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Uniformly accelerated black holes
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The static and stationaryC metric are examined in a generic framework and their interpretations studied in
some detail, especially those with two event horizons, one for the black hole and another for the acceleration.
We find that~i! the spacetime of an accelerated static black hole is plagued by either conical singularities or a
lack of smoothness and compactness of the black hole horizon,~ii ! by using standard black hole thermody-
namics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of
the accelerated frame, and~iii ! the usual upper bound on the product of the mass and acceleration parameters
(,1/A27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with
no significant changes.
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I. INTRODUCTION

Let us mention some relevant aspects of our pres
knowledge of black holes: The uniqueness theorems@1# lead
us to the study of just two families of exact solutions
Einstein equations for stationary vacuum spacetimes—
Schwarzschild’s and Kerr spacetimes, and their charged
sions. Distortions and perturbations have been studied du
the last two decades@2,3#. In the framework of linearized
approximations we learned that the holes’ response to ex
nal perturbations appears as special modes of gravitati
waves—the quasinormal ringing modes. Numerical simu
tions confirm that perturbed black holes settle down by
emission of these modes@4#. There is strong evidence fo
astrophysical black holes@5# which are perturbed by thei
environment.

There are also several open issues that have been
sented as conjectures: The cosmic censorship conjecture@6#,
the hoop conjecture@7#, the no-hair conjecture@8#, the topo-
logical censorship conjecture@9#, and the adiabatic invarian
conjecture@10#. Others have been studied in connection w
thermodynamics, statistical mechanics, quantum theory,
cosmology@11#. Also, examples of more general black hol
have been studied in the context of supergravity, str
theory, and related theories@12,13#.

In this article we study some aspects of accelerated b
holes. An interesting feature of these holes is that from
semiclassical viewpoint both Hawking and Unruh radiati
may be present because of the horizons associated with
holes and to the acceleration.

The object of our study is an old exact solution of vacuu
Einstein equations found in 1917 by Levi-Civita` @14# and
Weyl @15#. It is a simple and rich geometry. In the 1970s
broader class of exact solutions with acceleration and r
tion parameters was found@16,17# and it was named theC
metric or Weyl C metric. The solutions were obtained b
studying the algebraic properties of a special class of ge
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etries. In the 1980s, it was known to belong to a general c
of boost-rotation symmetric spacetimes@18,19#. These solu-
tions also have charged versions@16,20#. The chargedC met-
ric is interpreted as the solution for Einstein Maxwell equ
tions for a charged particle moving with uniform accelerati
@16#. Another possible interpretation is the spacetime of t
Schwarzschild-type particles joined by a spring moving w
uniform acceleration@21#.

Actually, theC metric can be associated to several spa
times @22#. We review them, in Sec. II, using a slightly dif
ferent approach. The most interesting ones have two e
horizons and a point singularity. One event horizon has fin
area, associated to a black hole and the other event hor
has infinite area, associated to the Rindler horizon of ac
erated frames@23#. We compute the surface gravity on the
horizons and conclude that, in general, the gravity at the h
is larger than the frame acceleration. We show also, for
neric configurations, that the hole’s horizons are not smo
compact surfaces and confirm the well-known fact that
line of acceleration is not elementary flat. We remark that
product of surface gravity by the area of the horizon giv
exactly the expected mass of the hole. This result is expe
because of the coordinate transformation that map theC met-
ric into a Weyl solution which is a superposition of a hol
with a given mass, and a semi-infinite rod of linear dens
1/2 @24#. Our units are such thatc5G51. Finally we notice
that theC metric solution brings no limitation on the acce
eration of a black hole. The usual presentation of the solu
has the constraintmA,1/A27 wherem andA are the mass
and the acceleration parameters. We show that this const
is due to the choice of coordinates.

