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Gravitational wave bursts from cusps and kinks on cosmic strings
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The strong beams of high-frequency gravitational waves~GW’s! emitted by cusps and kinks of cosmic
strings are studied in detail. As a consequence of these beams, the stochastic ensemble of GW’s generated by
a cosmological network of oscillating loops is strongly non-Gaussian, and includes occasional sharp bursts that
stand above the ‘‘confusion’’ GW noise made of many smaller overlapping bursts. Even if only 10% of all
string loops have cusps these bursts might be detectable by the planned GW detectors Laser Interferometric
Gravitation Observatory~LIGO!-VIRGO and Laser Interference Space Antenna~LISA! for string tensions as
small asGm;10213. In the implausible case where the average cusp number per loop oscillation is extremely
small, the smaller bursts emitted by the ubiquitous kinks will be detectable by LISA for string tensions as small
as Gm;10212. We show that the strongly non-Gaussian nature of the stochastic GW’s generated by strings
modifies the usual derivation of constraints onGm from pulsar timing experiments. In particular the usually
considered ‘‘rms GW background’’ is, whenGm & 1027, an overestimate of the more relevant confusion GW
noise because it includes rare, intense bursts. The consideration of the confusion GW noise suggests that a
grand unified theory valueGm;1026 is compatible with existing pulsar data, and that a modest improvement
in pulsar timing accuracy could detect the confusion noise coming from a network of cuspy string loops down
to Gm;10211. The GW bursts discussed here might be accompanied by gamma ray bursts.

DOI: 10.1103/PhysRevD.64.064008 PACS number~s!: 04.30.Db, 95.85.Sz, 97.60.Gb, 98.80.Cq
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I. INTRODUCTION

Cosmic strings are fascinating objects which give rise t
rich variety of physical and astrophysical phenomena@1#.
These linear topological defects are predicted in a wide c
of elementary particle models, and could be formed at a s
metry breaking phase transition in the early universe. H
we shall reexamine the emission of gravitational wav
~GW’s! by cosmic strings. The fact that oscillating loops
string are efficient GW emitters was pointed out long a
@2#. The spectrum of the stochastic background of GW’s g
erated by a cosmological network of cosmic strings ran
over many decades of frequency, and was extensively
cussed in the literature@2–7#. Until recently, it was tacitly
assumed that the GW background generated by cos
strings was nearly Gaussian. However, in a recent letter@8#,
prompted by a suggestion in Ref.@9#, we showed that the
GW background from strings isstrongly non-Gaussianand
includes sharp GW bursts~GWB’s! emanating from cosmic
string cusps. In Ref.@8#, we mentioned that kink discontinui
ties on cosmic strings also give rise to non-Gaussian GW
The simultaneous consideration of GWB’s emitted by cu
and by kinks is important because, though cusps tend,
nerically, to form onsmoothstrings a few times per oscilla
tion period @10#, they might be absent on ‘‘kinky’’ strings
~i.e. continuous, but nondifferentiable strings!. On the other
hand, the study of the process of loop fragmentation sugg
that kinks are ubiquitous on loops~as well as on long strings!
@11#.

In this paper, we shall discuss in some detail the am
tude, frequency spectrum, and wave form of the GW
emitted both by cusps and kinks on cosmic strings. We s
0556-2821/2001/64~6!/064008~18!/$20.00 64 0640
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also estimate the rate of occurrence of isolated bursts, st
ing above the nearly Gaussian background made by the
perposition of the~more frequent! overlapping bursts. As we
shall see, these occasional sharp bursts might be detec
by the planned GW detectors such as the Laser Interferom
ric Gravitational Observatory~LIGO!, VIRGO and Laser In-
terferometer Space Antenna~LISA! for string tensions as
small asGm;10213, i.e., in a wide range of seven orders
magnitude below the usually considered grand unified the
~GUT! scaleGmGUT;1026.

II. EMISSION OF GRAVITATIONAL WAVES BY COSMIC
STRINGS IN THE LOCAL WAVE ZONE

A. Wave form in the local wave zone

In this section we discuss the amplitude of the GW em
ted by an arbitrary stress-energy distributionTmn(xl) as seen
by an observer in the ‘‘local wave zone’’ of the source, i.e.
a distancer from the source which is much larger than th
GW wavelength of interest, but much smaller than t
Hubble radius. For this purpose, we can consider that
spacetime geometry is asymptotically flat:gmn

local5hmn

1hmn(x), wherehmn!1 is the metric perturbation generate
by the source. The subsequent effect of the propagatio
the GW in a curved Friedmann-Lemaıˆtre universe will be
discussed in Sec. II B.

Let us first consider a general scalar~flat space-time!
wave equation

hw~x,t !52 4pS~x,t !, ~2.1!

and let us decompose the time variation of the sourceS in
©2001 The American Physical Society08-1
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either a Fourier integralS(x,t)5*(dv/2p)e2 ivtS(x,v) or
~if the source motion is periodic! a Fourier seriesS(x,t)
5(ne2 ivntS(x,vn). We concentrate on one frequencyv ~or
vn). The corresponding decomposition of the solutio
w(x,t)5(ve2 ivtw(x,v), leads to a Helmholtz equation

~D1v2!w~x,v!524pS~x,v!, ~2.2!

whose retarded Green function@(D1v2)Gv(x,x8)
524pd(x2x8)# is well known to be Gv(x,x8)
5exp(1 ivux2x8u)/ux2x8u so that

w~x,v!5E d3x8
eiv ux2x8u

ux2x8u
S~x8,v!. ~2.3!

If the source is localized around the origin (x850) we can,
as usual, replace, in the local wave zone (vuxu@1),
ux2x8u by r 2n•x8 in the phase factor, and simply byr in
the denominator.~Here r[uxu andn[x/r .) Let us definek
[v n @so thatkm5(k,v) is the 4 frequency of thew-quanta
emitted in then direction# and the following space-time Fou
rier transform of the source:

S~km!5S~k,v![E d3x8e2 ik•x8S~x8,v!. ~2.4!

With this notation the fieldw in the local wave zone read
simply

w~x,v!.
eivr

r
S~km!, ~2.5!

w~x,t !.
1

r (
v

e2 iv(t2r )S~km!, ~2.6!

where(v denotes either an integral overv ~in the nonperi-
odic case! or a discrete sum overvn ~in the periodic, or
quasiperiodic, case!.

Let us now apply this general formula to the case of G
emission by any localized source. We consider the lineari
metric perturbation generated by the source:gmn(xl)5hmn

1hmn(xl). The trace-reversed metric perturbationh̄mn

[hmn2 1
2 hhmn satisfies~in a harmonic gauge]n h̄mn50) the

linearized Einstein equations

hh̄mn52 16pGTmn , ~2.7!

where Tmn(xl) denotes the stress-energy tensor of
source. We can apply the previous formulas by replacingw

→h̄mn , S→1 4GTmn . Let us introduce the ‘‘renormalized
~distance-independent! asymptotic wave formkmn , such that
~in the local wave zone!

h̄mn~x,t !5
kmn~ t2r ,n!

r
1OS 1

r 2D . ~2.8!

Note the dependence ofkmn on the retarded timet2r and
the direction of emissionn. With this notation we have the
06400
,
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simple formula~valid for any, possibly relativistic, source, a
the linearized approximation@12#!

kmn~ t2r ,n!54G(
v

e2 iv(t2r )Tmn~k,v!, ~2.9!

where we recall thatk[vn. In the case of a periodic sourc
with fundamental periodT1, the sum on the right hand sid
of Eq. ~2.9! is a ~two-sided! series over all the harmonic
6vm56mv1 with mPN and v1[2p/T1, and the space-
time Fourier component ofTmn is given by the following
space-time integral:

Tmn~kl!5Tmn~k,v!5
1

T1
E

0

T1
dtE d3x ei (vt2k•x)Tmn~x,t !.

~2.10!

B. Wave form emitted by a string loop

We model the string dynamics by the Nambu actio
which leads to the string energy-momentum tensor

Tmn~xl!5mE dt ds~ẊmẊn2X8mX8n!d (4)@xl2Xl~t,s!#.

~2.11!

Herem denotes the string tension andXm(t,s) ~to be distin-
guished from the space-time pointxm) represents the string
worldsheet, parametrized by the conformal coordinatest and
s @Ẋ[]t X, X8[]s X]. Inserting Eq.~2.11! into Eq. ~2.10!
yields the following Fourier transform of the string stres
energy tensor:

Tmn~kl!5
m

Tl
E

S l

dt ds~ẊmẊn2Xm8 Xn8!e2 ik•X. ~2.12!

Herek•X[hmn km Xn[kiXi2vX0, the indices ofTmn have
been lowered withhmn5diag(11,11,11,21), andS l de-
notes a strip of the worldsheet contained between
~center-of-mass! time hyperplanes separated by the fund
mental period~denoted above asT1)

Tl[
2p

v l
[

l

2
, ~2.13!

wherel denotes the ‘‘invariant length’’ of the closed loop th
we consider. It is defined asl[E/m where E is the loop
energy in its center-of-mass frame.~Note thatl differs from
the instantaneous length* uX8uds of the loop which changes
as the loop oscillates.!

The Nambu string dynamics in conformal gauge~and on
our local, nearly flat, space-time domain! yields a two-
dimensional wave equation (]s

22]t
2)Xm(t,s)50 con-

strained by the~Virasoro! conditions

hmn ẊmẊn1hmn X8mX8n50, hmn ẊmX8n50.
~2.14!
8-2
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It is convenient to introduce the null~worldsheet! coordi-
nates

s6[t6s,
]

]s6
[]65

1

2
~]t6]s!, ~2.15!

and to decomposeXm in left and right movers~note the fac-
tor 1

2 )

Xm~t,s![
1

2
@X1

m ~s1!1X2
m ~s2!#. ~2.16!

In terms of this decomposition, the Virasoro conditions re
(]1 X1

m )2505(]2 X2
m )2. We can~and will! also choose a

~center-of-mass! ‘‘time gauge’’ in which the worldsheet co
ordinatet coincides1 with the Lorentz time in the center-of
mass frame, i.e.X0(t,s)5t, so thatX1

0 5s1 , X2
0 5s2 ,

andX6
i is ~for a closed loop in the center-of-mass frame! a

periodic function ofs6 of period l. In this time gauge, the
Virasoro conditions yield (Ẋ1)2515(Ẋ2)2 where the over-
dot denotes the derivative with respect to the correspond
~unique! variables1 or s2 enteringX1(s1) or X2(s2).

Inserting Eq.~2.16! into Eq. ~2.12! yields the following
result for the Fourier transform ofTmn „to be inserted in the
wave form Eq.~2.9!…,

Tmn~km ,vm!5
m

Tl
E

S l

dt ds Ẋ1
(mẊ2

n)e2~ i /2!(km•X11km•X2),

~2.17!

where Ẋ1
(mẊ2

n)[ 1
2 (Ẋ1

m Ẋ2
n 1Ẋ1

n Ẋ2
m ) denotes a symmetriza

tion on the two indicesmn, where( l is a truncated cylinder
on the worldsheet defined, say, by 0<t<Tl5 l /2, and 0
<s< l , and where we recall that

km
l 5~km ,vm!5~mv l n,mv l !5

4p

l
m~n,1!, ~2.18!

with mPZ2$0%, runs over the discrete set of the 4 freque
cies of the GW emitted by a string of invariant lengthl in the
directionn. @In the following, we shall sometimes restrictm
to positive integers, it being understood that one must t
add the complex conjugate quantity when computing
asymptotic wave form Eq.~2.9!.#

Result ~2.17! can be further simplified by changing th
variables of integration from (t,s) to (s1 ,s2). One must
use dt ds5 1

2 ds1ds2 and take care of the limitation o
integral ~2.17! to the truncated cylinder( l . This is most
easily done by rewriting Eq.~2.17! asm l times theaverage
over the worldsheet (*0

Tldt/Tl *0
l ds/ l ) of the integrand

1Note that the requirement thatX05t ~without any proportional-
ity factor! links the periodP6 in s6 to the value of the string
center-of-mass energyE, namely, P65 l , with E5m l . In the
fundamental-string literature the periodicity ins6 is fixed to be,
say, 2p ~for a closed string!, and one writesX05p0t/2pm
5Et/2pm5 l t/2p.
06400
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Ẋ1 Ẋ2 exp2ik•X. Remembering that the period ins6 is l,
the averaging can be rewritten as*0

l ds1 / l *0
l ds2 / l . If we

postpone the symmetrization on the indicesmn to the last
stage of the calculation we can write

Tmn~km ,vm!5
m

l
J(mn), ~2.19!

where we introduce the following asymmetric double in
gral:

Jmn[E
0

l

ds1 E
0

l

ds2 Ẋ1
m Ẋ2

n e2( i /2)(km•X11km•X2).

