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Field theory models for variable cosmological constant
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Anthropic solutions to the cosmological constant problem require seemingly unnatural scalar field potentials
with a very small slope or domain walls~branes! with a very small coupling to a four-form field. Here we
introduce a class of models in which the smallness of the corresponding parameters can be attributed to a
spontaneously broken discrete symmetry. We also demonstrate the equivalence of scalar field and four-form
models. Finally, we show how our models can be naturally embedded into a left-right symmetric extension of
the standard model.
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I. INTRODUCTION

Particle physics models suggest that natural values for
cosmological constantL are set by a high-energy scale, an
where between 1 TeV and the Planck scaleM P ~for reviews
see@1–3#!. The corresponding vacuum energy densityrL is
then between (1 TeV)4 andM P

4 . On the other hand, recen
observations indicate@4# that the actual value isrL

;(1023 eV)4, at least 60 orders of magnitude smaller. It
hard to explain whyrL should be so small. Even more pu
zling is the fact thatrL appears to be comparable to th
present matter densityrm0. The two densities scale very dif
ferently with the expansion of the universe, and it is ve
surprising that they nearly coincide at the present time.

To our knowlege, the only approach that can explain b
of these puzzles is the one that attributes them to anthr
selection effects@5–14#. In this approach, what we perceiv
as the cosmological constant is in fact a variable that
take different values in different parts of the universe an
is assumed that the fundamental theory allows such a va
tion of the effectiveL. However, the particle physics mode
of variableL suggested so far appear to have some unnat
features.

In one class of models, the role ofrL is played by a
slowly varying potentialV(f) of some scalar fieldf which
is very weakly coupled to ordinary matter. The simplest e
ample is

V~f!5rbare1
1
2 m2f2, ~1!

where rbare is the ‘‘true’’ cosmological constant and it i
assumed thatrbare and m2 have opposite signs. The tw
terms on the right-hand side of Eq.~1! nearly cancel one
another in habitable parts of the universe. In order for
evolution off to be slow on the cosmological timescale, t
mass parameterm has to satisfy the condition@10#

umu!102120M P
3 urbareu21/2. ~2!
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The challenge here is to explain this exceedingly small m
scale in a natural way. The possibilities suggested so far
clude a pseudo-Goldstone fieldf which acquires a potentia
through instanton effects@10,14#, a large running of the field
renormalization@12#, and a non-minimal kinetic term with an
exponentialf dependence@13,14#.

In the above mentioned class of models, the vacuum
ergy densityrL takes values in a continuous range. An alt
native possibility is that the spectrum ofrL is discrete, as in
the ‘‘washboard’’ potential model suggested in the early p
per by Abbott@15#. A simple example of such a potential i

V~f!52A cos~2pf/h!1ef/h. ~3!

For e!2pA, the potential has local minima atfn'nh with
n50,61,62, . . . , separated from one another by barrie
The vacuum atf5fn has energy density

rLn'ne. ~4!

Transitions between different vacua can occur throu
bubble nucleation.

Another version of the discrete model, first discussed
Brown and Teitelboim@16#, assumes that the cosmologic
constant is due to a four-form field,

Fabgd5
F

A2g
eabgd, ~5!

which can change its value through nucleation of branes.
total vacuum energy density is given by

rL5rbare1F2/2 ~6!

and it is assumed thatrbare,0. The change of the field
across the brane is

DF5q, ~7!

where the ‘‘charge’’q is a constant fixed by the model. Th
four-form model has recently attracted much attent
©2001 The American Physical Society09-1
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@17,13,18,20,14# because four-form fields coupled to bran
naturally arise in the context of string theory.

In the range where the bare cosmological constant is
most neutralized,uFu'u2rbareu1/2, the spectrum ofrL is
nearly equidistant, with a separation

DrL'u2rbareu1/2q. ~8!

In order for the anthropic explanation to work,DrL should
not exceed the present matter density,

DrL&rm0;~1023 eV!4. ~9!

With rbare*(1 TeV)4, it follows that

q&10290M P
2 . ~10!

Once again, the challenge is to find a natural explanation
such very small values ofq.

