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Anthropic solutions to the cosmological constant problem require seemingly unnatural scalar field potentials
with a very small slope or domain wall®rane$ with a very small coupling to a four-form field. Here we
introduce a class of models in which the smallness of the corresponding parameters can be attributed to a
spontaneously broken discrete symmetry. We also demonstrate the equivalence of scalar field and four-form
models. Finally, we show how our models can be naturally embedded into a left-right symmetric extension of
the standard model.
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I. INTRODUCTION The challenge here is to explain this exceedingly small mass
scale in a natural way. The possibilities suggested so far in-

Particle physics models suggest that natural values for thelude a pseudo-Goldstone fiefilwhich acquires a potential
cosmological constant are set by a high-energy scale, any- through instanton effec{d.0,14), a large running of the field
where between 1 TeV and the Planck sddlg (for reviews renormalizatiorf12], and a non-minimal kinetic term with an
see[1-3]). The corresponding vacuum energy dengityis  exponential¢ dependencgl3,14.
then between (1 TeVY)andM?p. On the other hand, recent  In the above mentioned class of models, the vacuum en-
observations indicatd4] that the actual value isp,  €rgy densityp, takes values in a continuous range. An alter-
~(1072 eV)4, at least 60 orders of magnitude smaller. It is native possibility is that the spectrum pf is discrete, as in
hard to explain why , should be so small. Even more puz- the “washboard” potential model suggested in the early pa-
zling is the fact thatp, appears to be comparable to the per by Abbott[15]. A simple example of such a potential is
present matter densify,,o. The two densities scale very dif-
ferently with the expansion of the universe, and it is very V(¢)=—Acod2mdln)+edln. ©)
surprising that they nearly coincide at the present time.

To our knowlege, the only approach that can explain bot
of these puzzles is the one that attributes them to anthropi
selection effect§5—14]. In this approach, what we perceive
as the cosmological constant is in fact a variable that can
take different values in different parts of the universe and it
is assumed that the fundamental theory allows such a varigrransitions between different vacua can occur through
tion of the effectiveA. However, the particle physics models ppple nucleation.
of variableA suggested so far appear to have some unnatural Another version of the discrete model, first discussed by
features. Brown and Teitelboin{16], assumes that the cosmological

In one class of models, the role @fy is played by a constant is due to a four-form field,
slowly varying potentiaV(¢) of some scalar field> which

is very weakly coupled to ordinary matter. The simplest ex-

hFor e<2mA, the potential has local minima &t,~n#» with
=0,=1,+2,...,separated from one another by barriers.
he vacuum atp= ¢, has energy density

pAn~=nNE. (4)

ample is FaByo— €Yo (5)
-9
V()= pparet 3 122, (1 which can change its value through nucleation of branes. The
total vacuum energy density is given by
where ppare i the “true” cosmological constant and it is PA=Poaret F2I2 (6)

assumed thapy,e and u? have opposite signs. The two

terms on the right-hand side of E¢l) nearly cancel one and it is assumed thaip,<0. The change of the field
another in habitable parts of the universe. In order for theacross the brane is

evolution of ¢ to be slow on the cosmological timescale, the

mass parametex has to satisfy the conditiofLO] AF=q, (7)

o013 1 where the “charge’q is a constant fixed by the model. The
| | <107 M3 ppard ~2 (2)  four-form model has recently attracted much attention
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[17,13,18,20,1%because four-form fields coupled to branesbroken low-energy supersymmetry may ameliorate the situ-

naturally arise in the context of string theory. ation a bit, but unfortunately not up to a sufficient level, as
In the range where the bare cosmological constant is awe shall argue below.
most neutralized)F|~|2pparel % the spectrum ofp, is The problem is that, in the absence of an exact supersym-
nearly equidistant, with a separation metry, the brane world-volume states will induce an unac-
ceptably high brane tension through quantum loops. To dem-
ApA~|2pbare|1’2q. (8) onstrate this, let us assume the most optimistic scenario,

_ _ when the brane sector is only gravitationally coupled to the
In order for the anthropic explanation to workp, should  sector that spontaneously breaks supersymmetry. The lowest

not exceed the present matter density, possible scale of supersymmetry breaking compatible with
. A observations is somewhere around TeV energies. Thus, the
Apr=pme~(10"° eV)™. (99  mass splitting among the brane superfields induced by grav-