~2.20!

Using the complete factorization of the integrand of E
~2.20! in the product of a function ofs1 and a function of
s2 , we can finally write

Jmn5I 1
m I 2

n , ~2.21!

where

I 6
m [E

0

l

ds6 Ẋ6
m e2( i /2)km•X6. ~2.22!

The final factorized~modulo the symmetrization! result

Tmn~km ,vm!5
m

l
I 1

(mI 2
n) ~2.23!

will be very convenient for our subsequent study. The co
servation ofTmn @i.e. kmTmn(k)50] follows from the easily
checked identitykmmI 6

m 50 satisfied by the simple integra
Eq. ~2.22!.

Note that Eq.~2.23! gives a factorized expression for th
Fourier transform of the GW amplitude@Eq. ~2.9!#. Such
left-right factorized expressions are characteristic of quan
amplitudes of closed~fundamental! string processes. A con
venient factorized expression@Eq. ~2.23!# was used in Ref.
@8# for a calculation of the classical radiation amplitudes
cosmic closed strings in the Fourier domain. Previous ca
lations of GW amplitudes were performed in the time d
main @13,11#, though factors like Eq.~2.22! appeared as
building blocks in the calculation of the radiation pow
from loops @14–16#. The publication of our work@8# then
prompted other authors to recognize the convenience of
right factorization in GW amplitude calculations@17#.

C. Decay with frequency of the wave form: cusps, kinks
and other singularities

If we define f6(s6)[k1•X6(s6) @where k1
l is the

m51 value of Eq. ~2.18!#, the high-frequency behavio
of Tmn(kl), and therefore of the Fourier transform o
the wave form @Eq. ~2.9!#, is reduced, by Eq.~2.23!,
to studying the asymptotic behavior, asm→`, of the two
simple integrals I 6

m (m)5*0
l ds6 f 6

m (s6) with f 6
m (s6)

5Ẋ6
m (s6) e2(1/2)mif6(s6). As is well known, the
8-3
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asymptotic behavior~asm→`) of I 6
m (m) depends on essen

tially two things: ~i! the regularity~i.e. the number of con-
tinuous derivatives! of the functionsẊ6

m (s6) andf6(s6),
and~ii ! the presence or absence of saddle points~stationary-
phase points! in the phasef6(s6) ~i.e. of pointss6* where
ḟ6(s6* )50). If the functionsX6

m (s6) are smooth (C`) and
if f1(s1) andf2(s2) have no saddle points, the integra
I 6

m (m) tend to zero faster than any negative power ofm as
m→`. A fortiori, the productTmn(k)}I 1

(m(m) I 2
n)(m) then

tends to zero faster than any negative power ofm. In such a
case, the GW emission of a string loop would be well a
proximated by considering only a few of the lowest mo
numbersm.

By contrast, in the present paper we focus on the c
where~i! and~ii ! are violated in such a way thatTmn(k) has
a rather slow, power-law decay asm→`. The two physically
most relevant cases where this occurs are near cusp
kinks. First, note that ~say! the 1 phase f1(s1)
5hmn k1

m X1
n (s1) has a saddle pointḟ150 when k1•Ẋ1

50. Remembering that bothk1
m and~because of the Virasoro

condition! Ẋ1
m are null vectors, we see that saddle poin

occur each timek1
m , and thereforekm5m k1

m , is parallel to
Ẋ1

m (s1). In the time gauge, whereẊ6
m 5(Ẋ6 ,1) with Ẋ6

2

51, Ẋ1(s1) and Ẋ2(s2) correspond to two separat
curves, sayC1 andC2 , on the unit sphere@18#. The saddle
points occur when the unit direction vectorn of the emitted
GW lies either onC1 or C2 . If one has only one saddl
point, say in the phase factor ofI 1

m (m), the integralI 1
m (m)

will have a slow decay asm→`. But if the other integral
I 2

m (m) has neither a saddle point, nor some lack of regula
in X2

m (s2), the integral I 2
m (m) will decay exponentially

quickly with m, so that the productTmn(k)}I 1
(m(m) I 2

n)(m)
will still decay exponentially quickly.

Therefore, the two generic cases whereTmn(k) can have a
slow, power-law decay are the following:~a! The case where
the two curvesC1 andC2 intersect, so that thekm parallel to
their intersection develops a double saddle point.~b! The
case wherekm is parallel to a direction ofC1 ~or C2), and
where the dual functionX2

m (s2) @or, respectively,X1
m (s1)]

has some type of discontinuity. Case~a! corresponds to a
cusp, and occurs generically for smooth~and in particular
continuous! closed curvesC6 @10#. The discontinuity in case
~b! can be of various types@say a mild discontinuity in some
higher derivative ofX6

m (s6)]. The most interesting cas
~leading to the slowest decay withm) is the case of akink,
where, say,X1

m (s1) is continuous butẊ2
m (s2) has one or

several jump discontinuities. It is expected that kinks
ubiquitous on loops~and on long strings!. Note that the pres-
ence of kinks~which is expected because of the reconn
tions! means that the curvesC6 on the unit sphere are dis
continuous.~Hence too many kinks can prevent the tw
curvesC6 from intersecting, i.e. can prevent the presence
cusps@11#.!

D. Logarithmic Fourier transform of GWB wave forms

For the time being, we wish to conclude from this discu
sion that, in the presence of cusps or kinks, the discrete F
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rier components of the asymptotic wave formkmn(vm ,n)
}Tmn(km ,vm) @Eq. ~2.9!#, will decay asm→` in a slow,
power-law manner along certain directions: a finite set
directions~corresponding to the intersections ofC1 andC2)
in the case of a cusp, or a one-dimensional ‘‘fanlike,’’ set
directions ~corresponding toC1 and/or C2) in the case of
kinks. If the observer at infinity happens to lie near one
those special directions, it will detect a stronger than us
GW amplitude: these are the gravitational wave bursts
we study in this paper.

We see that, by definition, the GWB’s correspond to
large value of the harmonic numberm, i.e. to a frequency
f m5vm /2p5m/Tl52m/ l much larger than the frequenc
of the fundamental mode of the string. For such high mo
numbersm the discrete Fourier sum@Eq. ~2.9!# can be ap-
proximated by a continuous Fourier integral~indeed,Dv
5vm112vm5v l5vm /m!vm). In other words, on the
time scalesDt of relevance for the detection of GWB’
( f m

21 & Dt!Tl), in Eq. ~2.9!, we can replace

(
vm

5(
m

.E dm5
l

2E dv

2p
5

l

2E d f , ~2.24!

so that

kmn~ t2r ,n!.2GlE dv

2p
e2 iv(t2r )Tmn~k,v!. ~2.25!

With any continuous function, sayk(t), of some~possibly
retarded! time variablet we associate the followinglogarith-
mic continuous Fourier componentk( f ) ~corresponding to
an octave of frequency around the analyzing frequencyf ):

k~ f ![u f uk̃~ f ![u f u E dt e2p i f tk~ t !. ~2.26!

@The advantage of this definition over the straightforwa
Fourier transformk̃( f ) is that k( f ) has always the sam
physical dimension ask(t).# In terms of this definition, re-
sult ~2.25! leads to the following simple formula for the loga
rithmic Fourier transform of the GWB asymptotic wav
form:

kmn~ f ,n!52Glu f u Tmn~k,v!. ~2.27!

Inserting the factorized form@Eq. ~2.23!# yields, more ex-
plicitly,

kmn~ f ,n!52Gmu f u I 1
(mI 2

n) , ~2.28!

where the simple integralsI 6
m were defined by Eq.~2.22!.

Remember that these expressions give the asymp
~distance-independent! wave form @Eq. ~2.8!# in the local
wave zone of the source, and that the frequencyf still refers
to the frequency measured in the local wave zone of
center-of-mass frame of the source. The problem of the c
mological propagation ofkmn will be discussed below.
8-4



ti

s

.

rm

nd
f

e
n

-

t
e

o

for-
ain

-

s

d
g

W

a
n

he
nd

GRAVITATIONAL WAVE BURSTS FROM CUSPS AND . . . PHYSICAL REVIEW D64 064008
III. GRAVITATIONAL WAVE BURSTS EMITTED
BY CUSPS AND KINKS

A. Wave forms from cusps

As recalled above, a cusp corresponds to an intersec
of the two curvesC1 andC2 , i.e. to a point on the world-
sheet where~in the time gauge! the two null vectorsẊ1

m (s1)

and Ẋ2
m (s2) coincide. Let us denote

l m5~n(c),1!5Ẋ1
m ~s1

(c)!5Ẋ2
m ~s2

(c)!, ~3.1!

the common value of these two null vectors at the cu
X(c)

m 5Xm(s1
(c) ,s2

(c)). The~space-time! direction of strongest
emission from the cusp is preciselyl m, i.e. the GWB is cen-
tered around the 4 frequencieskm

m} l m, i.e. remembering Eq
~2.18!, the space direction of strongest emission isn5n(c).
Let us first study the Fourier transform of the wave fo
emitted precisely at the center of the GWB~i.e., n5n(c) and
km

m5mv l l
m). Below we shall discuss the beam width arou

this direction. To simplify the writing we shift the origin o
s6 so thats6

(c)50, and the origin ofXm so thatX(c)
m 50. We

can then write the following local Taylor expansions~trun-
cated to the order which is crucial for our purpose!:

X6
m ~s6!5 l ms61

1

2
Ẍ6

m s6
2 1

1

6
X6

(3)ms6
3 , ~3.2!

Ẋ6
m ~s6!5 l m1Ẍ6

m s61
1

2
X6

(3)ms6
2 , ~3.3!

where the successive derivatives~with X6
(3)[]6

3 X6) appear-
ing on the right hand side are all evaluated at the cusps~i.e.
at s650). Differentiating the Virasoro constraintsẊ6

2 50

yields the relations Ẋ6•Ẍ650 and Ẋ6•X6
(3)1Ẍ6

2 50.

Therefore, at the cusp, one hasl •Ẍ650 and l •X6
(3)5

2(Ẍ6)2. ~From which one sees thatẌ6
m is a spacelike vec-

tor.! These relations yield the following simple result for th
crucial quantitiesk•X6} l •X6 entering the phase factor i
Eqs.~2.17! or ~2.22!:

l m X6
m ~s6!52

1

6
~Ẍ6

m !2s6
3 . ~3.4!

@This showsa posteriori why it was crucial to include the
termsO(s6

3 ) in the local Taylor expansion ofX6
m (s6).#

Inserting these results into Eq.~2.22! leads to an expres
sion of the form

I 6
m 5E

s0

s01 l

ds6~ l m1Ẍ6
m s61••• !e2(1/2)mif6. ~3.5!

