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Stable black strings in anti–de Sitter space

Takayuki Hirayama* and Gungwon Kang†
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In five-dimensional Einstein gravity with a negative cosmological constant in the presence or absence of a
non-fine-tuned3-brane, we investigate the classical stability of black string solutions which are foliations of
four-dimensional AdS/dS-Schwarzschild black holes. Such black strings are generically unstable as in the
well-known Gregory-Laflamme instability. For AdS black strings, however, it turns out that they become stable
if the longitudinal size of the horizon is larger than the order of the AdS4 radius. Even in the case of unstable
black strings, the AdS black strings have very different features of string fragmentation from those in the flat
brane world. Some implications of our results for the Gubser-Mitra conjecture are also discussed.
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I. INTRODUCTION

The Schwarzschild black hole, which has a compact bl
hole horizon, is known to be stable in general relativity@1#.
However, it is known that black string or brane solutions th
are a foliation of lower dimensional Schwarzschild bla
holes are unstable, the so-called Gregory-Laflamme insta
ity @2#. This instability extends to a much broader range
charged black branes in string theory with the exception
extremal or near extremal cases@3,4#.

Gregory@5# showed for the first time that this black strin
instability persists in the presence of a cosmological c
stant. Recently, Randall and Sundrum@6# proposed an inter-
esting model where gravity in higher dimensions with
negative cosmological constant is localized on a lower
mensional domain wall. In the flat brane world model whe
the tension of a 3-brane is fine tuned with the fiv
dimensional cosmological constant, any Ricci-flat fo
dimensional metric can be embedded. For instance, a b
string solution, which is simply a foliation of four
dimensional Schwarzschild black holes perpendicular to
3-brane, can easily be constructed. The properties of s
black strings were investigated in Refs.@7,8#. In particular,
they argued that the black string is unstable near the A5

horizon, but becomes stable in the vicinity of the 3-bra
indicating fragmentation into a cigar type~or pancakelike,
more accurately@8#! black hole across the brane as a fin
state. Gregory@5# confirmed this conjecture by explicitly
performing a linearized perturbation analysis of the bla
string background in this flat brane world scenario. The
thor also showed the instability of a black string embedd
in the AdS5 spacetime without the 3-brane.

As far as we know, however, all black string or bra
instabilities mentioned above were shown within the cont
of asymptotically locally flat spacetimes in the sense that
slices orthogonal to the string or brane are asymptotic
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flat.1 In fact, in the presence of a negative cosmological c
stant, it is also possible to construct black string solutio
which are a foliation of black holes that are asymptotica
nonflat. For example, the pure AdS5 spacetime can be slice
into pure four-dimensional anti–de Sitter (AdS4) or de Sitter
(dS4) spacetimes. Then it is straightforward to show that a
four-dimensional metric satisfying four-dimensional Einste
equations with the same cosmological constant can be
bedded intoAdS5 space. In particular, the AdS4 (dS4)
Schwarzschild black hole can be embedded, resulting
five-dimensional hypercylindrical AdS~dS! black string so-
lution. Similarly, even in curved brane world models where
3-brane with non-fine-tuned tension is introduced in Ad5
backgrounds@10,11#, this generalization holds~see Ref.@12#
for the dS embedding!.

Now it is of interest to see whether the Gregor
Laflamme instability still persists for these black string so
tions in AdS backgrounds, because some naive argum
given below seem to indicate that the stability behavior
such black strings could be very different from the know
Gregory-Laflamme instability. In addition, recently Gubs
and Mitra @13# proposed an interesting conjecture about
relationship between the classical black string or brane in
bility and the local thermodynamic stability@4#. It states that
a black string or brane with noncompact translational sy
metry is classically stable if, and only if, it is locally thermo
dynamically stable. Since black string solutions in AdS spa
have warped geometries along the extra dimension, our s
will show what happens when the assumption of trans
tional symmetry is discarded in the Gubser-Mitra~GM! con-
jecture.