. _ 4 ity will be at least
With ppae=(1 TeV)", it follows that

m3~TeV4/M3 (12)
q=10"°M3. (10)
(this is the usual magnitude for the gravity-mediated super-
Once again, the challenge is to find a natural explanation foymmetry breaking Each brane superfield will induce a
such very small values af. linearly-divergent contribution to the brane tension. For in-
Feng, March-Russell, Sethi, and WilczékMSW) [18]  stance, at one loop the contribution coming from a massless
have argued that the required small values of the chgrge supermultiplet is
can naturally arise due to nonperturbative effects in M 3
theory. Their assumption is that some of the fundamental - 2f d°p 2
: N Ao~mg | —5——5~M5Acytott (13
string theory branes can have an extraordinarily small ten- —mg
sion 0=<10"M3. The idea was to use D2 branes obtained
by wrapping of k world-volume coordinates of higher- Which we(at bestcan cut off at the scaltl ~Mp . Thus, the
dimensional P-branes p=2+k) on a collapsing cycle. resultlng contribution to the brane tension from each pair of
The volume of the cycle/, then determines the effective Modes is expected to be
tension of the resulting 2D brane in lower dimension Ao=TeVY/M (14)
~V,. It was assumed that nonperturbative quantum correc- P

tions may_stabilize the vol_ume at an exponentially _small Size?l'hus, a single world-volume supermultiplet already gives an
resulting in an exponentially small 2-brane tension. Thenynacceptably large renormalization of the brane tension.
assuming a typical tension-to-charge relation, In addition, we have to sum over all the world-volume
modes with masses beloM. In the absence of an explicit
q~ — (11) model, it is hard to argue what the precise density of the
Mp’ modes is, and we will not speculate further on this issue.
However, one may expect that an additional enhancement
one arrives at the required val(&0) of the brane charge. factor can be as large asM/a” (since we expect the spac-
The problem with this approach is that the small braneing of the modes in the world-volume theory to be set by the
tension is not protected against quantum corrections belowrane tension, the only scale in the low energy world-sheet
the supersymmetry breaking scale. Branes of the kind distagrangiaif. This would give the resulting tension to be
cussed by Fengt al. originate as solitons of the fundamental something likeo~ TeV®. Although we cannot exclude a mi-
theory, valid above the field theory cutdff." As a result, in  raculous cancellation among the different modes, such a can-
the low energy effective field theory valid below the scalecellation is not indicated by any symmetry and would be
“M” these branes behave as fundamental objects in the sensgard to understand in an effective field theory picture. It is
that the low energy observer cannot “resolve” their struc-unlikely that string theory corrections can cure the problem
ture. Thus, the world-volume theory of these branes is a (Zince they set in only above the scdle and such a con-
+1)-dimensional field theory with a cutoff M. In the ab-  spiracy among high and low energy physics would constitute
sence of supersymmetry such branes would be expected &pviolation of the decoupling principle.
have a tensiomw~M? and the assumption af<M? would From the above arguments, we expect that branes with
be extremely unnatural. The existence of a spontaneoushlyery low tension and charge should be looked for among the
effective field theory solitons. The tension of such solitonic
branes is much better protected from quantum destabiliza-
YIn our discussion everywheri! should be understood as the tior_" Ajc‘ . Simple_Straigh_tfonNard exanle let us ConS{trUCt a
ultraviolet cutoff of the field theory, for which we take the string SOlitonic brane with tenS|on~_TeV6/M - Let ¢ be a chiral
scale. We shall assume that the string coupling is of order one angUPerfield with a superpotential
none of the string compactification radii are large. Thus the theory 3
below M is an effective four-dimensional theory and rougtly W= % (15)
~M.
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As above, let us assume that supersymmetry is spontanaiade as small as desired. As a byproduct of this research, we
ously broken at the TeV scale in a sector that coupleg to found a somewhat unexpected equivalence relation between
only gravitationally. scalar field and four-form models.

