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The static and stationai@ metric are examined in a generic framework and their interpretations studied in
some detail, especially those with two event horizons, one for the black hole and another for the acceleration.
We find that(i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a
lack of smoothness and compactness of the black hole horizdty using standard black hole thermody-
namics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of
the accelerated frame, afid) the usual upper bound on the product of the mass and acceleration parameters
(<1/\/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with
no significant changes.
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[. INTRODUCTION etries. In the 1980s, it was known to belong to a general class
of boost-rotation symmetric spacetims3,19. These solu-

Let us mention some relevant aspects of our presertions also have charged versidi$,20. The charged met-
knowledge of black holes: The uniqueness theorghhéead  ric is interpreted as the solution for Einstein Maxwell equa-
us to the study of just two families of exact solutions of tions for a charged particle moving with uniform acceleration
Einstein equations for stationary vacuum spacetimes— thEL6]. Another possible interpretation is the spacetime of two
Schwarzschild’'s and Kerr spacetimes, and their charged veBchwarzschild-type particles joined by a spring moving with
sions. Distortions and perturbations have been studied duringniform acceleratiof21].
the last two decadel,3]. In the framework of linearized Actually, theC metric can be associated to several space-
approximations we learned that the holes’ response to extetimes[22]. We review them, in Sec. Il, using a slightly dif-
nal perturbations appears as special modes of gravitationétrent approach. The most interesting ones have two event
waves—the quasinormal ringing modes. Numerical simulahorizons and a point singularity. One event horizon has finite
tions confirm that perturbed black holes settle down by thearea, associated to a black hole and the other event horizon
emission of these moddd]. There is strong evidence for has infinite area, associated to the Rindler horizon of accel-
astrophysical black holes] which are perturbed by their erated frame§23]. We compute the surface gravity on these
environment. horizons and conclude that, in general, the gravity at the hole

There are also several open issues that have been pris-larger than the frame acceleration. We show also, for ge-
sented as conjectures: The cosmic censorship conjg@ljre neric configurations, that the hole’s horizons are not smooth
the hoop conjecturf7], the no-hair conjecturg8], the topo- compact surfaces and confirm the well-known fact that the
logical censorship conjectuf®], and the adiabatic invariant line of acceleration is not elementary flat. We remark that the
conjecturdg 10]. Others have been studied in connection withproduct of surface gravity by the area of the horizon gives
thermodynamics, statistical mechanics, quantum theory, aneixactly the expected mass of the hole. This result is expected
cosmology{ 11]. Also, examples of more general black holesbecause of the coordinate transformation that majCtheet-
have been studied in the context of supergravity, stringic into a Weyl solution which is a superposition of a hole,
theory, and related theori¢2,13. with a given mass, and a semi-infinite rod of linear density

In this article we study some aspects of accelerated black/2[24]. Our units are such that=G=1. Finally we notice
holes. An interesting feature of these holes is that from dhat theC metric solution brings no limitation on the accel-
semiclassical viewpoint both Hawking and Unruh radiationeration of a black hole. The usual presentation of the solution
may be present because of the horizons associated with tias the constraimhA<1/\27 wherem and A are the mass

holes and to the acceleration. and the acceleration parameters. We show that this constraint
The object of our study is an old exact solution of vacuumis due to the choice of coordinates.
Einstein equations found in 1917 by Levi-Civifd4] and In Sec. Ill the rotatingC metric is studied in a similar

