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Gravitational wave bursts from cusps and kinks on cosmic strings
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The strong beams of high-frequency gravitational wa{@gV's) emitted by cusps and kinks of cosmic
strings are studied in detail. As a consequence of these beams, the stochastic ensemble of GW’s generated by
a cosmological network of oscillating loops is strongly non-Gaussian, and includes occasional sharp bursts that
stand above the “confusion” GW noise made of many smaller overlapping bursts. Even if only 10% of all
string loops have cusps these bursts might be detectable by the planned GW detectors Laser Interferometric
Gravitation Observator{LIGO)-VIRGO and Laser Interference Space AnterfbeSA) for string tensions as
small asGu~ 10713 In the implausible case where the average cusp number per loop oscillation is extremely
small, the smaller bursts emitted by the ubiquitous kinks will be detectable by LISA for string tensions as small
asGu~10"'2 We show that the strongly non-Gaussian nature of the stochastic GW’s generated by strings
modifies the usual derivation of constraints Gp from pulsar timing experiments. In particular the usually
considered “rms GW background” is, wheBu < 10~ 7, an overestimate of the more relevant confusion GW
noise because it includes rare, intense bursts. The consideration of the confusion GW noise suggests that a
grand unified theory valu€u~ 10 ® is compatible with existing pulsar data, and that a modest improvement
in pulsar timing accuracy could detect the confusion noise coming from a network of cuspy string loops down
to Gu~10 *L. The GW bursts discussed here might be accompanied by gamma ray bursts.
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[. INTRODUCTION also estimate the rate of occurrence of isolated bursts, stand-
ing above the nearly Gaussian background made by the su-
Cosmic strings are fascinating objects which give rise to gerposition of theémore frequentoverlapping bursts. As we
rich variety of physical and astrophysical phenom¢hh  shall see, these occasional sharp bursts might be detectable
These linear topological defects are predicted in a wide clasy the planned GW detectors such as the Laser Interferomet-
of elementary particle models, and could be formed at a symfic Gravitational Observatoryl IGO), VIRGO and Laser In-
metry breaking phase transition in the early universe. Herd€rferometer Space Antenrf&ISA) for string tensions as
we shall reexamine the emission of gravitational Wavessmall'asG,u~1O’13, i.e., in a wide range of seven orders of
(GW's) by cosmic strings. The fact that oscillating loops of magnitude below the usually considered grand unified theory
string are efficient GW emitters was pointed out long ago(GUT) scaleGugyr~10~°.
[2]. The spectrum of the stochastic background of GW’s gen-
erated by a cosmological network of cosmic strings rangesii. EMISSION OF GRAVITATIONAL WAVES BY COSMIC
over many decades of frequency, and was extensively dis- STRINGS IN THE LOCAL WAVE ZONE
cussed in the literaturf2—7]. Until recently, it was tacitly
assumed that the GW background generated by cosmic
strings was nearly Gaussian. However, in a recent |g8r In this section we discuss the amplitude of the GW emit-
prompted by a suggestion in RgB], we showed that the ted by an arbitrary stress-energy distributibtt(x) as seen
GW background from strings istrongly non-Gaussiaand by an observer in the “local wave zone” of the source, i.e. at
includes sharp GW burs{&WB’s) emanating from cosmic a distancer from the source which is much larger than the
string cusps. In Ref8], we mentioned that kink discontinui- GW wavelength of interest, but much smaller than the
ties on cosmic strings also give rise to non-Gaussian GWB’sHubble radius. For this purpose, we can consider that the
The simultaneous consideration of GWB’s emitted by cuspspacetime geometry is asymptotically flag';j,c,a'= v
and by kinks is important because, though cusps tend, gerh ,,(x), whereh,,<1 is the metric perturbation generated
nerically, to form onsmoothstrings a few times per oscilla- by the source. The subsequent effect of the propagation of
tion period[10], they might be absent on “kinky” strings the GW in a curved Friedmann-Leftr@ universe will be
(i.e. continuous, but nondifferentiable string®n the other discussed in Sec. IIB.
hand, the study of the process of loop fragmentation suggests Let us first consider a general scaldlat space-timg
that kinks are ubiquitous on loojgas well as on long strings  wave equation
[11].
In this paper, we shall discuss in some detail the ampli- Ue(x,t)=— 4mS(x,t), 2.9
tude, frequency spectrum, and wave form of the GWB’s
emitted both by cusps and kinks on cosmic strings. We shaknd let us decompose the time variation of the so@de

A. Wave form in the local wave zone
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either a Fourier integraB(x,t) = [ (dw/2mw)e '“'S(x, w) or
(if the source motion is periodica Fourier seriesS(x,t)
=3,e '“nS(x,w,). We concentrate on one frequeney(or

w,). The corresponding decomposition of the solution,

o(x,t)=3 e '“'o(x,0), leads to a Helmholtz equation

(A+w?)o(X,w)=—47S(X,0), (2.2

whose retarded Green function[ (A + »?)G,(x,X")
=—475(x—x")] is well known to be G,(x,x)
=exp(+ iox—x'|)/|x—x’] so that

o |x—x|
@(X,w)Zf dSX’eiX—,S(X’,w). (2.3)

If the source is localized around the origir’ &€0) we can,
as usual, replace, in the local wave zone|x|>1),
[x—x'| by r—n-x’ in the phase factor, and simply lsyin
the denominator{Herer=|x| andn=x/r.) Let us definek
=w n [so thatk*= (k,w) is the 4 frequency of the-quanta
emitted in then direction] and the following space-time Fou-
rier transform of the source:

S(k“)=8(k,w)zf d3x’ e K XS(x’, w). (2.4
With this notation the fieldp in the local wave zone reads
simply

ior

p(%,0)=——S(k¥), 29

(2.6

1
@(X,I)ZF

2 e*iw(tfr)s( k/_L),

whereX , denotes either an integral over (in the nonperi-
odic case or a discrete sum ovedw, (in the periodic, or
quasiperiodic, case
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simple formula(valid for any, possibly relativistic, source, at
the linearized approximatiofi2])

KM,,(t—I’,n)=4G§w: e T (ko), (2.9

where we recall that=wn. In the case of a periodic source
with fundamental period’;, the sum on the right hand side
of Eq. (2.9 is a (two-sided series over all the harmonics
*w,=*mw; with meN and w,=27/T,, and the space-
time Fourier component of ,, is given by the following
space-time integral:

1 (T .
Tuu(k)‘)=TW(k,w)=T—lfo ldtf dx e @k AT (x1).
(2.10

B. Wave form emitted by a string loop

We model the string dynamics by the Nambu action,
which leads to the string energy-momentum tensor

TH(xM) = “f d7da(XEX"=X"#X"") SO XN 7,0)].
(2.1

Here . denotes the string tension aiét( 7, o) (to be distin-
guished from the space-time poixt) represents the string
worldsheet, parametrized by the conformal coordinatasd

o [X=3,X, X'=4d, X]. Inserting Eq.(2.11) into Eq. (2.10
yields the following Fourier transform of the string stress-
energy tensor:

)\:ﬁJ N W YW\ a—ik-X
T, (kY - EldeO'(XMXV X, X)e kX (212

Herek-X=17,, k" X"=k'X'— wX?, the indices ofl** have

Let us now apply this general formula to the case of GWbheen lowered withy,,=diag(+1,+1,+1,—1), andX, de-
emission by any localized source. We consider the linearizegdlotes a strip of the worldsheet contained between two

metric perturbation generated by the sourgg;(x*)= un

R _ 2
+h,.,(x"). The trace-reversed metric per_turbaudr}w
=h,,— ih 7, Satisfiesin a harmonic gauge” h,,,=0) the
linearized Einstein equations

Oh,,=— 167GT,,, 2.7

(center-of-magstime hyperplanes separated by the funda-
mental perioddenoted above aE;)

N

7 |
T|E—|E§, (2.13

wherel denotes the “invariant length” of the closed loop that

where T, (x") denotes the stress-energy tensor of theye consider. It is defined ds=E/x whereE is the loop

source. We can apply the previous formulas by replaging
—h,,, S=+4GT,,. Let us introduce the “renormalized”

pvs
(distance-independerasymptotic wave fornx ,,,, such that

(in the local wave zone

h (Xt = w + o( i) .

r2

v

(2.9

Note the dependence af,, on the retarded timé—r and
the direction of emissiom. With this notation we have the

energy in its center-of-mass fram@ote thatl differs from
the instantaneous lengfiX'|do of the loop which changes
as the loop oscillates.

The Nambu string dynamics in conformal gaugad on
our local, nearly flat, space-time dompigields a two-
dimensional wave equation 9{— d%)X*(r,6)=0 con-
strained by theVirasorg conditions

Dy XEXV+ 7, X PX' V=0, 7, XMX'"=0.
(2.19
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It is convenient to introduce the nullvorldsheex coordi-
nates

d 1
UiETiU, a0_+5(9i:§((9,.i(90),

(2.195

and to decomposk* in left and right movergnote the fac-
tor 3)

XM(T,U)E%[Xﬁ(a+)+xua,)]. (2.16

In terms of this decomposition, the Virasoro conditions read

(9. X*)2=0=(9_ X*)2. We can(and will) also choose a

(center-of-mags“time gauge” in which the worldsheet co-
ordinater coincide$ with the Lorentz time in the center-of-

mass frame, i.eX%(r,0)=7, so thatX}=o,, X°=0_,
and X, is (for a closed loop in the center-of-mass franae
periodic function ofa.. of periodl. In this time gauge, the

Virasoro conditions yield X, )?=1=(X_)? where the over-
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X, X_ exp—ik-X. Remembering that the period in. is I,
the averaging can be rewritten ﬁ@daﬂl f'oda,ll. If we
postpone the symmetrization on the indiges to the last
stage of the calculation we can write

T (ko) = T34, (2.19

where we introduce the following asymmetric double inte-
gral:

| |
0 0
(2.20

Using the complete factorization of the integrand of Eg.
(2.20 in the product of a function ofr, and a function of
o_, we can finally write

JEr =R

(2.29

dot denotes the derivative with respect to the correspondingpere

(unique variableo, or o_ enteringX, (o) or X_(o_).

Inserting Eq.(2.16) into Eq. (2.12 yields the following
result for the Fourier transform df,, (to be inserted in the
wave form Eq.(2.9)),

Lo

T om) = |
|

drdo )'((Jr“)'(i)e*<i/2)(km'x++km-x_),

(2.17

(2.22

|
msf do. Xte™ (2 X
t= | do. Xt

The final factorizedmodulo the symmetrizatigrresult

lad

T (K, 0m) = |

1{#1¥)

(2.23

where X#X"=1(X*X" + X% X*) denotes a symmetriza- will be very convenient for our subsequent study. The con-

tion on the two indiceg.v, whereZ, is a truncated cylinder
on the worldsheet defined, say, by=@<T,=1/2, and 0
<¢=I, and where we recall that

\ 41
k= (Km,0m) = (Mo, n,Mw,)= l—m(n,l), (2.18

servation ofT*” [i.e. k, T#"(k)=0] follows from the easily
checked identityk,,, 14 =0 satisfied by the simple integral
Eqg. (2.22.

