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Detection of a scalar stochastic background of gravitational waves
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In the near future we will witness the coming to a full operational regime of laser interferometers and
resonant mass detectors of spherical shape. In this work we study the sensitivity of pairs of such gravitational
wave detectors to a scalar stochastic background of gravitational waves. Our computations are carried out both
for minimal and nonminimal coupling of the scalar fields.
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I. INTRODUCTION

In a few years, the research on the detection of grav
tional waves~GW’s! will hopefully greatly progress. This
hope is based on the coming into operation of a new gen
tion of experimental devices that, if they can be operated
the planned sensitivity, should probe deeply into the reg
in which we believe GW’s can be observed. According to
experimental technique employed, these detectors can b
vided into two categories: interferometric detectors and re
nant mass detectors. To make our point more concrete le
concentrate on Michelson interferometers@1,2# and resonant
mass detectors of spherical shape@3#. The main advantage o
interferometers is their sensitivity in a wide frequency ba
On the other hand, spherical shaped resonant mass dete
at resonance have the same sensitivity regardless of th
rection of the impinging GW.

In the following we will concentrate on a very specifi
issue, that is, on the possibility of detecting scalar GW’s. O
interest in this subject stems from the observation that E
stein’s gravity is definitively not the only mathematical
consistent theory of gravity and in fact the presence of sc
fields coupled to gravity is required by a vast array of the
ries that model various phenomena as the inflationary
verse or attempt to incorporate gravity with the quant
world. For a review on this subject, see Ref.@4#. For more
recent proposals that also require a modification of Einste
gravity, see Refs.@5–7#. Are all the above described dete
tors fit to measure scalar GW’s? While the answer is obvi
for a resonant mass detector of spherical shape, the situ
for interferometers must be analyzed with care. Let us
for a moment the ‘‘standard’’ description, that is well suite
for our kind of argument, of an impinging GW~for the mo-
ment we neglect its spin content and direction! stretching the
lengthsL1 andL2 of the two arms of the interferometer. Th
conventional Michelson interferometer is configured
maximizing its sensitivity in the detection of thedifferential
modesignalD25dL12dL2. Even if the information regard
0556-2821/2001/64~6!/062001~19!/$20.00 64 0620
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ing L1 andL2 is available separately, the sensitivity of the
measurements is orders of magnitude worse than that ofD2 ,
and thus a single interferometer of this type is not able
disentangle thecommon modesignalD15dL11dL2 ~trans-
verse monopole mode! from D2 ~usual spin 2 mode!. A way
out could be the construction of an array of these detector
the adoption of a different optical configuration~Fox-Smith!
for the interferometer@8#. Even if interesting from a theoret
ical point of view, these alternatives do not seem practic
given the cost and the difficulty in operating such comp
apparatus. A viable alternative to these proposals could
from our point of view, that of a coincidence analysis on t
data of an interferometer and a resonant mass detecto
spherical shape@9#.

In this work we study the sensitivity of combined pairs
resonant mass detectors and interferometers to a scalar
chastic background of gravitational waves~SBGW’s!. If
such a background has a flat spectrum~which is the standard
assumption! even the narrow frequency band available to
resonant mass detector will not have much influence on
conclusions. Our computations generalize the results of R
@9# in which the sensitivity patterns to scalar radiation we
considered. To be as general as possible, the impinging
diation is computed in the general setting given by sca
tensor theories@10#. Our main result is the computation o
the sensitivity to scalar GWs of correlated pairs of~solid
mass or hollow! resonant mass detectors of spherical sh
or pairs of interferometer-resonant mass detectors. Fin
we consider the effects on such detectors of massless
minimally coupled scalar fields, generalizing the results
Refs. @11# and @12#. While this paper was being written,
similar analysis employing two Laser Interferometric Gra
tational Wave Observatory~LIGO! interferometers for mas
sive and nonrelativistic scalar particles appeared@13#.

II. SCALAR TENSOR THEORY

A. Fundamental equations

Let us consider a very general tensor multiscalar theory
gravity, where the gravitational interaction is mediated byn
©2001 The American Physical Society01-1
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long range scalar fieldswa in addition to the usual tenso
field present in Einstein’s theory. The action in the Einst
frame is

S5~16pG!21E d4xA2g@R22gmngab~wc!]mwa]nwb#

1Sm@Cm ,A2~wa!gmn#. ~2.1!

We use units in which the speed of light isc51 and the
signature is2111. Greek indicesl,m,n, . . .50,1,2,3 de-
note spacetime indices; latin indices from the second par
the alphabeti , j ,k,l . . . 51,2,3 denote spatial indices; lati
indices from the first part of the alphabeta,b,c, . . .
51, . . . ,n label then scalar fields. Our curvature convention
follow those of Ref.@14#. R5gmnRmn is the curvature scala
of the Einstein metricgmn andg5det(gmn). The action con-
tains a dimensionful constantG, which will be denoted as the
bare gravitational constant~related toG̃ Newton’s constant
as measured by Cavendish experiments! and as model type
metric gab(w), not necessarily positive definite, in then di-
mensional space of the scalar fields.Sm denotes the matte
action, which is a functional of some matter variablesCm ,
and of the Jordan-Fierz metricg̃mn[A2(w)gmn . The scalar
fields can be nonminimally coupled to matter. This mea
that they can appear as coupling ‘‘constants’’ between
matter fieldsCm and gravityg̃mn . For instance, low energy
string type theories naturally introduce in the action ter
with couplings of the kind

Sdil52
b

4E d4xA2g̃wFmn
A Fab

A g̃mng̃ab, ~2.2!

where Fmn
A 5]mAn

A2]nAm
A1 f ABCAm

BAn
C is the Yang-Mills

field strength and the scalar fieldw is the dilaton.
By varying the actionSwith respect to the Einstein metri

gmn and the scalar fieldswa, one obtains the following field
equations:

Rmn2
1

2
Rgmn52gab~w!S ]mwa]nwb2

1

2
gmngrs]rwa]swbD

18pGTmn , ~2.3!

gmn¹m¹nwa1gmngbc
a ~w!]mwb]nwc

524pG@aa~w!T1sa#, ~2.4!

wheregbc
a are the Christoffel symbols of the metricgab(w).

The functionsaa(w)[]aln A(w) represent the field depen
dent couplings between scalar fields and matter within
metric sector of the theory.Tmn52(2g)21/2dSm /dgmn is
the stress energy tensor,T its trace, and sa
5(2g)21/2dSm /dwa is the density of scalar charge. In th
Jordan-Fierz frame we would have

Tmn5A2~w!T̃mn , sa5A4~w!s̃a , ~2.5!

as can easily be found from their definition@10#. Actually,

sinceA2g̃5A4(w)A2g, and
06200
n
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dwSm5E d4xA2gsadwa5E d4xA2g̃s̃adwa, ~2.6!

one recovers immediately Eq.~2.5!.
In the literature, scalar tensor theories withsa50 ~i.e.,

metric theories! have been studied by many authors, from t
pioneeristic work of Jordan, Fierz, Brans, Dicke, and Wa
oner @15# to the recent studies of Damour and Esposi
Farèse@10#. This interest arises from the fact that they do n
violate the weak equivalence principle and so imply geode
dynamics for neutral weakly self-gravitating bodies. Ho
ever, this is not the most general framework, in particula
is not the case of the interesting scalar fields foreseen
string theory. For a recent analysis see Ref.@11#.

Let us compute the expression of the relative accelera
between two weakly self-gravitating bodies in the generan
scalar theory; this formula will be the starting point to wri
the response of a GW detector to a scalar tensor wave.

When saÞ0, the stress energy conservation law in E
stein units is@10#

¹nTmn5aa¹mwaT2sa¹mwa, ~2.7!

or, in the Jordan-Fierz frame

¹̃nT̃mn1s̃a¹̃mwa50. ~2.8!

This equation implies a nongeodesic motion of test m
bodies. This result corresponds, for a single scalar field an
particular choice of the coupling functionA(w), to the low-
est order gravidilaton effective action of string theory@11#.

However, if s̃a50 we have¹̃nT̃mn50 and so geodesic mo
tion of test mass bodies is recovered.

In Ref. @11#, starting from the single field string like cas
of Eq. ~2.8! the equation of motion of test mass bodies h
been derived. Following the same line of reasoning, we g
eralize that result to our case. Let us recall the pointlike lim
of the generally covariant energy momentum tensor fo
particle of massm and world linexm(t) @14#

T̃mn~x8!5
pmpn

p0A2g̃
d (3)@x82x~t!#, ~2.9!

wherepm5mdxm/dt. We can rewrite the scalar charge de
sity s̃a for a test body, in terms of dimensionless scalar fun
tions q̃a , which express the relative strengths of nonuniv
sal scalar to tensor forces

s̃a~x8!52q̃aT̃~x8!5q̃a

m2

p0A2g̃
d (3)@x82x~t!#.

~2.10!

As we consider long range fields,q̃a!1 to avoid conflicts
with the present test of the weak equivalence principle. Fr
Eq. ~2.8! we get the geodesic equation in scalar tensor the
with nonminimal couplings@11#,
1-2
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ẍm1G̃an
m ẋaẋn1q̃a]mwa50, ~2.11!

whereẋm[dxm/dt. Now we can compute the modification
to the relative acceleration between two test mass bo
moving along two world lines induced by theq̃a’s.