Feng, March-Russell, Sethi, and Wilczek~FMSW! @18#
have argued that the required small values of the chargq
can naturally arise due to nonperturbative effects in
theory. Their assumption is that some of the fundame
string theory branes can have an extraordinarily small t
sion s&10290M P

3 . The idea was to use D2 branes obtain
by wrapping of k world-volume coordinates of higher
dimensional Dp-branes (p521k) on a collapsingk cycle.
The volume of the cycleVk then determines the effectiv
tension of the resulting 2D brane in lower dimensions
;Vk . It was assumed that nonperturbative quantum cor
tions may stabilize the volume at an exponentially small s
resulting in an exponentially small 2-brane tension. Th
assuming a typical tension-to-charge relation,

q;
s

M P
, ~11!

one arrives at the required value~10! of the brane charge.
The problem with this approach is that the small bra

tension is not protected against quantum corrections be
the supersymmetry breaking scale. Branes of the kind
cussed by Fenget al.originate as solitons of the fundament
theory, valid above the field theory cutoffM.1 As a result, in
the low energy effective field theory valid below the sca
‘‘M’’ these branes behave as fundamental objects in the se
that the low energy observer cannot ‘‘resolve’’ their stru
ture. Thus, the world-volume theory of these branes is a
11)-dimensional field theory with a cutoff;M . In the ab-
sence of supersymmetry such branes would be expecte
have a tensions;M3 and the assumption ofs!M3 would
be extremely unnatural. The existence of a spontaneo

1In our discussion everywhereM should be understood as th
ultraviolet cutoff of the field theory, for which we take the strin
scale. We shall assume that the string coupling is of order one
none of the string compactification radii are large. Thus the the
below M is an effective four-dimensional theory and roughlyM P

;M .
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broken low-energy supersymmetry may ameliorate the s
ation a bit, but unfortunately not up to a sufficient level,
we shall argue below.

The problem is that, in the absence of an exact supers
metry, the brane world-volume states will induce an un
ceptably high brane tension through quantum loops. To d
onstrate this, let us assume the most optimistic scena
when the brane sector is only gravitationally coupled to
sector that spontaneously breaks supersymmetry. The lo
possible scale of supersymmetry breaking compatible w
observations is somewhere around TeV energies. Thus,
mass splitting among the brane superfields induced by g
ity will be at least

mS
2;TeV4/M P

2 ~12!

~this is the usual magnitude for the gravity-mediated sup
symmetry breaking!. Each brane superfield will induce
linearly-divergent contribution to the brane tension. For
stance, at one loop the contribution coming from a mass
supermultiplet is

Ds;mS
2E d3p

p22mS
2;mS

2Lcuto f f ~13!

which we~at best! can cut off at the scaleM;M P . Thus, the
resulting contribution to the brane tension from each pair
modes is expected to be

Ds5TeV4/M P . ~14!

Thus, a single world-volume supermultiplet already gives
unacceptably large renormalization of the brane tension.

In addition, we have to sum over all the world-volum
modes with masses belowM. In the absence of an explici
model, it is hard to argue what the precise density of
modes is, and we will not speculate further on this iss
However, one may expect that an additional enhancem
factor can be as large as;M /s1/3 ~since we expect the spac
ing of the modes in the world-volume theory to be set by
brane tension, the only scale in the low energy world-sh
Lagrangian!. This would give the resulting tension to b
something likes;TeV3. Although we cannot exclude a mi
raculous cancellation among the different modes, such a
cellation is not indicated by any symmetry and would
hard to understand in an effective field theory picture. It
unlikely that string theory corrections can cure the probl
since they set in only above the scaleM, and such a con-
spiracy among high and low energy physics would constit
a violation of the decoupling principle.

From the above arguments, we expect that branes w
very low tension and charge should be looked for among
effective field theory solitons. The tension of such soliton
branes is much better protected from quantum destabil
tion. As a simple straightforward example let us construc
solitonic brane with tensions;TeV6/M3. Let f be a chiral
superfield with a superpotential

W5
f3

3
. ~15!
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y
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As above, let us assume that supersymmetry is spont
ously broken at the TeV scale in a sector that couples tf
only gravitationally.

