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Bayesian joint estimation of non-Gaussianity and the power spectrum
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We propose a rigorous, non-perturbative, Bayesian framework which enables one jointly to test Gaussianity
and estimate the power spectrum of CMB anisotropies. It makes use of the Hilbert space of an harmonic
oscillator to set up an exact likelihood function, dependent on the power spectrum and on a set of parameters
a i , which are zero for Gaussian processes. The latter can be expressed as a series of cumulants; indeed they
perturbatively reduce to cumulants. However they have the advantage that their variation is essentially uncon-
strained. Any truncation~i.e., finite set ofa i! therefore still produces a proper distribution—something which
cannot be said of the only other such tool available, the Edgeworth expansion. We apply our method to Very
Small Array~VSA! simulations based on signal Gaussianity, showing that our algorithm is indeed not biased.
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I. INTRODUCTION

With recent dramatic improvements in observations@1,2#
the cosmic microwave background~CMB! temperature
anisotropies have become a gold mine of information in c
mology. In particular, the power spectrumCl of CMB fluc-
tuations has become a popular meeting ground for theo
and observers. On one hand measuring theCl provides a
concrete target for improving experimental strategies. On
other, well-founded theories predict that a system of pe
should be observed in theCl , with a wealth of information
encoded in their positions and heights. The recent unamb
ous detection of the first of these peaks@1–3# has caused a
great deal of excitement~e.g.,@4–6#!.

Many reputable theories also predict that the tempera
anisotropies form a Gaussian random field~even though
there are notable exceptions@7–10#!. That being the case, th
power spectrum does indeed contain all the relevant infor
tion characterizing the random process under study. But h
can we test the hypothesis of Gaussianity? Unfortunately
formalism used for Gaussianity tests is far less develo
than its counterpart for power spectrum estimation. Ev
though Bayesianism has become the norm in currentCl es-
timation, tests of Gaussianity have all, but one@11#, been
conducted in a frequentist vein. Most of these tests h
revealed consistency with Gaussianity~e.g., @12,13#!, but
claims for non-Gaussianity detection in Cosmic Backgrou
Explorer ~COBE!-Differential Microwave Radiomete
~DMR! 4-year maps have also been made@14–16#. Of these,
one @14# has been found to be due to an experimental s
tematic @17#, and another@15# to an error of method@18#.
The third claim@16#, however, remains in place.

In this paper we set up a proper Bayesian framework w
which to tackle the issue of non-Gaussianity. All Bayes
algorithms used so far have assumed that the signal, n
and even galactic emissions are Gaussian random proce
and have targeted theCl only. If the assumption of the sig
nal’s Gaussianity is to be dropped then one must propos
0556-2821/2001/64~6!/063512~9!/$20.00 64 0635
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alternative form for the likelihood. Here the difficulties be
gin, since a workable non-Gaussian likelihood cannot be e
ily defined. Non-Gaussianity spans an infinite-dimensio
space, and truncations into a finite number of degrees
freedom are usually inconsistent.

The only attempt made so far is published in@11#. In that
work the Edgeworth expansion@19# was used to produce
Bayesian joint estimate of theCl and the skewness of th
COBE-DMR 4-year maps. This approach is at best very
proximate. Cumulants of distributions are subject to ve
complicated constraints@19#, and setting them all to zero
apart from one~in @11# the skewness! is inconsistent with the
basic properties of a distribution, such as positive defin
ness or normalization. Furthermore the Edgeworth expan
is an asymptotic series, which is never a distribution wh
truncated.

In this paper we bypass these difficulties by deriving t
general form of the likelihood from the Hilbert space of
linear harmonic oscillator. We recall@20# that the ground
state has a Gaussian wave-function, while all excited st
have wave-functions which multiply a Gaussian by a H
mite polynomial. The space of all distributions can then
spanned by the amplitudes,an , of the various energy eigen
states, with a general distribution taking the form of a Gau
ian times the square of a~possibly finite! series of Hermite
polynomials.

