 andẑa is normal to the boundary becauseẑa is propor-
tional to the normal vectorua. The tangential part become

Pab¹az̃b5Pcdgc
agd

b¹az̃b5PcdDcz̃d , ~2.13!

whereDa is the covariant derivative associated withgab . On
the other hand, the normal part becomes

Pab¹aẑb5hPab¹aub5hPabQab5h~QabQab2Q2!.
~2.14!

Therefore, one finds that
6-2
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dzS52
1

8pGE
M
A2gG̃ab¹azbd3x

2
1

8pGE
S`

A2g@PabDaz̃b1h~QabQab2Q2!#d2x.

~2.15!

III. ASYMPTOTICALLY AdS 3 SPACETIME

From now on, we consider the asymptotically Ad3
spacetime which is defined by the boundary condition,

gtt52
r 2

l 2
1O~1!,

gtr5O~1/r 3!,

gtf5O~1!, ~3.1!

grr 5
l 2

r 2
1O~1/r 4!,

grf5O~1/r 3!,

gff5r 21O~1!.

We treat the boundaryS` as ther 5r * surface and then tak
the limit r * →`.

Brown and Henneaux@6# have shown that the asymptot
symmetry, namely the coordinate transformation which p
serves the asymptotic boundary condition~3.1!, becomes

j t5 lT~ t,f!1
l 3

r 2
T̄~ t,f!1O~1/r 4!,

j r5rR~ t,f!1
l 2

r
R̄~ t,f!1O~1/r 3!, ~3.2!

jf5F~ t,f!1
l 2

r 2
F̄~ t,f!1O~1/r 4!,

where they satisfy

l ] tT~ t,f!5]fF~ t,f!52R~ t,f!,

l ] tF~ t,f!5]fT~ t,f!, ~3.3!

T̄~ t,f!52
l

2
] tR~ t,f!,

F̄~ t,f!5
1

2
]fR~ t,f!,

but R̄(t,f) is arbitrary, and this is the conformal group
two dimensions. This fact can be understood easily by me
06401
-

ns

of conformal infinity by Penrose@34,35#. Briefly, since the
induced metric on the boundaryr 5r * →` is formally writ-
ten as

`3~2dt21 l 2df2!, ~3.4!

the conformal transformation on the (t,f) plane leaves this
induced metric ‘‘invariant,’’

`3er(t,f)~2dt21 l 2df2!5`3~2dt21 l 2df2!.
~3.5!

We write the next leading terms of the metric as

gtt52
r 2

l 2
1ett1O~1/r 2!,

gtr5
l 3

r 3
etr1O~1/r 5!,

gtf5etf1O~1/r 2!, ~3.6!

grr 5
l 2

r 2
1

l 4

r 4
err 1O~1/r 6!,

grf5
l 3

r 3
erf1O~1/r 5!,

gff5r 21 l 2eff1O~1/r 2!,

whereeab depend only on (t,f). Then, one can obtain th
expressions for some basic quantities,

P t
t52

1

l
1

l

r 2 S 1

2
err 1effD1O~1/r 4!,

P t
f5

l

r 2
etf1O~1/r 4!,

Pf
t52

1

r 2l
etf1O~1/r 4!, ~3.7!

Pf
f52

1

l
1

l

r 2 S 1

2
err 2ettD1O~1/r 4!,

QabQab2Q252
2

l 2
2

2

r 2
~ett2err 2eff!1O~1/r 4!.

Note that the transformation law foreab is

djerr 5 lT] terr 1F]ferr 22err R24R̄,

djeff5 lT] teff1F]feff1
2

l
etf]fT

12eff]fF12R̄12]fF̄, ~3.8!
6-3
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djetf5 lT] tetf1F]fetf1ettl ]fT1etf]fF

1etfl ] tT1 l 2eff] tF2 l ]fT̄1 l 2] tF̄,

and so on.
Furthermore, the equations of motionG̃ab50 say that

l 2

2
] terr 1 l 2] teff5]fetf ,

2
1

2
]ferr 1]fett5] tetf , ~3.9!

ett2err 2eff50.

These equations arise from thetr , rf, and rr components.
The other components become trivial up to this order.