Note that Eq(2.23 gives a factorized expression for the
Fourier transform of the GW amplitudgEg. (2.9]. Such
left-right factorized expressions are characteristic of quantum
amplitudes of closedfundamental string processes. A con-

with me Z—{0}, runs over the discrete set of the 4 frequen-Venient factorized expressidiq. (2.23] was used in Ref.

cies of the GW emitted by a string of invariant lengih the
directionn. [In the following, we shall sometimes restritt

[8] for a calculation of the classical radiation amplitudes of
cosmic closed strings in the Fourier domain. Previous calcu-

to positive integers, it being understood that one must thefptions of GW amplitudes were performed in the time do-
add the complex conjugate quantity when computing thénain [13,11, though factors like Eq(2.22 appeared as

asymptotic wave form Eq2.9).]

building blocks in the calculation of the radiation power

Result(2.17) can be further simplified by changing the from loops[14—18. The publication of our work8] then

variables of integration from#( o) to (o, ,0_). One must

usedrdo=3do,do_ and take care of the limitation of

integral (2.17) to the truncated cylindeE,. This is most
easily done by rewriting Eq2.17) as ul times theaverage

over the worldsheet f(gldT/T| f'oda/I) of the integrand

INote that the requirement th#= 7 (without any proportional-
ity factor) links the periodP.. in o. to the value of the string
center-of-mass energf, namely, P.=I, with E=ul. In the
fundamental-string literature the periodicity in. is fixed to be,
say, 2r (for a closed string and one writesX°=p°7/27u
=E72mu=I7/2m7.

prompted other authors to recognize the convenience of left-
right factorization in GW amplitude calculatiof&7].

C. Decay with frequency of the wave form: cusps, kinks
and other singularities

If we define ¢.(o.)=k;-X. (o) [where k} is the
m=1 value of Eq.(2.18], the high-frequency behavior
of T,“,(kk), and therefore of the Fourier transform of
the wave form[Eq. (2.9)], is reduced, by EQq.2.23,
to studying the asymptotic behavior, as—«, of the two
simple integrals I‘;(m)=f'0dot fh (o) with f4(o.)
=X (o) e MAmi¢s(o0)  As s well known, the
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asymptotic behaviofasm— ) of I£(m) depends on essen- rier components of the asymptotic wave fomy,(wmy,n)
tially two things: (i) the regularity(i.e. the number of con- «T,,(Kn, oy [EQ. (2.9], will decay asm— in a slow,
tinuous derivativesof the functionsX”(o.) and¢.(o.),  power-law manner along certain directions: a finite set of
and(ii) the presence or absence of saddle pdististionary-  directions(corresponding to the intersections@®f and(C_)
phase pointsin the phaseb. (o) (i.e. of pointseX where in the case of a cusp, or a one-dimensional “fanlike,” set of
¢ (c%)=0). If the functionsx“ (o) are smoothC*) and  directions(corresponding ta’, and/orC_) in the case of

if ¢,(c.) andé_(o_) have no saddle points, the integrals kinks. If the observer at infinity happens to lie near one of
I“(m) tend to zero faster than any negative powenoas those special directions, it will detect a stronger than usual
m—o. A fortiori, the productT#(k)=1#(m) 1”(m) then =~ GW amplitude: these are the gravitational wave bursts that
tends to zero faster than any negative powemofn such a  We study in this paper.

case, the GW emission of a string loop would be well ap- We see that, by definition, the GWB's correspond to a
proximated by considering only a few of the lowest modelarge value of the harmonic numben, i.e. to a frequency
numbersm. fn=wn/27=m/T;=2m/l much larger than the frequency

By contrast, in the present paper we focus on the casef the fundamental mode of the string. For such high mode
where(i) and(ii) are violated in such a way that,,(k) has  numbersm the discrete Fourier sufEg. (2.9)] can be ap-

a rather slow, power-law decay as—«. The two physically proximated by a continuous Fourier integr@deed, Aw
most relevant cases where this occurs are near Cusps &fw,.1— wn= 0 =w,/M<w,). In other words, on the
kinks. First, note that(say the + phase ¢.(0;) time scalesAt of relevance for the detection of GWB’s
=7,k X% (0,) has a saddle poing, =0 whenk, X,  (f,;'=<At<T)), in Eq.(2.9), we can replace

=0. Remembering that bo#t{" and(because of the Virasoro

condition X* are null vectors, we see that saddle points > = :f dmzl_ d_“’zl_f df, (2.24)
occur each time/', and therefor&k“=m kf', is parallel to on m 2) 2m 2

X“(o,). In the time gauge, wher&” =(X. ,1) with X2
=1, X,(c.) and X_(o_) correspond to two separate
curves, say’, andC_, on the unit sphergl8]. The saddle
points occur when the unit direction vectorof the emitted
GW lies either onC, or C_. If one has only one saddle
point, say in the phase factor of (m), the integrall £ (m)
will have a slow decay ami—c. But if the other integral With any continuous function, say(t), of some(possibly
I#(m) has neither a saddle point, nor some lack of regularityretarded time variablet we associate the followinlpgarith-
in X*(o_), the integrall“(m) will decay exponentially —mic continuous Fourier componeni(f) (corresponding to
quickly with m, so that the product#*(k) oI #(m) 1”(m) an octave of frequency around the analyzing frequeicy
will still decay exponentially quickly.

Therefore, the two generic cases whé&fé(k) can have a
slow, power-law decay are the followin¢g) The case where
the two curve&’, andC_ intersect, so that thie* parallel to
their intersection develops a double saddle pofbt. The  [The advantage of this definition over the straightforward
case wherek” is parallel to a direction o€, (or C-), and  pquyier transformx(f) is that «(f) has always the same
where the dual functioX” (o) [or, respectivelyX’(o4)]  physical dimension as(t).] In terms of this definition, re-
has some type of discontinuity. Caga corresponds (0 a gyt (2,25) leads to the following simple formula for the loga-

cusp and occurs generically for smootand in particular rithmic Fourier transform of the GWB asymptotic wave
continuous closed curveg.. [10]. The discontinuity in case form:

(b) can be of various typdsay a mild discontinuity in some
higher derivative ofX%(o.)]. The most interesting case i, (F,n)=2GI[f| T, (K ). (2.27)
(leading to the slowest decay with) is the case of &ink, r r

where, sayX/ (o) is continuous bui“(c_) has one or |nserting the factorized formiEq. (2.23] yields, more ex-
several jump discontinuities. It is expected that kinks arepicitly,

ubiquitous on loopsand on long strings Note that the pres-
ence of kinks(which is expected because of the reconnec- KMV(F,n)=2Gu|f| 117, (2.28
tions) means that the curves. on the unit sphere are dis-
continuous.(Hence too many kinks can prevent the two
curvesC.. from intersecting, i.e. can prevent the presence o
cusps[11].)

so that

~2G] do —iw(t-r) K
K (t=1,n)=2G Ee Tk ). (2.29

K<f>E|f|7<<f>E|f|jdtezwiftm). (2.26

yvhere the simple integrald were defined by Eq2.22.
Remember that these expressions give the asymptotic

(distance-independentvave form[Eqg. (2.8)] in the local

wave zone of the source, and that the frequeingyll refers

to the frequency measured in the local wave zone of the
For the time being, we wish to conclude from this discus-center-of-mass frame of the source. The problem of the cos-

sion that, in the presence of cusps or kinks, the discrete Foumological propagation ok, will be discussed below.

D. Logarithmic Fourier transform of GWB wave forms
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IIl. GRAVITATIONAL WAVE BURSTS EMITTED
BY CUSPS AND KINKS

A. Wave forms from cusps

PHYSICAL REVIEW D54 064008

physical GW, but can be removed by a coordinate transfor-
mation. Indeed, as we are working in the Fourier domain
(and with the asymptotic wave fopma linearized coordinate
transformation has the following effect ov),,

As recalled above, a cusp corresponds to an intersection

of the two curve<, andC_, i.e. to a point on the world-
sheet whergin the time gaugethe two null vectorsk” (o)
andX*(o_) coincide. Let us denote

1#=(n(®),1)=X* (D) =X* (o), (3.1

the common value of these two null vectors at the cuspt+

Xé‘c)=X”“(cr(f) ,0{9). The (space-timgdirection of strongest
emission from the cusp is precisdly, i.e. the GWB is cen-
tered around the 4 frequencik&e:|#, i.e. remembering EQ.
(2.18), the space direction of strongest emissiomisn(©.

Let us first study the Fourier transform of the wave form

emitted precisely at the center of the GWiRe., n=n(® and

ki =mw,|#). Below we shall discuss the beam width around

this direction. To simplify the writing we shift the origin of
o so thate'©=0, and the origin oK* so thatX{;,=0. We
can then write the following local Taylor expansiofteun-
cated to the order which is crucial for our purppse

1. 1
Xt (02)=1ro+ Kot + e X Dol

5 6 (3.2

(I V3 1 B 2
X;_,(ou_,)=|”“-1-XJ_,0:_,-|-§Xi o4, (3.3

where the successive derivativesith X®®= 4% X..) appear-
ing on the right hand side are all evaluated at the cuisps

at o..=0). Differentiating the Virasoro constrainb's?:=0
yields the relationsX.-X.=0 and X.-X®+X2=0.
Therefore, at the cusp, one hasX.=0 and |-X®)=
—(X.)2. (From which one sees tha is a spacelike vec-

K;w= Kt K6 +KE, .

(3.6

Here we are considering the casg=l,,. As x*7ol 1" if
we decomposét =a.l*+b% , whereb” denotes the sub-
leading contribution from Eq3.5), both the leading-leading
term a, a_I#l”, and the two leading-subleading terms
[#“b” and bfa_1" can be gauged awayThis explains
why our final wave form below differs from that obtained
earlier in Ref.[13] where it was not noted that the leading
terms were pure gaugerinally, the leading, physical wave
form is given by keeping only*1”=b*b*) with

. [oot! i .
b’i2X’;f do.o. ex Mo Xio’i) . (37
70

(We usedkf,=mw|1#, where we recall thatw,=27/T,
=41/l is the basic loop circular frequency, linked to the GW
frequency byf = w/27=mw,/27=2m/l with meZ.)