Weyl [15]. It is a simple and rich geometry. In the 1970s, away. The main new features introduced by a rotation param-
broader class of exact solutions with acceleration and roteeter is that it opens the possibility of existence of ergore-
tion parameters was four{d6,17] and it was named th€  gions, spinning strings, and spinning struts. We extend most
metric or Weyl C metric. The solutions were obtained by of the results of the preceding section to include a rotation.
studying the algebraic properties of a special class of geoniFhe interpretation of the more significant parts of the rotating
C metric is that of a spacetime in the neighborhood of an
accelerated Kerr-type particl@25]. We show also that the
*Email address: letelier@ime.unicamp.br internal singularity resembles a rotating ring as in the stan-
TEmail address: samuel@ime.unicamp.br dard Kerr solution.
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The amount of gravitational radiation by accelerated TABLE I. In the first column and in the first row thg andx
black holes is not computed in this pap26]. As stationary range are displayed. The second, fourth, sixth, and eighth columns
solutions bothC and the rotatingC metric represent eternal have the signature of th€ metric depending on the sign of the
black holes being eternally accelerated with gravitationafunctionsF(y) andG(x). On the rooty/=w the area of the event
wave coming from the singularities at infinity in such horizons are shown as finitel or =. On the rootsx=—w the
amount to balance the output of the accelerated black hole§ndth of the lines are shown as finifeor «. The table is symmet-

In the last section we summarize our main results andi¢ @Poutx+y=0. For comparison see similar tables[Z8].
make some final comments.

Yy \X X<—=Wsz -Wgz (-W3,-Wy) Wy (-Wp,-Wq) -W;p -W;<X

Il. THE C METRIC y>wz  -+—(1) o -+++ L -+=(5) L -+++
. . . W3 o @ A A

Le_t us f|rst.reV|ew, in a more ge_neral framework, the(Wz’Wa) +—(2) © A+t w  +—(6) L -+
physical meaning of the vacuu@ metric[14,27,23 whose A " - A

line element is (Wy,wWp) -+=(3) L -+++ o (7)) o -+++
Wy A A [ 0

dy? B dx? G
F(y) G(X) K2

w,>y +—@4) L +-++ L +—(8)

8

+-++

K2F(y)dt?>— de?|.

AZ(x+y)?

@ spacetimes and they must belong to the Weyl diags One
can divide thex—y plane in a similar way for the case
<0 (see also Fig. 1
The physical contents can be shown by the scalar invari-
ants[29]. The simplest nonvanishing ones for t@emetric

All the coordinates and the constalitare dimensionless.
The constanA has dimension of inverse of length, which is
used to fix the scale of physical interest. The functiG{x)
andF(y) are cubic functions such th&t(x) = —F(—x). Let

us consider the real cubi@ of a real variablaw, are[30]
QW) = (W Wy) (W—W,) (W—W). @ CanedC™ = 12°A%(x-+Y)®, ®
Let us assume:>0 andQ(w) has three real roots;<w, CabedCo'C 2= 12a°A5(x+y)®, 4

<ws. SettingG(x)=Q(—x) andF(y)=—Q(y), the infin-
ity x—y plane is divided into 16 rectangular regions. Let uswhereC,,qis the Weyl conformal tensor. Therefore, locally,
suppose the's range is such thaB(x)=0. Then, for—=  the only physically meaningful constants areand A. They
<y<+ the metric functiorF(y) changes sign on the roots are called dynamical parametéf<] in contrast to the kine-
w1, W,, andws and the type of the coordinatésindy are  matical onesw; ,w,,ws, andK. Furthermore, the spacetimes
interchanged between timelike and spacelike. Now, let ugre not singular at the horizons. They have only singularities
suppose thg's range is such thaE(y)=0. Then, as—>  at (x+y)— *x. We use below the notatiow,=—« and
<x<+x the other metric functiorG(x) changes sign on w,=+x.

the roots—wz<<—w,<—w; and the signature of the metric
(1) changes between-2 and +2. The two-dimensional

spaced=const,y=w,, k=1, ...,3 canhave finite or infi- y
nite area which we compute below, while the two- 00
dimensional spaces=const, x=—w,, k=1 ...,3 has a

vanishing area, that is, it is degenerate into a (orea poinj.
We can estimate whether or not the length of these lines are W,
finite without knowing the roots explicitly.

