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Detection of a scalar stochastic background of gravitational waves
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In the near future we will witness the coming to a full operational regime of laser interferometers and
resonant mass detectors of spherical shape. In this work we study the sensitivity of pairs of such gravitational
wave detectors to a scalar stochastic background of gravitational waves. Our computations are carried out both
for minimal and nonminimal coupling of the scalar fields.
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[. INTRODUCTION ing L, andL, is available separately, the sensitivity of these
measurements is orders of magnitude worse than that of

In a few years, the research on the detection of gravitaand thus a single interferometer of this type is not able to
tional waves(GW's) will hopefully greatly progress. This disentangle theommon modsignalA , = 6L+ 6L, (trans-

hope is based on the coming into operation of a new gener&rs€ monopole modérom A _ (usual spin 2 modeA way
ut could be the construction of an array of these detectors or

tion of experimental devices that, if they can be operated a?he adoption of a different optical configuratiéRox-Smith
fche p!anned sensmvny, ,ShOUId probe deeply into t_he reglorior the igterferometeES]. EveFrJ1 if interes?ing from a theoret-
in which we believe GW's can be observed. According to theja1 nqint of view, these alternatives do not seem practical,
experimental technique employed, these detectors can be dfien the cost and the difficulty in operating such complex
vided into two categories: mterferome’grlc detectors and resOzpparatus. A viable alternative to these proposals could be,
nant mass detectors. To make our point more concrete let Ygom our point of view, that of a coincidence analysis on the
concentrate on Michelson interferometgts?] and resonant  data of an interferometer and a resonant mass detector of
mass detectors of spherical sh#Be The main advantage of spherical shapg9].
interferometers is their sensitivity in a wide frequency band.  In this work we study the sensitivity of combined pairs of
On the other hand, spherical shaped resonant mass detectegsonant mass detectors and interferometers to a scalar sto-
at resonance have the same sensitivity regardless of the dihastic background of gravitational wavéSBGW'’s). If
rection of the impinging GW. such a background has a flat spectriwhich is the standard

In the following we will concentrate on a very specific assumptioh even the narrow frequency band available to a
issue, that is, on the possibility of detecting scalar GW’s. OQurresonant mass detector will not have much influence on our
interest in this subject stems from the observation that Einconclusions. Our computations generalize the results of Ref.
stein’s gravity is definitively not the only mathematically [9] in which the sensitivity patterns to scalar radiation were
consistent theory of gravity and in fact the presence of scalagonsidered. To be as general as possible, the impinging ra-
fields coupled to gravity is required by a vast array of theo-diation is computed in the general setting given by scalar
fies that model various phenomena as the inflationary uniténsor theorieg10]. Our main result is the computation of
verse or attempt to incorporate gravity with the quantumthe sensitivity to scalar GWs of correlated palrs_(eblld

mass or holloyw resonant mass detectors of spherical shape

world. For a review on this subject, see Rpf]. For more r pairs of interferometer-resonant mass detectors. Finall
recent proposals that also require a modification of Einstein'§’ P . y y
we consider the effects on such detectors of massless non-

graw@y, see Refs5-7]. Are aI'I the a'bove descrlbeq detep— minimally coupled scalar fields, generalizing the results of
tors fit to measure scalar GW’s? While the answer is obwou§zefs'[11] and[12]. While this paper was being written, a
for a resonant mass detector of spherical shape, the situatiQ}ij5r analysis employing two Laser Interferometric Gr:':lvi-
for interferometers must be analyzed with care. Let Us US€tional Wave Observatorft IGO) interferometers for mas-
for a moment the “standard” description, that is well suited gjye and nonrelativistic scalar particles appedrts.

for our kind of argument, of an impinging G\for the mo-

ment we neglect its spin content and direcjistretching the Il. SCALAR TENSOR THEORY

lengthsL; andL, of the two arms of the interferometer. The
conventional Michelson interferometer is configured for
maximizing its sensitivity in the detection of tifferential Let us consider a very general tensor multiscalar theory of
modesignalA _ = 6L, — 6L,. Even if the information regard- gravity, where the gravitational interaction is mediatednby

A. Fundamental equations
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long range scalar fieldg? in addition to the usual tensor . A . — .
field present in Einstein’s theory. The action in the Einstein 5¢Sm:f d*x\—goade :J d*xV—go,d¢?, (2.6
frame is

one recovers immediately E@.5).

3:(167g)*1J’ d“x\/—_g[R—ng”yab(goc)ﬁﬂnpa&yqob] In the literature, scalar tensor theories wih=0 (i.e.,

metric theorieshave been studied by many authors, from the

+ SV, A% (9%)g,,, ] (2.1  Ppioneeristic work of Jordan, Fierz, Brans, Dicke, and Wag-

oner [15] to the recent studies of Damour and Esposito-

We use units in which the speed of lightés=1 and the Farese[10]. This interest arises from the fact that they do not
signature is— + + +. Greek indices\, u, v, ...=0,1,2,3 de- violate the weak equivalence principle and so imply geodesic

note spacetime indices; latin indices from the second part alynamics for neutral weakly self-gravitating bodies. How-
the alphabet,j,k,|...=1,2,3 denote spatial indices; latin ever, this is not the most general framework, in particular it
indices from the first part of the alphabet,b,c,... is not the case of the interesting scalar fields foreseen by

=1,... n label then scalar fields. Our curvature conventions string theory. For a recent analysis see Rét].
follow those of Ref[14]. R=g*"R,,,, is the curvature scalar Let us compute the expression of the relative acceleration
of the Einstein metrig,, andg=det(g,,,). The action con- between two weakly self-gravitating bodies in the general
tains a dimensionful consta@, which will be denoted as the scalar theory; this formula will be the starting point to write
bare gravitational constartelated to Newton's constant "€ response of a GW detector to a scalar tensor wave.
as measured by Cavendish experimeatsd ac model type When aa_;eo, the stress energy conservation law in Ein-
metric y.p(¢), Not necessarily positive definite, in thedi- ~ St€iN units ig10]
mensional space of the scalar fiel®, denotes the matter
action, which is a functional of some matter variablgg,,

. b _ 2
a_md of the Jordan-F_le_rz metrg, ,=A%(¢)d,,. The _scalar or, in the Jordan-Fierz frame
fields can be nonminimally coupled to matter. This means
that they can appear as coupling “constants” between the

matter fieldsW,, and gravityﬁw. For instance, low energy

st_ring type theories na!turally introduce in the action termsrp;g equation implies a nongeodesic motion of test mass
with couplings of the kind bodies. This result corresponds, for a single scalar field and a
B _ o particular choice of the coupling functiok(¢), to the low-
Suil=— Zf d“x\/—_ggoFwaﬁﬁg“”g‘”ﬁ, (2.2 est order gravidilaton effective action of string thedyl].
However, ifo,=0 we haveV”TMV=0 and so geodesic mo-
where F2 =9, ,A%— 9 A%+ fABCABAC s the Yang-Mills tion of test mass bodies is recovered.
v p v u' ity . . . . .
field strength and the scalar fieldis the dilaton. In Ref. [11], starting from the single field string like case
By varying the actiorSwith respect to the Einstein metric Of EQ. (2.8) the equation of motion of test mass bodies has

g,., and the scalar fieldg?, one obtains the following field een derived. Following the same line of reasoning, we gen-
equations: eralize that result to our case. Let us recall the pointlike limit

of the generally covariant energy momentum tensor for a
particle of massn and world linex*(7) [14]

V, T#=a,VFedT— o, V*¢?, 2.7

VT4 0.V ,07=0. (2.9

1 1
R/.LV_ ERgMVZZyab((P) aMQDaaV()Db_EgMVngaquaao’QDb
KV

+87GT,,, (2.3 (X)) = SAx =x()], (2.9

p°V-g
9"V V0% + gM Vo 0) 3,99 ,¢°

= 4nG[a(0)T+ 04, 2.4 wherep#=mdx*/dr. We can rewrite the scalar charge den-

sity o, for a test body, in terms of dimensionless scalar func-

whereyp, are the Christoffel symbols of the metrig,(¢).  tionsq,, which express the relative strengths of nonuniver-
The functionsa,(¢)=d,In A(p) represent the field depen- sal scalar to tensor forces
dent couplings between scalar fields and matter within the

metric sector of the theoryT#*=2(—g) Y25S,,/8g,,, is B o o m2

the stress energy tensorT its trace, and o, oa(X')=—0,T(x')=0q, — 5G)x" —x(7)].