In this paper, we investigate the stability of the bla
string solutions that are asymptotically locally AdS4 /dS4

1Actually Emparan, Horowitz, and Myers have argued, based
entropy comparison, for the stability of Ban˜ados-Teitelboim-Zanelli
~BTZ! black string solutions infour-dimensional AdS space@9#.
However, they used two 2-branes with a suitable identification
spacetime. It seems that, even if the separation of two 2-brane
taken to be infinitely large, this black string does not correspond
a one-dimension-fewer configuration of our AdS case with a sin
3-brane due to the specific embedding of the 2-branes.
©2001 The American Physical Society10-1
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mentioned above. It turns out that such black strings
generically unstable as usual. Interestingly, however, A
black strings become stable if the four-dimensional horiz
radius is larger than the order of the AdS4 radius. This sta-
bility can be understood naively since the geometry along
string produces a sort of effective compactification who
scale is determined by the AdS4 radius. Even in the case o
unstable AdS black strings, the features of the instability
very different near the conformal infinity. In fact, the blac
strings become stable near the boundary of AdS5. We will
first present some naive arguments indicating this beha
by using entropy comparisons and the Gubser-Mitra con
ture. Then, linearized metric perturbation analysis and
merical results are shown explicitly. Finally, some discu
sions and physical implications of our results follow.

II. BLACK STRING SOLUTIONS
AND NAIVE STABILITY ARGUMENTS

Let us consider the five-dimensional pure anti–de Si
spacetime whose metric is given in the following for
@10,11#:

ds25H22~z!~gmndxmdxn1dz2!. ~1!

Here the warping factors are

H~z!5H l 4 / l 5sinhz/ l 4 , dS4~L4.0!

z/ l 5 , M4~L450!

l 4 / l 5sinz/ l 4 , AdS4~L4,0!,

~2!

~3!

~4!

where L5526/l 5
2 and the four-dimensional cosmologic

constantL4563/l 4
2 is arbitrary. The metricgmn describes

four-dimensional de Sitter, flat Minkowski, and anti–de S
ter spacetimes, respectively, depending on the warping
tor. These metrics actually describe the same fi
dimensional anti–de Sitter spacetime with radiusl 5, and
simply correspond to different ways of slicing it. If we intro
duce a 3-brane with uniform tensions at z50 perpendicular
to the fifth direction, parts of the AdS5 spacetime need cut
ting and gluing in order to make the geometry smoo
around the 3-brane. The resulting geometries are still
scribed by the metrics above withz→uzu1c. Here c is an
arbitrary integral constant which is related to the location
the 3-brane. Thisc and the tension of a 3-brane determine t
cosmological constantL4 ; usu5s0coshc/l4 for the dS
brane, usu5s053A2L5/6/8pG5 for the flat brane, and
usu5s0cosc/l4 for the AdS brane@10,11#.

Now the embedding of Ricci-flat metrics in the flat bra
world can be generalized as follows. The metric given in E
~1! satisfies the five-dimensional Einstein equation with
negative cosmological constantL5 if the metricgmn is any
solution of the four-dimensional Einstein equation with t
cosmological constantL4. In particular, one can easily con
struct AdS/dS black string solutions by taking th
AdS4 /dS4-Schwarzschild black holes forgmn such as
06401
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ds25H22~z!F2 f ~r !dt21
1

f ~r !
dr21r 2dV2

21dz2G , ~5!

where

f ~r !512
r 0

r
2

L4

3
r 2. ~6!

We wish to study the classical stability of the black stri
solutions constructed in Eq.~5! with the warping factors
H(z) in Eqs. ~2!–~4! under linearized metric perturbation
In particular, we will focus on the case of AdS black strin
because the nature of their stability is quite different fro
those of the other two cases and the usual black strings s
ied in Refs.@2,3,5,4#. Before going into the linearized analy
sis in detail, let us give several naive arguments revealing
basic nature of the stabilities under consideration.

The five-dimensional Riemann tensor squared of
black strings in Eq.~5! is given by

RMNPQ~g!RMNPQ~g!.
10

9
L5

21H4~z!FRmnab~g!Rmnab~g!

