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We propose a rigorous, non-perturbative, Bayesian framework which enables one jointly to test Gaussianity
and estimate the power spectrum of CMB anisotropies. It makes use of the Hilbert space of an harmonic
oscillator to set up an exact likelihood function, dependent on the power spectrum and on a set of parameters
a;, which are zero for Gaussian processes. The latter can be expressed as a series of cumulants; indeed they
perturbatively reduce to cumulants. However they have the advantage that their variation is essentially uncon-
strained. Any truncatiofi.e., finite set ofe;) therefore still produces a proper distribution—something which
cannot be said of the only other such tool available, the Edgeworth expansion. We apply our method to Very
Small Array (VSA) simulations based on signal Gaussianity, showing that our algorithm is indeed not biased.
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[. INTRODUCTION alternative form for the likelihood. Here the difficulties be-
gin, since a workable non-Gaussian likelihood cannot be eas-
With recent dramatic improvements in observatiphg] ily defined. Non-Gaussianity spans an infinite-dimensional

the cosmic microwave backgroun@CMB) temperature space, and truncations into a finite number of degrees of
anisotropies have become a gold mine of information in cosfreedom are usually inconsistent.
mology. In particular, the power spectru@ of CMB fluc- The only attempt made so far is published 1d]. In that
tuations has become a popular meeting ground for theoristsork the Edgeworth expansidi9] was used to produce a
and observers. On one hand measuring @eprovides a  Bayesian joint estimate of th€, and the skewness of the
concrete target for improving experimental strategies. On ancOBE-DMR 4-year maps. This approach is at best very ap-
other, well-founded theories predict that a system of peakproximate. Cumulants of distributions are subject to very
should be observed in thg,, with a wealth of information complicated constraintf19], and setting them all to zero
encoded in their positions and heights. The recent unambigwapart from ondin [11] the skewnesds inconsistent with the
ous detection of the first of these pedlis-3] has caused a basic properties of a distribution, such as positive definite-
great deal of excitemerte.g.,[4—6]). ness or normalization. Furthermore the Edgeworth expansion

Many reputable theories also predict that the temperaturss an asymptotic series, which is never a distribution when
anisotropies form a Gaussian random fig¢kl/en though truncated.
there are notable exceptions-10]). That being the case, the In this paper we bypass these difficulties by deriving the
power spectrum does indeed contain all the relevant informageneral form of the likelihood from the Hilbert space of a
tion characterizing the random process under study. But hownear harmonic oscillator. We recglR0] that the ground
can we test the hypothesis of Gaussianity? Unfortunately thetate has a Gaussian wave-function, while all excited states
formalism used for Gaussianity tests is far less developetiave wave-functions which multiply a Gaussian by a Her-
than its counterpart for power spectrum estimation. Evemmite polynomial. The space of all distributions can then be
though Bayesianism has become the norm in curgres-  spanned by the amplitudes,, of the various energy eigen-
timation, tests of Gaussianity have all, but drid], been states, with a general distribution taking the form of a Gauss-
conducted in a frequentist vein. Most of these tests havéan times the square of @ossibly finitg series of Hermite
revealed consistency with Gaussianig.g., [12,13), but  polynomials.
claims for non-Gaussianity detection in Cosmic Background Such a generic distribution has a remarkable similarity
Explorer (COBB-Differential Microwave Radiometer with the Edgeworth expansion, which takes the form of a
(DMR) 4-year maps have also been matié—1¢. Of these, Gaussian multiplying an infinite series of Hermite polynomi-
one[14] has been found to be due to an experimental sysals with coefficients which are themselves polynomials in the
tematic[17], and anothef15] to an error of method18]. cumulants of the distribution. Closer comparison of the two
The third claim[16], however, remains in place. expressions reveals that indeed the amplitudgscan be

