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Stable black strings in anti-de Sitter space
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In five-dimensional Einstein gravity with a negative cosmological constant in the presence or absence of a
non-fine-tuned-brane, we investigate the classical stability of black string solutions which are foliations of
four-dimensional AdS/dS-Schwarzschild black holes. Such black strings are generically unstable as in the
well-known Gregory-Laflamme instability. For AdS black strings, however, it turns out that they become stable
if the longitudinal size of the horizon is larger than the order of the Adlius. Even in the case of unstable
black strings, the AdS black strings have very different features of string fragmentation from those in the flat
brane world. Some implications of our results for the Gubser-Mitra conjecture are also discussed.
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[. INTRODUCTION flat! In fact, in the presence of a negative cosmological con-
stant, it is also possible to construct black string solutions

The Schwarzschild black hole, which has a compact blac|\<Nh'Ch are a foliation of black holes that are asymptotically

. . ) o flat F le, th A i li
hole horizon, is known to be stable in general relatiyity. honflat For example, the pure AdSpacetime can be sliced

H itis k that black stri b luti th tinto pure four-dimensional anti—de Sitter (AgSr de Sitter
owever, It IS known that black string or brane Solutions a(dS4) spacetimes. Then it is straightforward to show that any
are a foliation of lower dimensional Schwarzschild black

) ‘four-dimensional metric satisfying four-dimensional Einstein
holes are unstable, the so-called Gregory-Laflamme 'nStab'bquations with the same cosmological constant can be em-

ity [2]. This instability gxten@s to a much broader range ofhedded intoAdS, space. In particular, the AdS(dS,)
charged black branes in string theory with the exception okchwarzschild black hole can be embedded, resulting in a
extremal or near extremal cages4l. five-dimensional hypercylindrical Adg®IS) black string so-
Gregory[5] showed for the first time that this black string |ution. Similarly, even in curved brane world models where a
instability persists in the presence of a cosmological con3-prane with non-fine-tuned tension is introduced in AdS
stant. Recently, Randall and Sundr{ij proposed an inter- packground$10,11], this generalization holdsee Ref[12]
esting model where gravity in higher dimensions with afor the dS embedding
negative cosmological constant is localized on a lower di- Now it is of interest to see whether the Gregory-
mensional domain wall. In the flat brane world model whereLaflamme instability still persists for these black string solu-
the tension of a 3-brane is fine tuned with the five-tions in AdS backgrounds, because some naive arguments
dimensional cosmological constant, any Ricci-flat four-given below seem to indicate that the stability behavior for
dimensional metric can be embedded. For instance, a blagkich black strings could be very different from the known
String solution, which is S|mp|y a foliation of four- Gregory-Laflamme |nStab|l|ty In ad_dition, .recently Gubser
dimensional Schwarzschild black holes perpendicular to th@nd Mitra[13] proposed an interesting conjecture about the
3-brane, can easily be constructed. The properties of sudiglationship between the classical black string or brane insta-
black strings were investigated in Refd.8g]. In particular, bility and the local thermodynamic stabilif]. It states that

they argued that the black string is unstable near the5AdSa black string or brane with noncompact translational sym-

horizon, but becomes stable in the vicinity of the 3-brane,metry is classically stable if, and only if, it is locally thermo-

indicating fragmentation into a cigar typger pancakelike, dynamically stable. Smce black string solu.tlons In AdS space
. have warped geometries along the extra dimension, our study
more accurately8]) black hole across the brane as a final

state. Gregony5] confirmed this conjecture by explicit] will show what happens when the assumption of transla-
- bregont ontl IS conjecture by explicitly ong) symmetry is discarded in the Gubser-MitfzM) con-
performing a linearized perturbation analysis of the blac

. ) . . jecture.
string background in this flat brane world scenario. The au= |, ihis paper, we investigate the stability of the black

thor also showed the instability of a black string embedde%tring solutions that are asymptotically locally AJSS,
in the AdS spacetime without the 3-brane.

