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Quasiequilibrium sequences of synchronized and irrotational binary neutron stars
in general relativity. 1. Newtonian limits
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We study equilibrium sequences of close binary systems composed of identical polytropic stars in Newton-
ian gravity. The solving method is a multidomain spectral method which we have recently developed. An
improvement is introduced here for accurate computations of binary systems with a stiff equation of state
(y>2). The computations are performed for both cases of synchronized and irrotational binary systems with
adiabatic indicesy=3, 2.5, 2.25, 2, and 1.8. It is found that the turning points of total energy along a
constant-mass sequence appear onlyyerl.8 for synchronized binary systems amg 2.3 for irrotational
ones. In the synchronized case, the equilibrium sequences terminate by the contact between the two stars. On
the other hand, for irrotational binaries, it is found that the sequences terminate at a mass shedding limit which
corresponds to a detached configuration.
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I. INTRODUCTION bit shrinking is larger than that of the orbital revolution in the
precoalescing state. Consequently, the evolution of the bhi-
The research for equilibrium figures of binary systems hasary system can be approximated by a succession of exactly
a long history. The pioneer work was done by Roche whaircular orbits, hence the nanggiasiequilibrium
treated a synchronously rotating, incompressible ellipsoid The first quasiequilibrium configurations of binary neu-
around a gravitating point source. Following this work, Dar-tron stars in general relativity were obtained 4 yr ago by
win constructed a synchronized binary system composed daumgarteet al. [34,35], followed by Marronettiet al. [36].
double incompressible ellipsoidé&ee [1]). For the non- However these computations considered synchronized bina-
synchronized case, Aizenman calculated an equilibrium figries. As far as coalescing binary neutron stars is concerned,
ure of an incompressible ellipsoid with internal motion orbit- this rotation state does not correspond to physical situations,
ing a point source companiof2]. In the 1980s, the since it has been shown that the gravitational-radiation
improvement of computer performance made it possible tariven evolution is too rapid for the viscous forces to syn-
construct equilibrium sequences of synchronized binary sysshronize the spin of each neutron star with the of8#,38
tems with a compressible equation of state in Newtoniaras they do for ordinary stellar binaries. Rather, the viscosity
gravity [3]. is negligible and the fluid velocity circulatiofwith respect
Since the beginning of the 1990s, the studies on binaryo some inertial frameis conserved in these systems. Pro-
systems have gained some importance in relation to astravided that the initial spins are not in the millisecond regime,
physical sources of gravitational waves. For example, coathis means that close binary configurations are well approxi-
lescing binary neutron stars are expected to be one of thmated by zero vorticityi.e., irrotational) states. Irrotational
most promising sources of gravitational radiation that couldconfigurations are more complicated to obtain because the
be detected by the interferometric detectors currently in opfluid velocity does not vanish in the co-orbiting frar(es it
eration (TAMA300) or under constructiofGEO600, Laser does for synchronized binarijes
Interferometric  Gravitational Wave Observatory and We have successfully developed a numerical method to
VIRGO]. Until now, numerous theoretical studies have beertackle this problem and presented the first quasiequilibrium
done in this research field. Among them there d@repost-  configurations of irrotational binary neutron stars elsewhere
Newtonian analytical treatmentg.g., [4]); (ii) black hole [29,33. The numerical technique relies on a multidomain
perturbation [5,6]; (iii) Newtonian [7-10] and post- spectral method39] within spherical coordinates. Since
Newtonian [11-14 (semjanalytical treatments including then, two other groups have obtained relativistic irrotational
hydrodynamical effects of starfy) post-Newtonian hydro- configurations(i) Marronetti, Mathews, and Wilsof80,40
dynamical computationgl5,16]; (v) fully relativistic hydro- by means of a single-domain finite difference method within
dynamical treatments, pioneered by the works of Ochara an@artesian coordinates arfiil) Uryu and Eriguchi41,31,32
Nakamura(see e.g.[17]); and recently developed by Shibata by means of the multidomain finite difference method within
[18—21], Oohara and Nakamuif&2], and the Neutron Star spherical coordinates.
Grand Challenge grouf®3,24). (vi) In parallel of the dy- Recently, we have presented our method in detail with
namical studies irtv), a quasiequilibrium formulation of the numerous test$33] (hereafter called papen.lUsing this
problem has been developed@®5-29 and successfully method, we have calculatéduasjequilibrium sequences of
implemented 29—-33. The basic assumption underlying the binary systems with synchronized and irrotational rotation
quasiequilibirum calculations is that the timescale of the orstates. In this paper, we will show the results in Newtonian
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gravity. The results of relativistic calculations will be given whereW is a scalar function. Under the stationary condition

in a forthcoming papef42]. the Euler equatiori3) can be integrated as
The plan of the paper is as follows. We start by presenting ) )
the equations governing binary systems in Newtonian gravity H+v—3(QXr)°=const (7)

in Sec. Il. Section 1l is devoted to the brief explanation )

about the improvement on the cases of stiff equation of stat# the synchronized case and

such asy>2. In Sec. IV some tests for the numerical code TR -

are performed. Then, we will show the results of evolution- H+v+3(V¥)°—(QXr)- V¥ =const ®
ary sequences of both synchronized and irrotational binar
systems constructed by double identical stars with polytropi
equation of state in Sec. V. Section VI contains the summary.
Throughout this paper, we use units @&=c=1, whereG an
and c denote the gravitational constant and speed of light, —+ﬁ~(n v)=0. 9)
respectively. at

n the irrotational case.
(3) Equation of continuity:

This equation is trivially satisfied by stationary rigid rotation.
In the irrotational case, we can rewrite €§) as

Since the method which we use in the present paper for L. R
getting equilibrium configurations has already been ex- NAV+Vn-V¥=(QXr)-Vn. (10
plained in paper [33], we will only briefly mention the ) ) o i
basic equations and the solving procedure in this section. (4) Poisson equation for the gravitational field:

Av=4mmgn. (13)

IIl. FORMULATION

A. Basic equations

The basic equations governing the problem are as follows
(see also Sec. Il F of paper. | ] o ]
(1) Equation of state: We adopt a simple equation, i.e., a (& First of all, we prepare the equilibrium figures tofo

B. Solving procedure

polytropic equation of state: spherical stars. In the present computation, we treat binary
systems composed of equal mass stars with the same equa-
p(H)=xn(H)?, (1)  tion of state. However, we symmetrize only with respect to

the orbital plane. Although this treatment elongates the com-
p being the fluid pressure, the fluid baryon number density, puting time, we do not symmetrize the stars because we are
x a constant,y the adiabatic index, anHl the specific en-  planning to study binary systems composed of different mass
thalpy. The relation betweed andn is given by stars in the series of this research.

(b) The separation between the centers of the two stars is

n(H) = y—1mg [0 (y held fixed. Here we define the center as the point of the
|y ok ' maximum enthalpyor equivalently maximum density — see
Eq. (2)].
where mg denotes the mean baryon massgE 1.66 (c) By setting the central value of the gradient of enthalpy
X 10727 kg). to be zero, we calculate the orbital angular velodty(see
(2) Euler equation: Sec. IV D 2 of paper | for details
(d) For irrotational configurations, the velocity potential
v - 1. ¥ is obtained by solving E¢(10).
v Vv=— Ms VPV, 3 (e) Taking into account the gravitational potential from

the companion star and the centrifugal force, we calculate the
v being the gravitational potential, andhe velocity field in ~ new enthalpy field from Eq<7) or (8).

the inertial frame which is expressed as (f) Using the new enthalpy, we search for the location of
H=0; this defines the stellar surface sinde=0 is equiva-
v=u+QXr (4) lent to p=0 [see Eqgs(1) and(2)]. Having determined the

new stellar surface, we change the position of the inner do-
in terms of the velocity field in the corotating franseand  main boundary to make it fit with the stellar surface.
the orbital motionQ Xr. In the rigidly rotating case, since (g) By substituting the new enthalpy in the new domain
there is no motion in the corotating frame=¢0), we obtain  into Eq. (2), the new baryon density is obtained.

(h) Inserting the new baryon density into the source term
v=QXr. (50  of the Poisson equatiofill), we can get the new gravita-

tional potential.

