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QCD and QED exhibit an infinite set of three-point Green’s functions that contain only Okubo-Zweig-Iizuka
~OZI! rule violating contributions, and~for QCD! are subleading in the largeNc expansion. The Green’s
functions describe the ‘‘decay’’ of aJPC5$1,3,5, . . . %21 exotic hybrid meson current to twoJ50 ~hybrid!
meson currents with identicalP andC. We prove that the QCD amplitude for a neutral hybrid$1,3,5, . . . %21

exotic current to createhp0 only comes from OZI rule violating contributions under certain conditions, and is
subleading inNc .
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I. INTRODUCTION

More than a decade ago Lipkin argued that an explic
identified contribution to the decay of aJPC

5$1,3,5, . . . %21 ‘‘exotic’’ hybrid meson to hp vanishes
@1#. HereJ denotes the internal angular momentum,P ~par-
ity! the reflection through the origin, andC ~charge conjuga-
tion! particle-antiparticle exchange. These are conser
quantum numbers of the strong and electromagnetic inte
tions. By ‘‘hybrid meson’’ we mean a fermion-antifermio
with additional gauge bosons. ‘‘Exotic’’ means that theJPC

cannot be constructed for conventional mesons in the qu
model, or equivalently that there are no local currents b
only from a fermion and antifermion field that can have the
JPC.

Lipkin’s intuitive argument was later extended and plac
in a more formal context, called ‘‘symmetrization selecti
rules’’ @2#. However, these need to be converted into rigoro
quantum field theoretic arguments, which is the subjec
the current work.

We outline Lipkin’s intuitive argument for the decay of
positively chargedJP512,32, . . . state to hp1 when
strong interactions with isospin symmetry is assum
G-parity conservation implies that the neutral isospin part
of the initial state isJPC exotic. We consider the decay pro
cess where a quark and antiquark in the initial state proc
in such a way that the quark ends up in the one final mes
and the antiquark in the other meson~Fig. 1!. This decay
process is called ‘‘connected,’’ because each meson is
nected to the other mesons via quark lines. The gluons
not indicated. The fact that the neutral isospin partner of
initial state isJPC exotic, and that the initial state contains
quark and antiquark, implies that the initial state is a hyb
meson. The argument is depicted in Fig. 1. Taking the ini
hybrid at rest, theh andp1 emerge with momenta2k and
k respectively. First consider the three top left diagrams. T
top diagram has a negative sign in front by conventi
When the transformationk↔2k is applied, the middle dia-
gram is obtained, noting that the decay is in an odd par
wave, which acquires a minus sign under the transformat
This is a general property of odd partial waves. The bott

*Email address: prp@lanl.gov
0556-2821/2001/64~5!/056009~9!/$20.00 64 0560
y

d
c-

rk
lt
e

d

s
f

.
r

ed
n,

n-
re
e

d
l

e
.

al
n.

diagram is obtained by noting that the amplitude to creat

uū pair is the same as for add̄ pair by the assumption o
isospin symmetry, which treats the up and down quarks
same. The three top right ‘‘hadronic’’ diagrams are now o
tained from the three top left ‘‘quark’’ diagrams by attachin

the initial hybrid to the initialud̄ quarks, and the finalp1 to

the finalud̄ quarks. Since the flavor wave function of theh

containsuū1dd̄, it is attached to eitheruū or dd̄, with a
positive relative sign. Because each of the three top
quark diagrams are equal, it follows that each of the three
right hadronic diagrams are equal. The two bottom diagra
depict the decay amplitude, taking into account that there
two possible ways for the finalh andp1 to couple, since the
quark in the initial state can go either to theh or the p.
Looking back at the top right hadronic diagrams one imm
diately notices that the decay amplitude vanishes. This is
desired result.

The argument above can be repeated without assum
isospin symmetry, as will be the case in the remainder of
work, if the initial state is neutral. Hence isospin is not
essential assumption. It appears strange that a decay a
tude vanishes from very general considerations if the de
is allowed by the conserved quantum numbers of the str
interaction. This paradox is resolved when one notices th
was only argued that the connected contribution to the de
vanishes, not the entire decay amplitude. Lipkin’s argum
serves as a guide to how a quantum field theoretic argum
would proceed.

In this paper we demonstrate that some explicitly iden
fied contributions to certain three-point Green’s functio
vanish. This is calledfield symmetrization selection rules.
Particularly, the connected@Okubo-Zweig-Iizuka~OZI! al-
lowed# contribution to each Green’s function vanishe
Hence, the Green’s function only has a disconnected~OZI
forbidden! contribution, which is expected to be phenomen
logically suppressed by virtue of the OZI rule@3#. The
Green’s function is built from twoJ50 ~hybrid! meson cur-
rents with identicalP andC, and aJPC5$1,3,5, . . . %21 ex-
otic hybrid meson current.

