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QCD and QED exhibit an infinite set of three-point Green'’s functions that contain only Okubo-Zweig-lizuka
(OZI) rule violating contributions, andfor QCD) are subleading in the largd, expansion. The Green’s
functions describe the “decay” of 8°©={1,3,5...} " exotic hybrid meson current to twb=0 (hybrid)
meson currents with identic&® andC. We prove that the QCD amplitude for a neutral hygrdg3,5 ...}~ *
exotic current to create° only comes from OZI rule violating contributions under certain conditions, and is
subleading inN, .
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I. INTRODUCTION dlagram is obtained by notlng that the amplitude to create a

uu pair is the same as for ad pair by the assumption of
More than a decade ago Lipkin argued that an explicitlyisospin symmetry, which treats the up and down quarks the
identified contribution to the decay of a same. The three top right “hadronic” diagrams are now ob-

[—1j{1|f:5 ; (-j} +t“e>f£?]t'c_ thyb”? meslon to nm ;/amshes tained from the three top left “quark” diagrams by attaching
ereJ denotes the internal angular momentuPn(par- o . L — Do
ity) the reflection through the origin, ar@l(charge conjuga- the initial hybrid to the initialud quarks, and the finat™ to

tion) particle-antiparticle exchange. These are conservethe finalud quarks. Since the flavor wave function of the
guantum numbers of the strong and electromagnetic interacontainsuu+dd, it is attached to eitheuu or dd, with a
tions. By “hybrid meson” we mean a fermion-antifermion positive relative sign. Because each of the three top left
with additional gauge bosons. “Exotic” means that #fe®  quark diagrams are equal, it follows that each of the three top
cannot be constructed for conventional mesons in the quankight hadronic diagrams are equal. The two bottom diagrams
model, or equivalently that there are no local currents builtdepict the decay amplitude, taking into account that there are
only from a fermion and antifermion field that can have thesawo possible ways for the finaj and 7" to couple, since the
JPe, quark in the initial state can go either to thgor the 7.
Lipkin's intuitive argument was later extended and placedLooking back at the top right hadronic diagrams one imme-
in a more formal context, called “symmetrization selection diately notices that the decay amplitude vanishes. This is the
rules” [2]. However, these need to be converted into rigorousiesired result.
qguantum field theoretic arguments, which is the subject of The argument above can be repeated without assuming

the current work. isospin symmetry, as will be the case in the remainder of this
We outline Lipkin’s intuitive argument for the decay of a work, if the initial state is neutral. Hence isospin is not an
positively chargedJ®=17,37, ... state topm" when essential assumption. It appears strange that a decay ampli-

strong interactions with isospin symmetry is assumedtude vanishes from very general considerations if the decay
G-parity conservation implies that the neutral isospin partneis allowed by the conserved quantum numbers of the strong
of the initial state isJ”© exotic. We consider the decay pro- interaction. This paradox is resolved when one notices that it
cess where a quark and antiquark in the initial state proceedas only argued that the connected contribution to the decay
in such a way that the quark ends up in the one final mesorvanishes, not the entire decay amplitude. Lipkin's argument
and the antiquark in the other mesffig. 1). This decay serves as a guide to how a quantum field theoretic argument
process is called “connected,” because each meson is conwvould proceed.

nected to the other mesons via quark lines. The gluons are In this paper we demonstrate that some explicitly identi-

not indicated. The fact that the neutral isospin partner of théied contributions to certain three-point Green’s functions

initial state isJ”© exotic, and that the initial state contains a vanish. This is calledield symmetrization selection rules
qguark and antiquark, implies that the initial state is a hybridParticularly, the connectefOkubo-Zweig-lizuka(OZI) al-
meson. The argument is depicted in Fig. 1. Taking the initialowed] contribution to each Green’s function vanishes.
hybrid at rest, they and 7+ emerge with momenta-k and  Hence, the Green’s function only has a disconne¢@d!

k respectively. First consider the three top left diagrams. Théorbidden contribution, which is expected to be phenomeno-

top diagram has a negative sign in front by conventionlogically suppressed by virtue of the OZI rul@]. The

When the transformatiok« —k is applied, the middle dia- Green'’s function is built from twd= 0 (hybrid) meson cur-

gram is obtained, noting that the decay is in an odd partiatents with identicaP andC, and aJ*¢={1,3,5...} " ex-

wave, which acquires a minus sign under the transformatiorotic hybrid meson current.