Such a generic distribution has a remarkable simila
with the Edgeworth expansion, which takes the form o
Gaussian multiplying an infinite series of Hermite polynom
als with coefficients which are themselves polynomials in
cumulants of the distribution. Closer comparison of the t
expressions reveals that indeed the amplitudesan can be
written as series of cumulants@10#; these are the combina
tions of cumulants which can be varied independently.
particular these are the combinations which can be indep
dently set to zero without mathematical inconsistency. F
thermore, perturbatively~that is when the cumulants ar
‘‘small’’ in a suitable sense!, the amplitudesan are propor-
©2001 The American Physical Society12-1



or
tly
is
a

ia
hi

-
w
rio
be
to
T

y

en
ld
y
n

in
gy

an

t
de
ho
w

th
ce
n-

n
qu
ed

o
he

e

p

trix
are

nce

rs
the
e

e

an
ns-
n-

-

s
re
ei-
nifi-

e
ba-

-
rms

the
-

the
he

a-

ROCHA, MAGUEIJO, HOBSON, AND LASENBY PHYSICAL REVIEW D64 063512
tional to thenth order cumulant. In some sense thean gen-
eralize cumulants to non-perturbative situations.

We thus arrive at a well-defined mathematical framew
for conducting Bayesian tests of Gaussianity, which join
producesCl estimates. Its interest is twofold. First there
the obvious interest in finding out whether the CMB fluctu
tions are Gaussian or not. Second there is the issue
whetherCl estimates themselves may vary if non-Gauss
degrees of freedom are allowed into the likelihood. In t
paper we describe this formalism~Sec. III!, and apply it to
VSA simulations~Sec. IV!, pending actual data.

It is interesting to note that thean are more than a math
ematical device, and have a physical interest of their o
within the framework of the standard inflationary scena
@21–24#. Standard inflationary fluctuations are Gaussian
cause the inflaton’s fluctuations satisfy harmonic oscilla
equations, and are assumed to be in the ground state.
latter is anassumptionwhich relies loosely on the boundar
conditions imposed in quantum cosmology@25–27#, and
needs not be correct@10#. A non-trivial wave-function for the
inflaton’s fluctuations manifests itself in non-Gaussian d
sity fluctuations, even if we do not depart from single-fie
slow-roll, inflation. Quantifying their non-Gaussianity b
means of thean offers a direct bridge to the wave-functio
of the inflaton’s fluctuations.

Hence, if we take it for granted that inflation is realized
its simplest form, and is triggered by quantum cosmolo
then measuring the parametersan amounts to mapping the
wave-function of the Universe as it emerged out of a qu
tum epoch.

II. SIGNAL-TO-NOISE EIGENMODES

The non-Gaussian likelihood formalism we are about
present works most simply when applied to a series of in
pendent variables. We shall therefore combine our met
with the technique of signal-to-noise eigenmodes, which
start by reviewing.

The signal-to-noise technique is a special case of
Karhunen-Loeve method where the parameter dependen
linear ~affine! @28–30#. Let us consider a general set of ra
dom variables

di5si1ni , ~1!

wheresi is the signal component andni is the noise coun-
terpart. Let us also assume that the signal and noise co
butions are independent and each has a zero mean. The
tity di could represent, for example, the observ
temperature fluctuation in thei th pixel of a CMB map, or
alternatively the real or imaginary part of the amplitude
the i th coefficient in the Fourier expansion of the map. T
covariance matrix̂ didj& is given simply byCi j 5^sisi 8&
1^nini 8&[Si j 1Ni j , whereSandN are the signal and nois
covariance matrices, respectively.

In the standard likelihood approach one estimates the
rametersa1 ,a2 , . . . ,an of the probability distribution from
which thesi are drawn by calculating the likelihoodL(dua)
as a function of these parameters. The parametersa usually
06351
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enter the calculation through the signal covariance ma
S(a). Let us suppose, in some part of the calculation, we
interested only in the parametera1 ~say!, with the remaining
parameters fixed at particular values. In some~very com-
mon! cases, it proves possible to write the signal covaria
matrix in the special form

S~a!5S1~a1!1S2~a2 , . . . ,an!, ~2!

whereS1 depends only on the parameter of interest andS2
depends only on the~fixed! values of the other paramete
and is thus a fixed matrix. Furthermore, it is often also
case thatS1 is linear ina1 and so can be written in the simpl
form S1(a1)5a1U where the fixed matrixU5S1(1). Thus
the total covariance matrixC can be written as

C5S1N5a1U1S21N[a1U1V, ~3!

whereU is the ‘‘unit signal’’ covariance matrix andV is the
‘‘generalized noise’’ matrix. In particular, we note that if th
parametersa are the power spectrum coefficientsCl ~or av-
erages of theCl ’s in given l-bins!, it is always possible to
write the covariance matrix in the form~3!.

