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Supernova constraints on spatial variations of the vacuum energy density

P. P. Avelind
Centro de Astrofiica, Universidade do Porto, Rua das Estrelas s/n, 4150-762 Porto, Portugal
and Departamento de Bica da Faculdade de Omeias da Universidade do Porto,
Rua do Campo Alegre 687, 4169-007 Porto, Portugal

J. P. M. de Carvalhb
Centro de Astrofiica, Universidade do Porto, Rua das Estrelas s/n, 4150-762 Porto, Portugal
and Departamento de Mateniza Aplicada da Faculdade de Qieias da Universidade do Porto,
Rua das Taipas 135, 4050 Porto, Portugal

C. J. A. P. Martin$
Centro de Astrosiica, Universidade do Porto, Rua das Estrelas s/n, 4150-762 Porto, Portugal
and Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge,
Wilberforce Road, Cambridge CB3 OWA, United Kingdom
(Received 6 March 2001; published 24 August 2001

We consider a very simple toy model for a spatially varying “cosmological constant,” where we are inside
a spherical bubbléwith a given set of cosmological paramejetisat is surrounded by a larger region where
these parameters are different. This model includes essential features of more realistic scenarios with a mini-
mum number of parameters. We calculate the luminosity distance in the presence of spatial variations of the
vacuum energy density using linear perturbation theory and discuss the use of type la supernovae to impose
constraints on this type of model. We find that presently available observations are only constraining at very
low redshifts, but also provide independent confirmation that the high-redshift supernovae data do prefer a
relatively large positive cosmological constant.
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[. INTRODUCTION ferent values of the cosmological parameters, notably the
matter and vacuum energy densitiend hence also the

The standard cosmological principlBCP states that the Hubble constant Since in such models the differences in the
universe is spatially homogeneous and isotropic on largeosmological parameter values in the different regions tend
scales. It is one of the cornerstones of modern cosmology, ito increase with cosmic time after the phase transition that
the sense that if it were not true, then the standard results fggroduced them, and since cosmological observations neces-
the most basic properties of the univefsech as its geom- sarily look back at earlier times, detecting such differences is
etry, content, or agewould not hold and would have to be not as simple as one might expect, and hence constraints on
reworked from scratch, quite possibly suffering rather drastithese models turn out to be surprisingly mild.
changes. There is some supporting evidence for the SCP on In addition, cosmological observations in such models
scales very close to the horiz¢h—3], though it can hardly will be faced with the same type of limitations as were
be called definitive. pointed out in[8] for the case of quintessence modé&ise

However, the theoretical situation is not totally unambigu-also[9,10] for different perspectives It should be noticed
ous either. On the one hand, it has been claifigddhat the that although the two types of models have rather different
SCP does not follow from the cosmic microwave back-motivations, they will be rather similar observationally, since
ground radiationlCMBR) (neaj isotropy and the Coperni- in both cases one is effectively dealing with an equation state
can principle, as is usually assumed. This is important beef the universe which varies as a function of the redshift.
cause in that case it follows that the SCP cannot be assumétbwever, an important additional feature which needs to be
to hold based on the presently available observational datéaken into account in models with different domains is the
On the other hand, it is known that there are wHys7]in  temperature jump due to the relative velocity of comoving
which the SCP could be evaded that would be difficult, orobservers on either side of the domain wall. Also, these mod-
even impossible, for us to notice at the present time. els will not be isotropic and so, in general, results will vary

A simple example which the present authors have considas a function of the direction on the sky. This means that
ered in the pasi5—7] is that of a late-time phase transition problems with systematic errors due to supernovae evolution
producing wall-like defects which separate regions with dif-or dust are less severe than in the context of quintessence

models.
In this paper we will use the recent measurements of the
*Electronic address: pedro@astro.up.pt luminosity redshift relation using supernovae outztel to
"Electronic address: mauricio@astro.up.pt constrain this type of model. We should emphasize at the
*Electronic address: c.j.a.p.martins@damtp.cam.ac.uk outset that we will only be dealing with a very simple toy
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model, but we nevertheless believe that it still includes cru- V.
cial features of more realistic scenarios with a minimum Qp=—ov, 1
number of parameters.