This is a general property of odd partial waves. The bottom We subsequently investigate the physical consequences.
The amplitude for §1,3,5. ..}~ " hybrid current to create
nm° is shown to be proportional to the Green’s function

*Email address: prp@lanl.gov under certain conditions. Because some explicitly identified
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contributions to the Green’s function vanish, it follows that Il. SYMMETRIZATION
the amplitude does not come from these contributions, called

- . . . Consider local currents of the form
symmetrization selection rules at the hadronic lefarticu-

larly, the amplitude does not arise from the connected con- {A,(X),B(X),C(x)}

tribution to the Green’s function, and hence only from the ’

disconnected contribution, which is expected to be sup- —

pressed by virtue of the OZI rule. The experimental conse- > hi(0{aa,(x),bib(x),cic(x)}#i(x), (1)

I
guences pertain to a central issue in hadron spectroscopy: the

search for hybrid meson bound states beyond conventionghere 4.(x) is a quark or lepton field of flavoi, and

mesons and baryons. a;,b; ,c; are ¢ numbers weighting the flavors. The currents

For quantum chromodynamid®QCD) with a large num-  are diagonal in flavor. The “matricesd,,(x), b(x) andc(x)
ber of colorsN,, the foregoing conclusions will be ex- contain an arbitrary number of Dirac matrices, Gell-Mann
pressed as follows: Because a disconnected contribution toglor matrices, derivativegacting both to the left and the
Green’s function is subleading in the laryg expansion, and right), gluon or photon fields and correspond to gauge invari-
the Green’s function only has a disconnected contributionant currentg5]. Acommon choice for the flavor structure of
the Green’s function is subleading N.. Also, since the the three currents isu—dd, uu+dd—ss anduu— dd in-
amplitude for a1,3,5. ..}~ " hybrid current to createym®  terpolating for an isovector resonance, arand a=°. The
only comes from the disconnected contribution to thematrix a,(x) in Eq. (1) is chosen to ensure th&=—. We
Green’s function, it is subleading N, . require that currentB andC haveJ=0, as well as equality

It has previously been shown that the connected part obf b(x) andc(x), implying equalP andC. Note that equality
the quenched Euclideathree-point Green'’s function of spe- of the matriced(x) andc(x) doesnotimply equality of the
cific hybrid meson neutral 1% and two pseudoscalard( currentsB(x) and C(x). BecauseC is the same for both
=0) currents vanishes exactly in QCD,isbospinsymmetry  these currents, charge conjugation conservation requires that
is assumed4]. We remove the three italicized superfluousthe C of A (2) is +. TakeA, to have odd) [6]. HenceA,,
assumptions, but still need the connected part and hybrichust be chosen to hal¥©={1,3,5...} *. These are ex-
meson currents. We also generalize beyond specific currentstic quantum numbers, arfd, is built from a fermion and an
beyond I * and pseudoscalar currents, beyond the conantifermion field, so that the current is a hybrid current, i.e.
nected part, and beyond QCD. has to contain at least one gluon or photon field. For the

In Sec. Il the currents and Green’s functions are intro-current withJ+0, the appropriate Lorentz indices are indi-
duced. The principle of symmetrization is developed. In Seccated by.
[ll the Green’s functions are calculated leading to succinctly We start by demonstrating that certain three-point Green'’s
stated field symmetrization selection rules. An explicit ex-functions are equal to their antisymmetric parts. This is done
ample is discussed. In Sec. IV the physical consequences abg first defining the spatial Green’s functia@,,(x,y,z), and
investigated, yielding symmetrization selection rules at thedlecomposing it into symmetric and antisymmetric parts. The
hadronic level, which are concisely stated. Section V studie§&reen’s function of interest will be the Fourier transform of
the selection rules in the largd; expansion. Section VI the spatial Green’s functioig ,(p,t). We then argue that the
contains further remarks. Fourier transform of the symmetric part of the spatial
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Green’s functionﬁi(p,t), vanishes. Hences ,(p,t) equals Bose symmetry states that identical bosons are not allowed
the Fourier transform of the antisymmetric part of the spatiain an odd partial wave. The way one shows this would be
Green’s functiongﬁ(p't)_ analogous to the steps abovéBiﬁ(p,t) =0. Hence, the Fou-

Define the three-point Minkowski space Green’s functionfier transform of the symmetric part &,(x,y,z) in Eq. (7)
vanishes by arguments that are the field theoretical version of