Let us take two weakly self-gravitating bodies movin
along two infinitesimally close world linesxm(t) and
x8m(t)5xm(t)1dm(t), where dm is the separation vecto
between the two curves. If we suppose that the bodies h
different scalar couplingsq̃a

(1) and q̃a
(2) , their relative accel-

eration is@14#

d̈ i52@R̃io jo1q̃a
(2)] i] jw

a#d j1@ q̃a
(1)2q̃a

(2)#] iw
a,

~2.12!

where ḋ i[dd i /dt. Notice that in Eq.~2.12! there is a term
proportional toq̃a

(1)2q̃a
(2) . This term will be important when

the test mass bodies are of different nature~e.g., one is a
baryon and the other one a lepton! but it is irrelevant inside
a GW detector. Therefore the equation needed to analyze
response of GW detectors to scalar tensor waves is

d̈ i52@R̃io jo1q̃a] i] jw
a#d j . ~2.13!

B. Gravitational waves

Let us recall some results concerning scalar tensor G
@10#. In the weak field limit of the theory

g̃mn~x!5hmn1h̃mn~x!,

wa~x!5w0
a1ja~x!, ~2.14!

where uh̃mnu!1,ujau!1, hmn is the flat Minkowski metric,
and w0

a the background values of the scalar fields. We n
choose a gauge in which the metric perturbation has z
time-time and time-space components while the purely s
tial components, for a plane wave propagating along the

rection characterized by the unit vectorV̂, assume the form

h̃i j ~x!5hA~x!ei j
A~V̂ !12aa

0ja~x!ei j
s ~V̂ !;

A51,3; a51, . . . ,n. ~2.15!

e1, e3 are the spin 2 polarization tensors describing
ordinary GW in the transverse traceless gauge,es is the spin
0 polarization tensor of the scalar waves,aa

0[aa(w0
a), and

we choose units such thatA(w0
a)51. By indicating withm̂

and n̂ a pair of orthonormal vectors lying in the plane pe

pendicular toV̂, these polarization tensors can be written
follows ~see Appendixes!:
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ei j
1~V̂ !5m̂im̂j2n̂i n̂ j ,

ei j
3~V̂ !5m̂i n̂ j1n̂i m̂j , ~2.16!

ei j
s ~V̂ !5d i j 2V̂ iV̂ j5m̂im̂j1n̂i n̂ j ,

and

ei j
B~V̂ !eB8 i j ~V̂ !52dBB8 B51,3,s.

We consider now the small relative oscillations of tw
weakly self-gravitating bodies induced by this wave. By i
dicating withLi the rest separation of the bodies, we can p
d i5Li1z i (z i!1). Expanding Eq.~2.13! to first order in
z i , we find

z̈ i52
1

2 Fd2h̃i j

dt2
12q̃a] i] jj

aGL j . ~2.17!

Since we are considering plane wave solutions, the spa
derivatives appearing in the last equation can be replace

the time derivatives, namely ] i] jj
a5V̂ iV̂ j j̈

a5@d i j

2ei j
s (V̂)#j̈a, and taking into account Eq.~2.15!, one finds

z̈ i52
1

2

d2

dt2
@hA~x!ei j

A~V̂ !12~aa
02q̃a!ja~x!ei j

s ~V̂ !

12q̃aja~x!d i j #L j , ~2.18!

and then the infinitesimal displacement induced by the G
is

z i52
1

2
@hA~x!ei j

A~V̂ !12~aa
02q̃a!ja~x!ei j

s ~V̂ !

12q̃aja~x!d i j #L j . ~2.19!

This formula needs a few comments. The scalar fields c
sidered in our theory are massless, therefore the scalar
can carry energy and momentum through just one degre

freedom, thetransversepolarization tensorei j
s (V̂) ~see Wag-

oner in Ref.@15#!. Therefore in Eq.~2.19! only the transverse
part strains the matter and thed i j is effectively unimportant
when studying the response the antennas to GW’s. By in
ducing theeffectivegravitational wave sensed by the te
mass bodies

h̃i j
e f f5hA~x!ei j

A~V̂ !12~aa
02q̃a!ja~x!ei j

s ~V̂ ! ~2.20!

we rewrite Eq.~2.19! as follows:

z i52
1

2
h̃i j

e f fL j . ~2.21!

However, if the scalar fields were slightly massive, the
would be also alongitudinalpolarization along the propaga
tion direction of the GW and we could not drop thed i j in Eq.
1-3
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~2.19!. This scenario has been analyzed in Refs.@9# and@11–
13#, but in the following we will not consider it and jus
restrict our study toh̃i j

e f f .

III. INTERFEROMETERS AND RESONANT MASS
SPHERICAL DETECTORS

A. Response function of an interferometer to scalar GW’s

Let us consider a Michelson type laser interferometer w
two orthogonal arms of the same nominal lengthL15L2
5L. From Eq. ~2.21!, the signal at the output port of th
interferometer~the strain of the differential mode! is propor-
tional to the difference in the two path lengths,z12z2, in-
duced by the wave and can be written in the form@16#

h̃e f f5h̃i j
e f fD i j , ~3.1!

whereD is a traceless and symmetric tensor describing
geometry of the interferometer.1 In the interferometer frame
namely the one where the corner station stands at the o
of coordinates and thex̂ and ŷ axes lie along the arms, thi
tensor writes

D5
1

2 S 1 0 0

0 21 0

0 0 0
D . ~3.2!

The effective strain sensed by the interferometer is then s
in a spin 2 and a spin 0 part, proportional to the differen
aa

02q̃a ; we can take explicitly into account the dependen

of the strain from the angles (u,f) defining the directionV̂
of the incoming wave by introducing the angular patte
functions of the interferometer,

FA~V̂ !5ei j
A~V̂ !D i j , Fs~V̂ !5ei j

s ~V̂ !D i j , ~3.3!

and writing the strain as

h̃e f f5hA~x!FA~V̂ !12~aa
02q̃a!ja~x!Fs~V̂ !. ~3.4!

B. Cross section for resonant spheres in scalar tensor theory

We discuss now the cross section of a resonant sphe
the general scalar tensor theory. For spin 2 waves this re
was obtained in Ref.@18# ~see also Ref.@19#!. In recent
years, this kind of detector~both solid and hollow! has been
extensively studied as a device able to analyze the spin
tent of GW’s~see Refs.@20–22#!. The calculation of its scat
tering cross section in the framework of the Brans-Dic
theory was carried out in Refs.@23–25#. The extension of the
results of Ref.@23# to the general scalar tensor theory wi

1Equation~3.1! is valid in the regime in which the wavelength o
the impinging scalar GW is much bigger than the length of the a
of the interferometer. Given the resonant frequencies of our r
nant mass detectors, this will be always the case in the pre
paper. For a more detailed discussion of this point see Ref.@17#.
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minimal coupling is straightforward@26# and in Secs. III B 1
and III B 2, we will just sketch the steps and quote the
sults. Furthermore, in Sec. III B 3 we will repeat the calcu
tions for the even more general case ofq̃aÞ0. For the sake
of generality the direction of propagation of the wave and
antenna frame@defined by a triad of orthonormal vector

( x̂,ŷ,ẑ)] will be taken to be distinct. The directionV̂
5(u,f) of the incoming wave is identified by the relativ
orientation of the triad defined in Eq.~2.16! with respect to
( x̂,ŷ,ẑ),

m̂5cosf x̂1sinf ŷ,

n̂52sinf cosu x̂1cosf cosu ŷ1sinu ẑ, ~3.5!

V̂5sinf sinu x̂2cosf sinu ŷ1cosu ẑ.

1. Tensor GW’s

Consider a superposition of spin 2 plane GW’s with wa
vectorkm and amplitudeshA impinging on a spherical GW’s
detector

h̃mn[ẽmneikrxr
1c.c.[hAemn

A eikrxr
1c.c., A51,3.

~3.6!

Note that hereafteremn
A are the polarization tensors written i

the detector frame (x̂,ŷ,ẑ) ~see Appendix C 2 for their ex
plicit expressions!. As usual we will use the so called quad
rupole approximation, i.e., we suppose that the detecto
much smaller than the wavelength of the impinging GW,
that only the first terms~quadrupole, for the tensor compo
nent; monopole and quadrupole for the scalar one! have to be
considered. Analogously to Ref.@14# we find the expressions
for the spin 2 scattering and total energy cross sections,

sh
scat5

128pG2

5

@11 1
3 a0

2~12a0
2!#t̃ i j* t̃ i j

ẽi j* ẽi j
, ~3.7!

sh
tot5

8G

f

I~ ẽi j* t̃ i j !

ẽi j* ẽi j
, ~3.8!

wherea0
25aa

0a0
a andt̃ i j [t̃ i j (V̂, f ) is the~traceless! Fourier

transform of the variation induced in the stress energy ten
of the sphere by the impinging GW.2 Furthermore we will
study resonant scattering, i.e., we will assume that the de
tor scatters only the impinging GW’s with frequencyf
around the resonant frequency of one of its natural vib
tional modes. This leads to a relation betweensh

scat andsh
tot

and to another betweent̃ i j and the sphere mode tensors

sh
scat5hsh

tot , ~3.9!

s
o-
nt

2In principle the expression oft̃ i j could contain also a term pro
portional toD i j

(00)}d i j @14#, accounting for the trace of the pola

ization tensor~monopole excitation!. But, since the traceẽii van-
ishes, in this tensorial part such a term gives no contribution.
1-4
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TABLE I. Angular dependence of the sphere pattern functions for the three independent polarizat
a scalar tensor GW. Notice that the pattern functions of thee52c mode coincide with the ones of th
interferometer introduced in Eq.~3.3!.