In Table | we present the signature associated to the met-
ric (1) depending on the range of the coordinatey,k, ¢). w, |
The event horizons associated to the Killing vecferAd,
are the roots of-(y). The regions in the same column are
divided by Killing horizons at the rootg=w;, j=1,2,3. w,.
The regions in the same rows are disconnected because they
have different global signature. They are separated by the
rootsx=—w,, k=1,2,3. We assume the range of the other ol
coordinates as € ¢<27 and —o<t<w. Thus, the physi-
cally meaningful spacetimes are those in whitls a space- e 2 0
like coordinate; thex range has to be either o<x<—wsy : ’
or —w,<x<—w, and the associated spacetimes have sig- FIG. 1. Thex—y plane for theC metric. The vertical separator
nature —2. Therefore, the regions where Killing vectér lines are axis and the horizontal ones are horizons. For comparison
=Ad; is timelike represent static and axially symmetric see similar figure if23].

uozoH
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TABLE Il. In the first column and in the first row thgandx range are displaye@ingle root case The
second and fourth columns have the signature ofxtineetric for the coordinates {y,x, ¢) depending on the
sign of the metric function§(y) andG(x). On the rooty=w* the area of the event horizonsds On the
root x=—w?* the length of the lines are.

Signature fox<—w*  Axis length atx=—w*  signature forx>—w*

y>w* —+—— © —+++
horizon’s area ay=w* 0 o
y<w* +——= o0 +—++

We can introduce, for future convenience, another conhole. In the literature there are some explicit coordinate

stantm with dimension of length such that transformations from some patches of enetric to accel-
erated black holes, double black holes at infinity, infinity
a=2mA. black holes plus black holes, and so[@1,23.

i ) ) . Let us suppos&)(w) has only one real rootv*. As
Therefore the spacetimes have two-dimensional dynamicalygye selG(x)=Q(—x) and F(y)=—Q(y). Then thex
parametersn andA. They are associated to mass and accel—_y plane is divided into four rectangular regions.
eration parameters, respectively. The two independent limit- “thare is an infinite area horizon gtw* . The distances
ing casesn—0 andA—0 have been reported in the litera- 5oy — —w* are infinite. Assuming the same character for
ture. The former is an accelerated frame while the latter is #he coordinates and ¢ as above, we restrict the meaningful
black hole. The cubic degenerates into a quadratic or a "”easrpacetime tox< —w*. The interp,retation is that of an accel-

function. A new justification of this interpretation is given 4 .o+aq frame with conical singularities along the line of ac-

below. _ celeration and essential singularities at infinity. See Table II.
Let us compute the area of the horizonsyatw; where There are of course other intermediate cases for the roots

F(y)=0 by integratingx and ¢ in the ranges of Q(w), but we resume our discussion about the three real

roots case.
AlRFLK 2m (~we  dXx We can compute the surface gravityon the Killing ho-
W A2k —w(xHw))? rizons where the Killing vectog= Ad, vanishes, i.e
k+1 i t e,
B a— ) K==V 16V o, @
AZK (W= W) (Wj— Wy q)
KA|dF
Some of the horizons have finite arga#(k andj #k+1) so K= 5" dy : ®)
y=w;

they are black hole event horizons, while the infinity area
ones are acceleration event horizons. The area of the surfaces
y— *+o vanishes. The symbolic values of the areas are indiThus the dynamical parametaris proportional to the accel-
cated in Table | and Fig. 1. eration surface gravity. Note that >k, and k3> k5, that is,
One can also compute the distance between the horizoriBe horizons ay=w, andy=ws, which are “closer to the
along the axisx=—wy such thatdx=dt=0 andG(—w) singularities” aty— =, have stronger surface gravity than

=0: the “inner” horizon aty=w,. In particular for region 6, the
surface gravityk s at the black hole is larger than the accel-
] 1 (W1 dy erationk ). Thus, using the semiclassical analogy between
Ly ™ :—f — (6) k(3 and the Hawking temperature of a black hole and be-
O ALy y—wiVF(y)) )

tween x(») and the Unruh temperature of the accelerating

The possible values of the distances are presented in Tablef[ame’ one concludes that the black hole is not in thermody-
P P namical equilibrium with the Unruh environment because of