G.(x.y,2)=(0|B(X)C(y)A,(2)|0) (2)  Bose symmetry. ,
From Eq.(7) follows the desired result

with Xo=Yyo=t, z;=0 andz=0. The Green’s function de-

scribes the decagproduction process of a curremk,(z) at G.(P.H)=GL(p.b). 8
time 0 propagating into the findinitial) currentsB(x) and
C(y) at some positivénegative time t. Although we shall Ill. FIELD SYMMETRIZATION SELECTION RULES

refer toG,(X,y,z) as a “Green’s function,” the usual usage o ] o

of the term requires the currents to be at different times, i.e. e proceed to eXpll_CIt_Iy ldennfy some c_ontrlbutlons_to
Xo# Yo, With the currents ordered from positive to negativeGK(p:t) that vanish. This is attained via partially evaluating
times. The Green’s functiof® ,(x,y,z) can be written as GL(p1). lt is subsequently shown that the action of a certain
Gi(x,y,z)+Gﬁ(x,y,z), i.e. the sum of parts symmetric and operatorO, on the Fourier transform of the antisymmetric
antisymmetric under exchangeofindy, as any function of  part of the Green’s functio®,G/(p,t), does not contain

X andy can be Writ_ten. some contributions. Becaus@ﬁ(p,t)=GM(p,t) from Eq.
Define the Fourier transforms (8), it follows that(A)pG#(p,t) does not contain these contri-
butions.
GM(p,t)EJ d3xd3yei(p'X*P'V)Gﬂ(x,y,z), ©) We now evaluate the contributions to the Green'’s function
Gﬁ(x,y,z) with the currents in Eg.(1), using that

Gﬁ(X,y,Z) = %[G,u(xvyiz) - G#(y,X,Z)],

Gh(x.y,2)=3(0[[B(X)C(y) ~B(y)C(X)]A,(2)|0)

{G5(p.1),GA(p.1)}

_ i(p-x—p-y)[ =S A
=f d*xdy P PIG(x,y,2),GA(X,Y,2)}.

1 _
(4) =5 Ej bic;{OIL i (X)b(X) (%)
Note that these Fourier transforms cannot be inverted to give <o N — T N
the spatial Green’s functions, since they only have one mo- BiCW () = ()b (V) ¥ (X)
mentum variablep. From Egs.(3) and (4) it follows that X c(x)j(x)]1A,(2)[0). 9
G.(p,t) =G5 (p,t) + GL(p.Y). , - . . .
By exchanging integration variablas—y The various contributions to this expression are now dis-

cussed. Consider contributions to the expression where the
. same flavors are isolated in the curreB{x) andC(y), i.e.
GM(—P,t):f d®xd®yd P> PIG ((y,1),(x,1),2) contributions wheré=j. Using Eqs.(4) and(9), these con-
tributions toGﬁ(p,t) can be written

_ 3y 43y, i (P X—P-Y) [ S A
=G5 (p,t) —GL(p.t). (5) _ _
X(O[[¢i(x)b(x) (), i (Y)b(Y) #i(y) 1AL(2)|0)

Exchanging integration variables— —x andy— —vy vyields
ging g y yy =A,(p,b), (10

Cu(=PH==GCup. ® where we usetd(x) = c(x), and denoted the contributions by

A, . The important observation is that the difference of cur-
Jents in Eq.(9) has simplified to the commutator of currents
dn Eq. (10). It is possible to show thak , has a polynomial

servation of parity. We henceforth restrict ourselves to th
arity conserving theories of quantum electrodynamic ) .
?QE[);) and QCD.gWe also used tf?at the product of t¥1e pari_depende_nce op (see Appe.nd|)< [7]. _Thgre henge exists a
ties of the currents3(x), C(y) and A,(z) is —1, which polynomial operatofcontaining a dAerlvaUve of high enough
follows from the assumptions below Eg). This means that Power inp) with the property thaDpA ,(p,t)=0. This re-
the decax(productior) process is in odd partia' wave. E(@) sult will later be demonstrated in an eXp|ICIt eXample. We

is a well-known property of such a process. conclude from Eq(10) that OpGﬁ(p,t), and from Eq.(8)
Combining Eqgs(5) and(6) yields the result also0,G ,(p,t), do not contain contributions from the same
S flavor in currentB(x) andC(y), a result which corrects the
G.(p,t)=0. (7)  former treatmenf8]. Although this is the desired result, and
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0 l
C. ) C. ) FIG. 2. Topologies contributing to E¢11).
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Topology 1 Topology 2 Topology 3

the end of the mathematical derivation, it will be pivotal to of §t will not change our eventual conclusions. Since all the

develop a more intuitive understanding of the contributionscurrents are at different times, with the currents ordered from
OpGM(p,t) is an operator acting on the Fourier transformlarge to small times, it follows tha® ,(x,y,2) is a Green's

of G,(x,y,z). For the purpose of illustration in the next few function according to the usual usage of the term, which

paragraphs, consider the tinteto be positive, withB(x) implies that it can be represented by a path integral. For

slightly advanced at timg&,=t+ 6t with respect toC(y) at  concreteness, consider the contributior(x,y,z) in Eq.