Most of integral(3.7) comes from a small interval ier—
around zero. This allows us to neglect the limitation to a
period[ 0,0+ 1] and to formally extend the integration on
o, from — o to + . It is convenient to introduce the
scaled variables

U+=N:0't, N.=

1 . 1/3
Sime o @9

This leads to the appearance of the following intedthé
same foru, andu_):

o0 i3
IEJ due't, (3.9

tor) These relations yield the following simple result for the Here, the sign+ denotes the sign af, i.e. the sign of the
crucial quantitiesk- X.. |- X.. entering the phase factor in frequencyf. It is clear that the value dfis dominated by an

Eqgs.(2.17) or (2.22:

1.
X (02)= = g (K)ol (3.4

[This showsa posterioriwhy it was crucial to include the
termsO(ai) in the local Taylor expansion of% (o-.).]

Inserting these results into E(R.22 leads to an expres-
sion of the form

optl . )
|f;=f do.(IF+X* oo+ - e W2AMie= (35
70

As we shall see the intervals of, ando_ which contribute
most are(because of the saddle point in the phasesry
small for largem (Ao .o |m|~3). It would then seem that
the dominant term in“ is obtained by keeping only the
leading term in the parentheses, il&, so thatl4=a. |*.

interval of order unity inu=u., corresponding tQAo
~1/N. . The exact value of is easily found to be pure
imaginary and to be

2
3r 1)
3
where I' denotes Euler's gamma function. Note that the

square ofl, which enters the wave form, is real, negative and
independent of the sign ah. Finally, if we define

Iziilim, Iim (31@

_ 4m(12*3

we find that the (logarithmig Fourier transform of the
asymptotic wave form readdor positive or negative fre-

(3.11

However, this leading contribution does not correspond to @uencieg
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oo+l . .
)= G ~e2meAlA) (312 b’§=J D oL (B K+ M
! 27§13 - o
(2m|f]) (3.16

Here we have introduced the arrival time of the center of theBy a gauge transformation we can, as above, discard the
burst,t., which was set to zero in the calculation abdig a. k* term and replacé” by b“ . On the other hand, in the
our conventionX(,,=0). The fact that the twdgenerically " o T T

. . i . phase terms we now havesingk:-1=—3(k—=1)*=—-3¢
independentspacelike vectoré\. (which are orthogonalto ™ " ; co .

I#) are real means that the GIEq. (3.12] is linearly po- ~— 20" andk-X.=-45-X.)
larized

. N R 1. . 1.
To understand the meaning of thd~® dependence of kX4 (o) =k lo.+ “k-Xio?+ok-x®g?
the Fourier amplitudéEq. (3.12], we take the inverse Fou- 2 6
rier transformremembering definitio2.26)] which yields a 1 1 .
time-domain wave form proportional to =3 6’0 — > 6-X.o%— g(X+)2cr:i,
Kk(t)oc|t—to| 3. (3.13 (3.17)

instead of Eq(3.4).

Note that the fact that Eq3.13 tends to zero at=t. does If we rescales.. as in Eq.(3.8) and introduce

not mean that the GWB is best detected away fieai, .

The full wave form, in the time domain, is the sum of Eq. ON.. Im|w 13
(3.13 and of a slowly varying componeiitiue to the low g.=—— = — ! , (3.18
modes of the string What is important, and what distin- |X<| 12| X4 |

guishes the GWB from the slowly varying component, is the o )

fact that Eq.(3.13 is “spiky,” because of the appearance of We See that the gauge-simplified valuel éf[i.e. Eq.(3.16]
the absolute value df-t.. If one were to consider the cur- is, after factorization of an overall facter|X..|/N% , of the
vature (tidal forceg associated with Eq(3.13 it would be  form (when neglecting factors of order unity, and treatitig
«|t—t¢| ~%3, exhibiting more clearly the spiky nature of the and §* as scalars

GWB.

Actually, the sharp spike dt=t; exists only in the limit
where the observer lies exactly, at some moment, along the
special directiom(® defined by the cusp velocity, i.e. when
n=n®. Let us defined as being the angle between the di- Where ¢..(u,z.)~u+z.u?+z% u. Remembering that in-
rection of emissiom and the “3 velocity” of the cusm(®.  tegral (3.9) is dominated by what happens in an interval
We shall now show that when#6<1 the time-domain Au~1, this schematic expression is sufficient for seeing that
cusp wave form is approximately given by tide=0 wave Whene. <1 the numerical value df. (¢ ..) is well approxi-

|i(si)=f du(e. +u)e ¢=ex), (3.19

form computed above, except in a time interval aroundf ~ Mated byl . (0)=1, i.e., thatx,,,(f,n)=«,,,(f,n®). To dis-
order cuss what happens when, conversely,= 1 one must study
the behavior of the phasé. (u,e.)~ul+e. u*+e2u a
[t—to|~ 63T, (3.14  bit more carefully. Let us go back to the unscaled expression

[Eq. (3.17)] and differentiate it:

where the spike is smoothed. In the frequency domain this
smoothing on the time scales of E§.14) corresponds to an -
exponential decay for frequencies:

K 1 . 1.
[k X (02)]= 5 8+ (8, %) 0 a+ 5 (o) 202
(3.20

Jdo +

1 The discriminantA =b?—4ac of this trinomial ino~. is A
Ifl= T (319  —(5.%.)2— 82(X.)?= — 8%(X.)’siB. where 8. is the
angle between the two space vectérandX.. . The impor-
tant point is that(generically A<0 which means that the
trinomial [Eq. (3.20] has no real roots, i.e. that. (o.) has
no saddle point whei@+ 0. In fact, this absence of a saddle
point when#+#0 can be seen, as an exact result, from the

fact that in the scalar produkt, X% (o) both 4 vectors are

To study the effect ob+ 0, let us introduce the 4 vecta
such thatl #=k“+ 5* wherek#=(n,1). In thetime gauge
8*=(n®—n,0) is spacelike and of squared nodh=2(1
—cosh)= 6. Therefores*= O(6). Going back to expression
3.5, and remembering from Ed3.6) that one can gauge . X .

39 g d3.6 gaug null and future oriented, so that their product can vanish only

away any term inx,, having a factork, =k, , we see Ehat if they are parallel; however, we wanted to show how, within
we should now split the parentheses in E8.5 as k”  certain limits for the unwritten numerical coefficients, the toy
+(8*+X4o. ...) anddecompose accordinglyi =a.k* integral [Eq. (3.19] with ¢.(u,e.)~us+e.u’+e%u

+b%, with could qualitatively represent the exact result for all values of
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g~ (both=1 and=1). The absence of saddle point meanstude generated by a string at low frequendifl$= O(1) is
that whene.. becomes significantly larger than IL,(e.)  O(Gul), we see that, amplitude wise, a cusp GWB is a small
will tend exponentially fast toward zero. As there are onlycorrection to a low-frequency background. But what is es-
numbers of order unity in théunwritten) coefficients of  sential in resul(3.23 is the very slow decay with the mode

I -(e+) we conclude(as usual for such estimajethat (i) number,o|m| /3,

when e. <1, l.(e~) can be estimated by_.(0)=I

(though this estimate is numerically accurate onlyeif

<1); while (i) whene . = 1, | . () starts decaying expo- B. Wave forms from kinks

nentially fast withe... Consequently, the wave form*” GW emission by kinks was studied by Garfinkle and Va-

1“1 will also interpolate, a® increases, between essen- chaspat{11]. However, as in the case of cusps, the leading
tially «*"(f,n(®) and an exponentially small result. term that they studied turned out to be a pure gauge term.

As neglecting factors of 2 might be detrimental to our This will be clear from the different, Fourier-domain, treat-
subsequent estimatese tried to be a little bit more precise ment that we give now, which is a simple generalization of
about these orders of magnitude. First let us note that théhe method discussed for cusps in the previous subsection.
facts that(in the notation used herehe period ino- of As discussed above, kink emission corresponds, in the
X# (o) is P.=I and thatX.. are unit vectors imply that the original expressiofiEq. (3.17], to the case where, say, the
generic order of magnitude ¢K..| (if the string is not too phaseg. (o+)=k;-X, has a saddle poirfor is close to a
wiggly) is saddle point and whereX”(o_) has a discontinuity(at

someo_ = o9, Though the discussion is somewhat differ-
| X |~2 (3.2)  entthan for the cusp case, we shall be brief as the method of
) attack is a variant of the one we discussed in great detail
[becauseX. =3, c,exp(2rino. /l)]. Using estimatg3.21), above. The saddle point requirement tr implies thatk*

using o..~N3* and writing that the divide between small must be nearly aligned wittomenull vector X* (o). (As
¢'s and large¢’s is obtained when the third term on the right stated above, the set of all exactly aligned null vectors, i.e.
hand side of Eq(3.17) is equal to the first leads t6yyige  the set of all the central null geodesics within the beam emit-
=[4/(/31|f])]3=(2.314|f|)*°. Approximating 2.3%2 ted by a moving kink, is a one-dimensional, fanlike, structure
leads to the simple result defined by fixingo_=c%°, and lettingo . run over its
_ entire period. The most convenient starting point is again
Oaiae™ (21|11 5= (|| T) 715, (322 e factorized form off“*(KM) =<1 #1) | where we recall, for

whereT,=1/2 is the basic period of the string motion. This convenience, the form of the simple integrals
corresponds to the inequalityEq. (3.19] quoted above. -
When passing from the Fourier domain to the time domain, |§:f do. Xge*(”z)k'xwrgik“, (3.24
the exponential decay in doma(8.15 [now considered for

a fixed 6, instead of as in Eq.3.22 which considered as
fixed and letéd vary] means that the wave form becomes
smooth on time scalest~ 63T, near the center of the GWB,

as stated in Eq3.14) above. . ) .
; - " meti treated as in Sec. Il A abovising some¢, #0) with the
As we are discussing “Z-accurate” estimates, let us con same resultgincluding the effect o= cos 1n-n(9+0). In

clude this subsection by mentioning that when inserting the _ . .

estimate(3.21) into Eg. (3.12 there appears a coefficient particular, we recall thaafter gauging away some terithe
41312 170 2\ Twrith | o o value of 1% in the aligned case is

(12)*°15 /(27°) [with 1;,, given by Eq.(3.10] which is

numerically equal to 0.8507, i.e. close enough to 1 to be

neglected. Finally, a good estimate of the amplitude of the . 121me (2 o3

asymptotic wave fornfwhen one is not interested in polar- |’izx’iJ’ do, o, elt2meXo (3.29

ization effect$ is simply

a0

where we introduced a gauge parameétemwhose value can
be (and will be chosen to simplifyl4 . The integrall¥ is

