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Dilatonic domain walls and curved intersecting branes
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Curved, intersecting brane configurations satisfying the type IIA supergravity equations of motion are found.
In eleven dimensions, the models are interpreted in terms of orthogonally intersecting M5-branes, where the
world-volumes are curved due to the effects of one or more massless scalar fields. Duality symmetries are
employed to generate further type II and heterotic solutions. Some cosmological implications are discussed.
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Intersecting brane configurations in supergravity theo
have played a fundamental role in uncovering the con
tured duality symmetries that relate the five perturbat
string theories.~For a review, see, e.g., Refs.@1,2#.! In this
paper, we find a wide class of~nonsupersymmetric! intersect-
ing, curved branes within the context of theD510, N52
andD511, N51 supergravity theories. These solutions p
vide the seeds for generating further configurations thro
duality transformations. Moreover, since the world-volum
of the branes are curved, they admit a cosmological inter
tation and can therefore provide a framework for address
questions arising in the recently proposed braneworld s
nario @3–6#. Intersecting branes with curved world-volum
were recently derived from string dualities in Ref.@7#.

The sector of aD-dimensional supergravity action tha
leads to a solitonic~magnetically charged! p-brane is given
by1

S5E dDxAuguFR2
1

2
~¹F!22

1

2q!
eaFF (q)

2 G , ~1!

whereR is the Ricci curvature scalar of the spacetime w
metric, gAB , g[detgAB , and the constant,a, parametrizes
the coupling between the form field and theD-dimensional
dilaton,F.

A domain wall inD dimensions may be viewed as a so
tonic (D22)-brane supported by a 0-form field streng
i.e., a cosmological constant,F (0)

2 5L2. The metric and dila-
ton field are given by

dsD
2 5Hmf mndxmdxn1Hndy2 ~2!

eF5H22a/D, ~3!

where

*Email address: j.e.lidsey@qmw.ac.uk
1In this paper, spacetime has the signature (2,1, . . . ,1). Vari-

ables in ten and eleven dimensions are represented with the ac
ˆ and ˇ, respectively. Upper case, Latin indices take values in
rangeA5(0,1, . . . ,D21). Lower case Greek~Latin! indices cor-
respond to world-volume~transverse space! coordinates. A totally
antisymmetric p form is defined by A(p)5(1/p!)AA1 . . . Ap

dxA1

` . . . `dxAp and has a field strength given by the exterior deriv
tive F (p11)5dA(p) . The Chern-Simons terms arising in the boson
sectors of the theories are trivial for the configurations we consi
0556-2821/2001/64~6!/063507~6!/$20.00 64 0635
s
-

e

-
h

s
e-
g
e-

,

m[
4

D~D22!
, n[

4~D21!

D~D22!
,

D[a22
2~D21!

D22
~4!

are constants@8#. The harmonic function is given byH51
1muyu, wherem25DL2/4 and y is the coordinate on the
transverse dimension. The mass parameter,m, should be
viewed as a piecewise constant of integration arising from
dual reformulation of action~1! in terms of aD-form field
strength. The world-volume metric,f mn , is the metric on a
(D21)-dimensional Ricci-flat spacetime@9#.

In the present analysis, we consider the more general m
ric ansatz@10–12#:

dsD
2 5Hmf mndxmdxn1e2BHndy2, ~5!

where$m,n,H(y)% are defined as above and the functionB
5B(x) depends only on the world-volume coordinates.
can then be verified by direct substitution that the field eq
tions derived by varying the action~1! are solved if the met-
ric and dilaton field are given by@10–12#

dsD
2 5Hme2(2/Q(D23))w f̃ mndxmdxn1Hne(2/Q)wdy2 ~6!

and

eF5e2(2/aQ)wH22a/D, ~7!

respectively, where

w[QB, Q[A2F11
2

a2
1

1

D23G 1/2

, ~8!

f̃ mn5Q2f mn , Q2[e(2/Q(D23))w ~9!

and $ f̃ mn ,w% satisfy the (D21)-dimensional Einstein field
equations for a massless, minimally coupled scalar field:

(D21)R̃mn5
1

2
¹̃mw¹̃nw, ¹̃2w50. ~10!

A tilde denotes quantities calculated with the conforma
transformed world-volume metric,f̃ mn . Since the depen-
dence of the fields on the transverse coordinate isidentical to
that of the Ricci-flat solution~2!, ~3!, Eqs.~6!, ~7! represent
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JAMES E. LIDSEY PHYSICAL REVIEW D 64 063507
a curved dilatonic domain wall, where the curvature of t
world-volume is induced by the nontrivial variation of th
modulus field,w. This field arises when the transverse spa
depends directly on the world-volume coordinates in an
propriate way.

