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Quasiequilibrium sequences of synchronized and irrotational binary neutron stars
in general relativity. II. Newtonian limits

Keisuke Taniguchi, Eric Gourgoulhon, and Silvano Bonazzola
Département d’Astrophysique Relativiste et de Cosmologie, UMR 8629 du C.N.R.S., Observatoire de Paris,

F-92195 Meudon Cedex, France
~Received 13 March 2001; published 27 August 2001!

We study equilibrium sequences of close binary systems composed of identical polytropic stars in Newton-
ian gravity. The solving method is a multidomain spectral method which we have recently developed. An
improvement is introduced here for accurate computations of binary systems with a stiff equation of state
(g.2). The computations are performed for both cases of synchronized and irrotational binary systems with
adiabatic indicesg53, 2.5, 2.25, 2, and 1.8. It is found that the turning points of total energy along a
constant-mass sequence appear only forg>1.8 for synchronized binary systems andg>2.3 for irrotational
ones. In the synchronized case, the equilibrium sequences terminate by the contact between the two stars. On
the other hand, for irrotational binaries, it is found that the sequences terminate at a mass shedding limit which
corresponds to a detached configuration.
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I. INTRODUCTION

The research for equilibrium figures of binary systems
a long history. The pioneer work was done by Roche w
treated a synchronously rotating, incompressible ellips
around a gravitating point source. Following this work, Da
win constructed a synchronized binary system compose
double incompressible ellipsoids~see @1#!. For the non-
synchronized case, Aizenman calculated an equilibrium
ure of an incompressible ellipsoid with internal motion orb
ing a point source companion@2#. In the 1980s, the
improvement of computer performance made it possible
construct equilibrium sequences of synchronized binary s
tems with a compressible equation of state in Newton
gravity @3#.

Since the beginning of the 1990s, the studies on bin
systems have gained some importance in relation to as
physical sources of gravitational waves. For example, c
lescing binary neutron stars are expected to be one of
most promising sources of gravitational radiation that co
be detected by the interferometric detectors currently in
eration ~TAMA300! or under construction@GEO600, Laser
Interferometric Gravitational Wave Observatory a
VIRGO#. Until now, numerous theoretical studies have be
done in this research field. Among them there are:~i! post-
Newtonian analytical treatments~e.g., @4#!; ~ii ! black hole
perturbation @5,6#; ~iii ! Newtonian @7–10# and post-
Newtonian @11–14# ~semi!analytical treatments including
hydrodynamical effects of stars;~iv! post-Newtonian hydro-
dynamical computations@15,16#; ~v! fully relativistic hydro-
dynamical treatments, pioneered by the works of Oohara
Nakamura~see e.g.,@17#!; and recently developed by Shiba
@18–21#, Oohara and Nakamura@22#, and the Neutron Sta
Grand Challenge group@23,24#. ~vi! In parallel of the dy-
namical studies in~v!, a quasiequilibrium formulation of the
problem has been developed@25–28# and successfully
implemented@29–33#. The basic assumption underlying th
quasiequilibirum calculations is that the timescale of the
0556-2821/2001/64~6!/064012~19!/$20.00 64 0640
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bit shrinking is larger than that of the orbital revolution in th
precoalescing state. Consequently, the evolution of the
nary system can be approximated by a succession of exa
circular orbits, hence the namequasiequilibrium.

The first quasiequilibrium configurations of binary ne
tron stars in general relativity were obtained 4 yr ago
Baumgarteet al. @34,35#, followed by Marronettiet al. @36#.
However these computations considered synchronized b
ries. As far as coalescing binary neutron stars is concer
this rotation state does not correspond to physical situatio
since it has been shown that the gravitational-radiat
driven evolution is too rapid for the viscous forces to sy
chronize the spin of each neutron star with the orbit@37,38#
as they do for ordinary stellar binaries. Rather, the visco
is negligible and the fluid velocity circulation~with respect
to some inertial frame! is conserved in these systems. Pr
vided that the initial spins are not in the millisecond regim
this means that close binary configurations are well appro
mated by zero vorticity~i.e., irrotational! states. Irrotational
configurations are more complicated to obtain because
fluid velocity does not vanish in the co-orbiting frame~as it
does for synchronized binaries!.

We have successfully developed a numerical method
tackle this problem and presented the first quasiequilibri
configurations of irrotational binary neutron stars elsewh
@29,33#. The numerical technique relies on a multidoma
spectral method@39# within spherical coordinates. Sinc
then, two other groups have obtained relativistic irrotatio
configurations:~i! Marronetti, Mathews, and Wilson@30,40#
by means of a single-domain finite difference method with
Cartesian coordinates and~ii ! Uryu and Eriguchi@41,31,32#
by means of the multidomain finite difference method with
spherical coordinates.

Recently, we have presented our method in detail w
numerous tests@33# ~hereafter called paper I!. Using this
method, we have calculated~quasi!equilibrium sequences o
binary systems with synchronized and irrotational rotat
states. In this paper, we will show the results in Newton
©2001 The American Physical Society12-1
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gravity. The results of relativistic calculations will be give
in a forthcoming paper@42#.

The plan of the paper is as follows. We start by present
the equations governing binary systems in Newtonian gra
in Sec. II. Section III is devoted to the brief explanatio
about the improvement on the cases of stiff equation of s
such asg.2. In Sec. IV some tests for the numerical co
are performed. Then, we will show the results of evolutio
ary sequences of both synchronized and irrotational bin
systems constructed by double identical stars with polytro
equation of state in Sec. V. Section VI contains the summ
Throughout this paper, we use units ofG5c51, whereG
and c denote the gravitational constant and speed of lig
respectively.

II. FORMULATION

Since the method which we use in the present paper
getting equilibrium configurations has already been
plained in paper I@33#, we will only briefly mention the
basic equations and the solving procedure in this section

A. Basic equations

The basic equations governing the problem are as follo
~see also Sec. II F of paper I!.

~1! Equation of state: We adopt a simple equation, i.e
polytropic equation of state:

p~H !5k n~H !g, ~1!

p being the fluid pressure,n the fluid baryon number density
k a constant,g the adiabatic index, andH the specific en-
thalpy. The relation betweenH andn is given by

n~H !5Fg21

g

mB

k
HG1/(g21)

, ~2!

where mB denotes the mean baryon mass (mB51.66
310227 kg!.

~2! Euler equation:

]v

]t
1v•¹W v52

1

mB n
¹W p2¹W n, ~3!

n being the gravitational potential, andv the velocity field in
the inertial frame which is expressed as

v5u1V3r ~4!

in terms of the velocity field in the corotating frameu and
the orbital motionV3r . In the rigidly rotating case, sinc
there is no motion in the corotating frame (u50), we obtain

v5V3r . ~5!

On the other hand, in the irrotational case, the velocity fi
in the inertial frame is potential, i.e.,

v5¹W C, ~6!
06401
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whereC is a scalar function. Under the stationary conditi
the Euler equation~3! can be integrated as

H1n2 1
2 ~V3r !25const ~7!

in the synchronized case and

H1n1 1
2 ~¹W C!22~V3r !•¹W C5const ~8!

in the irrotational case.
~3! Equation of continuity:

]n

]t
1¹W •~n v!50. ~9!

This equation is trivially satisfied by stationary rigid rotatio
In the irrotational case, we can rewrite Eq.~9! as

nDC1¹W n•¹W C5~V3r !•¹W n. ~10!

~4! Poisson equation for the gravitational field:

Dn54pmBn. ~11!