We subsequently investigate the physical consequen
The amplitude for a$1,3,5, . . . %21 hybrid current to create
hp0 is shown to be proportional to the Green’s functio
under certain conditions. Because some explicitly identifi
©2001 The American Physical Society09-1
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FIG. 1. Lipkin’s intuitive argument.
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contributions to the Green’s function vanish, it follows th
the amplitude does not come from these contributions, ca
symmetrization selection rules at the hadronic level. Particu-
larly, the amplitude does not arise from the connected c
tribution to the Green’s function, and hence only from t
disconnected contribution, which is expected to be s
pressed by virtue of the OZI rule. The experimental con
quences pertain to a central issue in hadron spectroscopy
search for hybrid meson bound states beyond conventi
mesons and baryons.

For quantum chromodynamics~QCD! with a large num-
ber of colors Nc , the foregoing conclusions will be ex
pressed as follows: Because a disconnected contribution
Green’s function is subleading in the largeNc expansion, and
the Green’s function only has a disconnected contributi
the Green’s function is subleading inNc . Also, since the
amplitude for a$1,3,5, . . . %21 hybrid current to createhp0

only comes from the disconnected contribution to t
Green’s function, it is subleading inNc .

It has previously been shown that the connected par
the quenched Euclideanthree-point Green’s function of spe
cific hybrid meson neutral 121 and two pseudoscalar (J
50) currents vanishes exactly in QCD, ifisospinsymmetry
is assumed@4#. We remove the three italicized superfluo
assumptions, but still need the connected part and hy
meson currents. We also generalize beyond specific curr
beyond 121 and pseudoscalar currents, beyond the c
nected part, and beyond QCD.

In Sec. II the currents and Green’s functions are int
duced. The principle of symmetrization is developed. In S
III the Green’s functions are calculated leading to succinc
stated field symmetrization selection rules. An explicit e
ample is discussed. In Sec. IV the physical consequence
investigated, yielding symmetrization selection rules at
hadronic level, which are concisely stated. Section V stud
the selection rules in the largeNc expansion. Section VI
contains further remarks.
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II. SYMMETRIZATION

Consider local currents of the form

$Am~x!,B~x!,C~x!%

5(
i

c̄ i~x!$aiam~x!,bib~x!,cic~x!%c i~x!, ~1!

where c i(x) is a quark or lepton field of flavori, and
ai ,bi ,ci are c numbers weighting the flavors. The curre
are diagonal in flavor. The ‘‘matrices’’am(x), b(x) andc(x)
contain an arbitrary number of Dirac matrices, Gell-Ma
color matrices, derivatives~acting both to the left and the
right!, gluon or photon fields and correspond to gauge inva
ant currents@5#. A common choice for the flavor structure o
the three currents isūu2d̄d, ūu1d̄d2 s̄s and ūu2d̄d, in-
terpolating for an isovector resonance, anh and ap0. The
matrix am(x) in Eq. ~1! is chosen to ensure thatP52. We
require that currentsB andC haveJ50, as well as equality
of b(x) andc(x), implying equalP andC. Note that equality
of the matricesb(x) andc(x) doesnot imply equality of the
currentsB(x) and C(x). BecauseC is the same for both
these currents, charge conjugation conservation requires
the C of Am(z) is 1. TakeAm to have oddJ @6#. HenceAm
must be chosen to haveJPC5$1,3,5, . . . %21. These are ex-
otic quantum numbers, andAm is built from a fermion and an
antifermion field, so that the current is a hybrid current, i
has to contain at least one gluon or photon field. For
current withJÞ0, the appropriate Lorentz indices are ind
cated bym.

We start by demonstrating that certain three-point Gree
functions are equal to their antisymmetric parts. This is do
by first defining the spatial Green’s function,Gm(x,y,z), and
decomposing it into symmetric and antisymmetric parts. T
Green’s function of interest will be the Fourier transform
the spatial Green’s function,Gm(p,t). We then argue that the
Fourier transform of the symmetric part of the spat
9-2
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~FIELD! SYMMETRIZATION SELECTION RULES PHYSICAL REVIEW D64 056009
Green’s function,Gm
S(p,t), vanishes. Hence,Gm(p,t) equals

the Fourier transform of the antisymmetric part of the spa
Green’s function,Gm

A(p,t).
Define the three-point Minkowski space Green’s functi

Gm~x,y,z!5^0uB~x!C~y!Am~z!u0& ~2!

with x05y0[t, z050 andz50. The Green’s function de
scribes the decay~production! process of a currentAm(z) at
time 0 propagating into the final~initial! currentsB(x) and
C(y) at some positive~negative! time t. Although we shall
refer toGm(x,y,z) as a ‘‘Green’s function,’’ the usual usag
of the term requires the currents to be at different times,
x0Þy0, with the currents ordered from positive to negati
times. The Green’s functionGm(x,y,z) can be written as
Gm

S(x,y,z)1Gm
A(x,y,z), i.e. the sum of parts symmetric an

antisymmetric under exchange ofx andy, as any function of
x andy can be written.

Define the Fourier transforms

Gm~p,t ![E d3xd3yei (p•x2p•y)Gm~x,y,z!, ~3!