2
8

3
L4

2G , ~7!

where Rmnab(g) is the four-dimensional Riemann tens
constructed from the metricgmn . Thus, for the case of dS
Schwarzschild black strings~2! and Schwarzschild black
strings ~3!, there generically exist curvature singularities
z5` in addition to the usual singularity at the centers
black strings~e.g.,r 50). In fact, these are naked singular
ties, not surrounded by some event horizon@7#. For
Schwarzschild black strings, in particular, Gregory@5# has
shown that they are unstable, presumably indicating fr
mentation into an array of black holes. If these black strin
were stable and so had no tendency to fragmentation, the
5D spacetimes would be pathological due to such naked
gularities. For AdS black strings~4!, however, the function
H(z) is finite everywhere and so there is no naked or cur
ture singularity other than the usual ones atr 50. Therefore,
we expect dS black strings to be unstable at least near
‘‘Rindler horizon’’ z5`, but AdS black strings do not nec
essarily have to be so.

A common and more convincing argument is based
entropy comparison between different black hole configu
tions. The existence of black string instability is often e
plained by arguing that there exists a length for a segmen
black string above which a compact black hole with the sa
mass becomes entropically favorable@2,3#. This possibly in-
dicates that a black string decays into an array of black ho
We will compare the entropy contained in a segment of
black string with that contained in a five-dimensional co
pact black hole of the same mass. Since there is no kn
exact five-dimensional black hole solution in the presence
a 3-brane, we consider only the case with no 3-brane. H
ever, we believe the result obtained applies equally to
case with a 3-brane because the presence of a 3-brane
0-2
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not change the important nature of the Kaluza-Klein m
spectrum relevant in the linearized perturbation analysis
will be shown below.

The entropy contained within a segment of AdS/dS bla
string can be obtained by integrating the area of the hori
as follows:

Sb.s.5
A

4
5

1

4Ea

b

A~z!
dz

H~z!
5pr 1

2 L, L5E
a

b dz

H3~z!
.

~8!

Here A(z)54pr 1
2 (z)54pr 1

2 /H2(z) with f (r 1)50 is the
area of the AdS4 /dS4-Schwarzschild black hole measured
an observer atz5const. Notice that we can setl 45 l 55 l by
using diffeomorphism. The mass contained in the segm
can also be obtained by integrating the first law of black h
thermodynamicsdM5TdS as in Ref.@8#:

M5E
0

r 1

T
]S

]r 1
dr15

r 0L

2
. ~9!

Now the five-dimensional AdS-Schwarzschild black hole
described by

ds252 f ~R!dt21
1

f ~R!
dR21R2dV3

2 ,

f ~R!511
R2

l 2
2

R0
2

R2
. ~10!

Thus, the black hole entropy and mass become

Sb.h.5
p

3
R1

3 , M5
R0

2

4
, ~11!

respectively. By identifying the mass with that of the stri
segment, one can expressDS5Sb.s.2Sb.h. as a function of
r 1 , l, and L. Surprisingly, this difference can be positiv
independent of the ‘‘length’’ of the black string segmentL
provided that

A1323

2
l .0.30l ,r 1 , dS~L4.0!, ~12!

32A5

2
l .0.38l ,r 1,

31A5

2
l .2.62l , AdS~L4,0!.

~13!

Note that, for the case of the dS black string, the event
rizon should be inside its cosmological horizon,r 1< l /A3
.0.58l ~i.e., r 0<2l /3A3.0.38l ).

Thus, it appears that black strings are entropically m
favorable than a five-dimensional AdS-Schwarzschild bla
hole with the same mass no matter how far the hypercy
drical horizon of the black string is extended, possibly in
cating stability, if the size of the four-dimensional horizonr 1

lies in the range shown above. For black strings with
horizon radiusr 1 not belonging to this range, the black ho
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becomes entropically favorable as the ‘‘length’’ of the stri
segmentL increases, as usual. Interestingly, however,
black string segment again becomes entropically favorab
its ‘‘length’’ increases further. Here, however, we would lik
to point out that this sort of ‘‘global’’ thermodynamic stabi
ity argument should not be taken seriously since, from
viewpoint of the classical black hole area theorem, this ar
ment indicates only some plausibility for the classical dec
of black strings.