As we shall see the intervals ofs1 ands2 which contribute
most are~because of the saddle point in the phases! very
small for largem (Ds6}umu21/3). It would then seem tha
the dominant term inI 6

m is obtained by keeping only th
leading term in the parentheses, i.e.l m, so thatI 6

m .a6 l m.
However, this leading contribution does not correspond t
06400
on
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a

physical GW, but can be removed by a coordinate trans
mation. Indeed, as we are working in the Fourier dom
~and with the asymptotic wave form!, a linearized coordinate
transformation has the following effect onkmn :

kmn8 5kmn1kmjn1knjm . ~3.6!

Here we are considering the casekm} l m . As kmn}I 1
(mI 2

n) if
we decomposeI 6

m 5a6l m1b6
m , whereb6

m denotes the sub
leading contribution from Eq.~3.5!, both the leading-leading
term a1 a2 l ml n, and the two leading-subleading term
a1l mb2

n and b1
m a2l n can be gauged away.~This explains

why our final wave form below differs from that obtaine
earlier in Ref.@13# where it was not noted that the leadin
terms were pure gauge.! Finally, the leading, physical wave
form is given by keeping onlyI 1

(mI 2
n)5b1

(mb2
n) with

b6
m .Ẍ6

m E
s0

s01 l

ds6s6 expS i

12
mv l Ẍ6

2 s6
3 D . ~3.7!

~We used km
m5mv l l

m, where we recall thatv l52p/Tl

54p/ l is the basic loop circular frequency, linked to the G
frequency byf 5v/2p5mv l /2p52m/ l with mPZ.)

Most of integral~3.7! comes from a small interval ins6

around zero. This allows us to neglect the limitation to
period@s0 ,s01 l # and to formally extend the integration o
s6 from 2 ` to 1 `. It is convenient to introduce the
scaled variables

u65N6s6 , N6[F 1

12
umuv l ~Ẍ6!2G1/3

. ~3.8!

This leads to the appearance of the following integral~the
same foru1 andu2):

I[E
2`

1`

du e6 iu3
. ~3.9!

Here, the sign6 denotes the sign ofm, i.e. the sign of the
frequencyf. It is clear that the value ofI is dominated by an
interval of order unity inu5u6 , corresponding toDs6

;1/N6 . The exact value ofI is easily found to be pure
imaginary and to be

I 56 i I im , I im[
2p

3GS 1

3D , ~3.10!

where G denotes Euler’s gamma function. Note that t
square ofI, which enters the wave form, is real, negative a
independent of the sign ofm. Finally, if we define

A6
m [

Ẍ6
m

uẌ6u4/3
, C[

4p~12!4/3

F3GS 1

3D G2 , ~3.11!

we find that the ~logarithmic! Fourier transform of the
asymptotic wave form reads~for positive or negative fre-
quencies!
8-5



th

f
-

q.

-
h
f

-

e

t
n
i-

th

the

al
hat

ion

le
the

nly
in

oy

of

THIBAULT DAMOUR AND ALEXANDER VILENKIN PHYSICAL REVIEW D 64 064008
kmn~ f ,nc!.2 C
Gm

~2p u f u!1/3
e2p i f t cA1

(mA2
n) . ~3.12!

Here we have introduced the arrival time of the center of
burst,tc , which was set to zero in the calculation above~by
our conventionX(c)

m 50). The fact that the two~generically
independent! spacelike vectorsA6

m ~which are orthogonal to
l m) are real means that the GW@Eq. ~3.12!# is linearly po-
larized.

To understand the meaning of theu f u21/3 dependence o
the Fourier amplitude@Eq. ~3.12!#, we take the inverse Fou
rier transform@remembering definition~2.26!# which yields a
time-domain wave form proportional to

k~ t !}ut2tcu1/3. ~3.13!

Note that the fact that Eq.~3.13! tends to zero att5tc does
not mean that the GWB is best detected away fromt5tc .
The full wave form, in the time domain, is the sum of E
~3.13! and of a slowly varying component~due to the low
modes of the string!. What is important, and what distin
guishes the GWB from the slowly varying component, is t
fact that Eq.~3.13! is ‘‘spiky,’’ because of the appearance o
the absolute value oft2tc . If one were to consider the cur
vature ~tidal forces! associated with Eq.~3.13! it would be
}ut2tcu25/3, exhibiting more clearly the spiky nature of th
GWB.

Actually, the sharp spike att5tc exists only in the limit
where the observer lies exactly, at some moment, along
special directionn(c) defined by the cusp velocity, i.e. whe
n5n(c). Let us defineu as being the angle between the d
rection of emissionn and the ‘‘3 velocity’’ of the cuspn(c).
We shall now show that when 0Þu!1 the time-domain
cusp wave form is approximately given by theu50 wave
form computed above, except in a time interval aroundtc of
order

ut2tcu;u3Tl , ~3.14!

where the spike is smoothed. In the frequency domain
smoothing on the time scales of Eq.~3.14! corresponds to an
exponential decay for frequencies:

u f u *
1

u3Tl

. ~3.15!

To study the effect ofuÞ0, let us introduce the 4 vectordm

such thatl m5 k̂m1dm where k̂m[(n,1). In the time gauge
dm5(n(c)2n,0) is spacelike and of squared normd252(1
2cosu).u2. Thereforedm5O(u). Going back to expression
~3.5!, and remembering from Eq.~3.6! that one can gauge
away any term inkmn having a factorkm} k̂m , we see that
we should now split the parentheses in Eq.~3.5! as k̂m

1(dm1Ẍ6
m s6 . . . ) anddecompose accordinglyI 6

m 5a6k̂m

1b6
m , with
06400
e

e

he

is

b6
m 5E

s0

s01 l

ds6~dm1Ẍ6
m s61••• !e2(1/2)mif6.

~3.16!

By a gauge transformation we can, as above, discard
a6k̂m term and replaceI 6

m by b6
m . On the other hand, in the

phase terms we now have~using k̂• l 52 1
2 ( k̂2 l )252 1

2 d2

.2 1
2 u2 and k̂•Ẍ652d•Ẍ6)

k̂mX6
m ~s6!5 k̂• ls61

1

2
k̂•Ẍ6s6

2 1
1

6
k̂•X6

(3)s6
3

.2
1

2
u2s62

1

2
d•Ẍ6s6

2 2
1

6
~Ẍ6!2s6

3 ,

~3.17!

instead of Eq.~3.4!.
If we rescales6 as in Eq.~3.8! and introduce

«6[
uN6

uẌ6u
5uS umuv l

12uẌ6u
D 1/3

, ~3.18!

we see that the gauge-simplified value ofI 6
m @i.e. Eq.~3.16!#

is, after factorization of an overall factor;uẌ6u/N6
2 , of the

form ~when neglecting factors of order unity, and treatingI 6
m

anddm as scalars!

I 6~«6!5E du~«61u!eif6(u,«6), ~3.19!

wheref6(u,«6);u31«6u21«6
2 u. Remembering that in-

tegral ~3.9! is dominated by what happens in an interv
Du;1, this schematic expression is sufficient for seeing t
when«6!1 the numerical value ofI 6(«6) is well approxi-
mated byI 6(0)5I , i.e., thatkmn( f ,n).kmn( f ,n(c)). To dis-
cuss what happens when, conversely,«6 * 1 one must study
the behavior of the phasef6(u,«6);u31«6 u21«6

2 u a
bit more carefully. Let us go back to the unscaled express
@Eq. ~3.17!# and differentiate it:

2
]

]s6
@ k̂mX6

m ~s6!#.
1

2
d21~dmẌ6

m !s61
1

2
~Ẍ6!2s6

2 .

~3.20!

The discriminantD5b224ac of this trinomial in s6 is D

5(d•Ẍ6)22d2(Ẍ6)252d2(Ẍ6)2sin2b6 where b6 is the
angle between the two space vectorsd and Ẍ6 . The impor-
tant point is that~generically! D,0 which means that the
trinomial @Eq. ~3.20!# has no real roots, i.e. thatf6(s6) has
no saddle point whenuÞ0. In fact, this absence of a sadd
point whenuÞ0 can be seen, as an exact result, from
fact that in the scalar productk̂m Ẋ6

m (s6) both 4 vectors are
null and future oriented, so that their product can vanish o
if they are parallel; however, we wanted to show how, with
certain limits for the unwritten numerical coefficients, the t
integral @Eq. ~3.19!# with f6(u,«6);u31«6u21«6

2 u
could qualitatively represent the exact result for all values
8-6
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«6 ~both &1 and*1). The absence of saddle point mea
that when«6 becomes significantly larger than 1,I 6(«6)
will tend exponentially fast toward zero. As there are on
numbers of order unity in the~unwritten! coefficients of
I 6(«6) we conclude~as usual for such estimates! that ~i!
when «6 & 1, I 6(«6) can be estimated byI 6(0)5I
~though this estimate is numerically accurate only if«6

!1); while ~ii ! when«6 * 1, I 6(«6) starts decaying expo
nentially fast with«6 . Consequently, the wave formkmn

}I 1
(mI 2

n) will also interpolate, asu increases, between esse
tially kmn( f ,n(c)) and an exponentially small result.

As neglecting factors of 2p might be detrimental to ou
subsequent estimates2 we tried to be a little bit more precis
about these orders of magnitude. First let us note that
facts that~in the notation used here! the period ins6 of
X6

m (s6) is P65 l and thatẊ6 are unit vectors imply that the

generic order of magnitude ofuẌ6u ~if the string is not too
wiggly! is

uẌ6u;2p/ l ~3.21!

@becauseẊ65(n cnexp(2p ins6 /l)]. Using estimate~3.21!,
using s6;N6

21 and writing that the divide between sma
u ’s and largeu ’s is obtained when the third term on the rig
hand side of Eq.~3.17! is equal to the first leads toudivide

5@4/(A3l u f u)#1/35(2.31/l u f u)1/3. Approximating 2.31.2
leads to the simple result

udivide.~2/u f u l !1/35~ u f uTl !
21/3, ~3.22!

whereTl5 l /2 is the basic period of the string motion. Th
corresponds to the inequality@Eq. ~3.15!# quoted above.
When passing from the Fourier domain to the time doma
the exponential decay in domain~3.15! @now considered for
a fixed u, instead of as in Eq.~3.22! which consideredf as
fixed and letu vary# means that the wave form becom
smooth on time scalesDt;u3Tl near the center of the GWB
as stated in Eq.~3.14! above.

As we are discussing ‘‘2p-accurate’’ estimates, let us con
clude this subsection by mentioning that when inserting
estimate~3.21! into Eq. ~3.12! there appears a coefficien
(12)4/3I im

2 /(2p2) @with I im given by Eq. ~3.10!# which is
numerically equal to 0.8507, i.e. close enough to 1 to
neglected. Finally, a good estimate of the amplitude of
asymptotic wave form~when one is not interested in pola
ization effects! is simply

kcusp~ f ,n!;
Gm l

~ u f u l !1/3
Q@udivide~ f !2cos21~n•n(c)!#,

~3.23!

whereQ(x) is the step function (1 ifx.0; 0 if x,0). One
should remember that result~3.23! has been derived by as
suming thatu f u l 52 umu@1. As the asymptotic GW ampli

2We mention this because the ‘‘surprisingly large’’ value of t
parameterG;50 entering the total rate of GW energy loss of a lo
can essentially be attributed to a factor (2p)2 in G.
06400
s
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,

e

e
e

tude generated by a string at low frequenciesu f u l 5O(1) is
O(Gm l ), we see that, amplitude wise, a cusp GWB is a sm
correction to a low-frequency background. But what is e
sential in result~3.23! is the very slow decay with the mod
number,}umu21/3.