In this paper we set up a proper Bayesian framework withwritten as series of cumulanf40]; these are the combina-
which to tackle the issue of non-Gaussianity. All Bayesiantions of cumulants which can be varied independently. In
algorithms used so far have assumed that the signal, noisparticular these are the combinations which can be indepen-
and even galactic emissions are Gaussian random processdsntly set to zero without mathematical inconsistency. Fur-
and have targeted th@, only. If the assumption of the sig- thermore, perturbativelythat is when the cumulants are
nal’s Gaussianity is to be dropped then one must propose dismall” in a suitable sensg the amplitudesy,, are propor-
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tional to thenth order cumulant. In some sense #aggen-  enter the calculation through the signal covariance matrix

eralize cumulants to non-perturbative situations. S(a). Let us suppose, in some part of the calculation, we are
We thus arrive at a well-defined mathematical frameworkinterested only in the parametey (say), with the remaining

for conducting Bayesian tests of Gaussianity, which jointlyparameters fixed at particular values. In sofaery com-

producesC, estimates. Its interest is twofold. First there is mon) cases, it proves possible to write the signal covariance

the obvious interest in finding out whether the CMB fluctua-matrix in the special form

tions are Gaussian or not. Second there is the issue of

whetherC, estimates themselves may vary if non-Gaussian S(a)=S,(a;)+S,(ay, . .. .a), 2

degrees of freedom are allowed into the likelihood. In this

paper we describe this formalisSec. Il), and apply it 10\ heres; depends only on the parameter of interest ad
VSA.S|r-nuIat|or.13(Sec. IV), pending actual data. depends only on théfixed) values of the other parameters
It is interesting to note that the, are more than a math- 4.4 s thus a fixed matrix. Furthermore, it is often also the

ematical device, and have a physical interest of their OWnqe thag, s linear ina, and so can be written in the simple
within the framework of the standard inflationary scenario, S,(a;)=a,U where the fixed matrixJ =S,(1). Thus

[21-24. Standard inflationary fluctuations are Gaussian bey,q to1a| covariance matri€ can be written as
cause the inflaton’s fluctuations satisfy harmonic oscillator
equations, and are assumed to be in the ground state. The
latter is anassumptiorwhich relies loosely on the boundary
conditions imposed in quantum cosmolo§®5—-27, and ) o ) _ )
needs not be correft0]. A non-trivial wave-function for the WhereU is the “unit signal” covariance matrix an¥l is the
inflaton’s fluctuations manifests itself in non-Gaussian den-generalized noise” matrix. In particular, we note that if the
sity fluctuations, even if we do not depart from single-field, Parameters are the power spectrum coefficier@s (or av-
slow-roll, inflation. Quantifying their non-Gaussianity by erages of theC,’s in given I-bins), it is always possible to
means of thex,, offers a direct bridge to the wave-function Write the covariance matrix in the fori8).
of the inflaton’s fluctuations. SinceU andV are both real symmetric matrices, they can
Hence, if we take it for granted that inflation is realized in b€ diagonalized simultaneously by a single similarity trans-
its simplest form, and is triggered by quantum cosmologyformation. This is most easily achieved by solving the gen-
then measuring the parametef§ amounts to mapp|ng the era“zed EIgeonOblethXZ)\VX. Let us denote the corre-

wave-function of the Universe as it emerged out of a quansPponding eigenvalues hy; and eigenvectors by, which
tum epoch. are normalized such thaVe=1. If we now consider the

new set of variableg;=e¢-d, then it is straightforward to
show that these new variables are uncorrelatecfgrvalue
of the parametem,, with a covariance matrix given by

The non-Gaussian likelihood formalism we are about to(;é;)=(1+a;\;) dj;. The ; are the so-called eigenmodes
present works most simply when applied to a series of indeef signal-to nois¢S/N); the modes with large eigenvalue are
pendent variables. We shall therefore combine our methodxpected to be well measured, while modes with small ei-
with the technique of signal-to-noise eigenmodes, which wegenvalues are poorly measured and do not contribute signifi-
start by reviewing. cantly to the likelihood.