On the other hand, in the irrotational case, the velocity field (i) Finally, we compare the new enthalpy field with the

in the inertial frame is potential, i.e., old one. If the difference is smaller than some fixed thresh-
R old, the calculation is considered as having converged. If not,
v=VV¥, (6) return to stedc), and continue.
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During the calculation, we make the baryon mass constar[39]. It is easy to see thatd;, has a term vanishing at
verge to a fixed value by varying the central enthalpy. Morethe surface with the same pathological behaviomase.,
over, some relaxation is performed on the gravitational po{1— ¢2)®. We have indeed
tential, the centrifugal force, and the orbital angular velocity,
when such a treatment helps the iteration to converge. The Ady,=AF(1-¢)(* 2 —4(a+ 2)5(1_52)(a+1>(9§|:

explicit procedures are detailed in paper |.
PIERP bap +(a+2)[—6(1— gD

Ill. IMPROVEMENT ON THE CASES +a(a+1)EX(1- )F, (14)
OF STIFF EQUATION OF STATE
A. Regularization technique whereA is the Laplacian computed with respect t 4, ¢).

h ical hod which in thi i ; For calculational simplicity, we choose a harmonic func-
The numerical method which we use in this series of reyion for F(£6,¢). Then, we can writebgy=3, naim®im.

search[39,29,33 is a multidomain spectral method. In gen- \ hara
eral, spectral methods lose much of their accuracy when non-
smooth functions are treated because of the so-called Gibbs D i= & (1= E2) @+ 2YM( 9, 0), (15)
phenomenon. This phenomenon is well known from the most

familiar spectral method, namely, the theory of Fourier seq,,, being some numerical coefficients to be determined and
ries: the Fourier coefficientscf) of a functionf which is of  Y[" the standard spherical harmonics. We then obtain
classCP but notCP** decrease as only i with increasing

n. In particular, if the function has some discontinuity, its

m
approximation by a Fourier series does not converge toward ndivzlzr:n amCi(§)Y(0,¢), (16)
f at the discontinuity point. Thewultidomainspectral method
circumvents the Gibbs phenomen@&9]. The basic idea is to  with
divide the space into domains chosen so that the physical
discontinuities are located onto the boundaries between the Ci(&)=(a+2)[— (41 +6)(1—g)ler D¢
domains. Fa(at1)EI (1 g, 17

However, even if the circumvention of the Gibbs phenom-

enon has been done by introducing multidomains, there rgpe oy have to determine the values of the coefficients
mains the Gibbs phenomenon at the boundaries between thg.. give the most regular function,gg;=n—ngy. The
regu’— iv -

domains when some physical field has infinite derivative alisarion which seems to give the best results is the following

the boundary. For example, when we consider a star, its SUBne. We expand bot and ny, as a truncated series of

face coincides with the boundary of a domain. If the star ha.$S

. - m .
a stiff equation of state, i.ey>2 in terms of the adiabatic pherical harmonicsf’(6,¢) and Chebyshev: polynomial

index, the density decreases so rapidly #hator diverges at Ti(8):

the surface. In order to recover high accuracy, we have de- I,L,M

veloped a method to regularize the density profile by extract- n(¢,6,¢)= 2 NimTi(6)Y(6,0), (19
i,l,m=0

ing its diverging pari{see Sec. IV of Ref39)).

Here we briefly summarize this method. For a polytrope
with adiabatic indexy, the matter densityn behaves as
HY(~1 [see Eq(2)]. In the steady state configuratidd,is Naiv(¢,0,0)= l%:O amCi Ti(EY"(0,0), (19
Taylor expandable at the neighborhood of the stellar surface .
because the gravitational potentialis Taylor expandable where we expand each of the functio@g &) in a Cheby-
there [cf. Egs. (7) or (8)]. Therefore H vanishes asr shev series as
—R(0,¢), whereR(#6,¢) is the equation of the stellar sur-
face. Consequentlg behaves as~[r —R(6,¢)]Y~ . '

We introduce a known potentia®y, such thatng, Cl(f):izo CiiTi(&). (20
=Ady, has the same pathological behaviorraand such
thatn—ng;, is a regular functiorfat least more regular than The values ofa,,, is computed in such a way that thén

I,L,M

n). We then numerically solve coefficient of the truncated series g, vanishes:
A(Dregu:n_r‘diva (12) Niim
a,m=c—. (21)
I

where®, ;=P —®g;, . Consider, for instance, . o
By means of the above procedure, nnwe eliminate the

pathological term that vanishes as<{2)* but we introduce
another pathological term proportional to¥2)**1, How-
ever, the divergence occurs in a higher order derivative of
wherea=1/(y—1). F is an arbitrary regular function argd  this term so that it has a much weaker effect on the accuracy
is a new radial variable such that1 at the surface of the of the results. The method can be improved by taking

gy =F(&,0,0)(1— )2, (13
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Pa=F(£,0,¢) (1~ ) D a+ ay(1- &) + as(1- )2
oo tag(1- )Y (22

instead of Eq(13). The coefficientsk are chosen in such a
way that the first, second,. . , Kth derivatives ofn,g, van-
ish até=1. Let us callK the regularization degree of the
procedure.

The explicit procedure to determine the coefficieatsis
as follows. Let us consider the case &2 and choose a
harmonic function for(¢&,6,¢) for example. In this case,
we need two diverging termsy, . (1<k=<K), where we
define

PHYSICAL REVIEW D64 064012

FIG. 1. Relative error in the virial theorem for
a spherical star as a function of the number of
radial collocation pointd\, . Solid line with open
circle, dotted with open square, dashed with open
diamond, and long-dashed with open triangle de-
note the results without regularization, with regu-
larizationK=1, 2, and 3, respectively.

B. lllustration and test

To validate the above regularization technique, we inves-
tigate the improvement in the relative error in the virial theo-
rem for a spherical static star, which is defined as

|W+ 3P|

— 2
W 29

virial error=

W being the gravitational potential energy aRdhe volume
integral of the fluid pressure. We give the values of the virial
error in Fig. 1. In this figure we show the cases(f y
=3,(2) y=2.5,(3) y=2.25, and4) y=2, and in each small

figure except for the case gf=2 for which no Gibbs phe-
e o . nomenon occurs, we have drawn four lines: “no regulariza-
Navki= 2 afCI(E)Y(6,0), (23)  tion,” regularization degre& =1, 2, and 3. It is found from
I,m . . . .
these plots that the regularization dramatically improves the
with accuracy. However, the improvement by the regularization
saturates ak=2. Note here that since there is no Gibbs
CK(&)=(a+k+1)[—(4l1+6)(1—)larhg phenomenon in the calculation of a spherical star in the case
of y=2, the virial error decreases rapidigxponential decay
+4(a+k)EHA(1- g2k, (249  — evanescent errpwith the increase of the number of radial
collocation pointN, , and reaches the minimum value due to
First of all, we expand, ngy.; andngy.> by Y["(6,¢) and  the finite number of digit§15=double precisionused in the
Ti(§). Then, we can expres@:((g) as an expansion in a numerical computation.

Chebyshev series

Considering the saturation of the virial error, we will

choose the regularization degre=2 in the following nu-
merical computations foy>2. We note that since the matter

|
k k

Ci (g)zizo CiTi(8). (29 gensityn behaves a#i¥"~1), the derivatives oh of order

higher than the second one diverge at the stellar surface even
Finally, we solve the simultaneous equations if y<2. Therefore we will also use the regularizatiol (

=2) for the cases ofy<2.

r]Ilm:allmcﬁ_*_alzmcﬁ ! (26)

1 1 2 2 IV. TESTS OF THE NUMERICAL CODE
M- 1m=aimCii — 1+ ainCij —1, (27)

Numerous tests have been already performed in the pre-

so that thelth and ( —1)th coefficients of the truncated vious paper in the irrotational cagsee Sec. V B of papej.|
series off g, vanish. In particular, a direct comparison with the numerical results
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FIG. 2. Relative differences in total energy total angular mo- FIG. 3. Relative error in the virial theorem along an evolution-
mentumJ, orbital angular velocitf), and relative change in central ary sequence. The left panel is for synchronized binaries, and the
baryon densitysp, when comparing the numerical solution with right one for irrotational binaries. Solid, dotted, dashed, long-
Taniguchi and Nakamura’s approximate analytic solufi4] along dashed, and dot-dashed lines denote the case3, 2.5, 2.25, 2,
an equilibrium sequence in the synchronized case wit2. The  and 1.8, respectively. The horizontal axis denatg¢R,, wheredg
horizontal axis denotes logarithmicalti Ry, whered is the sepa- is the separation between the centers of masses of the two stars, and
ration between the two stellar centers, d@glthe stellar radius at R, the stellar radius at infinite separation.
infinite separation. The thick solid line is a reference point in order

to check the inclinations of the results easily. whereQ ., is the Keplerian velocity for point mass particles

of Uryu and Eriguch{41] has been performed and the result
presented in Table | of paper I. Here we will focus on some Qiep=
tests in the synchronized case, not presented in paper |I. We
will also show the relative error on the virial theorem alongIn the Taniguchi and Nakamura’s analytic solutie8], the
an evolutionary sequence in both cases, extending the tegtobal quantities are expanded up@p(R,/d)®]. After sub-
presented in paper (Fig. 7) to adiabatic indices different tracting these analytic solutions from the numerical ones,
from 2. only the terms of order higher tha®[ (R,/d)®] should re-
main. Indeed, we can see from Fig. 2 that the discrepancies
between numerical and analytical solutions for the en&gy
] ) ] and the relative change in central densipy. are both higher