B. Wave forms from kinks

GW emission by kinks was studied by Garfinkle and V
chaspati@11#. However, as in the case of cusps, the lead
term that they studied turned out to be a pure gauge te
This will be clear from the different, Fourier-domain, trea
ment that we give now, which is a simple generalization
the method discussed for cusps in the previous subsecti

As discussed above, kink emission corresponds, in
original expression@Eq. ~3.17!#, to the case where, say, th
phasef1(s1)5k1•X1 has a saddle point~or is close to a
saddle point!, and whereẊ2

m (s2) has a discontinuity~at
somes25s2

disc). Though the discussion is somewhat diffe
ent than for the cusp case, we shall be brief as the metho
attack is a variant of the one we discussed in great de
above. The saddle point requirement forf1 implies thatkm

must be nearly aligned withsomenull vectorẊ1
m (s1

(k)). ~As
stated above, the set of all exactly aligned null vectors,
the set of all the central null geodesics within the beam em
ted by a moving kink, is a one-dimensional, fanlike, structu
defined by fixings25s2

disc, and lettings1 run over its
entire period.! The most convenient starting point is aga
the factorized form ofTmn(kl)}I 1

(mI 2
n) , where we recall, for

convenience, the form of the simple integrals

I 6
m 5E

s0

s01 l

ds6 Ẋ6
m e2( i /2)k•X61j6km, ~3.24!

where we introduced a gauge parameterj6 whose value can
be ~and will be! chosen to simplifyI 6

m . The integralI 1
m is

treated as in Sec. II A above~using somej1Þ0) with the
same results~including the effect ofu5cos21 n•n(c)Þ0). In
particular, we recall that~after gauging away some terms! the
value of I 1

m in the aligned case is

I 1
m .Ẍ1

m E ds1 s1e( i /12)mv l Ẍ1
2 s1

3
, ~3.25!

which scales with m ~as m→6`) like 6umu22/3

5umu21/3m21/3 ~where6 is the sign ofm).
On the other hand,I 2

m calls for a new treatment. In fact, i

we assume thatẊ2
m (s2) jumps from Ẋ2

m (s2
disc20)5n1

m ~a

null vector! to Ẋ2
m (s2

disc10)5n2
m ~another null vector!, we

obtain the leading estimate of the integralI 2
m by replacing

X2
m (s2) by n1

m(s22s2
disc) for s2,s2

disc and by n2
m(s2

2s2
disc) for s2.s2

disc @we setX2
m (s2

disc)50]. ~Here we are
following standard results on ‘‘edge effects’’ in oscillator
integrals; see, e.g., Ref.@19#.! This yields ~in the m→`
limit, and with j250)
8-7
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I 2
m .2i S n1

m

k•n1
2

n2
m

k•n2
D . ~3.26!

The essential feature differentiating result~3.26! from the
normal ‘‘cusp’’ result @Eq. ~3.25!# is its scaling withm as
m→6`. The kink contribution@Eq. ~3.26!# decays asm21

56umu21, i.e. faster~by umu21/3) than the6umu22/3 decay
of Eq. ~3.25!. When considering the wave formkmn}J(mn)

with Jmn5I 1
m I 2

n , we can finally contrast, in order of magn
tude, the previous ‘‘cusp’’ result,Jcusp

mn 5I 1
mcuspI 2

n cusp to the
new ‘‘kink’’ one Jkink

mn 5I 1
m cuspI 2

nkink . Therefore the ratio
kkink/kcusp;Jkink/Jcusp is essentially given by the ratio
I 2

kink/I 2
cusp, i.e. by the ratio between Eq.~3.26! and the usual

result @Eq. ~3.25!# ~with 1→2). If the discontinuity inẊ2
m

is of orderv l uẌ2u;1, the ratioI 2
kink/I 2

cusp is simply given
~independently of the sign ofm) by the power umu21/3

;(u f u l )21/3 characterizing the faster decay of the~simple!
kink integral @Eq. ~3.26!# versus its cuspy analog. Thi
simple reasoning allows us to immediately translate our p
vious cusp results into their kink analogs. The2 1

3 power of
u f u in the cusp wave form@Eq. ~3.12!# becomes replaced b
a 2 2

3 power,

kkink
mn ~ f !}u f u2~2/3!e2p i f t cA1

(mB2
n) , ~3.27!

with B2
n proportional to the (u50 limit of! the vectorI 2

m

@Eq. ~3.26!#. The time-domain wave form becomes

kkink~ t !}ut2tcu2/3, ~3.28!

and still corresponds to a formally infinite spike in tidal G
forces ast→tc . Finally, the simplified estimate@Eq. ~3.23!#
translates into

kkink~ f ,n!;
Gm l

~ u f u l !2/3
Q@udivide~ f !2cos21~n•n(k)!#,

~3.29!

wheren(k) is the direction closest ton within the ‘‘fan’’ ra-
diated by the moving kink.

Let us note that our general, Fourier-domain approach
easily deal with weaker types of GW emitting worldshe
singularities. For instance, if we consider a weaker k
where X2

m (s2) and Ẋ2
m (s2) are continuous, but wher

Ẍ2
m (s2) is discontinuous, them21 decay of Eq.~3.26! will

be replaced by am22 decay asm→`. This faster decay will
correspondingly increase~by 1! the ~inverse! power of u f u
appearing in Eqs.~3.27! and ~3.29!.

Let us also note that Ref.@17# recently studied the wave
forms emitted by piecewise-linear loops, i.e. the case wh
both Ẋ1

m andẊ2
m are piecewise constant, with discontinuiti

at some kinks. In this very special caseboth I1
m and I 2

m are
given by a finite sum~over the number of kinks! of terms of
the form of Eq.~3.26! ~corresponding to one kink!, in which
one must reinsert the kink phase factor exp(2ik•X2/2). The
scaling with m corresponding to this case isJlinear

mn

5I 1
m kinkI 2

n kink}m225umu22. This leads to a wave form
06400
-

n
t
k

re

k linear
mn }umuI 1 kink

(m I 2 kink
n) }umu21. The time-domain version o

this k linear( f )}u f u21 is, near each kink,k linear(t)}ut2tcu11.
The corresponding time-domain curvature vanishes ev
where, except at the discrete set of kink arrival times wh
it has a delta-function singularity. We thus recover the fin
ing of Ref. @17# that the time-domain wave form of suc
piecewise-linear loops is a piecewise-linear function of
tarded time. Our analysis shows, however, that such spe
piecewise-linear loops are bad models of the wave for
emitted by generic string loops. Indeed, even if a string n
work contains only a small fraction~say a few percent! of
loops with cusps, this small fraction will dominate~see be-
low! the crucial high-frequency tail of GW emission@be-
causekcusp( f )}u f u21/3]. Even in the a priori implausible
case where the fraction of cuspy loops is negligibly sm
the high-frequency tail of GW emission will be dominate
by generic kink wave forms (}I 1 cusp

(m I 2 kink
n) ), with kkink( f )

}u f u22/3. The faster decay of the special piecewise-line
loops, k linear

mn }umuI 1 kink
(m I 2 kink

n) }u f u23/3 disqualifies their use
as models of GW emission by a network of strings.

IV. PROPAGATION OF A GRAVITATIONAL WAVE BURST
IN A COSMOLOGICAL SPACE-TIME

In the previous sections we discussed the emission
GWB in the local wavezone of the source, i.e. at distan
large compared to the wavelength but small compared to
cosmological scale. The GWB amplitude was then charac
ized by its ~distance-independent! asymptotic amplitude
kmn , entering Eq.~2.8!. We need now to study the subs
quent effect of the propagation ofh̄mn in a cosmological
space-time. It is well known that if we consider a perturb
tion, gmn5gmn

B 1hmn , away from an arbitrarily curved back
ground space-timegmn

B (xl), the trace-reversed perturbatio

h̄mn[hmn2 1
2 gmn

B gBabhab satisfies, in the gauge¹B
b h̄ab

50, and away from the source, the propagation equation

gB
mn ¹m

B ¹n
B h̄ab12Rmanb

B h̄mn22RBm
(ah̄b)m50, ~4.1!

where ¹m
B denotes the covariant derivative defined by t

background metric. We consider the case where our G
have wavelengths much smaller than the scale of variatio
the background metric.~This is certainly the case for wha
concerns the cosmological background. Here we shall
consider the special situations that arise when the GW me
during its propagation, some local bump in the curvature
scale comparable to its wavelength.! In such a case, we ca
~i! neglect the curvature terms in Eq.~4.1!, and~ii ! treat the
leading propagation equationgB

mn ¹m
B ¹n

B h̄ab.0 in the WKB
approximation

h̄ab5Real@AeabeiS/«#, ~4.2!

where the polarization tensor is normalized
gB

amgB
bneab emn51.

As usual the WKB approximation («→0) yields, if we
introduce the wave vectorkm[]mS/« ~with km[gB

mnkn),
8-8
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gB
mnkmkn50, ~eikonal equation!, ~4.3a!

kaeab50, ~4.3b!

km¹m
Beab50, ~4.3c!

¹m
B~A2km!5A~2km¹m

BA1¹m
BkmA!50. ~4.3d!

For our present purpose, the most important results are
~4.3c! and~4.3d!. Equation~4.3c! says simply, in words, tha
the transverse@see Eq.~4.3b!# polarization tensoreab of the
GW is parallelly propagatedalong the null geodesics@Eq.
~4.3a!# describing, in the geometrical optics limit, the GW
propagation. Most important is Eq.~4.3d!, which gives the
law of decrease of the GW amplitudeA along the null ray.

If we write condition~4.3d! for the case of a spatially fla
Friedmann-Lemaıˆtre universe,

ds252dt21a2~ t !~dr̂21 r̂ 2dV2!

5a2~h!@2dh21dr̂21 r̂ 2dV2#, ~4.4!

and a ‘‘retarded’’ solution of the eikonal equation~4.3a! of
the formS5F(h2 r̂ ) ~where we choose the center of ma
of the source as center of the polar coordinate system!, we
find that r̂ 2a2A2 remains conserved during the propagatio
i.e. that the GW amplitude decreases as

A5F k

a~h! r̂
G

h2 r̂ 5const

. ~4.5!

In the local wave zonea(h) r̂ .a(hem) r̂ 5r ~where the sub-
script ‘‘em’’ refers to the emission event! is the physical ra-
dius r which appeared in Eq.~2.8!, so that the constantk on
the right hand side of Eq.~4.5! measures the amplitude of th
asymptotic GW tensor amplitudekmn , after having factor-
ized the normalized polarization tensoremn . Finally, the
time-domain GW amplitude arriving on Earth can be writt
as

h̄mn~ t rec!5
kmn

pp~h rec2 r̂ ,n!

arecr̂
, ~4.6!

where t rec denotes the proper time at reception,arec
5a(t rec), h rec5* trecdt/a(t), and where ‘‘pp’’ means that the
tensorkmn must beparallely propagated, between the emis
sion and the reception, along the null geodesic followed
the GW. As the latter null geodesic is described
*em

recdt/a(t)2 r̂ 50, we have a typical redshifting of time in
tervals between emission and reception,dtrec/arec
5dtem/aem, which corresponds, in the Fourier domain,
f recarec5 f emaem, i.e.

f em5~11z! f rec, 11z[arec/aem. ~4.7!
06400
s.

,

y

The logarithmic3 Fourier transform of the GW amplitud
at reception can be written in terms of the logarithmic Fo
rier transform of the asymptotic GW amplitude at emissio
kmn( f em), as

h̄mn~ f !5
kmn

pp@~11z! f #

a0r̂
. ~4.8!