We now develop curved intersecting branes in the ty
IIA supergravity theory. The Neveu-Schwarz–Neve
Schwarz~NS-NS! sector of the massless theory consists

the graviton,ĝAB , the dilaton,F̂, and the two-form poten-
tial, Â(2) . The Ramond-Ramond~RR! sector is comprised o
one-form and three-form potentials,Â(1) and Â(3) @13#. The
theory admits a 5-brane supported by the NS-NS two-fo
~NS5-brane! and a D4- and D6-brane supported by the R
three-form and one-forms, respectively. The massless
IIA theory may be derived from the Kaluza-Klein reductio
of eleven-dimensional supergravity~M theory! on a circle,
S1. The bosonic sector of this latter theory is given by E
~1!, where (D,a,q)5(11,0,4). The ten- and eleven
dimensional metrics are related bydš25e2F̂/6dŝ2

1e4F̂/3(dz111Â(1)BdxB)2, wherez11 denotes the coordinat
parametrizing the circle and the conformal factors are cho
such that the ten-dimensional spacetime is the Einstein-fr
metric @14#. The corresponding field strengths are related
F̌ (4)5F̂ (4)1F̂ (3)`(dz111Â(1)).

We consider compactifications of type IIA supergravity
six dimensions that are associated with the ‘‘wrapping’’ o
solitonic p-brane. A brane is said to be wrapped when
internal components of an antisymmetric tensor field
placed onto a manifold,X, such that the form-field has
nontrivial flux on that space. The nature of the wrapping
determined by the Betti numbers,bm , of X, corresponding to
the number of independentm-cycles in the internal manifold
or equivalently, to the dimensionality of the cohomolo
class,Hm(X) ~the set of all harmonicm-forms that are closed
but not exact!. In general, wrapping ap-brane around a given
m-cycle inX leads to a solitonic (p2m)-brane. The simples
compactifying space is then-dimensional torus,Tn, with
Betti numbersbm5n!/ @m!(n2m)! #. The four-torus there-
fore admits six harmonic two-forms,dya`dyb (a,b
51,2,3,4), and this implies that there exist three self-d
two-forms and three anti–self-dual two-forms on this spa

J6
(1)5dy1`dy46dy2`dy3

J6
(2)5dy2`dy46dy3`dy1

J6
(3)5dy3`dy46dy1`dy2. ~11!

Thus, we may wrap the NS-NS two-form potential arou
the corresponding two-cycles by invoking the ansatzÂ(2)

5b(x)J6
( i ) , whereb5b(x) is a scalar function that is con

stant over the internal manifold. When the other form fie
are trivial, the truncated type IIA action is given by Eq.~1!,
where (D,a,q)5(10,21,3).Compactification of this action
on T4 leads to ten moduli fields arising from the SL(4,R)
3R toroidal symmetry. For simplicity, we consider on
the dynamics of the breathing mode, defined bys
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[2ln@*XAg#, whereg is the determinant of the metric o
T4. This is equivalent to choosing the metric ansatz

dŝ25es/2ds6
21e2s/2ds4

2~X!, ~12!

where the conformal factor in front of the six-dimension
line element ensures that the standard Einstein-Hilbert ac
is recovered in the lower dimensions. Assuming the t
dimensional dilaton and the breathing mode to be cons
on T4 and, furthermore, that the two fields are related
F̂52s, then implies that the reduced six-dimensional a
tion can be written as

S5E d6xAuguFR2
1

2
~¹x!22

1

2
e2A2x~¹b!2G , ~13!

wherex[A2F̂.
Since the axion field,b, arises only through a total deriva

tive, a generalized Scherk-Schwarz dimensional reductio
five dimensions may now be performed@15#. Compactifying

on a circle such thatds6
25e22F̂/3ds5

21e2F̂dy6
2, and allowing

the axion to have a linear dependence on the compactify
coordinate,b5Ly6, results in a five-dimensional action o
the form ~1!, where (D,a,q)5(5,A14/3,0) and F[

2A14/3F̂.
Thus, the theory admits a curved domain wall~three-

brane!, whereD52. The five-dimensional line element is

ds5
25H2/3e2w/Qf̃ mndxmdxn1H8/3e2w/Qdy5

2 , ~14!

where $ f̃ mn ,w% satisfy the four-dimensional Einstein equ
tions ~10! of general relativity, Q[A27/7 and H51
1muy5u. The corresponding six-dimensional metric is giv
by

ds6
25e2(9/7Q)w f̃ mndxmdxn1H2~e(12/7Q)wdy5

21e(6/7Q)wdy6
2!