IV. CURRENT AND CHARGE

We can obtain the Brown-Henneaux charge@6# from the
tensorPab,

J@j#52
1

8pG
lim

r
*

→`
E

r 5r
*

dfAs~Pa
b2P̂a

b!j̃bna ,

~4.1!

wherena is the unit normal vector of the time slice andsab
is the induced metric on the boundaryr 5r * of the time
slice. The hat means that it is evaluated by AdS3 spacetime
so that the charge becomes zero in AdS3 spacetime. This is
similar to the charge defined by Brown and York@33# in the
context of the quasilocal energy,

JBY@j#52
1

8pG
lim

r
*

→`
E

r 5r
*

dfAs~Pab2P̂ab!j̃bna .

~4.2!

However, these are different becauseP̂a
bj̃b5” P̂abj̃b in the

subtraction term.
By using the expansions~3.6! and ~3.2!, this becomes

J@j#5
1

8pG
lim

r
*

→`

r
*
2

l Er 5r
*

df~P t
b2P̂ t

b!j̃b

5
1

8pGE dfH F1

2
~err 11!1effG lT1etfFJ ,

~4.3!

for the asymptotic symmetry of the asymptotically AdS3
spacetime. In fact, one can check that, by using the s
expansions, the Brown-Henneaux charge also becomes
expression.

The current for the transformation is considered as

j a@j#52
1

8pG
~Pa

b2P̂a
b!j̃bur 5r

*
, ~4.4!

and the charge is then written as
06401
e
his

J@j#5 lim
r
*

→`
E

r 5r
*

dfAs j a@j#na . ~4.5!

By using equations of motion~3.9!, one can find that the
charge is actually conserved,

] tJ@j#50, ~4.6!

where we have used the condition~3.3! for ja.
The charge for the Lie bracket of two vectors become

J@@j1 ,j2##5
1

8pGE dfH F1

2
~err 11!1effG~ l 2T1] tT2

1 lF1]fT22 l 2T2] tT12 lF2]fT1!

1etf~ lT1] tF21F1]fF22 lT2] tF1

2F2]fF1!J . ~4.7!

On the other hand, by using Eqs.~3.8! and ~3.3!, one can
obtain

dj2
J@j1#5

1

8pGE dfH F1

2
~dj2

err !1~dj2
eff!G lT1

1~dj2
etf!F1J 5J@@j1 ,j2##1K@j1 ,j2#1•••,

~4.8!

whereK@j1 ,j2# is the Brown-Henneaux central charge@6#,

K@j1 ,j2#5~J@j1# at gab5ĝab1£j2
ĝab!

52
1

8pGE df@T1~]f1]f
3 !1F1~ l ] t

1 l 3] t
3!# lF2 , ~4.9!

and ‘‘••• ’’ means the terms which vanish by using the equ
tions of motion~3.9!. Note that there is the central term i
the transformation law of the charge itself, which is expl
itly derived from our definition of the charge without usin
the Dirac brackets algebra. However, we must supply
commutator by using the path integral in order to identify
as the central charge. This is because other contribut
might arise from somewhere. Indeed, in Sec. VI, we will s
that there is another possible source of the classical ce
charge.

V. COMMUTATION RELATION

To derive the commutation relation of two charges, w
begin with the path integral,

^J@j1#&5E
B
dmJ@j1#eiS, ~5.1!

wheredm andB denote the measure and boundary condit
of the path integral, respectively. We first replace the integ
6-4



ns
ry

n

d
s-
rd

e
he
o

d

g

ard

ns-
n
the

,

he

PATH INTEGRAL DERIVATION OF THE BROWN- . . . PHYSICAL REVIEW D 64 064016
tion variablegab everywhere in Eq.~5.1! with g̃ab . This step
is mathematically trivial, similar to the replacement

E f ~x!dx→E f ~y!dy. ~5.2!

We recognize this new integration variable as the tra
formed metric by the infinitesimal asymptotic symmet
transformationj2,

g̃ab[gab1dj2
gab . ~5.3!

We then find that

^J@j1#&5E
B̃
dm̃ J̃@j1#eiS̃

5E
B
dm~J@j1#1dj2

J@j1# !~11 idj2
S!eiS

5E
B
dm~J@j1#1dj2

J@j1#1 iJ@j1#dj2
S!eiS

5^J@j1#&1^dj2
J@j1#&1 i ^T* J@j1#dj2

S&, ~5.4!

where we have used the fact that the boundary conditio
invariant under the asymptotic symmetry,B̃5B. We also as-
sumed that the measure of the path integral is invariant un
this transformation,dm̃5dm, since we want to see the cla
sical central charge. Therefore, we can obtain the Wa
Takahashi identity

^dj2
J@j1#&52 i ^T* J@j1#dj2

S&. ~5.5!