- which scales with m (as m—+x) like =+|m|~2?
O[ Ggiviael f) —cos™H(n-n())], =|m| ¥*m~ 12 (where + is the sign ofm).
(3.23 On the other hand/ calls for a new treaftment. In fact, if

we assume thak” (o_) jumps fromX* (c%°—0)=n# (a
null vectoy to X (o%+0)=n4 (another null vector we
obtain the leading estimate of the integtdl by replacing
X“(o_) by n¥(o_— o9 for o_<o¥® and by n4(o_
- — %9 for o_ > ¥ [we setx” (¢¥5)=0]. (Here we are

2We mention this because the “surprisingly large” value of the following standard results on “edge effects” in oscillatory

parametel” ~ 50 entering the total rate of GW energy loss of a loop integrals; see, e.g., Ref19].) This yields (in the m—
can essentially be attributed to a factors()? in T. limit, and with é_=0)

Gul
CUSR f 1)~
SRR TTTIeE

where® (x) is the step function (1 ik>0; 0 if x<0). One
should remember that resuy.23 has been derived by as-
suming that/f|l=2|m|>1. As the asymptotic GW ampli-
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o ny¥  nj - Kffnfaar°?|m||(+”kink| Y kipk<x|m|‘1. The time-domain version of
-l kn, ko, (320 this kM€ fyoc|f| =1 is, near each kinkk™Me3(t)oc|t—1t | "L,

The corresponding time-domain curvature vanishes every-
The essential feature differentiating res(@26) from the  Where, except at the discrete set of kink arrival times where
normal “cusp” result[Eq. (3.29] is its scaling withm as it has a delta-function singularity. We thus recover the find-
m— *+. The kink contributiofEq. (3.26] decays asn™! ing of Ref.[17] that the time-domain wave form of such
= i|m|‘1, i.e. faster(by |m|‘1’3) than thei|m|_2/3 decay Ppiecewise-linear loops is a piecewise-linear function of re-
of Eq. (3.25. When considering the wave form*”o J(+7) tarded time. Our analysis shows, however, that such special
with J#**=1#1” , we can finally contrast, in order of magni- Piecewise-linear loops are bad models of the wave forms
tude, the previous “cusp” result)’ =1#USq” %UsP to the emitted by generic string loops. I_ndeed, even if a string net-
new “kink” one JAV, — |4 Ccusprkink T Tharatoee the ratio work contains only a small fractiofsay a few perceitof
Kk T+ loops with cusps, this small fraction will dominatsee be-

n
low) the crucial high-frequency tail of GW emissidbe-

K MInkf eeusp gkinky jeusp s essentially given by the ratio
kink,jcusp ;
[/1555Pie. by the ratio between E¢3.26) and the usual cause k“S{f)oc|f|~¥3. Even in thea priori implausible

result[Eq. (3.29] (with +— —). If the discontinuity inX2 556 where the fraction of cuspy loops is negligibly small,
is of orderw [X_|~1, the ratiol“""™/1°“P is simply given the high-frequency tail of GW emission will be dominated
(independently of the sign of) by the power|m|™"® by generic kink wave forms={(I{g,e) " 0, With &<7(f)
~(|f[1) ¥ characterizing the faster decay of tt@mple  «|f|~23 The faster decay of the special piecewise-linear
kink integral [Eq. (3.26)] versus its cuspy analog. This |oops, K(itn]}earoc|m||g—ukink|Z)kinkx|f|73/3 disqualifies their use
simple reasoning allows us to immediately translate our preas models of GW emission by a network of strings.

vious cusp results into their kink analogs. Thé power of

|f| II’2] the cusp wave forniEq. (3.12] becomes replaced by IV. PROPAGATION OF A GRAVITATIONAL WAVE BURST

a3 power, IN A COSMOLOGICAL SPACE-TIME

ri(F)ec| f]~(2Pe2mtealrg?) 3.27 In the previous sections we discussed the emission of a
_ _ o GWB in the local wavezone of the source, i.e. at distances
with B proportional to the ¢=0 limit of) the vectorl”  |arge compared to the wavelength but small compared to the
[Eq. (3.26]. The time-domain wave form becomes cosmological scale. The GWB amplitude was then character-
Kink - ized by its (distance-independentasymptotic amplitude
() ot (3.28 Ky, entering Eq.(2.8). We need now to study the subse-

and still corresponds to a formally infinite spike in tidal Gw duent effect of the propagation df,, in a cosmological

forces ag—t.. Finally, the simplified estimatiEq. (3.23] s_pace-time.BIt is well known that if We.conlsider a perturba-
translates into tion, g,,=9,,+h,,, away from an arbitrarily curved back-

ground space—timgﬁv(x”), the trace-reversed perturbation

A Gul B h.,=h,,—395,9%h,, satisfies, in the gaug&fh,g
- W®[9divide(f)—cos (n-n®)], =0, and away from the source, the propagation equation
(3.29 _ _ _
98" Ve Voh,s+2R>,, o= 2R hy =0, (4.1)
wheren® is the direction closest ta within the “fan” ra-
diated by the moving kink. where VE denotes the covariant derivative defined by the

Let us note that our general, Fourier-domain approach cafackground metric. We consider the case where our GW's
easily deal with weaker types of GW emitting worldsheethave wavelengths much smaller than the scale of variation of
singularities. For instance, if we consider a weaker kinkthe background metridThis is certainly the case for what
where X*(o_) and X*(o_) are continuous, but where concerns the cosmological background. Here we shall not
X*(o_) is discontinuous, then™* decay of Eq(3.26) will consider the special situations that arise when the GW meets,
be replaced by a2 decay asn— =. This faster decay will during its propagation, some local bump in the curvature, of

correspondingly increaséby 1) the (inverse power of || §cale comparable to its Wavele_ngtm such a case, we can

appearing in Eqs(3.27) and(3.29. (i) neglect the curvature terms in E@-1), and(ii) treat the
Let us also note that Ref17] recently studied the wave leading propagation equatigg” VS V> h, =0 in the WKB

forms emitted by piecewise-linear loops, i.e. the case whergpproximation

both X* andX* are piecewise constant, with discontinuities - _

at some kinks. In this very special caseth I and|” are h.s=RealAe,ze'"*], (4.2

given by a finite sunfover the number of kinksof terms of

the form of Eq.(3.26 (corresponding to one kinkin which ~ where the polarization tensor is normalized by

one must reinsert the kink phase factor ex(: X_/2). The  gg“gg"e,z€,,=1.

scaling with m corresponding to this case 9 s As usual the WKB approximatione(—0) yields, if we

|4 Kk v Kikem=2= |m[~2. This leads to a wave form introduce the wave vectdr,=3,S/e (with k“=g4"k,),
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g"k,k,=0, (eikonal equation (4.33 The Iogarithmié Fourier tr_ansform of the GW gmp!itude
at reception can be written in terms of the logarithmic Fou-
rier transform of the asymptotic GW amplitude at emission,

Ku(fem), as

k“VBe,z=0, (4.30 _ <PPL(1+2)f]
h,,(f)=———.

k*€,5=0, (4.3D)

4.9

aof
VE(A%KH) = A(2k*VEA+VEK“A)=0.  (4.30

Here, and henceforthf=f . denotes the observed fre-
For our present purpose, the most important results are Eq9U€NCY.a0=2ar denotes the present cosmological scale fac-
(4.39 and(4.3d. Equation(4.39 says simply, in words, that tOF, andz the cosmological redshift introduced in E¢.7). It
the transversgsee Eq(4.3b)] polarization tensoe, of the ~ eMains to express the “amplitude distanagf [which is
GW is parallelly propagatedalong the null geodesicdgq. ~ (1+2)" " times the luminosity distangén terms of the red-
(4.33] describing, in the geometrical optics limit, the GW shift z. For _thls we use a rel_at|on valid in a spatially flat,
propagation. Most important is E¢4.3d, which gives the ~Mmatter-dominated@no=1) universe,
law of decrease of the GW amplitudealong the null ray.

If we write condition(4.3d for the case of a spatially flat adf =3t 1— . 4.9
Friedmann-Lemane universe, 0 0 Ji+z)' '

o At24 a2 “p "2 D wherety=2/(3H,) is the present age of the univergk the

ds’=—dt*+a%(t)(dr*+r*d?) numerical estimates below, we ubg=65 kms *Mpc !

— a2(p)[ - d P+ di2+72d02], (4.4y  Which corresponds tdo=1.0x 10°yr=10'* s) Though

this relation is modified in the earlier radiation-dominated
era, it will be sufficient for our purpose to use Eg.9) for

and a “retarded” solution of the eikonal equati®#.3a of - T
all values ofz, because,r tends anyway to the finite limit

the formS=F(7—r) (where we choose the center of MaSSai 51l asz becomes large
. O_ 0 .
of the source as center of the polar coordinate systera In the following, we shall work with order-of-magnitude

find thatr?a®A® remains conserved during the propagation,astimates. We simplify the “amplitude distancEZq. (4.9)]

.e. that the GW amplitude decreases as to aof ~tz/(1+2), and use our simple estimates £§.23

(for the cusp wave form and Eq.(3.29 (for the kink wave

_|_X 45 form). Finally, we have(in terms of the observed frequency
a(n)t i —const f="f e, henceforth considered as being positive
Gul 1+z
In the local wave zona(#)f=a(7n.)f=r (where the sub- hCUsRf) ~ T (4.10
script “em” refers to the emission evenis the physical ra- [(1+2)fl] oz
diusr which appeared in Eq2.8), so that the constamt on and
the right hand side of Ed4.5 measures the amplitude of the
asymptotic GW tensor amplitude,,,, after having factor- _ Gul 1+7
ized the normalized polarization tensey,,. Finally, the hkink( f) ~ > 4.1y
time-domain GW amplitude arriving on Earth can be written [(1+2)fI]%° 1oz

as
Note that the low frequency paf{1+2)f~T, '~171, i.e.