In Sec. III the rotatingC metric is studied in a similar
way. The main new features introduced by a rotation para
eter is that it opens the possibility of existence of ergo
gions, spinning strings, and spinning struts. We extend m
of the results of the preceding section to include a rotati
The interpretation of the more significant parts of the rotat
C metric is that of a spacetime in the neighborhood of
accelerated Kerr-type particle@25#. We show also that the
internal singularity resembles a rotating ring as in the st
dard Kerr solution.
©2001 The American Physical Society05-1
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The amount of gravitational radiation by accelerat
black holes is not computed in this paper@26#. As stationary
solutions bothC and the rotatingC metric represent eterna
black holes being eternally accelerated with gravitatio
wave coming from the singularities at infinity in suc
amount to balance the output of the accelerated black ho

In the last section we summarize our main results a
make some final comments.

II. THE C METRIC

Let us first review, in a more general framework, t
physical meaning of the vacuumC metric @14,27,22# whose
line element is

ds25
1

A2~x1y!2 FK2F~y!dt22
dy2

F~y!
2

dx2

G~x!
2

G~x!

K2
df2G .

~1!

All the coordinates and the constantK are dimensionless
The constantA has dimension of inverse of length, which
used to fix the scale of physical interest. The functionsG(x)
andF(y) are cubic functions such thatG(x)52F(2x). Let
us consider the real cubicQ of a real variablew,

Q~w!5a~w2w1!~w2w2!~w2w3!. ~2!

Let us assumea.0 andQ(w) has three real rootsw1,w2
,w3. SettingG(x)5Q(2x) andF(y)52Q(y), the infin-
ity x2y plane is divided into 16 rectangular regions. Let
suppose thex’s range is such thatG(x)>0. Then, for2`
,y,1` the metric functionF(y) changes sign on the root
w1 , w2, andw3 and the type of the coordinatest andy are
interchanged between timelike and spacelike. Now, let
suppose they’s range is such thatF(y)>0. Then, as2`
,x,1` the other metric functionG(x) changes sign on
the roots2w3,2w2,2w1 and the signature of the metri
~1! changes between22 and 12. The two-dimensiona
spacest5const,y5wk , k51, . . . ,3 canhave finite or infi-
nite area which we compute below, while the tw
dimensional spacest5const, x52wk , k51 . . . ,3 has a
vanishing area, that is, it is degenerate into a line~or a point!.
We can estimate whether or not the length of these lines
finite without knowing the roots explicitly.

In Table I we present the signature associated to the m
ric ~1! depending on the range of the coordinates (t,y,x,f).
The event horizons associated to the Killing vectorj5A] t
are the roots ofF(y). The regions in the same column a
divided by Killing horizons at the rootsy5wj , j 51,2,3.
The regions in the same rows are disconnected because
have different global signature. They are separated by
rootsx52wk , k51,2,3. We assume the range of the oth
coordinates as 0<f<2p and2`,t,`. Thus, the physi-
cally meaningful spacetimes are those in whichf is a space-
like coordinate; thex range has to be either2`,x,2w3
or 2w2,x,2w1 and the associated spacetimes have
nature22. Therefore, the regions where Killing vectorj
5A] t is timelike represent static and axially symmet
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spacetimes and they must belong to the Weyl class@28#. One
can divide thex2y plane in a similar way for the casea
,0 ~see also Fig. 1!.

The physical contents can be shown by the scalar inv
ants@29#. The simplest nonvanishing ones for theC metric
are @30#

CabcdC
abcd512a2A4~x1y!6, ~3!

CabcdC
cde fCe f

ab512a3A6~x1y!9, ~4!

whereCabcd is the Weyl conformal tensor. Therefore, locall
the only physically meaningful constants area andA. They
are called dynamical parameters@17# in contrast to the kine-
matical ones:w1 ,w2 ,w3, andK. Furthermore, the spacetime
are not singular at the horizons. They have only singulari
at (x1y)→6`. We use below the notationw052` and
w451`.