They may vanish, be infinite or have a finite value, gay its higher temperature
according to the convergence behavior of the integral in Eq. For generic black héles, the product of the surface gravity

(6). : : )
The qualitative interpretation of the regions labeled by 1%'?[62]“'?%2: thes?%”;gg (ISS) F\JAFIZD; er'ilonal to the mass of the

—8 in Table | is as follows. Regions-15 and 8 are space-
times with essential singularities. The odd labeled regions

are not static. Note region 3: It is a compact spacetime with K(i)AEik)+1,k1:4Wm(Wk+—1_Wk):4w mass. (9
two black holes separated by a finite distance on one side and 2

both holes attached to a singularity on the other side. Note

regions 5 and 6: They represent the interior of a distortedhus the parametenis proportional to the mass of the hole.
black hole and the exterior of an accelerated black hole, re- The Killing axisymmetric vecton = d, has zero norm on
spectively. The finite piece of the axis is behind the blackthe axis of the symmetry
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G(x) Let us focus on region 6 of Table Ww,<y<wj and
2:—2. (10 —W,<x<—wj. It is an accelerated frame with the black
[KA(X+Y)] hole. The Newtonian mass of the finite line source with mass

density 3 is m(w,—w;)/2 which is exactly the mass of the
hole (9) as calculated above. The ratio between the surface
gravity aty=wj; to the acceleration af=w, is x(3)/k(y)
=(wz—w,)/(w,—w;)>1, so the hole would evaporate

fﬁrough the Hawking radiation despite the presence of the
by 27 times its radius of the metri€l). If this ratio is not Unruh radiation of the accelerated frame.

unity, there is an angle depletion, that is, a conical singular-  \ya can adjust the constalitin three ways

Therefore, the roots of the cub®(x) are indeed the sym-
metry axis.
Based on the identification of the roots a@dx) as the

ity: (1) Strut case There is a conical singularity at=—w;.
o 1 G(—w, 7 o)] Thus, from Eqg. (11) at x=—w, we get K=mA(w,

J iTe —w,)(ws—W,). The compression forc&\4) on the strut is
e Al=wi+etyl K _ Gu(—wy) F,=2(w,—w;)/(W3—W,). The Gauss-Bonet terrfil2) at
S[no ) f’WiJ“‘; n ix =%k Yng bgcomes[Z\llv%r—r](w2+wl)2/t(r\:v3Fvytz);hit ?s@r;ottan
u integer, in general. The area of the finite horizé& at y

—w AXEY] G ()] =wjy is w/[A3m(w3—W,)%(ws—w;)]. The surface gravity

(1D (7) aty=ws is K(3):mAz(Wz_Wl)(Ws_Wz)Z(Ws_Wl)-

One can choose the constdatin such a way to avoid the (2) String case There is a conical singularity at=

conical singularity in a particular piece of the axis. But in —Wo Thus, from Eq.(1D) at X= W We gethmA_(wgf

: ; . . —Wl)(WZ wy). The compression foro@\4) on the string is
general the conical singularity will show up somewhere on. L (Wp—wy)/(Ws—W,). The Gauss—Bonet terfi2) at
the axis. This is a known feature of the boost-rotation sym — a2 W) AW

metric spacetimes in which thH@ metric is just one example W3 becomes] 2wy — (W2 +Wy) ]/ (Wg—wy); it is not an
[19]. integer, in general. The area of the finite horizém at y

=wjs is w/[Am(ws— Wz)(W3 w;)?]. The surface gravity
(7) aty=wjz is k(z)=MA*(Wp—W;) (W3~ W) (W3—W;)?.
(3) Smooth surface caseFrom Eq.(12) aty=w; we fix

It is also instructive to compute the Gaussian curvature
(GC) of the constant and constany surface. It is given by

A2 3
GC=ATEMAXHY) ™+ F(Y)), K=mA(W,—wWq)[2W3— (Wo+W,) ]/ x (13

from which we can use the Gauss-Bonet theoi@t] to ) o o
obtain the Euler characteristiu of the horizon for for some integer numbey which is the Euler characteristic