As far as we know, however, all black string or brane
instabilities mentioned above were shown within the context IActually Emparan, Horowitz, and Myers have argued, based on
of asymptotically locally flat spacetimes in the sense that albntropy comparison, for the stability of Baros-Teitelboim-Zaneli
slices orthogonal to the string or brane are asymptoticallyBTz) black string solutions irfour-dimensional AdS spacf9].
However, they used two 2-branes with a suitable identification of
spacetime. It seems that, even if the separation of two 2-branes is
taken to be infinitely large, this black string does not correspond to
*Email address: thirayam@post.kek.jp a one-dimension-fewer configuration of our AdS case with a single
TEmail address: gwkang@post.kek.jp 3-brane due to the specific embedding of the 2-branes.
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mentioned above. It turns out that such black strings are ) , 1 P
generically unstable as usual. Interestingly, however, AdS ds’=H"?(z)| —f(r)dt +mdr +r2dQs+dz|, (5)
black strings become stable if the four-dimensional horizon
radius is larger than the order of the Adf&dius. This sta-

where
bility can be understood naively since the geometry along the
string produces a sort of effective compactification whose

scale is determined by the Ag$adius. Even in the case of f(r)y=1— To_ ﬂrZ_ (6)
unstable AdS black strings, the features of the instability are r 3

very different near the conformal infinity. In fact, the black-

strings become stable near the boundary of AdSe will We wish to study the classical stability of the black string

first present some naive arguments indicating this behavigsolutions constructed in Eq5) with the warping factors
by using entropy comparisons and the Gubser-Mitra conjecH (2) in Egs. (2)—(4) under linearized metric perturbations.
ture. Then, linearized metric perturbation analysis and nuln particular, we will focus on the case of AdS black strings

merical results are shown explicitly. Finally, some discus-because the nature of their stability is quite different from
sions and physical implications of our results follow. those of the other two cases and the usual black strings stud-

ied in Refs[2,3,5,4. Before going into the linearized analy-
sis in detail, let us give several naive arguments revealing the
basic nature of the stabilities under consideration.
The five-dimensional Riemann tensor squared of the
Let us consider the five-dimensional pure anti-de Sittelack strings in Eq(5) is given by
spacetime whose metric is given in the following form
[10,11:

Il. BLACK STRING SOLUTIONS
AND NAIVE STABILITY ARGUMENTS

10
Runpg(@R"7A(g)= 5 ASHH (2)| Ryyap( IR H(7)

ds?=H 2(2)(y,,dx*dx"+dZ). (1)

8 2

Here the warping factors are

where R, ,5(7) is the four-dimensional Riemann tensor
constructed from the metrig,,,. Thus, for the case of dS-
(3) Schwarzschild black stringg2) and Schwarzschild black
strings (3), there generically exist curvature singularities at
(4) z=o in addition to the usual singularity at the centers of
black strings(e.g.,r =0). In fact, these are naked singulari-
) , , . ties, not surrounded by some event horizn|. For
where As=—6/5 and the four-dimensional cosmological gchwarzschild black strings, in particular, GregB] has
constantA 4= +3/|2 is arbitrary. The metricy,,, describes shown that they are unstable, presumably indicating frag-
four-dimensional de Sitter, flat Minkowski, and anti—de Sit- mentation into an array of black holes. If these black strings
ter spacetimes, respectively, depending on the warping fagyere stable and so had no tendency to fragmentation, the full
tor. These metrics actually describe the same fivesp spacetimes would be pathological due to such naked sin-
dimensional anti—de Sitter spacetime with radlys and  gularities. For AdS black string&), however, the function
simply correspond to different ways of slicing it. If we intro- H(z) is finite everywhere and so there is no naked or curva-
duce a 3-brane with uniform tensienatz=0 perpendicular  tyre singularity other than the usual ones at0. Therefore,
to the fifth direction, parts of the AdSspacetime need cut- we expect dS black strings to be unstable at least near the
ting and gluing in order to make the geometry smooth“Rindler horizon” z=%, but AdS black strings do not nec-
around the 3-brane. The resulting geometries are still deessarily have to be so.
scribed by the metrics above with—|z|+c. Herec is an A common and more convincing argument is based on
arbitrary integral constant which is related to the location ofentropy comparison between different black hole configura-
the 3-brane. This and the tension of a 3-brane determine thetions. The existence of black string instability is often ex-
cosmological constant\,; |o|=oqcoshc/l, for the dS  plained by arguing that there exists a length for a segment of
brane, |o|=0¢=3y—A5/6/87Gs for the flat brane, and black string above which a compact black hole with the same
|| = oycoscll, for the AdS brang10,11. mass becomes entropically favorab®3|. This possibly in-
Now the embedding of Ricci-flat metrics in the flat brane dicates that a black string decays into an array of black holes.
world can be generalized as follows. The metric given in EqWe will compare the entropy contained in a segment of the
(1) satisfies the five-dimensional Einstein equation with ablack string with that contained in a five-dimensional com-
negative cosmological constat; if the metricy,,, is any  pact black hole of the same mass. Since there is no known
solution of the four-dimensional Einstein equation with theexact five-dimensional black hole solution in the presence of
cosmological constamt 4. In particular, one can easily con- a 3-brane, we consider only the case with no 3-brane. How-
struct AdS/dS black string solutions by taking the ever, we believe the result obtained applies equally to the
AdS,/dS,-Schwarzschild black holes foy,, such as case with a 3-brane because the presence of a 3-brane does