TABLE I. In the first column and in the first row they and x
range are displayed. The second, fourth, sixth, and eighth colu
have the signature of theC metric depending on the sign of th
functionsF(y) andG(x). On the rootsy5wk the area of the even
horizons are shown as finiteA or `. On the rootsx52wk the
length of the lines are shown as finiteL or `. The table is symmet-
ric aboutx1y50. For comparison see similar tables in@23#.

y \x x,2w3 -w3 ~-w3,-w2) -w2 ~-w2,-w1) -w1 -w1,x

y.w3 -1–~1! ` -111 L -1–~5! L -111

w3 ` ` A A
(w2 ,w3) 1—~2! ` 1-11 ` 1—~6! L 1-11

w2 A ` ` A
(w1 ,w2) -1–~3! L -111 ` -1–~7! ` -111

w1 A A ` `

w1.y 1—~4! L 1-11 L 1—~8! ` 1-11

FIG. 1. Thex2y plane for theC metric. The vertical separato
lines are axis and the horizontal ones are horizons. For compar
see similar figure in@23#.
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TABLE II. In the first column and in the first row they andx range are displayed~single root case!. The
second and fourth columns have the signature of theC metric for the coordinates (t,y,x,f) depending on the
sign of the metric functionsF(y) andG(x). On the rooty5w* the area of the event horizons is̀. On the
root x52w* the length of the lines arè .

Signature forx,2w* Axis length atx52w* signature forx.2w*

y.w* 2122 ` 2111

horizon’s area aty5w* ` `

y,w* 1222 ` 1211
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We can introduce, for future convenience, another c
stantm with dimension of length such that

a52mA.

Therefore the spacetimes have two-dimensional dynam
parametersm andA. They are associated to mass and acc
eration parameters, respectively. The two independent li
ing casesm→0 andA→0 have been reported in the litera
ture. The former is an accelerated frame while the latter
black hole. The cubic degenerates into a quadratic or a lin
function. A new justification of this interpretation is give
below.

Let us compute the area of the horizons aty5wj where
F(y)50 by integratingx andf in the ranges

A( j )
[k11,k]5

2p

A2K
E

2wk11

2wk dx

~x1wj !
2

5
2p

A2K

wk112wk

~wj2wk!~wj2wk11!
. ~5!

Some of the horizons have finite area (j Þk and j Þk11) so
they are black hole event horizons, while the infinity ar
ones are acceleration event horizons. The area of the sur
y→6` vanishes. The symbolic values of the areas are in
cated in Table I and Fig. 1.

One can also compute the distance between the hori
along the axisx52wk such thatdx5dt50 andG(2wk)
50:

L(k)
[ j 11,j ]5

1

AEwj

wj 11 dy

uy2wkuAuF~y!u
. ~6!

The possible values of the distances are presented in Tab
They may vanish, be infinite or have a finite value, sayL,
according to the convergence behavior of the integral in
~6!.

The qualitative interpretation of the regions labeled by
28 in Table I is as follows. Regions 125 and 8 are space
times with essential singularities. The odd labeled regi
are not static. Note region 3: It is a compact spacetime w
two black holes separated by a finite distance on one side
both holes attached to a singularity on the other side. N
regions 5 and 6: They represent the interior of a distor
black hole and the exterior of an accelerated black hole,
spectively. The finite piece of the axis is behind the bla
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hole. In the literature there are some explicit coordin
transformations from some patches of theC metric to accel-
erated black holes, double black holes at infinity, infin
black holes plus black holes, and so on@21,23#.

Let us supposeQ(w) has only one real rootw* . As
above, setG(x)5Q(2x) and F(y)52Q(y). Then thex
2y plane is divided into four rectangular regions.

There is an infinite area horizon aty5w* . The distances
alongx52w* are infinite. Assuming the same character f
the coordinatest andf as above, we restrict the meaningf
spacetime tox,2w* . The interpretation is that of an acce
erated frame with conical singularities along the line of a
celeration and essential singularities at infinity. See Table

There are of course other intermediate cases for the r
of Q(w), but we resume our discussion about the three r
roots case.

We can compute the surface gravityk on the Killing ho-
rizons where the Killing vectorj5A] t vanishes, i.e.,

k2[2 1
2“mjb“

mjbu uju50 , ~7!

k ( i )5
KA

2 UdF

dyU
y5wi

. ~8!