In order to investigate the discrepancy between thg resu_ltﬁ]an O[(Ry/d)®], and those for the angular momentu
from the numerical code and those from the Taniguchi-gng the orbital angular velocitf2 are both higher than
Nakamura analytic solutiof43] in the synchronized case O[(R,/d)7]. This means that the numerical solution and the

with y=2, we present the relative differences on globalynaytical one agree up to the accuracy of this latter
guantities as functions of the separation in a log-log plot iNO[ (R, /d)®]).

Fig. 2 (in the same way as Fig. 12 of paper | for irrotational
configurations The relative differences are defined as fol-
lows:

2GM 1/2
) (33

d3

A. Comparison with analytical solutions

B. Virial theorem

One of the best indicators of the accuracy of numerical

Ernum— Eana solutions for binary systems in Newtonian gravity is the rela-
— (29 tive error in the virial theorem. This error is defined as
GM?/Ry
il _ [2T+W+3P| -
Jnum—Juna 0 virial error= T (34)
Md2Qye/2’ . o
whereT, W, andP denote, respectively, the kinetic energy of
Q Q0 the binary system, its gravitational potential energy, and the
num”_**"ana (31) volume integral of the fluid pressure. By virtue of the virial
Qgep ' theorem, the quantity defined by E®4) should be zero for
an exact solution. We show it in Fig. 3. This figure can be
| 8pc:num— OPc-and» (320  considered as an extension to that presented in paper |
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interested in the turning point of total energgnd/or total
angular momentuinbecause it correspond to the onset of
secular instability in the synchronized cddel] and that of
dynamical instability in the irrotational one at least for the
ellipsoidal approximation7].

A. Equilibrium sequences

Our results for equilibrium constant-mass sequeriees-
lutionary  sequences with adiabatic indices vy
=3, 2.5, 2.25, 2, and 1.8 are presented in Tables | and II.
In these tables] denotes the separation between the centers
of the two stars. Let us recall that the center of a star is
defined as the point of maximum enthalfiyr equivalently
FIG. 4. Synchronized binary at the point of minimum energy Maximum density On the other handig denotes the orbital
and angular momentum along a constant-mass sequéhast  Separation between centers of masses of two srsa; ,
stable orbit), for an adiabatic indexy=3. The grids on the sur- 2, @3, anday op, are the radius of a spherical star of the
faces correspond to the collocation points ih¢) of the spectral Same mass, the radius parallel to thaxis toward the com-
method. panion star, the radius parallel to theaxis, the radius par-
allel to thez axis, and the radius parallel to tleaxis oppo-
(Fig. 7) to adiabatic indices different from 2. It also contains site to the companion star. Thg,{,z) axes are the same as
the synchronized case. We can see from Fig. 3 that the code Fig. 1 of paper |p. andp.y indicate the central density of
is quite accurate as virial erret 10 ° for dg/R,=3 even if a star and that of a spherical star of the same mass. The
v=3, wheredg denotes the separation between two centerg,grmalized quantities_l, J, andE are defined by
of masses of each star.

— Q
V. RESULTS Q‘Z(WG—po)yzv (36)
Using the numerical method explained in the above sec-
tions and in paper [33], we have constructed equilibrium J= J (37)
sequences of both synchronized and irrotational binary sys- (G M3RO)1/2’
tems in Newtonian gravity. Here, we consider only the case
of binary systems composed of stars with equal mass and o E
equation of state. We use three domafose for the fluid E:zm, (39
interion for each star and the following number of spectral 0
coefficients:

where(}, J, andE denote, respectively, the orbital angular
N, X Nyx N, =33X 25X 24 (35)  Velocity, the total angular momentum, and the total energy,
andp is the averaged density of a spherical star of the same
in each domain. A view of the configuration at the energymass:
turning point(Sec. V C below along a sequence with a

=3 equation of stated09 is shown in Fig. 4 for synchro- _3M (39
nized binaries, and in Fig. 5 for an irrotational one. We are Po~—47TRO§-
3 Also listed in Tables | and Il is the ratio
AR
éﬁ%% X::—(ﬂH/ﬂr)eqlcomp, (40)
§-=-= (dH13r)pole

where @H/r)eq compLrespectively, §H/dr) i stands for

the radial derivative of the enthalpy at the point on the stellar
surface located in the orbital plane and looking toward the
companion stafrespectively at the intersection between the
surface and the axis perpendicular to the orbital plane and
going through the stellar center @xis)]. This quantity is
useful because the mass shedding liftiRoche limit”) cor-
responds tgy=0 (cf. Sec. IV E of paper)| Wheny=0, an
angular point(cusp appears at the equator of the star in the
FIG. 5. Same as Fig. 4 but for an irrotational binary. direction of the companion.
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TABLE |. Orbital angular velocity(}, total angular momentuidy total energyE, axial ratios, relative change in central density, equatorial
to polar ratio of the radial derivative of enthalpy and virial error along equilibrium sequences in the synchronized case. T denotes the
minimum points of total energgand total angular momentym