SinceU andV are both real symmetric matrices, they c
be diagonalized simultaneously by a single similarity tra
formation. This is most easily achieved by solving the ge
eralized eigenproblemUx5lVx. Let us denote the corre
sponding eigenvalues byl i and eigenvectors byei , which
are normalized such thatei

tVei51. If we now consider the
new set of variablesj i5ei•d, then it is straightforward to
show that these new variables are uncorrelated foranyvalue
of the parametera1, with a covariance matrix given by
^j ij j&5(11a1l i)d i j . The j i are the so-called eigenmode
of signal-to noise~S/N!; the modes with large eigenvalue a
expected to be well measured, while modes with small
genvalues are poorly measured and do not contribute sig
cantly to the likelihood.

If the original datadi were distributed as a multivariat
Gaussian, the particular advantage of the S/N eigenmode
sis is that the likelihood function for the parametera1 ~with
a2 , . . . ,an held fixed! becomes a simple product of one
dimensional Gaussians, and can be written simply in te
of the eigenvaluesl i as

L~jua1!5)
i

1

A2pA11a1l i

e2„j i
2/2(11a1l i )…. ~4!

It is clear that this procedure can be repeated for each of
other parametersa2 , . . . ,an , provided in each case the co
variance matrix can be written in the form~3!. The likeli-
hood function can thus be evaluated very simply along
‘‘coordinate directions’’ in parameter space. Moreover, in t
special case where the parametersa1 ,a2 , . . . ,an are mutu-
ally independent~or quasi-independent to a good approxim
tion!, the likelihood function factorizes as

L~dua!5L~dua1!L~dua2! . . . L~duan!. ~5!
2-2
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BAYESIAN JOINT ESTIMATION OF NON- . . . PHYSICAL REVIEW D 64 063512
Thus, in this case, the above signal-to-noise eigenmode
cedure can be repeated for each parameter in turn to eva
the full likelihood function.

III. AN EXACT, NON-PERTURBATIVE, NON-GAUSSIAN
LIKELIHOOD

Let x represent a general random variable, within a se
variables which are assumed to be independent. Let us b
its distribution from the space of wave-functions which a
energy eigenmodes of a simple harmonic oscillator. The
lowing results may be found in any quantum mechanics b
~e.g.,@20#! adopting the Schrodinger~rather than the Heisen
berg! picture. We have that the general wave-function forx is
given by

c~x!5(
n

ancn~x! ~6!

where n labels the energy spectrumE5\v(n11/2). The
basis functionscn take the form

cn~x!5CnHn S x

A2s0
D e2(x2/4s0

2) ~7!

with normalization fixingCn as

Cn5
1

~2nn!A2ps0!1/2
. ~8!

The only constraint upon the amplitudesan is

(
n

uanu251. ~9!

This is a simple algebraic expression which can be eli
nated explicitly by writing

a05A12(
1

`

uanu2. ~10!

The quantitys0
2 is the variance associated with the~Gauss-

ian! probability distribution for the ground stateuc0u2. We
shall work with Hermite polynomialsHn(x) defined as

Hn~x!5~21!nex2 dx

dxn
e2x2

~11!

and normalized as

E
2`

`

e2x2
Hn~x!Hm~x!dx52np1/2n! dnm . ~12!

The most general probability density for the fluctuations ix
is thus
06351
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P5ucu25e2(x2/2s0
2)U(

n
anCnHnS x

A2s0
D U2

. ~13!

The ground state~or ‘‘zero-point’’! fluctuations are Gaussian
but any admixture with other states will be reflected in
non-Gaussian distribution function. Accordingly we may u
the amplitudes of these admixtures,an , as non-Gaussianity
indicators. Their obvious advantage is the rather trivial co
straint ~9!, which can be ignored using Eq.~10!. It permits
concentrating on a finite set of non-Gaussian degrees of f
dom, without mathematical inconsistency.

