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Dilatonic domain walls and curved intersecting branes
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Curved, intersecting brane configurations satisfying the type IIA supergravity equations of motion are found.
In eleven dimensions, the models are interpreted in terms of orthogonally intersecting M5-branes, where the
world-volumes are curved due to the effects of one or more massless scalar fields. Duality symmetries are
employed to generate further type Il and heterotic solutions. Some cosmological implications are discussed.
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Intersecting brane configurations in supergravity theories 4 4(D—-1)
have played a fundamental role in uncovering the conjec- M=-————-, N=———31,
. . i . A(D-2) A(D—-2)
tured duality symmetries that relate the five perturbative
string theories(For a review, see, e.g., Refd,2].) In this 2(D-1)
paper, we find a wide class @gionsupersymmetrjéntersect- A=a’— B e (4)

ing, curved branes within the context of tile=10, N=2

andD =11, N=1 supergravity theories. These solutions pro-,., constant§8]. The harmonic function is given b =1
vide the seeds for generating further configurations througqm|y| wherem?=AA2/4 andy is the coordinate on the

duality transformations. Moreover, since the World'V‘)'“meStransverse dimension. The mass paramatershould be
of the branes are curved, they admit a cosmological interprejie\yeq as a piecewise constant of integration arising from a
tation and can therefore provide a framework for addressing o reformulation of actiorfl) in terms of aD-form field

que_stions arising in _the recently _proposed braneworld Sces'trength. The world-volume metrié, . is the metric on a
nario[3—6]. Intersecting branes with curved world-volumes (D— 1)-dimensional Ricci-flat spac’é;inié]

were recently derived from s_trmg dualities n Réﬂ'. In the present analysis, we consider the more general met-
The sector of aD-dimensional supergravity action that fic ansatd10—12:

leads to a solitoni¢magnetically chargedp-brane is given

by" d2=H™ , dxedx’+e?®H dy?, )
1 1 where{m,n,H(y)} are defined as above and the funct®n
— D _ 2_ - aq) 2 1 il
S_f d X\/@ R Z(V(D) 2q! e Fa) @ =B(x) depends only on the world-volume coordinates. It

can then be verified by direct substitution that the field equa-
whereR is the Ricci curvature scalar of the spacetime withtions derived by varying the actidi) are solved if the met-
metric, gag, g=detgag, and the constani, parametrizes ric and dilaton field are given byl0—12
the coupling between the form field and tBedimensional
dilaton, ®. dsi= Hme—(Z/Q(D—3))<P'de xtdx” + H"e(@edy?  (p)
A domain wall inD dimensions may be viewed as a soli-
tonic (D—2)-brane supported by a 0-form field strength,and
i.e., a cosmological constarﬁ(zo)=A2. The metric and dila- e =g (2aQep—2a/A

ton field are given by (@)
dszD:Hme,,dx“deJrH”dyZ @) respectively, where
> 1 12
e?=H"24, 3 ¢=QB, Q=\2[1+ S +=—2| , ®)
o> D—3
where
¥ _02 2_ A(2/Q(D-3
f,,=0%,, ©2=e20-3)¢ 9
*Email address: j.e.lidsey@gmw.ac.uk and {TW .o} satisfy the D—1)-dimensional Einstein field
YIn this paper, spacetime has the signature €, . ..,+). Vari- equations for a massless, minimally coupled scalar field:
ables in ten and eleven dimensions are represented with the accents
" and’, respectively. Upper case, Latin indices take values in the (D-1)% :E"‘ e~ T2, _
rangeA=(0,1, ... D—1). Lower case GreeK atin) indices cor- Ry ZV"(’DV”(P' Vie=0. (10

respond to world-volumétransverse spateoordinates. A totally . N )
antisymmetricp form is defined byA ) =(1/p!)A,, A dxt A tilde denotes quantities calculated with the conformally
1 p

/\.../\dx" and has a field strength given by the exterior deriva-transformed world-volume metri(:‘fw. Since the depen-
tive F(,.1)=dAp) . The Chern-Simons terms arising in the bosonic dence of the fields on the transverse coordinaigdsticalto
sectors of the theories are trivial for the configurations we considetthat of the Ricci-flat solutiori2), (3), Egs.(6), (7) represent
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a curved dilatonic domain wall, where the curvature of thez_m[fx\/g], whereg is the determinant of the metric on
world-volume is induced by the nontrivial variation of the T4, This is equivalent to choosing the metric ansatz
modulus field,e. This field arises when the transverse space

depends directly on the world-volume coordinates in an ap- dg2:ea/2dsé+ e 72dsi(X), (12)
propriate way.