To be more explicit, leGbe a superfield which spontane-  After outlining the general idea in Sec. Il, we shall first
ously breaks supersymmetry through the expectation valudiscuss, in Sec. Ill, a simplified (£1)-dimensional version
of its auxiliary (Fs) component. By assumptidig~TeV2,  of our model. The equivalence between four-form and scalar
which is the lowest possible phenomenologically acceptabléield models is demonstrated in Sec. IV. Models ir B
scale. Then according to the standard picture, SUSY brealdimensions are discussed in Sec. V. In Sec. VI we illustrate
ing in the ¢-sector will be transmitted through gravity via how our models can be naturally embedded into a left-right
couplings of the form symmetric extension of the standard model. Our conclusions

are briefly summarized and discussed in Sec. VII.
S$*S

S
4np—  — g% 29— 43, ...
f d HI\/I% ¢ dH_f d GMP¢ * (16) Il. GENERAL PHILOSOPHY

of Our idea is the following(1) Branes with an extremely
low four-form charge can appear in the form of solitqde-
hrgain wallg of an effective low energy theor{2) The small
value of the charge-to-tension ratio is natural in the sense
that it can be arbitrarily suppressed by the symmetries of the
model.

2k g 3 4 Before proceeding to specific examples, let us briefly dis-
V()= —msg* $=(cmsp™+ H.c)+| ¢l (9 cuss the main ingredients of our scheni®), a real scalar
field, a, which can be thought of as the phase of a certain

where 6 is a superspace variable. The resulting soft mass
the ¢ scalar ismi~|Fg|/M2~TeV*/M32 and the sign de-
pends on the details of the theory. We shall assume that t
sign is negative. Then the effective potential f#brcan be
written as

wherec is a number of order one. Obviously, this system . ) .
exhibits a spontaneous breaking of the discigtsymmetry complex scalar fiel W'th a nonzero vacuum expectation
(¢—6273¢) and admits topologically stable solitonic value(X), (2) a four form fleIdFMWT which can be obtained
3 from a three-form potentiak- ,,,,=d;,A,,-, (3) a scalar

brane solutions (domain wallg with tension o~m; . ; i
~TeV®/M3. These branes do not suffer from the quantumfleld ¢, which spontaneously breaksZay discrete symme-

correction problems discussed above, due to the fact that atﬁy at the scale(¢). The crucial assumption is that both

the integrals in the brane world volume theory are cut off ai_'cal_es(@ a_reéX)lz 7 are weglljgl\(()whth_e cutofflscaIIM.

the compositeness scale, which coincides with the brane te bg\gggic;:v rgén_re% gvvgigﬂ(?/:/geyshall aa:) ?;orﬁg;%itve ar?ggscan

sion scalems.. Above this scale, one has to do computation We require tha,t the action be invariF;nt under the follcl)w-

in the full theory in which there is no renormalization of the . q . .

mass parameters beyond the saalg due to low-scale su- ing three symmetried1) Z,y symmetry under which

persymmetry. _ b—pe™, a_—a, (18)
Although the above simple example demonstrates that the

field theory branes with low tension are easily possible, it2) symmetry under the shift

does not achieve our primary goal of generating very low

charge branes, since the above branes are not coupled to any a—a+2mwy, (19
four-form field? This will be our task in the following dis-
cussion. and (3) the three-form gauge transformation

Thus, in this paper we report on our search for field-
theoretic models in which the smallnesscpffor of n in Eq.

(1)] can be attributed to some symmetry. We found a class of . .
models in which the value of (or ) can be made arbi- whereB,, is a two form. In addition, we shall assume that

: o : . there is an(at least approximate global ) symmetryX
trarily small. The charge-to-tension ratgf o can also be el so that it is meaningful to talk o as the phase
degree of freedom. Thusg, can be regarded as a sort of a
(pseudgGoldstone particle. Note that even if1) is explic-

“It was shown in{19] that domain walls of larg®l supersymmet- jtly broken by some nonperturbative Planck-scale—
ric SU(N) gluodynamics are automatically charged with respect tosuppressed corrections, the massafill be suppressed by
a (composit¢ three-form field. These argy walls formed by the e powers ofy/M~TeV/M, and is much smaller than the
gluino condensate, and both the tension and the charge of thesgasses of other scalars in the theory, which we assume are
objects are set by the SNj-QCD scaleA. However, there are twWo  5.5und the TeV scale. Thus, below TeV energies we can
points that probably make these walls useless in the present Contemtegrate out the heavy quanta such¢aand the radial part

First, the four-form field strength is the same on both sides of the . " - 4 jarive an effective low energy action for the re-
wall, due to the fact that its change gets compensated by the change ~

of the phase of gluino condensate. Second, these walls usually can-

not exist if the supersymmetry breaking scale>is\. Therefore,

according to our previous arguments, their charge can at best be’ln practice, even much higher scales can do the job, provitled
~TeV4/M§,, which is too high for our purposes. is chosen to be large enough.