—w;<x<-w,_; aty=w;, whereF(y)=0; of the horizon. There will be qonical singularity at bath
=—w; (stru) and x=—w, (string. We can compute the
dx d¢ compression force on them so that the difference is given by
[J Fl4pt= —J f Fi—Fo=2x(Wo—w;)/[2w3— (W,+W;)]. Both surface
KAZ(X+W )2 gravity (7) and the area of the horizd®) can be computed
also.
= —(WJ Wi )[ 2w, — (W +w;_)]. Thus the precise interpretation of this particular patch of
K the C metric could be either that df) an eternally acceler-

(12)  ated eternal black hole with conical singularities on the axis
aheadand behind the hole ofii) an eternally accelerated
The boundary terméh.t) vanish if the surface is a compact eternal black hole with nonsmooth horizon with conical sin-
closed smooth surfad€CSS and the right-hand side of the gularities on the axis aheanl behind the hole. The distortion
equation above is an integer number. It is clear that, in genef the horizon due to the acceleration of the inertial frame
eral, the horizons are not CCSS, unless we adfuisir this  has been investigatd@2].
purpose. Of course we can only apply Et?) if the surface The case of a double root yit=w,=w, and another root
is finite. Simple torus ¥=0) black holes are selected by aty=ws; corresponds to an accelerated Chazy-Curzon par-
choosing the roots such that=w;_; or 2w;=w;+w;,;, ticle [32,33,19. It is known that the Chazy-Curzon solution
for example. by itself has directional singularity. The same is true for the
Thus the kinematical parameti€ércan be chosen to either accelerated case. The other double root casav;=w, and
get rid of the conical singularity in a piece of the axis or to another root ay=w,; would correspond to the case when a
make the horizon a CCSS, but not both. Using the membranielack hole event horizon touches the Rindler horiza4].
paradigm for the black holes and the vision of conical sin-From the point of view of the geometry, the limil;—w,
gularities as struts or strings we conclude that in order tavould lead to the equality of the surface gravity at Schwarzs-
accelerate a black hole one needs to push it with a strut anchild and Rindler horizons meaning a thermodynamical equi-
pull it with a string carefully enough in order to not make a librium of hole in the noninertial framé35]. The case of
hole on its horizon. If one just pushes or pulls it, the mem-complex conjugated roots and another real root would corre-
brane will be somehow torn and the horizon will not be aspond to the accelerated Morgan-Morgan disk. All these
CCss. cases are beyond the scope of this paper.
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As presented here, there is no limitation on the values of

mMA because we can freely set the roots,w,, andws;. On
the other hand, if we set the cubic to IGw)=1—w?

+2mAW?, as usual in the literature, we need the constraint

PHYSICAL REVIEW D64 064005

x+y\®
Ck, . C3P%=96m2A° ~w ) [(1- BHaAxy(3W—4)

X (W—4)+ B(8W?—19W+12)]. (20)

mA< 1/y/27 to have three real roots, otherwise the solution
will be that of an accelerated frame with no black holes.Compare Eq(19) with Eq. (3). The singularities appear only

Then,m and A have no meaning by themselves.
See the Appendix for the connection betweenGhaetric

at (x+y)/W— * o, If a#0 these singularities are the points
(0,£) and (£«,0) in thex—y plane, otherwise the singu-

and the Weyl coordinates for vacuum static axisymmetridarities are the linesx, =) and (+,y) as in theC metric.

spacetimes.