=(—g) Y25S,,/5¢% is the density of scalar charge. In the p°V—g

Jordan-Fierz frame we would have (2.10
TW=A2)T,,, 0.=A%9)o,, (2.5  As we consider long range fieldg,<1 to avoid conflicts

) _ L with the present test of the weak equivalence principle. From
as can easily be found from their definitiphO]. Actually,  Eq.(2.8) we get the geodesic equation in scalar tensor theory

since V—g=A%(¢)\/—g, and with nonminimal coupling$11],
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XM+ TH XX+ a0 0?=0, (2.12) e (Q)=mm

- >< 0 = - -A- A. - .
wherex*=dx*/dr. Now we can compute the modifications € () =min;+mm, (218

to the relative acceleration between two test mass bodies
moving along two world lines induced by tﬁg’s.

Let us take two weakly self-gravitating bodies moving
along two infinitesimally close world linex*(7) and
X' M(7)=x*(7)+ 6*(7), where 6* is the separation vector
between the two curves. If we suppose that the bodies have
different scalar couplingg(? andq(”, their relative accel- We consider now the small relative oscillations of two
eration is[14] weakly self-gravitating bodies induced by this wave. By in-
dicating withL; the rest separation of the bodies, we can put
8=Li+¢ (£<1). Expanding Eq(2.13 to first order in
g, we find

and

ef(()e?1(Q)=26%"" B=+,X,s.

= —[Riojo+aPd0,0%18,+ a5V —aP] 0, 0%,
(2.12

0.5, 2| L (2.17

where 5-=d5 /dt. Notice that in Eq.(2.12) there is a term &= 2

proportional toq(l) q'?). This term will be important when

the test mass bodies are of different nat(eey., one is a Since we are considering plane wave solutions, the spatial
baryon and the other one a lepidsut it is irrelevant inside ~ derivatives appearing in the last equation can be replaced by
a GW detector. Therefore the equation needed to analyze thRe time derivatives, namely 3;9,68=0,Q,82=[ §;

response of GW detectors to scalar tensor waves is _eisj(ﬁ)]éav and taking into account Eq2.15, one finds

SR 4899 0318 - 1d?
[R|010+Qa<9|r?J<P ]5] . (213) gi: 2 d g[hA(X)eI](Q)+2(a _qa)ga(x)e”(g)
B. Gravitational waves
Let us recall some results concerning scalar tensor GW'’s +20,£%(x) 8 1L, (2.18

[10]. In the weak field limit of the theory S ) _
and then the infinitesimal displacement induced by the GW

9,,(X)=1,,+1,,(x), is

1 N ~ R
¢7(X) = @R+ £3(), (2.14 Gi= = 5[ha(x)€f(2) +2( a3 —0a) £2(x) €] ()

- _ , _ , +20.E%(x) 8 IL; - (2.19

wherelh,, [<1]|£%<1, 7,, is the flat Minkowski metric,

and ¢§ the background values of the scalar fields. We nowThis formula needs a few comments. The scalar fields con-

choose a gauge in which the metric perturbation has zersidered in our theory are massless, therefore the scalar GW

time-time and time-space components while the purely spasan carry energy and momentum through just one degree of

tial components, for a plane wave propagating along the difreedom, theransversepolarization tensoe; (1) (see Wag-

rection characterized by the unit vect@r, assume the form oner in Ref[15]). Therefore in Eq(2.19 only the transverse
part strains the matter and ti& is effectively unimportant
when studying the response the antennas to GW's. By intro-

hij(x)=ha(x)ef} (Q)+2a3¢3(x)€] ( )i ducing theeffectivegravitational wave sensed by the test
mass bodies
=+,X; a=1,...n. .
ATroG amhn (215 s '=ha(0€}() + 2(aS- T2 £200e5 (D) (2.20

et, e are the spin 2 polarization tensors describing theVe rewrite Eq.(2.19 as follows:
ordinary GW in the transverse traceless gawjes the spin L
0 polarization tensor of the scalar waveéiz aa(¢5), and Li=—2hefL (2.21)

we choose units such thay¢5)=1. By indicating withm
andn a pair of orthonormal vectors lying in the plane per- However, if the scalar fields were slightly massive, there

pendicular to(), these polarization tensors can be written aswould be also dongitudinal polarization along the propaga-
follows (see Appendixes tion direction of the GW and we could not drop thg in Eq.
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(2.19. This scenario has been analyzed in RE9$and[11-  minimal coupling is straightforwarf26] and in Secs. llIB 1
13], but in the following we will not consider it and just and IlIB2, we will just sketch the steps and quote the re-
restrict our study tcﬁﬁ_ff_ sults. Furthermore, in Sec. Il B 3 we \ivill repeat the calcula-
tions for the even more general caseqgf 0. For the sake
IIl. INTERFEROMETERS AND RESONANT MASS of generality the direction of propagation of the wave and the
SPHERICAL DETECTORS antenna framddefined by a triad of orthonormal vectors

(x,y,2)] will be taken to be distinct. The directio)
=(6,¢) of the incoming wave is identified by the relative
Let us consider a Michelson type laser interferometer withprientation of the triad defined in ER.16) with respect to
two orthogonal arms of the same nominal length=L,

A. Response function of an interferometer to scalar GW's

%!Ali 1

=L. From Eq.(2.21), the signal at the output port of the (x.y.2)

interferometer(the strain of the differential moglés propor- M= CoS¢X+ sin ¢y,

tional to the difference in the two path lengths,— ¢», in-

duced by the wave and can be written in the fqi6] A= — sin ¢ COSOX+ COS¢h COSHY + Sin 67 (3.5
heff=he'Dll, (3.)

Q1 =sin ¢ sin 6x— cosé sin 6y + cosoz.

whereD is a traceless and symmetric tensor describing the
geometry of the interferometéin the interferometer frame,
namely the one where the corner station stands at the origin Consider a superposition of spin 2 plane GW's with wave
of coordinates and the andy axes lie along the arms, this Vectork” and amplitude$i, impinging on a spherical GW's

1. Tensor GW's

tensor writes detector
1 0 0 EMVEEMVeikpxp+C-C-E hAeﬁpeikpxp‘l‘C.C., A= +ox.
! (3.6
2 0 0 0 Note that hereafteg,,, are the polarization tensors written in

the detector framex(y,z) (see Appendix C 2 for their ex-
The effective strain sensed by the interferometer is then spliplicit expressions As usual we will use the so called quad-
in a spin 2 and a spin 0 part, proportional to the differencerupole approximation, i.e., we suppose that the detector is

a8—1,; we can take explicitly into account the dependence{EutCh Slm":‘gerf.th?’l the wavglengtlh Off thtehimtpinging GW, so
of the strain from the angle9(¢) defining the directiorf) at only the first termsquadrupole, for the tensor compo-

fthe i . by introducing th | it nent; monopole and quadrupole for the scalar ¢rae to be
ot the incoming wave Dy Introducing the angular pa ernconsidered.Analogously to Réfl4] we find the expressions
functions of the interferometer,

for the spin 2 scattering and total energy cross sections,

ArOY — A A i NN A i .
F (Q)_eij(Q)Dll, FS(Q)—e?j(Q)'D'l’ (33) O_ﬁcat: 1287G2 [1+%a3(1_a3)]7ﬁ Hi (37)
and writing the strain as 5 eje’
Reff=h, () FAQ) +2(a3—0) €00F(Q). (3.4 o 8G (&)
T e 38

B. Cross section for resonant spheres in scalar tensor theory .

. . wherea’= a2a2 and 7ij=7;(,f) is the(tracelessFourier
We discuss now the cross section of a resonant sphere ransform of the variation induced in the stress energy tensor

the general scalar tensor theory. For spin 2 waves this resulf 9y

was obtained in Ref[18] (see also Ref[19]). In recent the sphere by the impinging G#Eurthermore we will

years, this kind of detectdboth solid and hollowhas been Study résonant scattering, i.e., we will assume that the detec-
extensively studied as a device able to analyze the spin corIic—Jr scatters only the impinging GW's W'Fh frequencfy
tent of GW’s(see Refs[20-22). The calculation of its scat- around the resonant frequency of one of its ar:aturalm\{lbra-
tering cross section in the framework of the Brans-Dickelional modes. This leads to a relation betwegfi*' and o,
theory was carried out in Refi23—25. The extension of the and to another between; and the sphere mode tensors

results of Ref[23] to the general scalar tensor theory with
23] 9 y apf¥= pott, (3.9

‘Equation(3.1) is valid in the regime in which the wavelength of _
the impinging scalar GW is much bigger than the length of the arms In principle the expression of; could contain also a term pro-
of the interferometer. Given the resonant frequencies of our resgportional toD {??= 3, [14], accounting for the trace of the polar-
nant mass detectors, this will be always the case in the presefation tensorimonopole excitation But, since the trace; van-

paper. For a more detailed discussion of this point see [R#&. ishes, in this tensorial part such a term gives no contribution.
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TABLE |. Angular dependence of the sphere pattern functions for the three independent polarizations of
a scalar tensor GW. Notice that the pattern functions of éke2c mode coincide with the ones of the
interferometer introduced in E@3.3).