To be more explicit, letSbe a superfield which spontane
ously breaks supersymmetry through the expectation v
of its auxiliary (FS) component. By assumptionFS;TeV2,
which is the lowest possible phenomenologically accepta
scale. Then according to the standard picture, SUSY bre
ing in the f-sector will be transmitted through gravity vi
couplings of the form

E d4u
S* S

M P
2 f* f1E d2u

S

M P
f31••• ~16!

whereu is a superspace variable. The resulting soft mas
the f scalar ismS

2;uFSu2/M P
2;TeV4/M P

2 and the sign de-
pends on the details of the theory. We shall assume tha
sign is negative. Then the effective potential forf can be
written as

V~f!52mS
2f* f2~cmSf31H.c.!1ufu4, ~17!

where c is a number of order one. Obviously, this syste
exhibits a spontaneous breaking of the discreteZ3 symmetry
(f→ei2np/3f) and admits topologically stable soliton
brane solutions ~domain walls! with tension s;ms

3

;TeV6/M3. These branes do not suffer from the quantu
correction problems discussed above, due to the fact tha
the integrals in the brane world volume theory are cut off
the compositeness scale, which coincides with the brane
sion scalems . Above this scale, one has to do computati
in the full theory in which there is no renormalization of th
mass parameters beyond the scalemS , due to low-scale su-
persymmetry.

Although the above simple example demonstrates that
field theory branes with low tension are easily possible
does not achieve our primary goal of generating very l
charge branes, since the above branes are not coupled t
four-form field.2 This will be our task in the following dis-
cussion.

Thus, in this paper we report on our search for fie
theoretic models in which the smallness ofq @or of m in Eq.
~1!# can be attributed to some symmetry. We found a clas
models in which the value ofq ~or m) can be made arbi
trarily small. The charge-to-tension ratioq/s can also be

2It was shown in@19# that domain walls of largeN supersymmet-
ric SU(N) gluodynamics are automatically charged with respec
a ~composite! three-form field. These areZN walls formed by the
gluino condensate, and both the tension and the charge of t
objects are set by the SU(N)-QCD scaleL. However, there are two
points that probably make these walls useless in the present con
First, the four-form field strength is the same on both sides of
wall, due to the fact that its change gets compensated by the ch
of the phase of gluino condensate. Second, these walls usually
not exist if the supersymmetry breaking scale is.L. Therefore,
according to our previous arguments, their charge can at bes
;TeV4/M P

2 , which is too high for our purposes.
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made as small as desired. As a byproduct of this research
found a somewhat unexpected equivalence relation betw
scalar field and four-form models.

After outlining the general idea in Sec. II, we shall fir
discuss, in Sec. III, a simplified (111)-dimensional version
of our model. The equivalence between four-form and sca
field models is demonstrated in Sec. IV. Models in 311
dimensions are discussed in Sec. V. In Sec. VI we illustr
how our models can be naturally embedded into a left-ri
symmetric extension of the standard model. Our conclusi
are briefly summarized and discussed in Sec. VII.

II. GENERAL PHILOSOPHY

Our idea is the following.~1! Branes with an extremely
low four-form charge can appear in the form of solitons~do-
main walls! of an effective low energy theory.~2! The small
value of the charge-to-tension ratio is natural in the se
that it can be arbitrarily suppressed by the symmetries of
model.

Before proceeding to specific examples, let us briefly d
cuss the main ingredients of our scheme,~1! a real scalar
field, a, which can be thought of as the phase of a cert
complex scalar fieldX with a nonzero vacuum expectatio
value^X&, ~2! a four form fieldFmnst which can be obtained
from a three-form potential,Fmnst5] [mAnst] , ~3! a scalar
field f, which spontaneously breaks aZ2N discrete symme-
try at the scalê f&. The crucial assumption is that bot
scales^f& are ^X&5h are well below the cutoff scaleM.
Having in mind a low energy SUSY, their natural value c
be as low as TeV, which we shall adopt for definiteness.3

We require that the action be invariant under the follo
ing three symmetries:~1! Z2N symmetry under which

f→feip/N, a→2a, ~18!

~2! symmetry under the shift

a→a12ph, ~19!

and ~3! the three-form gauge transformation

Amna→Amna1] [mBna] , ~20!

whereBna is a two form. In addition, we shall assume th
there is an~at least! approximate global U~1! symmetryX
→eiuX, so that it is meaningful to talk ofa as the phase
degree of freedom. Thus,a can be regarded as a sort of
~pseudo!Goldstone particle. Note that even if U~1! is explic-
itly broken by some nonperturbative Planck-scal
suppressed corrections, the mass ofa will be suppressed by
the powers ofh/M;TeV/M , and is much smaller than th
masses of other scalars in the theory, which we assume
around the TeV scale. Thus, below TeV energies we
integrate out the heavy quanta such asf and the radial part
of X, and derive an effective low energy action for the r

o

se

xt.
e
ge

an-

be3In practice, even much higher scales can do the job, provideN
is chosen to be large enough.
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GIA DVALI AND ALEXANDER VILENKIN PHYSICAL REVIEW D 64 063509
maining light fieldsAmna and a. We shall assume that th
low energy action includes all possible interactions that
compatible with the unbroken symmetries. Obviously, ope
tors that are forbidden by spontaneously broken symme
must appear suppressed~at least! by powers of the corre-
sponding Higgs vacuum expectation values~VEVs!. Among
such operators there is a mixing ofa with the three-form
potential,

emnabAmna]ba. ~21!

