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Quantum entropy of the Kerr black hole arising from gravitational perturbation
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The quantum entropy of the Kerr black hole arising from gravitational perturbation is investigated by using
the Null tetrad and ’t Hooft’s brick-wall model. It is shown that the effect of the graviton’s spin on the
subleading correction is dependent on the square of the spins and the angular momentum per unit mass of the
black hole, and the contribution of the logarithmic term to the entropy will be positive, zero, and negative for
different value ofa/r 1 .
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By comparing black hole physics with thermodynam
and from the discovery of black hole evaporation, Beke
stein and Hawking@1,2# found that black hole entropy i
proportional to the area of the event horizon, i.e.,S5AH/4.
This discovery is one of the most profound ones in bla
hole physics. However, the issue of the exact statistical
gin of the black hole entropy, i.e., what degrees of freed
are counted by the entropy of black holes, has remaine
challenging one. Recently, much effort has been conc
trated on the problem@3–16#. ’t Hooft @3# proposed a ‘‘brick-
wall’’ model ~BWM! in which the black hole entropy is iden
tified with the statistical-mechanical entropy arising from
thermal bath of quantum fields propagating outside the h
zon. The BWM was used in the studies of the statistic
mechanical entropy arising from scalar fields for static bla
holes @3,6,12# and for stationary axisymmetric black hole
@9#. The method also can be applied to calculate quan
entropy due to the electromagnetic field for the Reissn
Nordström black hole@11# and for the general static spheric
static black holes@17#. Recently, by using the BWM, we@18#
investigated the effects of the spin of photons and Dirac p
ticles on the entropies of the Kerr-Newman black hole.

It has been believed that a black hole can exist in ther
equilibrium with a heat bath possessing a characteristic t
perature distribution. The heat bath could cause the cha
of the space-time geometry by back reaction. From the se
classical Einstein equationsRmn2 1

2 gmnR5^Tmn&, we know
that general metric can be approximately written asgmn

5gmn
A 1gmn

B , wheregmn
A represents the classical backgrou

space-time andgmn
B the disturbance. An interesting ope

question is how the gravitational perturbation affects the
tropy of the black holes. The purpose of this paper is
investigate the question by a concrete example, i.e., study
quantum entropy of the Kerr black hole@19# arising from the
gravitational disturbance by using the BWM.
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A straightforward way to get perturbation equations f
gravitation is to insert the general metric just given into t
Einstein field equations and then obtain linear equations
the perturbation. But even in the simplest static and sph
cally symmetric case, to decouple the perturbation equat
involves considerable algebraic complexity. Therefore, in
case where the background metric is stationary, the repl
ment of spherical symmetry by axial symmetry means tha
decouple the equations is no longer possible by this w
Fortunately, there is an alternative approach to the probl
which is provided by the null tetrad formalism. In the fo
lowing, we first introduce the null tetrad to decouple gra
tational perturbation equations, then we seek the total n
ber of modes under proper gauge, and after that we calcu
a free energy and the quantum entropy of the Kerr bla
hole.

To decouple gravitational perturbation equations in spa
time of the Kerr black hole in the Boyer-Lindquist coord
nates (t,r ,u,w), we introduce the null tetrad

l m
A5

1

D
~D, 2S, 0, 2aD sin2u!,

nm
A5

1

2S
~D, S, 0, 2aD sin2u!,

mm
A52

r̄

A2
@ ia sinu, 0, 2S, 2 i ~r 21a2!sinu#,

m̄m
A52

r

A2
@2 ia sinu, 0, 2S, i ~r 21a2!sinu#,

~1!

here and hereafter the superscript ‘‘A’’ represents the unp
turbed values in the stationary space-time,r52(r
2 ia cosu)21, S5r 21a2 cos2u, D5(r 2r 1)(r 2r 2), r 6

5M6AM22a2, and r 1 , M, anda represent the radius o
the event horizon, the mass, and the angular momentum
unit mass of the Kerr black hole, respectively. The nonv
©2001 The American Physical Society15-1
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ishing unperturbed spin coefficients and components of
Weyl tensor of the Kerr black hole in the null tetrad~1! can
then be expressed as@20,21#

rA52
1

r 2 ia cosu
, bA52

r̄ cotu

2A2
,

pA5
iar2 sinu

A2
, tA52

iarr̄ sinu

A2
,

mA5
r2r̄D

2
, gA5mA1

rr̄~r 2M !

2
,

aA5pA2b̄A, c2
A5Mr3. ~2!