Thus the dynamical parameterA is proportional to the accel
eration surface gravity. Note thatk1.k2 andk3.k2, that is,
the horizons aty5w1 and y5w3, which are ‘‘closer to the
singularities’’ aty→6`, have stronger surface gravity tha
the ‘‘inner’’ horizon aty5w2. In particular for region 6, the
surface gravityk (3) at the black hole is larger than the acce
erationk (2) . Thus, using the semiclassical analogy betwe
k (3) and the Hawking temperature of a black hole and
tween k (2) and the Unruh temperature of the accelerat
frame, one concludes that the black hole is not in thermo
namical equilibrium with the Unruh environment because
its higher temperature.

For generic black holes, the product of the surface grav
by the area of the horizon is proportional to the mass of
hole @2#. From Eqs.~7! and ~5! we get

k ( i )A( i )
[k11,k]54p

m~wk112wk!

2
54p mass. ~9!

Thus the parameterm is proportional to the mass of the hole
The Killing axisymmetric vectorh5]f has zero norm on

the axis of the symmetry
5-3
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h25
G~x!

@KA~x1y!#2
. ~10!

Therefore, the roots of the cubicG(x) are indeed the sym
metry axis.

Based on the identification of the roots andG(x) as the
axis one can compute the ratio between the length of a c
by 2p times its radius of the metric~1!. If this ratio is not
unity, there is an angle depletion, that is, a conical singu
ity:

lim
«→0

E
0

2p 1

Au2wi1«1yu
AuG~2wi1«!u

K
df

2pE
2wi

2wi1« 1

Aux1yu
dx

AuG~x!u

5
Gx~2wi !

2K
.

~11!

One can choose the constantK in such a way to avoid the
conical singularity in a particular piece of the axis. But
general the conical singularity will show up somewhere
the axis. This is a known feature of the boost-rotation sy
metric spacetimes in which theC metric is just one example
@19#.

It is also instructive to compute the Gaussian curvat
~GC! of the constantt and constanty surface. It is given by

GC5A2~2mA~x1y!31F~y!! ,

from which we can use the Gauss-Bonet theorem@31# to
obtain the Euler characteristicx of the horizon for
2wj,x,2wj 21 at y5wi , whereF(y)50;

x
i

[ j , j 21]1b.t.5
1

2pE E GC
dx df

KA2~x1wi !
2

5
mA

K
~wj2wj 21!@2wi2~wj1wj 21!#.

~12!

The boundary terms~b.t.! vanish if the surface is a compa
closed smooth surface~CCSS! and the right-hand side of th
equation above is an integer number. It is clear that, in g
eral, the horizons are not CCSS, unless we adjustK for this
purpose. Of course we can only apply Eq.~12! if the surface
is finite. Simple torus (x50) black holes are selected b
choosing the roots such thatwj5wj 21 or 2wi5wj1wj 11,
for example.

Thus the kinematical parameterK can be chosen to eithe
get rid of the conical singularity in a piece of the axis or
make the horizon a CCSS, but not both. Using the membr
paradigm for the black holes and the vision of conical s
gularities as struts or strings we conclude that in order
accelerate a black hole one needs to push it with a strut
pull it with a string carefully enough in order to not make
hole on its horizon. If one just pushes or pulls it, the me
brane will be somehow torn and the horizon will not be
CCSS.
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Let us focus on region 6 of Table I:w2,y,w3 and
2w2,x,2w1. It is an accelerated frame with the blac
hole. The Newtonian mass of the finite line source with m
density 1

2 is m(w22w1)/2 which is exactly the mass of th
hole ~9! as calculated above. The ratio between the surf
gravity at y5w3 to the acceleration aty5w2 is k (3) /k (2)
5(w32w1)/(w22w1).1, so the hole would evaporat
through the Hawking radiation despite the presence of
Unruh radiation of the accelerated frame.

We can adjust the constantK in three ways.
~1! Strut case: There is a conical singularity atx52w1.

Thus, from Eq. ~11! at x52w2 we get K5mA(w2
2w1)(w32w2). The compression force~A4! on the strut is
Fz5

1
4 (w22w1)/(w32w2). The Gauss-Bonet term~12! at

y5w3 becomes@2w32(w21w1)#/(w32w2); it is not an
integer, in general. The area of the finite horizon~5! at y
5w3 is p/@A3m(w32w2)2(w32w1)#. The surface gravity
~7! at y5w3 is k (3)5mA2(w22w1)(w32w2)2(w32w1).