Synchronized case

dR, dg/R, d/a; QO J E axla;  agla;  apepf/ar  (Pe—Pco) Peo X Virial error
y=3 (n=0.5)
8.016 8.016 7970 7.19®) 2.043 -1.172 0.9940 0.9904  0.9993 -1.08p 0.9838 5.1466)
7.014 7.014 6953 8.792) 1923 -1.180 0.9909 0.9855  0.9988 -1.6G32 0.9754 5.0546)
6.012 6.012 5.927 1.108) 1.798 -1.191 0.9852 0.9767 0.9977 -2.682 0.9602 4.9206)
5010 5.010 4.882 1.4%4) 1.669 -1.205 0.9733 0.9589  0.9949 -4.638 0.9288 4.70%-6)
4.008 4.007 3.788 2.044) 1.542 -1.224 0.9423 0.9154  0.9855 -9.6380 0.8496 4.3266)
3,507 3504 3.186 25{A) 1488 -1.235 0.9032 0.8649  0.9701 -1.68p 0.7526 3.9946)
t3.116 3.107 2.614 3.043) 1465 -1.240 0.8282 0.7781  0.9306 -2.62p 0.5652 3.6766)
3.006 2.991 2.379 3.2561) 1.470 -1.239 0.7774 0.7245 0.8955 -3.229 0.4277 4.9406)
2941 2913 2050 3.418) 1485 -1.230 0.6807 0.6299  0.8050 -3.621 0.08238  2.85@3)
y=2.5 (n=2/3)
8.197 8197 8.155 6.9%2) 2.061 -1.137 0.9949 0.9917  0.9994 -1.232 0.9841 7.43647)
6.968 6.968 6.908 8.88R) 1.914 -1.147 0.9915 0.9864  0.9988 -2.087 0.9738 7.2607)
5738 5738 5648 1.184) 1758 -1.161 0.9842 0.9751  0.9973 -3./81 0.9518 7.0127)
4918 4918 4791 1.494) 1.650 -1.173 0.9738 0.9597  0.9947 -6.0:31 0.9211  6.74%7)
4.099 4.098 3901 1974) 1544 -1.189 0.9510 0.9274  0.9878 -1.625 0.8553 6.2467)
3.689 3.688 3.428 2.314) 1494 -1.198 09276 0.8961  0.9791 -1.62% 0.7895 5.8867)
13.037 3.029 2511 3.161) 1.443 -1.210 0.8201 0.7701 0.9212 -3.626 0.4906 8.1347)
2.951 2.938 2.310 3.329) 1.446 -1.209 0.7742 0.7224 0.8866 -4.221 0.3524 3.17(-6)
2.901 2.883 2.081 3.449) 1.455 -1.207 0.7073 0.6568 0.8237 -4.82y 0.1154 2.5384)
y=2.25 (n=0.8)
8.164 8164 8.123 7.00R) 2.055 -1.108 0.9951 0.9921  0.9994 -1.439 0.9835 1.1807)
6.804 6.804 6.743 9.202 1.891 -1.119 0.9913 0.9861  0.9987 -2.685 0.9709 1.1487)
5.783 5.783 5.697 1.178) 1.760 -1.131 0.9854 0.9771 0.9975 -4.23% 0.9516 1.1187)
4763 4762 4630 1573) 1.625 -1.147 09725 0.9579  0.9942 -7.18y 0.9098 1.0567)
4082 4082 3890 1988) 1535 -1.161 0.9532 0.9306  0.9881 -1.290 0.8494 9.8828)
3.402 3400 3.082 2.628) 1453 -1.177 0.9056 0.8686  0.9684 -2.47% 0.7058 8.186-8)
3.062 3.056 2585 3.104) 1.427 -1.183 0.8422 0.7949  0.9327 -3.828 0.5178 2.054-7)
t2.980 2.972 2429 3.249) 1425 -1.184 0.8119 0.7623  0.9117 -4.898 0.4256 8.0187)
2.878 2.863 2.104 3.463) 1.430 -1.182 0.7262 0.6762  0.8356 -5.42p 0.1355 4.4685)
y=2 (n=1)
8.021 8.021 7980 7.182) 2.035 -1.061 0.9952 0.9923  0.9994 -1.82D 0.9819  3.15413
6.806 6.806 6.748 9.182) 1.887 -1.072 0.9920 0.9872  0.9988 -3.0833 0.9698  3.23412
5834 5834 5753 1.1%9) 1762 -1.083 0.9869 0.9794  0.9977 -4.82p 0.9511  8.48413
4861 4861 4740 1528) 1631 -1.098 0.9763 0.9635  0.9950 -8.6838 0.9126  1.53012
3.880 3.889 3.680 2.188) 1.499 -1.119 0.9486 0.9245 0.9857 -1.72% 0.8160  2.06811)
3.403 3402 3.098 2614) 1439 -1.131 09134 0.8788  0.9704 -2.828 0.6990 2.2889)
3.014 3.010 2,532 3.169) 1.403 -1.140 0.8431 0.7970 0.9291 -4.626 0.4725 2.2587)
1t2.892 2.885 2.268 3.394) 1.399 -1.141 0.7864 0.7373 0.8845 -5.62% 0.2862 4.1586)
2.849 2.839 2.092 3.48%1) 1.400 -1.141 0.7361 0.6878 0.8364 -6.426 0.1116 1.3164)
y=1.8 (1=1.25)
8.097 8.097 8.058 7.08®) 2.041 -0.9942 0.9957 0.9931 0.9994 -2.08y 0.9817 1.8269)
6.701 6.701 6.643 9.41®) 1.869 -1.006 0.9923 0.9877 0.9988 -3.FB2 0.9672 1.7909)
5.584 5.584 5.498 1.288) 1.722 -1.020 0.9862 0.9784 0.9974 -6.632 0.9419 1.7909)
4.746 4.746 4.622 1.581) 1.606 -1.034 0.9764 0.9639 0.9947 -1.021 0.9023 1.7129)
3.909 3.908 3.710 2.118) 1.489 -1.053 0.9537 0.9317 0.9867 -2.029 0.8135 1.5869)
3.350 3.349 3.043 2.674) 1.415 -1.068 0.9152 0.8818 0.9692 -3.482 0.6719 4.6489)
3.071 3.069 2.651 3.062) 1.384 -1.076 0.8718 0.8304 0.9439 -4.821 0.5203 6.41(-8)
2.932 2.928 2.405 3.294) 1.372 -1.079 0.8296 0.7840 0.9135 -5.883 0.3764 9.6707)
2.828 2.822 2.104 3.494) 1.367 -1.080 0.7532  0.7067 0.8440 -6.629 0.1175 1.7445)
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TABLE Il. Orbital angular velocity(}, total angular momentund, total energyE, axial ratios, relative change in central density,
equatorial to polar ratio of the radial derivative of enthajgyand virial error along equilibrium sequences in the irrotational case. T denotes
the minimum points of total energiand total angular momentym

Irrotational case

d/Ry dg/Ry, d/a; QO J E apla;  agla;  ajgppla;  (Pe—Pco) Peo X Virial error
y=3 (n=0.5)
8.016 8.016 7.983 7.19® 2.002 -1.173 0.9940 0.9940  0.9993 -7.289 0.9897  5.1946)
7.014 7.014 6970 8.79® 1873 -1.182 0.9909 0.9910  0.9988 -1.638 0.9843  5.1286)
6.012 6.012 5.950 1.108) 1.734 -1.194 0.9851 0.9853 0.9977 -4.253 0.9742 5.0266)
5.010 5.010 4.914 14%3) 1584 -1.211 0.9729 0.9736  0.9948 -1.83y 0.9525  4.89(:6)
4.008 4.007 3.838 2.042) 1.420 -1.235 0.9408 0.9434  0.9853 -5.84p 0.8939  4.6426)
3,507 3505 3.248 2.504) 1.334 -1.252 0.8994 0.9055  0.9695 -1.639 0.8138  4.4686)
3.006 2.993 2.442 3.281) 1.260 -1.270 0.7622  0.7795 0.8892 -6.832 0.4775 2.0167)
t2.976 2960 2.346 3.26d) 1.259 -1.270 0.7362 0.7547  0.8686 -7.681 0.3973  9.3666)
2956 2936 2257 3.34d) 1.260 -1.270 0.7099 0.7292  0.8458 -9.08% 0.3097  3.2205)
y=2.5 (n=2/3)
8.197 8197 8.168 6.952) 2.025 -1.138 0.9948 0.9949  0.9994 -7.66D 0.9900  7.48%7)
6.968 6.968 6.926 8.88® 1.867 -1.149 0.9914 0.9915  0.9988 -1.659 0.9833  7.3827)
5738 5738 5674 1.184) 1.694 -1.164 0.9841 0.9843  0.9973 -6.855 0.9686  7.1947)
4,918 4,918 4826 1.494) 1570 -1.178 0.9736  0.9742 0.9947 -1.64y 0.9475 7.03%7)
4.099 4.098 3952 1.973) 1435 -1.199 0.9502 0.9521  0.9878 -5.624 0.8996  6.7607)
3.689 3.688 3490 2.314) 1.364 -1.212 0.9260 0.9297  0.9791 -1.1:39 0.8481  6.4087)
3.279 3.276 2978 2.7714) 1.293 -1.227 0.8777 0.8853 0.9574 -2.832 0.7372 6.16(-7)
2.951 2.941 2401 3.304) 1.244 -1.240 0.7680 0.7833 0.8862 -7.68Y 0.4184 9.9126)
12.902 2.887 2219 3.4184) 1.240 -1.241 0.7162 0.7334 0.8415 -1.023 0.2305 7.7565)
y=2.25 (n=0.8)
8.164 8.164 8.137 7.00@) 2.021 -1.109 0.9951 0.9951 0.9994 -7.689 0.9896 1.1787)
6.804 6.804 6.762 9.20® 1.845 -1.121  0.9913 0.9914  0.9987 -2.88y 0.9814  1.1647)
5.783 5.783 5.724 1.178) 1.701 -1.134 0.9854 0.9856 0.9975 -6.832 0.9686 1.1427)
4763 4.762 4669 1573) 1545 -1.152 0.9723 0.9730  0.9942 -2.0:4% 0.9399  1.1087)
4.082 4.082 3943 1.984) 1.432 -1.170 0.9528 0.9544  0.9882 -5.889 0.8960  1.0667)
3.402 3.400 3.159 2.624) 1.312 -1.193 0.9043 0.9094  0.9687 -2.39 0.7810  9.5188)
3.062 3.057 2.681 3.094) 1.254 -1.208 0.8401 0.8501  0.9333 -5.056 0.6038  2.91%7)
2926 2918 2.406 3.384) 1.233 -1.213 0.7806 0.7942  0.8903 -8.038 0.4036  1.28(5)
2875 2.864 2235 3.444) 1.228 -1.215 0.7333 0.7487  0.8494 -1.621 0.2226  8.6165)
y=2 (n=1)
8.021 8.021 7995 7.182) 2.003 -1.062 0.9952 0.9952  0.9994 -8.167 0.9886  3.32412
6.806 6.806 6.768 9.19®) 1.845 -1.073 0.9920 0.9920  0.9988 -2.88p 0.9808 2.82812
5834 5834 5780 1.1%9) 1.708 -1.086 0.9869 0.9871  0.9977 -6.0:36 0.9684  2.68613
4861 4861 4779 1528) 1560 -1.103 0.9763 0.9767  0.9950 -1.61p 0.9422  2.99613
3.889 3.889 3.743 2.184) 1.397 -1.128 0.9486 0.9504  0.9859 -8.¢13 0.8724  1.55811)
3.403 3.402 3.182 2.614) 1.311 -1.146 0.9138 0.9178 0.9712 -2.088 0.7799 1.46%9)
2.965 2.962 2561 3.24a) 1.232 -1.166 0.8295 0.8390 0.9536 -6.138 0.5118 2.2966)
2.917 2.912 2462 3.328) 1.224 -1.168 0.8081 0.8187 0.9042 -7.28% 0.4298 8.9206)
2.851 2.844 2278 3.4%1) 1.214 -1.171 0.7602 0.7730 0.8628 -9.233 0.2325 8.3685)
y=1.8 (1=1.25)
8.097 8.097 8.073 7.082) 2.012 -0.9951 0.9957 0.9958 0.9994 -8.46p 0.9885 1.8469)
6.701 6.701 6.665 9.41®) 1.831 -1.008 0.9923 0.9924 0.9988 -2.6B3 0.9791 1.8289)
5.584 5.584 5,529 1.288) 1.671 -1.023 0.9862 0.9864 0.9974 -7.86y 0.9624 1.8689)
4.746 4.746 4666 1.58a) 1.541 -1.039 0.9766 0.9770 0.9948 -2.182 0.9355 1.8069)
3.909 3.909 3.777 2.114) 1.400 -1.061 0.9543 0.9556 0.9871 -7.6@% 0.8722 1.74%9)
3.350 3.350 3.140 2.673) 1.299 -1.082 0.9176  0.9209 0.9709 -2.181 0.7629 3.63(9)
3.071 3.070 2775 3.0%4) 1.247 -1.095 0.8777 0.8834 0.9482 -4.03p 0.6312 1.6187)
2.932 2.929 2550 3.284) 1.221 -1.102 0.8399 0.8475 0.9213 -5.88) 0.4843 3.3566)
2.837 2.833 2.309 3.461) 1.204 -1.107 0.7803  0.7907 0.8676 -8.233 0.2118 1.0184)
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An equilibrium sequence terminates either by a contact 0o Synchronized case Trrotational case
configuration, which corresponds @ida; =2 or by the mass B . ‘ s ‘
shedding limit given by=0. Note that these two conditions | -~ =25 | e 2.5
are not exclusive, as one can haye 0 at contact. By means T g'zs T z:j'zs
of our numerical method, it is difficult to get exactly such 4l —-— 18 A s 4
configurations, so that the final points in Tables | and Il are P P
close to, but not exactly equal to, the real end poahts,; /// 7
=2 or xy=0. Z e =T 7 -