$Gm
S~p,t !,Gm

A~p,t !%

[E d3xd3yei (p•x2p•y)$Gm
S~x,y,z!,Gm

A~x,y,z!%.

~4!

Note that these Fourier transforms cannot be inverted to
the spatial Green’s functions, since they only have one m
mentum variablep. From Eqs.~3! and ~4! it follows that
Gm(p,t)5Gm

S(p,t)1Gm
A(p,t).

By exchanging integration variablesx↔y

Gm~2p,t !5E d3xd3yei (p•x2p•y)Gm„~y,t !,~x,t !,z…

5E d3xd3yei (p•x2p•y)$Gm
S~y,x,z!1Gm

A~y,x,z!%

5Gm
S~p,t !2Gm

A~p,t !. ~5!

Exchanging integration variablesx→2x andy→2y yields

Gm~2p,t !52Gm~p,t ! ~6!

by using thatGm„(2x,t),(2y,t),z…52Gm(x,y,z), by con-
servation of parity. We henceforth restrict ourselves to
parity conserving theories of quantum electrodynam
~QED! and QCD. We also used that the product of the pa
ties of the currentsB(x), C(y) and Am(z) is 21, which
follows from the assumptions below Eq.~1!. This means that
the decay~production! process is in odd partial wave. Eq.~6!
is a well-known property of such a process.

Combining Eqs.~5! and ~6! yields the result

Gm
S~p,t !50. ~7!
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Bose symmetry states that identical bosons are not allo
in an odd partial wave. The way one shows this would
analogous to the steps above ifGm

A(p,t)50. Hence, the Fou-
rier transform of the symmetric part ofGm(x,y,z) in Eq. ~7!
vanishes by arguments that are the field theoretical versio
Bose symmetry.

From Eq.~7! follows the desired result

Gm~p,t !5Gm
A~p,t !. ~8!

III. FIELD SYMMETRIZATION SELECTION RULES

We proceed to explicitly identify some contributions
Gm(p,t) that vanish. This is attained via partially evaluatin
Gm

A(p,t). It is subsequently shown that the action of a cert

operatorÔp on the Fourier transform of the antisymmetr
part of the Green’s functionÔpGm

A(p,t), does not contain
some contributions. BecauseGm

A(p,t)5Gm(p,t) from Eq.

~8!, it follows thatÔpGm(p,t) does not contain these contr
butions.

We now evaluate the contributions to the Green’s funct
Gm

A(x,y,z) with the currents in Eq. ~1!, using that
Gm

A(x,y,z)5 1
2 @Gm(x,y,z)2Gm(y,x,z)#,

Gm
A~x,y,z!5 1

2 ^0u@B~x!C~y!2B~y!C~x!#Am~z!u0&

5
1

2 (
i j

bicj^0u@c̄ i~x!b~x!c i~x!

3c̄ j~y!c~y!c j~y!2c̄ i~y!b~y!c i~y!c̄ j~x!

3c~x!c j~x!#Am~z!u0&. ~9!

The various contributions to this expression are now d
cussed. Consider contributions to the expression where
same flavors are isolated in the currentsB(x) andC(y), i.e.
contributions wherei 5 j . Using Eqs.~4! and ~9!, these con-
tributions toGm

A(p,t) can be written

Gm
A~p,t !;E d3xd3yei (p•x2p•y)

1

2 (
i

bici

3^0u@c̄ i~x!b~x!c i~x!,c̄ i~y!b~y!c i~y!#Am~z!u0&

[Lm~p,t !, ~10!

where we usedb(x)5c(x), and denoted the contributions b
Lm . The important observation is that the difference of c
rents in Eq.~9! has simplified to the commutator of curren
in Eq. ~10!. It is possible to show thatLm has a polynomial
dependence onp ~see Appendix! @7#. There hence exists a
polynomial operator~containing a derivative of high enoug
power inp) with the property thatÔpLm(p,t)50. This re-
sult will later be demonstrated in an explicit example. W
conclude from Eq.~10! that ÔpGm

A(p,t), and from Eq.~8!

alsoÔpGm(p,t), do not contain contributions from the sam
flavor in currentsB(x) andC(y), a result which corrects the
former treatment@8#. Although this is the desired result, an
9-3
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FIG. 2. Topologies contributing to Eq.~11!.
to
ns
rm
w

he
om

ich
For
the end of the mathematical derivation, it will be pivotal
develop a more intuitive understanding of the contributio

ÔpGm(p,t) is an operator acting on the Fourier transfo
of Gm(x,y,z). For the purpose of illustration in the next fe
paragraphs, consider the timet to be positive, withB(x)
slightly advanced at timex05t1dt with respect toC(y) at
time y05t in the definition ofGm(x,y,z) in Eq. ~2!. Heredt
is small, positive and nonzero. The sign oft or the magnitude
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.
of dt will not change our eventual conclusions. Since all t
currents are at different times, with the currents ordered fr
large to small times, it follows thatGm(x,y,z) is a Green’s
function according to the usual usage of the term, wh
implies that it can be represented by a path integral.
concreteness, consider the contribution toGm(x,y,z) in Eq.
~2! from the up quark flavors in the currentsB(x), C(y) and
Am(z) in Eq. ~1!, which is ~moduloaubucu),
E D A Dc̄ Dc d„f ~A!…detMFū~x!b~x!u~x!ū~y!c~y!u~y!ū~z!am~z!u~z!expS 2 i E d4x LD
5E D A d„f ~A!…detMFdetg0S21expS 2 i E d4x L (A) D $Tr@2am~z!Su

A~z,x!b~x!Su
A~x,y!c~y!Su

A~y,z!