The Gubser-Mitra@13# conjecture can be regarded as
refinement of the ‘‘global’’ entropy argument given abov
and is proved in Ref.@4#. Although the black string solutions
we consider do not have translational symmetry due to
warping factors in Eqs.~2!–~4!, it is interesting to apply this
conjecture to our case. The local thermodynamic stability
a segment of AdS/dS black string will be determined by
sign of the heat capacity given by

dM

dT
522p

12L4r 1
2

11L4r 1
2

r 1
2 L. ~14!

For the AdS case, one can easily see that the heat capac
negative forr 1,1/A2L45 l 4 /A3, but becomes positive fo
r 1. l 4 /A3 @14#. Thus, we expect AdS black strings to b
come classically stable whenr 1. l 4 /A3 according to the
GM conjecture. On the other hand, dS black strings are
pected to be unstable classically since they are locally th
modynamically unstable forr 1, l 4 /A3 and the cosmologi-
cal horizon is located atr 15 l 4 /A3.

III. LINEARIZED PERTURBATION ANALYSIS

So far, we have given three naive arguments that poss
indicate that AdS black strings are stable when the fo
dimensional horizon radius becomes large. Now let us p
form a classical stability analysis explicitly. We consid
small metric perturbations about AdS/dS black string ba
ground spacetimes and see whether or not there exists
mode that is regular spatially but grows exponentially
time. By choosing the Randall-Sundrum gauge@5,6,15#,
vacuum metric perturbations can be written as follows:

ds25H22~z!@~gmn1hmn!dxmdxn1dz2#, ,mhmn50,

h5gmnhmn50, ~15!

where, is the covariant derivative operator compatible w
the four-dimensional AdS/dS-Schwarzschild black hole m
ric gmn(x) in Eq. ~5!. Then the linearized Einstein equation
for vacuum metric fluctuations become simply

hhmn~x,z!12Rmrnth
rt~x,z!2S 2]z

21
3]zH

H
]zDhmn~x,z!

50, ~16!

where h[grt,r,t and hmn[gmrgnthrt . Putting
hmn(x,z)5H3/2(z)j(z)hmn(x), this equation can be decom
posed into a four-dimensional part~e.g., the massive Li-
chnerowicz equation! and a fifth part as usual:
0-3



ve

om

-
.

u

S

-
a
e

th
ki
e
e
as
e

, b

as
o

de
in

on
c
ab
d

c
n

y

nd

ns,
gi-

ba-
ons,
x-
ho-
ions

are
se
tes,
d

,

lly
ition
ns
e

k-
fied

dS
w

ek

TAKAYUKI HIRAYAMA AND GUNGWON KANG PHYSICAL REVIEW D 64 064010
DLhmn~x![hhmn~x!12Rmrnth
rt~x!5m2hmn~x!,

~17!

@2]z
21V~z!#j~z!5m2j~z!,

V~z!52
3

2

H9

H
1

15

4 S H8

H D 2

. ~18!

Thus, one sees that essentially the fifth dimension gi
massive gravitons as usual from the Kaluza-Klein~KK !
point of view, and their mass spectrum can be read off fr
the form of the effective potentialV(z). For the flat case in
Eq. ~3!, V(z) vanishes asz→` and so the KK mass spec
trum is continuous starting atm50. For the dS case in Eq
~2!, V(z) goes to a nonzero constant 9/4l 4