~15!

and after oxidizing the solution back to ten dimensions
employing Eq.~12!, we find that

dŝ25H21/2e2(3/2Q)w f̃ mndxmdxn

1H3/2@e(3/2Q)wdy5
21e(9/14Q)wdy6

2#1H1/2e(3/14Q)wds4
2 ,

eF̂5He(3/7Q)w, Â(2)5Ly6J(2) . ~16!

Finally, since Eq.~16! was derived within the context of th
massless type IIA theory, a further oxidation to eleven
mensions can be made. We find that

dš25H22/3e2(11/7Q)w f̃ mndxmdxn

1H4/3@e(10/7Q)wdy5
21e(4/7Q)w~dy6

21dz11
2 !#

1H1/3e(1/7Q)wds4
2 ,

F̌ (4)5Ldy6`J(2)`dz11. ~17!
7-2
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DILATONIC DOMAIN WALLS AND CURVED . . . PHYSICAL REVIEW D 64 063507
Equation~17! may be interpreted in terms of M5-brane
The metric for two M5-branes orthogonally intersecting ov
a three-brane can be written as@16–18#

ds25~H1H2!2/3@~H1H2!21f mndxmdxn1H2
21~dy1

21dy2
2!

1H1
21~dy3

21dy4
2!1~dy5

21dy6
21dz11

2 !#, ~18!

where Hi are harmonic functions over (y5 ,y6 ,z11). When
H251, this metric represents a M5-brane with world-volum
coordinates (xm,y3 ,y4) and transverse space spanned
(y1 ,y2 ,y5 ,y6 ,z11). The brane is delocalized over th
(y1 ,y2) directions. Similarly, whenH151, the solution rep-
resents an M5-brane transverse to (y3 ,y4 ,y5 ,y6 ,z11) and
smeared over (y3 ,y4). In general, the metric~18! interpo-
lates between these two limits. The transverse dependen
Eq. ~17! is recovered whenH15H2 and this latter solution
may therefore be interpreted as two curved M5-branes
thogonally intersecting on a curved three-brane. Since
harmonic function depends only ony5, the M5-branes are
delocalized over the remaining transverse dimensions
similar analysis follows for the interpretation of Eq.~16! as
the orthogonal intersection of two curved NS5-branes o
three-brane.

We now consider a compactification to six dimensio
involving the RR one-form potential of the type IIA theor
The coupling of this field to the ten-dimensional dilaton
given bya53/2. Since this field arises only through an e
terior derivative, we may consider a generalized Sche
Schwarz compactification on a four-dimensional manifo
X, where the closed, harmonic two-form field strength
identified with the cohomology class,H2(X), of X. Such a
wrapping of the RR one-form around the four-torus
achieved through the ansatzF̂ (2)5LJ, whereJ is a harmonic
two-form on T4 and L is an arbitrary constant@19#. For
example, if J5J1

(3) , the one-form is given byÂ(1)

5L(y1dy21y3dy4). Compactifying with the metric ansat
~12!, and equating the ten-dimensional dilaton with t

breathing mode,F̂5s, then implies that the six-dimensiona
action is given by Eq.~1!, where (D,a,q)5(6,3/A2,0) and

F5A2F̂. Thus, it follows from Eq.~4! that D52 and Eqs.
~6!–~10! result in a domain wall solution:

ds6
25H1/2e2(2/3Q)w f̃ mndxmdxn1H5/2e(2/Q)wdy6

2

eF5e2(A8/3Q)wH23/A2, ~19!

where$ f̃ mn ,w% solve the five-dimensional Einstein equatio
~10!, H511muy6u and Q54A2/3. Oxidizing the solution
back to ten dimensions then implies that

dŝ25H21/4e2w/Qf̃ mndxmdxn1H7/4e(5/3Q)wdy6
2

1H3/4e(1/3Q)wds4
2 , ~20!

whereeF̂5e2(2/3Q)wH23/2.
The metric for two orthogonally intersecting D6-bran

on a D4-brane is@17,19#
06350
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ds25~H1H2!7/8@~H1H2!21f mndxmdxn1dy6
2

1H2
21~dy1

21dy2
2!1H1

21~dy3
21dy4

2!#, ~21!

where Hi511mi uy6u. For example, whenH151, the line
element is that of a D6-brane with world-volume and tran
verse coordinates (xm,y1 ,y2) and (y6 ,y3 ,y4). The two D6-
branes are smoothed over the (y3 ,y4) and (y1 ,y2) direc-
tions, respectively, and whenH15H2, the transverse
dependence of the metric coefficients reduces to that give
Eq. ~20!. This solution therefore represents the orthogo
intersection of two curved D6-branes on a curved four-bra
where the harmonic functions are identified.