time yo=t in the definition ofG ,(x,y,z) in Eqg. (2). Here st (2) from the up quark flavors in the currer@$x), C(y) and

is small, positive and nonzero. The signtair the magnitude A, (z) in Eq. (1), which is (moduloayb,c,),

f :DADE:D://6(f(A>)devwFU<x>b(x)u(x)&y)c(y)u(y)ﬁz)a,L(z)u(z)exp(—i f d'x £

= f DA 5(f(A))det/\4Fdetyos—lexp(—i f d4xE(A)){Tr[—aﬂ(z)Sﬁ(z,x)b(x)Sﬁ(x,y)c(y)Sﬁ(y,z)
—a,(2)S{(z,y)c(y)Sh(y,x)b(x)S}(x,2)]+ Tr[a,(2) S{(z,x)b(X) SH(x,2) I T c(y) Si(y.y)]
+Trla,(2)S)(z,y)c(y)SH(y, 2) X Ti[b(x) Sh(x,X) ]+ Tr[a,(2) S (2,2) I T b(x) SH(X,y) c(y) SH(Y,X)]
—Trla,(2)S((z,2) ] T b(x)SH(x, ) 1T c(y) Si(y,y) 1} (12)

The gauge-fixing conditio@(f (A)) and Faddeev-Popov de- flavor. AlthoughB(x) and C(y) contain various different
terminant deM are indicated. The QCD or QED Lagrang- flavor structures according to E¢l), topologies 1 and 3b
ian is denoted by’ and the part containing terms without force only the same fermion flavors B(x) and C(y) to
fermions £®. The up quark propagator in a background contract. For the other topologies, it is sometimes the case
field is S*(x,y) and the fermion determinaftontaining fer- that the flavors fromA two currents are the same, but not al-
mion loops dety,S™* [9]. ways. Recalling thaO,G,(p,t) does not contain contribu-

The terms on the right-hand sidBHS) of Eq. (11) cor- tions from the same flavor in currenB(x) and C(y), we

S o . perive the following:
respond to the topologies in Fig. 2. This is seen by associat- Field symmetrization selection rulé§SSR. All contri-
ing with each up quark propagator an up quark line in thebu

. . . . i . tions to the three-point Green’s functicfrbG) (p,t) from
flguLe. Als?'z IS as;omatgg V\rglthglhebleft har:\d ;II(—jg'SI) Oé the connected topology 1 and topology 3b (Mand some from
each topology, and,y with the blobs on the - N EQ- topologies 2 and 3a), i.e. contributions from the same flavor

(12) the first two terms correspond to the quark line “con- i, currents Bx) and Q(y), vanish exactly for all momenia
nected” topology 1 in Fig(2), the second two to topology 2, and times t for an infinite set of equal matrice&p= c(x)
term five to topology 3b and term six to topology 3a. Theand different flavor structure currents(B) and C(y) in
topologies hence represent all the different ways that a ferQCD and QED. The Green’s function decribes the “‘decay”
mion and antifermion field on the LHS of E¢l1) can be ofaJ°°={1,3,5...1 " exotic hybrid meson current to two
“contracted” by the fermion integration to yield the fermion J=0 (hybrid) meson currents &) and C(y), which are
propagators on the RHS. identical (b(x) =c(x)), e.g. have identical parity and charge
Similar manipulations to Eq(11) can be performed for conjugation, except possibly for their flavor
contributions where not all the fermions in the currents are The contributions that vanish by the FSSR are those
up quarks, or not all the fermions have the same flavor. ~ from the same flavor in current8(x) and C(y). Since
From Fig.(2) it can be seen that topologies 1 and 3b havethe productB(x)C(y) occurs in the Green’s functiofsee
the interesting property that when a certain flavor contribute&d.  (2)], these are contributions of the form
from currentB(x), then thesameflavor contributes from  b;c;¢;(xX)b(x) i (X) i (y)c(y) #i(y), wherei indicates the
currentC(y). This is because the currents are diagonal inflavor, and no summation is implied. It is evident that the
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precise values ab; andc;, i.e. the flavor structure dB(x) function. This leads to a general relatifgq. (14)] between
andC(y), do not affect the fact that the contributions vanishthe Green’s function and the amplitudes fof1a3,5 ...}~ *

by the FSSR. The same is true f&y,(z). For example, both hybrid current to create the asymptotic states. Under certain
the common choice aiu—dd.uu+dd—ss anduu— dd for conditions this equation can be simplified to show that the

_ Green’s function is proportional to the amplitude for a
the.flavor structure OA“(Z_)’ B(x) andC(y), and the alter {1,3,5...}"* hybrid current to createy=®, [Eq. (15)]. Be-
native choice of respectivelyu—2dd,uu+dd—2ss and

- cause some explicitly identified contributions&lgGM(p,t)
2uu—dd, obey the FSSR. _ vanish, it follows that the amplitude does not come from
The FSSR do not depend on the various parameters @fese contributions.
QCD and QED, i.e. masses, couplings, charges, number of Restricting to QCD on its owfil1], from the definition
colors and flavors, but do require tReP violating 6 param-  [Eq. (3)]
eter to be zero, since this parameter violates parity conserva-
tion. FSSR also occur as pure QED, where QCD interactions G, (pt)= J d3xd3yei(p-x—p-y)
are turned off. pem
We now discuss an example to which the FSSR apply.