We now develop curved intersecting branes in the typ&vhere the conformal factor in front of the six-dimensional
IIA  supergravity theory. The Neveu-Schwarz—Neveu-line element ensures that the standard Einstein-Hilbert action
Schwarz(NS-NS sector of the massless theory consists ofis recovered in the lower dimensions. Assuming the ten-
the graviton,gag, the dilaton,®, and the two-form poten- dimensional dilaton and the breathing mode to be constant

= 4 i
tial, A, The Ramond-Ramon@RR) sector is comprised of on T* and, furthermore, that the two fields are related by

one-form and three-form potential& ;) andA 3, [13]. The ®=-o, l;hen implies that the reduced six-dimensional ac-

theory admits a 5-brane supported by the NS-NS two-forrﬁIon can be written as

(NS5-brang and a D4- and D6-brane supported by the RR

three-form and one-forms, respectively. The massless type S= f d6x\/H

IIA theory may be derived from the Kaluza-Klein reduction

of eleven-dimensional supergraviti theory) on a circle, .

St. The bosonic sector of this latter theory is given by Eq.wherex=+2d.

(1), where 0,a,q)=(11,0,4). The ten- and eleven- Since the axion fieldy, arises only through a total deriva-

dimensional metrics are related b>d§2=e*‘i”6d§2 tive, a generalized Scherk-Schwarz dimensional reduction to
five dimensions may now be performgtb|. Compactifying

1 1 5
R—(Vx)?= e #(Vb)?, (13

+e**B3(dz;,+ A1)pdxB)2, wherez,; denotes the coordinate , B .
parametrizing ihe circle and the conformal factors are chosefn 3 circle such thalsg=e~***ds+e*"dyg, and allowing
such that the ten-dimensional spacetime is the Einstein-frani§€ axion to have a linear dependence on the compactifying
metric[14]. The corresponding field strengths are related bycoordinate,b=Ays, results in a five-dimensional action of
|E(4):'A:(4)+_|E(3)/\(d211+35§(1))_- - the forrp (1), where 0O,«,q)=(5,14/3,0) and &=

We consider compactifications of type IIA supergravity to —14/3b.
six dimensions that are associated with the “wrapping” of a  Thus, the theory admits a curved domain widlree-
solitonic p-brane. A brane is said to be wrapped when thebrang, whereA=2. The five-dimensional line element is
internal components of an antisymmetric tensor field are
placed onto a manifoldX, such that the form-field has a dst=H?%¢/9f  dxtdx"+H®%>/QdyZ,  (14)
nontrivial flux on that space. The nature of the wrapping is
determined by the Betti numbets,, of X, corresponding to  where{f ,,,¢} satisfy the four-dimensional Einstein equa-
the number of independentcycles in the internal manifold, tions (10) of general relativity, Q=27/7 and H=1

or equivalently, to the dimensionality of the cohomology + m|y.|. The corresponding six-dimensional metric is given
class,H™(X) (the set of all harmonio-forms that are closed by

but not exacdt In general, wrapping p-brane around a given

m-cycle in X leads to a solitonic—m)-brane. The simplest g2 e—(9/7Q)<p”f“Wqudxv+ H2(e(t2Medy2 1 B¢ y2)
compactifying space is the-dimensional torus,T", with (15)
Betti numbersb,=n!/[m!(n—m)!]. The four-torus there-

fore admits six harmonic two-formsdy?/A\dy® (a,b and after oxidizing the solution back to ten dimensions by
=1,2,3,4), and this implies that there exist three self-duakmploying Eq.(12), we find that

two-forms and three anti—self-dual two-forms on this space:

ds?=H" Y2 (¢ dxedx”

(L) Ayl + A2
Ji'=dy /\dy4_dy /\d)ﬁ +H3/2[e(3/2Q)<pdy§+e(9/1@)<pdy§]+H1/2€(3/14Q)<pdsi,