2am~z!Su
A~z,y!c~y!Su

A~y,x!b~x!Su
A~x,z!#1Tr@am~z!Su

A~z,x!b~x!Su
A~x,z!#Tr@c~y!Su

A~y,y!#

1Tr@am~z!Su
A~z,y!c~y!Su

A~y,z!#3Tr@b~x!Su
A~x,x!#1Tr@am~z!Su

A~z,z!#Tr@b~x!Su
A~x,y!c~y!Su

A~y,x!#

2Tr@am~z!Su
A~z,z!#Tr@b~x!Su

A~x,x!#Tr@c~y!Su
A~y,y!#%. ~11!
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The gauge-fixing conditiond„f (A)… and Faddeev-Popov de
terminant detMF are indicated. The QCD or QED Lagrang
ian is denoted byL and the part containing terms withou
fermions L (A). The up quark propagator in a backgrou
field is Su

A(x,y) and the fermion determinant~containing fer-
mion loops! detg0S21 @9#.

The terms on the right-hand side~RHS! of Eq. ~11! cor-
respond to the topologies in Fig. 2. This is seen by assoc
ing with each up quark propagator an up quark line in
figure. Also,z is associated with the left-hand side~LHS! of
each topology, andx,y with the blobs on the RHS. In Eq
~11! the first two terms correspond to the quark line ‘‘co
nected’’ topology 1 in Fig.~2!, the second two to topology 2
term five to topology 3b and term six to topology 3a. T
topologies hence represent all the different ways that a
mion and antifermion field on the LHS of Eq.~11! can be
‘‘contracted’’ by the fermion integration to yield the fermio
propagators on the RHS.

Similar manipulations to Eq.~11! can be performed for
contributions where not all the fermions in the currents
up quarks, or not all the fermions have the same flavor.

From Fig.~2! it can be seen that topologies 1 and 3b ha
the interesting property that when a certain flavor contribu
from current B(x), then thesameflavor contributes from
current C(y). This is because the currents are diagonal
t-
e

r-

e

e
s

n

flavor. Although B(x) and C(y) contain various different
flavor structures according to Eq.~1!, topologies 1 and 3b
force only the same fermion flavors inB(x) and C(y) to
contract. For the other topologies, it is sometimes the c
that the flavors from two currents are the same, but not
ways. Recalling thatÔpGm(p,t) does not contain contribu
tions from the same flavor in currentsB(x) and C(y), we
derive the following:

Field symmetrization selection rules~FSSR!. All contri-
butions to the three-point Green’s function Oˆ

pGm(p,t) from
the connected topology 1 and topology 3b (and some f
topologies 2 and 3a), i.e. contributions from the same fla
in currents B(x) and C(y), vanish exactly for all momentap
and times t for an infinite set of equal matrices b(x)5c(x)
and different flavor structure currents B(x) and C(y) in
QCD and QED. The Green’s function decribes the ‘‘deca
of a JPC5$1,3,5, . . . %21 exotic hybrid meson current to tw
J50 (hybrid) meson currents B(x) and C(y), which are
identical „b(x)5c(x)…, e.g. have identical parity and charg
conjugation, except possibly for their flavor.

The contributions that vanish by the FSSR are tho
from the same flavor in currentsB(x) and C(y). Since
the productB(x)C(y) occurs in the Green’s function@see
Eq. ~2!#, these are contributions of the form
bici c̄ i(x)b(x)c i(x)c̄ i(y)c(y)c i(y), where i indicates the
flavor, and no summation is implied. It is evident that t
9-4
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~FIELD! SYMMETRIZATION SELECTION RULES PHYSICAL REVIEW D64 056009
precise values ofbi andci , i.e. the flavor structure ofB(x)
andC(y), do not affect the fact that the contributions vani
by the FSSR. The same is true forAm(z). For example, both
the common choice ofūu2d̄d,ūu1d̄d2 s̄s andūu2d̄d for
the flavor structure ofAm(z), B(x) andC(y), and the alter-
native choice of respectivelyūu22d̄d,ūu1d̄d22s̄s and
2ūu2d̄d, obey the FSSR.

The FSSR do not depend on the various parameter
QCD and QED, i.e. masses, couplings, charges, numbe
colors and flavors, but do require theCP violating u param-
eter to be zero, since this parameter violates parity conse
tion. FSSR also occur as pure QED, where QCD interacti
are turned off.