The signal-to-noise technique is a special case of the If the original datad; were distributed as a multivariate
Karhunen-Loeve method where the parameter dependence@aussian, the particular advantage of the S/N eigenmode ba-
linear (affine) [28—30. Let us consider a general set of ran- sis is that the likelihood function for the parameéggr (with
dom variables a,, ...,a, held fixed becomes a simple product of one-

dimensional Gaussians, and can be written simply in terms
di=s;+n;, (1)  of the eigenvalues; as

C=S+N=a1U+Sz+NEa1U+V, (3)

Il. SIGNAL-TO-NOISE EIGENMODES

wheres; is the signal component ang is the noise coun- | 1_[ 1
terpart. Let us also assume that the signal and noise contri- L(&a)=]] ———
butions are independent and each has a zero mean. The quan- T V2mItan,
tity d; could represent, for example, the observed

temperature fluctuation in thigh pixel of a CMB map, or Itis clear that this procedure can be repeated for each of the
alternatively the real or imaginary part of the amplitude ofother parametera,, ... a,, provided in each case the co-
the ith coefficient in the Fourier expansion of the map. Thevariance matrix can be written in the for(8). The likeli-
covariance matrix(d;d;) is given simply byC;;=(s;s;;)  hood function can thus be evaluated very simply along the
+<nini,>ES” +N;;, whereSandN are the signal and noise “coordinate directions” in parameter space. Moreover, in the

e~ (ER(+an) (g

covariance matrices, respectively. special case where the parametasa,, ... ,a, are mutu-
In the standard likelihood approach one estimates the padlly independentor quasi-independent to a good approxima-
rametersa, ,a,, . . . ,a, of the probability distribution from tion), the likelihood function factorizes as
which thes; are drawn by calculating the likelihoogi(d|a)
as a function of these parameters. The parameteisually L(dlay=L(d|a;)L(d|ay) . ..L(d|a,). (5)
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Thus, in this case, the above signal-to-noise eigenmode pro- 2

. _(y2)5 2
cedure can be repeated for each parameter in turn to evaluate ~ P=|y|?=e~ %270
the full likelihood function.

(13

IIl. AN EXACT, NON-PERTURBATIVE, NON-GAUSSIAN

LIKELIHOOD The ground statéor “zero-point”) fluctuations are Gaussian,
Put any admixture with other states will be reflected in a

Let x represent a general random variable, within a set o . S ) :
variables which are assumed to be independent. Let us bui n-Gaussian distribution function. Accordingly we may use
the amplitudes of these admixtures,, as non-Gaussianity

its distribution from the space of wave-functions which are. ™~ . ; ! >
energy eigenmodes of a simple harmonic oscillator. The folindicators. Their obvious advantage is the rather trivial con-
lowing results may be found in any quantum mechanics booRtraint ), Wh'Ch can _be ignored using E(_110). It permits
(e.g.,[20]) adopting the Schrodingérather than the Heisen- concentrating on a finite set of non-Gaussian degrees of free-

berg picture. We have that the general wave-functionda dom, without math_emancal Inconsistency.
given by However there is another reason why theare of math-

ematical interest: they reduce to cumularfsunder certain

assumptions. If we assume mild non-Gaussiatithich we

P(X)= >, anthn(X) (6)  define through the conditiofwo|?>|«;|?, for i=1) then to
n first order inq;,

where n labels the energy spectruB=7%w(n+1/2). The

basis functionsy, take the form o (%1200) 2NR(ay,) X
P(x)=[yf’=—=—|1 Hi
X a2 Vemay | =1 (2" Y2 T\ V20,
Un(X)=CpH, \/E e~ (X/470) (7) (14
0o

where we have taken to have zero phasgso that to first
order ¢g=1). Comparing Eq(14) with the Edgeworth ex-
pansion[19] we find a one-to-one correspondence between

with normalization fixingC,, as

1 . . )
Ch=——————. (8)  the amplitudes of the various energy eigenstates, and the
(2"n! \/Zoo)l/z combinations of cumulants appearing as coefficients in the
Edgeworth expansion. The latter simplify enormously if we
The only constraint upon the amplitudesg is only keep first order terms, that is if we assume that qua-
dratic and higher order terms in the cumulants are negligible.
) Then we find that
2 Janl?=1. 9