J@=dy?Ady*+dy}/Ady* i . .
e?=Hel®™e A, =Ayed . (16)
®=dy*Ady*=dy*/A\dy?.
IF=dy’Ady' = dy'/\dy (D Finally, since Eq(16) was derived within the context of the
massless type IlA theory, a further oxidation to eleven di-

Thus, we may wrap the NS-NS two-form potential aroundmensions can be made. We find that

the corresponding two-cycles by invoking the anségg)

=b(x)J(+i), whereb=h(x) is a scalar function that is con- 2y - 23, (1UMQ) ¢F LV

- i . : ds?=H %% f . dx*dx

stant over the internal manifold. When the other form fields K’

are trivial, the truncated type IlIA action is given by Hd), +HY e0MeqyZ 1 e@Me(dy2+dZ,) ]
where 0, a,q)=(10,—1,3).Compactification of this action

on T* leads to ten moduli fields arising from the SLRY, +HeWleds],

X R toroidal symmetry. For simplicity, we consider only 5

the dynamics of the breathing mode, defined by Fay=Ady®?AJ )/ \dZH (17
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Equation(17) may be interpreted in terms of M5-branes. dsz=(H1H2)7’8[(Hle)‘lfwdx"dx”vL dy?
The metric for two M5-branes orthogonally intersecting over
a three-brane can be written i6—1§ +H, N(dy2+dyd)+Hy Hdy3+dyd)], (2D

ds’=(HH,) ¥ (H Hy) M, dx#dx’+H; Y(dyi+dy3) whereH;=1+m|yg|. For example, whetd,;=1, the line
1,42 2 5 2 element is that of a D6-brane with world-volume and trans-
T H1(dy3+dyy) +(dys+dys+dzy) ], (18 verse coordinatesx(*,y1,Y») and (g,Y3,Y4). The two D6-
branes are smoothed over thes(y,) and (y,,y,) direc-
H,=1, this metric represents a M5-brane with world—volumetions’ respectively, and whert,=H,, the transverse
2 dependence of the metric coefficients reduces to that given in

i ®
coordinates %%ys.Ya) and transverse space spanned byEq. (20). This solution therefore represents the orthogonal
(Y1,Y2.Y5,Y6.:211)- The brane is delocalized over the . .

. ; . . intersection of two curved D6-branes on a curved four-brane,
(y1,Y») directions. Similarly, wherd, =1, the solution rep-

resents an M5-brane transverse ¢ 2,) and where the harmonic functions are identified.
¥s.b/4.Ys,Y6.21 To summarize thus far, we have found curved intersecting
smeared overy(s,Y,). In general, the metri¢18) interpo-

o~ brane solutions by wrapping type IlA form fields around ho-
lates between these two limits. The transverse dependence A . :
Eq. (17) is recovered whet; = H, and this latter solution l%ology cycles of the four-torus. Further intersecting branes

may therefore be interpreted as two curved M5-branes Ormay now be generated from E(0) by employing the du-

; . . ality symmetries of string theory. We first consider the
thogonally intersecting on a curved three-brane. Since th Y sy 9 Y

: ) "T’—duality that maps the type A theory onto the type 1IB
hafmo“.'c function depends_qnly o, the M5—b_ranes_ are heory, and vice versa. We assume that all fields are indepen-
delocalized over the remaining transverse dimensions.

o : . : ent of one of the world-volume coordinates’) and ex-
similar analysis follows for the interpretation of E{.6) as ) TR s
the orthogonal intersection of two curved NS5-branes on #€SS “Ehe world-volume metric asg=e™*"*f[Jdx“dx
three-brane. +e?¥3dxZ , where the normalization is chosen such that the
~ We now consider a compactification to six dimensionsfour-dimensional metricTﬁfV), is the Einstein-frame metric
involving the RR one-form potential of the type IIA theory. and{y,¢} represent two, massless, minimally coupled scalar
The coupling of this field to the ten-dimensional dilaton isfields in four dimensions.
given by @=3/2. Since this field arises only through an ex-  Conformally transforming Eq. (200 to the ten-
terior derivative, we may consider a generalized Scherkdimensional, type IIA string-frame and performing a
Schwarz compactification on a four-dimensional manifold, T-duality in the x> direction results in a type IIB solution
X, where the closed, harmonic two-form field strength isrepresenting the intersection of two curved D5-branes sup-

identified with the cohomology clas#i*(X), of X. Such a  ported by the magnetic charge of the RR two-form potential,

wrapping of the RR one-form around the four-torus iSBW. The fields are related byd@s=2d,—InGY , G&

where H; are harmonic functions overy{,ys,z:1). When

achieved through the ansdig,,=AJ, whereJis a harmonic  =1/G% and Bs,=—A,, where G denotes string-frame
two-form on T* and A is an arbitrary constanftl9]. For  metrics[20]. Applying an S-duality21] on the resulting type
example, if J=J®, the one-form is given byA(l) IIB solution then interchanges the RR and NS-NS two-form