We now discuss an example to which the FSSR ap
The gauge invariant isovectorlike local currentAm(z)
5(Tjk

i )m@ ū(z)F jk
a (z)lag iu(z)2d̄(z)F jk

a (z)lag id(z)# is
JPC5121 exotic @4#, whereg i and la are Dirac and Gell-
Mann color matrices respectively, and (Tjk

i )m is a tensor
combining the spatial indicesi , j ,k to build a spin 1 object. It
is a hybrid current, since it contains a gluon field, as can
seen by the presence of the gluon field tensorF jk

a . The
gauge-invariant isoscalar and isovectorlike local curre
B(x)5ū(x)g5u(x)1d̄(x)g5d(x)2 s̄(x)g5s(x) and C(y)
5ū(y)g5u(y)2d̄(y)g5d(y) are pseudoscalar (JPC5021),
with g5 a Dirac matrix. Note thatb(x)5c(x)5g5, but that
B(x)ÞC(x). Also, we do not assume isospin symmetry.
evaluate Lm in Eq. ~10!, the commutator

@ ū(x)g5u(x),ū(y)g5u(y)# must be evaluated. The commu
tator can be shown to equald3(x2y)@ ū(x)g5g0g5u(y)
2ū(y)g5g0g5u(x)#. Because of the delta function, it is im
mediate thatLm(p,t) in Eq. ~10! is independent ofp, i.e. it
has a polynomial dependence onp. The polynomial oper-
ator Ôp5]/]p has the promised property thatÔpLm(p,t)
50. In this example, the commutator actually vanish
because the delta function forcesx5y, so that
d3(x2y)@ ū(x)g5g0g5u(y)2ū(y)g5g0g5u(x)#50; imply-
ing thatLm50, and one can takeÔp51. There does, how
ever, exist examples whereÔp is not trivial as in this case
For example, one can show that replacingb(x)5g5 by
b(x)5g5Fmn

a (x)Fa mn(x) yields a nontrivialÔp .

IV. SYMMETRIZATION SELECTION RULES AT THE
HADRONIC LEVEL

We now investigate the physical consequences of
FSSR, particularly the amplitude for a$1,3,5, . . . %21 hybrid
current to createhp0, which can be obtained from th
Green’s function. This is done via an alternative route to
former treatment@4#, which contains erroneous aspects@10#.

A natural quantity to obtain from the three-point Green
function is the amplitude for the hybrid current to create
stable two-body state. The hybrid current is not expected
interpolate for a stable particle, so that we shall not be abl
extract theT matrix for a stable hybrid particle to decay
the two-body state. To obtain the amplitude, a complete
of asymptotic, i.e. stable, statesn are inserted in the Green’
05600
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function. This leads to a general relation@Eq. ~14!# between
the Green’s function and the amplitudes for a$1,3,5, . . . %21

hybrid current to create the asymptotic states. Under cer
conditions this equation can be simplified to show that
Green’s function is proportional to the amplitude for
$1,3,5, . . . %21 hybrid current to createhp0, @Eq. ~15!#. Be-
cause some explicitly identified contributions toÔpGm(p,t)
vanish, it follows that the amplitude does not come fro
these contributions.

Restricting to QCD on its own@11#, from the definition
@Eq. ~3!#

Gm~p,t !5E d3xd3yei (p•x2p•y)

3(
n

^0uB~x,0!C~y,0!e2 iHt un&^nuAm~z!u0&,

~12!

where we used time translational invariance of the fie
B(x) and C(y), e.g. B(x,t)5eiHtB(x,0)e2 iHt , with H the
QCD Hamiltonian. The productB(x,0)C(y,0) and Am(z)
should be colorless to make the expression nonzero, whic
the case since each current has been assumed to be g
invariant. If the quarks have their physical masses, the low
asymptotic states contain the statesp and h, the lowest
stable states of the QCD spectrum@12#. The p only decays
weakly and electromagnetically, and is hence stable as fa
QCD on its own is concerned. Theh has a width of only
1025 times the typical hadronic width of 100 MeV so that
is very nearly stable.

Space translational invariance of the fieldsB(x) and
C(y), e.g. B(x,0)5e2 iP•xB(0)eiP•x, with P the QCD mo-
mentum operator, is now employed. Performing one of
integrations in Eq.~12! ~the one overx1y),

Gm~p,t !5(
n

~2p!3d3~pn!e2 iEnt

3 K 0US E d3xeip•xB~x,0! DC~0!UnL ^nuAm~z!u0&,

~13!

where the integration variablex2y is denoted byx. Herepn
andEn are the momentum and energy of staten. The Euclid-
ean space analogue of all the steps up to here is obtaine
taking t→2 i t . However, we now restrict to Minkowsk
space in order to integrate over time. From Eq.~13!