Mode (e) F1
(e)(u,f) F3

(e)(u,f) Fs
(e)(u,f)

2s 2cosu cos 2f 2
1
2 (11cos2u)sin 2f 2

1
2 sin 2f sin2u

2c 2cosu sin 2f 1
4 (31cos 2u)cos 2f 1

2 cos 2f sin2u
1s 2sinu sinf 1

2 sin 2u cosf 2
1
2 cosf sin 2u

1c 2sinu cosf 2
1
2 sin 2u sinf 1

2 sinf sin 2u

0 0
)

2
sin2u

)

6
~3 cos2u21!
i-
a

f

.
gy
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t̃ i j 5g~ f !ẽi j , ~3.10!

whereh is the fraction of the total oscillation energy diss
pated through emission of GW’s~it can be calculated as
function of the detector internal parameters! andg( f ) gives
the frequency dependence oft̃ i j . The functiong( f ) is cho-
sen so that the response of the antenna is resonant in
quency ~see Refs.@20# and @23#!. If the oscillation of the
mode with angular momentuml 52 has proper frequency3

f n2 and a bandwidthD f n2
, we find

g~ f !}
1

f 2 f n21 iD f n2
/2

. ~3.11!

Substituting Eqs.~3.7! and ~3.11!, respectively, into Eqs
~3.9! and ~3.10! and combining the results, the total ener
cross section becomes

sh~ f ;n,l 52![sh
tot~ f !5

1

11a0
2

G̃Mv2Fn

2p

3
D f n2

~ f 2 f n2!21D f n2

2 /4
, ~3.12!

whereM is the sphere mass,v the velocity of sound in the
material the sphere is made of,Fn a constant depending onl
on the quadrupolar mode under scrutiny and on the sp
parameters~radius, density, material! @23#, and G̃5(1
1a0

2)G is the effective Newton’s constant measured
Cavendish-like experiments. The results of Ref.@23# in
Brans-Dicke theory are recovered by settinga0

25(2vBD

13)21 wherevBD is the Brans-Dicke parameter. If in pe
forming this calculation we expand the tensors in the
merator ofsh

tot in the detector basisD i j
(e) ~defined in the

Appendixes!, we find that the total cross section can be wr
ten as the sum of five terms, the total cross sections for
single vibrational mode of the sphere

3The indexn51, . . . ,̀ labels different solutions for the spher
eigenmodes with fixed angular momentuml @23#.
06200
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sh
tot~ f !5(

e
sh

(e)~ f ,V̂!, e50,1c,1s,2c,2s, ~3.13!

and

sh
(e)~ f ,V̂!5

1

11a0
2

G̃Mv2Fn

2p

3
D f n2

~ f 2 f n2!21D f n2

2 /4

(
A

uFA
(e)hAu2

(
A8

uhA8u
2

.

~3.14!

The angular dependence is enclosed in the pattern functi

FA
(e)[Di j

(e)eA
i j (V̂), explicitly written in Table I.

For later purposes we will need also the integrated cr
section. By integrating Eq.~3.12! we get

Sh~n; l 52!5
1

11a0
2
G̃Mv2Fn . ~3.15!

2. Minimally coupled scalar GW’s

The scattering and total cross section for the minima
coupled scalar part of a GW are

ss
scat5

8pG2a0
2

5

@ u t̃ i i u21 1
3 t̃ i j* t̃ i j #

ja* ~xW , f !ja~xW , f !
, ~3.16!

ss
tot5

2Gaa
0

f

I@ja~xW , f !ei j
s t̃ i j * #

ja* ~xW , f !ja~xW , f !
,

~3.17!

whereja(xW , f ) is the Fourier transform of the impinging sca
lar GW. We now have to decompose the scalar GW polar
tion tensorei j

s in a quadrupole and a monopole part, as th
excite different modes in the detector. The way to do this
by expressingei j

s in the basis defined by the five real sym
metric tensorsDi j

(e) , plus Di j
(00) , proportional to the identity
1-5
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tensor, because these tensors are directly related to the a
lar momentum of the excitation~see Appendix C 1 and Ref
@19#!.

Assuming again resonant scattering and noting that
resonance frequencies of the quadrupole and the mono
modes need not be equal, we have now two expression
the variation of the stress energy tensor of the detector:
first, labeledt̃ i j ( f ; l 50) and valid for the sphere monopo
mode, is proportional toD i j

(00) and has resonance frequen

f 5 f n0; the second, t̃ i j ( f ; l 52), is proportional4 to
(eFs

(e)D i j
(e) and has resonance frequencyf 5 f n2Þ f n0

t̃ i j ~ f ; l 50!5b8~ f !aa
0ja~ f !Di j

(00) , ~3.18!

t̃ i j ~ f ; l 52!5b9~ f !aa
0ja~ f !(

e
Fs

(e)D i j
(e) , ~3.19!

whereb8( f )Þb9( f ) are the analogous of the functiong( f )

in Eq. ~3.10! andFs
(e)[Di j

(e)es
i j (V̂). We deduce then the tota

cross section of the monopole mode,

ss~ f ;n,l 50!5
a0

2

11a0
2

G̃Mv2Hn

p

D f n0

~ f 2 f n0!21D f n0

2 /4
,

~3.20!

whereHn is a constant depending on the monopolar mo
under exam@23# and D f n0

is the resonance bandwidth. Fo

the quadrupole modesDi j
(e) , the same calculation gives

ss~ f ;n,l 52!5(
e

ss
(e)~ f ,V̂!, ~3.21!

where

ss
(e)~ f ,V̂!5

a0
2

11a0
2

G̃Mv2Fn

2p

D f n2

~ f 2 f n2!21D f n2

2 /4
~Fs

(e)!2.

~3.22!

The pattern functionsFs
(e) are listed in Table I: since an

explicit computation yields

(
e

~Fs
(e)!25

1

3
, ~3.23!

the global response to scalar waves of the quadrupole m
is isotropic too, and total cross section~3.21! reads

ss~ f ;n,l 52!5
a0

2

11a0
2

G̃Mv2Fn

6p

D f n2

~ f 2 f n2!21D f n2

2 /4
.

~3.24!

As the quadrupole modes are sensitive to scalar and to te
waves, the angular dependence of each cross section c

4The l 52 part ofei j
s expanded in theD i j

(e) basis is 2(eFs
(e)D i j

(e) .
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make it possible, in principle, to guess the polarization. F
instance, considering them50 mode, Fs

(0)(u,f) gets a
maximum foru5f50, while F1

(0)(0,0)5F3
(0)(0,0)50.

The integration of Eqs.~3.20! and ~3.24! gives, respec-
tively,

Ss~n; l 50!5
2a0

2

11a0
2
G̃Mv2Hn ~3.25!

and

Ss~n; l 52!5
a0

2

11a0
2

G̃Mv2Fn

3
. ~3.26!

3. Nonminimally coupled scalar GW’s: q˜
aÅ0

In this section we present the full generalization of t
result presented before to the case in whichq̃a is small but
not exactly null. We will follow step by step the procedu
outlined in Ref.@23#. Further details for the general mult
scalar metric theory can be found in Ref.@26#.

a. The energy momentum conservation law. First let us
consider the energy momentum tensorT̃mn of the resonant
sphere and write the linearized conservation law~2.8! in mo-
mentum space. Denoting byt̃mn(x),t̃(x) the linear part of
T̃mn,T̃ we get

]mt̃mn~x!1s̃a~x!]nja~x!50, ~3.27!

which in momentum space reads

kmt̃mn~k!1s̃a~k!* @knja~k!#50. ~3.28!

The reality of t̃mn(x) and ja(x) implies t̃mn* (k)
5 t̃mn(2k) and ja* (k)5ja(2k), with k5(kW ,v) and
v[k05ukW u. The asterisk in Eq.~3.28! stands for the four
dimensional convolution product. Now we proceed to e
presst̃00(k) in terms oft̃ i j (k).

For a particle of massm, Eq. ~2.10! defines the relation
between the scalar charge densities and the componen
the energy momentum tensors. Integration over all partic
of the resonant sphere gives

s̃a~x!52q̃at̃~x!, ~3.29!

and therefore the four Eqs.~3.28! in momentum space rea
@with t̃mn(k)[t̃mn]

k0t̃001ki t̃
0i2q̃at̃* @k0ja~k!#50, ~3.30!

k0t̃0i1kj t̃
i j 2q̃at̃* @kija~k!#50. ~3.31!

The wave travels along the directionV̂, and soki5k0V̂ i
because the scalar fields are massless. Subtracting the

traction of Eq.~3.31! with V̂ i from Eq. ~3.30! gives then
1-6
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t̃005 t̃ i j V̂
iV̂ j , ~3.32!

a relation which holds in minimally coupled scalar tens
theories too@26#.

We now compute again, in the caseq̃aÞ0, the quantities
entering the cross sections: the incoming energy flux,
power emitted by the detector in GW’s and the interferen
power~see Ref.@14#!. The calculation strictly follows that o
Ref. @23# for Brans-Dicke theory which has been generaliz
in Ref. @26# to multiscalar metric theory. These latter resu
are recovered in the limitq̃a→0.

b. The incoming energy flux. Let us start with the incom-
ing energy flux which is independent from the direction
the incoming GW thanks to the symmetry of the detector.
will simplify here the calculations assuming the incomi
direction to be coincident with theẑ axis of the detector
frame. Later we will recover the general expression for
arbitrary direction.

The incoming flux is computed given the energy mome
tum pseudotensor of the gravitational field. At second or
in the linear expansion, defined in Eq.~2.14!

t̃ mn
(2)5

2

8pG H 2~]aab!0ja]m]njb1
1

2
ab

0hrs~]mh̃nr1]nh̃mr

2]rh̃mn!]sjb2~]aab!0hmnhrsja]r]sjb

1
1

2
ab

0hmnheghrs~]eh̃gr1]gh̃er2]rh̃ge!]sjb

2@~]aab!01aa
0ab

02gab
0 #]mja]njb2F ~]aab!0

2
1

2
aa

0ab
02

1

2
gab

0 Ghmnhrs]rja]sjbJ 2
1

8pG S R̃mn
(2)

2
1

2
hmnhabR̃ab

(2)1
1

2
hmnh̃abR̃ab

(1)2
1

2
h̃mnhabR̃ab

(1)D ,

~3.33!

where

R̃mn
(2)5

1

2
h̃ar~]m]nh̃ar2]m]rh̃an2]m]ah̃nr1]a]rh̃mn!