P ) low mode number$m|fl] of the GW amplitude would be
Hﬂv(trea:w, (4.6  of order hLF~G,uI/a0_r~G,uI(1+z)/(toz). Compared to
Ared this nonburst, “full” signal, we have the simple orders of
magnitude h®S{f)~ 6,(f)h'F and h™K(f)~ 2 (f)hF,
where t,. denotes the proper time at reception,.  Where 6,(f)~[(1+2)fl]~**~|m|~*® embodies the basic
=a(tred, 7rec=Jedt/a(t), and where pp” means that the power-law dependence on the mode numbrewhen |m|
tensork,,, must beparallely propagatedbetween the emis- >1. Itis crucial to keep in mind that the “cusp” resylEq.

sion and the reception, along the null geodesic followed by4.10] holds only if, for a given observed frequentythe
the GW. As the latter null geodesic is described byangled between the direction of emissionand the 3 veloc-

[™%t/a(t)—r=0, we have a typical redshifting of time in- 1Y n(@ of the cusp satisfies
tervals between emission and receptiot,e./aec - — ~113
) , . A <0n,=[(1+2)fl/2 s 4.1
=dtem/aem, Which corresponds, in the Fourier domain, to 0= Om=L( ) ] 412
fre@rec= fenflem, 1.€.
3Note that definition2.26) ensures that a constant redshift affects
fem=(1+2)frec, 1+Z=aec/Aem- (4.7 the argument ok(f) but not its amplitude.
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Similarly, the “kink” result [Eqg. (4.11)] holds only if the t=to(1+2) 32 (matter era (5.4)
smallestangle 6 between the direction of emissiam and

somekink velocity 3 vectorn® satisfies the same relation On the other hand, for>z., (radiation era we have (1
[Eq. (4.12]. Note that the domain of validity of the cusp +2) '=a(t)/ap=(aeq/ao) (t/teg % so that

result[Eqg. (4.10] is, for each loop period, esmall cone, of " o

half openingdy,, aroundn(®, while the domain of validity of t=to(1+2ze) " (1+2) = (5.9
the kink resul{Eq. (4.11)] is a 6,,, thickening of the “fan” of
directions drawn by the continuous time evolution of the
kink velocity vectorn®,

For our subsequent estimates, we found it convenient to
define smooth functions af which interpolate between the
different functional dependences pin the matter era, and

the radiation era. For instance, in view of Ed5.4) and
V. GRAVITATIONAL WAVE BURSTS FROM A (5.5, we define the smooth function

COSMOLOGICAL NETWORK OF STRING LOOPS " "

A. Simplified description of a string network ¢(2)=(1+2) " (1+2/zeq) ' 56
Having derived the GW amplitudes emitted by individual in terms of which

cusps and kinks on some loop situated at cosmological dis-

tances, we need now to sum the contributions coming from a t=topi(2). (5.7

cosmological network of string loops. For this, we shall use,

a simplified description of such a string network. Indeed

though much work has been done to understand the evol

tion_ of such networl_<$_see references in Rdfl]), th_ere re-- |~ atoe(2), (5.8

main many uncertainties about some of the crucial detailed

features of this evolutiofnotably the exact value of the pa- while their number density is

rameter « introduced below, and the average number of

cusps per loop In fact, our work provides a new motivation n~a 'ty 30 3(2). (5.9

for reinvestiagting such questions and obtaining better an-

swers. In the present exploratory investigation we shall con-

tent ourselves with using a very simpléone scale”) de-

scription of a string network. Let us recall that, at any cosmic I this subsection we concentrate on cusp GWB's. Insert-

time t, a horizon-size volume contains a few long stringsing Eg. (5.8) into Eq. (4.10 yields a GW amplitude from

stretching across the volume, and a large number of smafiusps at redshift of the form

closed loops. The typical length and number density of loops _ 23 1 _
formed at timet are given approximately by h®™Rf,2)~Gra™(fto) " “en(2) 01 9m(“'f’z)(]5' 19

hen, from Eq.(5.1), the typical length of a loop formed
;jgnd decayedaround the redshifz is

B. Gravitational wave bursts from cusps

~ . —1-3
|~at and m()~a Tt . where we defined the interpolating function

As stated abovg, the exact_ value of fleceucial) dimension- cph(z)Ez’l(1+z)’1’3(1+z/zeq)’1’3, (5.11)
less parametet in Eq. (5.1) is not known. We shall assume,

following Ref. [5], that« is determined by the gravitational and where thed-function factor[©(x) denoting as above

backreaction, so that the step function®(x)=0 for x<0 and ®(x)=1 for x
) >0] serves the purpose of cutting off the burst signals that
a~T'Gu  with I'~50. (520 would formally correspond tof,, = 1. Indeed, the entire

o ) ] ] derivation of the burst signal in Sec. Ill was done under the
The coefficientl” is defined as that entering the total rate of gssymptiory,,<1, corresponding to high values of the mode
energy loss by grav!tational radiatiojfldt:FGMZ.. [Note number|m|~0r;3. The low mode numbensi= (1) do not
that fundamental string theory suggests that string 100ps of i resnond to bursts, and the string does not emit modes with

small size loose energy not only as gravitons, but also a <1. We mentioned above thaf“sY )~ 6. (f)h'F where
dilatons, which increases the effective valud'di20].] For a [<1. )~ ()

loop of invariant length (and oscillation period’;=1/2) the
lifetime is 7~ 1/TGu~t.

In the following, we shall express all the cosmological
dependence in terms of the redshifrather than the cosmic

htF~Gul/a,r is the amplitude of the low frequency signal
generated by the low mode numbers. Therefore, formally the
cusp signalEq. (5.10] gives an approximate representation
of the string GW amplitude which is valid for adl,(f)=1,
down to and including th&ormal) limit 6,,=1. The explicit

i .L
tmet. Let expression for6,,(«,f,z) is obtained from combining EQ.
4.12 (where we henceforth neglect the factdf’pwith Eq.
Zo=2.4X 10% Q) oh3=10%9 (5.3 25_8)36(1” 4 roads 9 rp q
I(ienote the regishlﬁ of. equal matter an(_j ra_d|at|on densities. (@, f,2)=(afto(1+2) @ (2)) 13
or z<Zzy, i.e. during matter domination, we have
a(t)/ag=(t/ty)?*=(1+2) "%, i.e. =(afty) M1+ 2)Y9(1+2/z,)"% (5.12
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Let us now turn to the problem of estimating the rate ofThe sought for estimamﬂ”rs'(f) is therefore obtained bgi)

occurrence of GWB’s from cusps. As recalled above, forsolving Eq.(5.19 for z,,, or, equivalently, solving Eq5.17)
smooth loops cusps are generic, and tend to be formed a fe

#r z and (i) substituting the resulz=z,(N,f) in Eq
times during each oscillation peri¢d0]. Reconnection, and ' X . my o
its associated kink formation, can, however, diminish the av-(%ig'nﬂ:;ft'ﬂzl n?gsm?l:dla(s)fa}[hcgffeggmitfunctlonal form de
erage number of cusp41]. However, we find it very plau- P 9 9 q y
sible that a significant fraction of the loops will exhibit
cusps. To quantify this, we introduce a parameteefined
gzritgg(gf”;elgnobp"f average number of cusps per oscillation oo ity<1 the dominant redshift will be,(y)<1: if
. _11/6 ;
We start by estimating the rate of GWB'’s originating at1<y<qu—Zeq » 1<Zn(y) <Zeq, and if y>Yeq, Zm(y)

cusps in the redshift intervalz, and observed around the =~ Zeq: More preusely, the SO'“"OT‘ of EQS.;?) for z can be
frequencyf, as written as the followinginterpolating function of the com-

binationy [Eq. (5.20]:

y(N,f)=10"2(N/c)tya®3(ft,)?2. (5.20

.1
dN~Z¢9ﬁ1(1+z)’lv(z)dV(z). (5.13 Zin(Y) =y A1+ y) B L+ ylyey M, (5.21)
2% as above.

We can again introduce a suitable interpolating function
g(y) to represent the final result as an explicit functioryof

Here the first factor is the beaming fraction within the cone\’\’here%q:Z

of maximal angleé,(f,z) [Eq. (5.12]; the second factor
comes from the linkdt,,=(1+2z)dt between the observed
time ty,s (entering the occurrence rate on the left hand)side

cus| . 213 —1/3 \ _ \
and the cosmic timée of emission; the quantity hy ) ~Gua®(fto) " g[y(N.F)]O[1— (N, D],

(5.22
cny(t
v(t)~ _Il_( )~20a‘2t‘4 (5.14  where
|
—\— 13 —13/3 3/11
is the number of cusp events per unit space-time vol(ime g(y)=y H1+y) 3(1+y/yeq) ’ (523

which enters the average numlzeof cusps per loop period
T,=1/2~at/2); finally, dV(z) denotes the proper spatial
volume between redshifisandz+dz. In the matter era,

where®(x) denotes as above the step function, and where
6(a,N,f) denotes the functions, N, andf obtained by
substituting z—z,[y(N,f)] [defined by Egs.(5.20 and
dV=547t3[(1+2)¥?>—11%(1+2) %Yz (515 (5.21)]into Eq.(5.12 above. In fact, thig®-function cutoff
will be needed only when we consider very low frequencies

while in the radiation era f and very small values af. For instance, if ~1/(7 yr) and
dv= 727Tt8(1+zeq)1’2(1+z)‘5dz. (5.16 ]Ic\(l)/rc;<l/1)(/)r_,90m(a,N,f) would become larger than one only

Prediction(5.22 for the amplitude of the GWB’s gener-
ated at cusps of cosmic strings is one of the central results of
this work. Before proceeding to analyzing the detectability of
these bursts, let us discuss the GWB's generated at kinks.

It is convenient to work with the logarithmic density

N(f,zZ)=dN/dInz Using the relations given above, we
write it in terms of a new interpolating function af

N -1_-8/3 -2/3

N(F,2)~10cty '™ *(fto) e (2), (.17 C. Gravitational wave bursts from kinks

where the numerical factor #Gapproximates an exact nu- We recall that, from Eqs4.11) and (4.12, the two dif-
merical factor which is 54/4 whenz<1, 547 when 1<z  ferences between kinks and cusps are thathe kink GW
<Zeq, and 72r whenz>z.,, and where we defined amplitude is smaller than the cusp one by a fa¢tof 2
~O~[(1+2)fI]73 (i.e. hK"k~g2h'F instead of h®UsP
~ 6,,h*F); and(ii) the kink amplitude is emitte¢per period

The observationally most relevant question is the foIIowing:In a thickened fan of directions of solid anglef,, instead

What is the typical amplitude of cusp-generated burstsOfaC_one pf solid angle- 6, . This secon_d fact is in faVOT of
hb”rs‘(f) that we can expect to detect at some aiven occur:[he kink signal, but we shall see that it does not suffice to
N P 9 compensate for the bad news that the kink signal is para-

rence rateN, say, one per year? As the functipp(z) always  metrically smaller than the cusp one.
increases witle like a power law(with an index which de- Using formula(5.12), we can easily derive the kink ana-
pends on the considered range of redghifte value ofN is logs of the cusp results derived above. First, we find, instead

dominated by the largest redshift, say, contibuting toN:  ©f Ed. (5.10,
. - - hkink(f)N am(a’f,Z)hcusp(f)NGMaI/S(ftO)*ZB(PLk)(Z)
sz N(f,2)d Inz~N(f,z,). (5.19
0 XO[1- O(a,f,2)], (5.24

en(2)=2%(1+2)" "Y1+ 2ze9 ™" (5.18
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with the kink analog of the cusp interpolating functiggq.
(5.11)]:

(5.25

The rate of GWB’s originating from kinks in the redshift
intervaldz, and observed around the frequeriicis obtained
by dividing Eq. (5.13 by 6,(«,f,z) [Eq. (5.12]. This
yields, instead of Eq45.17 and (5.18),

2=z 1+2) Y(1+2/ze) V5

N®(f,z)=dN"Sd Inz~ 10Pkty ta™ "3(ft) ~ el (2),
(5.2

where

(5.27
The parametek in Eq. (5.26) is the kink analog of parameter

eM(2)=22(1+2) 1+ 2/2,9) %"

cin Eq. (5.17), i.e., the average number of kinks on a loop.