B. Solving procedure

~a! First of all, we prepare the equilibrium figures oftwo
spherical stars. In the present computation, we treat bin
systems composed of equal mass stars with the same e
tion of state. However, we symmetrize only with respect
the orbital plane. Although this treatment elongates the co
puting time, we do not symmetrize the stars because we
planning to study binary systems composed of different m
stars in the series of this research.

~b! The separation between the centers of the two star
held fixed. Here we define the center as the point of
maximum enthalpy@or equivalently maximum density — se
Eq. ~2!#.

~c! By setting the central value of the gradient of enthal
to be zero, we calculate the orbital angular velocityV ~see
Sec. IV D 2 of paper I for details!.

~d! For irrotational configurations, the velocity potenti
C is obtained by solving Eq.~10!.

~e! Taking into account the gravitational potential fro
the companion star and the centrifugal force, we calculate
new enthalpy field from Eqs.~7! or ~8!.

~f! Using the new enthalpy, we search for the location
H50; this defines the stellar surface sinceH50 is equiva-
lent to p50 @see Eqs.~1! and ~2!#. Having determined the
new stellar surface, we change the position of the inner
main boundary to make it fit with the stellar surface.

~g! By substituting the new enthalpy in the new doma
into Eq. ~2!, the new baryon density is obtained.

~h! Inserting the new baryon density into the source te
of the Poisson equation~11!, we can get the new gravita
tional potential.

~i! Finally, we compare the new enthalpy field with th
old one. If the difference is smaller than some fixed thre
old, the calculation is considered as having converged. If n
return to step~c!, and continue.
2-2
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QUASIEQUILIBRIUM SEQUENCES . . . . II. . . . PHYSICAL REVIEW D 64 064012
During the calculation, we make the baryon mass c
verge to a fixed value by varying the central enthalpy. Mo
over, some relaxation is performed on the gravitational
tential, the centrifugal force, and the orbital angular veloc
when such a treatment helps the iteration to converge.
explicit procedures are detailed in paper I.

III. IMPROVEMENT ON THE CASES
OF STIFF EQUATION OF STATE

A. Regularization technique

The numerical method which we use in this series of
search@39,29,33# is a multidomain spectral method. In ge
eral, spectral methods lose much of their accuracy when n
smooth functions are treated because of the so-called G
phenomenon. This phenomenon is well known from the m
familiar spectral method, namely, the theory of Fourier
ries: the Fourier coefficients (cn) of a functionf which is of
classC p but notC p11 decrease as only 1/np with increasing
n. In particular, if the function has some discontinuity,
approximation by a Fourier series does not converge tow
f at the discontinuity point. Themultidomainspectral method
circumvents the Gibbs phenomenon@39#. The basic idea is to
divide the space into domains chosen so that the phys
discontinuities are located onto the boundaries between
domains.

However, even if the circumvention of the Gibbs pheno
enon has been done by introducing multidomains, there
mains the Gibbs phenomenon at the boundaries betwee
domains when some physical field has infinite derivative
the boundary. For example, when we consider a star, its
face coincides with the boundary of a domain. If the star
a stiff equation of state, i.e.,g.2 in terms of the adiabatic
index, the density decreases so rapidly that]n/]r diverges at
the surface. In order to recover high accuracy, we have
veloped a method to regularize the density profile by extra
ing its diverging part~see Sec. IV of Ref.@39#!.

Here we briefly summarize this method. For a polytro
with adiabatic indexg, the matter densityn behaves as
H1/(g21) @see Eq.~2!#. In the steady state configuration,H is
Taylor expandable at the neighborhood of the stellar surf
because the gravitational potentialn is Taylor expandable
there @cf. Eqs. ~7! or ~8!#. Therefore H vanishes asr
2R(u,w), whereR(u,w) is the equation of the stellar su
face. Consequentlyn behaves asn;@r 2R(u,w)#1/(g21).

We introduce a known potentialFdiv such that ndiv
ªDFdiv has the same pathological behavior asn and such
that n2ndiv is a regular function~at least more regular tha
n). We then numerically solve

DF regu5n2ndiv , ~12!

whereF reguªF2Fdiv . Consider, for instance,

Fdiv5F~j,u,w!~12j2!(a12), ~13!

wherea51/(g21). F is an arbitrary regular function andj
is a new radial variable such thatj51 at the surface of the
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star@39#. It is easy to see thatDFdiv has a term vanishing a
the surface with the same pathological behavior asn, i.e.,
(12j2)a. We have indeed

D̃Fdiv5D̃F~12j2!(a12)24~a12!j~12j2!(a11)]jF

1~a12!@26~12j2!(a11)

14~a11!j2~12j2!a#F, ~14!

whereD̃ is the Laplacian computed with respect to (j,u,w).
For calculational simplicity, we choose a harmonic fun

tion for F(j,u,w). Then, we can writeFdiv5( l ,malmF lm ,
where

F lmªj l~12j2!(a12)Yl
m~u,w!, ~15!

alm being some numerical coefficients to be determined
Yl

m the standard spherical harmonics. We then obtain

ndiv5(
l ,m

almCl~j!Yl
m~u,w!, ~16!

with

Cl~j!5~a12!@2~4l 16!~12j2!(a11)j l

14~a11!j ( l 12)~12j2!a#. ~17!

We now have to determine the values of the coefficientsalm
which give the most regular functionnreguªn2ndiv . The
criterion which seems to give the best results is the follow
one. We expand bothn and ndiv as a truncated series o
spherical harmonicsYl

m(u,w) and Chebyshev polynomia
Ti(j):

n~j,u,w!5 (
i ,l ,m50

I ,L,M

nilmTi~j!Yl
m~u,w!, ~18!

ndiv~j,u,w!5 (
i ,l ,m50

I ,L,M

almCli Ti~j!Yl
m~u,w!, ~19!

where we expand each of the functionsCl(j) in a Cheby-
shev series as

Cl~j!5(
i 50

I

Cli Ti~j!. ~20!

The values ofalm is computed in such a way that theI th
coefficient of the truncated series ofnregu vanishes:

alm5
nIlm

ClI
. ~21!

By means of the above procedure, inn we eliminate the
pathological term that vanishes as (12j2)a but we introduce
another pathological term proportional to (12j2)a11. How-
ever, the divergence occurs in a higher order derivative
this term so that it has a much weaker effect on the accur
of the results. The method can be improved by taking
2-3
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FIG. 1. Relative error in the virial theorem fo
a spherical star as a function of the number
radial collocation pointsNr . Solid line with open
circle, dotted with open square, dashed with op
diamond, and long-dashed with open triangle d
note the results without regularization, with reg
larizationK51, 2, and 3, respectively.
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Fdiv5F~j,u,w!~12j2!(a12)@a11a2~12j2!1a3~12j2!2

1•••1aK~12j2!K21# ~22!

instead of Eq.~13!. The coefficientsaK are chosen in such
way that the first, second,. . . , Kth derivatives ofnregu van-
ish at j51. Let us callK the regularization degree of th
procedure.

The explicit procedure to determine the coefficientsaK is
as follows. Let us consider the case ofK52 and choose a
harmonic function forF(j,u,w) for example. In this case
we need two diverging terms,ndiv:k (1<k<K), where we
define

ndiv:kª(
l ,m

alm
k Cl

k~j!Yl
m~u,w!, ~23!

with

Cl
k~j!5~a1k11!@2~4l 16!~12j2!(a1k)j l

14~a1k!j ( l 12)~12j2!a1k21#. ~24!

First of all, we expandn, ndiv:1 and ndiv:2 by Yl
m(u,w) and

Ti(j). Then, we can expressCl
k(j) as an expansion in a

Chebyshev series

Cl
k~j!5(

i 50

I

Cli
k Ti~j!. ~25!