~2! String case: There is a conical singularity atx5
2w2. Thus, from Eq.~11! at x52w1 we get K5mA(w3
2w1)(w22w1). The compression force~A4! on the string is
Fz5

1
4 (w22w1)/(w32w1). The Gauss–Bonet term~12! at

y5w3 becomes@2w32(w21w1)#/(w32w1); it is not an
integer, in general. The area of the finite horizon~5! at y
5w3 is p/@A3m(w32w2)(w32w1)2#. The surface gravity
~7! at y5w3 is k (3)5mA2(w22w1)(w32w2)(w32w1)2.

~3! Smooth surface case: From Eq.~12! at y5w3 we fix

K5mA~w22w1!@2w32~w21w1!#/x ~13!

for some integer numberx which is the Euler characteristi
of the horizon. There will be conical singularity at bothx
52w1 ~strut! and x52w2 ~string!. We can compute the
compression force on them so that the difference is given
F12F25 1

4 x(w22w1)/@2w32(w21w1)#. Both surface
gravity ~7! and the area of the horizon~5! can be computed
also.

Thus the precise interpretation of this particular patch
the C metric could be either that of~i! an eternally acceler-
ated eternal black hole with conical singularities on the a
aheadand behind the hole or~ii ! an eternally accelerate
eternal black hole with nonsmooth horizon with conical s
gularities on the axis aheador behind the hole. The distortion
of the horizon due to the acceleration of the inertial fram
has been investigated@22#.

The case of a double root aty5w15w2 and another root
at y5w3 corresponds to an accelerated Chazy-Curzon p
ticle @32,33,19#. It is known that the Chazy-Curzon solutio
by itself has directional singularity. The same is true for t
accelerated case. The other double root case:y5w35w2 and
another root aty5w1 would correspond to the case when
black hole event horizon touches the Rindler horizon@34#.
From the point of view of the geometry, the limitw3→w2
would lead to the equality of the surface gravity at Schwar
child and Rindler horizons meaning a thermodynamical eq
librium of hole in the noninertial frame@35#. The case of
complex conjugated roots and another real root would co
spond to the accelerated Morgan-Morgan disk. All the
cases are beyond the scope of this paper.
5-4
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As presented here, there is no limitation on the values
mA because we can freely set the rootsw1 ,w2, andw3. On
the other hand, if we set the cubic to beQ(w)512w2

12mAw3, as usual in the literature, we need the constra
mA,1/A27 to have three real roots, otherwise the solut
will be that of an accelerated frame with no black hole
Then,m andA have no meaning by themselves.

See the Appendix for the connection between theC metric
and the Weyl coordinates for vacuum static axisymme
spacetimes.

III. ROTATING C METRIC

Let us now present the metric that describes a space
of a uniformly accelerating and rotating black hole in t
same approach used above. It is called the rotating vacuuC
metric @25,36#.

We expect three-dimensional constants associated
the accelerationA, the massm, and the spina of the black
hole. One version of this metric is given by@17#

ds25
1

A2~x1y!2 FF~y!

W S Kdt2
aA

K
x2 df D 2

2
W

F~y!
dy2

2
W

G~x!
dx22

G~x!

W S 1

K
df1aAy2K dtD 2G . ~14!

All the coordinates and the constantK are dimensionless
The constanta has the dimension of length andA of the
inverse of length. The functionsG(x) andF(y) are quartic
polynomials such thatG(x)52F(2x) and

W[11~aAxy!2. ~15!

Let us consider the real quarticQ of a real variablew

Q~w!5d12Anw1«w212Amw32~aA!2dw4 ~16!

5a~w2w1!~w2w2!~w2w3!~w2w4* ! ~17!

5a~w2w1!~w2w2!~w2w3!@11~aAw2!2w3w#.

~18!