1
1

4
~]mh̃ar1]ah̃mr2]rh̃am!~]ah̃n

r1]nh̃ar2]rh̃n
a!

2
1

4
~]mh̃nr1]nh̃mr2]rh̃mn!~2]ah̃ar2]rh̃!, ~3.34!

is the Ricci tensor linearized to second order in the fields.
keep in mind that@26#
06200
r

e
e

d

f
e

n

-
r

e

h̃mn5S 0 0 0 0

0 E 112aa
0ja E 3 0

0 E 3 2E 112aa
0ja 0

0 0 0 0

D ,

~3.35!

and denote bŷ . . . & the integration over a three dimension
space region with linear dimensions much bigger than
GW’s wavelength. Substituting Eq.~3.35! into Eq.~3.33! we
obtain the total scalar tensor energy flux coming from thẑ
direction,

F~ f !5Fh1Fs5 ẑ^ t̃ 0z
(2)&

5
p f 2

2G
$uE1u21uE 3u214gab

0 ja* ~xW , f !jb~xW , f !%.

~3.36!

c. The scattering amplitude and the energy cross sectio.
Let us consider a GW impinging onto our spherical reson
detector. At large distances,R5uxW u, from the detector

ja~xW ,t !→Fja~xW , f !eikW•xW1Da~xW , f !
e2p i f R

R Ge22p i f t ,

~3.37!

whereDa(xW , f ) is the scattering amplitude relative to theath
scalar field. It obeys the usual reality conditionDa(xW , f )
5Da* (xW ,2 f ). Using the scalar field Eq.~2.4!, under the
hypothesis that the quadrupole approximation holds,
scattering amplitude can be written in terms oft̃mn(x) as

Da~xW ,v!.GE d3x8~a0
a2q̃a!t̃~xW8,v!e2 ikW•xW8

5G~a0
a2q̃a!t̃ i j ~k!~d i j 2V̂ iV̂ j !, ~3.38!

where we have expressedt̃00(k) in terms of the spacelike
components of the Fourier transform of the energy mom
tum tensor by making use of Eq.~3.32!.

Let us turn then to the detailed calculation of the ene
cross section, refering ourselves again to Ref.@23#. From Eq.
~3.38! we find the scattering power to be

Pscat5
2p f 2

G E dV̂Da~xW , f !Da* ~xW , f !

5
16p2G f2

5 H u t̃ i i u21
1

3
t̃ i j* t̃ i j J ~a0

222q̃aa0
a1q̃2!,

~3.39!

where q̃25q̃aq̃a. Furthermore, the interference between t
incident plane wave and the scattered wave gives
1-7
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Pint5
2 f

G
IF E dV̂ja~xW , f !Da* ~xW , f !d~12 k̂• x̂!G

54p fI$ja* ~xW , f !~a0
a2q̃a!t̃ i j es

i j %. ~3.40!

The scattering and total cross sections are then

ss
scat5

Pscat

Fs
5

8pG2

5
~a0

222q̃aa0
a1q̃2!

$u t̃ i i u21 1
3 t̃ i j* t̃ i j %

jc* jc
,

~3.41!

ss
tot52

Pint

Fs
5

2G

f

I$~aa
02q̃a!ja* t̃ i j es

i j %

jc* jc
, ~3.42!

where we have putjc[jc(xW , f ). Expanding now in the
D i j

(00) , D i j
(e) basis, we can decomposet̃ i j into an l 50 part

and anl 52 part,

t̃ i j ~ f ; l 50!5z8~ f !~aa
02q̃a!jaDi j

(00) , f 5 f n0 , ~3.43!

t̃ i j ~ f ; l 52!5z9~ f !~aa
02q̃a!ja(

e
Fs

(e)~V̂ !D i j
(e) , f 5 f n2 ,

~3.44!

with z8( f )Þz9( f ) defined asb8( f ) andb9( f ) in Eqs.~3.18!
and ~3.19!. Hence the monopole and the quadrupole to
cross sections become

ss~ f ;n,l 50![
2G

f
I~z8!

L~ja;aa
0 ,q̃a!

jc* jc
, ~3.45!

ss~ f ;n,l 52![
2G

f
I~z9!(

e
~Fs

(e)!2
L~ja;aa

0 ,q̃a!

jc* jc
, ~3.46!

where

L~ja;aa
0 ,q̃a![uaa

0jau21uq̃ajau2

2~aa
0q̃bja* jb1q̃aab

0ja* jb!. ~3.47!

By using Eqs.~3.41! and~3.43!–~3.46! with the analogous of
Eq. ~3.9! with ss replacingsh , and assuming once aga
resonant scattering, we get the final form for the monop
and quadrupole total cross sections:

ss~ f ;n,l 50![
h0

p f 2~a0
222q̃aa0

a1q̃2!

3
D f n0

2 /4

~ f 2 f n0!21D f n0

2 /4

L~ja;aa
0 ,q̃a!

jc* jc
,

~3.48!
06200
l

le

ss~ f ;n,l 52![
15h2

p f 2~a0
222q̃aa0

a1q̃2!

3
D f n2

2 /4

~ f 2 f n2!21D f n2

2 /4

3(
e

~Fs
(e)!2

L~ja;aa
0 ,q̃a!

jc* jc
. ~3.49!

We still have to evaluateh0 andh2. This is done remem-
bering their definition as the ratio between the powerPscat

[P(n; l ) reemitted as gravitational waves by the vibrations
the sphere and the oscillatory energyEosc

(n; l ) dissipated by the
sphere itself,

h05
P(n;0)

2pD f n0
Eosc

(n;0)
, h25

P(n;2)

2pD f n2
Eosc

(n;2)
. ~3.50!

The oscillatory energy is that evaluated in Refs.@20# and
@23#, since it does not depend onq̃a . The calculation of the
reemitted power follows that of Refs.@23# and@26#. The only
difference consists in replacingaa

0 with aa
02q̃a . Therefore,

omitting the uninteresting details of the calculation, we g

h054G
Mv2f n0

2 Hn

D f n0

$a0
222q̃aa0

a1q̃2%, ~3.51!

h25
2G

15

Mv2f n2
2 Fn

D f n2

$a0
222q̃aa0

a1q̃2%. ~3.52!

Finally the cross sections assume the following sim
forms:

ss~ f ;n,l 50![
GMv2Hn

p

D f n0

~ f 2 f n0!21D f n0

2 /4

L~ja;aa
0 ,q̃a!

jc* jc
,

~3.53!

ss~ f ;n,l 52![
GMv2Fn

2p

D f n2

~ f 2 f n2!21D f n2

2 /4

3(
e

~Fs
(e)!2

L~ja;aa
0 ,q̃a!

jc* jc
. ~3.54!

These expressions can be made more manegeable by ex
ing L(ja;aa

0 ,q̃a) in powers ofq̃a!aa
0!1, an ordering rela-

tion which follows from the weak field limit of Eq.~2.7!.
First, an analogous calculation to that forDa(xW , f ) gives

@26#

ja~xW , f !5
G

R
~a0

a2q̃a!t̃ i j8 es
i j , ~3.55!
1-8
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where nowt i j8 5 t̃ i j8 (k) is the Fourier transform of the spac
components of the stress energy tensor of the source loc
at a great distanceR from the antenna;t̃ i j8 is related to the
Fourier transform of the variation of the quadrupole mom
Qi j8 ( f ) of the source by@14#

Qi j8 ~ f !52
1

2p2f 2
t̃ i j8 . ~3.56!

Therefore, taking into account Eq.~3.56!, an explicit evalu-
ation gives

L~ja;aa
0 ,q̃a!5

4p4f 4G2

R2
uQi j8 es

i j u2a0
4H 124

q̃aa0
a

a0
2

12
q̃2

a0
2

14
~ q̃aa0

a!2

a0
4

24
q̃aa0

aq̃2

a0
4

1
q̃4

a0
4J ~3.57!

and

jc* jc5
4p4f 4G2

R2
uQi j8 es

i j u2a0
2H 122

q̃aa0
a

a0
2

1
q̃2

a0
2J .

~3.58!

Expanding this ratio in powers ofq̃a yields

L~ja;aa
0 ,q̃a!

ja* ja
.a0

222q̃aa0
a1q̃21 . . . . ~3.59!

We can finally compute theq̃a dependent terms in the cros
sections.

The monopole cross section at the lowest order inq̃a
reads

ss~ f ;n,l 50!.
1

11a0
2

G̃Mv2Hn

p

D f n0

~ f 2 f n0!21D f n0

2 /4

3$a0
222q̃aa0

a%, ~3.60!

where we have reintroduced the effective Newton’s grav
tional constantG̃.

Analogously, the quadrupole cross section for any mode
writes, at first order,

ss
(e)~ f ,V̂!.

1

11a0
2

G̃Mv2Fn

2p

D f n2

~ f 2 f n2!21D f n2

2 /4

3$a0
222q̃aa0

a%~Fs
(e)!2. ~3.61!

Summing overe, Eq. ~3.23! gives
06200
ted

t

-

ss~ f ;n,l 52!.
1

11a0
2

G̃Mv2Fn

6p

D f n2

~ f 2 f n2!21D f n2

2 /4

3$a0
222q̃aa0

a%. ~3.62!