.. . . . . . kn*=R(ay) (15
This is a simple algebraic expression which can be elimi-
nated explicitly by writing
with a rather complicated proportionality constéwhich is
* easy to work out case by casedence, to first order, the
apg=\/1-2, |ay|% (100  coherent contamination of the ground state byrttieenergy
! eigenstate is signalled by a non-vanishing cumukgnt For
instance the presence of the third energy eigenstate results in

The quantityo} is the variance associated with tt@auss- k3%R(a3)#0, and, to first order, zero higher-order cumu-
. oy . . . 2
ian) probability distribution for the ground state/|*. We  |ants.

shall work with Hermite polynomialsi,(x) defined as The advantage of using the, is that they still work(i.e.,
they still lead to proper distributionsvhen the distribution is
d* 2 highly non-Gaussian. Any maximum likelihood estimate will
Hn(x)=(—-1)"" ﬁefx (1D necessarily have to probe regionsafbeyond the perturba-

tive regime, even for Gaussian realizations. In these regions
setting all but a finite number of,, to zero is inconsistent;
but not for a finite number of,. In the non-perturbative
. regime thea, become a rather complicated series «Gf.

f e X °H () H(x)dx=2"7"2n1 5, . (120  However these series of cumulants may be varied, or set to

—o zero, independently, and still lead to a distribution. Hence we
should regard thex, as non-perturbative generalizations of

The most general probability density for the fluctuationg in cumulants.
is thus More concretely, in the non-perturbative regime, we have

and normalized as
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e~ (®120%) af o eters of interest ara,=(1°C,/(27))xnin- Since these pa-

{2 i & . L .
PX)=|y]"= > — rameters are quasi-independent, the full likelihood function

V2mag i (2irjn)1? factorizes as in Eq5) to a good approximation. The signal-

to-noise eigenmode procedure outlined in Sec. Il is then ap-

< H. X H. X (16) plied to each factor, which, in the standard approach, reduces
! \/500 ! \/an ' to the simple product of one-dimensional Gaussians given in
Eq. (4).
We may recover the Edgeworth expansion by noting that, In our new approach, however, we subject the standard

Gaussian likelihood algorithm to the following modifica-
(17) tions. Instead of assuming the simple Gaussian form for the
probability distribution of each S/N eigenmodg, we in-
_ stead consider the more general situation in whiclvglare
with set to zero, except for the real part®f. The reason for this
psni] is that such a quantity reduces to the skewness in the pertur-
bil = _'J' : (18) bative regime. The imaginary part af; is only meaningful
T (s=m)!(s—i)(s—])! in the non-perturbative regim@nd can be set to zero inde-

. . _ _ pendently without inconsistencyHence we are considering
with 2s=n+i+j. One may derive Eq(18) using Eq.(12) 4 jikelihood of the form

and the standard result for the integral over a product of three
Hermite polynomialgformula 7.375.2 of 31]). Thus we ob-

e “H(0H;(x)=e ¥

> bIH(X)

/g2 2
T th | : a(—x%120) w X
tain the more complicated expression P(x) o+ 3 H, (20
P(X):|lﬂ|2 \/277'0'0 48 \/20’0
—(x21202) ij % i
e 0 b, o « X with
=———3 (Z (zifj.,'.,)‘l,z)Hn( - )
N no\ T, inj! V
oo : : 70 ap=1- a2 21)

(19

Comparing with the Edgeworth expansion leads to the rathegXplicitly replaced in Eq(20).

complicated non-perturbative expression relating the ampli- The generalization of this distribution to the multidimen-
tudese; and series of cumulants. sional case is trivial in the signal-to-noise eigenmode basis,

since we can simply take the product of the individual one-

dimensional distributions. Thus, when considering the power

spectrum in thekth spectral bin, we adopt the likelihood
We have applied our method to simulated observations bfunction

the Very Small Array(VSA) interferometer. The VSA has

been built by Cambridge and Jodrell Bank in the United e_(§i2/2(1+ak)‘i))