The rootsw1 , w2, andw3 will be the relevant ones. We se
beloww152w2 to simplify the expressions. The fourth roo
w4* is fixed by the others. The metric~14! becomes a vacuum
solution of Einstein equations by settingG(x)5Q(2x) and
F(y)52Q(y). Note thatx5y50 have been picked up as
special point in this setup. The constantsd and « are kine-
matical parameters whilea,A,m, and n are dynamical pa-
rameters as can be seen from the following invariants@30#
(b[aAn/m):

CabcdC
abcd5 48m2A6S x1y

W D 6

@~12b2!~W2216W116!

14b~3W24!~W24!# ~19!

and the product of the Weyl tensor with its dual
06400
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Cabcd* Cabcd596m2A6 S x1y

W D 6

@~12b2!aAxy~3W24!

3~W24!1b~8W2219W112!#. ~20!

Compare Eq.~19! with Eq. ~3!. The singularities appear onl
at (x1y)/W→6`. If aÞ0 these singularities are the poin
(0,6`) and (6`,0) in thex2y plane, otherwise the singu
larities are the lines (x,6`) and (6`,y) as in theC metric.
So the singularities for the rotatingC metric are spinning
rings ~one is inside a black hole! since the singular points in
the x2y plane are outside the axis and by the axial symm
try they must be rings. Recall that for theC metric the sin-
gularities are pieces of the axis~some are inside the blac
holes!.

The rootswi of F(y) are the Killing horizons. The time-
like Killing vector field which is normal to the horizon is th
linear combinationx5] t1VH]f where the ‘‘angular veloc-
ity’’ of the horizon is

VH5Vuy5wi
52aA~Kwi !

2

andV[2gtt /gft . The norm of this Killing vector~see also
@36#!

xmxm5S K

A~x1y! D
2

$@11~aAwix!2#2F~y!

2@aA~wi
22y2!#2G~x!%/W ~21!

vanishes aty5wi . Note the rigid rotation of the black hole
from the fact that theVH is constant on the horizon. We ca
also compute the ‘‘surface gravity.’’ It has the same expr
sion as in Eq.~8!. The area of each horizon and the mass
the hole are also similar to theC-metric case given by the
Eqs.~5! and~9!. Note however that the rootsw1 ,w2, andw3
of the quartic~16! depend on the factoraA. Although the
expression of some quantities of the rotatingC metric are
similar, they are not equal.

The norm of the Killing vectorj5A] t is

j25
F~y!2~aA!2G~x!y4

@KA~x1y!#2W
. ~22!

The roots ofj2 represent the boundaries of the surfaces
infinite redshift. The regions between the surfaces of infin
redshift and the Killing horizons are the ergoregions. T
rotating regions are given by@36#

F~y!G~x!>0.

As in the case of theC metric, we restrict to the cases o
signature22, i.e.,G(x)>0.

The Killing vector field

h5]f2VH] t

has a norm given by
5-5



the
t
lar-
ir-

e

PATRICIO S. LETELIER AND SAMUEL R. OLIVEIRA PHYSICAL REVIEW D64 064005
h25S 1

KA~x1y! D
2

$G~x!~11~aAwiy!2!2

2@aA~x22wi
2!#2F~y!%/W. ~23!

One can prove, by polynomial analysis, thath is a spacelike
Killing vector whereverG(x).0 andF(y).0. The axis of
in
o
u

u

06400
symmetry is given byx52wi whereh250, i.e., G(2wi)
50.

As in Sec. II, one can compute the ratio between
length of a circle by 2p times its radius. If this ratio is no
unity, there is an angle depletion, that is, a conical singu
ity. Note, however, the dragging of the inertial frame in v
tue of the orbits of the spacelike Killing vectorh5]f
2VH] t , that is,K2 dt5aAw2 df. Thus one has to comput
the ratio from the metric~14!:
lim
«→0

E
0

2p

~1/Au2wi1«1yu!@AuG~2wi1«!u/K#@11„aAy~2wi1«!…2#df

2pE
2wi

2wi1«

~1/Aux1yu!A$@11~aAyx!2#/uG~x!u%dx

5
Gx~2wi !

2K
. ~24!
by

ion

.