Since at high energies this operator is forbidden by theZ2N
symmetry~as well as by an approximate global U~1! sym-
metry!, in the low energy theory it should appear suppres
by the following factor:

^fN&
MN emnabAmna]ba1H.c. ~22!

PowerN is dictated by the fact thatfN is the lowest possible
power off that makes upZ2N invariant in combination with
a. Thus, the mixing can be arbitrarily suppressed by pow
of TeV/M due to the symmetry reasons. This is enough
realize our program; the extremely small mixing coefficie
automatically translates into an extremely small four-fo
charge ofa-field domain walls. Like axionic domain walls
these walls must be present due to the 2p periodicity of the
a potential. Sincea changes by 2p across the wall, each wa
acts as a source for the four-form field. The resulting fo
form charge is suppressed by thea2A mixing ~22! and is
miniscule. We shall discuss this in more detail below.

Before proceeding, let us make a brief note. Below
energies comparable to the masses of eitherf or the radialX
quanta,̂ f& and u^X&u can be regarded as constants and
coupling ~22! is a local gauge-invariant operator. For high
energies however, one has to include additional moment
dependent interactions. These become relevant for proce
with externalf andX legs and must be included because
gauge invariance. Any interaction that will be responsible
inducing the above mixing term in the low energy theory w
also generate momentum-dependent operators require
this gauge invariance~see the next section!. These additional
interactions however, will play no role in our analysis, sin
they only contribute to processes withf andX-quanta emis-
sion that are forbidden at energies of our interest.

III. A TOY MODEL IN 1 ¿1 DIMENSIONS

The field content of our (111)-dimensional toy model is
the ‘‘electromagnetic’’ vector potentialAm , a real scalar field
a, an electrically charged~Dirac! fermion c, and a complex
scalar fieldf. The Lagrangian is

L5 i c̄gmDmc1c̄gmc
fN

MN emn]na1
1

2
~]ma!21

1

2
~]mf!2

2V~a,f!2
1

4
FmnFmn1higher derivative terms,

~23!
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whereDm is the usual covariant derivative with respect to t
electromagnetic U~1! group,V(a,f) is some potential func-
tion, and 1/M is a constant of order one. Note that in 111
dimensionsM must be dimensionless, since the canoni
dimensionalities ofAm , f, and a are zero. For simplicity,
here and below we use flat spacetime metric. Our sign c
ventions areg005e0151.

We must stress that the interaction with fermions is int
duced exclusively for illustrative purposes. It allows us
trace explicitly how the gauge-invariant mixing operat
arises in perturbation theory. In reality we will not necess
ily rely on fermions, but assume that the mixing is induc
by some perturbative or nonperturbative physics at the cu
scale.

As before, we require that the action be invariant und
the following three symmetries:~1! U~1!-gauge invariance,
~2! Z2N symmetry ~18!, and ~3! the shift symmetry~19!.
Under these symmetries the functionV(a,f) is determined
to depend ona and f only through the invariants cos(a),
f2N, andfNsin(a). The precise form of this function will be
of no importance for us as long as the vacuum expecta
value ^f& of f is nonzero and̂ f&!M . This expectation
value spontaneously breaksZ2N symmetry down to nothing,
and some operators forbidden by this symmetry will be g
erated with strength suppressed by powers of the ratie
5^f&/M .

Among such operators we shall be interested inAm-a
mixing, which appears as a result of one-loop fermionic e
change. The corresponding operator has the form4

g
fN

MN emn]maS gnr2
]n]r

]2 D Ar, ~24!

whereg is a loop factor that includes a dimensionful gau
coupling. Shifting thef field, we shall expand the theor
around the vacuum state:f→^f&1f(xm). Performing inte-
gration by parts in the first term of the expansion, Eq.~24!
can be written as

geNenmAm]na1gS NeN21f~xm!