=A(y*dy?+y3dy?*). Compactifying with the metric ansatz potentials and reverses the sign of the dilaton, thus leading to
(12), and equating the ten-dimensional dilaton with thea configuration consisting of two intersecting NS5-branes

breathing modeﬁ)= o, then implies that the six-dimensional with a transverse dependence given by E6). At this level

L T _ of truncation, such a solution also satisfies the field equations
action is given by Eq(1), where 0,a.q)=(6,312,0) and of the type IIA theory and it may therefore be oxidized to

®=20. Thus, it follows from Eq/(4) thatA=2 and EGS. eleven dimensions. This results in a further solution of two
(6)—(10) result in a domain wall solution: orthogonally intersecting M5-branes:

ds;=H Ve~ (2Q6F  dxdx”+ H3%(2Q)ed 2 d22=H 72/3e—(4/3Q)¢—(2/3\w§)X?§L4V)dX,Lqu
e® = e’(\‘@m)“’H -31h2 , (19) + H4’3[ e(4/3Q)¢(e—(5/3\s§) xd xf—, + e(1/3V'§) xd yg)
where{T,,, ¢} solve the five-dimensional Einstein equations +eW3IndZ ]+ H ey (22)
(10), H=1+m|yg| and Q=4,/2/3. Oxidizing the solution
back to ten dimensions then implies that Equation(22) is more general than E@L7) since the world-
volume is curved by two scalar fields. Either of these may be
d?=H Y4~ <P/wadxﬂde+ H g5/ ¢qyz2 consistently set to zero.
The wrappings around® that we have considered thus
+H3eeq sy, (200 far admit a direct generalization to the compact, Ricci-flat,
. K3 manifold. This is Kummer’s quartic surface @P° and
wheree® =g~ (2R3 admits 22 harmonic two-formsbg=22). (For a review of
The metric for two orthogonally intersecting D6-branesthe properties of K3 surfaces, see, e.g., R22].) When
on a D4-brane i$17,19 discussing compactifications on K3, it is convenient to view
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it as an orbifold approximation t&*, K3~T%/Z,. Such a to derive the corresponding type | brarj@4,26. The
compactification was considered in detail in R&f]. Six of ~ vacuum limit (¢=0) of Eq. (23) is the heterotic/type | six-
the harmonic two-forms on K3 correspond to the harmonidrane found in Ref{27] that is T-dual to the bound state of
two-forms on the four-torus. Thus, wrapping the NS-NS two-an anti—five-brane and a Kaluza-Klein monopole. Such a so-
form potential of the type IIA theory around one of theselution arises as a special case in the domain-wall/quantum-
two-cycles of the K3 manifold results, after oxidation to field—theory corresponden¢28,27.
eleven dimensions, in the intersecting brdh@), where the The six-brang23) is also relevant to the recently intro-
internal metric,ds2, is now the metric on K3. The intersect- duced compactification ansatz referred to as “braneworld
ing D6 braneg(20) may also be generalized to the K3 case inKaluza-Klein reduction”[29]. In this scheme, the world-
a similar fashion. volume of a codimension one-brane arising as a solution of a
The compactification of the type IIA theory on K3 is im- gauged supergravity theory is determined by an ungauged
portant in view of the conjectured strong/weak coupling Ssupergravity theory with half the supersymmetry. For ex-
duality between this theory and the heterotic theory compacample, the massive type IIA supergravity theory of Romans
tified on T* [21,24. This duality implies that a curved het- [30] admits a D8-brane, where the curvature of the world-
erotic brane may be derived, for example, from Bd). The  yolume is determined by a solution to nine-dimensional, un-
relevant transformation rules between the massless fields ghygedN=1 supergravity. Under appropriate conditions,
the two theories have been summarized in REF8,29 for  ihis [atter theory may be derived by a Kaluza-Klein compac-

