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Supernova constraints on spatial variations of the vacuum energy density
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We consider a very simple toy model for a spatially varying ‘‘cosmological constant,’’ where we are inside
a spherical bubble~with a given set of cosmological parameters! that is surrounded by a larger region where
these parameters are different. This model includes essential features of more realistic scenarios with a mini-
mum number of parameters. We calculate the luminosity distance in the presence of spatial variations of the
vacuum energy density using linear perturbation theory and discuss the use of type Ia supernovae to impose
constraints on this type of model. We find that presently available observations are only constraining at very
low redshifts, but also provide independent confirmation that the high-redshift supernovae data do prefer a
relatively large positive cosmological constant.
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I. INTRODUCTION

The standard cosmological principle~SCP! states that the
universe is spatially homogeneous and isotropic on la
scales. It is one of the cornerstones of modern cosmolog
the sense that if it were not true, then the standard results
the most basic properties of the universe~such as its geom
etry, content, or age! would not hold and would have to b
reworked from scratch, quite possibly suffering rather dra
changes. There is some supporting evidence for the SC
scales very close to the horizon@1–3#, though it can hardly
be called definitive.

However, the theoretical situation is not totally unambig
ous either. On the one hand, it has been claimed@4# that the
SCP does not follow from the cosmic microwave bac
ground radiation~CMBR! ~near! isotropy and the Coperni
can principle, as is usually assumed. This is important
cause in that case it follows that the SCP cannot be assu
to hold based on the presently available observational d
On the other hand, it is known that there are ways@5–7# in
which the SCP could be evaded that would be difficult,
even impossible, for us to notice at the present time.

A simple example which the present authors have con
ered in the past@5–7# is that of a late-time phase transitio
producing wall-like defects which separate regions with d
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ferent values of the cosmological parameters, notably
matter and vacuum energy densities~and hence also the
Hubble constant!. Since in such models the differences in t
cosmological parameter values in the different regions t
to increase with cosmic time after the phase transition t
produced them, and since cosmological observations ne
sarily look back at earlier times, detecting such difference
not as simple as one might expect, and hence constraint
these models turn out to be surprisingly mild.

In addition, cosmological observations in such mod
will be faced with the same type of limitations as we
pointed out in@8# for the case of quintessence models~see
also @9,10# for different perspectives!. It should be noticed
that although the two types of models have rather differ
motivations, they will be rather similar observationally, sin
in both cases one is effectively dealing with an equation s
of the universe which varies as a function of the redsh
However, an important additional feature which needs to
taken into account in models with different domains is t
temperature jump due to the relative velocity of comovi
observers on either side of the domain wall. Also, these m
els will not be isotropic and so, in general, results will va
as a function of the direction on the sky. This means t
problems with systematic errors due to supernovae evolu
or dust are less severe than in the context of quintesse
models.

In this paper we will use the recent measurements of
luminosity redshift relation using supernovae out toz;1 to
constrain this type of model. We should emphasize at
outset that we will only be dealing with a very simple to
©2001 The American Physical Society05-1
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model, but we nevertheless believe that it still includes c
cial features of more realistic scenarios with a minimu
number of parameters.

Supernovae have long been recognized as a crucial st
the cosmological distance ladder, and hence as a useful
to estimate cosmological parameters via the Hubble diagr
Recent observations of type Ia supernovae by two indep
dent teams@11–13# ~the Supernovae Cosmology Project a
the High-z Supernova Search Team! out to redshiftz;1
provided, together with CMB data, some fairly strong e
dence for a recently started phase of acceleration in the l
universe, with the preferred vacuum and matter densities
ing VL;0.7 andVm;0.3. This conclusion is based on th
observed faintness of high-redshift supernovae, relative
their expected brightness in a standard decelerating unive
It should be emphasized that these measurements are
and cannot be extrapolated all the way to the horizon. Th
fore they do not, on their own, imply that we have entered
inflationary phase@5,14#.

In the following section we introduce our toy model an
discuss its possible shortcomings. We then study the ev
tion of linear perturbations in our model in Sec. III, an
derive an expression for the luminosity distance as a func
of the redshift in Sec. IV. Finally, Sec. V contains a thorou
discussion of our results, and we conclude in Sec. VI.