Now the expectation is th&>1. In the following we shall
simply assume~ 1, though one must keep in mind that
might be significantly larger than 1.

As in our discussion of cusps, we are interested in esti
mating the GW amplitude of kink bursts that one can expec

to detect at a given recurrence rdte As before, this is
obtained by first solving Eq5.26) for z, which yields

z= zET':)(y(k)) = (y®) 131+ y ()45 1 4 y(k)/yga)) 73/(10, .
5.2

wherey(d=z5>, and where the quantity®™ is the following

function of N andf:

yO(N,f)=10"2(N/K)tga"3(fty) 3. (5.29

We can finally write
h&™(F) ~ Gura(ftg) ~2PpM[zM[yMI(N,f)]]

X0[1- 6% (a,N,f)], (5.30

where 6%9(a,N,f) denotes the result of substituting

—zM[yM(N,f)] into Eq.(5.12. We could also have writ-
ten Eq.(5.30 in terms of an interpolating functiog(* (y®),
as in Eq.(5.23.

D. Functional behaviors of h®sP and h*"k and first
comparison with planned GW detectors

It is easily checked that both{*{f) [Eq. (5.22] and
hE”k(f) [Eq. (5.30] are monotonically decreasing functions
of both N andf. Also note thah?,*” depends on the average

number of cusps only through the combinatioN/c, while
hkl'nk depends on the average number of kiklanly through

N/k. The dependence dy andf (as well asc andk) can be
described byapproximate power laws, with an index which

PHYSICAL REVIEW D 64 064008

FIG. 1. Gravitational wave amplitude of bursts emitted by cos-
mic string cusps(upper curves and kinks (lower curve in the
LIGO-VIRGO frequency band, as a function of the parameier
=50Gu (in a base-10 log-log plpt The upper curve assumes that
the average number of cusps per loop oscillatiorcisl. The
middle curve assumes=0.1. The lower curve gives the kink signal
(assuming only one kink per loppThe horizontal dashed lines
indicate the one sigma noise levéidter optimal filtering of LIGO
1 (initial detectoy and LIGO 2(advanced configurationThe short-
[Jashed line indicates the “confusion” amplitude noise of the sto-
chastic GW background.

derive the analogous results beink by using the formulas

given above. As N increasedor asc decreases h®“sP de-
creases first liké&N =12 (or ¢*3) in the rangez,,< 1, then like

N~51 (or c¥1Y) when 1<z,<z,, and finally like N~ 51

(or ¢ when z,,>z,,. For the frequency dependence of
h®F the corresponding power-law indices are successively
—5/9, —9/11 and— 7/11.[These slopes come from combin-
ing the basid ~*® dependence of the spectrum of each cusp
burst with the indirect dependence bof the dominant red-
shift z,(a,N,f); see Eqgs.5.21) and (5.20.] By contrast
with these monotonic behaviors, when using our assumed
link Gu~ a/50 between the string tension and the parameter
«a, one finds that the index of the power-law dependence of
h®SPupona successively takes the values//9, —3/11 and
+5/11. The appearance of the negative inde3/11 means
that in a certain intermediate range of valuesaofcorre-
sponding to Kzp(a,N,f)<zeq or 1<y(a,N,f)<ye,
=274 the GWB amplitudeparadoxically increases as one
decreasesy, i.e. Gu. [A decrease ofx leads to a smaller
radiation power from individual loops at a given redshift, but
at the same time it also leads to a higher density of loops and
thus to a higher likelihood for an observer to see some of the
loops at a small angle with respect to cusp direction. The
overall effect is determined by the interplay of these two
factors]

In Fig. 1 we plot(as solid linesthe logarithm of the GW
burst amplitude, log(h®""s), as a function of logy( a) for (i)
cusps withc=1 (upper curvg (ii) cusps withc=0.1
(middle curve, and(iii ) kinks with k=1 (lower curve. Fig-
ure 1 uses the fiducial valué=1yr !, and gives the value

depends on the relevant range of dominant redshifts. Let ugs heuspor hkink for g frequencyf = f.= 150 Hz. As discussed

focus on the functional dependencesf™, which will turn
out to be the physically most relevant quantity.is easy to

in Sec. VI, this central frequency is the optimal one for the
detection of & ~ %/ spectrum burst by LIGO. We indicate on
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space borne GW detector LISA. The meaning of the various
curves is the same as in Fig. 1. The main differences with the
previous plot arg(i) the signal strength, and the SNR, are
typically much higher for LISA than for LIGO, so that LISA
could be sensitive to even smaller valuesaofdown to «
=10119; (ii) LISA is very sensitive even to rare cusp
events £=0.1 or even smallgy (iii) LISA is, contrary to
LIGO, sensitive to the kink burstsvhich are believed to be
ubiquitous; and(iv) though the GW burst signals still stand
out well above the cusp-confusion backgroyd@cussed in
Sec.V)), the latter is now higher than tHeroadbangdetec-

tor noise in a wide range of values af LISA is clearly a
very sensitive probe of cosmic strings. We note again that a

FIG. 2. Gravitational wave amplltude of bursts emitted by COS'Search |n COlnc|dence W|th GRB’S Would ease detect|on
mic string cuspsupper curvesand kinks(lower curve in the LISA

frequency band, as a function of the parameter50Gu (in a base-
10 log-log plo}. The meaning of the three solid curves is as in Fig.
1. The short-dashed slanted curve indicates the confusion noise. The

lower long-dashed line indicates the one sigma noise |éfbbr A. Signal to noise considerations
optimal filtering of LISA.

VI. DETECTION ISSUES, CONFUSION NOISE, PULSAR
TIMING EXPERIMENTS

Let us first complete the explanation of Figs. 1 and 2 by

the same plofas horizontal dashed lineshe (one-sigma discussing the choice of the central frequencies and the de-
noise levelh"seof LIGO 1 (the initial detector, and LIGO  tector noise levels indicated there.

2 (its planned advanced configuratjothe VIRGO detector We recall that the optimal squared signal to noise ratio
has essentially the same noise level as LIGO 1 for the GWSNR) for the detection of an incoming GW by correlation
bursts considered here. We defer to Sec. VI a precise defin¥ith a suitable bank of matched filters is given by

tion of these noise levels, as well as the meaning of the extra

short-dashed line in the lower right corner of Fig. 1. ._[S)7_ fmdf |E(f)|2:21+”ﬂ Ih(H)[?
From Fig. 1 we see that the discovery potential of ground- p N —w  Sy(f) o f (h,(f)?
based GW interferometric detectors is richer than hitherto (6.2

envisaged, as it could dete@t c~1) cosmic strings in the

range =10, ie. Gu=10*? (which corresponds to Hereh(f) is the Fourier transform of thébesi template
string symmetry breaking scales 10'3GeV). Even ifc (assumed to match the sighab,(f) is the(two-sided noise
~0.1, i.e. if cusps are present only on 10% of the loops inspectral density, and, as above, we introduce the logarithmic
the network, which we deem quite plausibl@dvancel  poyrier quantitieh(f)=|f|R(f), andh,(f)=[f[S,(f). For
ground-based GW interferometric detectors might detect GW,sp burstgon which we focusthe optimal bank of filters

bursts from cusps in a wide range of valueswf.et us also  (when neglecting the fine structure around the center of the
note that the value ok suggested by thesuperconducting-  cysp s

cosmic-string gamma ray buré&RB) model of Ref.[9],
namely a~10 8, nearly corresponds in Fig. 1 to a local h(f)=A|f| Y3t (6.2
maximum of the GW cusp amplitudgThis local maximum
Corresponds t(Zm"’l. The local minimum on its right corre- and depends, in addition to the overall amplitude factor, on
sponds t@~ze,.] In view of the crudeness of our estimates, Only one parameter: the arrival tintg. We take the follow-
it is quite possible that LIGO 1 or VIRGO might be sensitive ing model of the LIGO 1(two sided noise curve(see, e.g.,
enough to detect these GW bursts. Indeed, if one searches fB€f. [19]) (for f above the seismic cut off,~40 Hz)
GW bursts which are(nearly coincident with (somé)
GRB'’s the needed threshold for a convincing coincident de- S, (f)= 330
tection is much closer to unity than in a blind search. Let us 2
finally note that Fig. 1 indicates thé&xcept ifk happens to )
be parametrically largethe kink bursts are too weak to pro- Here Sy=1.47x10"*°Hz"* and f,=200 Hz. [Equation
vide an interesting source for LIGO-VIRGO. (6.3 is not really up to di':\te, but it is suffici(ent)for ((j)ur
. ; R present orientation estimaieBy inserting Eqs.(6.2) an

1y, i ool icquency -1, (69,10 £ (61 ve oban an exlct iegal popor
— -3 i i =T1/Tg =
=3.9x10° " Hz optimized for a detection by the planned +2x%2+x~4). The minimum of the functiors(x) is located
- at Xx,,=0.7483, which corresponds f@,= X, fo=149.67 Hz.