MN
1••• D

3emn]maS gnr2
]n]r

]2 D Ar, ~25!

where ellipses stand for the terms that contain higher pow
of f(xm). These terms describeAm-to-a transition via emis-
sion of f particles, and therefore are not relevant at the
ergies below the mass of thef quanta. Thus, at low energie
the only relevant operator is the first term in Eq.~25!. An
important fact is that this term is parametrically suppres
by powers of small quantitye. After integrating out the
heavy fields and the fermions, the relevant part of the l
energy Lagrangian can be written as

4We thank A. Grassi for a clarifying discussion on this issue.
9-4
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FIELD THEORY MODELS FOR VARIABLE . . . PHYSICAL REVIEW D 64 063509
L5 1
2 ~]ma!22 1

4 FmnFmn2V~a!1geNenmAm]na

1higher derivative terms. ~26!

The potentialV(a) in Eq. ~26! is the effective potentia
for a. As indicated above, the shift symmetry requires it to
an arbitrary periodic function ofa. In the absence ofa2A
mixing, the theory would have an infinite set of degener
vacua at the minima of this potential, and standard topolo
cal arguments would imply that there must be domain w
configurations witha changing byDa52p across the wall.

Let us now see how this situation is affected by thea
2A mixing term in Eq.~26!. The gauge field strength can b
expressed as

Fmn5emnF. ~27!

The equation of motion forA field,

]nFmn52geNemn]na, ~28!

then implies that the change ofa across the wall is accom
panied by a change of the field strength,

DF52geNDa. ~29!

The vacua on the two sides of the wall will not generally
degenerate, due to this difference in the field streng
Higher-energy vacua will decay into lower-energy on
through nucleation of bubbles with the domain walls at th
boundaries.

We thus see that the walls have acquired a charge

q52pgeN, ~30!

which is suppressed by a power of the small parametere. A
remarkable property of the above model is that, with a s
able choice ofN, this charge can be made arbitrarily sma

IV. EQUIVALENT SCALAR FIELD MODEL

The scalar field equation, obtained by varying Eq.~26!
with respect toa, is

]2a1V8~a!2geNF50. ~31!

Now, the field equation~28! for F can be integrated to yield

F52geN~a2a0!, ~32!

wherea0 is an integration constant. Substituting this into E
~31!, we see that the resulting equation fora is that for a
scalar field with a potential

U~a!5V~a!1 1
2 m2~a2a0!2, ~33!

where

m5geN. ~34!

Let us recall thatV(a) is periodic ina, V(a12p)5V(a).
Hence, the potentialU(a) is a ‘‘washboard’’ potential of the
kind considered by Abbott@15#.
06350
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The energy-momentum tensor for our model is

Tmn5]ma]na2 1
2 gmn]sa]sa1gmnV~a!1 1

2 gmnF2

5]ma]na2 1
2 gmn]sa]sa1gmnU~a!, ~35!

where we have used Eq.~32!. The last expression in Eq.~35!
coincides with the energy-momentum tensor for a scalar fi
with a potentialU(a). We thus see that, as long as nongra
tational interactions ofa and Am are negligible~apart from
their interaction with one another!, the model~26! is equiva-
lent to that of a scalar field with a potentialU(a) given by
Eq. ~33!. Tunneling between vacua with different values ofF
is replaced in this scalar model by tunneling between diff
ent minima of the washboard potential.

V. MODELS IN 3 ¿1 DIMENSIONS

We can easily generalize our model to 311 dimensions.
The main difference is that instead of the vector potential
shall consider a three-form fieldAmna and require the gauge
invariance underAmna→Amna1] [mBna] . The Lagrangian of
interest then becomes

L5 1
2 h2~]ma!22 1

4 F22V~a!1gh2
fN

MN
Ãm]ma, ~36!

where

Ãm5emnstAnst , ~37!

a is dimensionless andh has dimension of energy~it has the
meaning of the shift symmetry breaking scale!. The last term
in Eq. ~36! should be understood as an effective low-ene
interaction arising from some fundamental theory withM
being understood as the Planck scale. It is the lowe
dimension operator consistent with gauge, shift, andZ2N
symmetries.

The shift symmetry~19! suggests thata might be an
axion-like field arising as a phase of some complex sca
X5Reia. Thenu^X&u5h and theZ2N symmetry is

f→feip/N, X→X†. ~38!