Here, and henceforth,f [ f rec denotes the observed fre
quency,a0[arec denotes the present cosmological scale f
tor, andz the cosmological redshift introduced in Eq.~4.7!. It
remains to express the ‘‘amplitude distance’’a0r̂ @which is
(11z)21 times the luminosity distance# in terms of the red-
shift z. For this we use a relation valid in a spatially fla
matter-dominated (Vm051) universe,

a0r̂ 53t0S 12
1

A11z
D , ~4.9!

wheret052/(3H0) is the present age of the universe.~In the
numerical estimates below, we useH0.65 km s21 Mpc21

which corresponds tot0.1.031010yr.1017.5 s.! Though
this relation is modified in the earlier radiation-dominat
era, it will be sufficient for our purpose to use Eq.~4.9! for
all values ofz, becausea0r̂ tends anyway to the finite limit
3t052/H0 asz becomes large.

In the following, we shall work with order-of-magnitud
estimates. We simplify the ‘‘amplitude distance’’@Eq. ~4.9!#
to a0r̂;t0z/(11z), and use our simple estimates Eq.~3.23!
~for the cusp wave form!, and Eq.~3.29! ~for the kink wave
form!. Finally, we have~in terms of the observed frequenc
f 5 f rec, henceforth considered as being positive!

hcusp~ f !;
Gm l

@~11z! f l #1/3

11z

t0z
~4.10!

and

hkink~ f !;
Gm l

@~11z! f l #2/3

11z

t0z
. ~4.11!

Note that the low frequency part@(11z) f ;Tl
21; l 21, i.e.

low mode numbersumu;1] of the GW amplitude would be
of order hLF;Gm l /a0r̂;Gm l (11z)/(t0z). Compared to
this nonburst, ‘‘full’’ signal, we have the simple orders o
magnitude hcusp( f );um( f )hLF and hkink( f );um

2 ( f )hLF,
where um( f );@(11z) f l #21/3;umu21/3 embodies the basic
power-law dependence on the mode numberm when umu
@1. It is crucial to keep in mind that the ‘‘cusp’’ result@Eq.
~4.10!# holds only if, for a given observed frequencyf, the
angleu between the direction of emissionn and the 3 veloc-
ity n(c) of the cusp satisfies

u &um[@~11z! f l /2#21/3. ~4.12!

3Note that definition~2.26! ensures that a constant redshift affec
the argument ofk( f ) but not its amplitude.
8-9
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Similarly, the ‘‘kink’’ result @Eq. ~4.11!# holds only if the
smallestangle u between the direction of emissionn and
somekink velocity 3 vectorn(k) satisfies the same relatio
@Eq. ~4.12!#. Note that the domain of validity of the cus
result@Eq. ~4.10!# is, for each loop period, a~small! cone, of
half openingum , aroundn(c), while the domain of validity of
the kink result@Eq. ~4.11!# is aum thickening of the ‘‘fan’’ of
directions drawn by the continuous time evolution of t
kink velocity vectorn(k).

V. GRAVITATIONAL WAVE BURSTS FROM A
COSMOLOGICAL NETWORK OF STRING LOOPS

A. Simplified description of a string network

Having derived the GW amplitudes emitted by individu
cusps and kinks on some loop situated at cosmological
tances, we need now to sum the contributions coming fro
cosmological network of string loops. For this, we shall u
a simplified description of such a string network. Indee
though much work has been done to understand the ev
tion of such networks~see references in Ref.@1#!, there re-
main many uncertainties about some of the crucial deta
features of this evolution~notably the exact value of the pa
rameter a introduced below, and the average number
cusps per loop!. In fact, our work provides a new motivatio
for reinvestiagting such questions and obtaining better
swers. In the present exploratory investigation we shall c
tent ourselves with using a very simple~‘‘one scale’’! de-
scription of a string network. Let us recall that, at any cosm
time t, a horizon-size volume contains a few long strin
stretching across the volume, and a large number of sm
closed loops. The typical length and number density of lo
formed at timet are given approximately by

l;at and nl~ t !;a21t23. ~5.1!

As stated above, the exact value of the~crucial! dimension-
less parametera in Eq. ~5.1! is not known. We shall assume
following Ref. @5#, thata is determined by the gravitationa
backreaction, so that

a;GGm with G;50. ~5.2!

The coefficientG is defined as that entering the total rate
energy loss by gravitational radiationdE/dt5GGm2. @Note
that fundamental string theory suggests that string loop
small size loose energy not only as gravitons, but also
dilatons, which increases the effective value ofG @20#.# For a
loop of invariant lengthl ~and oscillation periodTl5 l /2) the
lifetime is t l; l /GGm;t.

In the following, we shall express all the cosmologic
dependence in terms of the redshiftz, rather than the cosmic
time t. Let

zeq.2.43104 Vm0h0
2.103.9 ~5.3!

denote the redshift of equal matter and radiation densit
For z,zeq, i.e. during matter domination, we hav
a(t)/a05(t/t0)2/35(11z)21, i.e.
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t5t0~11z!23/2 ~matter era!. ~5.4!

On the other hand, forz.zeq ~radiation era! we have (1
1z)215a(t)/a05(aeq/a0)(t/teq)

1/2 so that

t5t0~11zeq!
1/2~11z!22. ~5.5!

For our subsequent estimates, we found it convenien
define smooth functions ofz which interpolate between th
different functional dependences ofz in the matter era, and
the radiation era. For instance, in view of Eqs.~5.4! and
~5.5!, we define the smooth function

w l~z![~11z!23/2~11z/zeq!
21/2, ~5.6!

in terms of which

t.t0w l~z!. ~5.7!

Then, from Eq.~5.1!, the typical length of a loop formed
~and decayed! around the redshiftz is

l;at0w l~z!, ~5.8!

while their number density is

nl;a21t0
23w l

23~z!. ~5.9!

B. Gravitational wave bursts from cusps

In this subsection we concentrate on cusp GWB’s. Ins
ing Eq. ~5.8! into Eq. ~4.10! yields a GW amplitude from
cusps at redshiftz of the form

hcusp~ f ,z!;Gma2/3~ f t0!21/3wh~z!Q@12um~a, f ,z!#,
~5.10!

where we defined the interpolating function

wh~z![z21~11z!21/3~11z/zeq!
21/3, ~5.11!

and where theQ-function factor@Q(x) denoting as above
the step function:Q(x)50 for x,0 and Q(x)51 for x
.0] serves the purpose of cutting off the burst signals t
would formally correspond toum * 1. Indeed, the entire
derivation of the burst signal in Sec. III was done under
assumptionum!1, corresponding to high values of the mod
numberumu;um

23 . The low mode numbersm5O(1) do not
correspond to bursts, and the string does not emit modes
umu,1. We mentioned above thathcusp( f );um( f )hLF where
hLF;Gm l /a0r̂ is the amplitude of the low frequency sign
generated by the low mode numbers. Therefore, formally
cusp signal@Eq. ~5.10!# gives an approximate representatio
of the string GW amplitude which is valid for allum( f )>1,
down to and including the~formal! limit um51. The explicit
expression forum(a, f ,z) is obtained from combining Eq
~4.12! ~where we henceforth neglect the factor 21/3) with Eq.
~5.8!, and reads

um~a, f ,z!5~a f t0~11z!w l~z!!21/3

5~a f t0!21/3~11z!1/6~11z/zeq!
1/6. ~5.12!
8-10
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Let us now turn to the problem of estimating the rate
occurrence of GWB’s from cusps. As recalled above,
smooth loops cusps are generic, and tend to be formed a
times during each oscillation period@10#. Reconnection, and
its associated kink formation, can, however, diminish the
erage number of cusps@11#. However, we find it very plau-
sible that a significant fraction of the loops will exhib
cusps. To quantify this, we introduce a parameterc defined
as the~ensemble! average number of cusps per oscillati
period of a loop.

We start by estimating the rate of GWB’s originating
cusps in the redshift intervaldz, and observed around th
frequencyf, as

dṄ;
1

4
um

2 ~11z!21n~z!dV~z!. ~5.13!

Here the first factor is the beaming fraction within the co
of maximal angleum( f ,z) @Eq. ~5.12!#; the second factor
comes from the linkdtobs5(11z)dt between the observe
time tobs ~entering the occurrence rate on the left hand si!
and the cosmic timet of emission; the quantity

n~ t !;
cnl~ t !

Tl
;2ca22t24 ~5.14!

is the number of cusp events per unit space-time volume~in
which enters the average numberc of cusps per loop period
Tl5 l /2;at/2); finally, dV(z) denotes the proper spatia
volume between redshiftsz andz1dz. In the matter era,

dV554pt0
3@~11z!1/221#2~11z!211/2dz, ~5.15!

while in the radiation era

dV572pt0
3~11zeq!

1/2~11z!25dz. ~5.16!

It is convenient to work with the logarithmic densit
Ṅ( f ,z)[dṄ/d ln z. Using the relations given above, w
write it in terms of a new interpolating function ofz,

Ṅ~ f ,z!;102ct0
21a28/3~ f t0!22/3wn~z!, ~5.17!

where the numerical factor 102 approximates an exact nu
merical factor which is 54p/4 whenz,1, 54p when 1,z
,zeq, and 72p whenz.zeq, and where we defined

wn~z![z3~11z!27/6~11z/zeq!
11/6. ~5.18!

The observationally most relevant question is the followin
What is the typical amplitude of cusp-generated bur
hṄ

burst( f ) that we can expect to detect at some given occ

rence rateṄ, say, one per year? As the functionwn(z) always
increases withz like a power law~with an index which de-
pends on the considered range of redshift!, the value ofṄ is
dominated by the largest redshift, sayzm , contibuting toṄ:

Ṅ5E
0

zm
Ṅ~ f ,z!d ln z;Ṅ~ f ,zm!. ~5.19!
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The sought for estimatehṄ
burst( f ) is therefore obtained by~i!

solving Eq.~5.19! for zm , or, equivalently, solving Eq.~5.17!
for z, and ~ii ! substituting the resultz5zm(Ṅ, f ) in Eq.
~5.10!. The final answer has a different functional form d
pending on the magnitude of the quantity

y~Ṅ, f ![1022~Ṅ/c!t0a8/3~ f t0!2/3. ~5.20!

Indeed, if y,1 the dominant redshift will bezm(y),1; if
1,y,yeq[zeq

11/6, 1,zm(y),zeq, and if y.yeq, zm(y)
.zeq. More precisely, the solution of Eq.~5.17! for z can be
written as the following~interpolating! function of the com-
binationy @Eq. ~5.20!#:

zm~y!5y1/3~11y!7/33~11y/yeq!
23/11, ~5.21!

whereyeq5zeq
11/6 as above.

We can again introduce a suitable interpolating funct
g(y) to represent the final result as an explicit function ofy,

hṄ
cusp

~ f !;Gma2/3~ f t0!21/3g@y~Ṅ, f !#Q@12um~a,Ṅ, f !#,
~5.22!

where

g~y![y21/3~11y!213/33~11y/yeq!
3/11, ~5.23!

whereQ(x) denotes as above the step function, and wh
um(a,Ṅ, f ) denotes the functionsa, Ṅ, and f obtained by
substituting z→zm@y(Ṅ, f )# @defined by Eqs.~5.20! and
~5.21!# into Eq. ~5.12! above. In fact, thisQ-function cutoff
will be needed only when we consider very low frequenc
f and very small values ofa. For instance, iff ;1/(7 yr) and
Ṅ/c;1/yr, um(a,Ṅ, f ) would become larger than one on
for a&1029.