I, /lssinhz/l,,  dS,(A,>0) 2)
H(Z)Z Z/|5, M4(A4:O)
I, /lssinz/l,, AdS,(A,<0),
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not change the important nature of the Kaluza-Klein masdecomes entropically favorable as the “length” of the string
spectrum relevant in the linearized perturbation analysis, asegmentL increases, as usual. Interestingly, however, the
will be shown below. black string segment again becomes entropically favorable if
The entropy contained within a segment of AdS/dS blackits “length” increases further. Here, however, we would like
string can be obtained by integrating the area of the horizoto point out that this sort of “global” thermodynamic stabil-

as follows: ity argument should not be taken seriously since, from the

viewpoint of the classical black hole area theorem, this argu-

A 1 (b dz 5 b dz ment indicates only some plausibility for the classical decay
Sb.s.:Z:Zja A(Z)WZWHL, L:faHg(Z)' of black strings.

®) The Gubser-Mitrg13] conjecture can be regarded as a

refinement of the “global” entropy argument given above,
Here A(Z):47Tri(2)=477ri/H2(Z) with f(r.)=0 is the andis pr_oved in Ref4]. Although the black string solutions
area of the Ad$/dS,-Schwarzschild black hole measured by We consider do not have translational symmetry due to the
an observer at=const. Notice that we can ski=15=1 by  Wwarping factors in Eqs.2)—(4), it is interesting to apply this
using diffeomorphism. The mass contained in the segmerfionjecture to our case. The local thermodynamic stability of
can also be obtained by integrating the first law of black holed Ségment of AdS/dS black string will be determined by the

thermodynamic$M = T5S as in Ref[8]: sign of the heat capacity given by
43S Fol dM 1-Ags?
= —dr,=— ——=-27——r4L. 14
M fo Tar+dr+ R 9) a7 A (14
Now the five-dimensional AdS-Schwarzschild black hole is For the AdS case, one can easily see that the heat capacity is
described by negative forr , <1/J/—A,=1,//3, but becomes positive for
r.>l,/y/3 [14]. Thus, we expect AdS black strings to be-
d?=—f(R)dt2+ 1 dR2+ R2d02 come classically stable when.>1,//3 according to the
f(R) ' GM conjecture. On the other hand, dS black strings are ex-
pected to be unstable classically since they are locally ther-
R? RS modynamically unstable far, <I,//3 and the cosmologi-
fRI=1+ = ——. (10 | horizon is located at, =1,/+3
2 R2 cal horizon is located at, =1,/+3.
Thus, the black hole entropy and mass become lll. LINEARIZED PERTURBATION ANALYSIS
- R2 So far, we have given three naive arguments that possibly
Sb.h.zgRi, M = TO’ (11)  indicate that AdS black strings are stable when the four-

dimensional horizon radius becomes large. Now let us per-
form a classical stability analysis explicitly. We consider
small metric perturbations about AdS/dS black string back-
ground spacetimes and see whether or not there exists any
" mode that is regular spatially but grows exponentially in
time. By choosing the Randall-Sundrum gaugg6,15,
vacuum metric perturbations can be written as follows:

respectively. By identifying the mass with that of the string
segment, one can expreAS=S,;— S, as a function of
r., |, andL. Surprisingly, this difference can be positive
independent of the “length” of the black string segment
provided that

J1_1;—3|=0_30<r+ dSA>0), 12 dL=H X(2)[(7,,+h,,)dx*dx*+dZ], V*h,,=0,
h=y*"h,,=0, (15
3—+5 3++5
T\/—I =0.38<r,< 2\/—I =2.64, AdS(A,<0). whereV is the covariant derivative operator compatible with

the four-dimensional AdS/dS-Schwarzschild black hole met-
ric v,,(X) in Eq. (5). Then the linearized Einstein equations