2, and the KK mass
spectrum is again continuous, but has a nonzero minim
massmmin53/2l 4. For the AdS case, however,V(z) grows
infinitely, making effectively a confining box due to the Ad
nature of the spacetime. Thus, thez direction is effectively
compactified even if it is still infinite in proper length. Con
sequently, the KK mass spectrum now becomes discrete
its lowest mass ismmin54/l 4. Here one can observe that th
scale of effective compactification isl 4 instead ofl 5. Note
that this effective compactification does not happen when
AdS5 spacetime is sliced into four-dimensional Minkows
or dS4 submanifolds. When a 3-brane is introduced, it giv
a delta-function-like potential well at the position of th
3-brane, producing an attractive force. Hence the KK m
spectrum for a black string in brane world scenarios has
sentially the same features as in the case of no 3-brane
its magnitude is somewhat reduced@10,16#. Here we should
point out that the nonzero finiteness of the lowest KK m
for AdS/dS cases plays an important role in the stability
black strings, as will be shown below explicitly.2

As explained above, we wish to find any instability mo
that is a solution of the massive Lichnerowicz equation
Eq. ~17! with suitable reference to gauge and boundary c
ditions at the future event horizon and spatial infinity. Sin
higher angular momentum fluctuation modes are more st
in general, we will consider a zero angular momentum mo
only, ans-wave mode@2,3#. General, spherically symmetri
perturbations that cause instability can be written in cano
cal form as@1,2#

hmn~x!5eVtS Htt~r ! Htr~r ! 0 0

Htr~r ! Hrr ~r ! 0 0

0 0 K~r ! 0

0 0 0 K~r !sin2u

D ,

~19!

with V.0. Using transverse traceless~TTF! gauge condi-
tions in Eq.~15!, we can eliminate all but one variable, sa

2Actually, there exist massless KK modes as well for both A
and dS cases. They are not normalizable except for the dS case
a 3-brane. However, these massless modes are irrelevant for se
instability modes as will be explained in more detail below.
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Htr , from the Lichnerowicz equation, obtaining a seco
order ordinary differential equation as follows@3,17#:

FV21m2f 1
f f 9

2
2

f 82

4
1

f f 8

r GHtr9 1FV2

f S 3 f 81
2 f

r D
1m2S 2 f 81

2 f

r D1S 3 f 8 f 9

2
1

f f 9

r
1

3 f 82

2r
2

3 f 83

4 f

1
2 f f 8

r 2 D GHtr8 1F2S V2

f
1m2D 2

1
V2

f

3S 2
2 f

r 2
1

f 8

r
1

f 9

2
1

5 f 82

4 f D 1m2S 2
2 f

r 2
1

2 f 8

r
1

f 9

2

2
f 82

4 f D 1S 5 f 82

2r 2
2

f 83

r f
1

f 82f 9

4 f
2

f f 9

r 2
1

3 f 8 f 9

r
1

f 92

2

2
2 f f 8

r 3
2

f 84

4 f 2D GHtr50. ~20!

Asymptotically,Htr has the solutions

Htr;H r 25/26A9/41(ml4)2 for r→`,

~r 2r 1!216V/2k for r→r 1

~21!

for the AdS case, and

Htr;H ~r 112r !216V/2k11 for r→r 11 ,

~r 2r 1!216V/2k forr→r 1

~22!

for the dS case. Herek5 f 8(r 1)/2 andk1152 f 8(r 11)/2
are surface gravities of the event and cosmological horizo
respectively, andr 11 in the dS case denotes the cosmolo
cal horizon. As emphasized in Refs.@1–3#, it is very impor-
tant to impose right boundary conditions on the pertur
tions. Since our analysis is based on linearized equati
any fluctuations should remain ‘‘small.’’ This seemingly e
cludes asymptotic solutions with negative roots near the
rizon. However, one can see that even asymptotic solut
with positive roots diverge near the horizon whenV/2k,1.
This is probably because the Schwarzschild coordinates
not good near the horizon. In fact, it turns out that, if we u
some regular coordinate system such as Kruskal coordina
the only asymptotic solution suitable for our linearize
analysis is the one with positive roots with anyV (.0) as
pointed out in Refs.@2,3#. At spatial infinity for the AdS case
if we require vanishing boundary conditions as usual@18#,
even the positive root satisfies this condition providedml4
,2. Actually, asymptotic AdS spacetimes are not globa
hyperbolic. Thus, one needs to impose some extra cond
by hand in order to make the dynamics of metric fluctuatio
well posed@19#. As imposed usually for matter fields in th
pure AdS background spacetime@20#, we require that the
total energy of gravitational fluctuations on this AdS bac
ground should be conserved. This requirement is satis