IV. DETECTION OF A STOCHASTIC GW BACKGROUND

Our aim is to generalize the standard analysis about
detectability of the spin 2 stochastic GW background@28–
30# to the case of the general scalar tensor theory outline
Sec. II B. Within this framework we introduce a density
scalar gravitational radiationrs in addition to the standard
tensor onerh . If we assume, as in the tensor case, that
scalar background is isotropic, unpolarized, stationary
Gaussian, it is completely described in terms of the~dimen-
sionless! spectrum,

Vs5
1

rc

drs

d ln f
, ~4.1!

wheredrs is the energy density of the scalar gravitation
radiation in the frequency rangef –f 1d f andrc is the criti-
cal density required~today! to close the universe,

rc5
3H0

2

8pG̃
. ~4.2!

H0 is the present value of the Hubble constant. Notice th
although we study a scalar tensor theory we normalize
scalar gravitational spectrum to the value ofrc recovered in
general relativity. This choice has been taken to have a di
comparison between the tensor only and the scalar te
framework. The present value of the Hubble expansion r
is usually written asH05h03100 km s21 Mpc21, where
h0(50.6–0.7) is a dimensionless factor that parametrizes
experimental uncertainty affecting the value ofH0. As a con-
sequence of this definition the quantityh0

2Vs( f ) is indepen-
dent of h0, and thus more suitable to characterize the s
chastic GW background.

A. The signal to noise ratio for scalar tensor GW stochastic
background

From the experimental side, the signal induced in the
tector output by a stochastic GW background is indist
guishable from the intrinsic noise of the detector itself. U
less the amplitude of the signal is very large, then,
subtraction of ana priori estimate of the detector noise ca
not be confidently applied to the data. This implies that
order to detect a stochastic GW background, we sho
rather analyze the correlated fluctuations of the outputs o
least, two detectors with no common sources of noise~a
condition usually verified for widely separated detec
sites!. The cross correlation among detectors is advantage
also from the point of view of the minimum detectable si
nal. It can be shown@29,31# that, under the same experime
tal conditions, the minimum detectable signal in the corre
1-9
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tion of two detectors can be even three orders of magnit
smaller than the one detectable with a single detector.

The problem of the optimal processing of the the detec
outputs for the detection of the stochastic GW backgrou
~tensor and scalar! has been considered by various auth
@9,28–30#, and extensively reviewed in Ref.@31#. This
analysis can be generalized with minor modifications to
case of the general scalar tensor theory considered here

The signal present at the output of each detector can
written as~we consider the case of two detectors!

sk~ t !5nk~ t !1h̃k
e f f~ t !, ~4.3!

where we have indicated withh̃k
e f f the gravitational strain

due to the stochastic GW background and withn the intrinsic
noise of the detector, whilek51,2 labels the detector to
which each quantity is referred. The noise is assumed to
stationary, Gaussian and statistically independent on
gravitational strain. Furthermore, the assumption that
noises in the two detectors are uncorrelated implies that
ensemble average of their Fourier components satisfies

^nk* ~ f !nl~ f 8!&5d~ f 2 f 8!dkl

1

2
Sn

(k)~ u f u!, ~4.4!

whereSn
(k)(u f u) is the ~one sided! noise power spectrum fo

thekth detector. Given an observation timeT, the correlation
‘‘signal’’ is defined as follows:

S5E
2T/2

T/2

dtE
2T/2

T/2

dt8s1~ t !s2~ t8!Q~ t2t8!, ~4.5!

whereQ is a real filter function5 that, for any form of the
signal, is chosen in order to maximize the signal to no
ratio ~SNR! associated withS @30#.

The statistical treatment of the signalS defined in Eq.
~4.5! starts with the plane wave expansion of the metric p
turbations. The effective GW exciting the detector at posit
xW writes

h̃i j
e f f~ t,xW !5E

2`

`

d fE
S2

dV̂@hA~ f ,V̂!ei j
A~V̂ !

12~aa
02q̃a!ja~ f ,V̂!ei j

s ~V̂ !#e2p i f (t2V̂•xW ),

~4.6!

where, as a consequence of the reality ofh̃i j
e f f(t,xW ), we have

that hA* ( f )5hA(2 f ) and ja* ( f )5ja(2 f ); V̂ is the unit
vector specifying the direction of the incoming GW.

In terms of the detector tensor, the GW strain sensed
the detectork located atxW k is given by

5This function depends only ont2t8 as consequence of the a
sumed stationarity of both the gravitational strain and the dete
noise.
06200
e

r
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s

e

be

be
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e
e

e
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y

h̃k
e f f~ t ![h̃e f f~ t,xW k!5h̃i j

e f f~ t,xW k!Dk
i j , ~4.7!

and Eq.~4.7!, keeping into account Eq.~4.6! and the defini-
tions ~3.3!, it can be rewritten as

h̃k
e f f~ t !5E

2`

`

d fE
S2

dV̂@hA~ f ,V̂!Fk
A~V̂ !

12~aa
02q̃a

(k)!ja~ f ,V̂!Fk
s~V̂ !#e2p i f (t2V̂•xWk).

~4.8!

In the following, we focus on the spin 0 contribution t

the strain, i.e., the part of Eq.~4.8! depending onja( f ,V̂)
~the spin 2 contribution has been extensively treated in R
@28–30#!. Since the scalar background is assumed station
Gaussian, isotropic, and unpolarized in the space of the
lar fields, it can be shown~see Appendix A for further de-
tails! that the correlation functions between the Fourier a

plitude ja( f ,V̂) of the waves are

^ja* ~ f ,V̂!jb~ f 8,V̂!&5
1

11a0
2
g0

ab
3H0

2

64p3

1

f 3
Vj~ f !d~ f 2 f 8!

3d~V̂2V̂8!, ~4.9!

whereVj( f ) is the spectrum of a single scalar field. As
consequence of our assumptions on the scalar backgro
the whole spectrum is thenVs5nVj . Following the same
line of reasoning applied in the case of the spin 2 wav
under the further assumptions that the detector noises
much larger in amplitude than the gravitational strain a
statistically independent on the strain itself, for the SNR
obtain

SNRj5
a0

22~ q̃a
(1)1q̃a

(2)!a0
a1q̃a

(1)q̃b
(2)gab

11a0
2

3H0
2

8p3

3F2TE
0

`

d f
Vj

2~ f !Gj
2~ f !

f 6Sn
(1)~ f !Sn

(2)~ f !
G 1/2

. ~4.10!

The functionGj( f ) is the generalization to scalar fields o
the usual overlap reduction function introduced in Refs.@29#
and @30#. This is a dimensionless function describing t
reduction in sensitivity due to the different location and o
entation of the two detectors, and it is given by

Gj~ f !5E
S2

dV̂F1
s~V̂ !F2

s~V̂ !e2p i f dV̂• ŝ, ~4.11!

whereŝ is the unit vector along the direction connecting t
two detectors andd is their distance. Notice thatGj( f ) co-
incides with the scalar overlap reduction function introduc
in Ref. @9# in the context of the single scalar metric theory
Brans and Dicke. The SNR obtained in Ref.@9# is also re-
covered specializing Eq.~4.10! by setting q̃a

(k)50 and a0
2

5(2vBD13)21.
In the following, we will consider two detectors with th

sameq̃a
(1)5q̃a

(2)5q̃a . If we keep only linear terms inq̃a , Eq.
~4.10! becomes

or
1-10
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SNRj5
a0

222q̃aa0
a

11a0
2

3H0
2

8p3 F2TE
0

`

d f
Vj

2~ f !Gj
2~ f !

f 6Sn
(1)~ f !Sn

(2)~ f !
G 1/2

.

~4.12!

As pointed out before, the spin 2 contribution to the str
~4.8! is substantially the one already obtained in the lite
ture. However, the presence of the scalar fields slightly mo
fies the usual formula for the SNRh of Ref. @30# introducing
an overalla0

2 dependent factor which is absent in gene
relativity,

SNRh5
1

11a0
2

3H0
2

8p3 F2TE
0

`

d f
Vh

2~ f !Gh
2~ f !

f 6Sn
(1)~ f !Sn

(2)~ f !
G 1/2

.

~4.13!

HereVh( f ) is the usual spin 2 spectrum and

Gh~ f !5E
S2

dV̂(
A

F1
A~V̂ !F2

A~V̂ !e2p i f dV̂• ŝ ~4.14!

is the~non-normalized! overlap reduction function for spin 2
waves.

The most general expression for Eqs.~4.11! and ~4.14!
can be shown to be@30#

Gw~t!5p$Aw~t!Tr~D1!Tr~D2!12Bw~t!Tr~D1D2!

1Cw~t!@Tr~D1!Tr~SD2!1Tr~D2!Tr~SD1!#

14Dw~t!Tr~SD1D2!

1Ew~t!Tr~SD1!Tr~SD2!%, w5h,j, ~4.15!

where t52p f d, S[ ŝ^ ŝ, and Dk is the tensor of the
kth detector. Following the procedure sketched in Re
@9,29,30#, the coefficientsA, B, C, D, and E can be expresse
as linear superpositions of Bessel functions~see Appendix
B!. The traces appearing in Eq.~4.15! carry information
about the geometry and the relative orientations of the de
tors that are correlated.

B. The noise power spectrum

1. Resonant mass detectors

Let us consider a generic multimode resonant mass
tenna, with the modes labeled by an indexN, as, for ex-
ample, a resonant sphere, whereN[nl.

The noise power spectrum is a resonant curve peake
the proper frequencyf N of the modes. It can be characterize
by its value at the peakSn( f N) and by its half height width,
which gives the bandwidth of the resonant mode.

We now generalize the results of Refs.@21# and@27# con-
cerning Sn( f N) of resonant spheres to the scalar ten
theory. Denoting bybN the transducer coupling factor~the
fraction of the total mode energy available at the transdu
output!, in the case of spin 2 GW’s we have

Sn~h; f N!5
1

11a0
2

4pG̃\bN

SN
5

4p\bn2

Mv2Fn

, ~4.16!
06200
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where the expression~3.15! for SN[Sh(n; l 52) has been
used.