the case where the heterotic gauge group is broken ftgfication on a circle of thétruncated ten-dimensional type |
U(1)™ We consider the transformations relevant to the comyneory. It follows, therefore, that the dimensional reduction

pactification leading to the type Il truncated actid3). The ¢ the six-brane(23) along a world-volume coordinate re-
six-dimensional string-frame metrics are related QZV sults in a five-brane 0D=9, N=1 supergravity. Conse-
=0°G), where®?=e" 2/, and the six-dimensional dila- quently, following the prescription outlined in R¢29], such
tons are given byj; = — he. In the above type Il compac- a brane may be embedded within the D8 solution of the
tification, we have only considered the breathing mode of thenassive type IIA theory. The resulting configuration corre-
K3 manifold and this is equivalent to assuming that all foursponds to the intersection of an NS5-brane and a D6-brane
radii of the orbifold T#/Z, are equal, i.e.Gh,=Gp, (a,b  with a D8-brane. _

=1,2,3,4). This places a restriction on the toric radii in the ~More general solutions to those presented may be found
corresponding compactification of the heterotic theory. Speby noting that the scalar fieldsc,b} in action (13) param-
cifically, in the ten-dimensional string frame, three of theetrize the SL(R)/U(1) coset. The action is therefore invari-
internal dimensions are stati&®=1, and the radius of the 2antunder a global SL(R) symme?ry}\;n(ransformanon, where
fourth is given byGhe'=(Gh.)2. Finally, the scalar axion the complex scalar fieldx=\b-+ie"* (\=1//2), under-

field, b, arising from the wrapping of the NS-NS two-form 90€s a fractional linear transfqrmat.iozz(AKnLB)./(CK
potential around the K3 two-cycle, is related to one of thet D) for AD—BC=1, and the Einstein-frame metric trans-
sixteen U(1) potentiaIsA;‘ft, such thatb=A, /{2, where forms as a singlet. Given a solutiob,&) to the field equa-

. . o tions derived from Eq(13), the SL(2R) transformation ma
the scalar fieldA,, arises from compactification of the U(1) be employed to geﬂ(er;te a cla(sst)f solutions where yboth

gauge field on the circle parametrized lyy, i.e., A™  fio|4s have a nontrivial dependence on the transverse and
=A,dy*. . world-volume coordinates. Moreover, a generalized Scherk-
These type II/.heterotlc corresponderlces may the_refore b&chwarz compactification of actiofi3) may also be per-
employed to derive the curved heterotic brane that is S-dughrmed, where the dependence of the fields on the compac-
to the type IIA, six-dimensional metri€15). Oxidizing the  +ifying coordinates is determined by a local SLRD,
resulting solution to ten dimensions then yields the heteroti¢;ansformation, thereby extending the linear ansatz we in-

solution voked for the axion field31].
. _ A related six-dimensional SL(R)/U(1) model is deriv-
dﬁeﬁHflm[e*(”’m)“’fﬁfy)dx“dxy able by compactifying eight-dimensional, vacuum Einstein

e BPRe(dy2 4 dy2+ dy2)] iragity on a nonzt?lynamical two-torusls§=dsg+e“bdy§
e”(dys+odyg)?; the {®, o} fields parametrize the coset
+ HMg(@Q¢(dy2 1 (6Meqy2 + dy2) manifold, ds’>=d®?+e°®ds?, and therefore support a
3-brane after Scherk-Schwarz compactification to five di-
mensions. This is interesting because a mapping bet®een
=8 vacuum Einstein gravity with two commuting spacelike
R isometries and =11 supergravity was recently established
whereQ=27/7, F{5}= y2Ady®/\dy* and the metric is ex- by means of a nonlocal classical duali§2]. Thus, a given
pressed in the Einstein frame. Equati@®B8) represents a solution to one theory acts as a seed for generating new
curved six-brane, where three of the transverse dimensiorsolutions in the other, and vice versa. Indeed, such a corre-
of the type IIA solution(16) have become world-volume spondence has been employed to generate intersecting
dimensions in the heterotic solution. The S duality betweeM5-branes[32]. The results of the present work imply that
the SO(32) heterotic and type | theories may also be invokednalogous curved models may also be found by this proce-

ePhet= H1/2a(3114Q) ¢ (23)
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dure. It is also worth remarking that branes intersecting af37]. The accelerated expansion of a subset of the spatial

angles can be derived by applying successive T-S-T dualitdimensions is driven by the collapse of the remaining dimen-

transformations on orthogonally intersecting configurationssions[41]. It would be interesting to investigate inflation of