Mode (e) Fi9(0,9) F9(6.4) F{9(6.9)

2s —cosfcos 2p — 2(1+cogb)sin 2¢ — 2sin 2 sirfe

2c —cosésin 2¢ (3+cos X)cos 2p 1cos 2psirto

1s —singsing 2sin 29cose — 3C0S¢sin 26

1ic —sinfcos¢ —%sin20sing 3sin ¢ sin 26
V3 V3

0 0 g _— _
3 sio 5 (3cog6-1)

mi=v(he, (3.10 o(H)=3 ofd(f,0), e=01c,1s,2c,25, (3.13

where 7 is the fraction of the total oscillation energy dissi-
pated through emission of GWt can be calculated as a and
function of the detector internal paramejeasnd y(f) gives

the frequency dependence~f;]‘. The functiony(f) is cho- (@ 1 GMv?F,
sen so that the response of the antenna is resonant in fre- oy (f,Q)= vl 2m
guency (see Refs[20] and[23]). If the oscillation of the %o
mode with angular momenturin=2 has proper frequenty
fnz and a bandwidth\_, we find A ; |F(Oh,|?
n2
X
20 A2
1 (f=fn2)*+AF /4 2
y(f)oo ———rr. (3.1) " ? 2 [
f—fatid; /2 A

(3.19

Substituting Egs.(3.7) and (3.11), respectively, into Egs.

(3.9 and(3.10 and combining the results, the total energyThe angular dependence is enclosed in the pattern functions,

cross section becomes Fio=D{Pel((1), explicitly written in Table I.
For later purposes we will need also the integrated cross
1 BMu2F section. By integrating Eq3.12 we get
. —9) = ylot _ n
op(f;nI=2)=0,(f) +ag P
Sp(n;l=2)= GMu?F,,. (3.15
AfnZ h( ) 1+ aé f

(=t + A2 14 (312
(T=Tn2) "+ A7, 2. Minimally coupled scalar GW's
The scattering and total cross section for the minimally

whereM is the sphere mass, the velocity of sound in the coupled scalar part of a GW are

material the sphere is made &f, a constant depending only
on the quadrupolar mode under scrutiny and on the sphere 2 2 12y 1wl
parameters(radius, density, material[23], and G=(1 FSoate 8mGaq [|7il*+ 37 7]
+a3)G is the effective Newton's constant measured in s 5  gxhHExh’
Cavendish-like experiments. The results of REZ3] in
Bran_s;chke theory are recover_ed by settlné—(Zz_uBD 2Ga° j[ga(i,f)e-s?”*]
+3)”* wherewgp is the Brans-Dicke parameter. If in per- olot= a - b -
forming this calculation we expand the tensors in the nu- f & (x,F)E4(x,T)
merator of i’ in the detector basi® | (defined in the (3.1
Appendixe$, we find that the total cross section can be writ-
ten as the sum of five terms, the total cross sections for anyhere£?(x, f) is the Fourier transform of the impinging sca-
single vibrational mode of the sphere lar GW. We now have to decompose the scalar GW polariza-
tion tensoreisj in a quadrupole and a monopole part, as they
excite different modes in the detector. The way to do this is
3The indexn=1, ... = labels different solutions for the sphere DY expressingaf‘j in the basis defined by the five real sym-
eigenmodes with fixed angular momentuifi3)]. metric tensorsD{?, plus D{’?, proportional to the identity

(3.19

062001-5



BABUSCI, BAIOTTI, FUCITO, AND NAGAR PHYSICAL REVIEW D64 062001

tensor, because these tensors are directly related to the angnake it possible, in principle, to guess the polarization. For

lar momentum of the excitatiofsee Appendix C1 and Ref. instance, considering then=0 mode, F{®)(6,¢) gets a

[19]). maximum for 6= ¢=0, while F(0,0)=F{%(0,0)=0.
Assuming again resonant scattering and noting that the The integration of Eqs(3.20 and (3.24 gives, respec-

resonance frequencies of the quadrupole and the monopoigely,

modes need not be equal, we have now two expressions for

the variation of the stress energy tensor of the detector: the 2 aé 5

first, labeledr;;(f;1=0) and valid for the sphere monopole 24(n;1=0)= 1 sGMv®H, (3.29

mode, is proportional tCDi(jOO) and has resonance frequency +ap

f=f,; the second,?ij(f;l=2), is proportiondl to and
2 FOD{ and has resonance frequenfoy f o, # f o

a(z) (~3Mv2Fn
+a§ 3 .

Ti(£1=0)=B' (1) a&(H) D, (3.18 S(ml=2)=~ (3.26

T = — 0¢a (e (e _
mij(H1=2)=p"(1) azé (f)ze FODy. (319 3. Nonminimally coupled scalar GW’s: g#0

In this section we present the full generalization of the

result presented before to the case in whighis small but
not exactly null. We will follow step by step the procedure

where g’ (f)# B"(f) are the analogous of the functior{f)
in Eq. (3.10 andF{?=D{?ell((1). We deduce then the total

cross section of the monopole mode, outlined in Ref.[23]. Further details for the general multi-
2 = A scalar metric theory can be found in REZ6].
ou(Finl=0)= @y GMv°H, fro a. The energy momentum conservation.ldirst let us
S ltaf 7 (f=fg)°+A7 /4 consider the energy momentum tendét” of the resonant

(3.20 sphere and write the linearized conservation (2v8) in mo-

_ _ mentum space. Denoting by**(x),7(x) the linear part of
whereH, is a constant depending on the monopolar modelf.,w

; . F

under exan{23] andA;_is the resonance bandwidth. For we get

the quadrupole mod@i(je), the same calculation gives &M~T“”(X)+5a(x)a”§a(x)=o, 329
oo(f;n1=2)=2 ol9(f,Q), (3.2  which in momentum space reads
where k#’;ﬂy(k)+’6’a(k)*[k]}§a(k)]:0_ (3.28
6 GMvF As The reality of 7#*(x) and &(x) implies 74"* (k)
(€) ) — %o U n n2 (€)y2 _Tuve_ ax _gar_ . i

Og (f,Q) (Fs ) . T’ ( k) and f (k) g ( k), with k (k,a)) and

2 2 _ 2. A2 K
Itag T (T=Tp) "+ Af J4 w=Kko=|K|. The asterisk in Eq(3.28 stands for the four

(3.22 dimensional convolution product. Now we proceed to ex-
pressto(k) in terms of 7;; (k).

For a particle of massn, Eq. (2.10 defines the relation
between the scalar charge densities and the components of

The pattern functions={? are listed in Table I: since an
explicit computation yields

(12 1 the energy momentum tensors. Integration over all particles
> (F9) =3 (3.23  of the resonant sphere gives
the global response to scalar waves of the quadrupole modes To(X)= = 0a7(X), (3.29

is isotropic too, and total cross secti(®21) reads _
and therefore the four Eq$3.28 in momentum space read

a2 BMu?F, At [with 7,,,(K)=7,,]
"S(f;”"zz):“ 2 6m  (f—f,,)2+A% /4 ~ ~0i_ =
ag (f=fn2 oy ko704 ki 72" —q,7* [k°£3(k) =0, (3.30
(3.29
As the quadrupole modes are sensitive to scalar and to tensor ko7 + kj~Tij —Ga [K'&(k)]=0. (3.3)

waves, the angular dependence of each cross section could . .
The wave travels along the directidn, and sok;=Kky(};
because the scalar fields are massless. Subtracting the con-

“Thel=2 part ofe], expanded in th@{? basis is 2 F9D(?.  traction of Eq.(3.31) with Q. from Eq. (3.30 gives then

062001-6



DETECTION OF A SCALAR STOCHASTIC BACKGROUND ... PHYSICAL REVIEW B4 062001

;Oo:;ijéiﬁj, (332 0 0 0 0
- _|o© EF+2a98 £x 0
v 0 ’
a relation which holds in minimally coupled scalar tensor . 0 £ —ET 208" 0
theories tod 26]. 0 0 0 0
We now compute again, in the cagg# 0, the quantities (3.39

entering the cross sections: the incoming energy flux, the
power emitted by the detector in GW's and the interferenceand denote by . . .) the integration over a three dimensional
power(see Ref[14]). The calculation strictly follows that of space region with linear dimensions much bigger than the
Ref.[23] for Brans-Dicke theory which has been generalizedGW's wavelength. Substituting E¢B.35 into Eq.(3.33 we
in Ref. [26] to multiscalar metric theory. These latter reSUltSObtain the total scalar tensor energy flux Coming from &he
are recovered in the limi,—O0. direction,
b. The incoming energy fluket us start with the incom-
ing energy flux which is independent from the direction of _ _5/3(2)
the incoming GW thanks to the symmetry of the detector. We PN =Pnt e=2(te;)
will simplify here the calculations assuming the incoming wf? ) ) 0 sak 2 v sb
direction to be coincident with the axis of the detector :%{|5+| & <2+ 4yapt® (X, 1) £%(x, )}
frame. Later we will recover the general expression for an
arbitrary direction. (3.36
The incoming flux is computed given the energy momen- ) ] ]
tum pseudotensor of the gravitational field. At second ordef- The scattering amplitude and the energy cross sections
in the linear expansion, defined in E@.14) Let us consider a GW impinging onto our spherical resonant

detector. At large distanceB=|x|, from the detector

2mifR

~ 2 1 ~ - - - -
G =gmg |~ (9a@)0*,0,6+ S apn’(d,h,,+ 0.h,, £ ) —| £(x, e+ A%(x, 1)