In terms of the fieldsX andf, the last term in, Eq.~36! can
be written as

ig~f/M !NÃm~X]mX†2X†]mX!. ~39!

We shall assume that theZ2N symmetry is spontaneousl
broken at a scale much belowM. Having in mind a low
energy supersymmetry, this breaking scale may be as s
as TeV without fine tuning. This would imply that the param
etere5^f&/M;10215.

As before, at low energies we can keep only a const
part in f, in which case the last term in Eq.~36! reduces to

gh2eNÃm]ma. ~40!

The field equation for the four-form field~5! is
9-5



ll
.

y
ls

w
a

l

c
ec

o

an
ic
in
W
d

W
t-

-
e

to

d
c-

arks

bal
-be
tral
te
,
ld-

o
t
an

th

ts
riate
ant
the
er-
or-

ddi-

by
he

that
t to

to

by

de

t a
lly

GIA DVALI AND ALEXANDER VILENKIN PHYSICAL REVIEW D 64 063509
]mF5gh2eN]ma, ~41!

and we obtain

DF5gh2eNDa. ~42!

With a periodic potentialV(a), the model has domain wa
solutions witha changing by'2p across the wall, and Eq
~42! indicates that these domain walls acquire a charge

q52pgh2eN. ~43!

For e;10215 andh&M , the condition~10! is satisfied with
N>6.

With e so small, the effect of the fieldF on the structure
of domain walls is negligible. The wall tensions is deter-
mined solely by the potentialV(a) and is not suppressed b
powers ofe. This is in contrast to M theory based mode
whereq ands are related by Eq.~11!.

Following the same steps as in Sec. III, it can be sho
that our model is equivalent to a scalar field model with
potentialU(a) given by Eq.~33!,

U~a!5V~a!1 1
2 m2~a2a0!2, ~44!

where

m5geNh. ~45!

With m suppressed by powers ofe, this washboard potentia
is of the type required in the Abbott’s model@15#.

An interesting version of the model is obtained by repla
ing the discrete shift symmetry by a symmetry with resp
to arbitrary translations,

a→a1const . ~46!

Then a is a Goldstone boson andV(a)50. The equivalent
scalar model has the potential

U~a!5 1
2 m2~a2a0!2. ~47!

This is of the same form as in the simple model~1! in which
the effective vacuum energy density takes values in a c
tinuous range. Withurbareu;(1 TeV)4, the condition~2! on
m is satisfied forN>6.

VI. EMBEDDING INTO PARTICLE PHYSICS MODELS

In this section we would like to show that our model c
be naturally embedded in well-motivated particle phys
models. As an example we shall consider an embedding
a left-right symmetric extension of the standard model.
will see that the breaking ofZ2N symmetry can be associate
with the spontaneous breaking of a left-right symmetry.
shall start by briefly reviewing a minimal left-right symme
ric extension of the standard model@21#. The gauge group is
SU(3)^ SU(2)L ^ SU(2)R^ U(1)^ P where P-parity inter-
changes left and right SU(2)-subgroups. This will be identi
fied with our parity symmetry. Left-handed and right-hand
fermions form doublets of SU(2)L and SU(2)R groups re-
spectively. Fermion masses are generated via coupling
06350
,

n

-
t

n-

s
to
e

e

d

a

by-doublet Higgs field„doublet under both SU(2)-s… which
we shall denote byH. From the point of view of the standar
model subgroup, this by-doublet field includes two ele
troweak Higgs doubletsHU and HD which give masses to
‘‘up’’ and ‘‘down’’ quarks ~and leptons! respectively. For in-
stance, the Yukawa couplings that give masses to qu
QL,R5(UL,R ,DL,R)

HQ̄LQR5HUQ̄LUR1HDQ̄LDR , ~48!

where we have written the SU(2)L3U(1)Y-decomposition.
This coupling has an accidental Peccei-Quinn type glo
symmetry. The pseudo-Goldstone boson of this would
symmetry is the phase difference of the electrically-neu
components ofHU andHD doublets. This pseudoscalar sta
changes the sign underP-parity transformation. However
since this global symmetry is not exact, the would-be Go
stone boson is massive. Below, oura field will be identified
with this boson.

The left-right symmetry can be broken by introducing tw
doublet Higgs fields,HL andHR , that are doublets under lef
and right SU~2!s respectively. One of them must develop
expectation value around the TeV scale~or above! thereby
breaking the corresponding SU~2! and left-right symmetry.
The remaining SU~2! subgroup then has to be identified wi
the electroweak SU(2)L group of the standard model.