Ill. ROTATING C METRIC

So the singularities for the rotatinG metric are spinning
rings (one is inside a black holesince the singular points in
thex—y plane are outside the axis and by the axial symme-
try they must be rings. Recall that for tif@metric the sin-

Let us now present the metric that describes a spacetimgularities are pieces of the axisome are inside the black
of a uniformly accelerating and rotating black hole in the holes.

same approach used above. It is called the rotating va€lium  The rootsw; of F(y) are the Killing horizons. The time-

metric [25,36.

like Killing vector field which is normal to the horizon is the

We expect three-dimensional constants associated witfnear combinationy = d;+ Q,d,, where the “angular veloc-

the acceleratio\, the masam, and the spira of the black
hole. One version of this metric is given bYy7]

__ 1 @( _3AL )iﬂ 2

A2(x+y)2[W Kdt=exdd F(Y)dy
2

—% 2—$<%d¢+aAy2Kdt) (14)

All the coordinates and the constalitare dimensionless.
The constanta has the dimension of length amd of the
inverse of length. The functionS(x) andF(y) are quartic
polynomials such thaG(x)=—F(—x) and

W=1+(aAxy)?. (15)

Let us consider the real quart@ of a real variablen
Q(W)= 8+ 2Anw+ ew?+ 2Amw’ — (aA)?ow* (16)
= a(W—Wq)(W—Wy)(W—Wz)(W—Wj) 17

=a(W—Wy)(W—W,)(W—w3)[ 1+ (aAw,)?w,w].
(18

The rootsw,, w,, andwg will be the relevant ones. We set
beloww; = —w, to simplify the expressions. The fourth root
wj is fixed by the others. The metri4) becomes a vacuum
solution of Einstein equations by setti@x) = Q(—x) and
F(y)=—Q(y). Note thatx=y=0 have been picked up as a
special point in this setup. The constadt@&nde are kine-
matical parameters whila,A,m, andn are dynamical pa-
rameters as can be seen from the following invarif@¢
(B=aAn/m):

6
CapedC2P0%= 48m2A6( Hwy) [(1-B%)(W?—16W+ 16)
+4B(3W—4)(W—14)] (19

and the product of the Weyl tensor with its dual

ity” of the horizon is
QH:Q|y:Wi: _a-A(KWi)2
andQ=—g; /g4 . The norm of this Killing vectofsee also

[36])

2
{[1+(aAwx)?]?F(y)

X“X“:(A(xw)

—[aAW!=y*) ’G(X)}/W (21)
vanishes ay=w;. Note the rigid rotation of the black hole
from the fact that th€), is constant on the horizon. We can
also compute the “surface gravity.” It has the same expres-
sion as in Eq(8). The area of each horizon and the mass of
the hole are also similar to thé-metric case given by the
Egs.(5) and(9). Note however that the root, ,w,, andw,
of the quartic(16) depend on the factoaA. Although the
expression of some quantities of the rotati@gmetric are
similar, they are not equal.

The norm of the Killing vectog=Ad, is

,_F(y)—(@aA)’G(x)y*

[KA(X+Y)]PW 22

The roots ofé? represent the boundaries of the surfaces of
infinite redshift. The regions between the surfaces of infinite
redshift and the Killing horizons are the ergoregions. The
rotating regions are given H\36]

F(y)G(x)=0.
As in the case of th& metric, we restrict to the cases of
signature—2, i.e.,G(x)=0.
The Killing vector field
7]:(9¢_QH(?I

has a norm given by
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5 2 - symmetry is given by=—w; where 7°=0, i.e., G(—w;)
7 :(m {G(xX)(1+(aAwy)?) =0. _
As in Sec. Il, one can compute the ratio between the
—[aA(x®—W?)2F(y)}/W. (23)  length of a circle by Zr times its radius. If this ratio is not

unity, there is an angle depletion, that is, a conical singular-

ity. Note, however, the dragging of the inertial frame in vir-

tue of the orbits of the spacelike Killing vecton=d,
One can prove, by polynomial analysis, thats a spacelike  —(,4,, that is,K?2 dt=aAw? d¢. Thus one has to compute
Killing vector whereverG(x)>0 andF(y)>0. The axis of the ratio from the metri¢14):

J’zw(1/A|_Wi+8+y|)[\/|G(_Wi+8)|/K][1+(aAy(_Wi+3))2]d¢ G-
lim — _ _ 5w, (24)
wi+e 2K
e—0 277]7 (LA|x+y]) VI[1+(aAyx?]/[G(x)[}dx