[2,33]. It would be interesting to explore such a procedure tathis type within the intersecting braneworld context, al-

derive tilted curved branes. though a detailed analysis is beyond the scope of the present
Finally, we conclude by discussing some of the COSMOpaper.

logical implications of the solutions we have derived. Con- aAn jmportant question in the braneworld scenario is

siderable interest has been generated recently by the proposghether gravity can be localized on the domain wa2].
that our observable, four-dimensional universe corresponds, e models considered abovaA=2. However. in this

qu a d_oma:m wall grz—bra;ne Iembed(lj_edt_ In ?thhlgher- case, gravity can arise on the world-volume of the brane if
imensional spaces—6l. A natural generalization of the SIM- " the extra coordinate is compact. For example, if the coordi-

plest braneworld scenario is to view our universe as the in- . . . 1 .
tersection of two or more higher-dimensional brafigd]. nate is restricted to the interva,/Z,, the domain wall may

Th . . be located on the orbifold fixed points, as in the &@-
e solutions we have found can be interpreted cosmolog\-Nitten theory[4.5]. [This model corresponds o= —2 in
cally when the scalar field in Eq10) is time dependent. Eq. (1).] yia.9l. P
Since the world-volumef ,,, is arbitrary, a wide class of A gjgnificant consequence of viewing our observable uni-
spatially anisotropic and inhomogeneous cosmologies Mayarse as a codimension one brane embedded in a five-
be considered that generalize the standard Friedmangimensional “bulk” space is that the effective four-
Robertson-Walke(FRW) models. This is important since gimensional gravitational field equations include extra terms.
deviations from spatial isotropy are expected to have beefnege tidal effects are parametrized by the Wey! tensor of the
significant in the very early universe. _ higher-dimensional metric and do not depend specifically on
To be specific, curved braneworlds may be found directlyihe energy-momentum of matter that is confined to the brane
once a solution to Eq(10) has been given. Equatioll0)  143]. Hence, the geometry of the bulk can significantly influ-
represents Einstein's equations sourced by a massless, miiace the lower-dimensional brane dynamics and in general
mally coupled scalar field and solutions to this latter theoryy,;g implies that the cosmological expansion of the brane
are knowr{35-37. In particular, homogeneous and inhomo- cannot be determined unless the form of the higher-
geneous models containing one or more massless scalgimensional metric is known. In this paper, we have found
fields were recently reviewef7] within the context of  gyact hulk solutions to the type Il string theory and M theory
string-inspired models such as the pre-big bang inflationarie|q equations and these solutions therefore provide a class

cosmology{38]. In this latter scenario, inflation can be inter- ¢ mqgels where the cosmological dynamics of the brane can
preted in the Einstein frame as the collapse of a scalar fielfls getermined.

dominated universe, where the dynamics is determined by Recently, Feinstein, Kunze, and Xuez-Mozo consid-
Eq. (10) [39]. Thus, our solutions provide a framework for greq 4 related class of five-dimensional domain wall models
considering pre—_blg bang |nflat|0n.|n a branewprld setting. supported by an exponential potential of the form given in
One of the simplest cosmological models is representegtq (1) [12]. These authors included a matter source confined
by the spatially homogeneous and anisotropic Bianchi type {; the brane with a Lagrangian coupled to the scalar field via
metric. When the world-volume has this form, it can beg | igyville term. In this case, a self-tuning mechanism arises
shown that the eleven-dimensional metrics that we have d&;5etween the matter and the brane tension that causes the
rived correspond toacuumsolutions of Einstein gravity in - effective cosmological constant on the brane to vanish. In
the limit where the harmonic functiod=1. Since the spa- principle, a similar analysis may be performed for the inter-

tial hypersurfaces are Ricci flat, these metrics represefigcting brane configurations derived above by introducing an
higher-dimensional generalizations of the four-d|mens|ona(meropri(,]lte matter source.

Kasner solutior{40] and it is known that for these models,
inflation is possible over a wide region of parameter space The author is supported by the Royal Society.
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