ith
ing
0-4
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FIG. 1. The left figure is for the AdS case withr 051, 2, and 4. The right figure is for the dS case withr 051, 2, 3.5, and 3.8. The Naria
solution corresponds tor 0.3.85. The fixed AdS and dS radius isl 4510. The straight vertical lines denote the lowest KK masses, 0.4
AdS and 0.15 for dS.
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only if l,25/2 when Htr;r l at r;`. Hence only the
negative root is satisfactory in Eq.~21!. We will give the
details in@17#.

With these boundary conditions described above, we n
search for instability modes characterized by (V,m) which
are solutions of Eq.~20! for given r 0 and l 4. In other words,
for the AdS case we start from a solution withHtr

;r 25/22A9/41(ml4)2
at r;`, and find theV that makesHtr

extrapolate to Htr;(r 2r 1)211V/2k near the horizon
through Eq. ~20!. Similarly, we start from Htr;(r 11

2r )211V/2k11 near the cosmological horizon for the d
case. Since Eq.~20! is quite complicated to handle analyt
cally, we solve it numerically. However, it is worthwhile t
observe some scaling symmetries in Eq.~20! as follows:

r→ar , r 0→ar 0 , l 4→a l 4~L4→a22L4!,

V→a21V, m→a21m. ~23!

So we can fix one of these parameters, sayl 451. Moreover,
when r 0@ l 4 , f ;2r 0 /r 6r 2/ l 4

2, and so there exists anothe
approximate scaling symmetry for large black holes given
@18#

r→ar , r 0→a3r 0 , l 4→ l 4 , V→aV, m→m. ~24!

Then we findV;r 0
1/3 for the case of large black holes.

Using MATHEMATICA and the Gear method for solvin
differential equations, we obtained the results in Fig. 1. F
both AdS and dS cases, one can see that the instab
shrinks in parameter space as the mass parameterr 0 in-
creases with fixed AdS/dS radius. More precisely, the m
of the so-called threshold unstable mode@4# (V,m)
5(0,m* ) decreases quickly down to zero as the horizon
dius r 1 increases for the AdS case, whereas it approac
some nonzero finite value asr 1 increases toward the cosmo
logical horizon for the dS case. Thus, it appears that th
always exist instability modes. However, the KK massm
cannot be arbitrary, but is determined by the geometry in
fifth direction through Eq.~18! as explained before. The low
est KK masses are 4/l 4 and 3/2l 4 for the AdS and dS case
06401
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without 3-brane, respectively, as denoted in Fig. 1 by strai
vertical lines. So, if the threshold mass becomes smaller t
this lowest KK mass for a certainr 0, there exists no unstabl
mode indeed. As can be seen in Fig. 1, this happens w
0.21l 4&r 0 ~i.e., 0.20l 4&r 1) for the AdS case. Therefore, w
find that the AdS black string is unstable when its fou
dimensional horizon size is small, but it becomes sta
when the horizon size is larger than the order of the Ad4

radius~i.e., r 1
cr.0.20l 4). On the other hand, the presence

a 3-brane reduces the lowest KK mass. Consequently, it
creases the value of the critical horizon radius for sta
black strings in the AdS brane world model. In particular,
the vicinity of the flat brane world~i.e., L4;0 or l 4;`),
AdS black strings almost always become unstable si
mmin.0, which can be expected from the results in Ref.@10#.