By using Eq.~2.15!, we can evaluate the right-hand sid
of this identity. However, the result becomes infinite in t
limit of r 5r * →`. In order to get a finite result, it is usual t
subtract a functionalS0 of the boundary datagab from the
action. In this case, we choose so that@33#

djS052
1

8pGE
S`

A2g@P̂a
bD aj̃b1h~Q̂abQ̂ab2Q̂2!#d2x,

~5.6!

where the hats again mean that they are evaluated by A3
spacetime. For notational simplicity, we writeS2S0 as S
anew.

Then, one finds that

dj2
S52

1

8pG
lim

r
*

→`
E

r 5r
*

dtdfA2g~Pa
b2P̂a

b!Daj̃2
b

1•••

52
1

8pG
lim

r
*

→`

r
*
2

l Er 5r
*

dtdfDa@~Pa
b2P̂a

b!j̃2
b#1•••

52
1

8pG
lim

r
*

→`

r
*
2

l Er 5r
*

dtdf] t@~P t
b2P̂ t

b!j̃2
b#1•••
06401
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52E dt] tJ@j2#1•••, ~5.7!

where ‘‘••• ’’ again means the terms which vanish by usin
the equations of motion~3.9!. Note that

~QabQab2Q2!2~Q̂abQ̂ab2Q̂2!5O~1/r 4!,

Da~Pa
b2P̂a

b!5O~1/r 4!,

by the equations of motion.
Then, the right-hand side of the identity~5.5! is

^T* J@j1#dj2
S&52 K T* J@j1#E dt] tJ@j2#1••• L

52E dt] t^T* J@j1#J@j2#1•••&

52E dt] t^T J@j1#J@j2#1•••&

5^@J@j1#,J@j2##1•••&, ~5.8!

where we have simply identified the T* product as the T
product after extracting the time derivative by the stand
Bjorken-Johnson-Low argument@36,37#.

Finally, by using Eq.~4.8! and the equations of motion
~3.9!, we can obtain the commutation relation,

^@J@j1#,J@j2##&5^ iJ@@j1 ,j2##1 iK @j1 ,j2#&. ~5.9!

This is consistent with the result of Brown and Henneaux@6#
if we identify the Dirac brackets as the commutator,

$A,B%D.B.↔
1

i
@A,B#. ~5.10!

Note that the classical central charge comes from the tra
formation law of the charge~4.8! rather than the Jacobia
factor of the path integral measure. This is analogous to
central charge inN52 supersymmetric theory@28#.

VI. ANOTHER DERIVATION

We can derive this central charge in another way@38# if
we use only the leading part of the asymptotic symmetry

j8t5 lT~ t,f!,

j8r5rR~ t,f!, ~6.1!

j8f5F~ t,f!,

whereT,R,F again satisfy the condition~3.3!. This transfor-
mation is not the asymptotic symmetry since it breaks t
boundary conditions forgtr andgrf ,

£jgtr5
l 2

r
] tR1O~1/r 3!,
6-5
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£jgrf5
l 2

r
]fR1O~1/r 3!.

Note that

J@j8#5J@j#, J@@j18 ,j28##5J@@j1 ,j2##, ~6.2!

and

dj8S5djS, ~6.3!

since the nonleading parts do not contribute to these qua
ties. On the other hand, we have

dj
28
J@j18#5J@@j18 ,j28##1K8@j18 ,j28#1•••, ~6.4!

where

K8@j18 ,j28#52
1

8pGE df@T1]f1F1l ] t# lF2 . ~6.5!

This is not a nontrivial central charge since we can elimin
this term by adding a constant to the charge.~Actually, it can
be achieved by choosing theM5J50 BTZ black hole as the
background rather than AdS3 spacetime@38#.! This is the
interesting aspect of this leading transformation~6.1!. Since
the remaining quantities in the Ward-Takahashi identity~5.5!
are equal, one might think that one could obtain the comm
tator without the nontrivial central charge,

^@J@j1#,J@j2##&
??
5^ iJ@@j1 ,j2##1 iK 8@j18 ,j28#&, ~6.6!

if we use this leading transformation~6.1!. However, this is
not correct. Since the leading transformation breaks
boundary condition of the path integralB, we cannot obtain
the Ward-Takahashi identity~5.5!. Instead, the Ward-
Takahashi identity is supplemented with an additional te
due to the change of the boundary conditionB, namely,

^dj
28
J@j18#&52 i ^T* J@j18#dj

28
S&2D@j18 ,j28#, ~6.7!

where

D@j18 ,j28#[S EB1dj28
B

2E
BD dmJ@j18#eiS, ~6.8!

and the boundary conditionB1dj
28
B denotes that the trans

formed metricgab1dj
28
gab must satisfy the asymptoticall

AdS3 condition~3.1!. Repeating the derivation as above, w
find that

^@J@j18#,J@j28##&5^ iJ@@j18 ,j28##1 iK 8@j18 ,j28#&1 iD@j18 ,j28#.
~6.9!