E
2`

`

dt ÔpGm~p,t !eiEt

5(
n

~2p!4d3~pn!d~En2E!Ôp^0u

3S E d3xeip•xB~x,0! DC~0!un&^nuAm~z!u0&,

~14!

whereE is a real number. The delta functions indicate th
the asymptotic states are at rest and have energyE.
9-5
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For E below thep1p2p0 or p0p0p0 ~called theppp)
threshold onlypp asymptotic states contribute. Since f
two–pion states at rest ^p0k p02kuAm(z)u0& and
^p1k p22kuAm(z)u0& respectively vanish by Bose symm
try andCP conservation, this forces the LHS of Eq.~14! to
be zero. IfE is above theppp threshold the sum in Eq.~14!
can be shown to be infinite. However, we shall show bel
that if the hp0 threshold can be made below theppp
threshold, in contrast to experiment, the sum has only
contribution. This is important because we want asingleam-
plitude on the RHS of Eq.~14! to be proportional to the
LHS.

In QCD we are free to tune the quark masses away fr
the masses corresponding to the experiment. Taking thehp0

threshold to be below theppp threshold for some range o
quark masses is called the ‘‘QCD dynamics’’ condition. Th
r-

y
i

-
n
c

es
l
e

is

-
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e

m

condition can heuristically be satisfied by noting that fo
times higher up/down quark masses would yield a two tim
heavierp, while theh mass would not change much, so th
h can move below thepp threshold. This follows from the
fact that thep and h masses,mp and mh , arecAmu1md

andcA(4ms1mu1md)/3 by chiral symmetry breaking, with
mu,d,s the current quark masses andc a constant. Under the
QCD dynamics conditionh lies belowpp threshold so that
it is stable. This means that the formalism is exact wh
asymptotic states involvingh are inserted in Eq.~12!.

ConsiderE between thehp0 andppp thresholds. Then
the sum in Eq.~14! is over all on-shellp andh states with
momenta k1 and k2 respectively, i.e. (n
5*d3k1 /(2p)3*d3k2 /(2p)3. Noting that pn5k11k2 and

En5Ak1
21mp

2 1Ak2
21mh

2, and performing the integrations
Eq. ~14! implies that
E
2`

`

dt ÔpGm~p,t !eiEt5 f ~q2!
1

8~2p!2E4
A@E22~mp1mh!2#@E22~mp2mh!2#

3@E42~mp1mh!2~mp2mh!2#E dVkqmÔp^0u S E d3xeip•xB~x,0! DC~0!upk h2k&. ~15!
R.

unt-

-

the

ely

e

Hereqm[k1
m2k2

m andk152k2[k. In the expressionq2 is a
function of uku, anduku is restricted byEn5E, so thatq2 is a
function ofE. The amplitude for a hybrid current to createh
and p mesons,^pk h2kuAm(z)u0&, should occur in Eq.
~15!. However, we used the Lorentz properties of^pk h
2kuAm(z)u0& to define it asqmf (q2), with m a spatial index,
for Am having J51 @13#. For a time indexm and otherJ
similar results follow.

On the RHS of Eq.~15!, ^0uB(x,0)C(0)upk h2k& is a
property ofh andp. For example, it contains a term propo
tional to ^0uB(0)upk&^0uC(0)uhk&, a product of individual
properties ofp andh, when the currentsB(0) „C(0)… have
the same quantum numbers as the asymptotic statesp (h).
One hence interprets Eq.~15! as meaning that the deca
described by the three-point Green’s function on the LHS
proportional to the decay amplitude described byf (q2) on
the RHS up to a ‘‘constant’’ of proportionality which de
scribes properties ofh andp. Suppression of the decay o
the LHS should hence translate into suppression of the de
on the RHS, since the properties ofh andp should remain
unaltered.

From Eq. ~15!, noting that f (q2) is proportional to the
LHS, we obtain the following symmetrization selection rul
at the hadronic level~SSR!: The amplitude for a neutra
JPC5$1,3,5, . . . %21 exotic hybrid meson current to creat
or annihilate hp0, qmf (q2), does not arise, in QCD, from

contributions to ÔpGm(p,t) that vanish by the FSSR. Th
holds for quark masses chosen such that thehp0 threshold
is below thep1p2p0 or p0p0p0 thresholds and for E be
tween these thresholds.
s

ay

This concludes the physical consequences of the FSS

V. LARGE N C

We now study the effect of takingNc to be large in QCD
@14#. Here one makes a classification based on power co
ing in Nc . The amplitudê pk h2kuAm(z)u0& is O(1) @15#,
so thatf (q2) is O(1). Thecontributions to the Green’s func
tion from topology 1 isO(Nc) to leading order, from topolo-
gies 2 and 3bO(1) and from topology 3aO(1/Nc) @15#, so
that the LHS of Eq.~15! would ordinarily beO(Nc). How-
ever, since topology 1 does not contribute by the FSSR,
LHS is O(1), andhencef (q2) is O(1/Nc) @16#. Hence both
quantities are subleading to their usualNc counting. Hence

1

Nc
ÔpGm~p,t !→0 f ~q2!→0 as Nc→`, ~16!

where both expressions ordinarily remain nonzero asNc
→`. The two exactly vanishing expressions are respectiv
the consequences of the FSSR and SSR in largeNc . The
SSR in largeNc is, The hybrid JPC5$1,3,5, . . . %21→hp0

amplitude isO(1/Nc) in QCD, i.e. vanishes exactly in th
large Nc limit, for quark masses chosen such that thehp0

threshold is below thep1p2p0 or p0p0p0 thresholds, and
for E between these thresholds. This isnot the same as Bose
symmetry, sinceh and p0 are not identical particles in
9-6
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the largeNc limit. The finding that the amplitude for the
hybrid current to decay tohp0 is subleading inNc intu-
itively follows from the fact that OZI-violating processes a
largeNc suppressed.