For spin 0 GWs, since we have considered only the fi
order terms in the expansion in powers ofq̃a of the inte-
grated cross section, we write

Sn~j; f N!5
a0

2

11a0
2 S 122

q̃aa0
a

a0
2 D 4pG̃\bN

SN
, ~4.17!

whereSN is now the obvious generalization of Eqs.~3.25!
and~3.26! to the caseq̃aÞ0. Making explicit Eq.~4.17! for
both the monopole and the quadrupole modes, we get

Sn~j; f n0!5
2p\bn0

Mv2Hn

, ~4.18!

Sn~j; f n2!5
12p\bn2

Mv2Fn

. ~4.19!

Finally, let us remark that formulas like Eqs.~4.16! and
~4.17! hold in general for any kind of detector, because t
dependence of the cross section on the coupling constantG̃,
aa

0 and q̃a does not change according to the geometri
features of the antenna itself. Actually, if no scalar fields
present,aa

05q̃a50, Eq. ~4.17! vanishes and Eq.~4.16! be-
comes the well known formula~4.5! of Ref. @21# for the
maximum sensitivity to spin 2 waves.

The bandwidth of the resonant mode is given by

D f N
5

f N

QN
GN

21/2, ~4.20!

whereQN is the quality factor of the mode, which is of th
order of 107 andGN is the ratio of the wide band noise to th
narrow band noise in theNth resonance mode.

FIG. 1. The overlap reduction functionGj( f ) for two resonant
spheres, located at relative distanced550 km ~solid line! and d
5400 km ~dashed line!.
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TABLE II. Minimum detectable scalar spectrum (SNRj51, T51 year! for the correlation between the
first monopole modes of two hollow spheres, with a 6-m outer diameter, made of CuAl (v54700 m/s) at
d550 km.

M ~ton! z H1 f 0 ~Hz! D f 0
~Hz! Gj( f 0) ASn(j; f 0)(Hz21/2) h0

2VgEdd

832 0.25 0.73727 770 24.3 11.2 2.21310224 4.531028

740 0.50 0.49429 609 19.2 11.7 2.86310224 4.031028

489 0.75 0.4307 498 15.7 12.0 3.77310224 4.131028

230 0.90 0.42043 455 14.4 12.1 5.57310224 7.131028
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2. The VIRGO interferometer

In the frequency region above 2 Hz the noise power sp
trum of the VIRGO interferometer can be approximated
the following analytical expression@32#:6

Sn~ f !5P1S f 0

f D 5

1P2S f 0

f D1P3F11S f

f 0
D 2G , ~4.21!

with

f 05500 Hz, P153.46310250 Hz21,

P259310246 Hz21, P353.24310246 Hz21.

In this parametrizationP1 and P2 give the contribution of
the pendulum and its internal modes to the thermal no
respectively.P3 controls instead the shot noise contributio
For frequency smaller than 2 Hz we assume that the n
power spectrum goes to infinity.

C. Sensitivity of a pair of resonant spheres

We consider now the correlation between two reson
spheres. As we are interested in scalar waves, we com
the correlation between the monopole modes. Since
monopole tensors are isotropic,

Di j
1 5Di j

2 5Di j
(00)5

1

2
d i j , ~4.22!

the overlap reduction function depends only on the f
quencyf and the relative distanced. From the general for-
mula ~4.15! one finds

Gj~t!5pF9

4
Aj~t!1

3

2
Bj~t!1

3

2
Cj~t!1Dj~t!1

1

4
Ej~t!G ,

~4.23!

which explicitly reads~see Appendix B!

Gj~ f !54p j 0~t!. ~4.24!

In Fig. 1 we plot this function ford550 km, which is
roughly the minimum distance to decorrelate seismic a

6With respect to this reference, the value ofP2 is slightly changed
as can be found in~http://www.virgo.infn.it/senscurve!. We quote
here the most recent value.
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electromagnetic noises and ford5400 km, which is the dis-
tance between the sites of the resonant bars NAUTILUS
Frascati, and AURIGA in Legnaro. Ford550 km we ob-
serve that the first zero of the function is around 3 kH
which is a frequency higher than the first resonant freque
for both the solid mass and hollow sphere. Ford5400 km,
the first zero moves back at around 400 Hz.

Restricting ourselves to metric theories (q̃a50), the SNR
is

SNRj5
a0

2

11a0
2

3H0
2

8p3
Ap

2
D f n0

T
Vj~ f n0!Gj~ f n0!

f n0
3 Sn~j; f n0!

,

~4.25!

where f n0 is the resonance frequency for thenth monopole
mode. To evaluate Eq.~4.25! we need the noise power spe
trum at resonancef 5 f n0 given by Eq.~4.18! where we as-
sumebn050.1 @21#. The only free parameter in Eq.~4.25! is
a0

2 which can be conveniently expressed in terms of the p
Newtonian Eddington parameter@10# as

a0
2

11a0
2

5
12gEdd

2
. ~4.26!

gEdd can be measured in light deflection experiments@33#.
The minimum detectable scalar spectrum, for an observa
time T51 year, is found imposing SNRj51 in Eq. ~4.25!.
To isolate its dependence fromgEdd, in Table II we list the
reduced spectrumVgEdd

5Vj(12gEdd)/2. We will comment
in Sec. V on the results obtained.

In Tables II–IV, we consider hollow and solid mas
spheres made of CuAl, Al5056, and Mo materials whi
have high density and high velocity of sound@21,25#. The
geometrical features of such spheres are the outer diam
F and the ratioz between the inner and outer radius. W
consider the first excited monopole mode, so in Eq.~4.18!
we put n51 and f 10[ f 0. For solid mass spheres we hav
H151.14 @23#, while for hollow spheresH1 is a function of
z, and some interesting values are listed in the tables th
selves@25#.

Similar analysis of correlations can be repeated for
quadrupole vibrational modes of the resonant spheres, w
can be excited by both spin 0 and spin 2 waves.

Let us face the calculation of the overlap reduction fun
tion. The quadrupole tensorsDi j

(e) are traceless, therefore th
only nonvanishing terms in the overlap reduction functio
for any (e,e8), are
1-12
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TABLE III. The same as Table II in the case of two 31 ton Mo (v55700 m/s) hollow spheres.

F ~m! z H1 f 0 ~Hz! D f 0
~Hz! Gj( f 0) ASn(j; f 0)(Hz21/2) h0

2VgEdd

1.82 0.25 0.73727 3027 95.7 0.1 9.5310224 2.331023

1.88 0.50 0.49429 2304 72.9 3.5 1.1310223 6.231025

2.16 0.75 0.4307 1650 52.2 7.2 1.2310223 1.531025

2.78 0.90 0.42043 1170 37.0 9.6 1.3310223 4.831026
k
tw

S

b
he

o
e

e

t
a
th
m

f t
e

et

er
re-
art
rth
rms

ded
tter

of
e
ran

is
or
p-
in
ed

t

y
on
two
f
a

tion
r,

e-
e
the

s
e

Gw
(ee8)~t!5p@2Bw~t!Tr~D1

(e)D2
(e8)!

14Dw~t!Tr~SD1
(e)D2

(e8)!

1Ew~t!Tr~SD1
(e)!Tr~SD2

(e8)!#. ~4.27!

So, the functions to be inserted in the SNR in order to ta
into account all the cross correlations between the
spheres are

Gw~t!5A(
e5e8

@Gw
(ee8)~t!#21

1

2 (
eÞe8

@Gw
(ee8)~t!#2.

~4.28!

In Fig. 2 we compare the plots ofGh( f ) andGj( f ). The
former was computed in Ref.@34#. We choosed5400 km,
the distance between the sites of AURIGA and NAUTILU

D. Sensitivity of VIRGO with a resonant sphere

In this subsection we evaluate the minimum detecta
scalar spectrum correlating the monopole mode of a sp
and an interferometer, with the noise power spectrum
VIRGO. We labelD1 the tensor of the monopole mode of th
sphere andD2 the one of the interferometer. Since Tr(D1)
53/2 andD2 is traceless, the general expression for the ov
lap reduction function is

Gj~t!5
p

2
@3Cj~t!14Dj~t!1Ej~t!#Tr~SD2!.

~4.29!

Explicit evaluation shows the overlap to be

Gj~ f !54p j 2~t!Tr~SD2!. ~4.30!

As pointed out in Ref.@9#, this function is a product of a par
depending only on the distanced and on the frequency and
part depending on the relative position and orientation of
detector frames. For an explicit estimate of the minimu
detectable scalar spectrum we need the expression o
interferometer detector tensor with respect to the Earth c
tered reference frame, so that Eq.~4.30! writes in terms of
the latitude and longitude of the antennas. The interferom
tensor is

D2
i j 5

1

4
@~cos 2x2cos 2c!e1

i j ~ r̂ !1~sin 2x2sin 2c!e3
i j ~ r̂ !#,

~4.31!
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wherex andc are the orientations of the two interferomet
arms measured counterclockwise from the true North. The
fore the location dependence of this tensor is split into a p
depending on the position of the interferometer on the Ea
surface and a part depending on the orientations of the a
with respect to the true North.7

Since the sphere noise power spectrum is narrowban
with respect to that of an interferometer, we assume the la
to be constant, and equal to the value of Eq.~4.21! for f
5 f n0, within the sphere bandwidthD f n0. This implies that
the SNR can be written as

SNRj5
a0

2

~11a0
2!

3H0
2

8p3
Ap

2
D f n0

T
Vj~ f n0!Gj~ f n0!

f n0
3 ASn

(1)~ f n0!Sn
(2)~ f n0!

.

~4.32!