However there is another reason why thean are of math-
ematical interest: they reduce to cumulantskn under certain
assumptions. If we assume mild non-Gaussianity~which we
define through the conditionua0u2@ua i u2, for i>1) then to
first order ina i ,

P~x!5ucu25
e2(x2/2s0

2)

A2ps0
F11 (

n>1

2R~an!

~2nn! !1/2
Hn S x

A2s0
D G
~14!

where we have takena0 to have zero phase~so that to first
order a051). Comparing Eq.~14! with the Edgeworth ex-
pansion@19# we find a one-to-one correspondence betwe
the amplitudes of the various energy eigenstates, and
combinations of cumulants appearing as coefficients in
Edgeworth expansion. The latter simplify enormously if w
only keep first order terms, that is if we assume that q
dratic and higher order terms in the cumulants are negligi
Then we find that

kn}R~an! ~15!

with a rather complicated proportionality constant~which is
easy to work out case by case!. Hence, to first order, the
coherent contamination of the ground state by thenth energy
eigenstate is signalled by a non-vanishing cumulantkn . For
instance the presence of the third energy eigenstate resu
k3}R(a3)Þ0, and, to first order, zero higher-order cum
lants.

The advantage of using thean is that they still work~i.e.,
they still lead to proper distributions! when the distribution is
highly non-Gaussian. Any maximum likelihood estimate w
necessarily have to probe regions ofa i beyond the perturba
tive regime, even for Gaussian realizations. In these reg
setting all but a finite number ofkn to zero is inconsistent
but not for a finite number ofan . In the non-perturbative
regime thean become a rather complicated series ofkn .
However these series of cumulants may be varied, or se
zero, independently, and still lead to a distribution. Hence
should regard thean as non-perturbative generalizations
cumulants.

More concretely, in the non-perturbative regime, we ha
2-3



t,

re

th
p

b

ed
.
iv

ity

4
us
op
e

la
e

5,

-
yi
en
ow
to

z-
i

m

ion
l-
ap-
ces

n in

ard
-
the

rtur-

-
g

n-
sis,
e-
er

d

be-
le of

m

1
he

t of
as-

ROCHA, MAGUEIJO, HOBSON, AND LASENBY PHYSICAL REVIEW D64 063512
P~x!5ucu25
e2(x2/2s0

2)

A2ps0

(
i , j

a i* a j

~2i 1 j i ! j ! !1/2

3Hi S x

A2s0
D H j S x

A2s0
D . ~16!

We may recover the Edgeworth expansion by noting tha

e2x2
Hi~x!H j~x!5e2x2F(

n
bn

i j Hn~x!G ~17!

with

bn
i j 5

2s2ni ! j !

~s2n!! ~s2 i !! ~s2 j !!
~18!

with 2s5n1 i 1 j . One may derive Eq.~18! using Eq.~12!
and the standard result for the integral over a product of th
Hermite polynomials~formula 7.375.2 of@31#!. Thus we ob-
tain the more complicated expression

P~x!5ucu2

5
e2(x2/2s0

2)

A2ps0

(
n

S (
i , j

bn
i j a i* a j

~2i 1 j i ! j ! !1/2D Hn S x

A2s0
D .

~19!

Comparing with the Edgeworth expansion leads to the ra
complicated non-perturbative expression relating the am
tudesa i and series of cumulants.

IV. APPLICATION TO VSA SIMULATIONS

We have applied our method to simulated observations
the Very Small Array~VSA! interferometer. The VSA has
been built by Cambridge and Jodrell Bank in the Unit
Kingdom, and is sited at the Teide Observatory in Tenerife
has just become operational. The VSA is expected to g
detailed maps of the CMB anisotropy with a sensitiv
;5mK and covering a range of angular scales from 108 to
2° for a frequency range of 28–38 GHz. It will have 1
antennas and a 2-GHz bandwidth analog correlator and
the same technology as the Cosmic Anisotropy Telesc
~CAT!. The VSA is able to observe in compact and extend
modes, which are sensitive to differentl-ranges. In the com-
pact mode, it is expected that VSA will recover the angu
power spectrum in 10 spectral bins where each bin is c
tered respectively atl'114, 211, 308, 404, 501, 598, 69
792, 889, 986. The width of each binD l'97 corresponds to
the 1/e diameter of the aperture function of the interferom
eter and represents the length scale on which the underl
Fourier modes of the sky are correlated by the instrum
Thus, the spectral bins have been chosen so that the p
spectrum estimates in each bin are quasi-independent
good approximation.