When the stationary Kerr black hole is gravitationally pe
turbed by the incidence of gravitational waves, the quanti
which vanish in the stationary state will become quantities
the first order of smallness and can be described byc0 , c1 ,
c3 , c4 , k, s, l, andn. We know from Ref.@20# that, in a
linear perturbation theory,c0 and c4 are gauge invarian
quantities whilec1 and c3 are not. Consequently, we ma
choose a gauge~i.e., subject the tetrad basis to an infinite
mal rotation! in whichc1 andc3 vanish without affectingc0
andc4. If we choose such a gauge and assume that

c05R12~r !Q12~u!e2 i (Et2mw),

c45
1

r̄4
R22~r !Q22~u!e2 i (Et2mw)

~E andm are constants! ~3!

we find thatk, s, l, andn can be written as@20#

k52
A2

6M
r̄2R12S L22

3ia sinu

r̄
D Q12 ,

s5
1

6M

r̄2

r
Q12DS D 2

†2
3

r̄
D R12 ,

n5
A2

6M

1

r2
R22S L 2

†2
3ia sinu

r̄
D Q22 ,

l5
1

6M

2

r̄
Q22S D02

3

r̄
D R22 ,

and decoupled equations are given by@20#

~DD1D 2
†26iEr !R12~r !5l12R12~r !,

~DD 21
† D016iEr !R22~r !5l22R22~r !,

~L 21
† L216aE cosu!Q12~u!52l12Q12~u!,

~L21L 2
†26aE cosu!Q22~u!52l22Q22~u!, ~4!
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wherel12 andl22 are separation constants, and

Dn[
]

]r
1

i ~r 21a2!E2ma

D
12n

r 2M

D
,

D n
†[

]

]r
2

i ~r 21a2!E2ma

D
12n

r 2M

D
,

Ln[
]

]u
1aE sinu2

m

sinu
1n cotu,

and

L n
†[

]

]u
2aE sinu2

m

sinu
1n cotu.

Equation~4! can be explicitly expressed as

D
d2Rs

dr2
16~r 2M !

dRs

dr
1F2s14isrE

1
K1

222isK1~r 2M !

D
2ls

2GRs50 ~s512!,

D
d2Rs

dr2
22~r 2M !

dRs

dr
1F14isrE

1
K1

222isK1~r 2M !

D
2ls

2GRs50 ~s522!,

d2Qs

du2
1cotu

dQs

du
1F2maE2a2E2 sin2u2

m2

sin2u

12asEcosu1
2smcosu

sin2u

2s2s2 cot2u1ls
2GQs50 ~s512!,

d2Qs

du2
1cotu

dQs

du
1F2maE2a2E2 sin2u2

m2

sin2u

12asEcosu1
2smcosu

sin2u

1s2s2 cot2u1ls
2GQs50 ~s522!, ~5!

where K15(r 21a2)E2ma. We now adopt the WKB ap-
proximation by writing the mode functions asRs(r )

5R̃s(r )e2 iks[E,m,ks(u),r ,u] r , Qs(u)5Q̃s(u)e2 iks(u)u, and

supposing that the amplitudesR̃s(r ) and Q̃s(u) are slowly
varying functions, that is to say,
5-2
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U 1

R̃s

dR̃s

dr U!uks„E,m,ks~u!,r ,u…u,U 1

R̃s

d2R̃s

dr2 U
!uks„E,m,ks~u!,r ,u…u2,

U 1

Q̃s

dQ̃s

dr U!uks~u!u, U 1

Q̃s

d2Q̃s

dr2 U!uks~u!u2.

Thus, from Eqs. ~3! and ~5!, we know that both
k12„E,m,k12(u),r ,u… for c0 andk22„E,m,k22(u),r ,u… for
c4 can be expressed as

ks„E,m,ks~u!,r ,u…2

5
@~r 21a2!E2ma#2

D2
1

1

D S 2maE2a2E2 sin2u

2
m2

sin2u
2ks~u!212saEcosu

1
2smcosu

sin2u
1s2s2 cot2u D

~s512 for c0 and s522 for c4!. ~6!

The number of modes for each componentc i with
E, m, and ku takes the form ns„E,m,ks(u)…5(1/
p)*du* r 11h

L drks„E,m,ks(u),r ,u…. Here, we introduced ’t

Hooft’s brick-wall boundary conditions: the gravitation
filed wave functions are cut off outside the horizon, i.e.,c0
5c450 at Sh which stays at a small distanceh from the
event horizonr 1 . There is also an infrared cutoffc05c4
50 at r 5L, where the infrared cutoffL is chosen so that the
quantum gas is inside the null cylinder, a surface where
co-rotation velocity reaches the velocity of light.

Thermal equilibrium between a quantum gas and a
tionary axisymmetric black hole at temperature 1/b is only
possible when the gas is rigidly rotating with the angu
velocity equal to the velocity of the black hole horizonVH .
Therefore, it is rational to assume that the gravitational fi
is rotating with angular velocityV05VH near the event ho
rizon. For such an equilibrium ensemble of states, the
energy is

bF5E dmE dks~u!E dns„E,m,ks~u!…ln@12e2b(E2V0m)#

52bE dmE dks~u!E ns@E1V0m,m,ks~u!#

ebE21
dE

52bE n~E!

ebE21
dE, ~7!

with
06401
e
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n~E![(
s

ns~E!