To summarize thus far, we have found curved intersect
brane solutions by wrapping type IIA form fields around h
mology cycles of the four-torus. Further intersecting bran
may now be generated from Eq.~20! by employing the du-
ality symmetries of string theory. We first consider th
T-duality that maps the type IIA theory onto the type II
theory, and vice versa. We assume that all fields are inde
dent of one of the world-volume coordinates (x5) and ex-
press the world-volume metric asds5

25e2x/A3 f̃ mn
(4)dxmdxn

1e2x/A3dx5
2 , where the normalization is chosen such that

four-dimensional metric,f̃ mn
(4) , is the Einstein-frame metric

and$x,w% represent two, massless, minimally coupled sca
fields in four dimensions.

Conformally transforming Eq. ~20! to the ten-
dimensional, type IIA string-frame and performing
T-duality in the x5 direction results in a type IIB solution
representing the intersection of two curved D5-branes s
ported by the magnetic charge of the RR two-form potent
Bmn . The fields are related by 2FB52FA2 ln G55

(A) , G55
(B)

51/G55
(A) and B5m52Am , where G denotes string-frame

metrics@20#. Applying an S-duality@21# on the resulting type
IIB solution then interchanges the RR and NS-NS two-fo
potentials and reverses the sign of the dilaton, thus leadin
a configuration consisting of two intersecting NS5-bran
with a transverse dependence given by Eq.~16!. At this level
of truncation, such a solution also satisfies the field equati
of the type IIA theory and it may therefore be oxidized
eleven dimensions. This results in a further solution of t
orthogonally intersecting M5-branes:

dš25H22/3e2(4/3Q)w2(2/3A3)x f̃ mn
(4)dxmdxn

1H4/3@e(4/3Q)w~e2(5/3A3)xdx5
21e(1/3A3)xdy6

2!

1e(4/3A3)xdz11
2 #1H1/3e(1/3A3)xds4

2 . ~22!

Equation~22! is more general than Eq.~17! since the world-
volume is curved by two scalar fields. Either of these may
consistently set to zero.

The wrappings aroundT4 that we have considered thu
far admit a direct generalization to the compact, Ricci-fl
K3 manifold. This is Kummer’s quartic surface inCP3 and
admits 22 harmonic two-forms (b2522). ~For a review of
the properties of K3 surfaces, see, e.g., Ref.@22#.! When
discussing compactifications on K3, it is convenient to vie
7-3
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JAMES E. LIDSEY PHYSICAL REVIEW D 64 063507
it as an orbifold approximation toT4, K3'T4/Z2. Such a
compactification was considered in detail in Ref.@23#. Six of
the harmonic two-forms on K3 correspond to the harmo
two-forms on the four-torus. Thus, wrapping the NS-NS tw
form potential of the type IIA theory around one of the
two-cycles of the K3 manifold results, after oxidation
eleven dimensions, in the intersecting brane~17!, where the
internal metric,ds4

2, is now the metric on K3. The intersec
ing D6 brane~20! may also be generalized to the K3 case
a similar fashion.

The compactification of the type IIA theory on K3 is im
portant in view of the conjectured strong/weak coupling
duality between this theory and the heterotic theory comp
tified on T4 @21,24#. This duality implies that a curved he
erotic brane may be derived, for example, from Eq.~16!. The
relevant transformation rules between the massless field
the two theories have been summarized in Refs.@23,25# for
the case where the heterotic gauge group is broken
U(1)16. We consider the transformations relevant to the co
pactification leading to the type II truncated action~13!. The
six-dimensional string-frame metrics are related byGmn

II

5Q2Gmn
het , whereQ2[e22chet, and the six-dimensional dila

tons are given byc II52chet. In the above type II compac
tification, we have only considered the breathing mode of
K3 manifold and this is equivalent to assuming that all fo
radii of the orbifold T4/Z2 are equal, i.e.,Ĝaa