One can choose the constantK in such a way to avoid the
conical singularity in a particular piece of the axis. But
general the conical singularity will show up somewhere
the axis. This is a manifestation of a spinning string sing
larity.

The angular velocity of the string at the rootsx52wj is
given by

Vstring5
K2

awj
2

. ~25!

Thus in general, the string and the black holes have ang
velocities with different values and opposite senses.

FIG. 2. A piece of thex2y plane for the stationaryC metric.
The axis, horizons, and the ergoregions are displayed.
n
-

lar

Therefore, the picture of a piece of thex2y plane with
their interpretation is shown in Fig. 2.

The relative value of the invariant~19! is shown in Fig. 3.
Note its growing values as the singularity is approached.

One last remark. The total mass of the hole as given

k ( i )A( i )
[k11,k]54p

m~wk112wk!

2
54p mass , ~26!

now carries information on both acceleration and rotat
since the roots depend on those parameters.

Other versions of this solution@25# have similar features

FIG. 3. Contour plot of the relative values of the invariant~19!
for an outer domain of comunication of the stationaryC metric~14!.
The parameters are the following:w1521, w251, w352, m
51, K51, a51/2, andA51/3.
5-6



tin
u

di
th
ic
b
in
n

te
s
o
ef
ia

n
-
e
a
o
h
ce
re
at
ca
th
e
c

s
uld
he
e

ne
te

so
G

ec

n

si-

,

n

l of
ases
la-

y

e
yl
pec-
l
nd

t

re

UNIFORMLY ACCELERATED BLACK HOLES PHYSICAL REVIEW D64 064005
See the Appendix for the connection between the rota
C metric and the Lewis-Papapetrou coordinates for vacu
stationary axisymmetric spacetimes.

IV. DISCUSSIONS

The C metric can represent several spacetimes depen
on the range of the coordinates. As shown in Table I,
spacetimes have singularities, event horizons, and con
singularities along the axis. If one takes appropriate com
nations of the rectangles in Table I, one gets one of the
terpretations found in the literature by some coordinate tra
formation.

By studying the geometrical quantities of theC metric we
find the correct interpretation for the spacetime it genera
independently of a particular transformation of coordinate

This know-how can be of valuable help in the study
black hole acceleration during a finite time. Interesting
fects like dragging of inertial frame and gravitational rad
tion are present.

The main conclusions of our study are as follows: In ge
eral, theC metric and the rotatingC metric represent accel
erated black holes with nonsmooth compact horizon — th
is the possibility of toroidal-like black holes. It requires
fine tuning of the constants to get a smooth compact horiz
In general, the axis of symmetry is not elementary flat. T
surface gravity at the holes is stronger than the frame ac
eration. Therefore, the accelerated black hole temperatu
higher than the temperature of the thermal bath associ
with the accelerated frame. The mass of the black hole
be computed from the mechanics of black holes and it is
asymptotic mass of the Weyl solution of a rod with lin
density 1/2. We found no mathematical limitation on the a
celeration parameter. For the rotating case the mass ha
contribution of the rotation and the acceleration, as it sho

Although the solutions have some bizarre features, t
give us lots of information on how the spacetime is dragg
along an accelerated black hole. The extension of unique
theorems to include accelerating black holes is investiga
in @37#.
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APPENDIX

C metric and Weyl coordinates

One can improve our interpretation of theC metric
through the transformation from the coordinate (t,x,y,f)
into static axisymmetric spacetime in Weyl-type dimensio
less coordinates (t,r ,z,f). This transformation is valid only
on the static regions of thex2y plane ~the even labeled
regions of Table I!. Let the Weyl metric be
06400
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ds25m2@exp~2c!dt22exp~2n22c!@dr21dz2#

2r 2exp~22c!df2#, ~A1!

wherem is the dimensional constant which settles the phy
cal scale. The functionsc and n depend only onr and z.
From Eqs.~A1! and ~1! one finds

exp~2c!5
K2F~y!

~mA!2~x1y!2

r 2exp~22c!5
G~x!