The preceding discussion in this section assumed tha
LHS of Eq. ~15! is ‘‘ordinarily’’ of O(Nc). This is attained
when ^0uB(x,0)C(0)upk h2k& on the RHS of Eq.~15! is
O(Nc). This is true when the currentsB(x) „C(y)… individu-
ally have the same quantum numbers as the asymptotic s
p (h) or h (p) @15#, i.e. when the currents are pseudosca
Up to this point in the paper we have not required either
the currents to have a specific parity and charge conjuga
However, if the currents are not pseudosca
^0uB(x,0)C(0)upk h2k& is at mostO(ANc) @15#, so that
the LHS cannot beO(Nc), and hence should be regarded
ordinarily O(1): thenext possibility in theNc counting. The
FSSR still yield that the LHS isO(1), but asthis is not new
information, the FSSR imply no additional restrictions
f (q2). Thus the SSR in largeNc are only interesting when
B(x) andC(y) are pseudoscalar currents.

This concludes the statements of the FSSR and SS
largeNc . A few final remarks are in order.

VI. REMARKS

First, on the relationship between SU(3) and largeNc .
For equal mass up, down and strange quarks (SU(3) fla
symmetry! the h and p are among the degenerate lighte
states of QCD, satisfying the QCD dynamics condition t
thehp0 threshold is below theppp threshold, implying the
existence of SSR. The SSR and Eq.~15! yield that the hybrid
JPC5$1,3,5, . . . %21→hp0 amplitude vanishes exactly be
cause topologies 2 and 3a in Fig. 2 vanish in the SU(3) lim
noting that an SU(3) octet currentB(x) or C(y), interpolat-
ing respectively forh or p0, does not couple to a quark
antiquark pair created from the vacuum. It has been kno
independently for some time that the SU(3) oc
$1,3,5, . . . %21→hp0 amplitude vanishes exactly in th
SU(3) limit @2,17#. Hence the hybrid $1,3,5, . . . %21

→hp0 amplitude vanishes exactly ineither the largeNc or
SU(3) limits, but the one doesnot follow from the other, as
SU(3) symmetry does not derive from, or does not imp
the largeNc limit @15#. The amplitude should be more su
pressed than either limit indicates, due to the constra
from the other limit.

Second, on the role of Bose symmetry. One finds t
contributions to the Green’s function that vanish by a fie
theoretical version of Bose symmetry, at least after the po
nomial operator is applied, do not contribute to the hyb
$1,3,5, . . . %21→hp0 amplitude. However, this amplitud
does not itself vanish by Bose symmetry.

We now remark on the field symmetrization selecti
rules. The vanishing contributions to the Green’s funct
were foreshadowed by, and have direct analogues in,
‘‘symmetrization selection rules I’’ of the non-field theoret
analysis of Ref.@2#, where decays of$1,3,5, . . . %21 hybrids
to two J50 ~hybrid! meson states, which are identical in a
respects except possibly flavor, are prohibited. The la
condition is translated into the requirement thatb(x)5c(x)
05600
he

tes
r.
f
n.
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s
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t
t
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n
t
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t
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r

for the FSSR. In Ref.@2# the selection rule applied to flavo
components of the~hybrid! mesons B and C which are iden
tical, e.g.ūu for both. This is exactly the case for the co
tributions to the Green’s function for which we have FSS

The symmetrization selection rules at the hadronic le
have important consequences for models. The hyb
$1,3,5, . . . %21→hp0 amplitude only comes from discon
nected topologies. This feature puts the SSR in contradic
with most current models of QCD, although most find it
an approximate form. Particularly, the flux tube and const
ent gluon models all find an approximate selection rule
the connected decay of the low-lying 121 hybrid tohp0 @2#.
In these models the decay is proportional to the difference
the sizes of theh andp wave functions, which is in contra
diction with the SSR. Constituent gluon models also ha
low-lying hybrids called ‘‘quark excited’’ hybrids whose
connected decay tohp0 vanishes exactly, consistent with th
SSR@18#. A nonzero decay 121→hp0 via final state inter-
actions has been estimated from the decay of 121 to two
mesons which then rescatter via meson exchange tohp0

@19#. The process is described in QCD by connected de
~with a quark loop!, so that it contradicts the SSR. In pra
tical calculations in the above models the QCD dynam
condition may not be satisfied, so that the model calculati
are strictly not required to obey the SSR. However, mo
parameters can be changed to satisfy the QCD dynam
condition, so that the SSR have to be obeyed. Hence mo
that do not incorporate vanishing connected topologies
inadequate. In QCD sum rules, the connected topology v
ishes, consistent with the FSSR; andf (q2) is small, consis-
tent with expectations from the OZI rule@20#. The QCD sum
rule calculations@20# constitute explicit examples of the re
sults of this work.