II 5Ĝbb
II (a,b

51,2,3,4). This places a restriction on the toric radii in t
corresponding compactification of the heterotic theory. S
cifically, in the ten-dimensional string frame, three of t
internal dimensions are static,Ĝii

het51, and the radius of the

fourth is given byĜ44
het5(Ĝaa

II )2. Finally, the scalar axion
field, b, arising from the wrapping of the NS-NS two-form
potential around the K3 two-cycle, is related to one of t
sixteen U(1) potentials,Âm

het, such thatb5A4 /A2, where
the scalar field,A4, arises from compactification of the U(1
gauge field on the circle parametrized byy4, i.e., Âhet

5A4dy4.
These type II/heterotic correspondences may therefor

employed to derive the curved heterotic brane that is S-d
to the type IIA, six-dimensional metric~15!. Oxidizing the
resulting solution to ten dimensions then yields the heter
solution

dŝhet
2 5H21/4@e2(39/28Q)w f̃ mn

(4)dxmdxn

1e2(3/28Q)w~dy1
21dy2

21dy3
2!#

1H7/4e(3/4Q)w~dy4
21e(6/7Q)wdy5

21dy6
2!

eF̂het5H1/2e(3/14Q)w, ~23!

whereQ5A27/7, F̂ (2)
het5A2Ldy6`dy4 and the metric is ex-

pressed in the Einstein frame. Equation~23! represents a
curved six-brane, where three of the transverse dimens
of the type IIA solution~16! have become world-volume
dimensions in the heterotic solution. The S duality betwe
the SO(32) heterotic and type I theories may also be invo
06350
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to derive the corresponding type I brane@24,26#. The
vacuum limit (w50) of Eq. ~23! is the heterotic/type I six-
brane found in Ref.@27# that is T-dual to the bound state o
an anti–five-brane and a Kaluza-Klein monopole. Such a
lution arises as a special case in the domain-wall/quant
field–theory correspondence@28,27#.

The six-brane~23! is also relevant to the recently intro
duced compactification ansatz referred to as ‘‘branewo
Kaluza-Klein reduction’’@29#. In this scheme, the world
volume of a codimension one-brane arising as a solution
gauged supergravity theory is determined by an ungau
supergravity theory with half the supersymmetry. For e
ample, the massive type IIA supergravity theory of Roma
@30# admits a D8-brane, where the curvature of the wor
volume is determined by a solution to nine-dimensional, u
gaugedN51 supergravity. Under appropriate condition
this latter theory may be derived by a Kaluza-Klein compa
tification on a circle of the~truncated! ten-dimensional type I
theory. It follows, therefore, that the dimensional reducti
of the six-brane~23! along a world-volume coordinate re
sults in a five-brane ofD59, N51 supergravity. Conse
quently, following the prescription outlined in Ref.@29#, such
a brane may be embedded within the D8 solution of
massive type IIA theory. The resulting configuration corr
sponds to the intersection of an NS5-brane and a D6-br
with a D8-brane.

More general solutions to those presented may be fo
by noting that the scalar fields$x,b% in action ~13! param-
etrize the SL(2,R)/U(1) coset. The action is therefore invar
ant under a global SL(2,R) symmetry transformation, wher
the complex scalar field,k[lb1 ielx (l[1/A2), under-
goes a fractional linear transformationk̄5(Ak1B)/(Ck
1D) for AD2BC51, and the Einstein-frame metric tran
forms as a singlet. Given a solution (b,x) to the field equa-
tions derived from Eq.~13!, the SL(2,R) transformation may
be employed to generate a class of solutions where b
fields have a nontrivial dependence on the transverse
world-volume coordinates. Moreover, a generalized Sche
Schwarz compactification of action~13! may also be per-
formed, where the dependence of the fields on the comp
tifying coordinates is determined by a local SL(2,R)
transformation, thereby extending the linear ansatz we
voked for the axion field@31#.