In order to evaluateD@j18 ,j28#, we perform the infinitesi-
mal change of the integration variable corresponding to
inverse transformation ofj28 in the first integral and that o
j2 in the second integral, similar to the calculations in E
~5.4!. The integrals then become
06401
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E
B1dj28

B
dmJ@j18#eiS5E

B
dm~J@j18#2 iJ@j18#dj

28
S

2dj
28
J@j18# !eiS, ~6.10!

E
B
dmJ@j18#eiS5E

B
dm~J@j18#2 iJ@j18#dj2

S

2dj2
J@j18# !eiS. ~6.11!

Note that the boundary condition of both of the path integ
become the same. By using Eqs.~4.8! and ~6.4!, we can
obtain that

D@j18 ,j28#5^dj2
J@j18#2dj

28
J@j18#&

5^K@j1 ,j2#2K8@j18 ,j28#&. ~6.12!

Thus, we can again obtain the Brown-Henneaux commu
tion relation,

^@J@j18#,J@j28##&5^ iJ@@j18 ,j28##1 iK @j1 ,j2#&, ~6.13!

by using the equations of motion.
Therefore, the nontrivial part of the central charge aris

from the fact that theboundary conditionof the path integral
B is not invariant under the leading transformationj8. This
phenomenon is in contrast to the usual quantum case w
the anomaly arises from the fact that themeasureof the path
integral dm is not invariant under the relevant transform
tion.

VII. DISCUSSION

We have reproduced the Brown-Henneaux commuta
relation in the context of the path integral. The origin of t
central charge is not the Jacobian factor of the path inte
measure as the quantum anomaly. If we use the asymp
symmetry to derive the Ward-Takahashi identity, it aris
from the transformation law of the charge. Thus, it can
considered as a classical anomaly even though the path
gral formulation has been used to obtain the commutato
two charges. This is similar to the central charge in theN
52 supersymmetric theory. In order to apply to the bla
hole entropy, we want to relate this central charge with so
ignorance. It would be considered as follows. We could
the tensorPab as a tensor in two dimensions on the boun
ary S` since it can be obtained as the conjugate variable
the induced metricgab on the boundary. The chargeJ@j# is
made from this tensor and boundary value ofj. In this sense,
the charge is a quantity on the two-dimensional bounda
However, the transformationj is in the three-dimensiona
spacetime. This transformation consists of the tw
dimensional transformation with some additional terms. E
pecially, T̄ andF̄ terms, which are required to maintain th
boundary condition, give rise to the central charge. This g
corresponds to the ignorance due to the limitr * →`.

Alternatively, in order to derive the Ward-Takahashi ide
tity, we can use the leading part of the asymptotic symme
6-6
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Then, we can find that the central charge arises from the
that theboundary conditionof the path integral is not invari
ant under the leading transformation. This is in contras
the quantum central charge which arises from the fact
the measureof the path integral is not invariant under th
relevant transformation. From this picture, we could see
the Brown-Henneaux central charge does not count the
grees of freedom in the system. Moreover, we could und
stand other classical central charges, such as in theN52
supersymmetric theory, as above in the path integral form
lation. Our analysis also suggests the possibility that the c
sical central charge may arise in more general theories if
boundary condition of the path integral is nontrivial.

Finally, one of the advantages of the present analysi
that the charge is identified directly and it is thus easy
apply to more general situations. The past approaches w
lli,

tt

06401
ct

o
at

at
e-
r-

u-
s-
e

is
o
re

based on the Regge-Teitelboim method where the cha
J@j# was derived from its variationdJ@j#. However, in more
general cases@19,16#, it is not straightforward to do this in-
tegration. On the other hand, since the present analysis
identify the charge directly, it would be straightforward
apply in such cases. The other advantage of the pre
analysis would be the topological consideration. We ho
that we could relate Strominger’s approach to the Gibbo
Hawking approach@29# by using this path integral deriva
tion.
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