A[LVLI_)AMVQ+§[MBVQ] ’ (20)
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maining light fieldsA,,,, anda. We shall assume that the whereD* is the usual covariant derivative with respect to the

low energy action includes all possible interactions that aré&lectromagnetic U) group,V(a, ¢) is some potential func-
compatible with the unbroken symmetries. Obviously, operafion, and 1M is a constant of order one. Note that if-1
tors that are forbidden by spontaneously broken symmetriedimensionsM must be dimensionless, since the canonical
must appear suppresséat least by powers of the corre- dimensionalities ofA,, ¢, anda are zero. For simplicity,
sponding Higgs vacuum expectation valy¥€Vs). Among here and below we use flat spacetime metric. Our sign con-

such operators there is a mixing afwith the three-form ventions aregoo=e”'=1. _ _ _ _ o
potential, We must stress that the interaction with fermions is intro-

duced exclusively for illustrative purposes. It allows us to
uvadpga. (21)  trace explicity how the gauge-invariant mixing operator
arises in perturbation theory. In reality we will not necessar-
Since at high energies this operator is forbidden byzhe ily rely on fermions, but assume that the mixing is induced

symmetry(as well as by an approximate globally sym- by some perturbative or nonperturbative physics at the cutoff
metry), in the low energy theory it should appear suppressedcale.

e“r P

by the following factor: As before, we require that the action be invariant under
N the following three symmetrieg1) U(1)-gauge invariance,
<¢N> erraBp dga+H.c. (22) (2) Zyn symmetry(18)., and (3) thg shift s;_/mmetry(llg).
M e Under these symmetries the functidita, ¢) is determined

o N , to depend ora and ¢ only through the invariants cas)
PowerN is dictated by the fact thap™ is the lowest possible N, and¢Nsina). The precise form of this function will be

power of that makes ugZ,y invariant in combination with o g importance for us as long as the vacuum expectation
a. Thus, the mixing can be arbitrarily suppre_ssgd by POWErgaiue (¢) of ¢ is nonzero and ¢)<M. This expectation
of TeV/M due to the symmetry reasons. This is enough tQ5),e spontaneously breaks, symmetry down to nothing,
realize our program; the extremely small mixing coefficienty,q some operators forbidden by this symmetry will be gen-

automatically translates into an extremely small four-formg aieq with strength suppressed by powers of the ratio
charge ofa-field domain walls. Like axionic domain walls, =(¢)IM.

these walls must be present due to the Reriodicity of the Among such operators we shall be interestedAipa

apotential. Since changes by z across the wall, each wall jying “which appears as a result of one-loop fermionic ex-
acts as a source for the four-form field. The resulting four-

: L ) change. The corresponding operator has the form
form charge is suppressed by the- A mixing (22) and is

miniscule. We shall discuss this in more detail below. N
. . d,0
Before proceeding, let us make a brief note. Below the g—rxe“rd,al g,,——— | AP (24)
. . . M N I vp 2 ’
energies comparable to the masses of eigher the radialX

quanta{¢) and|(X)| can be regarded as constants and the
coupling (22) is a local gauge-invariant operator. For higherwhereg is a loop factor that includes a dimensionful gauge
energies however, one has to include additional momentuneoupling. Shifting the¢ field, we shall expand the theory
dependent interactions. These become relevant for processaund the vacuum statéi— ( ¢) + ¢(x,,). Performing inte-
with external¢ and X legs and must be included because ofgration by parts in the first term of the expansion, Exf)
gauge invariance. Any interaction that will be responsible forcan be written as
inducing the above mixing term in the low energy theory will
also generate momentum-dependent operators required by
this gauge invariancesee the next sectignThese additional geNe”"AMﬁyaJrg
interactions however, will play no role in our analysis, since
they only contribute to processes withand X-quanta emis-