Finally, we solve the simultaneous equations

nIlm5alm
1 ClI

1 1alm
2 ClI

2 , ~26!

nI 21lm5alm
1 ClI 21

1 1alm
2 ClI 21

2 , ~27!

so that theI th and (I 21)th coefficients of the truncate
series ofnregu vanish.
06401
B. Illustration and test

To validate the above regularization technique, we inv
tigate the improvement in the relative error in the virial the
rem for a spherical static star, which is defined as

virial error5
uW13Pu

uWu
, ~28!

W being the gravitational potential energy andP the volume
integral of the fluid pressure. We give the values of the vir
error in Fig. 1. In this figure we show the cases of~1! g
53, ~2! g52.5,~3! g52.25, and~4! g52, and in each smal
figure except for the case ofg52 for which no Gibbs phe-
nomenon occurs, we have drawn four lines: ‘‘no regulariz
tion,’’ regularization degreeK51, 2, and 3. It is found from
these plots that the regularization dramatically improves
accuracy. However, the improvement by the regularizat
saturates atK52. Note here that since there is no Gib
phenomenon in the calculation of a spherical star in the c
of g52, the virial error decreases rapidly~exponential decay
2 evanescent error! with the increase of the number of radi
collocation pointNr , and reaches the minimum value due
the finite number of digits~155double precision! used in the
numerical computation.

Considering the saturation of the virial error, we w
choose the regularization degreeK52 in the following nu-
merical computations forg.2. We note that since the matte
densityn behaves asH1/(g21), the derivatives ofn of order
higher than the second one diverge at the stellar surface
if g,2. Therefore we will also use the regularization (K
52) for the cases ofg,2.

IV. TESTS OF THE NUMERICAL CODE

Numerous tests have been already performed in the
vious paper in the irrotational case~see Sec. V B of paper I!.
In particular, a direct comparison with the numerical resu
2-4
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of Uryu and Eriguchi@41# has been performed and the res
presented in Table I of paper I. Here we will focus on so
tests in the synchronized case, not presented in paper I
will also show the relative error on the virial theorem alo
an evolutionary sequence in both cases, extending the
presented in paper I~Fig. 7! to adiabatic indices differen
from 2.

A. Comparison with analytical solutions

In order to investigate the discrepancy between the res
from the numerical code and those from the Taniguc
Nakamura analytic solution@43# in the synchronized cas
with g52, we present the relative differences on glob
quantities as functions of the separation in a log-log plot
Fig. 2 ~in the same way as Fig. 12 of paper I for irrotation
configurations!. The relative differences are defined as fo
lows:

Enum2Eana

GM2/R0

, ~29!

Jnum2Jana

Md2VKep/2
, ~30!

Vnum2Vana

VKep
, ~31!

udrc:num2drc:anau, ~32!

FIG. 2. Relative differences in total energyE, total angular mo-
mentumJ, orbital angular velocityV, and relative change in centra
baryon densitydrc when comparing the numerical solution wit
Taniguchi and Nakamura’s approximate analytic solution@43# along
an equilibrium sequence in the synchronized case withg52. The
horizontal axis denotes logarithmicallyd/R0, whered is the sepa-
ration between the two stellar centers, andR0 the stellar radius at
infinite separation. The thick solid line is a reference point in or
to check the inclinations of the results easily.
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whereVKep is the Keplerian velocity for point mass particle

VKepªS 2GM

d3 D 1/2

. ~33!

In the Taniguchi and Nakamura’s analytic solution@43#, the
global quantities are expanded up toO@(R0 /d)6#. After sub-
tracting these analytic solutions from the numerical on
only the terms of order higher thanO@(R0 /d)6# should re-
main. Indeed, we can see from Fig. 2 that the discrepan
between numerical and analytical solutions for the energE
and the relative change in central densitydrc are both higher
than O@(R0 /d)8#, and those for the angular momentumJ
and the orbital angular velocityV are both higher than
O@(R0 /d)7#. This means that the numerical solution and t
analytical one agree up to the accuracy of this lat
„O@(R0 /d)6#….

B. Virial theorem

One of the best indicators of the accuracy of numeri
solutions for binary systems in Newtonian gravity is the re
tive error in the virial theorem. This error is defined as

virial error5
u2T1W13Pu

uWu
, ~34!

whereT, W, andP denote, respectively, the kinetic energy
the binary system, its gravitational potential energy, and
volume integral of the fluid pressure. By virtue of the viri
theorem, the quantity defined by Eq.~34! should be zero for
an exact solution. We show it in Fig. 3. This figure can
considered as an extension to that presented in pap

r

FIG. 3. Relative error in the virial theorem along an evolutio
ary sequence. The left panel is for synchronized binaries, and
right one for irrotational binaries. Solid, dotted, dashed, lon
dashed, and dot-dashed lines denote the casesg53, 2.5, 2.25, 2,
and 1.8, respectively. The horizontal axis denotesdG /R0, wheredG

is the separation between the centers of masses of the two stars
R0 the stellar radius at infinite separation.
2-5
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~Fig. 7! to adiabatic indices different from 2. It also contai
the synchronized case. We can see from Fig. 3 that the c
is quite accurate as virial error,1025 for dG /R0>3 even if
g53, wheredG denotes the separation between two cen
of masses of each star.

V. RESULTS

Using the numerical method explained in the above s
tions and in paper I@33#, we have constructed equilibrium
sequences of both synchronized and irrotational binary
tems in Newtonian gravity. Here, we consider only the c
of binary systems composed of stars with equal mass
equation of state. We use three domains~one for the fluid
interior! for each star and the following number of spect
coefficients:

Nr3Nu3Nw533325324 ~35!

in each domain. A view of the configuration at the ener
turning point ~Sec. V C below! along a sequence with ag
53 equation of states~EOS! is shown in Fig. 4 for synchro-
nized binaries, and in Fig. 5 for an irrotational one. We a

FIG. 4. Synchronized binary at the point of minimum ener
and angular momentum along a constant-mass sequence~‘‘last
stable orbit’’!, for an adiabatic indexg53. The grids on the sur-
faces correspond to the collocation points in (u,w) of the spectral
method.

FIG. 5. Same as Fig. 4 but for an irrotational binary.
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interested in the turning point of total energy~and/or total
angular momentum! because it correspond to the onset
secular instability in the synchronized case@44# and that of
dynamical instability in the irrotational one at least for th
ellipsoidal approximation@7#.

A. Equilibrium sequences

Our results for equilibrium constant-mass sequences~evo-
lutionary sequences! with adiabatic indices g
53, 2.5, 2.25, 2, and 1.8 are presented in Tables I and
In these tables,d denotes the separation between the cen
of the two stars. Let us recall that the center of a star
defined as the point of maximum enthalpy~or equivalently
maximum density!. On the other hand,dG denotes the orbita
separation between centers of masses of two stars.R0 , a1 ,
a2 , a3, and a1,opp are the radius of a spherical star of th
same mass, the radius parallel to thex axis toward the com-
panion star, the radius parallel to they axis, the radius par-
allel to thez axis, and the radius parallel to thex axis oppo-
site to the companion star. The (x,y,z) axes are the same a
in Fig. 1 of paper I.rc andrc0 indicate the central density o
a star and that of a spherical star of the same mass.

normalized quantitiesV̄, J̄, andĒ are defined by

V̄ª

V

~pGr0!1/2
, ~36!

J̄ª
J

~GM3R0!1/2
, ~37!