The gauge invariant isovectorlike local curredt,(z) X D (0[B(x,00C(y,00e""|n)(n|A ,(2)]0),
= (Tj) WLU@F(DNyiu(2) —d(2) Fl(2)\*yid(2)]  is "
JPC=1"" exotic[4], wherey; and\? are Dirac and Gell- (12

Mann_ c_olor matrlc_es_re_sp_eqtlvely, a_nd'j,()#_ls a t_ensor where we used time translational invariance of the fields
combining the spatial indicesj,k to build a spin 1 object. It B(x) and C(y), e.g. B(x,t)=e"'B(x,00e~ ", with H the
is a hybrid current, since it contains a gluon field, as can beycp Hamiltonian. The 'producB(x b)C(y 05 and A (2)

. ) ! ’ #
seen by the presence of the gluon field tensr. The  should be colorless to make the expression nonzero, which is
gauge-invariant isoscalar and isovectorlike local currentshe case since each current has been assumed to be gauge
B(x) =U(x) ysu(x) +E(x) ysd(X) —?(x) vss(x) and C(y) invariant. If the quarks have their physical masses, the lowest
i Y —-0- i in the statesand the lowest
=u(y) ysu(y)—d(y) ysd(y) are pseudoscalad{c=0""), asymptotic states contain t 7,
with 7 a Dirac matrix. Note thab(x)=c(x) = ys, but that  Stable states of the QCD spectr{i2]. The = only decays

. . weakly and electromagnetically, and is hence stable as far as
B(x)# C(x). Also, we do not assume isospin symmetry. ToQCD on its own is concerned. The has a width of only

elaluate AA in Eq. (10, the  commutator 10 ° times the typical hadronic width of 100 MeV so that it
[u(x) ysu(x),u(y) ysu(y)] must be evaluited. The commu- g very nearly stable.
tator can be shown to equaf(x—y)[u(X)ysyoysu(y) Space translational invariance of the fiel@¢x) and

—U(y) y5v0vsU(x)]. Because of the delta function, it is im- C(¥), €.9.B(x,0)=e~""*B(0)e'”*, with P the QCD mo-
mediate that\ ,(p,t) in Eq. (10) is independent of, i.e. it mentum operator, is now employed. Performing one of the
has a polynomial dependence pnThe polynomial oper- Integrations in Eq(12) (the one ovex+y),
ator O,=a/dp has the promised property th&,A ,(p,t) .

p P _
=0. In this example, the commutator actuallyﬂvanishesGu(p’t):; (2m)°8%(py)eEnt
because the delta function forcex=y, so that

(X =y)[U(X) 757075U(Y) = U(Y) 757075U(x) ] =0; imply- ><<0‘( J dsxeip.xB(X,O))C(o) n> (nlAL)]0),

ing thatA ,=0, and one can tak®,=1. There does, how-

ever, exist examples whefép is not trivial as in this case. (13

For examgle, orLe Vcan §how that rgp_laqb@x)= ¥s by where the integration variable-y is denoted by. Herep,

b(x) = ysF,(X)F*#*(x) yields a nontrivialO, . andE,, are the momentum and energy of statdhe Euclid-

ean space analogue of all the steps up to here is obtained by
IV. SYMMETRIZATION SELECTION RULES AT THE taking t— —it. However, we now restrict to Minkowski
HADRONIC LEVEL space in order to integrate over time. From Ep)

We now investigate the physical consequences of the PN iEt
FSSR, particularly the amplitude fofa,3,5 ...}~ " hybrid f,wdt OpGL(p.t)e
current to createnp7®, which can be obtained from the
Green'’s function. This is done via an alternative route to the A
former treatmenf4], which contains erroneous aspe[ds). - zn: (2m)*%(Pn) S(E— E)Ox(0|
A natural quantity to obtain from the three-point Green’s
function is the amplitude for the hybrid current to create a
stable two-body state. The hybrid current is not expected to
interpolate for a stable particle, so that we shall not be able to (14)
extract theT matrix for a stable hybrid particle to decay to
the two-body state. To obtain the amplitude, a complete saihereE is a real number. The delta functions indicate that
of asymptotic, i.e. stable, statesare inserted in the Green’s the asymptotic states are at rest and have engrgy