—2mift
T 8nG e

R '
(3.37

- apﬁyv)afrgb_ (&aab)o nyvnpgga&paogb
whereA3(x, ) is the scattering amplitude relative to tath
scalar field. It obeys the usual reality conditimf‘(i,f)

=A2* (x,—f). Using the scalar field Eq(2.4), under the
hypothesis that the quadrupole approximation holds, the

scattering amplitude can be written in terms7##(x) as

1 ~ ~ ~
0
+§ ab’huﬂisy’?pg( &ehyp+ &yhep_ aphye)aagb

—[(Gaap)o+ a3ag— ¥2p]9,E%,E°—| (daan)o

3%l 3 98e) T 8,% gb] —— (~R<2) ;
2 “a 2 7a nv p o 87G nv Aa()z,w)=Gf dsxr(ag_aa)’;_()‘(’r,w)efik.x,
1 ~ 1 - 1 ~
a 2 a 1 a 1 ~ o~ A A
=5 1 PR+ 5 0, ARG} = SR, m BR&,B)), —G(af -7 (k)81 - OI0)), (338
(3.33

where we have expressegy(k) in terms of the spacelike
components of the Fourier transform of the energy momen-
where tum tensor by making use of E(B.32.
Let us turn then to the detailed calculation of the energy
cross section, refering ourselves again to [R&3]. From Eq.
_ 1. _ _ ~ _ (3.38 we find the scattering power to be
R®)=>h*(9,9,h h R+ dad,h
’U‘V_E ((9#3,, ap_(?,u,ap av_ap,&a vp aaap ,LLV)
2
pocatie 2T [ 46 AL (%, F) A% (% f
1 ~ ~ ~ ~ ~ ~a G a(X! ) (X! )
+ Z(’?“h“ﬁ &ahﬂp—&phw)(&ah‘;-l— ﬁyh"p—&ph,,)
162G f2
1 - - - - - - —_—
—3(0R,ta.h,,— 3R, (20— R, (334 >

- I - -
||Tii|2+ 57,’1 T”](aé—anag-{- q?),
wlvp

(3.39

is the Ricci tensor linearized to second order in the fields. Wevhereg?=10,q2. Furthermore, the interference between the
keep in mind thaf26] incident plane wave and the scattered wave gives
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int_2f~ A v ax (o R 157,
P —EJ dQ & (x, F)A®* (x,f)6(1—k-X) o(f;n,1=2)= = -
7Tf2(a0— 20 a8+ 9°)
=4mf3{&h (X, 1) (ad—q?) 7;el}. (3.40 AZ Ja
n2
X
The scattering and total cross sections are then (f—fpp)2+ A$n2/4
pscat g2 5 {|r,,|2 T} ,L(E5 a?,q,)
oScal _ 2= 20.ad , XZ (F(E)) _—. (3.49
s CDS 5 ( 0~ 20aap ™t fc fc p s :gc
(3.4)
We still have to evaluatey, and 7,. This is done remem-
i bering their definition as the ratio between the powéfat
int ax . IJ
olot= — PT_2G H(ag—qa) ™m0 } 3.4  =P™ reemitted as gravitational waves by the vibrations of
q)s f ¥ the sphere and the oscillatory ener@&?s;é) dissipated by the

sphere itself,
where we have put®=¢S(x,f). Expanding now in the

D, D basis, we can decomposg into anl=0 part PO P a5
and anl =2 part 0= oy’ 27 wa (350
part, 277Af Eosc 277Af Eosc
Tij(f1=0)=¢"()(a3—0a) D77, =10, (3.43  The oscillatory energy is that evaluated in Refa0] and

[23], since it does not depend @p . The calculation of the
reemitted power follows that of Refi23] and[26]. The only

~“ f,|:2 — " f 0_ 7% a F(E) ﬁ D(.E)’ f:f , ~
7ij )= (Dlag—ga)¢ Ee s (WD n difference consists in replacing® with «2—q,. Therefore,
(3.44  omitting the uninteresting details of the calculation, we get

with ' (f)# ¢"(f) defined a3’ (f) andB"(f) in Eqs.(3.18 Mv2f2H, . - ~
and (3.19. Hence the monopole and the quadrupole total 7;o=4GA—{aO—2qaa8+q2}, (3.51
cross sections become fro
a0 3 Mu?f2,F
2G_  L(¢%a3.G.) _26 MvTThabn, o o2
o(f;n,I=0)= Tj(g/)%’ (3.45 275 A, {af anao+q 2, (3.52
n2
C

Finally the cross sections assume the following simple

os(f;n,l=2)_ J(gu)E (F(s))z% (3.46 forms:

c

where O-S(f;n'|:0)EGMUZHn Aty L(fa;ag,aa),
. (f_fn0)2+Af2n0/4 I3
L(£%ag,0a)=]ad¢%?+[0a¢% (353
GMuv?F, A,

—(agQpE™* £+ 0aapE™ 7). (34D oy(finl=2)=
a a%b S( ) 277_ (f—fn2)2+A%n2/4
By using Eqs(3.41) and(3.43—(3.46 with the analogous of W 0~
Eqg. (3.9 with o4 replacingoy,, and assuming once again «S (F(E))ZL(§ ;ag,0a) (3.54
resonant scattering, we get the final form for the monopole = s g e ' :
and quadrupole total cross sections: ¢

These expressions can be made more manegeable by expand-

o fnl=0)= 7o ing L(£%;a2,q,) in powers ofg,<a’<1, an ordering rela-
sho Trf2(ag_2aaag+a2) tion which follows from the weak field limit of IEq(.Z.?).
5 B First, an analogous calculation to that f(x,f) gives
A4 L(£%09.00) [26]

X 2 2 * £C
(f=fho) +Afn0/4 & &

R G ~~
(3.48 &(x,f)= ﬁ(ag—qa) 7ii€ed, (3.59
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where nowr!; = 7/;(k) is the Fourier transform of the space BN 2 A

i j 1 GMvF, fro
components of the stress energy tensor of the source located oy(f;n,|=2)= 2 6 > 2

. ~ . n —
at a great distancR from the antennay;; is related to the +ag (f=1nz)"+ A7 /4

Fourier transform of the variation of the quadrupole moment

Qjj(f) of the source by14]

1 -

Qi’j(f) - - mTi’j . (356)

Therefore, taking into account E(B.56), an explicit evalu-
ation gives

474f4G2 .. e 97
. =\ _ 1 Aij2,.4) 4 41270
L(&%ay,00)= RZ |Qijes| aO[ 1-4 ag +2ag

T a2 N a52 T4
PG ] 357

o) g o)
and
4744G? . aaag 02
535C2—2|Qi'je's'|2‘1c2) 1-2—5+—.
(3.58

Expanding this ratio in powers af, yields

L(&%a2,0a)

(3.59
& &

:a(z)—Zaaag-i-az-f- cee

We can finally compute thE‘a dependent terms in the cross

sections.

The monopole cross section at the lowest ordemjin
reads

As
n0
(f—foo)?+AF /4

1 GMuv?H,

1+a(2) ™

oy(f;n,|=0)=

X {acz)_ Zaaag}!

(3.60

X{aé— ZE]aag}.

(3.62

IV. DETECTION OF A STOCHASTIC GW BACKGROUND

Our aim is to generalize the standard analysis about the
detectability of the spin 2 stochastic GW backgroygé—
30] to the case of the general scalar tensor theory outlined in
Sec. II B. Within this framework we introduce a density of
scalar gravitational radiatiopg in addition to the standard
tensor onepy,. If we assume, as in the tensor case, that the
scalar background is isotropic, unpolarized, stationary and
Gaussian, it is completely described in terms of (tlienen-
sionles$ spectrum,

1 dps

s~ pedinf’ 4.

wheredps is the energy density of the scalar gravitational
radiation in the frequency rande-f +df andp. is the criti-
cal density requiredtoday) to close the universe,

3H3
_8Wé'

Pc (4.2

H, is the present value of the Hubble constant. Notice that,
although we study a scalar tensor theory we normalize the
scalar gravitational spectrum to the valuepgfrecovered in
general relativity. This choice has been taken to have a direct
comparison between the tensor only and the scalar tensor
framework. The present value of the Hubble expansion rate
is usually written asHy=hyx100 kmsMpc !, where
ho(=0.6-0.7) is a dimensionless factor that parametrizes the
experimental uncertainty affecting the valuettf. As a con-
sequence of this definition the quanthﬁQS(f) is indepen-
dent of hy, and thus more suitable to characterize the sto-
chastic GW background.