Note that, for the case of the dS black string, the event hofor vacuum metric fluctuations become simply

rizon should be inside its cosmological horizan,<I//3

13

. or , 3d,H
=0.58 (i.e., ro=21/3y3=0.38). _ Oh,,(%,2)+ 2Ry, 077(x,2) = | =3+ —7= 32| h,.,(x,2)
Thus, it appears that black strings are entropically more
favorable than a five-dimensional AdS-Schwarzschild black =0, (16)

hole with the same mass no matter how far the hypercylin-

drical horizon of the black string is extended, possibly indi-where ="V V_ and h#"=y*?y""h . Putting
cating stability, if the size of the four-dimensional horizon hW(x,z)=H3’2(z)§(z)hw(x), this equation can be decom-
lies in the range shown above. For black strings with theposed into a four-dimensional pafé.g., the massive Li-
horizon radiug , not belonging to this range, the black hole chnerowicz equationand a fifth part as usual:
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Ach,,(x)=0h,,(x)+2R

upvT

[— 2+ V(2)]é(2)=mP&(2),

3 H” 15(H’)2

Vo=Tswtalw

Thus, one sees that essentially the fifth dimension gives
massive gravitons as usual from the Kaluza-KI¢iKK)
point of view, and their mass spectrum can be read off from
the form of the effective potential(z). For the flat case in r2

h7(x)=m?h,,, (%),

PHYSICAL REVIEW D 64 064010

H; , from the Lichnerowicz equation, obtaining a second
(17 order ordinary differential equation as folloyd,17]:

QZ

f

Q2%+ 2f+ff" f,2+ff/
S Y R

2f

Hf + 3f’+T

(18
+m?

2 r 2r 4f

2f 3f'fr ff7 3f’2 3f’3
2f’+T+

Eqg. (3), V(2) vanishes ag—> and so the KK mass spec-

trum is continuous starting a=0. For the dS case in Eq. 2f f' " 5f’2
(2), V(2) goes to a nonzero constant F4and the KK mass X r

spectrum is again continuous, but has a nonzero minimum

massm,,i;=3/2,. For the AdS case, howevev,(z) grows fr2
infinitely, making effectively a confining box due to the AdS T +
nature of the spacetime. Thus, thelirection is effectively

compactified even if it is still infinite in proper length. Con- 26f"  fr4
sequently, the KK mass spectrum now becomes discrete and - _)
its lowest mass isn,,;,=4/,. Here one can observe that the r¥ 4f2

5f12 f/3 fer// ff” 3f’f” f/!2

2 rf At 2 r 72

Htr=0. (20)

scale of effective compactification Ig instead ofls. Note . .
that this effective compactification does not happen when the Asymptotically,H;, has the solutions
AdS; spacetime is sliced into four-dimensional Minkowski

or dS, submanifolds. When a 3-brane is introduced, it gives p—5/2=9/4+ (Ml for r—oo,
a delta-function-like potential well at the position of the tr

3-brane, producing an attractive force. Hence the KK mass

spectrum for a black string in brane world scenarios has e
sentially the same features as in the case of no 3-brane,
its magnitude is somewhat reduciD,16. Here we should
point out that the nonzero finiteness of the lowest KK mass
for AdS/dS cases plays an important role in the stability of

black strings, as will be shown below explicitly.

21
(r—r,) =92 for r—r, @)
buqr the AdS case, and
(ryp—r) 1= for r—r, .,
tr (r—r ) 10/ forr s , (22

As explained above, we wish to find any instability modefor the dS case. Here=1f'(r)/2 andk, . =—1'(r;;)/2
that is a solution of the massive Lichnerowicz equation inare surface gravities of the event and cosmological horizons,
Eq. (17) with suitable reference to gauge and boundary confespectively, and , . in the dS case denotes the cosmologi-
ditions at the future event horizon and spatial infinity. Sincecal horizon. As emphasized in Refd—3], it is very impor-
higher angular momentum fluctuation modes are more stabl@nt to impose right boundary conditions on the perturba-
in general, we will consider a zero angular momentum modéions. Since our analysis is based on linearized equations,
only, ans-wave mod€g2,3]. General, spherically symmetric any fluctuations should remain “small.” This seemingly ex-
perturbations that cause instability can be written in canonicludes asymptotic solutions with negative roots near the ho-

cal form ag[1,2]

Hi(r)  He(r) 0 0
Htr(r) Hrr(r) O 0
_ A0t
hu ()= 0 K(r) 0
0 0 0 K(r)sirfe

rizon. However, one can see that even asymptotic solutions
with positive roots diverge near the horizon wh@ix<1.