1
\
\
AN
\
\

For synchronized binaries, the real end point is the contacf“g
one[3]. In that configuration, the surface of each star has aF
cusp at the contact point. However, our numerical multido-
main method assumes that the boundary between each d¢
main is a differentiable surface. Therefore, for computing
very close configurations, we stop the adaptation of the do-
main to the surface of the star whgr<0.3—0.35(see Sec.

IVE of paper ). For synchronized binaries, the use of
adapted domain is not essential, since no boundary conditior
is set at the stellar surface. The last lines for eadh Table

| are obtained in this way. FIG. 6. Total energy along an evolutionary sequence. The left
On the other hand, in the irrotational case, leaving theyanel is for synchronized binaries, and the right one for irrotational
adaptation of the domain to the stellar surface results in somisinaries. Solid, dotted, dashed, long-dashed, and dot-dashed lines
numerical error since the solving method for the equatiordenote the cases of=3, 2.5, 2.25, 2, and 1.8, respectively.
governing the velocity potentidEq. (10)] assumes that the
domain boundary coincides with the stellar surféeee Ap- L ants. We can clearly see a turning point in energy and
pendix B of paper)l Therefore we stop the calculations at angular momentum curves for large valuesygh Figs. 6—8.
some points which are very close to the cusp points bu*l’his feature will be discussed in Sec. V C.

slightly separated. o _ Itis found from Fig. 9 that the central density decreases in
_The symbol T in Tables | and Il indicates the points of i, cases of synchronized and irrotational. The decrease of
minimum total energyand total angular momentunalong  yhe central density in the synchronized case is about 1 order
the sequence, also calléarning points In the synchronized |5ger than that in the irrotational one. These behaviors are
case, the minimum points exist fgr=2, and in the imota-  5na)vtically known. For the synchronized case, Chan-
tional case, they do foy=2.5. In both synchronized and qrasekhar obtained the lowest order change in the central
irrotational cases, the minimum points of total energy a”ddensity about 70 yr agh45] and Taniguchi and Nakamura
total angular momentum coincide with each other. It is worth,5e calculated the higher order chaiig8], and Taniguchi

noting here that we cannot exclude the possibility of theynq Nakamura have also shown it for the irrotational case
existence of minimum points foy<2 in the synchronized [9,10].

case and fory<<2.5 in the irrotational one, because we do
not calculate up to contact points. However, we suspect that

-12 1

[\S]
»
[+
n
'S
[+

. . .. . Synchronized case Trrotational case
the critical values of the existence of minimum points are 2 ‘ ‘ , ‘
y~1.8 in the synchronized case and-2.3 in the irrota- — 3 — 3
tional one. The detailed discussions are given letee Sec. | = w25 ] e ¥=2.5
—--- 42225 —--- =225
VvV C). S e
We show the total energy, the total angular momentum, 4g | —._ 3 L —— 18 _

the orbital angular velocity, and the relative change in central
density along a constant mass sequence in Figs. 6—9. We ce
see from figures of total energy and total angular momentum
that the values for synchronized systems are larger than thosg® 4 g |
for irrotational ones. This is because the effect of spin of
each star in the synchronized case is larger than that in th¢S
irrotational one. Such a spin produces not only the direct ,,
effects like spin energy or spin angular momentum but also 4, %7 1
larger deformations, which results in larger quadrupole mo- <

!Because of the overlapping of the external domains for contact 12

2 4 6 2
configurations, it was not possible to compute these latter ones witt dy/R,
high accuracy. This is why we stopped Table | slightly before
d/a;=2. FIG. 7. Same as Fig. 6 but for the total angular momentum.
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smooth one, thanks to the technique discussed in Sec. Il A.
We do not depict the configurations of the last lines of Table
Il for the following reason. As mentioned above and in paper
I, we make the boundary the inner domain fit with the stellar
surface. This procedure is essential to accurately solve equi-
librium figures in the irrotational cag@\ppendix B of paper

I). However, due to the apparition of the cusp on the stellar
surface, we can no longer adapt the domain to that surface
because all quantities are expressed by summation of a finite
number of differentiable functions. For very close configura-
tions, just prior to the apparition of the cusp, the surface is
highly distorted so that there appear unphysical oscillations
when using a finite series of differentiable functidi@&@bbs
phenomenon In the last lines for eacly in Table II, such

------------ ¥=2.5 .

——m- 4225 oscillations start to be seen, although they do not alter the
—-—- v=?8 global quantities appreciably. Therefore to avoid any misun-
——— el

derstanding, we choose not to plot the final lines in Table II,
although we listed them.
Figures 16—18 show some isocontours of the velocity po-

) ) ) tential, as well as the velocity field in the co-orbiting frame,
FIG. 8. Orbital angular velocity as a function of total angular for the polytropic indicesy=3, 2, and 1.8, respectively. In
momentum along an evolutionary sequence. The lines have thg .o figures, we show only ’oné of the t\;vo stars. The com-
same meaning as in Fig. 6. panion star is located at the position symmetric with respect

to they-z plane. The velocity potential is defined as
In Figs. 10—12, we show isocontours of baryon density in

the synchronized case with=3, 2, and 1.8, respectively.
These figures correspond to the configurations in the last

Iir?es (for“eachhadiabhatic ir:ldex/) i? Table I..No'ge here_z that whereW,, is the constant translational velocity field defined
t e_fsma frcr:ug onht_ elstef ar sur _?ﬁeﬁlg’ 'g 'f:.'g' 10. ISan a5 the central value olV:=Qxr. Note that the vector field

artifact of the graphical software. The SOIVEA TIgUre IS a comyg tangent to the stellar surface, as it should be.
pletely smooth one, thanks to the technique discussed in Sec.