“The local maximum of the 1A®Pin Fig. 1 corresponds to a 1herefore LIGO 1 is optimally sensitive, for such signals, to
redshiftz,,~ 1. By contrast, in the model of R4®] the (300 times  the frequencies ~ f,,~150 Hz.[This value would also be
more numerousGRB’s come from a larger volume, up to redshifts approximately appropriate for kink signals, and also for the
~4. LIGO 2 noise curvd.Choosingf .= 150 Hz as a fiducial fre-

2

2+2 +

—4
7 T } (6.3
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quency, and reexpressing the full SNIRg. (6.1)] (including ~ We are interested in the situation where two independent
its overall amplitude factoe |A|?) in terms not ofA but of  detectors(either two ground based interferometers, or the

h(f.), one finds(after computing the integrathat two, partly independent, subinterferometers of L)Sihd a
coincidence, after having madé observations during the
Ih(fy)] year. In our case, each template contains only the arrival time
p= , (6.9 as an essential free parameter. Therefore, the number of ob-

eff
hy servations, assuming a blind search, in one yeamlis
~(1yr)/7=(10"%s)/7 where r~f_' is the characteristic
time between two decorrelated successive observations. As-
hﬁffz 1.7x 1022 (6.5 suming the same noise level in each detector, the sought for
thresholdp, can be defined by setting the product of two
The effective noise levdEq. (6.5)] (which corresponds to a probabilities equal to Eq(6.8) (one for each detectpri.e.
SNR equal to 1 for a matched filter detecfipis what is ~ the square of Eq(6.8), to 1N. Whenr~10"?s (as appro-
called the “one sigma noise level” of LIGO 1 in Fig. 1. For Priate to LIGO this yields po=4.3, while when 7
LIGO 2 (advanced configurationve estimated from noise ~ 3% 10°s (LISA) this yields po=3.0. Note, however, that
curves, available on the LIGO web site, that, near 150 Hzthe model of Ref[9] suggested that GWB's may be associ-
the noise amplituda,(f.) is a factor=13.5 smaller than for ~ated with gamma ray bursts. The threshold for a search in
LIGO 1. This defines the lower dashed curve in Fig. 1. near coincidence with GRB's is som_ewhat lower, because of
We did a similar analysis for LISA. We used @fective  the smaller number of trial observatiohs
noise curve the surfwith a factor 1/2 included to take care
of our using a two-sided spectral dengity B. Confusion noise due to gravitational waves
from a string network

with an “effective” noise level

1 .
S (f)= E[S‘,?S"(f) +SN(£)], (6.6 The realization that the stochastic ensemble of GW's gen-
erated by a cosmological network of oscillating loops is
strongly non-Gaussian, and includes occasional sharp bursts,
raises the following issues, of crucial importance for the de-
tection strategies(i) Can one split this stochastic ensemble

whereS"™" is a recent estimate of the instrumental contribu-
tion to the noisg21],

(14 4 of GW's into a(strongly non-Gaussian, but plausibly nearly
SIS £)=2.13% 1041[1+ _a } 1+<_ (6. Poissoniah “burst” part (best detected by a matched filter
f fy approach, and a(nearly Gaussign“background” (best de-

tected by the usual strategies discussed for Gaussian stochas-
where f,=2.76x10"° Hz, f,=9.55<10 ° Hz, and where tjc backgrounds (i) What is the relation of this split to
S(f) is the “binary confusion noise,” as estimated in Ref. previous estimates of the “stochastic” string-generated back-
[22]. Again the optimal frequency is fixed by considering theground of GW’s[2—7], and how does it affect the interpre-
minimum of ha(f)/|h(f)|2ef3S°(f), which occurs aff,,  tation of the famous pulsar timing constraj@g]?

=10 24113Hz=3.879x 10 3 Hz. Again, the “one sigma” Our proposal, for each detector with characterigtipti-
effective noise leveldashed horizontal line in Fig.)2s de-  mal) detection frequency., and for each GW amplitude
fined by Eq.(6.4), with the result:hﬁﬁz 1.815<10 %, level, is to define the borderline between occasional, indi-

Let us also briefly mention the problem of “thresholds,” vidual sharp bursts, and a nearly Gaussian background by
i.e. the minimum value of the SNR, say, needed to dis- counting the average number of bursts of given amplitude
tinguish, with enough confidence, a real signal from a statiswhich arrive within a characteristic tirnt—ngf. In other
tical fluctuation of the instrumental noise. Assuming, forwords, we define a nearly Gaussian background by consid-
simplicity, a Gaussian instrumental noise, the probability thatring theconfusion noisegenerated by theverlap of more
the template-filtered detector output exceed a certain jgyel than one(and generally manybursts which arrive within a

of SNR is given by the complementary error function time smaller than the considered characteristic inverse fre-
quency. A technical way of justifying thigphysically intui-
ARG —(12)p? tive) consideration is the following.
P(p>po) = (;) f dpe P Let us write, in the time domain, our stochastic ensemble
P of GW’s from a string network as
2\ 3\ A= (1/2)p2
2(E> (Po=po)e Y h(©)=S h(t—1ty.2.po). 6.9
(6.9 "

- Here the(somewhat symbolicsum runs over wave forms

SThe effective noise levelEq. (6.5)], corresponding to the hori- &rriving at timet, and emitted from a string loop at redshift
zontal line in Fig. 1(with a similar line in Fig. 2, should not be  Z,, with other string parameterdength, orientation, etg.
used to estimate the SNR for the detection of a stochastic backeeing denotedp,,. The (logarithmig Fourier transform of
ground, which is optimized by a different filtering technique. Eq. (6.9 reads

064008-14



GRAVITATIONAL WAVE BURSTS FROM CUSPS AND . .. PHYSICAL REVIEW D54 064008

- ot cise sense, théeffective number, within an octave of fre-
h(f)=[f[h(H)=> e*™h(f,z,,p,).  (6.10  quency around, of random GW bursts generated at redshift
" z, and therefore of amplitudé(f,z), which contribute to

Let us now recall that the spectral noise density of a stohfms- The latter result leads us to split the ensemble of GW
chastic ensemble of signals is defined @,*(f)ﬁ(f,» signals in two setsfi) the“set of rarenonoverlapplng)ursts
= 5(f—f")S,(f) where() denotes an ensemble average, such thain(f,z) <1, and(ii) the set of frequenpverlapping

tilde the usual Fourier transform and a star, complex conjuPUrsts, such tQa"(f'Z)>1_- The rare, nonoverlapping bursts
gation. Defining thetotal) root mean square GW amplitude contr_lbute toh;,{f) only if one considers integration times
himg(f) [With the same dimension &t), i.e. dimensionle§s ~ T>[N(f,2)]7*=[n(f,2)|f[]~*>|f|~*. Therefore, if we are

by h2 (f)=|f|S(f), the above definition of,(f) becomes, interested in detection issues involving a detector with a cer-

in terms of the more convenient logarithmic Fourier quanti-tain characteristic bandwidthk f., and a corresponding in-
ties, tegration timeT.~f_*, all the bursts such that(f.,z)<1

should be considered as randomly occurring separate burst

<h*(f)h(f’)>=|f|5(f—f’)hrzms(f). (6.12 events, and the magnitude of these occasional events should
o ) not be compared to the fufi2, (f.) of Eq.(6.15 but only to
When we take théformal) limit f'—f, the delta function  he+confusion” noisedefined by restricting integré.15) to
o(f—f")=Jdtexd27i(f—f")t] becomes a(formally infi-  the overlapping events)(f.,z)>1. [By the central limit

nite) total time intervalT = fdt: theorem, applicable when(f.,z)>1, this confusion noise
can be considered as being nearly Gauskiginerefore we
(h* ()N())= || ThZ, ). 612 gor 9 neary

Let us now compute the quantith* (f)h(f)) by squaring

expression(6.10. Before taking the ensemble average, we h2 r(f)Ef d_zn(f 2)h%(f,2)0[n(f,2)— 1]
obtain a double sum over andn’ involving phase factors confusio z ’ ' '
e?™'(th~tn) in addition to the other phase factors hidden in (6.17)
the dependence on the other parameters. If we asgame

usua) that such phase factors are random and average to zero We conclude that the relevant background that individual
(except whem=n’), we obtain cusp or kink bursts should exceed to be detectable by LIGO

(central  frequency fc=2150 Hz) or LISA (f.

=3.88x10 2 Hz) is not ha (f.) [Eq. (6.19], but only
<h*(f)h(f)>:; Ih(t.z0.po) .13 hZoniusiof fo)» [EQ. (6.17)]. Trrre]S(short dashed lines in Figs. 1

and 2 precisely plot quantity Eq6.17), for thec=1 cusp

Within our simplified approach to the string network, we packground, i.e. foh(f,z) given by Eq.(5.10, andN(f,z)
assume that the GW amplitudes differ only by their redshiftgiyen py Eq.(5.17 (with c=1). This shows that in the
of emissionz, . The sum oveg, (within some octave around | |GO or LISA bandwidths the individual bursts occurring

z) then counts the number of signals coming frdmiz dur-  once per year stand out clearly above the relevant confusion
ing the total timeT. In terms of our previously introduced pgise.

differential rate of occurrencl(f,z) this yields simply
C. Rare bursts, confusion noise and pulsar timing experiments

dz.
<h*(f)h(f)>:TJ' 7N(f,z)h2(f,z)_ (6.14 Our finding that the stochastic ensemble of string-
generated GW'’s is not Gaussian, but can be viewed as the
Identifying this result with Eq(6.12), we finally obtain superposition of occasional bursts on top of a nearly Gauss-

ian “confusion” background, leads us to reexamine the pul-

z sar timing experimentf23] and their use as constraints on
hfzms(f): f ?n(f,z)hz(f,z), (6.19 the string tensioi i Let us take as characteristic frequency
of the pulsar timing experiments the frequendy®
where we introduced the shorthand notation =1/(7 yr):10_8-35 Hz which roughly corresponds to the
) ) optimal sensitivity of the data of Refg23]. To obtain a first
N(f,z) 1 dN idea of the situation, let us start by considering the fiducial
n(f,z)= [ [fldinz (618 value ayy=10"* corresponding toGu~ a/50=2x 107S,

i.e. the traditionally considered type of string tensipnkich

This derivation has achieved two ain4) It gives us an  can naturally come from grand unified theor{€@JT’s) and
explicit expression[Eg. (6.19] (computable in terms of which is most relevant for large scale structure formdtion
quantities that we calculated abowvier the usually consid- We can compare three different GW amplitudes of relevance
ered rms GW background generated by a string netw@k. for the pulsar experimenti) the amplitude of individual
It shows(by comparison to the usual rms value of a sum ofbursts having a recurrence rdft&'=1/(7 yr) (instead of the
n independent random variables with the same variptheg ~ 1/yr recurrence rate considered above for LIGO or LISA
the quantityn(f,z) [Eq. (6.16)] gives, in a technically pre- (ii) the rms amplitude of our confusion backgrou(&d17),
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and (iii ) the rms amplitude of the usually discussed full in-
tegral[Eq. (6.195] which includes both rare bursts and over-
lapping ones. We find

hiiR s, 10%)=0.503< 1073, (6.183
Pconfusiod @fia, fe-) =1.01x 10 3, (6.18b
himedl g, 12%) =2.30x 10722 (6.180

In computing integralg6.15 and (6.17) we have here
used(for better accuragyan improved estimate of the space
density of loops,n, [Eq. (5.1)]. Indeed, numerical simula-
tions indicate that, beyond the scaling~a~*t 2 one must

add an extra factor related to the parameter characterizing thn

density of long strings. This factor is different in the radia—I
tion era and in the matter era. In the notation of R&f.this
extra factor is~0.4{,~10 in the radiation era, and is
~0.12%,~1 during the matter era. In other words, a better
estimate ofn, is obtained by multiplying estimaté.1) by
the function

C(2)=1+92/(2+ 24y, (6.19

which interpolates between 1 in the matter era and 10 in thg

radiation era.