~KmA!2~x1y!2
6 ⇒r 25

F~y!G~x!

@mA~x1y!#4
,

~A2!

exp~2n!@dr21dz2#5
K2F~y!

~mA!2~x1y!4 F dy2

F~y!
1

dx2

G~x!G .
One sees that the roots ofF(y) are linked to the regions

in Weyl coordinates, wherec→2`. Recall that the Einstein
vacuum equations for the Weyl metric~A1! reduce to

“

2c[c rr 1
1

r
c r1czz50,

dn5r ~c r
22cz

2! dr12rc rcz dz.

Thus the functionc must be a solution of Laplace’s equatio
arising from sources lying on the axisr 50 @23# and asymp-
totically behaves as the Newtonian gravitational potentia
those sources. Neglecting the negative mass density c
one can show that the Newtonian sources for the even
beled regions of theC metric have mass density given b
@23#

lim
r→0

S 1

2
rc r D5 lim

y→wi ;dx50

1

2 S Fy /F22/~x1y!

Fy /F24/~x1y! D5
1

2
.

It is known that the semi-infinite line source and finite lin
source with mass density12 are associated, through the We
solutions, to Rindler and Schwarzschild spacetimes, res
tively @38,21#. Thus, if the cubic~2! has three distinct rea
roots, the roots ofF will be associated to the line sources a
the roots ofG will be associated to pieces of thez axis. We
can assign the pointszi along thez axis in Weyl coordinates
where the line sources begin or end in such a way thazi
5wi so thatzi are also the roots of the cubicQ.

The conical singularity in Weyl coordinate appears whe

lim
«→0

E
0

2p

r exp~2c!df

2pE
0

«

exp~n2c!dr

51/expn~0,z! ~A3!

is not unity and the compression force on it is given by@24#

Fz5
1

4
@exp~2n~0,z!!21#5

1

4 FGx~2wi !

2K
21G ~A4!
5-7
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where the second equality is obtained by the compariso
Eqs.~11! and ~A3!.

Rotating C metric and Lewis-Papapetrou coordinates

One can improve our interpretation of the rotatingC met-
ric by the comparison of the coordinate system (t,x,y,f)
with the stationary axisymmetric spacetime in Lewis
Papapetrou coordinates (t,r ,z,f). This comparison holds
only on the stationary regions. Let the metric be

ds25m2@exp~2c!~dt2Ãdf!2

2exp~2n22c!@dr21dz2#2r 2 exp~22c!df2#.

~A5!

The functionsc andn andÃ depend onr andz only and all
quantities butm are dimensionless. From~A5! and ~14! one
finds

exp~2c!5
K2W21

~mA!2~x1y!2
@F~y!2~aAy2!2G~x!#,

r 2exp~22c!2Ã2exp~2c!5
G~x!2~aAy2!2F~y!

~KmA!2~x1y!2W
,

Ãexp~2c!5
aW21

Am2~x1y!2
@x2F~y!1y2G~x!#, ~A6!

r 25
F~y!G~x!

@mA~x1y!#4
. ~A7!
s

rr

8

r.

,

7

06400
of One sees that the roots ofF(y)2(aAy2)2G(x), the infi-
nite redshift surfaces, are linked to the regions wherec→
2` . The full transformation is very complicated and n
clarifying. The Einstein vacuum equations for the met
~A5! can be written as

“

2c[c rr 1
1

r
c r1czz52

exp~4c!

2r 2
~¹Ã!2,

n r5r S c r
22cz

21
exp~4c!

4r 2
~Ãz

22Ã r
2!D ,

nz52r S c rcz2
exp~4c!

4r 2
ÃzÃ r D ,

05“•S exp~4c!

r
¹Ã D ,

where“ stands for the flat vector operator (] r ,]z). Thus the
function c must be a solution of the nonlinear Poisson
equation which has as the source a contribution from
rotation potentialÃ. The connection between the solution
of the equations above and the rotatingC metric solution is
not simple. Nevertheless it is known that there are soli
solutions associated to Newtonian images of semi-infin
line plus a finite line with mass density12 that represent the
rotating version of the WeylC metric @39#.
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