. . . . d,0
sion that are forbidden at energies of our interest. % eﬂVé)#a( 9up— vp

N-1
|
MN

el (25

Ill. ATOY MODEL IN 1 +1 DIMENSIONS ] o
where ellipses stand for the terms that contain higher powers

The field content of our (% 1)-dimensional toy model is, of ¢(x,,). These terms describk,-to-a transition via emis-
the “electromagnetic” vector potentidl, , a real scalar field  sjon of ¢ particles, and therefore are not relevant at the en-
a, an electrically charge(Dirac) fermion ¢, and a complex  ergies below the mass of thi quanta. Thus, at low energies
scalar field¢. The Lagrangian is the only relevant operator is the first term in E85). An

important fact is that this term is parametrically suppressed
(9 a)2+1((9 $)? by powers of small quantitye. After integrating out the

® 2K heavy fields and the fermions, the relevant part of the low

energy Lagrangian can be written as

AT
Lzllﬂ"}/MDMlp"f‘ ¢YM¢W€M (9,,a+§

wF*’+higher dervative terms

1
—V(a,¢)— aF
(23 “We thank A. Grassi for a clarifying discussion on this issue.
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L= %(&Ma)z_ 1F L FA7=V(a)+ geNfVMAngVa The energy-momentum tensor for our model is
+ higher derivative terms. (26) T, =d,ad,a—39,,d,a0°a+g,,V(a)+3g,,F?
The potentialV(a) in Eq. (26) is the effective potential =d,ad,a—39,,d,a0°a+g,,U(a), (35)

for a. As indicated above, the shift symmetry requires it to be
an arbitrary periodic function od. In the absence cdi—A  where we have used E2). The last expression in E(35)
mixing, the theory would have an infinite set of degeneratecoincides with the energy-momentum tensor for a scalar field
vacua at the minima of this potential, and standard topologiwith a potentialu (a). We thus see that, as long as nongravi-
cal arguments would imply that there must be domain walltational interactions o& and A, are negligible(apart from
configurations witha changing byAa= 27 across the wall. their interaction with one anotheithe model26) is equiva-

Let us now see how this situation is affected by the lent to that of a scalar field with a potentidi(a) given by
— A mixing term in Eq.(26). The gauge field strength can be Eq.(33). Tunneling between vacua with different valued-of
expressed as is replaced in this scalar model by tunneling between differ-

ent minima of the washboard potential.
Frv=et'F, (27

The equation of motion foA field, V. MODELS IN 3 +1 DIMENSIONS

We can easily generalize our model te-3 dimensions.
The main difference is that instead of the vector potential we

then implies that the change afacross the wall is accom- Shall consider a three-form fiel,,, and require the gauge

panied by a change of the field strength, invariance undeA,,,,— A, a1 9,B,q) - The Lagrangian of
interest then becomes

d,Frv=—geNe*’0 a, (28

AF=—geVAa. (29 y
The vacua on the two sides of the wall will not generally be L=37%d,8)%~ %FZ—V(a)ﬁLg?]Z%A“ﬁ”a, (36)
degenerate, due to this difference in the field strength.
Higher-energy vacua will decay into lower-energy ones . .o
through nucleation of bubbles with the domain walls at their
boundaries. RH = hVOTA
We thus see that the walls have acquired a charge vor?

(37

a is dimensionless ang has dimension of energyt has the
meaning of the shift symmetry breaking sgalEhe last term

which is suppressed by a power of the small parametér in EqQ. (36) should be understood as an effective low-energy

remarkable property of the above model is that, with a suit!Ntéraction arising from some fundamental theory with

able choice oN, this charge can be made arbitrarily small. P€ing understood as the Planck scale. It is the lowest-
dimension operator consistent with gauge, shift, ahg

symmetries.
The shift symmetry(19) suggests thad might be an
The scalar field equation, obtained by varying E26) axion-like field arising as a phase of some complex scalar,
with respect taa, is X=R€?. Then|(X)|=» and theZ,y symmetry is

q=2mge", (30)

IV. EQUIVALENT SCALAR FIELD MODEL

#*a+V'(a)—ge"F=0. (31 p—pe™N, X=X (38)