A. The signal to noise ratio for scalar tensor GW stochastic
background

From the experimental side, the signal induced in the de-

where we have reintroduced the effective Newton’s gravital€ctor output by a stochastic GW background is indistin-

tional constanG.

Analogously, the quadrupole cross section for any mode

writes, at first order,

A
n2
(f—f)?+ A7 /4

1 GMuv%F,
1+a(2) 2@

al9(f,0)=
X{ag—2qaagH(F{)2 (3.61)

Summing overe, Eq. (3.23 gives

guishable from the intrinsic noise of the detector itself. Un-
less the amplitude of the signal is very large, then, the
subtraction of ara priori estimate of the detector noise can-
not be confidently applied to the data. This implies that in
order to detect a stochastic GW background, we should
rather analyze the correlated fluctuations of the outputs of, at
least, two detectors with no common sources of ndese
condition usually verified for widely separated detector
siteg. The cross correlation among detectors is advantageous
also from the point of view of the minimum detectable sig-
nal. It can be showf29,3]] that, under the same experimen-
tal conditions, the minimum detectable signal in the correla-
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tion of two detectors can be even .three prders of magnitude “ﬁﬁff(t)EEeff(t’)‘gk):‘F]ie}ff(t’)zk)pikj ' 4.7)
smaller than the one detectable with a single detector.
The problem of the optimal processing of the the detectoand Eq.(4.7), keeping into account Ed4.6) and the defini-
outputs for the detection of the stochastic GW backgroundions (3.3), it can be rewritten as
(tensor and scalathas been considered by various authors "
[9,28-30, and extensively reviewed in Ref31]. This F]Eff(t):j dff dﬁ[hA(f,ﬁ)Fﬁ‘(ﬁ)
analysis can be generalized with minor modifications to the — §?
case of the general scalar tensor theory considered here.

~(k A A mif(t— (-
The signal present at the output of each detector can be +2(ag—q%0) £(f, Q) FR() ]2 (- 20,
written as(we consider the case of two detecors (4.9
sc(H)=n(t) +he (1), 4.3 In the following, we focus on the spin 0 contribution to

the strain, i.e., the part of Eq4.8) depending oré?(f,()
due to the stochastic GW background and withe intrinsic ~ [28—30). Since the scalar background is assumed stationary,
noise of the detector, whilk=1.2 labels the detector to Gaussian, isotropic, and unpolarized in the space of the sca-

which each quantity is referred. The noise is assumed to bi" fields. it can be showfsee Appendix A for further de-
stationary, Gaussian and statistically independent on th%alls) that thg correlation functions between the Fourier am-
gravitational strain. Furthermore, the assumption that thélitude £%(f,Q) of the waves are

noises in the two detectors are uncorrelated implies that the 2

ensemble average of their Fourier components satisfies ¢ gax(f () gb(f/ ()))= ygbﬂ —Qu(f)8(f—f")
1+a3 " 647° 3
1 P
(e (On(E))=8(f=1)80580f), 4.9 x5(Q-0"), 4.9

where Q,(f) is the spectrum of a single scalar field. As a
where S{9(|f]) is the (one sidedl noise power spectrum for consequence of our assumptions on the scalar background,
thekth detector. Given an observation tiffiethe correlation  the whole spectrum is thefts=n{);. Following the same
“signal” is defined as follows: line of reasoning applied in the case of the spin 2 waves,

under the further assumptions that the detector noises are

much larger in amplitude than the gravitational strain and

T2 T2
S= ﬁmdtﬁmdt’sl(t)sz(t’)Q(t—t’), (4.5 statistically independent on the strain itself, for the SNR we

obtain
V\{hereQ is a real f|lter function thg\t, .for any fprm of the' ag_(agl)+~gz))ag+~gl)aéz)yab 3H2
signal, is chosen in order to maximize the signal to noise SNR.=
ratio (SNR) associated witts [30]. 1+a3 87°

The statistical treatment of the sign8ldefined in Eg.
(4.5 starts with the plane wave expansion of the metric per-
turbations. The effective GW exciting the detector at position

X writes

X

= AHTAH |V
2T Jodf—f6sgl>(f)s<n2>(f) . (4.10

The functionI'(f) is the generalization to scalar fields of
_ . o . . . the usual overlap reduction function introduced in RE2S)]
hﬁff(t,x)=f dffzdﬂ[hA(f,Q)eﬁ(Q) and [30]. This is a dimensionless function describing the
e IS reduction in sensitivity due to the different location and ori-
~ A A F(t—0.x entation of the two detectors, and it is given b
+2(al—Ta) £3(1,0) e (D) ]2 00, Jven Dy

(4.6) l“g(f):fzdﬁFi(ﬁ)Fg(fl)ez””dﬁ';, (4.10)
S

where, as a consequence of the reality@tlf(f,x_), we hav_e wheres is the unit vector along the direction connecting the
that hi (f) =ha(—f) and & (f)=¢%(—f); Q is the unit  two detectors andl is their distance. Notice thdt(f) co-

vector specifying the direction of the incoming GW. incides with the scalar overlap reduction function introduced
In terms of the detector tensor, the GW strain sensed bjn Ref.[9] in the context of the single scalar metric theory of
the detectok located abzk is given by Brans and Dicke. The SNR obtained in RE] is also re-
covered specializing Eq4.10 by settingq®=0 and a3
=(2wgp+3) L
5This function depends only of—t’ as consequence of the as- N the following, we will consider two detectors with the
sumed stationarity of both the gravitational strain and the detectosameagl)=agz)=aa. If we keep only linear terms iﬁa, Eq.
noise. (4.10 becomes
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2_ 57 a g2 2 2 12
af—20,ag 3H o QL(H)TL(F)
SNR§= 0 qz 0 0 ZTJ £ i §2 12.5 = \
1+a? 87 o fosW(f)S)(f) .
4.1 \
As pointed out before, the spin 2 contribution to the strain " \ \
(4.9) is substantially the one already obtained in the litera- - .
ture. However, the presence of the scalar fields slightly modi- \
fies the usual formula for the SNRf Ref.[30] introducing 20 S A
an overallaj dependent factor which is absent in general VoA \ A
relativity, ] ; Y \ / IW
-2.5 L \/
2 2 2 12
SNR]: 1 3HO ZTdef Qh(f)l—‘h(f) 1 10 100 - 1000 10000 100000
1+a? 873 o fes(f)sP(f) :
(4.13 FIG. 1. The overlap reduction functidn,(f) for two resonant
) ] spheres, located at relative distarte 50 km (solid line) andd
Here Q(f) is the usual spin 2 spectrum and

=400 km(dashed ling

T(f)= f 40> FAQ)FAQ)e?™ ™25 (414  where the expressiof8.15 for 3 =3,(n;1=2) has been
s A used.
is the (non-normalizegloverlap reduction function for spin 2 For spin 0 GWs, since we have considered only the first

waves. order terms in the expansion in powers @f of the inte-
The most general expression for E¢4.11) and (4.14  9rated cross section, we write
can be shown to bg30]

Ly(7)=m{Au(7)TH(Dy) Tr(D,) + 2B (7) Tr(DyD,) A7Gh By

S (4.17

ag aaa’g
S| -2
+Co( D[ TH(Dy) TH(SD,) + TH(D,) Tr(SDy)] 0

)
+4D (1) Tr(SD,D,)

whereX is now the obvious generalization of Eq8.25
+1E THSD)THSD,)}. w=h& (4.1 and(3.26 to the casey,# 0. Making explicit Eq.(4.17) for

W TSP THSD, )} & (419 both the monopole and the quadrupole modes, we get
where r=27fd, S=s®s, and Dy is the tensor of the

kth detector. Following the procedure sketched in Refs.