This is probably because the Schwarzschild coordinates are
not good near the horizon. In fact, it turns out that, if we use
some regular coordinate system such as Kruskal coordinates,
the only asymptotic solution suitable for our linearized
analysis is the one with positive roots with afly (>0) as

(29 pointed out in Refd.2,3]. At spatial infinity for the AdS case,

if we require vanishing boundary conditions as usd],

with 0>0. Using transverse tracele65TF) gauge condi- eyen the positive root satisfies this condition providet}
tions in Eq.(15), we can eliminate all but one variable, say o Actually, asymptotic AdS spacetimes are not globally

hyperbolic. Thus, one needs to impose some extra condition
by hand in order to make the dynamics of metric fluctuations

2actually, there exist massless KK modes as well for both Adswell posed[19]. As imposed usually for matter fields in the
and dS cases. They are not normalizable except for the dS case wigire AdS background spacetini20], we require that the
a 3-brane. However, these massless modes are irrelevant for seekit@jal energy of gravitational fluctuations on this AdS back-
instability modes as will be explained in more detail below. ground should be conserved. This requirement is satisfied
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AdS ds
0.1Q 0.1 2
: 1
t il
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0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

FIG. 1. The left figure is for the AdS case with=1, 2, and 4. The right figure is for the dS case wigk-1, 2, 3.5, and 3.8. The Nariai
solution corresponds t,=3.85. The fixed AdS and dS radiuslis=10. The straight vertical lines denote the lowest KK masses, 0.4 for

AdS and 0.15 for dS.

only if A<—5/2 whenH,~r* at r~«. Hence only the
negative root is satisfactory in Eg21). We will give the
details in[17].

without 3-brane, respectively, as denoted in Fig. 1 by straight
vertical lines. So, if the threshold mass becomes smaller than
this lowest KK mass for a certain, there exists no unstable

With these boundary conditions described above, we nownhode indeed. As can be seen in Fig. 1, this happens when

search for instability modes characterized iy,n) which
are solutions of Eq(20) for givenr, andl,. In other words,
for the AdS case we start from a solution witH,,

~r ~S2m AT M) gt r~o0, and find theQ) that makesH,,
extrapolate to Hy,~(r—r,) 1"?%2< near the horizon
through Eg. (20). Similarly, we start fromHy,~(r
—r) " 1*¥2<+ near the cosmological horizon for the dS
case. Since Eq20) is quite complicated to handle analyti-
cally, we solve it numerically. However, it is worthwhile to
observe some scaling symmetries in E20) as follows:

r—ar, ro—arg, ly—al(Ag—a ?Ay),
Q—a 0, m—a m. (23

So we can fix one of these parameters, Isayl. Moreover,
whenry>1,, f~—rq/r+r?/I2 and so there exists another

0.21,=<r, (i.e., 0.20,=<r ,) for the AdS case. Therefore, we
find that the AdS black string is unstable when its four-
dimensional horizon size is small, but it becomes stable
when the horizon size is larger than the order of the AdS
radius(i.e., r=0.2d,). On the other hand, the presence of
a 3-brane reduces the lowest KK mass. Consequently, it in-
creases the value of the critical horizon radius for stable
black strings in the AdS brane world model. In particular, in
the vicinity of the flat brane worldi.e., A4,~0 or |,~x),
AdS black strings almost always become unstable since
My,in=0, which can be expected from the results in R&0).

For the dS case, on the other hand, although the threshold
mass decreases as the horizon radius increases up to the cos-
mological one, they all still seem to remain larger than the
lowest KK masgsee also Fig. 3 belowTherefore, dS black
strings seem to be always unstable. In particular, the insta-

approximate scaling symmetry for large black holes given bypility seems to persist all the way down to the Nariai solution