A related six-dimensional SL(2,R)/U(1) model is deriv-
able by compactifying eight-dimensional, vacuum Einste
gravity on a nondynamical two-torus,ds8

25ds6
21e2Fdy6

2

1eF(dy51sdy6)2; the $F,s% fields parametrize the cose
manifold, ds25dF21e2Fds2, and therefore support a
3-brane after Scherk-Schwarz compactification to five
mensions. This is interesting because a mapping betweeD
58 vacuum Einstein gravity with two commuting spaceli
isometries andD511 supergravity was recently establish
by means of a nonlocal classical duality@32#. Thus, a given
solution to one theory acts as a seed for generating
solutions in the other, and vice versa. Indeed, such a co
spondence has been employed to generate interse
M5-branes@32#. The results of the present work imply tha
analogous curved models may also be found by this pro
7-4
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DILATONIC DOMAIN WALLS AND CURVED . . . PHYSICAL REVIEW D 64 063507
dure. It is also worth remarking that branes intersecting
angles can be derived by applying successive T-S-T dua
transformations on orthogonally intersecting configuratio
@2,33#. It would be interesting to explore such a procedure
derive tilted curved branes.

Finally, we conclude by discussing some of the cosm
logical implications of the solutions we have derived. Co
siderable interest has been generated recently by the pro
that our observable, four-dimensional universe correspo
to a domain wall or p-brane embedded in a highe
dimensional space@3–6#. A natural generalization of the sim
plest braneworld scenario is to view our universe as the
tersection of two or more higher-dimensional branes@34#.
The solutions we have found can be interpreted cosmol
cally when the scalar field in Eq.~10! is time dependent
Since the world-volume,f̃ mn , is arbitrary, a wide class o
spatially anisotropic and inhomogeneous cosmologies m
be considered that generalize the standard Friedm
Robertson-Walker~FRW! models. This is important sinc
deviations from spatial isotropy are expected to have b
significant in the very early universe.

To be specific, curved braneworlds may be found direc
once a solution to Eq.~10! has been given. Equation~10!
represents Einstein’s equations sourced by a massless,
mally coupled scalar field and solutions to this latter the
are known@35–37#. In particular, homogeneous and inhom
geneous models containing one or more massless s
fields were recently reviewed@37# within the context of
string-inspired models such as the pre-big bang inflation
cosmology@38#. In this latter scenario, inflation can be inte
preted in the Einstein frame as the collapse of a scalar fi
dominated universe, where the dynamics is determined
Eq. ~10! @39#. Thus, our solutions provide a framework fo
considering pre-big bang inflation in a braneworld setting

One of the simplest cosmological models is represen
by the spatially homogeneous and anisotropic Bianchi typ
metric. When the world-volume has this form, it can
shown that the eleven-dimensional metrics that we have
rived correspond tovacuumsolutions of Einstein gravity in
the limit where the harmonic functionH51. Since the spa-
tial hypersurfaces are Ricci flat, these metrics repres
higher-dimensional generalizations of the four-dimensio
Kasner solution@40# and it is known that for these model
inflation is possible over a wide region of parameter sp
sh
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@37#. The accelerated expansion of a subset of the spa
dimensions is driven by the collapse of the remaining dim
sions@41#. It would be interesting to investigate inflation o
this type within the intersecting braneworld context, a
though a detailed analysis is beyond the scope of the pre
paper.

An important question in the braneworld scenario
whether gravity can be localized on the domain wall I@42#.
In the models considered above,D52. However, in this
case, gravity can arise on the world-volume of the bran
the extra coordinate is compact. For example, if the coo
nate is restricted to the interval,S1/Z2, the domain wall may
be located on the orbifold fixed points, as in the Horˇava-
Witten theory@4,5#. @This model corresponds toa522 in
Eq. ~1!.#

A significant consequence of viewing our observable u
verse as a codimension one brane embedded in a
dimensional ‘‘bulk’’ space is that the effective four
dimensional gravitational field equations include extra term
These tidal effects are parametrized by the Weyl tensor of
higher-dimensional metric and do not depend specifically
the energy-momentum of matter that is confined to the br
@43#. Hence, the geometry of the bulk can significantly infl
ence the lower-dimensional brane dynamics and in gen
this implies that the cosmological expansion of the bra
cannot be determined unless the form of the high
dimensional metric is known. In this paper, we have fou
exact bulk solutions to the type II string theory and M theo
field equations and these solutions therefore provide a c
of models where the cosmological dynamics of the brane
be determined.

Recently, Feinstein, Kunze, and Va´zquez-Mozo consid-
ered a related class of five-dimensional domain wall mod
supported by an exponential potential of the form given
Eq. ~1! @12#. These authors included a matter source confin
to the brane with a Lagrangian coupled to the scalar field
a Liouville term. In this case, a self-tuning mechanism ari
between the matter and the brane tension that causes
effective cosmological constant on the brane to vanish.
principle, a similar analysis may be performed for the int
secting brane configurations derived above by introducing
appropriate matter source.
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