Supernovag havg long been recognized as a crucial step Wherepc is the critical density, and we defineQ , as
the cosmological distance ladder, and hence as a useful tool

to estimate cosmological parameters via the Hubble diagram. Spa(r)  palr)—V_
Recent observations of type la supernovae by two indepen- AQa(r)= = , (2
dent team$11-13 (the Supernovae Cosmology Project and Pe Pe

the Highz Supernova Search Teamout to redshiftz~1
provided, together with CMB data, some fairly strong evi-
dence for a recently started phase of acceleration in the loc
universe, with the preferred vacuum and matter densities b
ing Q,~0.7 andQ,,~0.3. This conclusion is based on the
observed faintness of high-redshift supernovae, relative N
their expected brightness in a standard decelerating univers[q mics and the domains will have many different shapes.
It should be emphasized that these measurements are lo

d tb i lated all th o the hori Th rthermore, we are also not expected to be exactly at the
and cannot be extrapolated afl the way 1o tn€ honzon. TNer€q e of 5 given domain. In general, such cases would have

fofrle t_hey do ?]Ot' OQ ﬂelr own, imply that we have entered an, pe geqlt with numerically. We will analyze some of these
n Ftlol,?a:cy”p gsé ' ]'. introd del def'fects elsewhergl8]. However, this simplified model still
n the following section we Introduce our toy model and ;. ,orates some of the crucial features of more realistic

discuss its possible shortcomings. We then study the eVOIurhodeIs with a minimum number of new parametére red-

tion of linear per?urbations in our T“Od.e' in Sec. lll, anq shift of the domain wallz, and the difference between the
derive an expression for the luminosity distance as a functiog " \,2cuum energy dent%itiGzSQA) In the following sec-

of the redshift in Sec. IV. Finally, Sec. V contains athoroughtions we will show how high-redshift supernovae can be

discussion of our results, and we conclude in Sec. V. used to constrain combinations of these parameters. We shall
also discuss the validity of these results in the context of
Il. THE MODEL more realistic models in which a network of domain walls is

present.
In a recent articld7] we have shown that large subhori-

zon inhomogeneities may be generated if a network of doyy, v yTION OF COSMOLOGICAL PERTURBATIONS

main walls permeates the universe, dividing it in domains

with slightly different values of the vacuum energy density In the conformal-Newtonian gauge, the line element for a
and other cosmological parameters. The typical size of thesat Friedmann-Robertson-Walker background and scalar
regions is determined by the dynamics of the network ofmetric perturbations can be written as

domain walls and is expected to be close to the horizon

scale. The necessary condition in order for the model to be ds?=a%()[(1+2®)c?dyn?—(1—2®)(dr?+r?de?
observationally viable is that the domain walls are formed in .

a late-time ph)a(se transition. +resint 9de?)], )

This condition is required for two differerithough re- assuming that the anisotropic stresses are small. ideris
lated reasons. First, the cosmological parameters will be dif- 9 Anisotrop o ' e
he metric perturbatiorg is the speed of light in vacuura,is

ferent in the different domains, and the differences tend té{-\e scale factory is the conformal time. and 6, andé are
increase with time, so they must not be so big as to make i ; ory | Ime, ' ¢
spatial coordinates.

observationally obvious at the present time. Second, the dgPat .

main walls can themselves be cosmologically important Given that the vacuum energy become; dominant only for

even disastroysand in order to avoid this one requires that recent epochs we ?ha” be concernec_i with the evolutlon_ of
perturbations only in the matter-dominated era, neglecting

their energy scale is sufficiently low so that they do not con the contribution of the radiation component. The evolution of

tribute in a significant manner to the CMB anisotropies. th le facton i d by the Fried i
Here we study a simplified model in which the universe is € scale factoa IS governed by the Friedmann equation

made up of a spherically symmetric regi@omain, which

is surrounded by another region with a different vacuum en-

ergy density(which we will callV_ andV, , respectively. .

We assume that we live in the center of the inner region?IOte that th(ta)_backgrounr:j mat:)er anld vacuum energy densi-

Moreover, one assumes that the thin region separating thees at an arbitrary epoch can be written as

two domains consideredomain wal) does not generate

relevant CMB fluctuations. This happens if the potential of

the field is small enough at the origin. We also require that *An overdot denotes a derivative with respect to conformal time,

the domain walls have no nontrivial dynamics, which is ax=a/a, the index 0 means that the quantities are to be evaluated at

good approximation if friction is importaft5—-17. the present time and we have takay=1 and#,=1 (so that the
The vacuum density will be parametrized by conformal time is measured in units &f; %).

where p, (r) is the vacuum energy density at the point in
guestion. Hence, this can have two possible values: 0 if we
glre inside the inner region, an&/ (—V_)/p. in the outer
Homain.