An account of a maximum-likelihood method for analy
ing interferometer observations of the CMB anisotropies
given in @32#. In the standard likelihood analysis the para
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eters of interest areak5^ l 2Cl /(2p)&kth bin. Since these pa-
rameters are quasi-independent, the full likelihood funct
factorizes as in Eq.~5! to a good approximation. The signa
to-noise eigenmode procedure outlined in Sec. II is then
plied to each factor, which, in the standard approach, redu
to the simple product of one-dimensional Gaussians give
Eq. ~4!.

In our new approach, however, we subject the stand
Gaussian likelihood algorithm to the following modifica
tions. Instead of assuming the simple Gaussian form for
probability distribution of each S/N eigenmodej i , we in-
stead consider the more general situation in which allan are
set to zero, except for the real part ofa3. The reason for this
is that such a quantity reduces to the skewness in the pe
bative regime. The imaginary part ofa3 is only meaningful
in the non-perturbative regime~and can be set to zero inde
pendently without inconsistency!. Hence we are considerin
a likelihood of the form

P~x!5
e(2x2/2s0

2)

A2ps0
Fa01

a3

A48
H3S x

A2s0
D G 2

~20!

with

a05A12a3
2 ~21!

explicitly replaced in Eq.~20!.
The generalization of this distribution to the multidime

sional case is trivial in the signal-to-noise eigenmode ba
since we can simply take the product of the individual on
dimensional distributions. Thus, when considering the pow
spectrum in thekth spectral bin, we adopt the likelihoo
function

L~juak ,a3!5)
i

e2„j i
2/2(11akl i )…

A2pA11akl i

3Fa01
a3

A48
H3S j i

A2~11akl i !
D G 2

,

~22!

whereak is the average of valuel 2Cl /(2p) in thekth spec-
tral bin. Thea3 could in principle depend onl, but for sim-
plicity we have dropped this dependence. Notice that
cause the noise is Gaussian, and because of the princip
superposition in quantum mechanics, thean appearing in
this formula are the ones pertaining to the signal alone.

We have applied this method to a 30312 hour simulated
VSA observation of a Gaussian CMB realization drawn fro
a standard inflationary model withVcdm50.95, Vb50.05,
VL50, h50.5, ns51, and no tensor contribution. In Fig.
we show the contour plots of the likelihood functions for t
amplitude of the power spectruml 2Cl /(2p) anda3 for each
of the 10 spectrals bins observed by VSA. The alignmen
the contour axes with the coordinate axes implies the re
2-4
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FIG. 1. Confidence contours for a simulated VSA observation of a Gaussian CMB realization drawn from a standard inflationar
In each spectral bin the fluctuations are parametrized by the average value ofl 2Cl /(2p) and the generalized cumulanta3. Contours are at
10, 20, 30, . . . , 90, and 95percent confidence levels.
ac
te

th

ob-

e
ting
us-
suring result that there seems to be little correlation in e
bin between the power spectrum estimate and the estima
the non-Gaussian parameter.

In Fig. 2 we plot the likelihood function fora3 in each
spectral bin after marginalization, using a flat prior, over
06351
h
of

e

amplitude of the angular power spectrum. The results
tained indicate that the value ofa3 scatter arounda350,
within the range implied by the width of the likelihood. Th
percentage of the population inside the contour intersec
the origin represents the confidence level for rejecting Ga
2-5
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FIG. 2. Marginalized likelihood functions fora3 in each spectral bin obtained from the simulated VSA observation.
is
w

-

i-
ion
e

sianity. All of these are within 1–2 sigma, indicating that th
method is not biased. Notice that for those bins in which
failed to obtain a CMB detection~see Fig. 3! there seems to
be a bias towards a peak ata350, without the scatter ex
06351
e
pected from the width of the likelihood.