I A.

Isocontours of baryon density with=3, 2, and 1.8 for
irrotational binaries are shown in FlgS 13-15. These con- An equi"brium sequence terminates by the contact be-
figurations Correspond to the semifinal ||r(éer each adia- tween the two Starscﬂalz 2) or by a cusp at the onset of
batic indexy) in Table Il. Again note that the small rough on mass sheddingy(=0). In order to investigate which final
the stellar surface ofy=3 in Fig. 13 is an artifact of the fate occurs, it is helpful to display a sequence in diia;-y
graphical software and that the solved figure is a Complete|¥ﬂane_ This is done in F|g 19 where we compare the syn-

chronized sequence with the irrotational one j6¢ 2. It is

V=W —W,y-r, (41

B. End points of sequences: Contact versus cusp

Synchronized case Tirotational case found from this figure that the value gf in the irrotational
0 0 ' case is larger than that in the synchronized case for large
' separations. However, when the separation decreases below
d/a;~3, x in the irrotational case decreases rapidly and
Z 02| becomes smaller than that in the synchronized case for
g 0,005 | | d/a;<2.5. We magnify the region near the end of the se-
g ’ quences in Fig. 20. If we extrapolate the results up to the
g zero value ofy in the figure, we can speculate about the final
; -0.04 1 ,' fates of sequences. In the synchronized case, it seems that all
& ! ! the lines will reachy=0 atd/a;=2. This means that the
§ i 001 | i cusp does not appear before the two stars come in contact
g o0 | ; - s with each other. Qn the other hand, in the irrotational case, it
x - [ S N E— ¥=2.5 seems that the lines may reagh-0 befored/a;=2. The
i - 225 ---- y2.25 values ofd/a; may bed/a;~ 2.1 for y=3 andd/a;~2.25
__ ﬁs _ ﬁfs for y=1.8. This means that the cusp may be created before
~0.08 . . ~0.015 . . contact of stars in the irrotational case. This behavior in the
‘, ™ 6 8 2 ‘4, ™ 6 8 rrotational case agrees with the results of Ufyé].

It is worth noting here that the point where the cusp may

FIG. 9. Same as Fig. 6 but for the relative change in centrabe created is expressed by the orbital separation divided by

baryon density. Note that the two vertical scales are different.

the radius to the companion std®@,;). Then, it looks as
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Baryon density (z=0) Baryon density (y=0)

< ‘ ‘ ' - ‘ I

N - . w ]
o o
~ © - 1 ~°r 7
. N

T - . | i

|
< | | | | | |
| P 5 -2 0 2
x /Ry x / Ry

FIG. 10. Isocontour of the baryon density of synchronized binaries witl8 when the separation @Ry=2.941. The plots are cross
sections ofz=0 andy=0 planes. The thick solid lines denote the stellar surface. The small rough on the stellar surface is an artifact of the
graphical software.

though the cusp appears later along equilibrium sequenceésg Eq.(41) and the decomposition of the orbital motion
for a higher adiabatic index, i.e., stiffer EOS. However, if we

express the cusp point by the orbital separation divided by QXr=Wy+Ws, (42)
the radius of a spherical star with the same méRg), the )

order of cusp appearance will be reversed. Although thes®€ can rewrite Eq(8) as

behaviors are completely different from each other, the ori-

gin is the same. The fluid with lower adiabatic index is less H+v—3(Qxr)2+3(VWo—Wg2=const, (43
affected by the tidal force and slightly deformed. It results in
the largerd/a, by fixing the orbital separatiod. where W, has been defined in Sec.V|[&ee Eq.(41)] and

A simple explanation of the difference ip between the Wj is the spin part of the orbital motion defined on star No.
synchronized case and the irrotational one is as follows. Usl as

Baryon density (z=0) Baryon density (y=0)
<+ F T 1 8
a B . wo ]
o =
~or 1 ~°r I
N N
T 1 9r T
T L ‘ 1 ‘ ! ‘ 1 ‘ o : . : : : :
_2 0 2 -2 0 2
x / Rqy x / Ry

FIG. 11. Same as Fig. 10 but fer=2 with the separatiod/Ry=2.849.
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Baryon density (z=0) Baryon density (y=0)
< F 3
N i - |
[=] o
£~ ~
~©°r 1 ~°r .
N N
Tr 1 %k -
T = | | | = ! ! !
_2 2 -2 0 2
x / R, x / R,

FIG. 12. Same as Fig. 10 but for=1.8 with the separatiod/R,=2.828.

—Of — on the left-hand side of Ed43) is the kinetic energy of the
Wer=0(=y1, X1, 0), “49 velocity field in the corotating framgsee Eq.(4)]. Compar-
ing Eq.(7) with Eq. (43), we see that the enthalpy fields for
where &;,y1,2z;) are the Cartesian coordinates centered orsynchronized and irrotational binaries differ precisely by that
star 1(see Fig. 1 in papep.In the following explanation, we kinetic energy.
pay particular attention to star 1. Note here that the last term Then y for each case becomes

v 5 d
o +Q —s+a;
synen__ 4 ea.comp ’ (45
X e
&Zl pole
i +02 d + 0 S W—Wy)?
irrot &Xl eq,comp 2 al 2 axl( ° S) eq,comp
X" = ( av) . (46)
&Zl pole
|
Of course, due to the difference of deformation of the starswhere
the gravitational potentiat for irrotational binaries is differ-
ent from that for synchronized ones, even if we set two stars dv Q2
at the same orbital separation in the binary systems. How- \ox, Tt
ever, the largest difference betweet""and y'™! is the last X cq.comp
term in the numerator of Eq46). We show this behavior in _ (ﬂ)
the following. First, we dividey into two parts: 24 pole
X M e, (47) (for synchronized binarigs (49)
K= XS X (48) Xit'=0, (50
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Baryon density (z=0) Baryon density (y=0)

x / R, x / Ry

FIG. 13. Isocontour of the baryon density in the irrotational case witf8 when the separation &/ Ry=2.976. The plots are cross
sections oz=0 andy=0 planes. The thick solid lines denote the stellar surface. The small rough on the stellar surface is an artifact of the

graphical software.

Jv 0?2 d
— | — + ——+a
' aXy 2 1 .
irrot_ €q,comp irrot €q,comp

Xpot ((91/) Xtlow ((71/)
(921 pole (921 pole

(for irrotational binaries. (52)

(for irrotational binariey, (51) Then, we plot the diﬁerencessxpm:xmt_X;(y)rsch and

Baryon density (z=0) Baryon density (y=0)

FIG. 14. Same as Fig. 13 but for=2 with the separatiod/Ry,=2.917.
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Baryon density (z=0) Baryon density (y=0)

e &
~ @ 4 ~ @ r o
> N
o | | o | i
I |
| L | L | L L | L | L |
-2 0 2 -2 0 2
x / R, x / Ry
FIG. 15. Same as Fig. 13 but for=1.8 with the separatiod/Ry=2.932.
SXfiow= X ot — y¥nchin Fig. 21 in they=2 case. Heredx pot Now, we assume the following form for ¥ :

denotes the difference ig between synchronized and irro-

tational cases which includes the gravitational potential force

plus centrifugal force, andyo,, denotes one which has re- VW ,=Q(f(d,x;,y1,21), 9(d,X;,y1,21), h(d,X;,y1,21)),

lation to the internal flow in the corotating frame. (53
We can confirm from this figure that, at small separation,

the difference in the gravitational force plus centrifugal force

is smaller than that in the force related internal flow. Therewheref, g, and h are some scalar functions of the orbital

fore, we will consider only the last term in the numerator of separationd and the coordinatesx(,y;,z;). Then the last