X(J'daxe‘p'xB(x,O) C(0)[n)(n|A,(2)]0),
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For E below thew* 7~ #° or #%#%7#° (called theww#)  condition can heuristically be satisfied by noting that four
threshold onlys7 asymptotic states contribute. Since for times higher up/down quark masses would yield a two times
two—pion states at rest{w’k 70— k|A,(2)[0) and heavierm, while thes mass would not change much, so that
(m k7 —k|A,(2)|0) respectively vanish by Bose symme- 7 can move below thers threshold. This follows from the
try and CP conservation, this forces the LHS of Eq4) to  fact that thew and » massesm, andm,, arecym,+my
be zero. IfE is above ther 7 threshold the sum in Eq14)  andcy/(4mg+m,+my)/3 by chiral symmetry breaking, with
can be shown to be infinite. However, we shall show belowNy,q,s the current quark masses ao@ constant. Under the
that if the »#° threshold can be made below therm  QCD dynamics conditiory lies below threshold so that
threshold, in contrast to experiment, the sum has only oné iS stable. This means that the formalism is exact when
contribution. This is important because we wasirgleam- ~ aSymptotic states involving are inserted in Eq(12).
plitude on the RHS of Eq(14) to be proportional to the ConsiderE between thepm” and a7 thresholds. Then
LHS. the sum in Eq(14) is over all on-shelkr and 5 states with

In QCD we are free to tune the quark masses away froniomenta k; — and  k,  respectively, ie. 2,
the masses corresponding to the experiment. Takingytfe ~ =Jd°ky/(2m)°[d°k,/(2)°. Noting thatp,=k;+k, and
threshold to be below the  threshold for some range of E,=\k2+m?2+ Vk3+ m?, and performing the integrations,
qguark masses is called the “QCD dynamics” condition. ThisEq. (14) implies that

fw dt O,Gn(p,H)eE=1(q?) VIE*=(m_ +m,)?][E*~(m,—m,)?]

8(2m)%E*

X[E*~ (M, +m,)?(m,—m,)?] f dnkqmépwl( f d°xeP*B(x,0) |C(0)| 7k 7—K). (15)

Hereg“=k{—k4 andk,=—k,=k. In the expression? is a This concludes the physical consequences of the FSSR.
function of|k|, and|k| is restricted byE,=E, so thatg? is a

function of E. The amplitude for a hybrid current to creage

and 7 mesons,(7k 7—k|A,(2)|0), should occur in Eq. V. LARGE N ¢

(15). However, we used the Lorentz properties (afk . .
—k|Any(2)|0) to define it asy,f(g?), withma spatial< index, We now study the effect of_t_akmkjc to be large in QCD

for A, having J=1 [13]. For a time indexm and otherJ _[14]: Here one makgs a classification baseq on power count-
similar results follow. ing in N;. The amplitudg 7k »—k|A,(2)|0) is O(1) [15],

On the RHS of Eq(15), (0|B(x,0)C(0)|wk —k) isa SO thatf(g?) is O(1). Thecontributions to the Green’s func-
property ofy and . For example, it contains a term propor- tion from topology 1 isO(N;) to leading order, from topolo-
tional to (0|B(0)|7k)(0|C(0)| 7k), a product of individual ~gies 2 and 30(1) and from topology 3&(1/N,) [15], so
properties ofr and 5, when the currentB(0) (C(0)) have  that the LHS of Eq(15) would ordinarily beO(N.). How-
the same quantum numbers as the asymptotic Si’at@ﬁ) ever, since tOpOlOgy 1 does not contribute by the FSSR, the
One hence interprets EG15) as meaning that the decay LHS is O(1), andhencef(q?) is O(1/N.) [16]. Hence both
described by the three-point Green’s function on the LHS igluantities are subleading to their ustl counting. Hence
proportional to the decay amplitude describedfifg?) on
the RHS up to a “constant” of proportionality which de-
scribes properties ofy and 7. Suppression of the decay on 1, 9
the LHS should hence translate into suppression of the decay N—COpG#(p,t)HO f(q)—0 asN;—x», (16
on the RHS, since the properties pfand 7 should remain
unaltered.