In Fig. 3 we plot Gj( f ) for d558 km andd5270 km,
which is the distance between VIRGO and the site
NAUTILUS in Frascati. In this figure we plot also the curv
for the case in which the sphere is located nearly in the G
Sasso underground laboratory (d5294 km). For this corre-
lation Gj( f ) gets approximately its maximum value. Th
result is particularly important in view of the remark that f
the future resonant detectors with project sensitivity a
proaching the quantum limit, the cosmic ray interactions
the detector may set a limit to the sensitivity in an unshield
environment.

For d5270 km the function has its first peak a
.591 Hz, with Gj;0.98, and its first zero at.1019 Hz.
Notice that, as the spacingd increases, the peak frequenc
moves to lower values. This is peculiar of the correlati
between a sphere and an interferometer, because for
spheres, two interferometers or two bars an increase od
simply implies a shift to lower values of the first zero. For
sphere and an interferometer this effect is due to the func
j 2(t) in Eq. ~4.30!. The relative orientation dependent facto
Tr(SD2), accounts for the full amplitude of the overlap r
duction function, being an oscillating function. In fact w
can express the overlap reduction function with respect to
natural frame of the interferometer defined before@9#. In this
frame, the direction of the unit vectorŝ joining the antennas
is determined by the angles (u,f) and the detector tensor ha
the simple form~3.2!. Using the same convention for th
angles as in Ref.@9# we have

7Notice that the computations of Ref.@9# were performed in the
interferometer frame and not in the Earth centered one.
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TABLE IV. The same as Table II in the case of two solid spheres made of CuAl (v54700 m/s) and
Al5056 (v55440 m/s).

M ~ton! F ~m! f 0 ~Hz! D f 0
~Hz! Gj( f 0) ASn(j; f 0)(Hz21/2) h0

2VgEdd

CuAl 105 3 1672 52.9 7.1 5.0310224 2.631026

167 3.5 1433 45.3 8.3 4.0310224 9.231027

250 4 1254 39.7 9.2 3.2310224 4.031027

Al5056 38 3 1935 61.2 5.6 7.2310223 131025

60 3.5 1658 52.4 7.1 5.7310224 3.231026

90 4 1451 45.9 8.3 4.7310224 1.331026
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Tr~SD2!5
1

2
sin2u cos 2f. ~4.33!

In Table V we consider Mo and CuAl hollow spheres atd
5270 km. The CuAl sphere gives the best sensitivities,
cause the resonance frequency is lower and it belongs to
range where the overlap reduction function gets its ma
mum.Sn

(1) is the noise power spectrum of the sphere andSn
(2)

that of VIRGO, both for the frequencyf 10[ f 0.

V. CONCLUSIONS

The aim of this paper was to study the detectability
scalar GW’s from the cosmic stochastic GW backgrou
Before discussing our results, we would briefly like to rec
what is the best strategy to perform such a measureme
our opinion. As we argued in the Introduction, as far as
type of detector to use is concerned, it does not seem p
tical to use only L shaped interferometers. If the impingi
monopole mode of a scalar GW moves along theẑ axis and
the arms of the interferometer lie in thex̂-ŷ plane, then the
two arms will be stretched by the same quantitydL. In this
case an interferometer set to work on a dark fringe will n
detect any signal. On the contrary, in this very configurat
a spin 2 GW will give its maximum effect. This is a limitin
case though. In general the direction of the impinging G
will form a certain angle withẑ and the perturbation due to
scalar will be tangled with that of the spin 2 in an inext
cable way. In principle, one could reconstruct the directio
sensitivity patterns for the two spins to separate the two
nals. The data needed to do this will require much time to
gathered and for this reason also this proposal does not s
practical to us. What would happen if the detector wer
sphere? Let us first analyze the case of a GW from the vi
point of a reference frame centered in the origin of t
sphere. As it was discussed in Ref.@22# the GW interacts
with the resonant mass detector through the so called ele
tensorEi j 5Ri0 j 0. If the direction of propagation of the in
coming GW is along theẑ axis, the six components of thi
tensor can be expressed, using a null tetrad, in terms of th
called Newman-Penrose parameters which can also be
pressed in the basis given by theS i j

( lm) defined in Appendix
C 1. In turn this basis can be put in relation with the act
measurements performed by the detectors@22#. In this refer-
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ence frame there is a direct correspondence between
Newman-Penrose parameters and the spin of the incom
GW and the information about the spin of the GW can
easily extracted. If the direction of propagation of the G
makes an angle with theẑ axis, the situation is more com
plicated as it can also be seen from Eq.~3.14! which is the
cross section given by a GW with polarizatione1,e3 and
from Eq.~3.24!, which is the analogous with polarizationes.
In Eq. ~3.12!, for example, even if the incoming wave is pu
spin 2 all the modes are excited and the situation is indis
guishable from that described by Eq.~3.24!. The situation
resembles very much that for an interferometer. But in
case of the sphere, the pure monopole mode given from
~3.20! is only excited by the scalar wave, giving a clear s
nal of the presence of a scalar wave. This is the motivat
for our proposal to couple an interferometer to a reson
detector of spherical shape. Let us now look at the results
have obtained that, for the sake of generality, encompass
the sensitivities for pairs of resonant mass detectors.

The behavior of the overlap reduction function for pa
of resonant mass detectors~Figs. 1 and 2! is quite different
from the one for a resonant mass detector and an interfer
eter ~Fig. 3!. In Figs. 1 and 2 we see a constant functi
which abruptly goes to zero for certain values of the f
quency. These values of the frequency decrease by increa
the distanced at which the two detectors are located. T

FIG. 2. Correlation between the quadrupole modes of t
spheres, one located at the site of AURIGA~45.35 N, 11.95 E! and
the other at that of NAUTILUS~41.80 N, 12.67 E!. d5400 km:
comparison betweenGh( f ) ~solid line! andGj( f ) ~dashed line!.
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FIG. 3. The overlap reduction functionGj of
VIRGO ~43.63 N, 10.50 E;x571.5 deg, c
5341.5 deg! with a resonant sphere located a
Frascati~41.80 N, 12.67 E!, d5270 km ~solid
line!; ~43.2 N, 10.9 E!, d558 km ~dashed line!;
Gran Sasso laboratory~42.4 N, 13.70 E!, d
5294 km ~dotted line!. See the text for further
explanations.
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values of the monopole overlap reduction function and
Gh( f ) are of the same order of magnitude: however,
quadrupoleGj( f ) is even an order of magnitude smaller
low frequencies.

Quite on the contrary, the overlap reduction function
the pair interferometer-resonant mass detector is diffe
from zero only in a certain region which depends on
distance between the antennas and the directionŝ of the
sphere with respect to the arms of the interferometers. In
3 it is shown that the values of the frequencies at which
overlap is maximum are in agreement with the resonant
quencies of the planned detectors@3#.

The numerical results concerning the sensitivities
given in Tables II–IV for pairs of resonant mass detect
and in Table V for the pair interferometer-resonant mass
tector.

The values given in Tables II and III show the potential
hollow spheres: going from realistic weights for such det
tors of the order of the dozens of tons to weights of the or
of the hundreds of tons~which are nonrealistic at the prese
state of the art! there is a gain in sensitivity of two orders o
magnitude. Such a gain could also be achieved going to
terials with a higher speed of sound propagation@35# as can
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be seen from Eq.~4.18! where bothM and v appear in the
denominator butv is squared.

How do these results compare to those obtained for sp
GW? It depends on the value of the scalar amplitudea0

2 and

the scalar couplingq̃a sinceVj is roughly proportional to the
scalar amplitude and coupling whileVh is roughly propor-
tional to 11a0

2 @see Eqs.~4.12! and ~4.13!#. At the moment
a0

2 has been only measured in our solar system and its v
at 1s level isa0

2'1023 @33#. Such a small value is given to
the fact that Einsteinian general relativity seems to be v
well verified. Such a value ofa0

2 would give very little
chance to the planned resonant detectors to detect a s
GW background which should be limited by nucleosynthe
to be @36#

E
f .1028Hz

h0
2Vj~ f !d~ ln f !,1025. ~5.1!

We have also to mention Ref.@37#, where an estimate ofa0
2

was attempted starting from the same nucleosynthesis bo
the result is a weak dependence ofa0

2 from distance. Our
ignorance on the mechanisms that should givea0

2 its value
ponding
TABLE V. Minimum detectable scalar spectrum (SNRj51,T51 year! obtained by the first monopole
vibrational mode of one hollow sphere at Frascati with VIRGO (d5270 km). The CuAl and Mo hollow
spheres are those of Tables II and III, therefore only their resonance frequencies and the corres
sensitivities are written here.

f 0 ~Hz! D f 0
~Hz! Gj( f 0) ASn

(1)(Hz1/2) ASn
(2)(Hz1/2) h0

2VgEdd

CuAl 770 24.3 0.76 2.2310224 4.1310223 1.231025

609 19.2 0.98 2.9310224 3.9310223 6.631026

498 15.7 0.92 3.8310224 3.9310223 5.631026

455 14.4 0.85 5.6310224 4.0310223 7.231026

Mo 3027 95.7 0.19 9.4310224 1.1310222 1.831022

2304 72.9 0.16 1.2310223 8.6310223 1.031022

1650 52.2 0.08 1.2310223 6.4310223 7.031023

1170 37.0 0.35 1.3310223 5.0310223 5.231024
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~cosmological attractor? supersymmetry breaking?! prevents
us from further comments on this point. Also concocti
strategies with resonant mass detectors made of different
terials ~to exploit theq̃a dependence! is possible, but prob-
ably premature given what we said earlier. We remark, ho
ever, that once operating, resonant mass detectors
spherical shape could themselves provide a measure oa0

2

using binary or collapsing stars as emphasized by many
thors and more in particular in Ref.@25#.