[18]
r—ar, roﬂa3r0, [,—14, Q—al, m—m. (24

Then we findQ ~r 2 for the case of large black holes.
Using MATHEMATICA and the Gear method for solving

in which the event horizon coincides with the cosmological
horizon. However, it should be pointed out that the Nariai
limit must be treated separately since boundary conditions
become invalid and the numerical error in our analysis in-
creases near this extremal case. As argued in [R&f, the
stability behavior of this case might be very different from

differential equations, we obtained the results in Fig. 1. Fothat of nonextremal cases. The presence of a 3-brane in dS
both AdS and dS cases, one can see that the instabilitylack strings again makes the system more unstable since it

shrinks in parameter space as the mass paramgtén-

reduces the lowest KK mass in units Igf For the flat case

creases with fixed AdS/dS radius. More precisely, the mas6.e., A,=0), we have confirmed the results obtained in Ref.

of the so-called threshold unstable modé] ({,m)

[5]. That is, since the KK mass spectrum is continuous with

=(0,m, ) decreases quickly down to zero as the horizon razero lowest mass and the threshold mass asymptotes to zero
diusr, increases for the AdS case, whereas it approachessr,— (as can be seen in Fig. 3 belpvall black strings

some nonzero finite value as increases toward the cosmo-

are unstable in this case.

logical horizon for the dS case. Thus, it appears that there Figure 2 illustrates how the threshold mass changes for a

always exist instability modes. However, the KK mass

givenr, as the cosmological constant, varies away from

cannot be arbitrary, but is determined by the geometry in theero. It shows that the instability in parameter space shrinks

fifth direction through Eq(18) as explained before. The low-
est KK masses are l4/and 3/2, for the AdS and dS cases

as A, becomes negativ@.e., the AdS casebut expands as
A, becomes positivé.e., the dS cageln other words, add-
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M tained analytically with some approximation and different

gauge choices in a different context. Both flaé., A,=0)

and AdS(i.e., A,<0) cases give almost the same decreasing

P pattern for smalt o, but they start to deviate as the black hole
becomes large, aroung=4. Asr,— for the flat casem,,
denoted by the dashed curved line in Fig. 3 asymptotes to
zero (~1/ry), but never touches it. Consequently, since the
continuum KK mass spectrum startsrat=0, one can see
again that all black strings are unstable no matter how large
ro is. If the black string is compactified, however, the con-
tinuum KK mass spectrum becomes discrete. The massless

= —Ay mode is not a real instability mode, but presumably a gauge
artifact[3,2] since the Lichnerowicz equation with=0 be-

FIG. 2. The threshold masses, for varying A, with given  comes that of pure four-dimensional black holes. So the low-
ro=2. The left vertical dashed line denotes the Nariai limit and theest instability mode will start at nonzenm. Thus Fig. 3
right one the criticalA 4 predicted by the GM conjecture. shows that compactified black strings in the flat case will

become stable if, is larger than some critical value deter-
ing a negative cosmological constant has a stabilizing effednined by the compactification scale. The stability of AdS
as in the case of adding charge to black strifRjswhereas black strings can be understood similarly from this point of
adding a positive cosmological constant has a destabilizingiew. This is because the AdSature of geometry in the
influence. fifth direction with AdS, slicing gives an effective compac-

It is interesting to see how well the results obtained bytification whose scale is determined by instead oflg as
explicit perturbation analysis agree with those in the naiveexplained above. However, we point out there is another in-
arguments given before. For the AdS case, critical values foteresting feature in this case. As can be seen in Fig. 3 for the
stable black strings were predictedras=0.348, and 0.58,  AdS case, although numerical error increasesgdbecomes
in Egs.(13) and(14) by the entropy comparison and by the small, the curve fom, seems to touch the horizontal axis if
GM conjecture, respectively. The numerical results predicthe data points are extrapolated further. Moreover, this termi-
r,.=0.2d, which agrees within the order of 1. The entropy nating point seems to agree with the critical valug
comparison, however, also predicts another critical horizor=0.77, (i.e., r ,=0.58,) obtained by the GM conjecture,
radius,r . =2.64,, across which black strings become un- the horizon radius across which the heat capacity changes its
stable again. We have searched various parameters arousign. Consequently, one might expect that the black string
this critical value, but could not find any unstable blackwill be stable at least iirg is larger than this terminating
string. Thus, our numerical results agree well, at least qualivalue, no matter what the KK mass spectrum is. Therefore,
tatively, with the GM conjecture, but with the entropy argu- in addition to the stabilization due to effective compactifica-
ment only in part. For the dS case, on the other hand, onlgion, AdS black string solutions seem to have a sort of intrin-
the prediction in the GM conjecture agrees well with thesic tendency for stabilization probably due to the Ad-
numerical results. ture of the longitudinal four-dimensional geometries.