One can choose the constattin such a way to avoid the Therefore, the picture of a piece of tlhe-y plane with

conical singularity in a particular piece of the axis. But in their interpretation is shown in Fig. 2.

general the conical singularity will show up somewhere on The relative value of the invariat9) is shown in Fig. 3.
the axis. This is a manifestation of a spinning string singuNote its growing values as the singularity is approached.

larity. One last remark. The total mass of the hole as given by
The angular velocity of the string at the roots —w; is
iven b MWy 1~ W)
givi Yy K(i)AEik)Jr 1K :4’77'—k+2l K =4 mass, (26)
K2
Qstring:_wz- (25  now carries information on both acceleration and rotation
a

j since the roots depend on those parameters.

) ] Other versions of this solutiof25] have similar features.
Thus in general, the string and the black holes have angular

velocities with different values and opposite senses. Hole's horizon

G(x)=0 Singularity

Axis \ i
\l,l ‘i / A\
\
(»)=0
Black

Hole K___?z_ . - i
Horizon A Ergoregion 1

\
yTﬁ’ L/A"is N

X
N ] ' )
— f “AErgoregion Rindler's horizon
Rindler Horizon - . .
F)=0 FIG. 3. Contour plot of the relative values of the invariah®)

for an outer domain of comunication of the station@rgnetric (14).
FIG. 2. A piece of thex—y plane for the stationar metric. The parameters are the followingr,=—1, w,=1, wz=2, m
The axis, horizons, and the ergoregions are displayed. =1,K=1, a=1/2, andA=1/3.
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See the Appendix for the connection between the rotating ds?=m?[exp(2¢)dt?—exp2v—2¢)[dr?+d 7]
C metric and the Lewis-Papapetrou coordinates for vacuum 5 )
stationary axisymmetric spacetimes. —reexp(—2¢)deé“], (A1)

wherem is the dimensional constant which settles the physi-
IV. DISCUSSIONS cal scale. The functiongs and » depend only orr and z
From Egs.(Al) and (1) one finds
The C metric can represent several spacetimes depending
on the range of the coordinates. As shown in Table I, the K2F(y)
spacetimes have singularities, event horizons, and conical exp(2¢) =

2 2
singularities along the axis. If one takes appropriate combi- (MA(x+y) :rzzw
nations of the rectangles in Table I, one gets one of the in- 5 G(x) [MA(X+y)]*
terpretations found in the literature by some coordinate trans- I “€Xp(—2¢)= ———————
formation. (KmAx+y)

By studying the geometrical quantities of tBemetric we (A2)
find the correct interpretation for the spacetime it generates K2F(y) A2 d
independently of a particular transformation of coordinates. exp(2v)[dr2+dZ]= y y + .

This know-how can be of valuable help in the study of (MA2Z(x+y)* L F(y)  G(X)

black hole acceleration during a finite time. Interesting ef-
fects like dragging of inertial frame and gravitational radia- One sees that the roots B{y) are linked to the regions,
tion are present. in Weyl coordinates, whergg— — . Recall that the Einstein
The main conclusions of our study are as follows: In gen-vacuum equations for the Weyl metria1) reduce to
eral, theC metric and the rotatin@ metric represent accel-
erated black holes with nonsmooth compact horizon — there V2y=y, + Elﬂ +4,,=0
is the possibility of toroidal-like black holes. It requires a A AR
fine tuning of the constants to get a smooth compact horizon.
In general, the axis of symmetry is not elementary flat. The dv=r(wr2— ¢§) dr+2ry,,dz.
surface gravity at the holes is stronger than the frame accel-
eration. Therefore, the accelerated black hole temperature s the functiony must be a solution of Laplace’s equation
higher than the temperature of the thermal bath associated(ising from sources lying on the axis=0 [23] and asymp-
with the accelerated frame. The mass of the black hole caf®tically behaves as the Newtonian gravitational potential of
be computed from the mechanics of black holes and it is théhose sources. Neglecting the negative mass density cases
asymptotic mass of the Weyl solution of a rod with line one can show that the Newtonian sources for the even la-
density 1/2. We found no mathematical limitation on the ac-eled regions of th&€ metric have mass density given by
celeration parameter. For the rotating case the mass has the3l
contribution of the rotation and the acceleration, as it should.
Although the solutions have some bizarre features, they Iim(irw
. . . . . r
give us lots of information on how the spacetime is dragged ,_\2
along an accelerated black hole. The extension of uniqueness
theorems to include accelerating black holes is investigatett is known that the semi-infinite line source and finite line
in [37]. source with mass density are associated, through the Weyl
solutions, to Rindler and Schwarzschild spacetimes, respec-
tively [38,21]. Thus, if the cubic(2) has three distinct real
ACKNOWLEDGMENTS roots, the roots oF will be associated to the line sources and
the roots ofG will be associated to pieces of tlzeaxis. We