A symmetry breaking in which only one of the double
gets an expectation value can be achieved by an approp
choice of the parameters in the Higgs potential. An import
point, however, is that the presence of quartic terms in
potential is essential for the symmetry breaking. In a sup
symmetric theory, such terms cannot be written at the ren
malizable level, and as a result one has to introduce a
tional singlets that are parity odd.5

The role of one such singlet in our case will be played
the f field. The relevant couplings in the potential have t
form

fN

MN22
~HL* HL2HR* HR!2m2~HL* HL1HR* HR!

1l~HL* HL1HR* HR!21l8~HL* HLHR* HR!, ~49!

where M ,m are the mass scales around TeV andl,l8 are
positive constants. There are many other possible terms
are not essential for our discussion. The only requiremen
the rest of the potential is that it forcesf to get a nonzero
expectation value. Then, since the coupling withf creates a
left-right asymmetry, only one of the doublets is expected
get a VEV.

The coupling betweenf and the doublets in Eq.~49! is
nonrenormalizable. However, it can be easily obtained

5Note that without such singlet fields, one would have to inclu
nonrenormalizable quartic couplings suppressed byM P in the su-
perpotential. These, however, will create asymmetric minima a
very high scale, which is incompatible with the phenomenologica
most interesting low energy LR-symmetric extension.
9-6
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integrating out additional singlet fields of massM and zero
VEV. For instance, forN56 it is enough to introduce a
single scalar fieldx that underZ12 symmetry transforms a
x→eip/2x,

f3x1f* 3x* 1M2x* x1x* 2~HL* HL2HR* HR!. ~50!

Integrating outx we arrive at the effective nonrenormaliz
able coupling given in Eq.~49!. Below the TeV scale, the
remaining effective low energy theory is the standard mo
coupled to our fielda via the pseudoscalar interaction. A
other ingredients of our scheme~e.g. mixing with a three-
form, etc.! are assumed to be unchanged. This completes
embedding of our model into aLR symmetric extension o
the standard model.

VII. DISCUSSION

As explained in the Introduction, anthropic solutions
the cosmological constant problems require scalar field
tentials with a very small slope or domain walls~branes!
with a very small coupling to a four-form field. Here w
introduced some models in which the smallness of the c
responding parameters can be attributed to aZ2N symmetry,
Eqs.~18! or ~38!.

We note that, apart from the desired domain walls w
small coupling to the four-form field, our models may have
variety of other topological defects. The breaking of the d
creteZ2N symmetry is accompanied by the formation off
walls such that the value off changes by a factor ofeip/N

across the wall. 2N such walls can be joined along af
string, with the phase off changing by 2p around the
string.

If the field a is the phase of a complex scalar,X5Reia,
then the translation symmetry~46! is a U~1! symmetry of
phase transformations,X→eiaX. When X gets an expecta
tion value, this symmetry is broken and we expect glo
string solutions witha changing by 2p around a string. An
interesting question is what happens to these strings a
Z2N-breaking phase transition whenf gets an expectation
value~we assume that it does so afterX). With ^f&5const,
06350
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the field strengthF changes around the string by the amou
~42! with Da52p,

DF52pgh2eN, ~51!

suggesting that there should be a discontinuity along a s
attached to the string. One way of resolving this obstruct
is to assume that eachX string gets covered by af string
with 2N walls attached to it, so that the cores of the tw
strings coincide.6 As we go around such a combined strin
the sign offN changes every time we cross af wall, and
with it the coupling betweenÃm and a in Eq. ~36! also
changes sign. As a result, the changeDF will have a differ-
ent sign in different sections between thef walls, and the
overall change around the string will vanish. Another pos
bility is that fieldF changes by the amount~51! inside a wall
which gets attached to theX string. Within suchF walls, field
f should deviate from its vacuum value and the high
derivative terms omitted in the Lagrangian~36! should be-
come important. Which of the two options is realized m
depend on the specific dynamics of the model.

Although the physics of topological defects in our mod
may be quite interesting, these defects are probably ir
evant for cosmology. The reason is thatf walls would be
disastrous if allowed to survive to be present. TheZ2N sym-
metry breaking should therefore occur before the end of
flation so that allX andf strings and walls are inflated awa
and we are left only witha walls at the boundaries of nucle
ating bubbles.
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