II. THE MODEL

In a recent article@7# we have shown that large subhor
zon inhomogeneities may be generated if a network of
main walls permeates the universe, dividing it in doma
with slightly different values of the vacuum energy dens
and other cosmological parameters. The typical size of th
regions is determined by the dynamics of the network
domain walls and is expected to be close to the hori
scale. The necessary condition in order for the model to
observationally viable is that the domain walls are formed
a late-time phase transition.

This condition is required for two different~though re-
lated! reasons. First, the cosmological parameters will be
ferent in the different domains, and the differences tend
increase with time, so they must not be so big as to mak
observationally obvious at the present time. Second, the
main walls can themselves be cosmologically important~or
even disastrous!, and in order to avoid this one requires th
their energy scale is sufficiently low so that they do not co
tribute in a significant manner to the CMB anisotropies.

Here we study a simplified model in which the universe
made up of a spherically symmetric region~domain!, which
is surrounded by another region with a different vacuum
ergy density~which we will call V2 andV1 , respectively!.
We assume that we live in the center of the inner regi
Moreover, one assumes that the thin region separating
two domains considered~domain wall! does not generate
relevant CMB fluctuations. This happens if the potential
the field is small enough at the origin. We also require t
the domain walls have no nontrivial dynamics, which is
good approximation if friction is important@15–17#.

The vacuum density will be parametrized by
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VL[
V2

rc
, ~1!

whererc is the critical density, and we defineDVL as

DVL~r !5
drL~r !

rc
5

rL~r !2V2

rc
, ~2!

where rL(r ) is the vacuum energy density at the point
question. Hence, this can have two possible values: 0 if
are inside the inner region, and (V12V2)/rc in the outer
domain.

We emphasize that this is a highly simplified model.
more realistic models, domain walls will have nontrivial d
namics and the domains will have many different shap
Furthermore, we are also not expected to be exactly at
center of a given domain. In general, such cases would h
to be dealt with numerically. We will analyze some of the
effects elsewhere@18#. However, this simplified model stil
incorporates some of the crucial features of more reali
models with a minimum number of new parameters~the red-
shift of the domain wallz* and the difference between th
two vacuum energy densitiesDVL). In the following sec-
tions we will show how high-redshift supernovae can
used to constrain combinations of these parameters. We
also discuss the validity of these results in the context
more realistic models in which a network of domain walls
present.

III. EVOLUTION OF COSMOLOGICAL PERTURBATIONS

In the conformal-Newtonian gauge, the line element fo
flat Friedmann-Robertson-Walker background and sc
metric perturbations can be written as

ds25a2~h!@~112F!c2 dh22~122F!~dr21r 2 du2

1r 2 sin2 u df2!#, ~3!

assuming that the anisotropic stresses are small. Here,F is
the metric perturbation,c is the speed of light in vacuum,a is
the scale factor,h is the conformal time, andr, u, andf are
spatial coordinates.

Given that the vacuum energy becomes dominant only
recent epochs we shall be concerned with the evolution
perturbations only in the matter-dominated era, neglect
the contribution of the radiation component. The evolution
the scale factora is governed by the Friedmann equation1

H 25Vm
0 a211VL

0 a2. ~4!

Note that the background matter and vacuum energy de
ties at an arbitrary epoch can be written as

1An overdot denotes a derivative with respect to conformal tim

H5ȧ/a, the index 0 means that the quantities are to be evaluate
the present time and we have takena051 andH051 ~so that the
conformal time is measured in units ofH 0

21).
5-2
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Vm5
Vm

0

Vm
0 1VL

0 a3
~5!

andVL512Vm .
The linear evolution equation of the scalar perturbation

given by ~see, for example,@19#!

F̈13HḞ1@2Ḣ1H 2#F54pGa2dp52 3
2 a2DVL

0 ,
~6!

wheredp is the pressure perturbation and

2Ḣ52Vm
0 a2112VL

0 a2. ~7!

Given that the source term in the outer domain (}a2DVL) is
only important near the present time, we shall assume
following initial conditions for Eq.~6!:

F~0!50, Ḟ~0!50, ~8!

both in the inner and the outer regions. We note that gi
that the source term is absent in the inner region, the me
perturbation is always zero there.