27Tﬁ,8 0
[9,29,30, the coefficientsA, B, C, D, and E can be expressed Sh(€&:fno) = N an : (4.18
as linear superpositions of Bessel functidsse Appendix U Fn
B). The traces appearing in E@4.15 carry information
about the geometry and the relative orientations of the detec- 121 B,
tors that are correlated. Sy(&f )= ——— (4.19
Muv?F,
B. The noise power spectrum
1. Resonant mass detectors Finally, let us remark that formulas like Eq#$t.16) and

(4.17 hold in general for any kind of detector, because the

Let us consider a generic multimode resonant mass ayependence of the cross section on the coupling consgants
tenna, with the modes labeled by an inddx as, for ex-

ample, a resonant sphere, whtenl ag and q, does not chgnge according to the geqmetrical
Thé noise power spect’rum is a résonant curve peaked g%atures of trle antenna itself. Actually, if no scalar fields are
the proper frequencfy, of the modes. It can be characterized present,aj=0,=0, Eq.(4.17) vanishes and Eq4.16) be-
by its value at the pea%,(fy) and by its half height width, comes the well known formulg4.5) of Ref. [21] for the
which gives the bandwidth of the resonant mode. maximum sensitivity to spin 2 waves.
We now generalize the results of Reff21] and[27] con- The bandwidth of the resonant mode is given by
cerning S,(fy) of resonant spheres to the scalar tensor
theory. Denoting byBy the transducer coupling factgthe fn 1
fraction of the total mode energy available at the transducer AfN: Q_NFN , (4.20
outpud, in the case of spin 2 GW’s we have

1 4nGhBy  4mhpBoy whereQy is the quality factor of the mode, which is of the
S,(h;fy)= 2 s = > e (4.16 order of 10 andT'y is the ratio of the wide band noise to the
1+ag N Mov“F, narrow band noise in thith resonance mode.
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TABLE Il. Minimum detectable scalar spectrum (SNRL, T=1 yea) for the correlation between the
first monopole modes of two hollow spheres, with a 6-m outer diameter, made of GeAM {00 m/s) at

d=50 km.
M (ton) ¢ Hy fo(H2) A (H)  Tfo) S(&f(Hz ¥y hga,
832 0.25  0.73727 770 24.3 11.2 2:210° % 45x10°8
740 0.50  0.49429 609 19.2 11.7 2:860~ 24 4.0x10°8
489 0.75  0.4307 498 15.7 12.0 3910°% 4.1x10°8
230 0.90  0.42043 455 14.4 12.1 557024 7.1x10°8
2. The VIRGO interferometer electromagnetic noises and for= 400 km, which is the dis-

In the frequency region above 2 Hz the noise power Spect_ance between the sites of the resonant bars NAUTILUS, in

trum of the VIRGO interferometer can be approximated byFrascati, and AURIGA in Legnaro. Fa=50 km we ob-
the following analytical expressio[rSZ]:6 serve that the first zero of the function is around 3 kHz,

which is a frequency higher than the first resonant frequency

fo|® fo 2 for both the solid mass and hollow sphere. Ber400 km,
Su(f)=Py| 7| +Paf +|+Pg 1+ W) (4.2)  the first zero moves back at around 400 Hz.
Restricting ourselves to metric theoriag, £ 0), the SNR
with is
fo=500 Hz, P;=3.46x10°° Hz !, SNRe a5 3H3 [x Tﬂg(fno)rg(fno)
= ——\/=A, T 2T
P,=9x107% Hz !, P,=3.24x10"% Hz ., 1+ag8a® ¥ 2 1 f3,S,(&fn) w5

In this parametrizatiorP; and P, give the contribution of wheref is the resonance frequency for théh monopole

the pendulum and its internal modes to the thermal noisemode Tng evaluate Ed4.25 wetﬂ]eed %/he noise owerps oc-

respectivelyP5 controls instead the shot noise contribution. ' e P P
gum at resonancé=f,, given by Eq.(4.18 where we as-

For frequency smaller th{an_g Hz we assume that the no'ssumeﬁn0=0.1[21]. The only free parameter in E(4.25 is
power spectrum goes to infinity. 5 " . .
ag Which can be conveniently expressed in terms of the post-

C. Sensitivity of a pair of resonant spheres Newtonian Eddington parametgt0] as

We consider now the correlation between two resonant aS 1— Yeqq
spheres. As we are interested in scalar waves, we compute 2- 2 -
] . 1+ ap
the correlation between the monopole modes. Since the

monopole tensors are isotropic, Yedd Can be measured in light deflection experimédi®3].
1 The minimum detectable scalar spectrum, for an observation
Dilj :piZJ. :Di(]-OO):—5ij , (422 timeT=1 vyear, is found imposing SNR 1 in Eq. (4.25.

2 To isolate its dependence froigqq, in Table Il we list the

the overlap reduction function depends only on the fre—_reduced spectrurﬁlyEdeg(l—yEdd)/Z. We will comment

quencyf and the relative distancé From the general for- N S€c. V on the results obtained. .
mula (4.15 one finds In Tables II-IV, we consider hollow and solid mass

spheres made of CuAl, AI5056, and Mo materials which
9 3 3 1 have high density and high velocity of soufiil,25. The
Fr)=m ZAg( 7)+ EBg( T)+§Cg( 7)+Dg(7)+ ZEg( 7)|,  geometrical features of such spheres are the outer diameter
(4.23 @ and the ratio/ between the inner and outer radius. We
consider the first excited monopole mode, so in Egl8

(4.2

which explicitly readssee Appendix B we putn=1 andf,;=f,. For solid mass spheres we have
H,=1.14[23], while for hollow sphere#i; is a function of
Ff)=4mjo(7). (4.249 [, and some interesting values are listed in the tables them-
_ ) ) o selves[25].
In Fig. 1 we plot this function ford=50 km, which is Similar analysis of correlations can be repeated for the

roughly the minimum distance to decorrelate seismic an@quadrupole vibrational modes of the resonant spheres, which
can be excited by both spin 0 and spin 2 waves.
Let us face the calculation of the overlap reduction func-
Swith respect to this reference, the valueRafis slightly changed tion. The quadrupole tensoiz(f) are traceless, therefore the
as can be found irthttp://www.virgo.infn.it/senscurye We quote  only nonvanishing terms in the overlap reduction function,
here the most recent value. for any (e,€’), are
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TABLE lll. The same as Table Il in the case of two 31 ton Mo«5700 m/s) hollow spheres.

® (m) ¢ Hy fo(Hz)  Ag (Hz)  T(fo) S\(& o) (Hz ) h5 Q.

1.82 0.25  0.73727 3027 95.7 0.1 502 2.3x10°8

1.88 0.50  0.49429 2304 72.9 3.5 x10 % 6.2x10°°

2.16 0.75  0.4307 1650 52.2 7.2 X202 1.5x10°°

2.78 0.90  0.42043 1170 37.0 9.6 x30 28 4.8x10°°

T A = 71 2B (7 Tr( DO DLe) wherey andy are the orientati(_)ns of the two interferometer

w (N=m 2B DTHDLDS ) arms measured counterclockwise from the true North. There-
+4D,( T)Tr(SD(f)D(;/)) fore the location dependence of this tensor is split into a part

depending on the position of the interferometer on the Earth
+E (1) TSP Tr(SDE))]. (427  surface and a part depending on the orientations of the arms
with respect to the true North.

So, the functions to be inserted in the SNR in order to take Since the sphere noise power spectrum is narrowbanded

into account all the cross correlations between the twdVith respect to that of an interferometer, we assume the latter
spheres are to be constant, and equal to the value of E421) for f

=f 0, within the sphere bandwidthf,,y. This implies that
the SNR can be written as

! 1 !
Lu(7)= \/ 2Py XG0
e=¢€' e*¢€’
(4.29 ag  3H [m Qo) el Fro)
(1+a) 87 ¥ 2710 12 S[D(F0) S (Frg)
In Fig. 2 we compare the plots df,(f) andI',(f). The 4.32

former was computed in Ref34]. We choosed=400 km,
the distance between the sites of AURIGA and NAUTILUS. |, Fig. 3 we plotT'(f) for d=58 km andd=270 km,

which is the distance between VIRGO and the site of
D. Sensitivity of VIRGO with a resonant sphere NAUTILUS in Frascati. In this figure we plot also the curve
or the case in which the sphere is located nearly in the Gran
éaasso underground laboratory= 294 km). For this corre-
}ation I'/(f) gets approximately its maximum value. This
result is particularly important in view of the remark that for
the future resonant detectors with project sensitivity ap-
proaching the quantum limit, the cosmic ray interactions in
the detector may set a limit to the sensitivity in an unshielded
environment.
T For d=270 km the function has its first peak at
I'e(7)= 5 [3C(1) +4D (1) + EL 1) ]TI(SDy). ~591 Hz, withI';~0.98, and its first zero at1019 Hz.
(4.29 Notice that, as the spacingincreases, the peak frequency
moves to lower values. This is peculiar of the correlation
between a sphere and an interferometer, because for two
spheres, two interferometers or two bars an increasd of
Ry simply implies a shift to lower values of the first zero. For a
Ld(f)=4mio(n)THED,). (4-30 sphere and an interferometer this effect is due to the function

As pointed out in Ref[9], this function is a product of a part j2(7) in Eq.(4.30. The relative orientation dependent factor,

depending only on the distandeand on the frequency and a 1"(SD2), accounts for the full amplitude of the overlap re-
part depending on the relative position and orientation of th&luction function, being an oscillating function. In fact we
detector frames. For an explicit estimate of the minimumC@n express the overlap reduction func_tlon with respect to the
detectable scalar spectrum we need the expression of tf@tural frame of the interferometer defined befd In this
interferometer detector tensor with respect to the Earth cerframe, the direction of the unit vectsrjoining the antennas
tered reference frame, so that H¢.30 writes in terms of  is determined by the angleg(¢) and the detector tensor has

the latitude and longitude of the antennas. The interferometdhe simple form(3.2). Using the same convention for the
tensor is angles as in Ref9] we have

In this subsection we evaluate the minimum detectabl
scalar spectrum correlating the monopole mode of a sphe
and an interferometer, with the noise power spectrum o
VIRGO. We labelD; the tensor of the monopole mode of the
sphere andD, the one of the interferometer. Since Ty
=3/2 andD, is traceless, the general expression for the over
lap reduction function is

Explicit evaluation shows the overlap to be

] . N
DY =—[(cos 2y—cos 2y)e' (r)+(sin 2y—sin 2¢4)ek(r)],
2 4[( 2 e (r)+( X prexn] "Notice that the computations of RB] were performed in the
(4.32 interferometer frame and not in the Earth centered one.
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TABLE IV. The same as Table Il in the case of two solid spheres made of CwAK{00 m/s) and
AI5056 (v=5440 mls).