Prediction~5.22! for the amplitude of the GWB’s gener
ated at cusps of cosmic strings is one of the central result
this work. Before proceeding to analyzing the detectability
these bursts, let us discuss the GWB’s generated at kink

C. Gravitational wave bursts from kinks

We recall that, from Eqs.~4.11! and ~4.12!, the two dif-
ferences between kinks and cusps are that~i! the kink GW
amplitude is smaller than the cusp one by a factorumu21/3

;um;@(11z) f l #21/3 ~i.e. hkink;um
2 hLF instead of hcusp

;umhLF); and~ii ! the kink amplitude is emitted~per period!
in a thickened fan of directions of solid angle;um , instead
of a cone of solid angle;um

2 . This second fact is in favor o
the kink signal, but we shall see that it does not suffice
compensate for the bad news that the kink signal is pa
metrically smaller than the cusp one.

Using formula~5.12!, we can easily derive the kink ana
logs of the cusp results derived above. First, we find, inst
of Eq. ~5.10!,

hkink~ f !;um~a, f ,z!hcusp~ f !;Gma1/3~ f t0!22/3wh
(k)~z!

3Q@12um~a, f ,z!#, ~5.24!
8-11
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THIBAULT DAMOUR AND ALEXANDER VILENKIN PHYSICAL REVIEW D 64 064008
with the kink analog of the cusp interpolating function@Eq.
~5.11!#:

wh
(k)~z![z21~11z!21/6~11z/zeq!

21/6. ~5.25!

The rate of GWB’s originating from kinks in the redshi
intervaldz, and observed around the frequencyf, is obtained
by dividing Eq. ~5.13! by um(a, f ,z) @Eq. ~5.12!#. This
yields, instead of Eqs.~5.17! and ~5.18!,

Ṅ(k)~ f ,z![dṄkinks/d ln z;102kt0
21a27/3~ f t0!21/3wn

(k)~z!,
~5.26!

where

wn
(k)~z!5z3~11z!24/3~11z/zeq!

5/3. ~5.27!

The parameterk in Eq. ~5.26! is the kink analog of paramete
c in Eq. ~5.17!, i.e., the average number of kinks on a loo
Now the expectation is thatk.1. In the following we shall
simply assumek;1, though one must keep in mind thatk
might be significantly larger than 1.

As in our discussion of cusps, we are interested in e
mating the GW amplitude of kink bursts that one can exp
to detect at a given recurrence rateṄ. As before, this is
obtained by first solving Eq.~5.26! for z, which yields

z5zm
(k)~y(k)!5~y(k)!1/3~11y(k)!4/15~11y(k)/yeq

(k)!23/10,
~5.28!

whereyeq
(k)[zeq

5/3, and where the quantityy(k) is the following

function of Ṅ and f:

y(k)~Ṅ, f ![1022~Ṅ/k!t0a7/3~ f t0!1/3. ~5.29!

We can finally write

hṄ
kink

~ f !;Gma1/3~ f t0!22/3wh
(k)
†zm

(k)@y(k)~Ṅ, f !#‡

3Q@12um
(k)~a,Ṅ, f !#, ~5.30!

where um
(k)(a,Ṅ, f ) denotes the result of substitutingz

→zm
(k)@y(k)(Ṅ, f )# into Eq. ~5.12!. We could also have writ-

ten Eq.~5.30! in terms of an interpolating functiong(k)(y(k)),
as in Eq.~5.23!.

D. Functional behaviors ofhcusp and hkink , and first
comparison with planned GW detectors

It is easily checked that bothhṄ
cusp( f ) @Eq. ~5.22!# and

hṄ
kink( f ) @Eq. ~5.30!# are monotonically decreasing function

of both Ṅ and f. Also note thathṄ
cuspdepends on the averag

number of cuspsc only through the combinationṄ/c, while
hṄ

kink depends on the average number of kinksk only through

Ṅ/k. The dependence onṄ andf ~as well asc andk) can be
described by~approximate! power laws, with an index which
depends on the relevant range of dominant redshifts. Le
focus on the functional dependences ofhṄ

cusp, which will turn
out to be the physically most relevant quantity.~It is easy to
06400
.
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t
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derive the analogous results forhṄ
kink by using the formulas

given above.! As Ṅ increases~or asc decreases!, hcusp de-
creases first likeṄ21/3 ~or c1/3) in the rangezm,1, then like
Ṅ28/11 ~or c8/11) when 1,zm,zeq, and finally like Ṅ25/11

~or c5/11) when zm.zeq. For the frequency dependence
hcusp, the corresponding power-law indices are successiv
25/9, 29/11 and27/11.@These slopes come from combin
ing the basicf 21/3 dependence of the spectrum of each cu
burst with the indirect dependence onf of the dominant red-
shift zm(a,Ṅ, f ); see Eqs.~5.21! and ~5.20!.# By contrast
with these monotonic behaviors, when using our assum
link Gm;a/50 between the string tension and the parame
a, one finds that the index of the power-law dependence
hcuspupona successively takes the values17/9, 23/11 and
15/11. The appearance of the negative index23/11 means
that in a certain intermediate range of values ofa @corre-
sponding to 1,zm(a,Ṅ, f ),zeq or 1,y(a,Ṅ, f ),yeq

5zeq
11/6] the GWB amplitude~paradoxically! increases as one

decreasesa, i.e. Gm. @A decrease ofa leads to a smaller
radiation power from individual loops at a given redshift, b
at the same time it also leads to a higher density of loops
thus to a higher likelihood for an observer to see some of
loops at a small angle with respect to cusp direction. T
overall effect is determined by the interplay of these tw
factors.#

In Fig. 1 we plot~as solid lines! the logarithm of the GW
burst amplitude, log10(h

burst), as a function of log10(a) for ~i!
cusps with c51 ~upper curve!, ~ii ! cusps with c50.1
~middle curve!, and~iii ! kinks with k51 ~lower curve!. Fig-
ure 1 uses the fiducial valueṄ51 yr21, and gives the value
of hcuspor hkink for a frequencyf 5 f c5150 Hz. As discussed
in Sec. VI, this central frequency is the optimal one for t
detection of af 21/3 spectrum burst by LIGO. We indicate o

FIG. 1. Gravitational wave amplitude of bursts emitted by co
mic string cusps~upper curves! and kinks ~lower curve! in the
LIGO-VIRGO frequency band, as a function of the parametera
550Gm ~in a base-10 log-log plot!. The upper curve assumes th
the average number of cusps per loop oscillation isc51. The
middle curve assumesc50.1. The lower curve gives the kink signa
~assuming only one kink per loop!. The horizontal dashed line
indicate the one sigma noise levels~after optimal filtering! of LIGO
1 ~initial detector! and LIGO 2~advanced configuration!. The short-
dashed line indicates the ‘‘confusion’’ amplitude noise of the s
chastic GW background.
8-12
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GRAVITATIONAL WAVE BURSTS FROM CUSPS AND . . . PHYSICAL REVIEW D64 064008
the same plot~as horizontal dashed lines! the ~one-sigma!
noise levelshnoiseof LIGO 1 ~the initial detector!, and LIGO
2 ~its planned advanced configuration!. The VIRGO detector
has essentially the same noise level as LIGO 1 for the G
bursts considered here. We defer to Sec. VI a precise de
tion of these noise levels, as well as the meaning of the e
short-dashed line in the lower right corner of Fig. 1.

From Fig. 1 we see that the discovery potential of grou
based GW interferometric detectors is richer than hithe
envisaged, as it could detect~if c;1) cosmic strings in the
range a*10210, i.e. Gm*10212 ~which corresponds to
string symmetry breaking scales* 1013GeV). Even if c
;0.1, i.e. if cusps are present only on 10% of the loops
the network, which we deem quite plausible,~advanced!
ground-based GW interferometric detectors might detect G
bursts from cusps in a wide range of values ofa. Let us also
note that the value ofa suggested by the~superconducting-!
cosmic-string gamma ray burst~GRB! model of Ref. @9#,
namely a;1028, nearly corresponds in Fig. 1 to a loc
maximum of the GW cusp amplitude.@This local maximum
corresponds tozm;1. The local minimum on its right corre
sponds toz;zeq.# In view of the crudeness of our estimate
it is quite possible that LIGO 1 or VIRGO might be sensiti
enough to detect these GW bursts. Indeed, if one searche
GW bursts which are~nearly! coincident with ~some4!
GRB’s the needed threshold for a convincing coincident
tection is much closer to unity than in a blind search. Let
finally note that Fig. 1 indicates that~except ifk happens to
be parametrically large! the kink bursts are too weak to pro
vide an interesting source for LIGO-VIRGO.

In Fig. 2, we do the same plot as Fig. 1~still with Ṅ
51 yr21), but with a central frequency f 5 f c
53.931023 Hz optimized for a detection by the planne

4The local maximum of the 1/yrhcusp in Fig. 1 corresponds to a
redshiftzm;1. By contrast, in the model of Ref.@9# the ~300 times
more numerous! GRB’s come from a larger volume, up to redshif
;4.

FIG. 2. Gravitational wave amplitude of bursts emitted by c
mic string cusps~upper curves! and kinks~lower curve! in the LISA
frequency band, as a function of the parametera550Gm ~in a base-
10 log-log plot!. The meaning of the three solid curves is as in F
1. The short-dashed slanted curve indicates the confusion noise
lower long-dashed line indicates the one sigma noise level~after
optimal filtering! of LISA.
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space borne GW detector LISA. The meaning of the vario
curves is the same as in Fig. 1. The main differences with
previous plot are~i! the signal strength, and the SNR, a
typically much higher for LISA than for LIGO, so that LISA
could be sensitive to even smaller values ofa ~down to a
.10211.6); ~ii ! LISA is very sensitive even to rare cus
events (c50.1 or even smaller!; ~iii ! LISA is, contrary to
LIGO, sensitive to the kink bursts~which are believed to be
ubiquitous!; and~iv! though the GW burst signals still stan
out well above the cusp-confusion background~discussed in
Sec.VI!, the latter is now higher than the~broadband! detec-
tor noise in a wide range of values ofa. LISA is clearly a
very sensitive probe of cosmic strings. We note again tha
search in coincidence with GRB’s would ease detection.

VI. DETECTION ISSUES, CONFUSION NOISE, PULSAR
TIMING EXPERIMENTS

A. Signal to noise considerations

Let us first complete the explanation of Figs. 1 and 2
discussing the choice of the central frequencies and the
tector noise levels indicated there.

We recall that the optimal squared signal to noise ra
~SNR! for the detection of an incoming GW by correlatio
with a suitable bank of matched filters is given by

r25S S

ND 2

5E
2`

1`

d f
uh̃~ f !u2

Sn~ f !
52E

0

1`d f

f

uh~ f !u2

„hn~ f !…2
.

~6.1!

Here h̃( f ) is the Fourier transform of the~best! template
~assumed to match the signal!, Sn( f ) is the~two-sided! noise
spectral density, and, as above, we introduce the logarith
Fourier quantitiesh( f )[u f uh̃( f ), andhn( f )[Au f uSn( f ). For
cusp bursts~on which we focus! the optimal bank of filters
~when neglecting the fine structure around the center of
cusp! is

h~ f !5Au f u21/3e2p i f t c, ~6.2!

and depends, in addition to the overall amplitude factor,
only one parameter: the arrival timetc . We take the follow-
ing model of the LIGO 1~two sided! noise curve~see, e.g.,
Ref. @19#! ~for f above the seismic cut offf s;40 Hz)

Sn~ f !5
1

2
S0F212S f

f 0
D 2

1S f

f 0
D 24G . ~6.3!