The density perturbation,d, in the outer domain is given
by @19#

d[
dr

rc
52

DH
H 5

2

3
H 22@“2F23HḞ23H 2F#, ~9!

which simplifies to

d/25
DH
H 52~H 21Ḟ1F!, ~10!

given that“2F50 except at the domain walls. The relatio
ship betweend and the fractional perturbation in the expa
sion rate follows directly from the Friedmann equation. It
straightforward to show that if the metric perturbations a
small the outer domain behaves as having an effectiveVL

eff

andVm
eff given by

VL
eff5S 122

DH
H D ~VL1DVL! ~11!

and similarlyVm
eff512VL

eff .

IV. THE LUMINOSITY DISTANCE

We can now proceed by evaluating the luminosity d
tance relation in the presence of spatial variations of the c
mological parameters. Recall that the luminosity distance
a given source is given by

dL
25

L
4pF , ~12!

whereL is the luminosity of the source andF is the mea-
sured flux. It follows directly from the perturbed flat FRW
metric given in Eq.~3! that, to first order in the metric per
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is

e

n
ic

e

-
s-
to

turbation, the luminosity distance,dL , to an object with co-
moving coordinater 5r 1 at a redshiftz is given by

dL~z!;~11z!@12F~h0 ,0!#r 1;~11z!@12F~h0 ,0!#c

3E
h(z)

h0
@112F~h8,uh02h8un!#dh8, ~13!

where F(h8,r 8)[F(h5h8,r 5r 8), h0 is the conformal
time at the present time,n defines an arbitrary direction o
the sky and the observer is assumed to be atr 50.

Analogous corrections will also arise for the Sachs-Wo
effect. Here, in the presence of the scalar metric pertur
tions defined by Eq.~6! there is an additional shift in the
temperature of the source given by

DT

T
52E

he

h0
dh Ḟ~h,uh02hun!12F~h0,0!

22F~he ,uh02heun!, ~14!

wherehe is the conformal time when the light was emitte
Within a given domainDT/T is obviously zero. However, if
the source is in the outer domain there will be a tempera
jump at the domain wall with

DT

T
522F1 , ~15!

whereF1 is the value ofF in the outer region at the time
when the light crossed the domain wall~here we are assum
ing thatF50 in the inner region!. This temperature shift is
due to the relative velocity between comoving observers
either side of the domain wall. This implies that for an o
server looking across the domain wall the relation betwe
the redshift,z, and the scale factor,a, has to be modified to

11z5
1

a
22F1 . ~16!

These effects are a distinguishing characteristic of th
type of models, and could conceivably help distinguish th
from quintessence-type models, for example.

V. RESULTS AND DISCUSSION

We have verified the accuracy of our formalism by co
puting the luminosity distance as a function of the redshift
the source in two distinct ways. In the first approach~case I,
dashed line in Fig. 1! we assume that the background un
verse has cosmological parametersVL

0 , Vm
0 , andH0. On top

of this we introduce a perturbation in the vacuum ene
density parametrized by DVL

0 and calculate f (z)
5H0dL(z)/c using Eq. ~13!. In the alternative approach
~case II, solid line in Fig. 1! we assume that the cosmologic
parameters areVm

eff , VL
eff , andH1DH @see Eqs.~10! and

~11!# with no perturbation.
We have done the calculation for two distinct cosmolo

cal scenarios. Model A hasVm
0 51, VL

0 50, andDVL
0 50.5

while model B hasVm
0 50.3, VL

0 50.7, andDVL
0 50.2. We
5-3
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FIG. 1. Comparison between the luminosi
distance, parametrized byf (z)5H0dL(z)/c, cal-
culated in two distinct ways. In case I~dashed
line! we assume a background universe with co
mological parametersVL

0 , Vm
0 , and H0 and a

perturbation in the vacuum energy density para
etrized byDVL

0 . In case II~solid line! we assume
that the cosmological parameters areVm

eff , VL
eff ,

and H1DH with no perturbation. Model A has
Vm

0 51, VL
0 50, andDVL

0 50.5 while model B
hasVm

0 50.3, VL
0 50.7, andDVL

0 50.2.
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can clearly see that the results obtained in either case a
very good agreement for both models. In Fig. 2 we show
dependence of this agreement on the value ofF0[F(h0)
for model B ~here we tookDVL.0). We see that foruF0u
!1 the relative agreement between the two methods for
culating the luminosity distance

e5
udL

I ~`!2dL
II ~`!u

dL
I ~`!