Ēª
E

GM2/R0
, ~38!

whereV, J, andE denote, respectively, the orbital angul
velocity, the total angular momentum, and the total ener
andr0 is the averaged density of a spherical star of the sa
mass:

r0ª
3M

4pR0
3 . ~39!

Also listed in Tables I and II is the ratio

xª
~]H/]r !eq,comp

~]H/]r !pole
, ~40!

where (]H/]r )eq,comp @respectively, (]H/]r )pole] stands for
the radial derivative of the enthalpy at the point on the ste
surface located in the orbital plane and looking toward
companion star@respectively at the intersection between t
surface and the axis perpendicular to the orbital plane
going through the stellar center (z axis!#. This quantity is
useful because the mass shedding limit~‘‘Roche limit’’ ! cor-
responds tox50 ~cf. Sec. IV E of paper I!. Whenx50, an
angular point~cusp! appears at the equator of the star in t
direction of the companion.
2-6
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TABLE I. Orbital angular velocityV, total angular momentumJ, total energyE, axial ratios, relative change in central density, equato
to polar ratio of the radial derivative of enthalpyx, and virial error along equilibrium sequences in the synchronized case. † denote
minimum points of total energy~and total angular momentum!.

Synchronized case

d/R0 dG /R0 d/a1 V̄ J̄ Ē a2 /a1 a3 /a1 a1,opp/a1 (rc2rc0)/rc0 x Virial error

g53 (n50.5)
8.016 8.016 7.970 7.196~-2! 2.043 -1.172 0.9940 0.9904 0.9993 -1.065~-3! 0.9838 5.145~-6!
7.014 7.014 6.953 8.793~-2! 1.923 -1.180 0.9909 0.9855 0.9988 -1.602~-3! 0.9754 5.054~-6!
6.012 6.012 5.927 1.108~-1! 1.798 -1.191 0.9852 0.9767 0.9977 -2.582~-3! 0.9602 4.920~-6!
5.010 5.010 4.882 1.458~-1! 1.669 -1.205 0.9733 0.9589 0.9949 -4.598~-3! 0.9288 4.707~-6!
4.008 4.007 3.788 2.044~-1! 1.542 -1.224 0.9423 0.9154 0.9855 -9.690~-3! 0.8496 4.326~-6!
3.507 3.504 3.186 2.512~-1! 1.488 -1.235 0.9032 0.8649 0.9701 -1.586~-2! 0.7526 3.994~-6!

†3.116 3.107 2.614 3.043~-1! 1.465 -1.240 0.8282 0.7781 0.9306 -2.672~-2! 0.5652 3.679~-6!
3.006 2.991 2.379 3.250~-1! 1.470 -1.239 0.7774 0.7245 0.8955 -3.299~-2! 0.4277 4.940~-6!
2.941 2.913 2.050 3.415~-1! 1.485 -1.230 0.6807 0.6299 0.8050 -3.971~-2! 0.08238 2.852~-3!

g52.5 (n52/3)
8.197 8.197 8.155 6.959~-2! 2.061 -1.137 0.9949 0.9917 0.9994 -1.252~-3! 0.9841 7.434~-7!
6.968 6.968 6.908 8.881~-2! 1.914 -1.147 0.9915 0.9864 0.9988 -2.057~-3! 0.9738 7.260~-7!
5.738 5.738 5.648 1.189~-1! 1.758 -1.161 0.9842 0.9751 0.9973 -3.751~-3! 0.9518 7.012~-7!
4.918 4.918 4.791 1.499~-1! 1.650 -1.173 0.9738 0.9597 0.9947 -6.111~-3! 0.9211 6.747~-7!
4.099 4.098 3.901 1.974~-1! 1.544 -1.189 0.9510 0.9274 0.9878 -1.115~-2! 0.8553 6.245~-7!
3.689 3.688 3.428 2.319~-1! 1.494 -1.198 0.9276 0.8961 0.9791 -1.615~-2! 0.7895 5.889~-7!

†3.037 3.029 2.511 3.161~-1! 1.443 -1.210 0.8201 0.7701 0.9212 -3.626~-2! 0.4906 8.134~-7!
2.951 2.938 2.310 3.329~-1! 1.446 -1.209 0.7742 0.7224 0.8866 -4.281~-2! 0.3524 3.171~-6!
2.901 2.883 2.081 3.449~-1! 1.455 -1.207 0.7073 0.6568 0.8237 -4.837~-2! 0.1154 2.539~-4!

g52.25 (n50.8)
8.164 8.164 8.123 7.001~-2! 2.055 -1.108 0.9951 0.9921 0.9994 -1.459~-3! 0.9835 1.180~-7!
6.804 6.804 6.743 9.203~-2! 1.891 -1.119 0.9913 0.9861 0.9987 -2.545~-3! 0.9709 1.143~-7!
5.783 5.783 5.697 1.175~-1! 1.760 -1.131 0.9854 0.9771 0.9975 -4.205~-3! 0.9516 1.118~-7!
4.763 4.762 4.630 1.573~-1! 1.625 -1.147 0.9725 0.9579 0.9942 -7.767~-3! 0.9098 1.055~-7!
4.082 4.082 3.890 1.985~-1! 1.535 -1.161 0.9532 0.9306 0.9881 -1.290~-2! 0.8494 9.882~-8!
3.402 3.400 3.082 2.625~-1! 1.453 -1.177 0.9056 0.8686 0.9684 -2.475~-2! 0.7058 8.189~-8!
3.062 3.056 2.585 3.104~-1! 1.427 -1.183 0.8422 0.7949 0.9327 -3.848~-2! 0.5178 2.051~-7!

†2.980 2.972 2.429 3.249~-1! 1.425 -1.184 0.8119 0.7623 0.9117 -4.398~-2! 0.4256 8.013~-7!
2.878 2.863 2.104 3.463~-1! 1.430 -1.182 0.7262 0.6762 0.8356 -5.426~-2! 0.1355 4.468~-5!

g52 (n51)
8.021 8.021 7.980 7.189~-2! 2.035 -1.061 0.9952 0.9923 0.9994 -1.820~-3! 0.9819 3.154~-13!
6.806 6.806 6.748 9.199~-2! 1.887 -1.072 0.9920 0.9872 0.9988 -3.003~-3! 0.9698 3.234~-12!
5.834 5.834 5.753 1.159~-1! 1.762 -1.083 0.9869 0.9794 0.9977 -4.826~-3! 0.9511 8.484~-13!
4.861 4.861 4.740 1.525~-1! 1.631 -1.098 0.9763 0.9635 0.9950 -8.548~-3! 0.9126 1.530~-12!
3.889 3.889 3.680 2.135~-1! 1.499 -1.119 0.9486 0.9245 0.9857 -1.775~-2! 0.8160 2.063~-11!
3.403 3.402 3.098 2.618~-1! 1.439 -1.131 0.9134 0.8788 0.9704 -2.848~-2! 0.6990 2.283~-9!
3.014 3.010 2.532 3.169~-1! 1.403 -1.140 0.8431 0.7970 0.9291 -4.646~-2! 0.4725 2.259~-7!