Here S051.47310246 Hz21 and f 05200 Hz. @Equation
~6.3! is not really up to date, but it is sufficient for ou
present orientation estimate.# By inserting Eqs.~6.2! and
~6.3! into Eq. ~6.1! we obtain an explicit integral propor
tional to *(dx/x)@1/s(x)# where x[ f / f 0 and s(x)5x5/3(2
12x21x24). The minimum of the functions(x) is located
at xm50.7483, which corresponds tof m5xm f 05149.67 Hz.
Therefore LIGO 1 is optimally sensitive, for such signals,
the frequenciesf ; f m;150 Hz. @This value would also be
approximately appropriate for kink signals, and also for t
LIGO 2 noise curve.# Choosingf c5150 Hz as a fiducial fre-
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THIBAULT DAMOUR AND ALEXANDER VILENKIN PHYSICAL REVIEW D 64 064008
quency, and reexpressing the full SNR@Eq. ~6.1!# ~including
its overall amplitude factor} uAu2) in terms not ofA but of
h( f c), one finds~after computing the integral! that

r.
uh~ f c!u

hn
eff

, ~6.4!

with an ‘‘effective’’ noise level

hn
eff.1.7310222. ~6.5!

The effective noise level@Eq. ~6.5!# ~which corresponds to a
SNR equal to 1 for a matched filter detection5! is what is
called the ‘‘one sigma noise level’’ of LIGO 1 in Fig. 1. Fo
LIGO 2 ~advanced configuration! we estimated from noise
curves, available on the LIGO web site, that, near 150
the noise amplitudehn( f c) is a factor.13.5 smaller than for
LIGO 1. This defines the lower dashed curve in Fig. 1.

We did a similar analysis for LISA. We used as~effective!
noise curve the sum~with a factor 1/2 included to take car
of our using a two-sided spectral density!

Sn
tot~ f !5

1

2
@Sh

instr~ f !1Sh
conf~ f !#, ~6.6!

whereSh
instr is a recent estimate of the instrumental contrib

tion to the noise@21#,

Sh
instr~ f !.2.13310241F11S f a

f D 4GA11S f

f p
D 4

, ~6.7!

where f a52.7631023 Hz, f p59.5531023 Hz, and where
Sh

conf( f ) is the ‘‘binary confusion noise,’’ as estimated in Re
@22#. Again the optimal frequency is fixed by considering t
minimum of hn

2( f )/uh( f )u2} f 5/3Sn
tot( f ), which occurs atf m

51022.4113Hz53.87931023 Hz. Again, the ‘‘one sigma’’
effective noise level~dashed horizontal line in Fig. 2! is de-
fined by Eq.~6.4!, with the result:hn

eff51.815310222.
Let us also briefly mention the problem of ‘‘thresholds

i.e. the minimum value of the SNR, sayr0, needed to dis-
tinguish, with enough confidence, a real signal from a sta
tical fluctuation of the instrumental noise. Assuming, f
simplicity, a Gaussian instrumental noise, the probability t
the template-filtered detector output exceed a certain lever0
of SNR is given by the complementary error function

p~r.r0!5S 2

p D 1/2E
r0

`

dr e2(1/2)r2

.S 2

p D 1/2

~r02r0
3!e2(1/2)r0

2
.

~6.8!

5The effective noise level@Eq. ~6.5!#, corresponding to the hori
zontal line in Fig. 1~with a similar line in Fig. 2!, should not be
used to estimate the SNR for the detection of a stochastic b
ground, which is optimized by a different filtering technique.
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We are interested in the situation where two independ
detectors~either two ground based interferometers, or t
two, partly independent, subinterferometers of LISA! find a
coincidence, after having madeN observations during the
year. In our case, each template contains only the arrival t
as an essential free parameter. Therefore, the number o
servations, assuming a blind search, in one year isN
;(1 yr)/t5(107.5s)/t where t; f c

21 is the characteristic
time between two decorrelated successive observations.
suming the same noise level in each detector, the sough
thresholdr0 can be defined by setting the product of tw
probabilities equal to Eq.~6.8! ~one for each detector!, i.e.
the square of Eq.~6.8!, to 1/N. Whent;1022 s ~as appro-
priate to LIGO! this yields r0.4.3, while when t
;33102 s ~LISA! this yieldsr0.3.0. Note, however, tha
the model of Ref.@9# suggested that GWB’s may be asso
ated with gamma ray bursts. The threshold for a search
near coincidence with GRB’s is somewhat lower, because
the smaller number of trial observationsN.

B. Confusion noise due to gravitational waves
from a string network

The realization that the stochastic ensemble of GW’s g
erated by a cosmological network of oscillating loops
strongly non-Gaussian, and includes occasional sharp bu
raises the following issues, of crucial importance for the d
tection strategies:~i! Can one split this stochastic ensemb
of GW’s into a ~strongly non-Gaussian, but plausibly near
Poissonian! ‘‘burst’’ part ~best detected by a matched filte
approach!, and a~nearly Gaussian! ‘‘background’’ ~best de-
tected by the usual strategies discussed for Gaussian sto
tic backgrounds!? ~ii ! What is the relation of this split to
previous estimates of the ‘‘stochastic’’ string-generated ba
ground of GW’s@2–7#, and how does it affect the interpre
tation of the famous pulsar timing constraint@23#?

Our proposal, for each detector with characteristic~opti-
mal! detection frequencyf c , and for each GW amplitude
level, is to define the borderline between occasional, in
vidual sharp bursts, and a nearly Gaussian background
counting the average number of bursts of given amplitu
which arrive within a characteristic timetc5 f c

21 . In other
words, we define a nearly Gaussian background by con
ering theconfusion noisegenerated by theoverlapof more
than one~and generally many! bursts which arrive within a
time smaller than the considered characteristic inverse
quency. A technical way of justifying this~physically intui-
tive! consideration is the following.

Let us write, in the time domain, our stochastic ensem
of GW’s from a string network as

h~ t !5(
n

h~ t2tn ,zn ,pn!. ~6.9!

Here the~somewhat symbolic! sum runs over wave forms
arriving at timetn and emitted from a string loop at redshi
zn , with other string parameters~length, orientation, etc.!
being denotedpn . The ~logarithmic! Fourier transform of
Eq. ~6.9! reads
k-
8-14
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h~ f ![u f uh̃~ f !5(
n

e2p i f t nh~ f ,zn ,pn!. ~6.10!

Let us now recall that the spectral noise density of a s
chastic ensemble of signals is defined by^h̃* ( f )h̃( f 8)&
5d( f 2 f 8)Sh( f ) where^ & denotes an ensemble average
tilde the usual Fourier transform and a star, complex con
gation. Defining the~total! root mean square GW amplitud
hrms( f ) @with the same dimension ash(t), i.e. dimensionless#
by hrms

2 ( f )[u f uSh( f ), the above definition ofSh( f ) becomes,
in terms of the more convenient logarithmic Fourier quan
ties,

^h* ~ f !h~ f 8!&5u f ud~ f 2 f 8!hrms
2 ~ f !. ~6.11!

When we take the~formal! limit f 8→ f , the delta function
d( f 2 f 8)5*dt exp@2pi(f2f8)t# becomes a~formally infi-
nite! total time intervalT5*dt:

^h* ~ f !h~ f !&5u f uThrms
2 ~ f !. ~6.12!

Let us now compute the quantitŷh* ( f )h( f )& by squaring
expression~6.10!. Before taking the ensemble average,
obtain a double sum overn and n8 involving phase factors
e2p i f (tn2tn8) in addition to the other phase factors hidden
the dependence on the other parameters. If we assum~as
usual! that such phase factors are random and average to
~except whenn5n8), we obtain

^h* ~ f !h~ f !&5(
n

uh~ f ,zn ,pn!u2. ~6.13!

Within our simplified approach to the string network, w
assume that the GW amplitudes differ only by their reds
of emissionzn . The sum overzn ~within some octave around
z) then counts the number of signals coming fromdz/z dur-
ing the total timeT. In terms of our previously introduce
differential rate of occurrenceṄ( f ,z) this yields simply

^h* ~ f !h~ f !&5TE dz

z
Ṅ~ f ,z!h2~ f ,z!. ~6.14!

Identifying this result with Eq.~6.12!, we finally obtain

hrms
2 ~ f !5E dz

z
n~ f ,z!h2~ f ,z!, ~6.15!

where we introduced the shorthand notation

n~ f ,z![
Ṅ~ f ,z!

u f u
5

1

u f u
dṄ

d ln z
. ~6.16!

This derivation has achieved two aims:~1! It gives us an
explicit expression@Eq. ~6.15!# ~computable in terms o
quantities that we calculated above! for the usually consid-
ered rms GW background generated by a string network.~2!
It shows~by comparison to the usual rms value of a sum
n independent random variables with the same variance! that
the quantityn( f ,z) @Eq. ~6.16!# gives, in a technically pre-
06400
-

a
-

-

ro

t

f

cise sense, the~effective! number, within an octave of fre
quency aroundf, of random GW bursts generated at redsh
z, and therefore of amplitudeh( f ,z), which contribute to
hrms

2 . The latter result leads us to split the ensemble of G
signals in two sets:~i! the set of rare,nonoverlappingbursts
such thatn( f ,z),1, and~ii ! the set of frequent,overlapping
bursts, such thatn( f ,z).1. The rare, nonoverlapping burs
contribute tohrms

2 ( f ) only if one considers integration time

T@@Ṅ( f ,z)#21[@n( f ,z)u f u#21.u f u21. Therefore, if we are
interested in detection issues involving a detector with a c
tain characteristic bandwidth; f c , and a corresponding in
tegration timeTc; f c

21 , all the bursts such thatn( f c,z),1
should be considered as randomly occurring separate b
events, and the magnitude of these occasional events sh
not be compared to the fullhrms

2 ( f c) of Eq. ~6.15! but only to
the ‘‘confusion’’ noisedefined by restricting integral~6.15! to
the overlapping events,n( f c ,z).1. @By the central limit
theorem, applicable whenn( f c ,z)@1, this confusion noise
can be considered as being nearly Gaussian.# Therefore we
define

hconfusion
2 ~ f ![E dz

z
n~ f ,z!h2~ f ,z!Q@n~ f ,z!21#.

~6.17!

We conclude that the relevant background that individ
cusp or kink bursts should exceed to be detectable by LI
~central frequency f c5150 Hz) or LISA (f c

53.8831023 Hz) is not hrms
2 ( f c) @Eq. ~6.15!#, but only

hconfusion
2 ( f c), @Eq. ~6.17!#. The short dashed lines in Figs.

and 2 precisely plot quantity Eq.~6.17!, for the c51 cusp
background, i.e. forh( f ,z) given by Eq.~5.10!, andṄ( f ,z)
given by Eq. ~5.17! ~with c51). This shows that in the
LIGO or LISA bandwidths the individual bursts occurrin
once per year stand out clearly above the relevant confu
noise.

C. Rare bursts, confusion noise and pulsar timing experiments

Our finding that the stochastic ensemble of strin
generated GW’s is not Gaussian, but can be viewed as
superposition of occasional bursts on top of a nearly Gau
ian ‘‘confusion’’ background, leads us to reexamine the p
sar timing experiments@23# and their use as constraints o
the string tensionGm. Let us take as characteristic frequen
of the pulsar timing experiments the frequencyf c

psr

51/(7 yr)51028.35 Hz which roughly corresponds to th
optimal sensitivity of the data of Refs.@23#. To obtain a first
idea of the situation, let us start by considering the fiduc
value afid51024 corresponding toGm;a/505231026,
i.e. the traditionally considered type of string tensions@which
can naturally come from grand unified theories~GUT’s! and
which is most relevant for large scale structure formatio#.
We can compare three different GW amplitudes of releva
for the pulsar experiment:~i! the amplitude of individual
bursts having a recurrence ratef c

psr51/(7 yr) ~instead of the
1/yr recurrence rate considered above for LIGO or LISA!,
~ii ! the rms amplitude of our confusion background~6.17!,
8-15
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and ~iii ! the rms amplitude of the usually discussed full i
tegral@Eq. ~6.15!# which includes both rare bursts and ove
lapping ones. We find

h1/7
cusp~afid , f c

psr!50.503310213, ~6.18a!

hconfusion~afid , f c
psr!51.01310213, ~6.18b!

hrms
usual~afid , f c

psr!52.30310213. ~6.18c!