M(on) @ (m fo(H) Ay (H) Ty(fe) VS(Ef)(HZ YY)  ha,

CuAl 105 3 1672 52.9 7.1 510 2 2.6x10°°
167 3.5 1433 45.3 8.3 401072 9.2x1077

250 4 1254 39.7 9.2 3210 4.0x1077

AI5056 38 3 1935 61.2 5.6 7210723 1x10°°
60 35 1658 52.4 7.1 510" %4 3.2x10°°

90 4 1451 45.9 8.3 4710 % 1.3x10°©

1 ence frame there is a direct correspondence between the
Tr(SD;) = ESW‘Z@ COS 2p. (4.33  Newman-Penrose parameters and the spin of the incoming
GW and the information about the spin of the GW can be

_ easily extracted. If the direction of propagation of the GW
In Table V we consider Mo and CuAl hollow spheresdat y . o p p. g .
makes an angle with the axis, the situation is more com-

=270 km. The CuAl sphere gives the best sensitivities, be-

cause the resonance frequency is lower and it belongs to tk@cated as it can also be seen from 8,14 which is the

> 1t ta ! -y whieh
range where the overlap reduction function gets its maxiS0SS Section given by a GW with polarizatier,e” and

mum. S is the noise power spectrum of the sphere & O™ Eq.(3.24, which is the analogous with polarizatie.
that of VIRGO, both for the frequencfy,=f In _Eq.(3.12), for example, even ok Incoming wave 1S pure
’ 10—t spin 2 all the modes are excited and the situation is indistin-

guishable from that described by E@.24). The situation
V. CONCLUSIONS resembles very much that for an interferometer. But in the
case of the sphere, the pure monopole mode given from Eq.

s . . (3.20 is only excited by the scalar wave, giving a clear sig-
scalar GW's from the cosmic stochastic GW background.nal of the presence of a scalar wave. This is the motivation

Before discussing our results, we would briefly like to recall .
9 y for our proposal to couple an interferometer to a resonant

what IS t_he best strategy to perform such a measurement tetector of spherical shape. Let us now look at the results we
our opinion. As we argued in the Introduction, as far as th

type of detector to use is concerned, it does not seem pra ave obtained that, for the sake of generality, encompass also

? : SEEM Prafry sensitivities for pairs of resonant mass detectors.
tical to use only L shaped interferometers. If the impinging The behavior of the overlap reduction function for pairs

monopole mode of a scalar GW moves along 2fexis and  of resonant mass detectaiigs. 1 and 2is quite different

the arms of the interferometer lie in tixey plane, then the from the one for a resonant mass detector and an interferom-
two arms will be stretched by the same quantity. In this  eter (Fig. 3). In Figs. 1 and 2 we see a constant function
case an interferometer set to work on a dark fringe will notwhich abruptly goes to zero for certain values of the fre-
detect any signal. On the contrary, in this very configurationquency. These values of the frequency decrease by increasing
a spin 2 GW will give its maximum effect. This is a limiting the distanced at which the two detectors are located. The
case though. In general the direction of the impinging GW
will form a certain angle witlz and the perturbation due to a
scalar will be tangled with that of the spin 2 in an inextri-
cable way. In principle, one could reconstruct the directional*’
sensitivity patterns for the two spins to separate the two sig-
nals. The data needed to do this will require much time to be® \

The aim of this paper was to study the detectability of

gathered and for this reason also this proposal does not see
practical to us. What would happen if the detector were a © \

sphere? Let us first analyze the case of a GW from the view-
point of a reference frame centered in the origin of the * \/\

sphere. As it was discussed in RE22] the GW interacts
with the resonant mass detector through the so called electri 2 [============f========= S \/
tensorE;; = Rjgjo. If the direction of propagation of the in- \\""‘\WMM
coming GW is along the axis, the six components of this 1 10 100 Ty 10000
tensor can be expressed, using a null tetrad, in terms of the su Hz

called Newman-Penrose parameters which can also be ex- Fig. 2. Correlation between the quadrupole modes of two
pressed in the basis given by tb‘élm) defined in Appendix  spheres, one located at the site of AURIG#.35 N, 11.95 Eand

C 1. In turn this basis can be put in relation with the actualhe other at that of NAUTILUS41.80 N, 12.67 E d=400 km:
measurements performed by the detecf@gd. In this refer-  comparison betweehi,(f) (solid ling) andT (f) (dashed ling

062001-14
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FIG. 3. The overlap reduction functidn, of
VIRGO (43.63 N, 10.50 E;x=71.5 deg, ¢
=341.5 deg with a resonant sphere located at:
Frascati(41.80 N, 12.67 E d=270 km (solid
line); (43.2 N, 10.9 |, d=58 km (dashed ling

ot Gran Sasso laboratory42.4 N, 13.70 E d
1 :“, =294 km (dotted ling. See the text for further
v explanations.

L Lo
10000 100000

values of the monopole overlap reduction function and ofbe seen from Eq4.18 where bothM andv appear in the

I'(f) are of the same order of magnitude: however, thedenominator bub is squared.

quadrupolel’,(f) is even an order of magnitude smaller at How do these results compare to those obtained for spin 2

low frequencies. GW? It depends on the value of the scalar amplitu@eand
Quite on the contrary, the overlap reduction function forhe scalar coupling? sinceQ, is roughly proportional to the

the pair mterferpmeter—res'onant' mass detector is differerd.51ar amplitude and coupling whil,, is roughly propor-

from zero only in a certain region which depends on the;qnai 10 1+ ag [see Eqs(4.12 and (4.13]. At the moment

distance between the antennas and the direaiif the 42 has been only measured in our solar system and its value
sphere with respect to the arms of the interferometers. In Figyt 1, |evel is a3~ 1073 [33]. Such a small value is given to

3 itis shown that the values of the frequencies at which thene tact that Einsteinian general relativity seems to be very

overlap is maximum are in agreement with the resonant fre\'/vell verified. Such a value of? would give very little
quencies of the planned detectd8s. X 0

) . o chance to the planned resonant detectors to detect a scalar
The numerical results concerning the sensitivities ar

given in Tables II-1V for pairs of resonant mass detector%vgeb[%%ljground which should be limited by nucleosynthesis

and in Table V for the pair interferometer-resonant mass de-
tector.