We are grateful to FAPESP for financial support. AlSO .an assign the pointg along thez axis in Weyl coordinates
P.S.L. is grateful to CNPq for a research grant and to Gy nere the line sources begin or end in such a way that
Gibbons for some early conversations about different aspects s thatz. are also the roots of the cub@.

I (|

of the C metric. The conical singularity in Weyl coordinate appears where

1
= lim =_.
y—wj;dx=0 2

1(FyIF=2/(x+y)
2\F IF—4l(x+y)

2w
APPENDIX JO rexp(—¢)de
lim " =1/expr(0,2) (A3)
e=0 ZwJO exp(v— )dr

C metric and Weyl coordinates

One can improve our interpretation of th@ metric
through the transformation from the coordinatex(y, ¢)
into static axisymmetric spacetime in Weyl-type dimension-is not unity and the compression force on it is given[B¢]
less coordinatest(r,z, ¢). This transformation is valid only
on the static regions of the—y plane (the even labeled
regions of Table)l Let the Weyl metric be

1

1 Gx(_Wi)
Fo=lex — v(02)~1]= 5|~~~

2K !

(Ad)
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where the second equality is obtained by the comparison of One sees that the roots B{y) — (aAy?)2G(x), the infi-

Egs.(11) and(A3). nite redshift surfaces, are linked to the regions whére
—o , The full transformation is very complicated and not
Rotating C metric and Lewis-Papapetrou coordinates clarifying. The Einstein vacuum equations for the metric

One can improve our interpretation of the rotatiDgnet- (A5) can be written as

ric by the comparison of the coordinate systetyx(y, ¢)

with the stationary axisymmetric spacetime in Lewis— 1 exp(4y)
Papapetrou coordinated,(,z,#). This comparison holds V2=t + PR T —— (Vw)?,
only on the stationary regions. Let the metric be 2r

ds’=m?[exp(2¢)(dt—wde)?

exp(4y)
—exp(2v—2¢)[dr2+d 2]~ r2exp( — 2¢)d$2]. vr=r( W=+ T(WE—WE))y
(A5)
The functionsy andv andw depend orr andz only and all exp(4i)
guantities buim are dimensionless. Frof5) and (14) one v, =21\ i ih,— 5, W,
finds ar
w exp(4y)
X 2Y) = o SIF ) (@AY G, o:v.<fvﬁ,),

2
G0~ (aAy")*F(y) , whereV stands for the flat vector operatat, (d,). Thus the
(KmA)Z(x+y)*W function ¢ must be a solution of the nonlinear Poisson’s
equation which has as the source a contribution from the
- ) ) rotation potentiaks. The connection between the solutions
wexXp(2y) = ﬁ[x F(Y)+y°G(x)], (AB)  of the equations above and the rotati@ignetric solution is
me(X+y) . o .
not simple. Nevertheless it is known that there are soliton
F(y)G(x) s_olutions as_spciqted to Newtonian i.mages of semi-infinite
(2= 277V (A7)  line plus a finite line with mass density that represent the
[MA(x+y)]* rotating version of the WeyC metric[39].

rlexp(—2¢) — wlexp(2y) =

—1
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