†2.892 2.885 2.268 3.394~-1! 1.399 -1.141 0.7864 0.7373 0.8845 -5.676~-2! 0.2862 4.158~-6!
2.849 2.839 2.092 3.487~-1! 1.400 -1.141 0.7361 0.6878 0.8364 -6.176~-2! 0.1116 1.315~-4!

g51.8 (n51.25)
8.097 8.097 8.058 7.088~-2! 2.041 -0.9942 0.9957 0.9931 0.9994 -2.087~-3! 0.9817 1.829~-9!
6.701 6.701 6.643 9.416~-2! 1.869 -1.006 0.9923 0.9877 0.9988 -3.712~-3! 0.9672 1.790~-9!
5.584 5.584 5.498 1.238~-1! 1.722 -1.020 0.9862 0.9784 0.9974 -6.502~-3! 0.9419 1.790~-9!
4.746 4.746 4.622 1.580~-1! 1.606 -1.034 0.9764 0.9639 0.9947 -1.081~-2! 0.9023 1.712~-9!
3.909 3.908 3.710 2.118~-1! 1.489 -1.053 0.9537 0.9317 0.9867 -2.029~-2! 0.8135 1.586~-9!
3.350 3.349 3.043 2.677~-1! 1.415 -1.068 0.9152 0.8818 0.9692 -3.462~-2! 0.6719 4.648~-9!
3.071 3.069 2.651 3.062~-1! 1.384 -1.076 0.8718 0.8304 0.9439 -4.821~-2! 0.5203 6.411~-8!
2.932 2.928 2.405 3.296~-1! 1.372 -1.079 0.8296 0.7840 0.9135 -5.863~-2! 0.3764 9.670~-7!
2.828 2.822 2.104 3.496~-1! 1.367 -1.080 0.7532 0.7067 0.8440 -6.939~-2! 0.1175 1.744~-5!
064012-7
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TABLE II. Orbital angular velocityV, total angular momentumJ, total energyE, axial ratios, relative change in central densi
equatorial to polar ratio of the radial derivative of enthalpyx, and virial error along equilibrium sequences in the irrotational case. † den
the minimum points of total energy~and total angular momentum!.

Irrotational case

d/R0 dG /R0 d/a1 V̄ J̄ Ē a2 /a1 a3 /a1 a1,opp/a1 (rc2rc0)/rc0 x Virial error

g53 (n50.5)
8.016 8.016 7.983 7.196~-2! 2.002 -1.173 0.9940 0.9940 0.9993 -7.249~-6! 0.9897 5.194~-6!
7.014 7.014 6.970 8.793~-2! 1.873 -1.182 0.9909 0.9910 0.9988 -1.638~-5! 0.9843 5.123~-6!
6.012 6.012 5.950 1.108~-1! 1.734 -1.194 0.9851 0.9853 0.9977 -4.243~-5! 0.9742 5.029~-6!
5.010 5.010 4.914 1.458~-1! 1.584 -1.211 0.9729 0.9736 0.9948 -1.337~-4! 0.9525 4.891~-6!
4.008 4.007 3.838 2.042~-1! 1.420 -1.235 0.9408 0.9434 0.9853 -5.862~-4! 0.8939 4.642~-6!
3.507 3.505 3.248 2.506~-1! 1.334 -1.252 0.8994 0.9055 0.9695 -1.559~-3! 0.8138 4.463~-6!
3.006 2.993 2.442 3.230~-1! 1.260 -1.270 0.7622 0.7795 0.8892 -6.832~-3! 0.4775 2.016~-7!

†2.976 2.960 2.346 3.296~-1! 1.259 -1.270 0.7362 0.7547 0.8686 -7.981~-3! 0.3973 9.366~-6!
2.956 2.936 2.257 3.346~-1! 1.260 -1.270 0.7099 0.7292 0.8458 -9.095~-3! 0.3097 3.220~-5!

g52.5 (n52/3)
8.197 8.197 8.168 6.959~-2! 2.025 -1.138 0.9948 0.9949 0.9994 -7.110~-6! 0.9900 7.487~-7!
6.968 6.968 6.926 8.880~-2! 1.867 -1.149 0.9914 0.9915 0.9988 -1.919~-5! 0.9833 7.382~-7!
5.738 5.738 5.674 1.189~-1! 1.694 -1.164 0.9841 0.9843 0.9973 -6.355~-5! 0.9686 7.194~-7!
4.918 4.918 4.826 1.498~-1! 1.570 -1.178 0.9736 0.9742 0.9947 -1.677~-4! 0.9475 7.037~-7!
4.099 4.098 3.952 1.973~-1! 1.435 -1.199 0.9502 0.9521 0.9878 -5.524~-4! 0.8996 6.760~-7!
3.689 3.688 3.490 2.316~-1! 1.364 -1.212 0.9260 0.9297 0.9791 -1.149~-3! 0.8481 6.403~-7!
3.279 3.276 2.978 2.778~-1! 1.293 -1.227 0.8777 0.8853 0.9574 -2.832~-3! 0.7372 6.161~-7!
2.951 2.941 2.401 3.306~-1! 1.244 -1.240 0.7680 0.7833 0.8862 -7.947~-3! 0.4184 9.912~-6!

†2.902 2.887 2.219 3.415~-1! 1.240 -1.241 0.7162 0.7334 0.8415 -1.023~-2! 0.2305 7.755~-5!
g52.25 (n50.8)

8.164 8.164 8.137 7.000~-2! 2.021 -1.109 0.9951 0.9951 0.9994 -7.639~-6! 0.9896 1.179~-7!
6.804 6.804 6.762 9.203~-2! 1.845 -1.121 0.9913 0.9914 0.9987 -2.327~-5! 0.9814 1.164~-7!
5.783 5.783 5.724 1.175~-1! 1.701 -1.134 0.9854 0.9856 0.9975 -6.332~-5! 0.9686 1.142~-7!
4.763 4.762 4.669 1.573~-1! 1.545 -1.152 0.9723 0.9730 0.9942 -2.145~-4! 0.9399 1.108~-7!
4.082 4.082 3.943 1.984~-1! 1.432 -1.170 0.9528 0.9544 0.9882 -5.859~-4! 0.8960 1.065~-7!
3.402 3.400 3.159 2.620~-1! 1.312 -1.193 0.9043 0.9094 0.9687 -2.119~-3! 0.7810 9.513~-8!
3.062 3.057 2.681 3.091~-1! 1.254 -1.208 0.8401 0.8501 0.9333 -5.056~-5! 0.6038 2.917~-7!
2.926 2.918 2.406 3.334~-1! 1.233 -1.213 0.7806 0.7942 0.8903 -8.038~-3! 0.4036 1.281~-5!
2.875 2.864 2.235 3.442~-1! 1.228 -1.215 0.7333 0.7487 0.8494 -1.011~-2! 0.2226 8.615~-5!

g52 (n51)
8.021 8.021 7.995 7.189~-2! 2.003 -1.062 0.9952 0.9952 0.9994 -8.767~-6! 0.9886 3.324~-12!
6.806 6.806 6.768 9.198~-2! 1.845 -1.073 0.9920 0.9920 0.9988 -2.382~-5! 0.9808 2.828~-12!
5.834 5.834 5.780 1.159~-1! 1.708 -1.086 0.9869 0.9871 0.9977 -6.136~-5! 0.9684 2.685~-13!
4.861 4.861 4.779 1.525~-1! 1.560 -1.103 0.9763 0.9767 0.9950 -1.912~-4! 0.9422 2.996~-13!
3.889 3.889 3.743 2.134~-1! 1.397 -1.128 0.9486 0.9504 0.9859 -8.118~-4! 0.8724 1.558~-11!
3.403 3.402 3.182 2.614~-1! 1.311 -1.146 0.9138 0.9178 0.9712 -2.058~-3! 0.7799 1.467~-9!
2.965 2.962 2.561 3.240~-1! 1.232 -1.166 0.8295 0.8390 0.9536 -6.198~-3! 0.5118 2.299~-6!
2.917 2.912 2.462 3.328~-1! 1.224 -1.168 0.8081 0.8187 0.9042 -7.255~-3! 0.4298 8.920~-6!
2.851 2.844 2.278 3.457~-1! 1.214 -1.171 0.7602 0.7730 0.8628 -9.293~-3! 0.2325 8.369~-5!