From Eq.(15), noting thatf(q?) is proportional to the where both expressions ordinarily remain nonzeroNas
LHS, we obtain the fOIIOWing Symmetrization selection rUleS_,oo_ The two exacﬂy Vanishing expressions are respective|y
at the hadronic IeVe[SSR: The amplitude for a neutral the Consequences of the FSSR and SSR in |Nge'rhe
JPC€={1,3,5...} " exotic hybrid meson current to create gsR in largeN, is, The hybrid F€={1,35...} " — yx°
or annihilate 7777(3' dmf(g%), does not arise, in QCD, from  amplitude isO(1/N,) in QCD, i.e. vanishes exactly in the
contributions to QGn(p,t) that vanish by the FSSR. This large N, limit, for quark masses chosen such that e’
holds for quark masses chosen such that #he” threshold  threshold is below ther ™ 7~ #° or 7w°#%#° thresholds, and
is below ther™ 7~ % or mO7%7#° thresholds and for E be- for E between these thresholds. Thisist the same as Bose
tween these thresholds symmetry, sincey and #° are not identical particles in
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the largeN, limit. The finding that the amplitude for the for the FSSR. In Ref.2] the selection rule applied to flavor
hybrid current to decay toy#® is subleading inN intu- components of théhybrid) mesons B and C which are iden-

itiVG'y follows from the fact that OZI-vioIating processes are tical, e.g.uu for both. This is exacﬂy the case for the con-
large N, suppressed. tributions to the Green’s function for which we have FSSR.
The preceding discussion in this section assumed that the The symmetrization selection rules at the hadronic level
LHS of Eq. (19 is “ordinarily” of O(N). This is attained have important consequences for models. The hybrid
when (0|B(x,0)C(0)| mk »—k) on the RHS of Eq(15) is  {1,35...} *— »=#° amplitude only comes from discon-
O(Nc). This is true when the currenB(x) (C(y)) individu-  nected topologies. This feature puts the SSR in contradiction
ally have the same quantum numbers as the asymptotic statggth most current models of QCD, although most find it in
m (7) or n () [15], i.e. when the currents are pseudoscalaran approximate form. Particularly, the flux tube and constitu-
Up to this point in the paper we have not required either ofent gluon models all find an approximate selection rule for
the currents to have a specific parity and charge conjugatiorthe connected decay of the low-lying 1 hybrid to 7 [2].
However, if the currents are not pseudoscalarin these models the decay is proportional to the difference of
(0[B(x,00C(0)|7k n—k) is at mostO(yJN) [15], so that the sizes of the; and = wave functions, which is in contra-
the LHS cannot b&(N,), and hence should be regarded asdiction with the SSR. Constituent gluon models also have
ordinarily O(1): thenext possibility in theN. counting. The  low-lying hybrids called “quark excited” hybrids whose
FSSR still yield that the LHS i€)(1), but asthis is not new  connected decay t9=° vanishes exactly, consistent with the
information, the FSSR imply no additional restrictions on SSR[18]. A nonzero decay 1 — »=° via final state inter-
f(g?). Thus the SSR in largdl. are only interesting when actions has been estimated from the decay of 1o two

B(x) andC(y) are pseudoscalar currents. mesons which then rescatter via meson exchangetd
This concludes the statements of the FSSR and SSR i19]. The process is described in QCD by connected decay
largeN.. A few final remarks are in order. (with a quark loop, so that it contradicts the SSR. In prac-
tical calculations in the above models the QCD dynamics
VI. REMARKS condition may not be satisfied, so that the model calculations

) ) are strictly not required to obey the SSR. However, model

First, on the relationship between SU(3) and laNie  parameters can be changed to satisfy the QCD dynamics
For equal mass up, down and strange quarks (SU(3) flavQipndition, so that the SSR have to be obeyed. Hence models
symmetry the 7 and 7w are among the degenerate lightestthat do not incorporate vanishing connected topologies are
states of QCD, satisfying the QCD dynamics condition thatnadequate. In QCD sum rules, the connected topology van-
the 7]770 threshold is below ther 7 threshold, Implylng the isheS, consistent with the FSSR’ af(utlz) is Sma“' consis-
existence of SSR. The SSR and [Etp) yield that the hybrid  tent with expectations from the OZI ru[@0]. The QCD sum
JPC={13,5...} "= y=° amplitude vanishes exactly be- ryle calculationd20] constitute explicit examples of the re-
cause topologies 2 and 3a in Fig. 2 vanish in the SU(3) limitgylts of this work.
noting that an SU(3) octet curreB(x) or C(y), interpolat- If one’s aim is to obtain information about the physically
ing respectively fory or 7%, does not couple to a quark- interesting hybrid1,3,5 ...}~ *— 7 amplitude, it is pos-
antiquark pair created from the vacuum. It has been knowRjple to do so from a variety of Green's functions. The es-
independently for some time that the SU(3) octetsential point about a quantum field theory approach is that
{135...} "= 57" amplitude vanishes exactly in the information about amplitudes can be extracted from various
SU(3) limit [2,17. Hence the hybrid{1,35...}""  Green's functions. In addition to Green’s functions involving
— n7° amplitude vanishes exactly &itherthe largeN, or  a fermion-antifermion current going to two fermion-
SU(3) limits, but the one doewot follow from the other, as  antifermion currents considered in this paper and elsewhere
SU(3) symmetry does not derive from, or does not imply,[4,20], Green’s functions containing a quark-antiquark cur-
the largeN, limit [15]. The amplitude should be more sup- rent going to a pure glue and a quark-antiquark current have
pressed than either limit indicates, due to the constraintseen considered in QCD sum rulgX0]. The latter case can
from the other limit. be shown to yield no selection rules for Green’s functions