We emphasize that this is a highly simplified model. In
ore realistic models, domain walls will have nontrivial dy-

H?=0pa '+ 0%a% €)
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00 turbation, the luminosity distanced, , to an object with co-
m . . . . .
= 5 moving coordinate =r, at a redshiftz is given by
" 0%+0%al © '
di(2)~(1+2)[1=D(770,0)]r1~(1+2)[1-D(70,0)]c
andQ,=1-Q,.
The linear evolution equation of the scalar perturbations is « f”o 1+ 2P (7' o / 1
given by (see, for example,19]) 7](1)[ (7" [70=n'[mdn’, (3

D+ 3HD +[2H+H 2P =47Ga2dp=—2a2A0Q, where ®(7',r')=d(n=7",r=r"), 7o is the conformal
(6) time at the present timey defines an arbitrary direction on
the sky and the observer is assumed to be=ad.

where ép is the pressure perturbation and Analogous corrections will also arise for the Sachs-Wolfe
) o 1 0.2 effect. Here, in the presence of the scalar metric perturba-
2H=—-Qna “+20,a%. (7)  tions defined by Eq(6) there is an additional shift in the

) ) ) ] temperature of the source given by
Given that the source term in the outer domairatAQ ) is

only important near the present time, we shall assume the AT -
following initial conditions for Eq.(6): 7:2f dn @ (7,[ 70— 7/n)+ 2P (70,0
e
®(0)=0, ®(0)=0, ® ~2® (7, 70~ nelm), (14)

both in the inner and the outer regions. We note that givenvhere 7, is the conformal time when the light was emitted.
that the source term is absent in the inner region, the metrigVithin a given domaim\T/T is obviously zero. However, if

perturbation is always zero there. the source is in the outer domain there will be a temperature
The density perturbationy, in the outer domain is given jump at the domain wall with
by [19]
AT 20 (15
1) AH 2 . T T
5=2 =20 = V2D - 3HD - 3H?D], (9) T
Pc H 3

where® , is the value of® in the outer region at the time
which simplifies to when the light crossed the domain wéikere we are assum-
ing that® =0 in the inner region This temperature shift is
due to the relative velocity between comoving observers on
either side of the domain wall. This implies that for an ob-
server looking across the domain wall the relation between
given thatV2d =0 except at the domain walls. The relation- the redshift,z, and the scale factoa, has to be modified to
ship betweens and the fractional perturbation in the expan-
sion rate follows directly from the Friedmann equation. It is
straightforward to show that if the metric perturbations are
small the outer domain behaves as having an effedbi§é
and Q" given by

AH .
5/2:7:_(7‘(71(1)4'(1)), (10

1
1+z=>-20,. (16)

These effects are a distinguishing characteristic of these
type of models, and could conceivably help distinguish them

from quintessence-type models, for example.

Qeﬁ—(1—2—>(ﬂ +AQ ) (11)
H A A
V. RESULTS AND DISCUSSION

i eff _ 14 _ oeff
and similarly Q=103 We have verified the accuracy of our formalism by com-
puting the luminosity distance as a function of the redshift of

IV. THE LUMINOSITY DISTANCE the source in two distinct ways. In the first approgchse |,
We can now proceed by evaluating the luminosity dis_dashed line in Fig. ).1we assume that tohe background uni-
tance relation in the presence of spatial variations of the cos/6rse has cosmological paramet®f}, O, and?,. On top

mological parameters. Recall that the luminosity distance t@f this we introduce a perturbation in the vacuum energy

a given source is given by density parametrized byAQ} and calculate f(2)
=Hyd (2)/c using Eq.(13). In the alternative approach
, L (case Il, solid line in Fig. lwe assume that the cosmological
di=77 (12 parameters ar@°", Q%" andH+ A [see Eqs(10) and
(11)] with no perturbation.
where £ is the luminosity of the source anfl is the mea- We have done the calculation for two distinct cosmologi-

sured flux. It follows directly from the perturbed flat FRW cal scenarios. Model A heQ2=1, Q% =0, andAQ}=0.5
metric given in Eq(3) that, to first order in the metric per- while model B ha€22=0.3, $=0.7, andAQ%=0.2. We
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10 . ———

0 FIG. 1. Comparison between the luminosity

distance, parametrized Hyz) =Hqd, (z)/c, cal-
culated in two distinct ways. In case(dlashed
line) we assume a background universe with cos-
mological parameter§)$, Q°, and H, and a
perturbation in the vacuum energy density param-
etrized byA QY . In case lI(solid line) we assume
that the cosmological parameters &8, 5",
and H+ AH with no perturbation. Model A has
0°%=1, 0%=0, andA0%=0.5 while model B
hasQ9=0.3, 08=0.7, andA0$=0.2.