~17!

is nearly proportional touF0u2, as expected.
Having tested our method for calculating the luminos

distance we applied it in the context of the model describ
in Sec. II and used type I supernovae in order to constrain
06350
in
e

l-

d
e

redshift of the domain wall,z* , and the fluctuation in the
values of the cosmological constant in the outer region~pa-
rametrized byDVL

0 !. The high-redshift supernovae datas
of the Supernovae Cosmology Project was fit to the FR
magnitude redshift relation

mB
eff5MB15 logDL~z!, ~18!

whereDL(z)5H0dL(z), MB is the ‘‘Hubble-constant-free’’
B-band absolute magnitude at maximum of a superno
with a stretch factors51, andmB

eff is the effective rest-frame
B magnitude corrected for the width-luminosity relation. W
assumed thatVm50.3 andVL50.7 in the inner region and
we took MB523.4 neglecting the uncertainty associat
nt
u-
FIG. 2. Dependence of the relative agreeme
between the two methods for calculating the l
minosity distance,e, on the value ofuF0u for
model B ~here we tookDVL.0). We see thate
is nearly proportional touF0u2, as expected.
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FIG. 3. The 95% confidence allowed regio
~region II! in thez* versusDVL

0 plane. Region I
is excluded since our linear perturbation theo
approach does not hold there, while region III
excluded by the supernovae data. Note the asy
metry between the two observationally exclud
regions.
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with the supernovae absolute magnitude calibration.~We
have also checked that this particular choice does not a
our main results.! We have estimated the parametersz* and
DVL

0 using ax2 statistical analysis.
Figure 3 displays our results in thez* versusDVL

0 plane.
Note that for values ofuFu*1 our approach based on line
perturbation theory ceases to be valid. The set of parame
for which this happens is denoted as region I. The region
parameter space that is allowed by the supernovae dat~at
95% confidence! is denoted as region II, while the observ
tionally excluded region is denoted as region III.

We clearly see that, as expected, ifz* is small only a
small value ofDVL

0 is allowed. However, as the value ofz*
increases, the constraints on the values ofDVL

0 are much
weaker, and there are essentially no constraints beyonz
;0.7. This happens essentially because the importanc
the cosmological constant is smaller in the past than at
present time.

We also see that negative values ofDVL
0 are excluded

until significantly larger redshifts (z;0.7) than positive ones
~for which there are no constraints beyondz;0.5). In fact
the best-fit model to the supernovae data hasz* ;0.6 and
DVL

0 ;0.4. This is a significant result—it is an alternativ
~and perhaps intuitively clearer! way of saying that the high
redshift supernovae data does favor a relatively large pos
cosmological constant.

VI. CONCLUSIONS

We have used type Ia supernovae data to constra
simple toy model for spatial variations of the cosmologic
constant. Specifically, the model assumes that we are a
center of a spherical region with a given set of cosmolog
06350
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parameters which is enclosed by a light domain wall a
surrounded by another region where these parameters
different. This aims to be a very simple mimic model f
cosmological models where the cosmological constant
space and/or time variations~such as, e.g., quintessenc
models!.

We have shown that the presently available superno
data are only constraining at very low redshifts. Neverth
less, negative spatial variations~meaning a present-day valu
of the cosmological constant larger than the one at high r
shift! are much more constrained than positive variations
fact, our best-fit model turns out to have a significantly larg
vacuum energy density in the outer region than in the in
one. This is a clear indication that a positive vacuum ene
density is favored by the high-redshift data. Obviously larg
and deeper datasets will significantly improve these c
straints.

Finally, we point out again that our analysis used a ve
simple toy model. While we do believe that the model s
captures the crucial physics of the problem being discus
it is clear that our analysis can be improved by resorting t
numerical simulation of the different domains. On the oth
hand, a careful discussion of the effects of these spa
variations of cosmological parameters in the CMB is a
required. We shall return to these issues@18#.
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