For the dS case, on the other hand, although the thres
mass decreases as the horizon radius increases up to the
mological one, they all still seem to remain larger than t
lowest KK mass~see also Fig. 3 below!. Therefore, dS black
strings seem to be always unstable. In particular, the in
bility seems to persist all the way down to the Nariai soluti
in which the event horizon coincides with the cosmologic
horizon. However, it should be pointed out that the Nar
limit must be treated separately since boundary conditi
become invalid and the numerical error in our analysis
creases near this extremal case. As argued in Ref.@12#, the
stability behavior of this case might be very different fro
that of nonextremal cases. The presence of a 3-brane in
black strings again makes the system more unstable sin
reduces the lowest KK mass in units ofl 4. For the flat case
~i.e., L450), we have confirmed the results obtained in R
@5#. That is, since the KK mass spectrum is continuous w
zero lowest mass and the threshold mass asymptotes to
as r 0→` ~as can be seen in Fig. 3 below!, all black strings
are unstable in this case.

Figure 2 illustrates how the threshold mass changes f
given r 0 as the cosmological constantL4 varies away from
zero. It shows that the instability in parameter space shri
asL4 becomes negative~i.e., the AdS case!, but expands as
L4 becomes positive~i.e., the dS case!. In other words, add-
0-5
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ing a negative cosmological constant has a stabilizing ef
as in the case of adding charge to black strings@3#, whereas
adding a positive cosmological constant has a destabiliz
influence.

It is interesting to see how well the results obtained
explicit perturbation analysis agree with those in the na
arguments given before. For the AdS case, critical values
stable black strings were predicted asr 1.0.38l 4 and 0.58l 4
in Eqs.~13! and ~14! by the entropy comparison and by th
GM conjecture, respectively. The numerical results pred
r 1.0.20l 4 which agrees within the order of 1. The entrop
comparison, however, also predicts another critical hori
radius, r 1.2.62l 4, across which black strings become u
stable again. We have searched various parameters ar
this critical value, but could not find any unstable bla
string. Thus, our numerical results agree well, at least qu
tatively, with the GM conjecture, but with the entropy arg
ment only in part. For the dS case, on the other hand, o
the prediction in the GM conjecture agrees well with t
numerical results.

Figure 3 shows how the threshold mass for a givenL4
decreases as the black hole becomes large. These num
results agree well qualitatively with those in Refs.@21# ob-

FIG. 2. The threshold massesm* for varying L4 with given
r 052. The left vertical dashed line denotes the Nariai limit and
right one the criticalL4 predicted by the GM conjecture.
06401
ct
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ical

tained analytically with some approximation and differe
gauge choices in a different context. Both flat~i.e., L450)
and AdS~i.e.,L4,0) cases give almost the same decreas
pattern for smallr 0, but they start to deviate as the black ho
becomes large, aroundr 0.4. As r 0→` for the flat case,m*
denoted by the dashed curved line in Fig. 3 asymptote
zero (;1/r 0), but never touches it. Consequently, since t
continuum KK mass spectrum starts atm50, one can see
again that all black strings are unstable no matter how la
r 0 is. If the black string is compactified, however, the co
tinuum KK mass spectrum becomes discrete. The mass
mode is not a real instability mode, but presumably a ga
artifact @3,2# since the Lichnerowicz equation withm50 be-
comes that of pure four-dimensional black holes. So the lo
est instability mode will start at nonzerom. Thus Fig. 3
shows that compactified black strings in the flat case w
become stable ifr 0 is larger than some critical value dete
mined by the compactification scale. The stability of Ad
black strings can be understood similarly from this point
view. This is because the AdS5 nature of geometry in the
fifth direction with AdS4 slicing gives an effective compac
tification whose scale is determined byl 4 instead ofl 5 as
explained above. However, we point out there is another
teresting feature in this case. As can be seen in Fig. 3 for
AdS case, although numerical error increases asm* becomes
small, the curve form* seems to touch the horizontal axis
the data points are extrapolated further. Moreover, this ter
nating point seems to agree with the critical valuer 0
.0.77l 4 ~i.e., r 1.0.58l 4) obtained by the GM conjecture
the horizon radius across which the heat capacity change
sign. Consequently, one might expect that the black str
will be stable at least ifr 0 is larger than this terminating
value, no matter what the KK mass spectrum is. Therefo
in addition to the stabilization due to effective compactific
tion, AdS black string solutions seem to have a sort of intr
sic tendency for stabilization probably due to the AdS4 na-
ture of the longitudinal four-dimensional geometries.