Figure 3 shows how the threshold mass for a given It can be seen that the critical valug =0.20d, obtained
decreases as the black hole becomes large. These numeriéai AdS black strings does not exactly agree with but occurs
results agree well qualitatively with those in Reff2l] ob-  slightly “earlier” than that of the GM conjecturer .

as

-0.2 -0.1

IS
wnn

AdS/Flat

T g g

FIG. 3. The left figure: threshold masses for varymgwith givenl,=10 in the AdS case. The vertical dashed line denotes the critical
ro=7.7 predicted from the Gubser-Mitra conjecture. The numerical data stgp=at0. The right figure: same diagram for the dS case. The
vertical dashed line denotes the Nariai limjt=3.85. Note tham, (r,=3.85)=0.29>m,,;,=0.15.
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=0.54 ,. This discrepancy, however, is expected because thirns out to be very different. The potentM(z) is again a

GM conjecture assumes noncompact translational symmetryolcano type around the 3-brane, but diverges at the bound-
Actually, this condition can easily be replaced in the proof ofary of AdS; (e.g., the conformal infinity effectively creat-

the GM conjecturé¢4] as follows: a black string or brane, as ing a box. Thus£(z) will behave like a Hermite function,
long as its KK mass spectrum is continuous starting at zeravhich is an eigenfunction of a harmonic oscillator with slight
mass, is classically stable if, and only if, it is locally thermo- modifications in the vicinity of the 3-brane. Consequently,
dynamically stable. One can see that the flat case satisfigke black string again becomes stable near the boundary of
this modified GM conjecture. The GM conjecture then pre-AdS; as well as in the vicinity of the 3-brane, generating
dicts that a terminating point must exist if the system ismultiple black holes in between. This is why a segment of
locally thermodynamically stable. In fact, our numerical re- AdS black string becomes entropically favorable again when
sults show not only that the terminating point exists, but alsdts lengthL in Eqg. (8) becomes large enough.

that it agrees with the critical value of local thermodynamic

stability in the GM conjecture. Thus, it is to be expected that

a black string having discrete KK mass spectrum will be- IV. CONCLUSION

come stable, if it happens, before the terminating point as in

the AdS case. . ) X
Finally, we have so far concentrated on the features of! AdS. spacetimes that are not locally asymptotlcally flat are
' generically unstable classically under linearized metric fluc-

stability with special emphasis on stable black string con-2~ : .
figurations in Ad$ spacetimes. Now it will also be interest- tuations, the AdS black string solutions are stable when the

ing to see what the final states would be for unstable blaclogg'tUd'dn.al s%e of the norlz%r(;_ls larger thatP the orderl of _thel
strings. In order to answer this question, we just need t 4 radius. oenerically, adding a negative cosmologica

know how the eigenfunctiogi(z) in Eq. (18) with given m constant has a stabilization effect vyhe_rea_s adding a po_sitive
behaves along the fifth coordinateFor black strings in the cosmologlcal constant has a destabilizing !nfluenqe. It W.'” be
flat case, it has been argued in RgH] that the interval of stra|ghtforwaro_l to extend our study to higher d!r_nensmnal
successive wiggles in proper length becomes exponentiall ases. We believe the essential features of stability for AdS

tiny toward the AdS horizon, and so the string is somewhat lack string or brane solutions in higher dimensions will be
stable near the 3-brane but quickly becomes unstable awa{{)e same.
from it, generating an accumulation of “mini” black holes

toward the Ad§ horizon. For the dS case with a 3-brane, the

shape of the potentiadl(z) in Eq. (18) is a volcano type and

similar to that of the flat case. The only difference is that The authors would like to thank H. Kodama and T.

V(z) approaches a nonzero constantas» (e.g., the “Rin-  Tanaka for helpful discussions. G.K. also would like to thank
dler” horizon) instead of vanishing. The&(z) will be simi-  R. Gregory, N. Ishibashi, T. Jacobson, M. Natsuume, and
lar to that of the flat case, which is a Bessel function, butR.M. Wald for useful discussions and communications. T.H.
goes to zero more quickly. Accordingly, the features of frag-thanks T. Goto and K. Ishikawa for helpful advice concern-
mentation will be almost the same as in the flat case, with &hg MATHEMATICA. This work was supported by the JSPS

slightly stronger instability. For the AdS case, however, it(Japanese Society for Promotion of Sciences

To conclude, we have shown that, although black strings
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