If one’s aim is to obtain information about the physical
interesting hybrid$1,3,5, . . . %21→hp0 amplitude, it is pos-
sible to do so from a variety of Green’s functions. The e
sential point about a quantum field theory approach is t
information about amplitudes can be extracted from vario
Green’s functions. In addition to Green’s functions involvin
a fermion-antifermion current going to two fermion
antifermion currents considered in this paper and elsewh
@4,20#, Green’s functions containing a quark-antiquark c
rent going to a pure glue and a quark-antiquark current h
been considered in QCD sum rules@20#. The latter case can
be shown to yield no selection rules for Green’s functio
~FSSR!, and hence cannot be used to deduce selection r
for physical amplitudes~SSR!. However, the fact that the
SSR cannot be deduced does not imply that the SSR is
valid.

We developed SSR for the hybrid$1,3,5, . . . %21→hp0

amplitude. Related SSR have been found for four quark
glueball initial states@2#. These SSR are derived in a form
context which can transparently be extended to a rigor
quantum field theoretic argument along the lines of t
work. Extension to two-body final states beyondhp0 is
more conceptually involved, due to the analogue of the Q
dynamics condition. In the interest of brevity these exte
sions should be considered in future work.

Last, we remark on experimental consequences.
9-7



fo
-

a
a
m
g

d
te
e-
io

n
t-
ed
u

-

n-

t

n
lds
l

-

on

a-

in-
-

e

on-
-
of

PHILIP R. PAGE PHYSICAL REVIEW D 64 056009
Crystal Barrel experiment has recently claimed evidence
pp̄→resonant 121→hp0 at a level that is a significant frac
tion of the P–wave pp̄ annihilation @21#. Although the
branching fraction of 121→hp0 is not known, it is reason-
able to assume that it is substantial. This is qualitatively
odds with the SSR if the 121 resonance is interpreted as
hybrid. Even though this is not rigorous, as the QCD dyna
ics condition is not satisfied experimentally, the small chan
in quark masses from their experimental values neede
enable the validity of the QCD dynamics condition indica
that the 121 resonance is qualitatively inconsistent with b
ing a hybrid meson. Other possibilities for the interpretat
of the 121 enhancement have recently been discussed
Refs.@2,18,19,22#.

ACKNOWLEDGMENTS

Useful discussions with A. Blotz, T. Cohen, T. Goldma
E. Golowich, R. Lebed, A. Leviatan, L. Kisslinger, K. Mal
man, M. Mattis, M. Nozar, and G. West are acknowledg
This research is supported by the Department of Energy
der contract W-7405-ENG-36.

APPENDIX

We show thatLm defined in Eq.~10! has a polynomial
dependence onp if the number of derivatives acting on in
dividual fields in the currentsB(x) andC(y) is bound.

The commutator in Eq.~10! can be expressed, by a ge
eral property of commutators, as a sum of terms, each
which contains either a commutator of two boson~gluon or
photon! fields, or an anticommutator of fermionc and con-
jugated fermionc̄ ~quark or lepton! fields. Here we use tha
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boson fields commute with fermion fields, that two fermio
fields anticommute, and that two conjugated fermion fie
anticommute. Each of the~anti!commutators is proportiona
to delta functionsd3(x2y) ~or derivatives acting on delta
functions!, by virtue of the canonical~anti!commutation re-
lations of fields at equal timet. For example, for commuta
tors of photon fields @Am(x,t),An(y,t)#50,

@Ȧm(x,t),An(y,t)#5 igmnd3(x2y), . . . , and for anti-
commutators of lepton and conjugated lept
fields $cj(x,t),c̄s(y,t)%5gjs

0 d3(x2y), $ċj(x,t),c̄s(y,t)%
52gW •]W xd

3(x2y), . . . . Spacial derivatives]W x and]W y might
be acting on these~anti!commutators, sinceb(x) in Eq. ~10!
will in general contain derivatives acting on fields. A deriv
tive ]W y can be expressed in terms of a derivative]W x since the
delta function only depends onx2y. The possibility of tem-
poral derivatives acting on the fields have already been
corporated in the~anti!commutation relations. Hence a ge
neric term contributing to Eq.~10! is of the form

E d3xd3yei (p•x2p•y) f m~x,y,z!]W x
nd3~x2y!. ~A1!

One now performs integration by parts over the variablex,
which yields powers ofp when the derivatives act on th
exponential, as well as derivatives acting onf m(x,y,z).
~There is no surface term as the delta function does not c
tribute forx far from y.) Eventually there will be no deriva
tives acting on the delta function. When performing one
the integrations, the delta function forcesei (p•x2p•y)51, so
that the onlyp dependence is the various powers ofp. Hence
Lm has a polynomial dependence onp. This is true as long
as the number of derivativesn in Eq. ~A1! is bound.
e
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