5(
s
E dmE dks~u!E ns@E1V0m,m,ks~u!#, ~8!

where the functionn(E) presents the total number of mod
with energy less thanE. In order to carry out the calculatio
for the n(E) we recast Eqs.~6! into the forms

ks„E,m,ks~u!,r ,u…

5A 2grr gww

gttgww2gtw
2 H ~E2mV!21S gtt2

gtw
2

gww
D Fks~u!2

guu

1S m

Agww

2
sAgww cosu

guu sin2u
D 2

1
s2

guu
S 12

gww

guu sin2u
D

3cot2u2
s

guu
~122aE cosu!G J 1/2

~s562!,

~9!

where the functionV[2gtw /gww and its value on the even
horizon is equal toVH . Substituting Eq.~9! into Eq.~8! and
carrying out the integrations we find

n~E!5
4E3

3p S bH

4p D 3E duFAguugwwS 1

h

]grr

]r
2H ]2grr

]r 2

1
3

2

]grr

]r

] ln f

]r
2

2p

bHAf
S 1

guu

]guu

]r
1

1

gww

]gww

]r D
2

2gww

f F ]

]r S gtw

gww
D G2J ln

L

hD G
r 1

1
2s2E

p S bH

4p D
3E duFAguugwwS 12

gww

guu sin2u
D cot2u

guu
G

r 1

ln
L

h
,

~10!

where f [2grr (gtt2gtw2 /gww). With the aid of expression
~10!, we can work out the free energy defined by Eq.~7!.
Then, the relation between the entropy and the free ene
S5b2]F/]b, shows that

S5
AH

24pe2
2

1

180E duH AguugwwF ]2grr

]r 2
1

3

2

]grr

]r

] lnf

]r

2
2p

bAf
S 1

guu

]guu

]r
1

1

gww

]gww

]r D2
2gww

f S ]

]r

gtw

gww
D 2G

1
s2

6 E duFAguugwwS 12
gww

guu sin2u
D cot2u

guu
G

r 1

J
r 1

ln
L

e
,

~11!

where d252e2/15 and L25Le2/h @6# ~where d
5* r 1

r 11hAgrr dr'2Ah/(]grr /]r ) r 1
is the proper distance
5-3
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from the horizon toSh , e is the ultraviolet cutoff, andL is
the infrared cutoff@22#!, and AH5*dw*du(Aguugww) r 1

is
area of the event horizon. By inserting the metric of the K
black hole into Eq.~11!, we finally find that the quantum
entropy of the Kerr black hole due to the gravitational p
turbation is given by

S5
AH

24pe2
1H 2

45
1

s2

6 F12
r 1

2 1a2

ar1
arctanS a

r 1
D G J ln

L

e
.

~12!

Several remarks regarding the main result~12! of the pa-
per are in order:~I! The result is different from quantum
entropy of the Kerr black hole caused by the scalar fi
which coincides with that of the Schwarzschild black ho
@16#, i.e., SScalar, Kerr5AH/48pe21 1

45 ln (L/e). The disagree-
ment exists even ifs50 in Eq. ~12! ~by an overall 2 factor!.
The discrepancy is originated by summing over polari
tions. ~II ! Figure 1 shows that the logarithmic term will in
crease the entropy in rangea/r 15@0,0.319 366); and de
crease the entropy fora/r 15(0.319 366,1#. The term does
not affect the entropy whena/r 1'0.319 366. The reason i
that the terms fors2 decrease the entropy except static ca
a50. ~III ! The subleading logarithmic correction of th
quantum entropy depends on the spins of the graviton jus
quadratic terms2. We know from each component of th
field that the number of modes for every component fi
contains both terms of thes and s2. However, the linear
terms ofs are eliminated by each other when we sum over
components to get the total number of modes.~IV ! The con-
tribution of the spins to the logarithmic term is related to t
rotation of the black hole. For the static case, i.e.,a50, the
terms fors2 in the results~12! vanishes. It is shown that th
spins of the particles affect the logarithmic correction of t
D

06401
r

-

d

-

,

in

d

ll

entropy in case of the interaction between the spins of
particles and the rotation of the black hole takes place
should be noted that since thec i cannot be decoupled in th
Kerr-Newman space-time@20# the quantum entropy of the
Kerr-Newman black hole is an interesting problem and
under consideration.
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FIG. 1. The coefficient of the logarithm term runs fro
0.044 444 4 to20.336 086 asx5a/r 1 from 0 to 1, and is equal to
zero at pointx'0.319 366. It shows that the logarithmic term in
creases the entropy in rangea/r 15@0,0.319 366); decreases th
entropy fora/r 15(0.319 366,1#; and does not affect the entrop
whena/r 1'0.319 366. The reason is that the terms fors2 decrease
the entropy except static case,a50.
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