In Fig. 3 we plot the likelihood functions for the ampl
tude of the power spectrum in each bin after marginalizat
over the parametera3 ~solid line!. Superimposed are th
2-6
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FIG. 3. Solid line: marginalized distribution for CMB fluctuations parametrized byl 2Cl /(2p), for a simulated VSA observation; dashe
line: conditional distribution fora350.
ns
th
t

in
sian
s of
corresponding conditional distributions fora350 ~dashed
line!. For this Gaussian CMB realization, the distributio
obtained are not significantly affected by the inclusion of
extra parametera3. The most noticeable effect is a sligh
06351
e

variation of the position of the peak~particularly for bins 1
and 2! which is in agreement with Fig 1. Since in each b
the estimate of the power spectrum and the non-Gaus
parameter are weakly correlated, we see that the width
2-7
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the likelihood functions for the angular power spectrum
not significantly increased by including thea3 parameter.

In Fig. 4 we plot the joint likelihood fora3 obtained by
multiplying the individual likelihoods for the 10 spectra
bins, thus obtaining the overall estimate and a better c
straint ona3.

Finally, in Fig. 5 we plot the distribution of the peak o
the likelihood for a3 obtained from Monte Carlo simula
tions. In each VSA simulation the CMB is a realizatio

FIG. 4. The joint likelihood fora3 obtained by multiplying the
individual likelihoods ina3 for the 10 spectral bins.

FIG. 5. The distribution of the peak of the likelihood ina3 for
simulated VSA observations of several Gaussian CMB realizatio
06351
e

n-

drawn from an inflationary model. The CMB fluctuations a
thus Gaussian. The distribution peaks around a value ofa3
50 confirming that our algorithm is indeed not biased.

V. CONCLUSIONS

In this paper we laid down the foundations for a rigoro
Bayesian framework for testing non-Gaussianity, and join
estimating the power spectrum~Sec. III!. Our main achieve-
ment was to convert testing Gaussianity into a problem
Bayesian estimation. We defined a series of parametersan ,
to be added to the power spectrum, such that the origin of
new space represents Gaussianity. These parameters are
eralizations of cumulants. If all cumulants are very small,
a suitable sense, each of the new parameters is approxim
proportional to a cumulant. If not, then the new paramet
become series of powers of cumulants. They are desir
non-perturbative generalizations of cumulants because
are independent, i.e., subject to essentially no constra
unlike standard cumulants.

With any dataset, one must then determine the contou
the likelihood intersecting the origin of thean space, after
marginalization over the power spectrum. The percentag
the population inside this contour is the confidence level
rejecting Gaussianity. We found that for simulated VSA o
servations of a Gaussian CMB realization this confiden
level is always within 1–2 sigma. To assess if our algorith
is unbiased one must produce simulated VSA observation
several Gaussian CMB realizations. We found that the dis
bution of the peak of the likelihood ina3 for a number of
these realizations peaks around a value ofa350 showing
that our method is indeed not biased~Sec. IV!.

The method we have proposed is completely general,
may be applied to any type of experiment, interferometric
single-dish. In particular its application to COBE-DM
maps, closely mimicking the steps of@6#, is straightforward.
The only issue which may complicate the method is gala
foreground removal. In some experiments foregrounds aw
from the galactic plane may be ignored, by suitably choos
the frequency channels. In some cases, contaminations
be removed by subtracting off the correlated compone
making use of templates@13#. In these cases there is no ext
complication to our method.

However in some cases@32# foreground subtraction is
part of the maximum likelihood algorithm leading to CM
Cl estimates. In some of these cases it is assumed that g
tic foregrounds form a Gaussian random field. With o
method we may now allow for non-Gaussian degrees of fr
dom to be applied to these emissions. Hence we should
able to improve significantly on these methods of foregrou
removal, as well as exploring signal non-Gaussianity. T
detailed implementation of this project, including a test
realizations with a non-Gaussian component, as well as
application to VSA data, is the subject of a future public
tion.

The formalism we have developed is also of assistance
generating realizations belonging to the most general
semble parametrized by thean . In the work in preparation
we show how this can be done, and how the maximum lis.
2-8
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lihood method proposed in this paper may then different
between distinct distributions on the basis of single reali
tions.
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