g51.8 (n51.25)
8.097 8.097 8.073 7.088~-2! 2.012 -0.9951 0.9957 0.9958 0.9994 -8.152~-6! 0.9885 1.846~-9!
6.701 6.701 6.665 9.416~-2! 1.831 -1.008 0.9923 0.9924 0.9988 -2.573~-5! 0.9791 1.823~-9!
5.584 5.584 5.529 1.238~-1! 1.671 -1.023 0.9862 0.9864 0.9974 -7.867~-5! 0.9624 1.868~-9!
4.746 4.746 4.666 1.580~-1! 1.541 -1.039 0.9766 0.9770 0.9948 -2.162~-4! 0.9355 1.805~-9!
3.909 3.909 3.777 2.116~-1! 1.400 -1.061 0.9543 0.9556 0.9871 -7.505~-4! 0.8722 1.747~-9!
3.350 3.350 3.140 2.673~-1! 1.299 -1.082 0.9176 0.9209 0.9709 -2.141~-3! 0.7629 3.631~-9!
3.071 3.070 2.775 3.054~-1! 1.247 -1.095 0.8777 0.8834 0.9482 -4.076~-3! 0.6312 1.613~-7!
2.932 2.929 2.550 3.284~-1! 1.221 -1.102 0.8399 0.8475 0.9213 -5.944~-3! 0.4843 3.355~-6!
2.837 2.833 2.309 3.461~-1! 1.204 -1.107 0.7803 0.7907 0.8676 -8.223~-3! 0.2118 1.018~-4!
064012-8
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An equilibrium sequence terminates either by a cont
configuration, which corresponds tod/a152 or by the mass
shedding limit given byx50. Note that these two condition
are not exclusive, as one can havex50 at contact. By means
of our numerical method, it is difficult to get exactly suc
configurations, so that the final points in Tables I and II a
close to, but not exactly equal to, the real end pointsd/a1

52 or x50.
For synchronized binaries, the real end point is the con

one @3#. In that configuration, the surface of each star ha
cusp at the contact point. However, our numerical multid
main method assumes that the boundary between each
main is a differentiable surface. Therefore, for comput
very close configurations, we stop the adaptation of the
main to the surface of the star whenx,0.320.35 ~see Sec.
IV E of paper I!. For synchronized binaries, the use
adapted domain is not essential, since no boundary cond
is set at the stellar surface. The last lines for eachg in Table
I are obtained in this way.1

On the other hand, in the irrotational case, leaving
adaptation of the domain to the stellar surface results in s
numerical error since the solving method for the equat
governing the velocity potential@Eq. ~10!# assumes that the
domain boundary coincides with the stellar surface~see Ap-
pendix B of paper I!. Therefore we stop the calculations
some points which are very close to the cusp points
slightly separated.

The symbol † in Tables I and II indicates the points
minimum total energy~and total angular momentum! along
the sequence, also calledturning points. In the synchronized
case, the minimum points exist forg>2, and in the irrota-
tional case, they do forg>2.5. In both synchronized an
irrotational cases, the minimum points of total energy a
total angular momentum coincide with each other. It is wo
noting here that we cannot exclude the possibility of
existence of minimum points forg,2 in the synchronized
case and forg,2.5 in the irrotational one, because we
not calculate up to contact points. However, we suspect
the critical values of the existence of minimum points a
g;1.8 in the synchronized case andg;2.3 in the irrota-
tional one. The detailed discussions are given later~see Sec.
V C!.

We show the total energy, the total angular momentu
the orbital angular velocity, and the relative change in cen
density along a constant mass sequence in Figs. 6–9. We
see from figures of total energy and total angular momen
that the values for synchronized systems are larger than t
for irrotational ones. This is because the effect of spin
each star in the synchronized case is larger than that in
irrotational one. Such a spin produces not only the dir
effects like spin energy or spin angular momentum but a
larger deformations, which results in larger quadrupole m

1Because of the overlapping of the external domains for con
configurations, it was not possible to compute these latter ones
high accuracy. This is why we stopped Table I slightly befo
d/a152.
06401
t

e

ct
a
-
do-

o-

on

e
e

n

t

f

d
h
e

at

,
al
an

m
se
f
he
t
o
-

ments. We can clearly see a turning point in energy a
angular momentum curves for large values ofg in Figs. 6–8.
This feature will be discussed in Sec. V C.

It is found from Fig. 9 that the central density decreases
both cases of synchronized and irrotational. The decreas
the central density in the synchronized case is about 1 o
larger than that in the irrotational one. These behaviors
analytically known. For the synchronized case, Cha
drasekhar obtained the lowest order change in the cen
density about 70 yr ago@45# and Taniguchi and Nakamur
have calculated the higher order change@43#, and Taniguchi
and Nakamura have also shown it for the irrotational c
@9,10#.

ct
ith

FIG. 6. Total energy along an evolutionary sequence. The
panel is for synchronized binaries, and the right one for irrotatio
binaries. Solid, dotted, dashed, long-dashed, and dot-dashed
denote the cases ofg53, 2.5, 2.25, 2, and 1.8, respectively.

FIG. 7. Same as Fig. 6 but for the total angular momentum
2-9
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In Figs. 10–12, we show isocontours of baryon density
the synchronized case withg53, 2, and 1.8, respectively
These figures correspond to the configurations in the
lines ~for each adiabatic indexg) in Table I. Note here tha
the small rough on the stellar surface ofg53 in Fig. 10 is an
artifact of the graphical software. The solved figure is a co
pletely smooth one, thanks to the technique discussed in
III A.

Isocontours of baryon density withg53, 2, and 1.8 for
irrotational binaries are shown in Figs. 13–15. These c
figurations correspond to the semifinal lines~for each adia-
batic indexg) in Table II. Again note that the small rough o
the stellar surface ofg53 in Fig. 13 is an artifact of the
graphical software and that the solved figure is a comple

FIG. 8. Orbital angular velocity as a function of total angu
momentum along an evolutionary sequence. The lines have
same meaning as in Fig. 6.

FIG. 9. Same as Fig. 6 but for the relative change in cen
baryon density. Note that the two vertical scales are different.
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smooth one, thanks to the technique discussed in Sec. I
We do not depict the configurations of the last lines of Ta
II for the following reason. As mentioned above and in pap
I, we make the boundary the inner domain fit with the stel
surface. This procedure is essential to accurately solve e
librium figures in the irrotational case~Appendix B of paper
I!. However, due to the apparition of the cusp on the ste
surface, we can no longer adapt the domain to that sur
because all quantities are expressed by summation of a fi
number of differentiable functions. For very close configu
tions, just prior to the apparition of the cusp, the surface
highly distorted so that there appear unphysical oscillati
when using a finite series of differentiable functions~Gibbs
phenomenon!. In the last lines for eachg in Table II, such
oscillations start to be seen, although they do not alter
global quantities appreciably. Therefore to avoid any mis
derstanding, we choose not to plot the final lines in Table
although we listed them.

Figures 16–18 show some isocontours of the velocity
tential, as well as the velocity field in the co-orbiting fram
for the polytropic indicesg53, 2, and 1.8, respectively. In
these figures, we show only one of the two stars. The co
panion star is located at the position symmetric with resp
to they-z plane. The velocity potentialC0 is defined as

C0ªC2W0•r , ~41!

whereW0 is the constant translational velocity field define
as the central value ofWªV3r . Note that the vector field
is tangent to the stellar surface, as it should be.