It can be seen that the critical valuer 1.0.20l 4 obtained
for AdS black strings does not exactly agree with but occ
slightly ‘‘earlier’’ than that of the GM conjecture,r 1

e

tical
he
FIG. 3. The left figure: threshold masses for varyingr 0 with given l 4510 in the AdS case. The vertical dashed line denotes the cri
r 0.7.7 predicted from the Gubser-Mitra conjecture. The numerical data stop atr 0.7.0. The right figure: same diagram for the dS case. T
vertical dashed line denotes the Nariai limitr 0.3.85. Note thatm* (r 0.3.85)50.29.mmin.0.15.
0-6
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.0.58l 4. This discrepancy, however, is expected because
GM conjecture assumes noncompact translational symm
Actually, this condition can easily be replaced in the proof
the GM conjecture@4# as follows: a black string or brane, a
long as its KK mass spectrum is continuous starting at z
mass, is classically stable if, and only if, it is locally therm
dynamically stable. One can see that the flat case sati
this modified GM conjecture. The GM conjecture then p
dicts that a terminating point must exist if the system
locally thermodynamically stable. In fact, our numerical r
sults show not only that the terminating point exists, but a
that it agrees with the critical value of local thermodynam
stability in the GM conjecture. Thus, it is to be expected t
a black string having discrete KK mass spectrum will b
come stable, if it happens, before the terminating point a
the AdS case.

Finally, we have so far concentrated on the features
stability with special emphasis on stable black string c
figurations in AdS5 spacetimes. Now it will also be interes
ing to see what the final states would be for unstable bl
strings. In order to answer this question, we just need
know how the eigenfunctionj(z) in Eq. ~18! with given m
behaves along the fifth coordinatez. For black strings in the
flat case, it has been argued in Ref.@5# that the interval of
successive wiggles in proper length becomes exponent
tiny toward the AdS5 horizon, and so the string is somewh
stable near the 3-brane but quickly becomes unstable a
from it, generating an accumulation of ‘‘mini’’ black hole
toward the AdS5 horizon. For the dS case with a 3-brane, t
shape of the potentialV(z) in Eq. ~18! is a volcano type and
similar to that of the flat case. The only difference is th
V(z) approaches a nonzero constant asz→` ~e.g., the ‘‘Rin-
dler’’ horizon! instead of vanishing. Thenj(z) will be simi-
lar to that of the flat case, which is a Bessel function,
goes to zero more quickly. Accordingly, the features of fra
mentation will be almost the same as in the flat case, wi
slightly stronger instability. For the AdS case, however,
gy
,
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turns out to be very different. The potentialV(z) is again a
volcano type around the 3-brane, but diverges at the bou
ary of AdS5 ~e.g., the conformal infinity!, effectively creat-
ing a box. Thus,j(z) will behave like a Hermite function,
which is an eigenfunction of a harmonic oscillator with slig
modifications in the vicinity of the 3-brane. Consequent
the black string again becomes stable near the boundar
AdS5 as well as in the vicinity of the 3-brane, generatin
multiple black holes in between. This is why a segment
AdS black string becomes entropically favorable again wh
its lengthL in Eq. ~8! becomes large enough.

IV. CONCLUSION

To conclude, we have shown that, although black strin
in AdS spacetimes that are not locally asymptotically flat
generically unstable classically under linearized metric fl
tuations, the AdS black string solutions are stable when
longitudinal size of the horizon is larger than the order of t
AdS4 radius. Generically, adding a negative cosmologi
constant has a stabilization effect whereas adding a pos
cosmological constant has a destabilizing influence. It will
straightforward to extend our study to higher dimensio
cases. We believe the essential features of stability for A
black string or brane solutions in higher dimensions will
the same.
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