1 |

10’ 10
1+z

can clearly see that the results obtained in either case are redshift of the domain wallz, , and the fluctuation in the
very good agreement for both models. In Fig. 2 we show thevalues of the cosmological constant in the outer redjmm
dependence of this agreement on the valuebgE®( 7,) rametrized byAQE’\). The high-redshift supernovae dataset
for model B (here we tookA( ,>0). We see that fof® )| of the Supernovae Cosmology Project was fit to the FRW
<1 the relative agreement between the two methods for calnagnitude redshift relation

culating the luminosity distance

m&'= Mg+5logD, (2), (18
() —di! (=) a
€E=——
d () whereD, (z) =Hyd (2), Mg is the “Hubble-constant-free”
B-band absolute magnitude at maximum of a supernovae
is nearly proportional t¢d,|?, as expected. with a stretch factos= 1, andm¢" is the effective rest-frame

Having tested our method for calculating the luminosity B magnitude corrected for the width-luminosity relation. We
distance we applied it in the context of the model describecdssumed thaf),,=0.3 and(2, =0.7 in the inner region and
in Sec. Il and used type | supernovae in order to constrain theve took Mz= —3.4 neglecting the uncertainty associated

0

10

FIG. 2. Dependence of the relative agreement
between the two methods for calculating the lu-
minosity distance., on the value of|®| for
model B (here we tookA (), >0). We see that
is nearly proportional td®,|?, as expected.

10° 10°
1,
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FIG. 3. The 95% confidence allowed region
(region ll) in the z, versusAQY plane. Region |
is excluded since our linear perturbation theory
approach does not hold there, while region Il is
excluded by the supernovae data. Note the asym-
metry between the two observationally excluded
regions.
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with the supernovae absolute magnitude calibratidle  parameters which is enclosed by a light domain wall and
have also checked that this particular choice does not affesturrounded by another region where these parameters are
our main result3.We have estimated the parametefsand  different. This aims to be a very simple mimic model for
AQ% using ay? statistical analysis. cosmological models where the cosmological constant has
Figure 3 displays our results in tlxg versusAQS plane. space and/or time variationsuch as, e.g., quintessence
Note that for values of®|=1 our approach based on linear models.
perturbation theory ceases to be valid. The set of parameters We have shown that the presently available supernovae
for which this happens is denoted as region I. The region oflata are only constraining at very low redshifts. Neverthe-
parameter space that is allowed by the supernovae (data l€ss, negative spatial variatioreeaning a present-day value
95% confidenceis denoted as region I, while the observa- of the cosmological constant larger than the one at high red-
tionally excluded region is denoted as region IIl. shift) are much more constrained than posifcive_ _variations. In
We clearly see that, as expected,zjf is small only a fact, our bestfit mode_l turns out to have _aS|gn|f|c§ntIy Ia_lrger
small value ofAQ?S is allowed. However, as the valuepf ~ Vacuum energy density in the outer region than in the inner
increases, the constraints on the valuesA61% are much one. _Thl_s is a clear |nd|cat'|on that a positive vacuum energy
weaker, and there are essentially no constraints beyond density is favored by the_hlgh-re_:c_jshlft d"’!ta- Obviously larger
~0.7. This happens essentially because the importance rgm(::er’er datasets will significanty improve these con-
h .

the cosmological constant is smaller in the past than at t gral . . .
Finally, we point out again that our analysis used a very

present time. . . X .
We also see that negative values mn‘A’ are excluded simple toy model._ While we do believe that the mo_del stil
until significantly larger redshiftszt~0.7) than positive ones captures the crucial phyglcs of the_ problem being dIS?CUSSEd’

' it is clear that our analysis can be improved by resorting to a

g]or ;vhlf?_ttherz "’I‘r? nt?] constraints begoxtadro.S).olg facé numerical simulation of the different domains. On the other
€ best-fit model to the supemovae data #as-0.6 an hand, a careful discussion of the effects of these spatial

AQy~0.4. This is a significant result—it is an alternative \ 5 iations of cosmological parameters in the CMB is also
(and perhaps intuitively cleaneway of saying that the high- required. We shall return to these iss(igg].
redshift supernovae data does favor a relatively large positive

cosmological constant.
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