Now, the field equatiori28) for F can be integrated to yield In terms of the fieldX and ¢, the last term in, Eq(36) can
be written as
F=—geN(a—ay), (32
; NE w T_yt
wherea, is an integration constant. Substituting this into Eqg. 1g(A/M)TA(X9,XT= X1, X). (39)
(31), we see that the resulting equation frs that for a

We shall assume that t symmetry is spontaneousl
scalar field with a potential o SY y P y

broken at a scale much beloM. Having in mind a low

_ 102, N2 energy supersymmetry, this breaking scale may be as small
Ua)=V(a)+zp7(a=a0)", (33 as TeV without fine tuning. This would imply that the param-
where etere=($)/M~10"%,
As before, at low energies we can keep only a constant
w=ge, (34  partin ¢, in which case the last term in E(36) reduces to

Let us recall thatv(a) is periodic ina, V(a+2w7)=V(a). gnzeNTMaMa. (40)
Hence, the potentidl (a) is a “washboard” potential of the
kind considered by Abboftl5]. The field equation for the four-form fiel(b) is
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aMF:gnZGNaMa, (41) by-doublet Higgs field doublet under both S(2)-s) which
we shall denote byi. From the point of view of the standard
and we obtain model subgroup, this by-doublet field includes two elec-
. aN troweak Higgs doublet$l; and Hy which give masses to
AF=gn°e Aa. (42

“up” and “down” quarks (and leptonsrespectively. For in-

With a periodic potentialV/(a), the model has domain wall stance, the Yukawa couplings that give masses to quarks

solutions witha changing by~ 2= across the wall, and Eq. Qur=(ULr:DLR)
42) indicates that these domain walls acquire a charge — — —
“2 g 9 HQLQr=HuQuUr+HpQ.Dr, (48)

where we have written the SU(2X U(1)y-decomposition.
For e~10"° and =M, the condition(10) is satisfied with ~ This coupling has an accidental Peccei-Quinn type global
N=6. symmetry. The pseudo-Goldstone boson of this would-be
With € so small, the effect of the fielfi on the structure Symmetry is the phase difference of the electrically-neutral
of domain walls is negligible. The wall tensian is deter- components oH, andHy, doublets. This pseudoscalar state
mined solely by the potentiaf(a) and is not suppressed by changes the sign undét-parity transformation. However,

q=2mgn’e". (43

whereq and o are related by Eq(11). stone boson is massive. Below, aufield will be identified
Following the same steps as in Sec. I, it can be showith this boson. . .
that our model is equivalent to a scalar field model with a  The left-right symmetry can be broken by introducing two
potentialU(a) given by Eq.(33), doublet Higgs fieldsiH andHg, that are doublets under left
and right SW2)s respectively. One of them must develop an
U(a)=V(a)+su?(a—ag)? (44 expectation value around the TeV scéte above thereby
breaking the corresponding &) and left-right symmetry.
where The remaining S(2) subgroup then has to be identified with
the electroweak SU roup of the standard model.

A symmetry breaking in which only one of the doublets

With 1 suppressed by powers ef this washboard potential gets an expectation value can be achieved by an appropriate
is of the type required in the Abbott's model5). choice of the parameters in the Higgs potential. An important
An interesting version of the model is obtained by replac-POiNt. however, is that the presence of quartic terms in the

ing the discrete shift symmetry by a symmetry with respec otentiallis essential for the symmetry breqking. In a super-
to arbitrary translations symmetric theory, such terms cannot be written at the renor-

malizable level, and as a result one has to introduce addi-
a—a-+const. (46) tional singlets that are parity odd.
The role of one such singlet in our case will be played by
Thena is a Goldstone boson and(a) =0. The equivalent the ¢ field. The relevant couplings in the potential have the
scalar model has the potential form

U(a)=3u*(a—ag)> (47) N
— s (HEH - HEHR) —mP(HE H+ HEHR)
This is of the same form as in the simple mo¢Blin which MN-2
the effective vacuum energy density takes values in a con- . N ok .
tinuous range. Withpyare ~ (1 TeV)?, the condition(2) on +AMH{H +HRHR)*+ N (H{H HRHR), (49)

is satisfied folN=6.
K where M,m are the mass scales around TeV and’ are

positive constants. There are many other possible terms that
V1. EMBEDDING INTO PARTICLE PHYSICS MODELS are not essential for our discussion. The only requirement to