Eq. (46) below. term in the numerator of Eq46) can be calculated as

psi0 (z=0) Velocity w.r.t corotating frame (z=0)

x / Rqy x / Rqy

FIG. 16. Contour of velocity potential (left-hand side and internal velocity fieldi (right-hand sidgwith respect to the co-orbiting
frame in the orbital plane in the irrotational case wjth 3 when the separatial' R,=2.976. The thick solid lines denote the stellar surface.
The thin solid and dashed lines in the figure of velocity poterit&fi-hand sidg denote positive and negative values, respectively.
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psi0 (z=0) Velocity w.r.t corotating frame (z=0)

mo
~ [l .
>
s i
l l | |
-2 -1 -2 -1
x / R, x / Ry
FIG. 17. Same as Fig. 16 but far=2 with d/Ry=2.917.
149 _ 5 , |f(ap) of
Fi==3 Txl(V‘I’O*WS) ; (59 Fegcomg= — 2@y a, ox
g(ay) g )
Q% (Fry) s (ag 1)+h on IRt
= ( Y1)(9Xl (9—x1) g axq |

55 .
®9 where we have usel(d,x;,y;,0)=0 because the velocity

field is antisymmetric with respect to they plane. Note
Accordingly, the surface value at rq,61,¢1) that we simplify the argument list dfandg from (a;,0,0) to
=(aq,m/2,0)=(Xq,Y1,21) =(a1,0,0) becomes (a1). Let us consider the dominant termsfiandg which are

psi0 (z=0) Velocity w.r.t corotating frame (z=0)

x / R, x / Ry

FIG. 18. Same as Fig. 16 but for=1.8 with d/Ry=2.932.
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06 -

0.2 —— Synchronized case R
- --- Irrotational case
0 1 1
2 4 6 8

d/a,

FIG. 19. Equatorial to polar ratio of the radial derivative of
enthalpy y as a function of the separatiah (normalized by the

PHYSICAL REVIEW D64 064012

Difference in

y=2
0.05 T T T T
0 |
&
-0.05
—0.1 1 I 1 1 1
3 4 5 6 7 8
d/a,

FIG. 21. Differences iry terms between synchronized and irro-
tational cases along equilibrium sequences with2.

radiusa;). The solid and dashed lines denote the cases of synchro-

nized and irrotational fluid states, respectively.
f=A(d)y,, (57)
g=A(d)x;. (58

Here A is a function of the separatiah The forms(57) and

Shapiro[8] or Taniguchi and NakamurglO]. Indeed, for
ellipsoidal modelsA becomes
2 2
a—a;
= L2, A2 (59
a;+a;

and its dependence ofis O[(d/R,) %] because the domi-

(58) can be justified from the studies by Lai, Rasio, andnant effectin the deviation from a spherical star is produced

Synchronized case Irrotational case

0.5 T

04 -

03

=

02 ' 1

o1+ / Y oL T =25
---- =225 ---- =225
——-y=2 ——-y=2
—-— =18 —-— =18

0 L L L L L L 1 L L L
2 21 22 23 24 252 21 22 23 24 25

d/a, dia,

FIG. 20. Equatorial to polar ratio of the radial derivative of
enthalpy y as a function of the separatiah (normalized by the
radiusa,). The left (respectively, right panel is for the synchro-
nized (respectively, irrotational binaries. Solid, dotted, dashed,
long-dashed, and dot-dashed lines denote the cases-8f, 2.5,
2.25, 2, and 1.8, respectively.

by the tidal force. From Eq$57) and(58) it appears that the
first term in the brackets on the right-hand side of &) is
negligible as compared with the second term, so that one is
left with

J
g(al)—l). (60)

%1

g(ay)

-

Taking into account Eqg58) and (59), we can have only
two types of behaviors for the functian

-0%a,

I:eq,comﬁ_\“

. 9(ay) dg
(i) a <1 and a—xl(al)sl,
a J
(ii) 93 1 ang 29 a)>1.
1 dXq

Sinceg tends to zero for very large orbital separations,
case(i) will occur in the earlier stage of the sequence. In this
case F g compbeCOMes a negative value so that it mak&s'

a larger value thany®"™"? However, if case(ii) actually
occurs,Feq compCan take a positive value, and™ can be
smaller than that in the synchronized case.

2lt is worth noting that since the terms (dv/dx,), —(9vldzy),
and Q?(—d/2+x;) have negative valueg™ becomes larger for
the negative value of.
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Y-axis component of grad(*¥,) toward (6, ¢)=(r/2, 0 05 Trrotational case, Values at (r, 8, ) = (a,, /2, 0)
i : Im)tamna{ case (2, dﬂ}" =281 . . % Y—axis component of —_ F; s
g% % grad(¥,)/Qa, T ]
08 — Y—axis component of grad(*¥))/Qa, JPte - | % R =2
B 7 | ---- Y-axis component of W /Qa, e > 03 - —— 2 .
8 - B —-— 18
[+]
> 06 | ool |
B E
S 04 2 L .
£ 2 041
202 0 . . .
0 ] | . . 25 1 Y-axis componentof =~ —— ¥3 -
. & : —— 42,5
S —— Y-axis component of (d(grad(¥,))/dx,)/Q 8 ol W (d(grad(¥p)/dx,)/Q -—-- =225
’§ 2 | ---- Y-axis component of (AW /dx,)/Q o K —— 2
] ] —— 18
215 g '8 L
o© '§ 1} ———— ———— 4
£ 1 5
2 S o5 1
8 05 0 ‘
0 2 5 6 7 8
0 0.2 04 0.6 0.8 1 dra,

x,/a,
FIG. 23. Surface value of-axis component oﬁ\lfo (upper

FIG. 22.y-axis component of ¥, (i.e., the functiorg) andW, pane) and its derivative(lower panel along an evolutionary se-
(upper panel and their derivativeglower panel as a function of quence. Solid, dotted, dashed, long-dashed, and dot-dashed lines
the coordinatex; for a close irrotational binary. Solid and dashed denote the cases gf=3, 2.5, 2.25, 2, and 1.8, respectively. The
lines are the terms concerned Wﬁhl’o andWg, respectively. thick dashed line in the lower panel is tig@axis component of the

derivative ofWj.

In Fig. 22, they-axis component oV V¥, i.e., the function . o -
g, and its derivative are shown as a function of the coordi-and Its denvapve behave [ (d/Ro) "?] for the case of
nate x; (normalized by the surface valwe). This figure larger separatio10]. For a very close case such @R,

corresponds to the last line of the=2 case in Table Il. We <3, theﬁly-axis _component  of Vo, becomﬁels as
can see from this figure that theaxis component of W,  OL(d/Ro) ?] and its derivative reaches O[ (d/Ro) ~*%].

remains smaller than that ¥ throughout the interior of the
star, but the derivative near the stellar surface becomes larger
than unity, i.e., the derivative of thg-axis component of We show values of and separationdg /R, at which the
W,. This means that cagé) really occurs for a very close total energy(and/or total angular momentyrtakes its mini-
configuration. It is worth noting here that the decrease of

C. Turning points of total energy

x"™ by the termF occurs only near the stellar surface. On Log plot of grad (‘) along a sequence
the contrary, the tern increasesy™" around the center of \ Trrotational case (y=2), Values at (z, 8, §) = (a,, /2, 0)
the star. 10 v

Next, we show the surface value of tix@xis component g '\‘
of ﬁwo and its derivative along an evolutionary sequence inw‘:;’ \
Fig. 23. It is found that thej-axis component oN W is 5 4o L \ \'\ |
smaller than that ofVs throughout the sequence even if we £ \ \
extrapolate the lines ta/a;~2.1 for y=3 and tod/a; 2 \
~2.25 for y=1.8. Moreover, they-axis component of the \\
derivative ofV“I% becomes larger than that @ for every % 107" ¢ \\ &
vy when the orbital separation decreases more ttiaay ?, .
<2.5. This explains why'™" becomes smaller thapsyneh I —— grad (¥,
for d/a;<2.5 as we have found from Fig. 19. We can also T L, | (d(grad (¥))/dx,)Q _
see from Fig. 23 that the orbital separation where the deriva-g 107 ¢ —— Line parallel to (d/R,) | E
tive of v”% overcomes that oWy is larger for smallery. E - fﬁ:ﬁﬁ:ﬂ:}ﬁg Eg//ﬁ';;-n
This fact leads to the earlier appearance of a cusp for smalleS —-— Line parallel to (d/R)™"*

. -3

Finally, let us discuss the dependence on the orbital sepa 10 1 10

ration in they-axis component o¥ ¥, (and also its deriva- Coordinate separation / Radius of a spherical star

tive). We present thg-axis component oV ¥, and its de-  pig. 24. y-axis component oF W, and its derivative along an
rivative along an evolutionary sequence in Iog-Iogﬁ plot ingyolutionary sequence. Thick dotted, thick dashed, thick long-
Fig. 24. 1t is found that both thg-axis component oV ¥ dashed, and thick dot-dashed lines are reference ones.