Kingdom, and is sited at the Teide Observatory in Tenerife. It £ (ga, ag)=]] ————=

has just become operational. The VSA is expected to give i 2@ l+an,

detailed maps of the CMB anisotropy with a sensitivity

~5uK and covering a range of angular scales from t® ot ﬁH ( & )

2° for a frequency range of 28—38 GHz. It will have 14 0" Jag 2(1+an)

antennas and a 2-GHz bandwidth analog correlator and uses

the same technology as the Cosmic Anisotropy Telescope (22)

(CAT). The VSA s able to observe in compact and extended

modes, which are sensitive to differdatanges. In the com- wherea, is the average of valugC, /(2) in the kth spec-

pact mode, it is expected that VSA will recover the angulartral bin. Theas could in principle depend oh but for sim-

power spectrum in 10 spectral bins where each bin is cerplicity we have dropped this dependence. Notice that be-

tered respectively dt~114, 211, 308, 404, 501, 598, 695, cause the noise is Gaussian, and because of the principle of

792, 889, 986. The width of each hixl~97 corresponds to superposition in quantum mechanics, thg appearing in

the 1k diameter of the aperture function of the interferom-this formula are the ones pertaining to the signal alone.

eter and represents the length scale on which the underlying We have applied this method to a:8@2 hour simulated

Fourier modes of the sky are correlated by the instrumentySA observation of a Gaussian CMB realization drawn from

Thus, the spectral bins have been chosen so that the powarstandard inflationary model with 4,,=0.95, ,=0.05,

spectrum estimates in each bin are quasi-independent to, =0, h=0.5,ns=1, and no tensor contribution. In Fig. 1

good approximation. we show the contour plots of the likelihood functions for the
An account of a maximum-likelihood method for analyz- amplitude of the power spectruiiC, /(2) anda; for each

ing interferometer observations of the CMB anisotropies isof the 10 spectrals bins observed by VSA. The alignment of

given in[32]. In the standard likelihood analysis the param-the contour axes with the coordinate axes implies the reas-

IV. APPLICATION TO VSA SIMULATIONS

2
X
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FIG. 1. Confidence contours for a simulated VSA observation of a Gaussian CMB realization drawn from a standard inflationary model.
In each spectral bin the fluctuations are parametrized by the average vafi@ Hf27) and the generalized cumulamg. Contours are at
10, 20, 30, . .., 90, and 9%ercent confidence levels.

suring result that there seems to be little correlation in eaclamplitude of the angular power spectrum. The results ob-

bin between the power spectrum estimate and the estimate tdined indicate that the value aef; scatter aroundv3=0,

the non-Gaussian parameter. within the range implied by the width of the likelihood. The
In Fig. 2 we plot the likelihood function for; in each  percentage of the population inside the contour intersecting

spectral bin after marginalization, using a flat prior, over thethe origin represents the confidence level for rejecting Gaus-
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FIG. 2. Marginalized likelihood functions faz; in each spectral bin obtained from the simulated VSA observation.

sianity. All of these are within 1—-2 sigma, indicating that this pected from the width of the likelihood.

method is not biased. Notice that for those bins in which we In Fig. 3 we plot the likelihood functions for the ampli-
failed to obtain a CMB detectiofsee Fig. 3there seems to tude of the power spectrum in each bin after marginalization
be a bias towards a peak ag=0, without the scatter ex- over the parametew; (solid line). Superimposed are the
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FIG. 3. Solid line: marginalized distribution for CMB fluctuations parametrizetffy/(21r), for a simulated VSA observation; dashed
line: conditional distribution forx3=0.

corresponding conditional distributions far;=0 (dashed variation of the position of the pedlparticularly for bins 1
line). For this Gaussian CMB realization, the distributionsand 2 which is in agreement with Fig 1. Since in each bin
obtained are not significantly affected by the inclusion of thethe estimate of the power spectrum and the non-Gaussian
extra parameter;. The most noticeable effect is a slight parameter are weakly correlated, we see that the widths of
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L L L L drawn from an inflationary model. The CMB fluctuations are
I ] thus Gaussian. The distribution peaks around a value;of
=0 confirming that our algorithm is indeed not biased.