Note that, in terms of the contributidiper frequency oc-
tave of GW's to the present energy densitygw(f)
~[27fh(f)]%/(167G) ~ (w/4G)?h?, or, better, of their
fractional contribution to the closure density,

pew(f)

c

ng(f)E

2 37 21,2
= GWGtopGWN T(fto) hrms(f)'

(6.20

results(6.18 yield
QEoMUSION gy 0 = 2,99 1077, (6.21)
QU (g, fB%)=1.57x10°°. (6.22
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e FIG. 3. Usual rms noiséupper short-dashed cufveconfusion
oise (lower short-dashed curyeand burst GW amplitudésolid
ine) emitted by cosmic string cusps, in the frequency band relevant

for pulsar timing observationSfC=N=1/(7 yn]. Here we as-
sumedc=1 and included facto£6.19 in the spatial density of
loops.

=< 10’ level.[In view of the crudeness of our estimates we

shall not try here to give any precise limit Gu from QSS’VS.

However, Egs(6.18 show that the situation is actually
omewhat more complex than that. Indeed, E6.18a
shows that the(observationally relevaintl/(7 yr) bursts
have an amplitude comparable to the full confusion noise
(which sums many overlapping, small signal§his comes
from the fact that the confusion integf&q. (6.17] is domi-
nated by its lower limif. Therefore a significant part of the
difference betweeMqnrusion@nd hysya COMes from not very
intense, but not very rare bursff\Note, however, that the
dominant contribution im's“¥ comes from the very intense,
very rare bursts, with recurrence time7 yr.] In other
words, Egs.(6.18 show that, within the frequency band-
width ~ f?*' relevant for pulsar timing, the GW signa(f) is
a complicated superposition of a nearly Gaussian n@$e
varianceh?,«sio) and of a small number of occasional ran-
dom bursts, occurring on thé®) ! time scale and of am-
plitude comparable th.qnwsio fc). 1N addition, there might

The usually consideredl, is 5.25 times larger than the 3154 occur(on longer time scalessome larger bursts. This
physically meaningful confusion OISE. This large discrep-jyation shows that one needs to reanalyze from scratch the
ancy comes from the fact thad g™ includes the time- pyisar limits onGp by dealing explicitly with the statistical
average contribution of rare, intensg bursts, which are in gergroperties of such a complicated mix of signals, i.e. by tack-
eral, not relevant for a pulsar experiméiitthey are so rare ling seriously the strongly non-Gaussian nat(ingolving an
tha’g they do not occur during the actual duration of the eXimportant quasi-Poissonian componeaf h(f) within the
perimen}. _ o pulsar timing bandwidth. Until such an analysis, using our
From this consideration, it would seem to follow that the new results on the nature of the string GW background, is
usual way to use pulsar data to set limits Gp [i.e. the  performed one cannot draw secure limits®p from pulsar
comparison  between the  theoretically  predictedppservations. We expect, however, that the result of such an
Qga¥ind @, f) and the observational constraint on a Gaussiamnalysis will be, to a good approximation, equivalent to re-
ng’f’(f)] is seriously affected by the present work. It would placing Q;‘fvual by our newﬂge\’nfusion (which is about five
also seem that the correct way to set limits G@ from  times smaller tharﬂggvua' when Gu=2x10", and about
pulsar data consists simply in replacifigy s by our new,  four times smaller wheGu=10"). In particular, we expect

4 W rms
significantly smallerQ5™*°". Then the valudEq. (6.20] that our results make a GUT-like val@u~10"® now com-
patible (even with many cuspy loopswith present pulsar

suggests that even cusfpather than kink- dominated back-
grounds, withc=1 (as the one considered in the equationsdata.
above generated by string tensior@u of order of 10°° Leaving to future work such an analysis, we content our-

might be compatible with pulsar constraints at tﬁ{-’gf,’f selves by comparing in Fig. 3 the variation with of the
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cusp burst signdifor c=1 andN=1/(7 yr)], theconfusion loops have a broad !epgth distriputim(l,t) and that .the
GW amplitudeh - (£PS) [PS'=1/(7 yr)], and the usu- parametefw characEerlz!ng the typical loop length be in the
ally congi dered Ct(g]tlesilorr(mg 5arE1pclitu dﬂr%:%g%_ Contrary to rangeI'Gu<a=<10"3. (i) We have also assumed that the

what happened in Figs. 1 and 2, we now see that the burcIgiops are characterized by a single length scale, with no wig-

signal and the confusion signal are of comparable orders iness on smaller scales. Short-wavelength wiggles on
gnat . . 9 P cales<I'Gut are damped by gravitational back-reaction
magnitude in a wide range of values @& 50Gu. Note also

X S ) but some residual wiggliness may survive, thereby modify-
usual ’
that ™ is a significant overestimate Glgonrysion When a ing the amplitude and the angular distribution of the GW

=5x10°, i.e. Gu=10 ', which includes the GUT case o5 from cusps and kinkéii) In many of our estimates
WhICh has been traqmonally of most interest for COSMIC\ e assumed the simple, uniform estimpy. (5.1)] for the
string research. In view of the subtlety we just mentioneds,ace density of loops. This estimate is probably accurate in
concerning th(_e data analy13|s 9f puls.ar ex"penments, in Fig. $1e matter era but is expected to be too small by a faetbd
we 9'0 not indicate a precise “one sigma level for.the S€Min the radiation er@l]. In Sec. VI, where the contribution to
sitivity O_f the gulsar_;:xpeng:en{A rou_glr; guess, using Eq. the confusion background of the radiation era was crucial,
(6.20 with Qgu—10""is hP*~0.5x10"=] we corrected estimatd5.1) by including the redshift-
Switching from a defensive attitudpulsar limits onGu) — gependent factor Eq6.19. (iv) Finally, we disregarded the
to an optimistic one(detection of GW by pulsar experi- possibility of a nonzero cosmological constant which would
ments, and forgetting for a moment the subtlety of the factiniroduce some quantitative changes in our estimates. As a
thath®"s- heem=eN(j.e. assuming that*"™="gives a good general comment, let us recall that, though we tried to keep
first estimate of the GW amplitude to be compared to thgpe important “2r factors,” our estimates have systemati-
timing precision of pulsar experimentst is striking to note cally neglected factors of order unity.
in Fig. 3 thath®"*"is a very flat function ofx, so that a In our view the most important astrophysical results of the
modest improvement in the sensitivity of pulsar experimenti)resent investigation are the followin¢t) the clear recog-
(due either to a longer time span or to the discovery of arhjtion of the strongly non-Gaussian nature of the string-
intrinsically more stable pulsamight allow one to detect the generated GW background. The slow decrease with fre-
confusion noise coming from a string network downdo  quency of the GW burst signals means that there are
~10"° (i.e. Gu~10"*). Evidently one should keep in mind qccasional sharp bursts that stand above the “confusion”
that Fig. 3 is drawn for an average cusp numberl. As-  GW noise made of the superposition of the overlapping
suming a smaller value af, or evenc=0, and considering pursts.(2) GW bursts from cusps might be detectable by the
only the smaller kink signals, will make it much more diffi- planned GW detectors LIGO-VIRGO and LISA for a wide
cult for pulsar experiments to probe the existence of cosmigange of string tensions even if the average number of cusps
strings. per string oscillation is only 10%. In spite of the argument
[11] that string reconnection can inhibit cuspshich are
generic for smooth loopsl0]), we find it plausible that 10%
or at least a few percent of the loops in the network will
We have studied in detail the amplitude, frequency specfeature cusps. In view of the crucial importance of the aver-
trum, wave form and rate of occurrence of the high-age number of cusps for detection by LIGO we recommend
frequency gravitational wavéGW) bursts emitted at cusps that new simulations be performed to determine this quantity.
and kinks of a cosmological network of oscillating loops. (3) Even if the number of cusps turns out to be very small,
Our main tool in studying the wave form has been the fac-our estimate of the GW amplitude emitted by the ubiquitous
torization[Eq. (2.23] of the Fourier transform of the emitted kinks show that the space borne GW detector LISA has the
GW amplitude. This factorization allowed us to conveniently potential of detecting GW bursts from kinks in a wide range
extract from the wave form its physically meaningful, gauge-of string tensions(4) Finally, we show the need of a reanaly-
invariant content[This is why our wave forms differ from sis of the constraints 08u derived from pulsar timing data.
previous result§13,11] which did not note the gauge nature Indeed, for such low frequencies the usual estin&g.
of the leading term$.In the time domain these wave forms (6.19] of the GW stochastic backgrouri@hich neglects its
correspond to power-law “spikes™|t—t,? (B=3 for  non-Gaussianityseems to be quite inadequate because it av-
cusps ang3=3 for kinks) of linearly polarized GW’s, with ~€rages on very rare, intense bursts. We have introduced
some smoothing of the center of the spike on time scaleg new, more relevant quantity, the confusion noj&®.
|t—t,|~6°T,, whereT,=1/2 is the loop oscillation period (6.17)], which averages only over the overlapping bursts. In

and whered is the misalignment between the center of thethe first approximation, we expect that the usually derived

beam and the direction of emission. pulsar timing data limit on a Gaussian stochastic background

We estimated the rate of occurrence and the distribution iffoften expressed as a limiSa"3&% 10" ") will entail es-

amplitude of the GW bursts emitted at cusps and kinks bysentially the same limit on theonfusionpart[Eq. (6.17)] of
using a simple model for the cosmic string network. Whenthe GW stochastic background, i.e. we expect that the real
comparing our results with observations, one should keep ipulsar limit on Gu will be the weaker constraint
mind the simplifying assumptions involved in our modg): Qgsv“fus'°weﬂ)<ngx”§$ Our rather crude approximations
All loops born at timet were assumed to have lendthat  do not allow us to transform this relaxed limit in a precise
with «~T'Gu andI'~50. It is possible, however, that the limit on Gu. However, we expect that our results render a

VIl. CONCLUSIONS
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GUT-like valueGu~ 10" ® compatible with pulsar data, even improved treatment. Until such a careful analysis is done,

if c~1 (and probably easily compatible witBu~10 ¢ if ¢ together with a precise estimate of the number of cusps in a
is 10% or less However, we emphasized that there are stillstring network, one cannot use pulsar data to set precise lim-
occasional bursts that complicate the analysis and call for aits on Gp.
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