064012-17



TANIGUCHI, GOURGOULHON, AND BONAZZOLA PHYSICAL REVIEW D64 064012

Synchronized case Irrotational case We can see from Fig. 25 that seems to be zero at
06 T ' =1.7-1.8 withdg/Ry=2.7—2.75 in the synchronized case
05 1+ @ and at y=2.2-2.3 with dg/R,=2.8-2.85 in the irrota-
tional one.

04 - T
03 | 1 1 Taking into account the appearance of the cusp and the
’ existence of the turning point, we can expect that the subse-

0.2 - T quent merger process stars from: the turning point for
= 1.8 (plunge ?, the contact point fory<1.8 in the synchro-
nized case, and from the turning point fge2.3 (plunge 7,
and the cusp point with mass sheddipg 2.3 in the irrota-
tional one.

0.1 - T

311 3 T @)

VI. SUMMARY

dJ/R,

29 +
We have studied equilibrium sequences of both synchro-

nized and irrotational binary systems in Newtonian gravity
with adiabatic indicey=3, 2.5, 2.25, 2, and 1.8. Through
27 5 175 2 255 25 275 208 25 275 3 the present paper, we hayfe understood the qualit.ative Qiffer—
y y ences of physical quantities between synchronized binary
systems and irrotational ones. The summary of the results is
FIG. 25. Turning points of total energy as a function of adiabaticas follows. The two stars come in contact with each other in
index y. Panels(1) and (3) are for synchronized binaries ari#)  the synchronized case as an end point of equilibrium se-
and (4) are for irrotational ones. quence; irrotational sequences may terminate instead by a
. . o cusp pointimass sheddingorresponding to a detached con-
mum along a sequence as a function of the adiabatic index figu?a[f[)ion; the turning pogi:nts ofptotal egnergy appear in the
in Fig. 25. We are interested in the turning point of total cases ofy=1.8 in the synchronized case; the turning points
energy (and/or total angular momentyniecause it corre- f total energy appear in the caseSﬁki.S in the irrota-

sponcifs4to tréetﬁ ntseg 8f secu]arl '.nStt""%'.ll'.tty n ttr;]e §yn<t:ht(on|z|e onal case; and the turning points of total energy and total
case[44] and that of dynamical instability in the irrotationa angular momentum coincide with each other.

one at least for the ellipsoidal approximatipf]. Note that
the turning points in the total energy and total angular mo-
mentum coincide. As discussed in Sec. V)B=0 denotes
the end point of equilibrium sequences for both synchronized We thank Koji Uryu for providing us with unpublished
and irrotational cases. If we extrapolate the results up to theesults from his numerical code. The code development and
zero value ofy, we can obtain the critical value of below  the numerical computations have been performed on SGlI
which the turning points of the total energy no longer exist,workstations purchased thanks to a special grant from the
and the value of the corresponding separation. C.N.R.S.

28 T

ACKNOWLEDGMENTS

[1] S. Chandrasekhakllipsoidal Figures of Equilibrium(Yale  [10] K. Taniguchi and T. Nakamura, Phys. Rev. @, 044040

University Press, New Haven, CT, 1969 (2000.
[2] M.L. Aizenman, Astrophys. J153 511 (1968. [11] J.C. Lombardi, F.A. Rasio, and S.L. Shapiro, Phys. Re&6D
[3] I. Hachisu and Y. Eriguchi, Publ. Astron. Soc. Ji86, 239 3416(1997. _

(1984. [12] K. Taniguchi and M. Shibata, Phys. Rev.98, 798 (1997.

[13] M. Shibata and K. Taniguchi, Phys. Rev.98, 811 (1997).

[14] K. Taniguchi, Prog. Theor. Phy401, 283(1999.

[15] J.A. Faber and F.A. Rasio, Phys. Rev6R, 064012(2000.

[16] J.A. Faber, F.A. Rasio, and J.B. Manor, Phys. Rev6®
044012(2001).

17] K. Ochara and T. Nakamura, iRelativistic Gravitation and
Gravitational Radiation edited by J.A. Marck and J.P. Lasota
(Cambridge University Press, Cambridge, England, 1997

[4] L. Blanchet and B.R. lyer, iGravitation and Relativity: At the
Turn of the Millenniumedited by N. Dadhich and J. Narlikar
(Inter-University Centre for Astronomy and Astrophysics,
Pune, 1998 p. 403.

[5] H. Tagoshi, M. Shibata, T. Tanaka, and M. Sasaki, Phys. Rev[
D 54, 1439(1996.

[6] T. Tanaka, H. Tagoshi, and M. Sasaki, Prog. Theor. P8§s.

1087(1996. 309.
[7]D. Lai, F.A. Rasio, and S.L. Shapiro, Astrophys. J., Suppl. Serf1g] m. Shibata, Prog. Theor. Phy$01, 251 (1999.
88, 205(1993. [19] M. Shibata, Prog. Theor. Phy01, 1199(1999.
[8] D. Lai, F.A. Rasio, and S.L. Shapiro, Astrophys.420, 811  [20] M. Shibata, Phys. Rev. B0, 104052(1999.
(1994. [21] M. Shibata and K. Uryu, Phys. Rev. 61, 064001(2000.
[9] K. Taniguchi and T. Nakamura, Phys. Rev. Le®4, 581  [22] K. Oohara and T. Nakamura, Prog. Theor. Phys. Suppf
(2000. 270(1999.

064012-18



QUASIEQUILIBRIUM SEQUENCE ... . Il. ... PHYSICAL REVIEW D 64 064012

[23] W.-M. Suen, Prog. Theor. Phys. SuppB86, 251 (1999. S.A. Teukolsky, Phys. Rev. B7, 7299(1998.
[24] J.A. Font, M. Miller, W.-M. Suen, and M. Tobias, Phys. Rev. D [36] P. Marronetti, G.J. Mathews, and J.R. Wilson, Phys. Re¥8D
61, 044011(2000. 107503(1998.
[25] S. Bonazzola, E. Gourgoulhon, and J.-A. Marck, Phys. Rev. 37] C.S. Kochanek, Astrophys. 398 234(1992.
56, 7740(1997. [38] L. Bildsten and C. Cutler, Astrophys. 400, 175(1992.
[26] H. Asada, Phys. Rev. B7, 7292(1998. [39] S. Bonazzola, E. Gourgoulhon, and J.-A. Marck, Phys. Rev. D
[27] M. Shibata, Phys. Rev. B8, 024012(1998. 58, 104020(1998.

[28] S.A. Teukolsky, Astrophys. k04, 442 (1998. [40] P. Marronetti, G.J. Mathews, and J.R. Wilson,Hroceedings
[29] S. Bonazzola, E. Gourgoulhon, and J.-A. Marck, Phys. Rev. of the 19th Texas Symposium on Relativistic Astrophysics and
Lett. 82, 892(1999. CosmologyParis, France, 199€D-ROM version, edited by

[30] P. Marronetti, G.J. Mathews, and J.R. Wilson, Phys. Re§0D E. Aubourg, T. Montmerle, J. Paul, and P. Pet&EA/
087301(1999. DAPNIA, Gif sur Yvette, France, 2000
[31] K. Uryu and Y. Eriguchi, Phys. Rev. B1, 124023(2000. [41] K. Uryu and Y. Eriguchi, Astrophys. J., Suppl. S&i.8 563
[32] K. Uryu, M. Shibata, and Y. Eriguchi, Phys. Rev, 104015 (1998.
(2000. [42] K. Taniguchi and E. Gourgoulhofunpublishegl
[33] E. Gourgoulhon, P. Grandateent, K. Taniguchi, J.-A. Marck, [43] K. Taniguchi and T. Nakamuré@npublishegl
and S. Bonazzola, Phys. Rev.@3, 064029(2001), paper |. [44] T.W. Baumgarte, G.B. Cook, M.A. Scheel, S.L. Shapiro, and
[34] T.W. Baumgarte, G.B. Cook, M.A. Scheel, S.L. Shapiro, and S.A. Teukolsky, Phys. Rev. B7, 6181(1998.
S.A. Teukolsky, Phys. Rev. Letf9, 1182(1997). [45] S. Chandrasekhar, Mon. Not. R. Astron. S88, 462 (1933.

[35] T.W. Baumgarte, G.B. Cook, M.A. Scheel, S.L. Shapiro, and[46] K. Uryu (private communication

064012-19