0.1 =

V. CONCLUSIONS

In this paper we laid down the foundations for a rigorous
Bayesian framework for testing non-Gaussianity, and jointly
estimating the power spectrug8ec. Ill). Our main achieve-
ment was to convert testing Gaussianity into a problem of
0.05 i Bayesian estimation. We defined a series of parametgrs
to be added to the power spectrum, such that the origin of the
new space represents Gaussianity. These parameters are gen-
eralizations of cumulants. If all cumulants are very small, in
a suitable sense, each of the new parameters is approximately
proportional to a cumulant. If not, then the new parameters
become series of powers of cumulants. They are desirable

Relative Likelihood

ok 4 non-perturbative generalizations of cumulants because they
T T T e are independent, i.e., subject to essentially no constraints,
' ' g ’ ' unlike standard cumulants.

With any dataset, one must then determine the contour of
FIG. 4. The joint likelihood fora; obtained by multiplying the  the likelihood intersecting the origin of the,, space, after
individual likelihoods ina; for the 10 spectral bins. marginalization over the power spectrum. The percentage of
the population inside this contour is the confidence level for
the likelihood functions for the angular power spectrum arerejecting Gaussianity. We found that for simulated VSA ob-
not significantly increased by including tle, parameter. servations of a Gaussian CMB realization this confidence
In Fig. 4 we plot the joint likelihood forxs obtained by level is always within 1-2 sigma. To assess if our algorithm
multiplying the individual likelihoods for the 10 spectral is unbiased one must produce simulated VSA observations of
bins, thus obtaining the overall estimate and a better conseveral Gaussian CMB realizations. We found that the distri-
straint onas. bution of the peak of the likelihood ia5 for a number of
Finally, in Fig. 5 we plot the distribution of the peak of these realizations peaks around a valuexgt=0 showing
the likelihood for @5 obtained from Monte Carlo simula- that our method is indeed not biasggkc. 1V).
tions. In each VSA simulation the CMB is a realization = The method we have proposed is completely general, and
may be applied to any type of experiment, interferometric or
single-dish. In particular its application to COBE-DMR
maps, closely mimicking the steps [d], is straightforward.
The only issue which may complicate the method is galactic
30 - 7 foreground removal. In some experiments foregrounds away
- 1 from the galactic plane may be ignored, by suitably choosing
- 1 the frequency channels. In some cases, contaminations may
- - be removed by subtracting off the correlated component,
L 1 making use of templatd4.3]. In these cases there is no extra
20 |- - complication to our method.
| i However in some cas€82] foreground subtraction is
part of the maximum likelihood algorithm leading to CMB
C, estimates. In some of these cases it is assumed that galac-
tic foregrounds form a Gaussian random field. With our
method we may now allow for non-Gaussian degrees of free-
dom to be applied to these emissions. Hence we should be
able to improve significantly on these methods of foreground
removal, as well as exploring signal non-Gaussianity. The
detailed implementation of this project, including a test of
r 1 realizations with a non-Gaussian component, as well as its
or | | | 7 application to VSA data, is the subject of a future publica-
I 3 O tion.
ag The formalism we have developed is also of assistance for
generating realizations belonging to the most general en-
FIG. 5. The distribution of the peak of the likelihood in, for ~ semble parametrized by the,. In the work in preparation
simulated VSA observations of several Gaussian CMB realizationswve show how this can be done, and how the maximum like-
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lihood method proposed in this paper may then differentiatehanks the Isaac Newton Institute for support and hospitality
between distinct distributions on the basis of single realizaat the initial stages of this project. G.R. would like to thank

tions.
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