Second, on the role of Bose symmetry. One finds thatFSSR, and hence cannot be used to deduce selection rules
contributions to the Green’s function that vanish by a fieldfor physical amplitudegSSR. However, the fact that the
theoretical version of Bose symmetry, at least after the polySSR cannot be deduced does not imply that the SSR is not
nomial operator is applied, do not contribute to the hybridvalid.
{1,35...} "= na® amplitude. However, this amplitude ~ We developed SSR for the hybr{d,3,5 ...} " — 5°
does not itself vanish by Bose symmetry. amplitude. Related SSR have been found for four quark and

We now remark on the field symmetrization selectionglueball initial state$2]. These SSR are derived in a formal
rules. The vanishing contributions to the Green’s functioncontext which can transparently be extended to a rigorous
were foreshadowed by, and have direct analogues in, thguantum field theoretic argument along the lines of this
“symmetrization selection rules 1" of the non-field theoretic work. Extension to two-body final states beyomdr® is
analysis of Ref[2], where decays of1,3,5 ...} * hybrids  more conceptually involved, due to the analogue of the QCD
to two J=0 (hybrid) meson states, which are identical in all dynamics condition. In the interest of brevity these exten-
respects except possibly flavor, are prohibited. The lattesions should be considered in future work.
condition is translated into the requirement théx) = c(x) Last, we remark on experimental consequences. The
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Crystal Barrel experiment has recently claimed evidence foboson fields commute with fermion fields, that two fermion
pp—resonant I *— »=° at a level that is a significant frac- fields anticommute, and that two conjugated fermion fields
anticommute. Each of th@ntjcommutators is proportional
to delta functionss®(x—y) (or derivatives acting on delta
functions, by virtue of the canonicalanticommutation re-

tion of the P—wave pp annihilation [21]. Although the
branching fraction of 1*— ##° is not known, it is reason-
able to assume that it is substantial. This is qualitatively at" . ) .

odds with the SSR if the 1" resonance is interpreted as a ations of fields at equal t|me For example, for commuta-
hybrid. Even though this is not rigorous, as the QCD dynam—tqrS of photon fields  [A,(x1).A,(y.0)]=0,

ics condition is not satisfied experimentally, the small changéA.(x.t),A,(y,)1=ig,,,6%(x=y), ..., and for anti-

in quark masses from their experimental values needed tgommutators  of lepton and  conjugated  lepton
enable the validity of the QCD dynamics condition indicatesfields {¢¢(x,t),¢,(y,t)}= ygaée(x—y), {(x.1), 4,(y, 1)}
that the I ™ resonance is qualitatively inconsistent with be- — _ y-3,8%(x—Y), .. ..Spacial derivatives, andgy might
ing a hybrid meson. Other possibilities for the intgrpretationbe acting on thesgantjcommutators, sincb(x) in Eq. (10)

of the 1" " enhancement have recently been discussed il in general contain derivatives acting on fields. A deriva-

Refs.[2,18,19,22 tive 5y can be expressed in terms of a derivatfye;ince the

delta function only depends ot-y. The possibility of tem-
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APPENDIX One now performs integration by parts over the variable
which yields powers ofp when the derivatives act on the
We show thatA , defined in Eq.(10) has a polynomial  exponential, as well as derivatives acting 6p(x,y,z).
dependence op if the number of derivatives acting on in- (There is no surface term as the delta function does not con-
dividual fields in the current8(x) andC(y) is bound. tribute forx far fromy.) Eventually there will be no deriva-
The commutator in Eq(10) can be expressed, by a gen- tives acting on the delta function. When performing one of
eral property of commutators, as a sum of terms, each ohe integrations, the delta function force$®*P¥)=1, so
which contains either a commutator of two bosgfuon or  that the onlyp dependence is the various powergpofience
photon fields, or an anticommutator of fermiopand con- A, has a polynomial dependence pnThis is true as long
jugated fermiony (quark or leptonfields. Here we use that as the number of derivativesin Eq. (Al) is bound.
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