B. End points of sequences: Contact versus cusp

An equilibrium sequence terminates by the contact
tween the two stars (d/a152) or by a cusp at the onset o
mass shedding (x50). In order to investigate which fina
fate occurs, it is helpful to display a sequence in thed/a1-x
plane. This is done in Fig. 19 where we compare the s
chronized sequence with the irrotational one forg52. It is
found from this figure that the value ofx in the irrotational
case is larger than that in the synchronized case for la
separations. However, when the separation decreases b
d/a1;3, x in the irrotational case decreases rapidly a
becomes smaller than that in the synchronized case
d/a1,2.5. We magnify the region near the end of the s
quences in Fig. 20. If we extrapolate the results up to
zero value ofx in the figure, we can speculate about the fin
fates of sequences. In the synchronized case, it seems th
the lines will reachx50 at d/a152. This means that the
cusp does not appear before the two stars come in con
with each other. On the other hand, in the irrotational case
seems that the lines may reachx50 befored/a152. The
values ofd/a1 may bed/a1;2.1 for g53 andd/a1;2.25
for g51.8. This means that the cusp may be created be
contact of stars in the irrotational case. This behavior in
irrotational case agrees with the results of Uryu@46#.

It is worth noting here that the point where the cusp m
be created is expressed by the orbital separation divided
the radius to the companion star(a1). Then, it looks as

he

l
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FIG. 10. Isocontour of the baryon density of synchronized binaries withg53 when the separation isd/R052.941. The plots are cros
sections ofz50 andy50 planes. The thick solid lines denote the stellar surface. The small rough on the stellar surface is an artifac
graphical software.
nc
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U
o.
though the cusp appears later along equilibrium seque
for a higher adiabatic index, i.e., stiffer EOS. However, if w
express the cusp point by the orbital separation divided
the radius of a spherical star with the same mass(R0), the
order of cusp appearance will be reversed. Although th
behaviors are completely different from each other, the
gin is the same. The fluid with lower adiabatic index is le
affected by the tidal force and slightly deformed. It results
the largerd/a1 by fixing the orbital separationd.

A simple explanation of the difference inx between the
synchronized case and the irrotational one is as follows.
06401
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ing Eq. ~41! and the decomposition of the orbital motion

V3r5W01Ws , ~42!

we can rewrite Eq.~8! as

H1n2 1
2 ~V3r !21 1

2 ~¹W C02Ws!
25const, ~43!

whereW0 has been defined in Sec.V A@see Eq.~41!# and
Ws is the spin part of the orbital motion defined on star N
1 as
FIG. 11. Same as Fig. 10 but forg52 with the separationd/R052.849.
2-11



TANIGUCHI, GOURGOULHON, AND BONAZZOLA PHYSICAL REVIEW D64 064012
FIG. 12. Same as Fig. 10 but forg51.8 with the separationd/R052.828.
o

er

r
at
WsªV~2y1 , x1 , 0!, ~44!

where (x1 ,y1 ,z1) are the Cartesian coordinates centered
star 1~see Fig. 1 in paper I!. In the following explanation, we
pay particular attention to star 1. Note here that the last t
r

ta
ow

06401
n

m

on the left-hand side of Eq.~43! is the kinetic energy of the
velocity field in the corotating frame@see Eq.~4!#. Compar-
ing Eq. ~7! with Eq. ~43!, we see that the enthalpy fields fo
synchronized and irrotational binaries differ precisely by th
kinetic energy.

Thenx for each case becomes
xsynch5

2S ]n

]x1
D

eq,comp

1V2S 2
d

2
1a1D

2S ]n

]z1
D

pole

, ~45!

x irrot5

2S ]n

]x1
D

eq,comp

1V2S 2
d

2
1a1D2

1

2

]

]x1
~¹W C02Ws!

2U
eq,comp

2S ]n

]z1
D

pole

. ~46!
Of course, due to the difference of deformation of the sta
the gravitational potentialn for irrotational binaries is differ-
ent from that for synchronized ones, even if we set two s
at the same orbital separation in the binary systems. H
ever, the largest difference betweenxsynchandx irrot is the last
term in the numerator of Eq.~46!. We show this behavior in
the following. First, we dividex into two parts:

xsynch5xpot
synch1xflow

synch, ~47!

x irrot5xpot
irrot1xflow

irrot , ~48!
s,

rs
-

where

xpot
synch5

2S ]n

]x1
D

eq,comp

1V2S 2
d

2
1a1D

2S ]n

]z1
D

pole

~ for synchronized binaries!, ~49!

xflow
synch50, ~50!
2-12
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FIG. 13. Isocontour of the baryon density in the irrotational case withg53 when the separation isd/R052.976. The plots are cros
sections ofz50 andy50 planes. The thick solid lines denote the stellar surface. The small rough on the stellar surface is an artifac
graphical software.
xpot
irrot5

2S ]n

]x1
D

eq,comp

1V2S 2
d

2
1a1D

2S ]n

]z1
D

pole

~ for irrotational binaries!, ~51!
0640
xflow
irrot5

2
1

2

]

]x1
~¹W C02Ws!

2U
eq,comp

2S ]n

]z1
D

pole

~ for irrotational binaries!. ~52!

Then, we plot the differencesdxpot5xpot
irrot2xpot

synch and
FIG. 14. Same as Fig. 13 but forg52 with the separationd/R052.917.
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FIG. 15. Same as Fig. 13 but forg51.8 with the separationd/R052.932.
-
rc
-

on
ce
re
o

al
dxflow5xflow
irrot2xflow

synchin Fig. 21 in theg52 case. Here,dxpot
denotes the difference inx between synchronized and irro
tational cases which includes the gravitational potential fo
plus centrifugal force, anddxflow denotes one which has re
lation to the internal flow in the corotating frame.

We can confirm from this figure that, at small separati
the difference in the gravitational force plus centrifugal for
is smaller than that in the force related internal flow. The
fore, we will consider only the last term in the numerator
Eq. ~46! below.
06401
e

,

-
f

Now, we assume the following form for¹W C0:

¹W C05V„f ~d,x1 ,y1 ,z1!, g~d,x1 ,y1 ,z1!, h~d,x1 ,y1 ,z1!…,
~53!

where f, g, and h are some scalar functions of the orbit
separationd and the coordinates (x1 ,y1 ,z1). Then the last
term in the numerator of Eq.~46! can be calculated as
ce.

FIG. 16. Contour of velocity potentialC0 ~left-hand side! and internal velocity fieldu ~right-hand side! with respect to the co-orbiting

frame in the orbital plane in the irrotational case withg53 when the separationd/R052.976. The thick solid lines denote the stellar surfa
The thin solid and dashed lines in the figure of velocity potential~left-hand side! denote positive and negative values, respectively.
2-14
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FIG. 17. Same as Fig. 16 but forg52 with d/R052.917.
Fª2
1

2

]

]x1
~¹W C02Ws!

2, ~54!

52V2F ~ f 1y1!
] f

]x1
1~g2x1!S ]g

]x1
21D1h

]h

]x1
G .

~55!

Accordingly, the surface value at (r 1 ,u1 ,w1)
5(a1 ,p/2,0)⇔(x1 ,y1 ,z1)5(a1,0,0) becomes
0640
Feq,comp52V2a1F f ~a1!

a1

] f

]x1
~a1!