The values given in Tables Il and 11l show the potential of f hégg(f)d(m f)<1075. (5.1
hollow spheres: going from realistic weights for such detec- f>10"8Hz
tors of the order of the dozens of tons to weights of the order
of the hundreds of ton&vhich are nonrealistic at the present We have also to mention Re7], where an estimate af§
state of the ajtthere is a gain in sensitivity of two orders of was attempted starting from the same nucleosynthesis bound:
magnitude. Such a gain could also be achieved going to mahe result is a weak dependence & from distance. Our
terials with a higher speed of sound propagafif] as can ignorance on the mechanisms that should gigeits value

TABLE V. Minimum detectable scalar spectrum (SNRLT=1 yea) obtained by the first monopole
vibrational mode of one hollow sphere at Frascati with VIRGB=-70 km). The CuAl and Mo hollow
spheres are those of Tables Il and lll, therefore only their resonance frequencies and the corresponding
sensitivities are written here.

fo (Hz) Ar, (Hz) T (fo) VSIO(HZY?) JSP(HZY?) h5 Qe

CuAl 770 24.3 0.76 2210 % 4.1x10° % 1.2x10°°
609 19.2 0.98 2910 % 3.9x10° % 6.6x10°°

498 15.7 0.92 3810 % 3.9x10° % 5.6x10°°

455 14.4 0.85 5810 %4 4.0x10 % 7.2x10°8

Mo 3027 95.7 0.19 9410 % 1.1x10 % 1.8x10°2
2304 72.9 0.16 12102 8.6x10° 28 1.0x10°2

1650 52.2 0.08 12102 6.4x 1028 7.0x10°°

1170 37.0 0.35 18102 5.0x 1023 5.2x1074
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(cosmological attractor? supersymmetry breaking@vents one degenerate functidf(f), then the framework is exactly
us from further comments on this point. Also concoctingthe same of Refd9] and[30], and, with the same algebra,
strategies with resonant mass detectors made of different mawe get Eq.(4.12).
terials (to exploit theq, dependendeis possible, but prob- We reproduce the main steps to exprigé) in terms of
ably premature given what we said earlier. We remark, howthe spectrumt). Straightforward generalization of EfP]
ever, that once operating, resonant mass detectors &hows that, for any tensor multiscalar theory, the energy den-
spherical shape could themselves provide a measuig of Sity carried by a GW is
using binary or collapsing stars as emphasized by many au- ~ . e
thorg and n):ore in pa?rticm?lar in RER25]. P Y man T00=pn+ ps=(1+ag)(32mG) " '[(h,,,h*") +8725(£%¢")],

As a final comment we remark that the sensitivity of the (A2)
pair interferometer-resonant mass detector seems to be a paihere the bracketé: - -) stand for integration over a finite
of orders of magnitude less than that of a pair of resonantegion of tridimensional space containing several wave-
mass detectors. The plots we have given show that a carefldngths. From this formula we recovK(f) as a function of
choice of where to locate the detectors can account for up tthe scalar spectruf¢(f). From Eq.(Al) one obtains
an order of magnitude in sensitivity.

<'§a'§b>=3zw3ygbf df £2K(f). (A3)
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APPENDIX A: CORRELATION FUNCTIONS where we used y3,y5"=n. Furthermore O =3,0
FOR MANY SCALAR FIELDS =n{ so we can infer from Eq(A4)
The SNR for scalar GW'’s has been computed in Ref. 1 3H3 s
following Ref. [30]. Actually, although the generalization to K(f)=(1+ap) 647r3f Q(f), (A5)

single scalar theorig®Brans-Dicke is trivial, the one to mul-
tiscalar theory needs the introduction of a very strong conyhere() .a=0

X ) : & é
straint on the fields themselves: in order to get a formula for
the SNR one can state the following lowest order condition APPENDIX B: THE OVERLAP REDUCTION FUNCTIONS
for the correlation function between the Fourier amplitudes

of the scalar fields: In the following we give the coefficients, introduced in
the main text, for the functionk .(f):
A ebrfr OV — b ' A Ny
(£ (1)1, Q)= 75(f — 1) 8(Q - )K(f)im) A Pio(1) =27 1(7)+]2(7)
B 4 jo(7)
whereK(f) is a real non-negative symmetric function. This B T A e
hypothesis means that the correlation function is the same for c T2 ol 7_') 7] 1(_7') 5j2(7) |, (BY)
every pair of scalar fields. This is not the most general situ- D 7j1(7) =5 2(7)
ation one can imagine: in fact, because of the symmetry E 72jo(7)— 107j 1(7) +35)5(7)

a«<b, one would expect to hawe(n+1)/2 distinct correla-
tion functionsK (). On the other hand, if we consider only andI',,(f)

g — (1) =27 1(7) +]a(7) TP o(7) = 27)1(T) +]o(7)

c :i —jo(7) = 27)1(7) = 5] (7) 82
D 72 —jo(7) +47)1(7) = 5](7) '

E 7] o(7) =107 1(7) +35) 5(7)

APPENDIX C: DETECTOR TENSORS
1. The sphere mode tensors

A basis for the pure spherical harmonics is given by SK&", with | =0,2[20]
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1 00 0 0 O
S(OO)EL 0 1 0], 'D(ls)z—; 0 0 1],
470 0 1 010
S@0= % o -1 0], D=7 0 -1 0F,
0 0o 2 0O 0 O
1 =i 0 01
S@=2)= ; +i -1 0], D(zs)E_E 1 0 ,
ar
0 0 0 00
with
G 0 0 1
* i € €' 1 €€’
S@=x1)= 5m 0O 0 —i]. (Cy Z}j:pi(j)pi(j )255 _ (C4)
¥1 —-i O

From the definition of the real spherical harmonics we have
The normalization is chosen so th&§™n'nl =Y., n is the
radial unit vector. The vibrational response of a spherical DO — _ /4_778(20)
detector is usually written in terms of this pure spin basis. 15 '
Otherwise, following Zhou and Michelsdi9], the vibra-
tions of a resonant sphere are more conveniently described as 2
functions of the real quadrupole spherical harmonics, in ad- D=/ E(S(ZH)—S(}”),
dition to the monopole spherical harmonigy=(47)

YOEYZO! D(lS): —i [21_757-(8(2+1)+8(271)),
(CH
Yic= ! (Y Yoi1)
Yoy e pea_ [T 5@ 5(2-2)
15 '
[
Y1s=—=(Ya-1+Yao11), (C2 29 _i 1|27 gr2)_ g2-2)
s \/E D i 15(8 S ).
1 2. Explicit expressions of the polarization tensors

Y= —2(Y2,2+ Ya2:2), in the detector frame

S

Let us consider now the wave framen(n,)) and the
detector frame X,y,z) defined in Eq.(3.5 by introducing

[
Yas= E(YZ—Z_YH 2)- the rotation matrix
) ) ) o CoS¢ sing 0
A convenient basis for the real spherical harmonics is given ~ i i
by D= /7S and D with e=0,1c,1s,2c,2s. These R(Q)=| —cosfsing  cosfcos¢  sing
traceless tensors are defined as sindsing  —sinfcos¢ coso
(Co
1 0 O . .
J3 where the anglesé, ¢) are defined following the conven-
D)= 3 01 0/, (C3)  tions of Forward 16]. The polarization tensors of the GW in
0 0 -2 the antenna frame®(()) are obtained by rotating the ones in

the wave framee® as

PLo— _ e8(0)=RY(0)e®R(Q); B=X,+,s. (C7)

N| =

0 O
0 O
10

o O -

The tensors in the wave frame are
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0 0 1 0
et = -1 0f, e*=|1 0 0],
0 0 O 0 0O
1 00
es=|0 1 0 (C8)
0 0O
From Eq.(C7), for the spin 2 polarization tensors we get
) 2(co¢p—cosS O sirtd) (1+cog6)sin 2¢ sin 20'sin ¢
e+(fz)=fn®ﬁ1_ﬁ®ﬁ:§ (1+ cog)sin 2¢ 2(sifp—coghcogp) —sin20cose |, (C9)
sin26sin¢ —sin 26 cos¢ —2 sirfg
—cosfsin2¢ €0sHCcos2p cos¢sing
e*(Q)=men+nen=| cosfcos2p cosfhsin2¢ sindsing |. (C10
CoS¢ sing sinfsing 0
For the scalar polarization tensor we have
) 2(cog ¢+ cosdsirtd) sirf e sin 2¢ —sin26sin¢
eS(ﬁ):r}]®rh+ﬁ®ﬁ:§ Sirf 6 sin 2¢ 2(sirP¢p+cogfcodp) sin26cosep | . (C1))
—sin26sin¢ sin 26 cos¢ 2 sirté
|
3. The Earth centered reference frame R
Djj(X,Y) = 5 (XiX;—YiY)), (C13

In Appendix B we have listed the coefficients which give

the dependence of the overlap reduction function on the freghere X and ¥ are chosen to point in the detector arms
quency and on the distance between the antennas. To infer {§ections.

convenient to express the detector tensors in the referen¢g wyritten for the tensors describing the geometrical features

respect to a triad of orthogonal unit vectorsy(,r), wherex  reference frame, Eq$C5) become
andy lie on the tangent plane andpoints along the Earth

radius. This triad defines univocally the antenna coordinate J3
system. Given the latitudef), measured in degrees North DO= "2 (XX +Y.Y.-22.Z),
from the equator and the longitud®, in degrees East of N 6 . ! .
Greenwich, England, the relation of the triad of vectors
(x,y,r) with respect to the Cartesian reference frame 1
(X,Y,2) originated in the center of the Earth is D= - >(XiZj+ZX)),
X=—sin® cos®X—sin® sin®Y+coBZ,
1 .. ..
A i i D=~ S(YViZ+2Y)), (C14
y=—sin®X+cosdY, (C12
- - e s 20 L oo o
r=cos® cos® X+ cosO sin®Y+sin®Z. Dj; :E(Xixj—YiYJ),

A simple example is given by the tensor of an interferom-
eter[16] which, in the Earth centered frame, is usually writ- (:
ten as 1
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