In this section we would like to show that our model canthe rest of the potential is that it forces to get a nonzero
be naturally embedded in well-motivated particle physicsexpectation value. Then, since the coupling wititreates a
models. As an example we shall consider an embedding inttgft-right asymmetry, only one of the doublets is expected to
a left-right symmetric extension of the standard model. Wegét a VEV.
will see that the breaking @,y symmetry can be associated ~ The coupling betweerp and the doublets in Eq49) is
with the spontaneous breaking of a left-right symmetry. wehonrenormalizable. However, it can be easily obtained by
shall start by briefly reviewing a minimal left-right symmet-
ric extension of the standard mode@ll]. The gauge group is
SU(3)®SU(2) ® SU(2)z®U(1)® P where P-parity inter- SNote that without such singlet fields, one would have to include
changes left and right S@)-subgroups. This will be identi- nonrenormalizable quartic couplings suppressedviyin the su-
fied with our parity symmetry. Left-handed and right-handedperpotential. These, however, will create asymmetric minima at a
fermions form doublets of SU(2)and SU(2)k groups re-  very high scale, which is incompatible with the phenomenologically
spectively. Fermion masses are generated via coupling to raost interesting low energy LR-symmetric extension.
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integrating out additional singlet fields of malgkand zero
VEV. For instance, forN=6 it is enough to introduce a
single scalar fieldy that underZ,, symmetry transforms as
X_>é'rr/2 ,

B3 x+ ¢ 3x* M x+ x*A(HEHL —HEHR). (50

Integrating outy we arrive at the effective nonrenormaliz-

able coupling given in Eq(49). Below the TeV scale, the

PHYSICAL REVIEW D 64 063509

the field strength- changes around the string by the amount
(42) with Aa=2m,

AF=2mgn?eN, (51)

suggesting that there should be a discontinuity along a sheet
attached to the string. One way of resolving this obstruction
is to assume that eack string gets covered by & string

with 2N walls attached to it, so that the cores of the two

remaining effective low energy theory is the standard mode$trings COi”CLdé-AS we go around such a combined string,
coupled to our fielda via the pseudoscalar interaction. All the sign of¢™ changes every time we cross¢awall, and

other ingredients of our schenfe.g. mixing with a three-

with it the coupling betweerA* and a in Eq. (36) also

form, etc) are assumed to be unchanged. This completes thehanges sign. As a result, the charge will have a differ-

embedding of our model into BR symmetric extension of
the standard model.

VII. DISCUSSION

ent sign in different sections between thewalls, and the
overall change around the string will vanish. Another possi-
bility is that field F changes by the amou(fl) inside a wall
which gets attached to théstring. Within such- walls, field
¢ should deviate from its vacuum value and the higher-

As explained in the Introduction, anthropic solutions to gerivative terms omitted in the Lagrangi&®6) should be-
the cosmological constant problems require scalar field pocome important. Which of the two options is realized may

tentials with a very small slope or domain wallsrane$

with a very small coupling to a four-form field. Here we

depend on the specific dynamics of the model.
Although the physics of topological defects in our model

introduced some models in which the smallness of the cormay pe quite interesting, these defects are probably irrel-

responding parameters can be attributed &, symmetry,
Egs.(18) or (38).

evant for cosmology. The reason is thatwalls would be
disastrous if allowed to survive to be present. Thg sym-

We note that, apart from the desired domain walls withmetry preaking should therefore occur before the end of in-
small coupling to the four-form field, our models may have afjation so that allX and ¢ strings and walls are inflated away
variety of other topological defects. The breaking of the dis-gnd we are left only wita walls at the boundaries of nucle-

creteZ,y symmetry is accompanied by the formation ¢f
walls such that the value af changes by a factor o ™'N
across the wall. B such walls can be joined along &
string, with the phase ofp changing by 2r around the
string. .

If the field a is the phase of a complex scal¥=R€?,
then the translation symmetr@6) is a U1) symmetry of
phase transformation— e'*X. When X gets an expecta-

tion value, this symmetry is broken and we expect globa

string solutions witha changing by 2r around a string. An

ating bubbles.
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interesting question is what happens to these strings at the

Z,n-breaking phase transition whefi gets an expectation
value (we assume that it does so aft€y. With (¢)=const,
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