1S g~a1!

a1
21D S ]g

]x1
~a1!21D G , ~56!

where we have usedh(d,x1 ,y1,0)50 because the velocity
field is antisymmetric with respect to thex-y plane. Note
that we simplify the argument list off andg from (a1,0,0) to
(a1). Let us consider the dominant terms inf andg which are
FIG. 18. Same as Fig. 16 but forg51.8 with d/R052.932.
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f .L~d!y1 , ~57!

g.L~d!x1 . ~58!

HereL is a function of the separationd. The forms~57! and
~58! can be justified from the studies by Lai, Rasio, a

FIG. 19. Equatorial to polar ratio of the radial derivative
enthalpyx as a function of the separationd ~normalized by the
radiusa1). The solid and dashed lines denote the cases of sync
nized and irrotational fluid states, respectively.

FIG. 20. Equatorial to polar ratio of the radial derivative
enthalpyx as a function of the separationd ~normalized by the
radiusa1). The left ~respectively, right! panel is for the synchro-
nized ~respectively, irrotational! binaries. Solid, dotted, dashed
long-dashed, and dot-dashed lines denote the cases ofg53, 2.5,
2.25, 2, and 1.8, respectively.
06401
Shapiro @8# or Taniguchi and Nakamura@10#. Indeed, for
ellipsoidal models,L becomes

L5
a1

22a2
2

a1
21a2

2 , ~59!

and its dependence ofd is O@(d/R0)23# because the domi
nant effect in the deviation from a spherical star is produc
by the tidal force. From Eqs.~57! and~58! it appears that the
first term in the brackets on the right-hand side of Eq.~56! is
negligible as compared with the second term, so that on
left with

Feq,comp.2V2a1S g~a1!

a1
21D S ]g

]x1
~a1!21D . ~60!

Taking into account Eqs.~58! and ~59!, we can have only
two types of behaviors for the functiong:

~ i!
g~a1!

a1
,1 and

]g

]x1
~a1!<1,

~ ii !
g~a1!

a1
,1 and

]g

]x1
~a1!.1.

Since g tends to zero for very large orbital separation
case~i! will occur in the earlier stage of the sequence. In th
case,Feq,compbecomes a negative value so that it makesx irrot

a larger value thanxsynch.2 However, if case~ii ! actually
occurs,Feq,compcan take a positive value, andx irrot can be
smaller than that in the synchronized case.

2It is worth noting that since the terms2(]n/]x1), 2(]n/]z1),
andV2(2d/21x1) have negative values,x irrot becomes larger for
the negative value ofF.

o-

FIG. 21. Differences inx terms between synchronized and irr
tational cases along equilibrium sequences withg52.
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In Fig. 22, they-axis component of¹W C0, i.e., the function
g, and its derivative are shown as a function of the coor
nate x1 ~normalized by the surface valuea1). This figure
corresponds to the last line of theg52 case in Table II. We
can see from this figure that they-axis component of¹W C0
remains smaller than that ofWs throughout the interior of the
star, but the derivative near the stellar surface becomes la
than unity, i.e., the derivative of they-axis component of
Ws . This means that case~ii ! really occurs for a very close
configuration. It is worth noting here that the decrease
x irrot by the termF occurs only near the stellar surface. O
the contrary, the termF increasesx irrot around the center o
the star.

Next, we show the surface value of they-axis component
of ¹W C0 and its derivative along an evolutionary sequence
Fig. 23. It is found that they-axis component of¹W C0 is
smaller than that ofWs throughout the sequence even if w
extrapolate the lines tod/a1;2.1 for g53 and to d/a1
;2.25 for g51.8. Moreover, they-axis component of the
derivative of¹W C0 becomes larger than that ofWs for every
g when the orbital separation decreases more thand/a1
,2.5. This explains whyx irrot becomes smaller thanxsynch

for d/a1,2.5 as we have found from Fig. 19. We can al
see from Fig. 23 that the orbital separation where the der
tive of ¹W C0 overcomes that ofWs is larger for smallerg.
This fact leads to the earlier appearance of a cusp for sm
g.

Finally, let us discuss the dependence on the orbital se
ration in they-axis component of¹W C0 ~and also its deriva-
tive!. We present they-axis component of¹W C0 and its de-
rivative along an evolutionary sequence in log-log plot
Fig. 24. It is found that both they-axis component of¹W C0

FIG. 22. y-axis component of¹W C0 ~i.e., the functiong) andWs

~upper panel!, and their derivatives~lower panel! as a function of
the coordinatex1 for a close irrotational binary. Solid and dashe

lines are the terms concerned with¹W C0 andWs , respectively.
06401
i-

er

f

n

a-

ler

a-

and its derivative behave asO@(d/R0)23# for the case of
larger separation@10#. For a very close case such asd/R0

,3, the y-axis component of ¹W C0 becomes as
O@(d/R0)212# and its derivative reaches;O@(d/R0)218#.

C. Turning points of total energy

We show values ofx and separationsdG /R0 at which the
total energy~and/or total angular momentum! takes its mini-

FIG. 23. Surface value ofy-axis component of¹W C0 ~upper
panel! and its derivative~lower panel! along an evolutionary se
quence. Solid, dotted, dashed, long-dashed, and dot-dashed
denote the cases ofg53, 2.5, 2.25, 2, and 1.8, respectively. Th
thick dashed line in the lower panel is they-axis component of the
derivative ofWs .

FIG. 24. y-axis component of¹W C0 and its derivative along an
evolutionary sequence. Thick dotted, thick dashed, thick lo
dashed, and thick dot-dashed lines are reference ones.
2-17
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mum along a sequence as a function of the adiabatic indeg
in Fig. 25. We are interested in the turning point of to
energy ~and/or total angular momentum! because it corre-
sponds to the onset of secular instability in the synchroni
case@44# and that of dynamical instability in the irrotationa
one at least for the ellipsoidal approximation@7#. Note that
the turning points in the total energy and total angular m
mentum coincide. As discussed in Sec. V B,x50 denotes
the end point of equilibrium sequences for both synchroni
and irrotational cases. If we extrapolate the results up to
zero value ofx, we can obtain the critical value ofg below
which the turning points of the total energy no longer ex
and the value of the corresponding separation.

FIG. 25. Turning points of total energy as a function of adiaba
index g. Panels~1! and ~3! are for synchronized binaries and~2!
and ~4! are for irrotational ones.
r
s,

e

e

06401
l

d

-

d
e

,

We can see from Fig. 25 thatx seems to be zero atg
51.721.8 with dG /R052.722.75 in the synchronized cas
and at g52.222.3 with dG /R052.822.85 in the irrota-
tional one.

Taking into account the appearance of the cusp and
existence of the turning point, we can expect that the sub
quent merger process stars from: the turning point forg
>1.8 ~plunge ?!, the contact point forg<1.8 in the synchro-
nized case, and from the turning point forg>2.3 ~plunge ?!,
and the cusp point with mass sheddingg<2.3 in the irrota-
tional one.

VI. SUMMARY

We have studied equilibrium sequences of both synch
nized and irrotational binary systems in Newtonian grav
with adiabatic indicesg53, 2.5, 2.25, 2, and 1.8. Throug
the present paper, we have understood the qualitative di
ences of physical quantities between synchronized bin
systems and irrotational ones. The summary of the resul
as follows. The two stars come in contact with each othe
the synchronized case as an end point of equilibrium
quence; irrotational sequences may terminate instead b
cusp point~mass shedding! corresponding to a detached co
figuration; the turning points of total energy appear in t
cases ofg>1.8 in the synchronized case; the turning poin
of total energy appear in the cases ofg>2.3 in the irrota-
tional case; and the turning points of total energy and to
angular momentum coincide with each other.
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