As a final comment we remark that the sensitivity of t
pair interferometer-resonant mass detector seems to be a
of orders of magnitude less than that of a pair of reson
mass detectors. The plots we have given show that a ca
choice of where to locate the detectors can account for u
an order of magnitude in sensitivity.
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APPENDIX A: CORRELATION FUNCTIONS
FOR MANY SCALAR FIELDS

The SNR for scalar GW’s has been computed in Ref.@9#
following Ref. @30#. Actually, although the generalization t
single scalar theories~Brans-Dicke! is trivial, the one to mul-
tiscalar theory needs the introduction of a very strong c
straint on the fields themselves: in order to get a formula
the SNR one can state the following lowest order condit
for the correlation function between the Fourier amplitud
of the scalar fields:

^ja* ~ f ,V̂!jb~ f 8,V̂!&5g0
abd~ f 2 f 8!d~V̂2V̂8!K~ f !,

~A1!

whereK( f ) is a real non-negative symmetric function. Th
hypothesis means that the correlation function is the same
every pair of scalar fields. This is not the most general s
ation one can imagine: in fact, because of the symme
a↔b, one would expect to haven(n11)/2 distinct correla-
tion functionsKab( f ). On the other hand, if we consider on
06200
a-

-
of

u-

air
nt
ful
to

ts

-
r
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s

or
-

ry

one degenerate functionK( f ), then the framework is exactly
the same of Refs.@9# and @30#, and, with the same algebra
we get Eq.~4.12!.

We reproduce the main steps to expressK( f ) in terms of
the spectrumVs . Straightforward generalization of Eq.@9#
shows that, for any tensor multiscalar theory, the energy d
sity carried by a GW is

t005rh1rs5~11a0
2!~32pG̃!21@^ḣmnḣmn&18gab

0 ^j̇aj̇b&#,
~A2!

where the bracketŝ•••& stand for integration over a finite
region of tridimensional space containing several wa
lengths. From this formula we recoverK( f ) as a function of
the scalar spectrumVs( f ). From Eq.~A1! one obtains

^j̇aj̇b&532p3g0
abE

0

`

d f f2K~ f !. ~A3!

Using the definition ofVs , for non-negativef, we get

Vs~ f !5
f

rc

drs

d f
5n~11a0

2!
64p3

3H0
2

f 3K~ f !, ~A4!

where we used gab
0 g0

ab5n. Furthermore Vs5(aVja

5nVja so we can infer from Eq.~A4!

K~ f !5~11a0
2!21

3H0
2

64p3
f 23Vj~ f !, ~A5!

whereVja[Vj .

APPENDIX B: THE OVERLAP REDUCTION FUNCTIONS

In the following we give the coefficients, introduced
the main text, for the functionsGj( f ):

S A

B

C

D

E

D
j

5
4

t2 S t2 j 0~t!22t j 1~t!1 j 2~t!

j 2~t!

2t2 j 0~t!14t j 1~t!25 j 2~t!

t j 1~t!25 j 2~t!

t2 j 0~t!210t j 1~t!135j 2~t!

D , ~B1!

andGh( f )
S A

B

C

D

E

D
h

5
4

t2 S 2t2 j 0~t!22t j 1~t!1 j 2~t!t2 j 0~t!22t j 1~t!1 j 2~t!

2t2 j 0~t!22t j 1~t!25 j 2~t!

2t2 j 0~t!14t j 1~t!25 j 2~t!

t2 j 0~t!210t j 1~t!135j 2~t!

D . ~B2!

APPENDIX C: DETECTOR TENSORS

1. The sphere mode tensors

A basis for the pure spherical harmonics is given by theS ( lm), with l 50,2 @20#
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S (00)[
1

A4p S 1 0 0

0 1 0

0 0 1
D ,

S (20)[A 5

16pS 21 0 0

0 21 0

0 0 2
D ,

S (262)[A 15

32pS 1 6 i 0

6 i 21 0

0 0 0
D ,

S (261)[A 15

32pS 0 0 71

0 0 2 i

71 2 i 0
D . ~C1!

The normalization is chosen so thatS i j
( lm)n̂i n̂ j5Ylm . n̂ is the

radial unit vector. The vibrational response of a spheri
detector is usually written in terms of this pure spin bas
Otherwise, following Zhou and Michelson@19#, the vibra-
tions of a resonant sphere are more conveniently describe
functions of the real quadrupole spherical harmonics, in
dition to the monopole spherical harmonicY005(4p)21/2

Y0[Y20,

Y1c[
1

A2
~Y2212Y211!,

Y1s[
i

A2
~Y2211Y211!, ~C2!

Y2c[
1

A2
~Y2221Y212!,

Y2s[
i

A2
~Y2222Y212!.

A convenient basis for the real spherical harmonics is gi
by D(00)[ApS (00) and D(e) with e[0,1c,1s,2c,2s. These
traceless tensors are defined as

D(0)[
A3

6 S 1 0 0

0 1 0

0 0 22
D , ~C3!

D(1c)[2
1

2 S 0 0 1

0 0 0

1 0 0
D ,
06200
l
.

as
-

n

D(1s)[2
1

2S 0 0 0

0 0 1

0 1 0
D ,

D(2c)[
1

2 S 1 0 0

0 21 0

0 0 0
D ,

D(2s)[2
1

2S 0 1 0

1 0 0

0 0 0
D ,

with

(
i

(
j

Di j
(e)Di j

(e8)5
1

2
dee8. ~C4!

From the definition of the real spherical harmonics we ha

D(0)52A4p

15
S (20),

D(1c)5A2p

15
~S (211)2S (221)!,

D(1s)52 iA2p

15
~S (211)1S (221)!,

~C5!

D(2c)5A2p

15
~S (212)1S (222)!,

D(2s)5 iA2p

15
~S (212)2S (222)!.

2. Explicit expressions of the polarization tensors
in the detector frame

Let us consider now the wave frame (m̂,n̂,V̂) and the
detector frame (x̂,ŷ,ẑ) defined in Eq.~3.5! by introducing
the rotation matrix

R~V̂ ![S cosf sinf 0

2cosu sinf cosu cosf sinu

sinu sinf 2sinu cosf cosu
D ,

~C6!

where the angles (u,f) are defined following the conven
tions of Forward@16#. The polarization tensors of the GW i

the antenna frameeB(V̂) are obtained by rotating the ones
the wave frameeB as

eB~V̂ !5Rt~V̂ !eBR~V̂ !; B53,1,s. ~C7!

The tensors in the wave frame are
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e15S 1 0 0

0 21 0

0 0 0
D , e35S 0 1 0

1 0 0

0 0 0
D ,

es5S 1 0 0

0 1 0

0 0 0
D . ~C8!

From Eq.~C7!, for the spin 2 polarization tensors we get

e1~V̂ !5m̂^ m̂2n̂^ n̂5
1

2 S 2~cos2f2cos2u sin2f! ~11cos2u!sin 2f sin 2u sinf

~11cos2u!sin 2f 2~sin2f2cos2u cos2f! 2sin 2u cosf

sin 2u sinf 2sin 2u cosf 22 sin2u
D , ~C9!

e3~V̂ !5m̂^ n̂1n̂^ n̂5S 2cosu sin 2f cosu cos 2f cosf sinu

cosu cos 2f cosu sin 2f sinu sinf

cosf sinu sinu sinf 0
D . ~C10!

For the scalar polarization tensor we have

es~V̂ !5m̂^ m̂1n̂^ n̂5
1

2 S 2~cos2f1cos2u sin2f! sin2u sin 2f 2sin 2u sinf

sin2u sin 2f 2~sin2f1cos2u cos2f! sin 2u cosf

2sin 2u sinf sin 2u cosf 2 sin2u
D . ~C11!
ve
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er
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m
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red
3. The Earth centered reference frame

In Appendix B we have listed the coefficients which gi
the dependence of the overlap reduction function on the
quency and on the distance between the antennas. To inf
dependence on the relative orientations of the detectors,
convenient to express the detector tensors in the refer
frame of the Earth. We then express the detector tensors
respect to a triad of orthogonal unit vectors (x̂,ŷ, r̂ ), wherex̂

and ŷ lie on the tangent plane andr̂ points along the Earth
radius. This triad defines univocally the antenna coordin
system. Given the latitude,Q, measured in degrees Nort
from the equator and the longitude,F, in degrees East o
Greenwich, England, the relation of the triad of vecto
( x̂,ŷ, r̂ ) with respect to the Cartesian reference fra
(X̂,Ŷ,Ẑ) originated in the center of the Earth is

x̂52sinQ cosFX̂2sinQ sinFŶ1cosQẐ,

ŷ52sinFX̂1cosFŶ, ~C12!

r̂ 5cosQ cosFX̂1cosQ sinFŶ1sinQẐ.

A simple example is given by the tensor of an interfero
eter@16# which, in the Earth centered frame, is usually wr
ten as
06200
e-
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Di j ~X̂,Ŷ!5
1

2
~X̂i X̂j2Ŷi Ŷj !, ~C13!

where X̂ and Ŷ are chosen to point in the detector arm
directions.

Frame dependent expressions of the same kind can
be written for the tensors describing the geometrical featu
of the modes of a resonant sphere. In the Earth cente
reference frame, Eqs.~C5! become

Di j
(0)5

A3

6
~X̂i X̂j1Ŷi Ŷj22Ẑi Ẑ j !,

Di j
(1c)52

1

2
~X̂i Ẑ j1Ẑi X̂ j !,

Di j
(1s)52

1

2
~Ŷi Ẑ j1Ẑi Ŷj !, ~C14!

Di j
(2c)5

1

2
~X̂i X̂j2Ŷi Ŷj !,

Di j
(2s)52

1

2
~X̂i Ŷj1Ŷi X̂j !.
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