In computing integrals~6.15! and ~6.17! we have here
used~for better accuracy! an improved estimate of the spac
density of loops,nl @Eq. ~5.1!#. Indeed, numerical simula
tions indicate that, beyond the scalingnl;a21t23 one must
add an extra factor related to the parameter characterizing
density of long strings. This factor is different in the radi
tion era and in the matter era. In the notation of Ref.@1# this
extra factor is ;0.4z r;10 in the radiation era, and i
;0.12zm;1 during the matter era. In other words, a bet
estimate ofnl is obtained by multiplying estimate~5.1! by
the function

C~z!5119z/~z1zeq!, ~6.19!

which interpolates between 1 in the matter era and 10 in
radiation era.

Note that, in terms of the contribution~per frequency oc-
tave! of GW’s to the present energy density,rGW( f )
;@2p f h( f )#2/(16pG);(p/4G) f 2h2, or, better, of their
fractional contribution to the closure density,

Vgw~ f ![
rGW~ f !

rc
56pGt0

2rGW;
3p2

2
~ f t0!2hrms

2 ~ f !,

~6.20!

results~6.18! yield

Vgw
confusion~afid , f c

psr!52.9931027, ~6.21!

Vgw rms
usual ~afid , f c

psr!51.5731026. ~6.22!

The usually consideredVgw is 5.25 times larger than th
physically meaningful confusion noise. This large discre
ancy comes from the fact thatVgw

usual includes the time-
average contribution of rare, intense bursts, which are in g
eral, not relevant for a pulsar experiment~if they are so rare
that they do not occur during the actual duration of the
periment!.

From this consideration, it would seem to follow that t
usual way to use pulsar data to set limits onGm @i.e. the
comparison between the theoretically predict
Vgw rms

usual (a, f ) and the observational constraint on a Gauss
Vgw

obs( f )] is seriously affected by the present work. It wou
also seem that the correct way to set limits onGm from
pulsar data consists simply in replacingVgw rms

usual by our new,
significantly smaller,Vgw

confusion. Then the value@Eq. ~6.21!#
suggests that even cusp-~rather than kink-! dominated back-
grounds, withc51 ~as the one considered in the equatio
above! generated by string tensionsGm of order of 1026

might be compatible with pulsar constraints at theVgw
obs
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& 1027 level. @In view of the crudeness of our estimates w
shall not try here to give any precise limit onGm from Vgw

obs.#
However, Eqs.~6.18! show that the situation is actuall

somewhat more complex than that. Indeed, Eq.~6.18a!
shows that the~observationally relevant! 1/(7 yr) bursts
have an amplitude comparable to the full confusion no
~which sums many overlapping, small signals!. „This comes
from the fact that the confusion integral@Eq. ~6.17!# is domi-
nated by its lower limit.… Therefore a significant part of th
difference betweenhconfusion andhusual comes from not very
intense, but not very rare bursts.@Note, however, that the
dominant contribution inhrms

usual comes from the very intense
very rare bursts, with recurrence time@7 yr.# In other
words, Eqs.~6.18! show that, within the frequency band
width ; f c

psr relevant for pulsar timing, the GW signalh( f ) is
a complicated superposition of a nearly Gaussian noise~of
variancehconfusion

2 ) and of a small number of occasional ra
dom bursts, occurring on the (f c

psr)21 time scale and of am-
plitude comparable tohconfusion( f c). In addition, there might
also occur~on longer time scales! some larger bursts. This
situation shows that one needs to reanalyze from scratch
pulsar limits onGm by dealing explicitly with the statistica
properties of such a complicated mix of signals, i.e. by ta
ling seriously the strongly non-Gaussian nature~involving an
important quasi-Poissonian component! of h( f ) within the
pulsar timing bandwidth. Until such an analysis, using o
new results on the nature of the string GW background
performed one cannot draw secure limits onGm from pulsar
observations. We expect, however, that the result of such
analysis will be, to a good approximation, equivalent to
placing Vgw

usual by our new Vgw
confusion ~which is about five

times smaller thanVgw
usual when Gm5231026, and about

four times smaller whenGm51026). In particular, we expect
that our results make a GUT-like valueGm;1026 now com-
patible ~even with many cuspy loops! with present pulsar
data.

Leaving to future work such an analysis, we content o
selves by comparing in Fig. 3 the variation witha of the

FIG. 3. Usual rms noise~upper short-dashed curve!, confusion
noise ~lower short-dashed curve! and burst GW amplitude~solid
line! emitted by cosmic string cusps, in the frequency band relev

for pulsar timing observations@ f c5Ṅ51/(7 yr)#. Here we as-
sumedc51 and included factor~6.19! in the spatial density of
loops.
8-16
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cusp burst signal@for c51 andṄ51/(7 yr)], theconfusion
GW amplitudehconfusion( f c

psr) @ f c
psr51/(7 yr)#, and the usu-

ally considered total rms amplitudehrms
usual( f c

psr). Contrary to
what happened in Figs. 1 and 2, we now see that the b
signal and the confusion signal are of comparable order
magnitude in a wide range of values ofa550Gm. Note also
that hrms

usual is a significant overestimate ofhconfusion when a
*531026, i.e. Gm*1027, which includes the GUT cas
which has been traditionally of most interest for cosm
string research. In view of the subtlety we just mention
concerning the data analysis of pulsar experiments, in Fi
we do not indicate a precise ‘‘one sigma’’ level for the se
sitivity of the pulsar experiment.@A rough guess, using Eq
~6.20! with Vgw

psr;1027 is hpsr;0.5310213.#
Switching from a defensive attitude~pulsar limits onGm!

to an optimistic one~detection of GW by pulsar experi
ments!, and forgetting for a moment the subtlety of the fa
thathburst;hconfusion~i.e. assuming thathconfusiongives a good
first estimate of the GW amplitude to be compared to
timing precision of pulsar experiments!, it is striking to note
in Fig. 3 thathconfusion is a very flat function ofa, so that a
modest improvement in the sensitivity of pulsar experime
~due either to a longer time span or to the discovery of
intrinsically more stable pulsar! might allow one to detect the
confusion noise coming from a string network down toa
;1029 ~i.e. Gm;10211). Evidently one should keep in min
that Fig. 3 is drawn for an average cusp numberc51. As-
suming a smaller value ofc, or evenc50, and considering
only the smaller kink signals, will make it much more diffi
cult for pulsar experiments to probe the existence of cos
strings.

VII. CONCLUSIONS

We have studied in detail the amplitude, frequency sp
trum, wave form and rate of occurrence of the hig
frequency gravitational wave~GW! bursts emitted at cusp
and kinks of a cosmological network of oscillating loop
Our main tool in studying the wave form has been the f
torization@Eq. ~2.23!# of the Fourier transform of the emitte
GW amplitude. This factorization allowed us to convenien
extract from the wave form its physically meaningful, gaug
invariant content.@This is why our wave forms differ from
previous results@13,11# which did not note the gauge natu
of the leading terms.# In the time domain these wave form
correspond to power-law ‘‘spikes’’}ut2tcub (b5 1

3 for
cusps andb5 2

3 for kinks! of linearly polarized GW’s, with
some smoothing of the center of the spike on time sca
ut2tcu;u3Tl , whereTl5 l /2 is the loop oscillation period
and whereu is the misalignment between the center of t
beam and the direction of emission.

We estimated the rate of occurrence and the distributio
amplitude of the GW bursts emitted at cusps and kinks
using a simple model for the cosmic string network. Wh
comparing our results with observations, one should kee
mind the simplifying assumptions involved in our model:~i!
All loops born at timet were assumed to have lengthl;at
with a;GGm and G;50. It is possible, however, that th
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loops have a broad length distributionn( l ,t) and that the
parametera characterizing the typical loop length be in th
rangeGGm,a&1023. ~ii ! We have also assumed that th
loops are characterized by a single length scale, with no w
gliness on smaller scales. Short-wavelength wiggles
scales!GGmt are damped by gravitational back-reactio
but some residual wiggliness may survive, thereby mod
ing the amplitude and the angular distribution of the G
bursts from cusps and kinks.~iii ! In many of our estimates
we assumed the simple, uniform estimate@Eq. ~5.1!# for the
space density of loops. This estimate is probably accurat
the matter era but is expected to be too small by a factor;10
in the radiation era@1#. In Sec. VI, where the contribution to
the confusion background of the radiation era was cruc
we corrected estimate~5.1! by including the redshift-
dependent factor Eq.~6.19!. ~iv! Finally, we disregarded the
possibility of a nonzero cosmological constant which wou
introduce some quantitative changes in our estimates. A
general comment, let us recall that, though we tried to k
the important ‘‘2p factors,’’ our estimates have systema
cally neglected factors of order unity.

In our view the most important astrophysical results of t
present investigation are the following:~1! the clear recog-
nition of the strongly non-Gaussian nature of the strin
generated GW background. The slow decrease with
quency of the GW burst signals means that there
occasional sharp bursts that stand above the ‘‘confusi
GW noise made of the superposition of the overlapp
bursts.~2! GW bursts from cusps might be detectable by t
planned GW detectors LIGO-VIRGO and LISA for a wid
range of string tensions even if the average number of cu
per string oscillation is only 10%. In spite of the argume
@11# that string reconnection can inhibit cusps~which are
generic for smooth loops@10#!, we find it plausible that 10%
or at least a few percent of the loops in the network w
feature cusps. In view of the crucial importance of the av
age number of cusps for detection by LIGO we recomme
that new simulations be performed to determine this quan
~3! Even if the number of cusps turns out to be very sm
our estimate of the GW amplitude emitted by the ubiquito
kinks show that the space borne GW detector LISA has
potential of detecting GW bursts from kinks in a wide ran
of string tensions.~4! Finally, we show the need of a reanaly
sis of the constraints onGm derived from pulsar timing data
Indeed, for such low frequencies the usual estimate@Eq.
~6.15!# of the GW stochastic background~which neglects its
non-Gaussianity! seems to be quite inadequate because it
erages on very rare, intense bursts. We have introdu
a new, more relevant quantity, the confusion noise@Eq.
~6.17!#, which averages only over the overlapping bursts.
the first approximation, we expect that the usually deriv
pulsar timing data limit on a Gaussian stochastic backgro
~often expressed as a limitVgw PSR

Gaussian&1027) will entail es-
sentially the same limit on theconfusionpart @Eq. ~6.17!# of
the GW stochastic background, i.e. we expect that the
pulsar limit on Gm will be the weaker constrain
Vgw

confusion(Gm),Vgw PSR
Gaussian. Our rather crude approximation

do not allow us to transform this relaxed limit in a preci
limit on Gm. However, we expect that our results rende
8-17
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GUT-like valueGm;1026 compatible with pulsar data, eve
if c;1 ~and probably easily compatible withGm;1026 if c
is 10% or less!. However, we emphasized that there are s
occasional bursts that complicate the analysis and call fo
ce
rd

ev

he
th
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improved treatment. Until such a careful analysis is do
together with a precise estimate of the number of cusps
string network, one cannot use pulsar data to set precise
its on Gm.
b-
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